This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

3D hard sphere Boltzmann equation: explicit structure and the transition process from polynomial tail to Gaussian tail

Yu-Chu Lin Yu-Chu Lin, Department of Mathematics, National Cheng Kung University, Tainan, Taiwan yuchu@mail.ncku.edu.tw Haitao Wang Haitao Wang, School of Mathematical Sciences, Institute of Natural Sciences, MOE-LSC, IMA-Shanghai, Shanghai Jiao Tong University, Shanghai, China haitallica@sjtu.edu.cn  and  Kung-Chien Wu Kung-Chien Wu, Department of Mathematics, National Cheng Kung University, Tainan, Taiwan and National Center for Theoretical Sciences, National Taiwan University, Taipei, Taiwan kungchienwu@gmail.com
Abstract.

We study the Boltzmann equation with hard sphere in a near-equilibrium setting. The initial data is compactly supported in the space variable and has a polynomial tail in the microscopic velocity. We show that the solution can be decomposed into a particle-like part (polynomial tail) and a fluid-like part (Gaussian tail). The particle-like part decays exponentially in both space and time, while the fluid-like part corresponds to the behavior of the compressible Navier-Stokes equation, which dominates the long time behavior and exhibits rich wave motion. The nonlinear wave interactions in the fluid-like part are precisely characterized and therefore we are able to distinguish the linear and nonlinear wave of the solution. It is notable that although the solution has polynomial tail in the velocity initially, the transition process from the polynomial to the Gaussian tail can be quantitatively revealed due to the collision with the background global Maxwellian.

Key words and phrases:
Boltzmann equation, Maxwellian, polynomial tail.
2020 Mathematics Subject Classification: 35Q20; 82C40.

1. Introduction

1.1. The model

The Boltzmann equation is a fundamental model in the collisional kinetic theory, which describes the evolution of a phase space distribution function of moderately dilute gas. Precisely, the Boltzmann equation reads

(1) {tF+ξxF=Q(F,F),F(0,x,ξ)=F0(x,ξ),(t,x,ξ)+×3×3,\left\{\begin{array}[]{l}\partial_{t}F+\xi\cdot\nabla_{x}F=Q(F,F)\text{,}\\[11.38109pt] F(0,x,\xi)=F_{0}(x,\xi)\text{,}\end{array}\right.\quad(t,x,\xi)\in{\mathbb{R}}^{+}\times{\mathbb{R}}^{3}\times{\mathbb{R}}^{3}\text{,}

where F(t,x,ξ)F\left(t,x,\xi\right) is the distribution function for particles at time t>0t>0, position x=(x1x2x3)3x=\left(x_{1}\text{, }x_{2}\text{, }x_{3}\right)\in\mathbb{R}^{3} and microscopic velocity ξ=(ξ1ξ2ξ3)3\xi=\left(\xi_{1}\text{, }\xi_{2}\text{, }\xi_{3}\right)\in\mathbb{R}^{3}, and initial data F0(x,ξ)0F_{0}\left(x,\xi\right)\geq 0 is given. Here the Boltzmann collision operator Q(,)Q\left(\cdot,\cdot\right) is given by

Q(G,F)=3𝕊2|qn|[G(ξ)F(ξ)G(ξ)F(ξ)]𝑑n𝑑ξQ\left(G,F\right)=\int_{\mathbb{R}^{3}}\int_{\mathbb{S}^{2}}\left|q\cdot n\right|\left[G\left(\xi_{\ast}^{\prime}\right)F\left(\xi^{\prime}\right)-G\left(\xi_{\ast}\right)F\left(\xi\right)\right]dnd\xi_{\ast}

where q=ξξq=\xi-\xi_{\ast} is the relative velocity and the post-collisional velocities satisfy

ξ=ξ[(ξξ)n]nξ=ξ+[(ξξ)n]n.\xi^{\prime}=\xi-\left[\left(\xi-\xi_{\ast}\right)\cdot n\right]n\text{, \ \ \ }\xi_{\ast}^{\prime}=\xi_{\ast}+\left[\left(\xi-\xi_{\ast}\right)\cdot n\right]n\text{.}

It is well known that the global Maxwellians are the steady solutions to the Boltzmann equation. In the perturbation regime near the Maxwellian, we look for the solution in the form of

(2) F=+fF0(x,ξ)=+εf0,F=\mathcal{M}+f\text{, \ \ \ }F_{0}(x,\xi)=\mathcal{M}+\varepsilon f_{0}\text{,}

where ε>0\varepsilon>0 sufficiently small, with a perturbation function ff to \mathcal{M}. Here the global Maxwellian \mathcal{M} is normalized as

=1(2π)3/2exp(|ξ|22).\mathcal{M=}\frac{1}{\left(2\pi\right)^{3/2}}\exp\left(-\frac{\left|\xi\right|^{2}}{2}\right)\text{.}

Substituting (2) into (1), the perturbation function ff satisfies the equation

(3) {tf+ξxf=f+Q(f,f),f|t=0=F0(x,ξ)=εf0(x,ξ)3×3,\left\{\begin{array}[]{l}\partial_{t}f+\xi\cdot\nabla_{x}f=\mathcal{L}f+Q\left(f,f\right),\vspace{3mm}\\ f|_{t=0}=F_{0}(x,\xi)-\mathcal{M=}\varepsilon f_{0}\text{, \ \ }\left(x,\xi\right)\in\mathbb{R}^{3}\times\mathbb{R}^{3}\text{,}\end{array}\right.

where

f=Q(,f)+Q(f,).\mathcal{L}f=Q\left(\mathcal{M},f\right)+Q\left(f,\mathcal{M}\right)\text{.}

In fact, \mathcal{L} can be split into

f=ν+𝒦,\mathcal{L}f=-\nu+\mathcal{K}\text{,}

with

ν(ξ)=3𝕊2|qω|(ξ)𝑑ω𝑑ξ(1+|ξ|),\nu\left(\xi\right)=\int_{\mathbb{R}^{3}}\int_{\mathbb{S}^{2}}\left|q\cdot\omega\right|\mathcal{M}\left(\xi_{\ast}\right)d\omega d\xi_{\ast}\sim\left(1+\left|\xi\right|\right)\text{,}
𝒦f=3𝕊2|qn|[(ξ)f(ξ)+f(ξ)(ξ)f(ξ)(ξ)]𝑑n𝑑ξ.\mathcal{K}f=\int_{\mathbb{R}^{3}}\int_{\mathbb{S}^{2}}\left|q\cdot n\right|\left[\mathcal{M}\left(\xi_{\ast}^{\prime}\right)f\left(\xi^{\prime}\right)+f\left(\xi_{\ast}^{\prime}\right)\mathcal{M}\left(\xi^{\prime}\right)-f\left(\xi_{\ast}\right)\mathcal{M}\left(\xi\right)\right]dnd\xi_{\ast}\text{.}

Note that this kind of perturbation (2) allows the initial data to have a polynomial tail in the microscopic velocity, which is different from the standard perturbation, F=+fF=\mathcal{M}+\sqrt{\mathcal{M}}f, where initial data is assumed to have a Gaussian tail.

It is known that there are extensive studies on the standard perturbation, including the global existence, time-asymptotic behavior, and even the pointwise structure, see [7, 16, 27, 28] and the references therein. It would be very interesting to see that can we still obtain the precise space-time structure of the solution for initial data with a polynomial tail?

Moreover, since the perturbation setting describes the collisions between a small amount of released particles and the ambient particles that have reached thermal equilibrium, the physical intuition suggests that the distribution of the released particles will also approach thermal equilibrium over a long period, namely, it will become close to a Gaussian in terms of the microscopic velocity. It is a challenge problem that is it possible to give a quantitative description of the transition process?

The main goal of this paper is to answer the above two questions. Specifically, we will construct a pointwise estimate of solution to (3) with respect to all variables, space, time, and velocity. The estimate not only exhibits the wave motion in space-time, but also reveals how the solution transitions from a polynomial tail to a Gaussian tail.

1.2. Review of previous works

Concerning the polynomial tail perturbation for collisional kinetic equation, there has been substantial progress recently. For the torus case, it was initiated by Gualdani-Mischler-Mouhot [17] for the Boltzmann equation with hard sphere. It was then generalized by [8] for Landau equation, by [1, 18] for the Boltzmann equation without angular cutoff, and by [5] for the Boltzmann equation with soft potentials. For the whole space case, we refer to [9, 6] for the non-cutoff Boltzmann equation and [13] for the cutoff Boltzmann equation. These works mainly focused on global existence and large time decay of the solution, whereas our study aim at providing a more quantitative description of the structure of the solution.

Next, we review some space-time pointwise results closely related to the current study. It was initiated by Liu [22] for 1D viscous conservation laws, then developed to multi-dimensional compressible Navier-Stokes equation [10, 12, 23, 24]. There are two key ingredients. The first is the construction of Green’s function for the linearized system, where rich wave phenomena, such as dissipative Huygens wave, diffusion wave, Riesz wave are identified. The other one is the careful estimate of nonlinear wave couplings between the above basic wave patterns. As is known, the long time behavior of the Boltzmann equation is governed by macroscopic fluid. There are some parallel results for Boltzmann equation with standard Gaussian tail. The result for 1D hard sphere Boltzmann equation was constructed by Liu-Yu [25]. As the nonlinear interaction is strong in 1D, the authors need to extract the so called “kinetic Burger equations” to close the nonlinear problem. Later, [26, 27] obtained the explicit structure of Green’s function for the linearized Boltzmann equation with hard sphere in 3D. Recently, [20] constructed the explicit structure of the relativistic Boltzmann equation for “hard ball”, an exponentially sharp ansatz similar to structure in [10] was justified. In these works, the nonlinear interactions have been estimated to the extent necessary to close the nonlinear ansatz.

The transition from polynomial tail to Gaussian tail is related to the decay estimates for large velocities in the Boltzmann equation. For space homogeneous case, there are extensive studies on Lv1L^{1}_{v} moments or pointwise decay, both for polynomial and exponential weight, see [2, 3, 11, 15] and references therein. For space inhomogeneous case, the results are relatively fewer. Generation of polynomial moments in Lv1L^{1}_{v} or pointwise sense was established under suitable moment bound conditions for hard potential with or without cutoff, see [4, 17, 19]. Different from the conditional results, our result provides a dynamic process for Gaussian tail generation in the perturbation regime.

1.3. Notations

Before stating our main results, we introduce some notations used in this paper. We denote wβ(ξ)=ξβ=(1+|ξ|2)β/2w_{\beta}\left(\xi\right)=\left\langle\xi\right\rangle^{\beta}=(1+|\xi|^{2})^{\beta/2} , β\beta\in{\mathbb{R}}. For the microscopic variable ξ\xi, we denote

|g|Lξp=(3|g|p𝑑ξ)1/p if 1p<,|g|Lξ=supξ3|g(ξ)|,|g|_{L_{\xi}^{p}}=\Big{(}\int_{{\mathbb{R}}^{3}}|g|^{p}d\xi\Big{)}^{1/p}\hbox{ if }1\leq p<\infty\hbox{,}\quad\quad|g|_{L_{\xi}^{\infty}}=\sup_{\xi\in{\mathbb{R}}^{3}}|g(\xi)|\hbox{,}

and the weighted norms can be defined by

|g|Lξ,βp=(3|ξβg|p𝑑ξ)1/p if 1p<,|g|Lξ,β=supξ3|ξβg(ξ)|.|g|_{L_{\xi,\beta}^{p}}=\Big{(}\int_{{\mathbb{R}}^{3}}\left|\left\langle\xi\right\rangle^{\beta}g\right|^{p}d\xi\Big{)}^{1/p}\hbox{ if }1\leq p<\infty\hbox{,}\quad\quad|g|_{L_{\xi,\beta}^{\infty}}=\sup_{\xi\in{\mathbb{R}}^{3}}\left|\left\langle\xi\right\rangle^{\beta}g(\xi)\right|\hbox{.}

The Lξ2L_{\xi}^{2} inner product in 3{\mathbb{R}}^{3} will be denoted by ,ξ\left\langle\cdot,\cdot\right\rangle_{\xi}, i.e.,

f,gξ=f(ξ)g(ξ)¯𝑑ξ.\left\langle f,g\right\rangle_{\xi}=\int f(\xi)\overline{g(\xi)}d\xi\hbox{.}

For the Boltzmann equation with hard sphere, the natural norm in ξ\xi is ||Lσ2|\cdot|_{L_{\sigma}^{2}}, which is defined as

|g|Lσ22=|ξ12g|Lξ22.|g|_{L_{\sigma}^{2}}^{2}=\left|\left\langle\xi\right\rangle^{\frac{1}{2}}g\right|_{L_{\xi}^{2}}^{2}\hbox{.}

For the space variable xx, we have similar notations, namely,

|g|Lxp=(3|g|p𝑑x)1/p if 1p<,|g|Lx=supx3|g(x)|.|g|_{L_{x}^{p}}=\left(\int_{{\mathbb{R}^{3}}}|g|^{p}dx\right)^{1/p}\hbox{ if }1\leq p<\infty\hbox{,}\quad\quad|g|_{L_{x}^{\infty}}=\sup_{x\in{\mathbb{R}^{3}}}|g(x)|\hbox{.}

Finally, with 𝒳\mathcal{X} and 𝒴\mathcal{Y} being two normed spaces, we define

g𝒳𝒴=||g|𝒴|𝒳,\left\|g\right\|_{\mathcal{XY}}=\left|\left|g\right|_{\mathcal{Y}}\right|_{\mathcal{X}}\hbox{,}

and for simplicity, we denote

gL2=gLξ2Lx2=(3|g|Lx22𝑑ξ)1/2.\left\|g\right\|_{L^{2}}=\left\|g\right\|_{L_{\xi}^{2}L_{x}^{2}}=\left(\int_{\mathbb{R}^{3}}\left|g\right|_{L_{x}^{2}}^{2}d\xi\right)^{1/2}\hbox{.}

For any two functions f(x,t)f(x,t) and g(x,t)g(x,t), we define the space-time convolution as

f(x,t)x,tg(x,t)=0t3f(xy,tτ)g(y,τ)𝑑y𝑑τ.f(x,t)\ast_{x,t}g(x,t)=\int_{0}^{t}\int_{{\mathbb{R}}^{3}}f(x-y,t-\tau)g(y,\tau)dyd\tau.

For any two real numbers aa and bb, we define ab=min{a,b}a\wedge b=\min\{a,b\}.

For simplicity of notations, hereafter, we abbreviate C\leq C to \lesssim, where CC is a constant depending only on fixed numbers.

1.4. Main theorem and significant points of our results

In order to achieve our goal, we introduce the decomposition f=f1+f2f=f_{1}+\sqrt{\mathcal{M}}f_{2}. Here f1f_{1} corresponds to the part with only polynomial tail, while f2\sqrt{\mathcal{M}}f_{2} has Gaussian tail. Heuristically, the closer a distribution function to a Gaussian, the closer the behavior resembles macroscopic hydrodynamics. Therefore, one may expect f1f_{1} behaves like particle, and f2f_{2} behaves like fluid.

The following coupled system designed for f1f_{1} and f2f_{2} is to realize one’s intuition:

(4) {tf1+ξxf1=ν(ξ)f1+𝒦sf1+Q(f1,f1)+Q(f1,f2)+Q(f2,f1),tf2+ξxf2=Lf2+𝒦bf1+Γ(f2,f2),\left\{\begin{array}[]{l}\partial_{t}f_{1}+\xi\cdot\nabla_{x}f_{1}=-\nu\left(\xi\right)f_{1}+\mathcal{K}_{s}f_{1}+Q\left(f_{1},f_{1}\right)+Q\left(f_{1},\sqrt{\mathcal{M}}f_{2}\right)+Q\left(\sqrt{\mathcal{M}}f_{2},f_{1}\right),\vspace{3mm}\\ \partial_{t}f_{2}+\xi\cdot\nabla_{x}f_{2}=Lf_{2}+\mathcal{K}_{b}f_{1}+\Gamma\left(f_{2},f_{2}\right),\end{array}\right.

with initial data

f1(0,x,ξ)=f1,0(x,ξ)=εf0(x,ξ)f2(0,x,ξ)=f2,0(x,ξ)=0,f_{1}\left(0,x,\xi\right)=f_{1,0}\left(x,\xi\right)=\varepsilon f_{0}\left(x,\xi\right)\hbox{, \ \ \ }f_{2}\left(0,x,\xi\right)=f_{2,0}\left(x,\xi\right)=0\hbox{,}

where

Lg=1[Q(,g)+Q(g,)]Lg=\frac{1}{\sqrt{\mathcal{M}}}\left[Q\left(\mathcal{M},\sqrt{\mathcal{M}}g\right)+Q\left(\sqrt{\mathcal{M}}g,\mathcal{M}\right)\right]

is the so called linearized Boltzmann collision operator,

Γ(f2,f2)=1Q(f2,f2)\Gamma\left(f_{2},f_{2}\right)=\frac{1}{\sqrt{\mathcal{M}}}Q\left(\sqrt{\mathcal{M}}f_{2},\sqrt{\mathcal{M}}f_{2}\right)

is the nonlinear Boltzmann collision operator, and 𝒦=𝒦s+1/2𝒦b\mathcal{K=K}_{s}+\mathcal{M}^{1/2}\mathcal{K}_{b}  with

𝒦s:=χ{|ξ|R}𝒦𝒦b:=1/2χ{|ξ|<R}𝒦\mathcal{K}_{s}:=\chi_{\{\left|\xi\right|\geq R\}}\mathcal{K}\hbox{, \ \ \ \ }\mathcal{K}_{b}:=\mathcal{M}^{-1/2}\chi_{\{\left|\xi\right|<R\}}\mathcal{K}

for a constant R>0R>0 large enough, χ{}\chi_{\{\cdot\}} being the indicator function.

It is noted that similar decomposition was also employed in [6] for Boltzmann equation without angular cutoff. Based on this decomposition, we have the main theorem as follows:

Theorem 1.

Let β>4\beta>4 be sufficiently large. Assume that f0Lξ,βLxf_{0}\in L_{\xi,\beta}^{\infty}L_{x}^{\infty} is compactly supported in the variable xx for all ξ\xi

f0(x,ξ)0 for |x|1ξ3.f_{0}\left(x,\xi\right)\equiv 0\text{ for }\left|x\right|\geq 1\text{, }\xi\in\mathbb{R}^{3}\text{.}

Then for any fixed δ>0\delta>0, there exists ε>0\varepsilon>0 small enough such that the solution ff of (3)(\ref{Linearized}) exists for t>0t>0 and it can be decomposed as f=f1+f2f=f_{1}+\sqrt{\mathcal{M}}f_{2}, where f1f_{1} and f2f_{2} satisfy (4)\left(\ref{decom-System}\right) with the following estimates:

For f1f_{1}, we have

|𝟏{ξt}f1|εξβec¯0[ξ2+(t+|x|)]\left|\mathbf{1}_{\{\left<\xi\right>\leq t\}}f_{1}\right|\lesssim\varepsilon\left\langle\xi\right\rangle^{-\beta}e^{-\overline{c}_{0}\left[\left<\xi\right>^{2}+(t+|x|)\right]}

and

|𝟏{ξ>t}f1|εξβec¯0[ξt+(t+|x|)]\left|\mathbf{1}_{\{\left<\xi\right>>t\}}f_{1}\right|\lesssim\varepsilon\left\langle\xi\right\rangle^{-\beta}e^{-\overline{c}_{0}\left[\left<\xi\right>t+(t+|x|)\right]}

for some positive constant c¯0\overline{c}_{0}.

For f2f_{2}, we have

|f2|Lξ,β\displaystyle\left|f_{2}\right|_{L_{\xi,\beta}^{\infty}} ε[𝟏{|x|𝐜t}(1+t)3/2(1+|x|21+t)3/2+(1+t)3/2e|x|2D^(1+t)+(1+t)2e(|x|𝐜t)2D^0(1+t)+et+|x|c^δ]\displaystyle\lesssim\varepsilon\left[\begin{array}[]{l}\mathbf{1}_{\{\left|x\right|\leq\mathbf{c}t\}}\left(1+t\right)^{-3/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}+\left(1+t\right)^{-3/2}e^{-\frac{|x|^{2}}{\widehat{D}\left(1+t\right)}}\\ \\ +\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{\widehat{D}_{0}\left(1+t\right)}}+e^{-\frac{t+|x|}{\widehat{c}_{\delta}}}\end{array}\right]
+ε2𝟏{|x|(𝐜+δ)t}[(1+t)2(1+|x|21+t)3/2+(1+t)52(1+(|x|𝐜t)21+t)1]\displaystyle\quad+\varepsilon^{2}\mathbf{1}_{\{\left|x\right|\leq(\mathbf{c}+\delta)t\}}\left[\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}+\left(1+t\right)^{-\frac{5}{2}}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\right]

for some positive constants D^,D^0,c^δ\hat{D},\hat{D}_{0},\hat{c}_{\delta}. Here 𝐜=5/3\mathbf{c}=\sqrt{5/3} is the sound speed associated with global Maxwellian \mathcal{M}.

Several remarks on the main theorem are in order:

  • The main result is the combinations of Theorems 9, 10, and 15. In Theorem 9, we obtain the global wave structure, which is accurate in the time-like region but only shows polynomial decay for f2f_{2} in the space-like region. In Theorem 10, the estimate in space-like region is further improved to be exponentially sharp. Theorem 15 describes the dynamic process of transition from polynomial tail to Gaussian tail for f1f_{1}.

  • The result shows that the polynomial tail part f1f_{1} decays exponentially in both space and time, while Gaussian tail part f2\sqrt{\mathcal{M}}f_{2} exhibits rich wave phenomena and dominates the solution at large time. This is consistent with our intuition: the polynomial and Gaussian tail parts are associated with particle-like and fluid-like behaviors, respectively.

  • In the estimate of f2f_{2}, we see that the terms consist of ε\varepsilon and ε2\varepsilon^{2} orders. The ε\varepsilon order terms represent linear waves, such as Huygens, diffusion, and Riesz waves, as given by the Green’s function. The ε2\varepsilon^{2} order terms arise from nonlinear interactions between these basic waves. They consist of polynomial versions of Huygens and diffusion waves, primarily concentrate inside the acoustic wave cone. Compared to the linear waves, the nonlinear waves not only have a ε2\varepsilon^{2} order magnitude, but also decay faster by (1+t)1/2(1+t)^{-1/2} than their linear counterparts. However, previous works [10, 12, 20, 23, 24] only showed that they have the same decay rates. Thus, our results provide a more accurate description for the nonlinear effect, based on sharper estimates of nonlinear wave couplings.

  • The polynomial tail of the solution is fully captured by f1f_{1} part. The pointwise estimate of f1f_{1} in velocity variable thus shows how the polynomial tail transitions to a Gaussian tail. Specifically, f1f_{1} only exhibits a polynomial tail initially, as time evolves it immediately acquires an exponential tail. As time continues to evolve, the particles with velocity ξ<t\left\langle\xi\right\rangle<t will become Gaussian tail, while the non-Gaussian part is of the order et2e^{-t^{2}} and any moments generated by the non-Gaussian part are bounded by et2e^{-t^{2}}. Therefore, as time tends to infinity, the distribution function will eventually transit to a Gaussian tail; but however, the transition cannot be completed in any finite time.

  • The assumption that the initial data has compact support in space is unessential. It is not hard to generalize to the case where the initial data decays polynomially in space, but in this case, the space-like behavior should be modified accordingly. We do not pursue this, as our focus is on the quantitative description of wave motion and the transition to a Gaussian tail.

1.5. Ideas and strategies

We now outline the ideas and strategies for the proof of the main theorem.

1.5.1. Global wave structure

Let us begin with Theorem 9, the global wave structure of the solution. Consider the coupled system (4). Let 𝕊t\mathbb{S}^{t} and 𝔾t\mathbb{G}^{t} be the solution operators to the damped transport equation and (standard) linearized Boltzmann equation respectively, namely, g(t)𝕊tg0g(t)\equiv\mathbb{S}^{t}g_{0} solves

tg+ξxg+ν(ξ)g=0,g(0,x,ξ)=g0,\partial_{t}g+\xi\cdot\nabla_{x}g+\nu\left(\xi\right)g=0\hbox{,}\quad g(0,x,\xi)=g_{0}\,,

and g(t)𝔾tg0g(t)\equiv\mathbb{G}^{t}g_{0} solves

tg+ξxgLg=0,g(0,x,ξ)=g0.\partial_{t}g+\xi\cdot\nabla_{x}g-Lg=0\hbox{,}\quad g(0,x,\xi)=g_{0}\,.

Then by Duhamel principle, solutions f1f_{1} and f2f_{2} to (4) satisfy the following coupled integral system

(5) {f1(t)=ε𝕊tf0+0t𝕊tτ𝒦sf1(τ)𝑑τ+0t𝕊tτ[Q(f1,f1)+Q(f1,f2)+Q(f2,f1)](τ)𝑑τ,f2(t)=0t𝔾tτ𝒦bf1(τ)𝑑τ+0t𝔾tτΓ(f2,f2)(τ)𝑑τ.\left\{\begin{aligned} &f_{1}(t)=\varepsilon\mathbb{S}^{t}f_{0}+\int_{0}^{t}\mathbb{S}^{t-\tau}\mathcal{K}_{s}f_{1}(\tau)d\tau+\int_{0}^{t}\mathbb{S}^{t-\tau}\Bigl{[}Q(f_{1},f_{1})+Q(f_{1},\sqrt{\mathcal{M}}f_{2})+Q(\sqrt{\mathcal{M}}f_{2},f_{1})\Bigr{]}(\tau)d\tau,\\ &f_{2}(t)=\int_{0}^{t}\mathbb{G}^{t-\tau}\mathcal{K}_{b}f_{1}(\tau)d\tau+\int_{0}^{t}\mathbb{G}^{t-\tau}\Gamma(f_{2},f_{2})(\tau)d\tau.\end{aligned}\right.

The essential step for constructing global wave structure is to find out the accurate ansatz for the solution.

We neglect the nonlinear effects for the time being. In the equation for f1f_{1}, if RR is chosen sufficiently large, the integral operator 𝒦s\mathcal{K}_{s} can be regarded as a perturbation of the damped transport operator. This results in an exponential decay of f1f_{1} in both space and time. We then substitute the estimate of f1f_{1} into the integral equation for f2f_{2}, requiring consideration of 0t𝔾tτ𝒦bf1(τ)𝑑τ\int_{0}^{t}\mathbb{G}^{t-\tau}\mathcal{K}_{b}f_{1}(\tau)d\tau. The explicit structure of Green’s function 𝔾\mathbb{G} is constructed in [26, 27] (we stated it in Lemma 8), showing rich wave structures, including a dissipative Huygens wave (acoustic wave described by a moving heat kernel), a diffusion wave (thermal wave described by a stationary heat kernel), a Riesz wave (related to vorticity of macroscopic fluid, described by a polynomial analogue of diffusion wave confined in the wave cone), and a space-time exponential decay term. The estimate of f2f_{2} is given by the convolution of the Green’s function and the source term 𝒦bf1\mathcal{K}_{b}f_{1}, inheriting a structure similar to that of the Green’s function (see Lemmas 19-21). This indicates that f1f_{1} can be viewed as particle-like wave, while f2f_{2} can be viewed as fluid-like wave.

Next, we incorporate nonlinear effects. In designing the coupled system, we intentionally placed all nonlinear terms involving f1f_{1} in the first equation of (4), as it describes the particle-like behavior. The term Γ(f2,f2)\Gamma(f_{2},f_{2}) is included in the second equation, as it is associated with the fluid-like behavior. The key term is 0t𝔾tτΓ(f2,f2)(τ)𝑑τ\int_{0}^{t}\mathbb{G}^{t-\tau}\Gamma(f_{2},f_{2})(\tau)d\tau, which accounts for the nonlinear wave interactions. A fundamental property is that the nonlinear operator Γ\Gamma is purely microscopic, and when acted upon by the Green’s operator, it gains an extra 12\frac{1}{2}-order time decay. Substituting the linear estimates leads to the convolution estimates:

(Diffusion+Huygens+Riesz+Exponential decay)1+t(x,t)(Diffusion+Huygens+Riesz+Exponential decay)2.\frac{\bigl{(}\mbox{Diffusion+Huygens+Riesz+Exponential decay}\bigr{)}}{\sqrt{1+t}}\underset{(x,t)}{\ast}\bigl{(}\mbox{Diffusion+Huygens+Riesz+Exponential decay}\bigr{)}^{2}.

The main effort is to provide sharp estimates of these convolutions. Without delving into the details, we provide a heuristic explanation of the interaction process here. We illustrate this with the convolution of two Huygens waves.

0t3(1+ts)5/2e(|xy|(ts))2D0(ts)(1+s)4e(|y|s)2C1(s+1)𝑑y𝑑s,\int_{0}^{t}\int_{{\mathbb{R}}^{3}}(1+t-s)^{-5/2}e^{-\frac{(\lvert x-y\rvert-(t-s))^{2}}{D_{0}(t-s)}}(1+s)^{-4}e^{-\frac{(\lvert y\rvert-s)^{2}}{C_{1}(s+1)}}dyds,

where 𝐜=1\mathbf{c}=1 for simplicity. The following figure is to explain the interaction process:

Refer to caption
Figure 1. Interaction between two Huygens waves

Here, the source (1+s)4e(|y|s)2C1(s+1)(1+s)^{-4}e^{-\frac{(\lvert y\rvert-s)^{2}}{C_{1}(s+1)}} is plotted as a forward cone with thickness s\sqrt{s}, and the propagator (1+ts)5/2e(|xy|(ts))2D0(ts)(1+t-s)^{-5/2}e^{-\frac{(\lvert x-y\rvert-(t-s))^{2}}{D_{0}(t-s)}} is plotted as a backward cone with thickness ts\sqrt{t-s}. The space is represented in 2D in the figure. The interaction essentially occurs in the following space-time region:

{(y,s)|||xy|(ts)|O(1)ts and ||y|s|O(1)s}.\left\{(y,s)\big{|}\,\lvert\lvert x-y\rvert-(t-s)\rvert\leq O(1)\sqrt{t-s}\mbox{ and }\lvert\lvert y\rvert-s\rvert\leq O(1)\sqrt{s}\right\}.

Inside this region, the exponential term in Huygens wave is not effective, and the decay is mainly due to time decay factor. The key point is the sharp estimate of the volume for this space-time region. In Section 6.2, we first provide some heuristic calculations. In fact, our rigorous estimates are greatly motivated by the heuristics. We identify the strong interaction region (which appears in the regions D4D_{4} and D5D_{5} of Section 6) and perform very careful estimates there. The results match those obtained by the heuristic argument.

Through these sharp convolution estimates, we propose an appropriate ansatz, which is exponential decay for f1f_{1} and polynomially sharp for f2f_{2} as the main focus here is the region inside wave cone, where only polynomial decay can be expected. Justifying the ansatz involves even more complicated convolution estimates, but the underlying idea remains similar. Additionally, the damped transport operator 𝕊t\mathbb{S}^{t} is used to compensate the loss of velocity decay from the nonlinear operator Γ\Gamma in the justification for f1f_{1} (see Lemmas 4 and 5). Our result distinguishes between the linear and nonlinear parts of the solution, significantly improving upon previous results in [10, 12, 20, 23, 24], where the nonlinear couplings and the linear part have the same decay rate.

1.5.2. Exponential decay outside the acoustic wave cone

In Theorem 9, we obtain space-time exponential decay for f1f_{1}, but for f2f_{2}, we only achieve a polynomial decay estimate. This is because we designed a polynomial-type ansatz to facilitate the control of the nonlinear part of f2f_{2}. This ansatz is accurate for the structure inside the acoustic wave cone. However, since the initial data has compact support in space and f2f_{2} corresponds to a fluid structure that propagates at a finite speed, we expect the solution to decay exponentially outside the wave cone.

To observe the behavior of f2f_{2} outside the cone, we multiply a suitable weight function on f2f_{2} and prove an LL^{\infty} bound of the weighted solution through regularization and energy estimates. This approach for obtaining the space asymptotic behavior of the Boltzmann equation was developed in our previous work [21], and here it is adapted to handle f2f_{2}.

It is worth mentioning that in our previous work, we proved exponential decay outside a wave cone |x|<Mt\lvert x\rvert<Mt for a sufficiently large MM. Here, through careful calculation of the micro projection, we show that f2f_{2} indeed decays space-time exponentially outside the wave cone |x|<(𝐜+δ)t\lvert x\rvert<(\mathbf{c}+\delta)t for any positive δ\delta (see Theorem 10), where 𝐜\mathbf{c} is the sound speed. This result is more consistent with physical reality.

1.5.3. The transition from polynomial tail to Gaussian tail

In the decomposition f=f1+f2f=f_{1}+\sqrt{\mathcal{M}}f_{2}, the latter already exhibits Gaussian tail. Therefore, studying the transition process is equivalent to examining the generation of the Gaussian tail for f1f_{1}. The mechanism for generating velocity decay comes from eν(ξ)t\displaystyle e^{-\nu(\xi)t} in the damped transport operator 𝕊t\mathbb{S}^{t}:

𝕊tg0=eν(ξ)tg0(xξt,ξ).\mathbb{S}^{t}g_{0}=e^{-\nu(\xi)t}g_{0}(x-\xi t,\xi).

At first glance, it seems that f1f_{1} can gain arbitrary velocity decay as time evolves. However, the upper bound for velocity decay is limited by the coupling between f1f_{1} and f2\sqrt{\mathcal{M}}f_{2}, specifically by the term

0t𝕊tτ[Q(f1,f2)+Q(f2,f1)](τ)𝑑τ\int_{0}^{t}\mathbb{S}^{t-\tau}\Bigl{[}Q(f_{1},\sqrt{\mathcal{M}}f_{2})+Q(\sqrt{\mathcal{M}}f_{2},f_{1})\Bigr{]}(\tau)d\tau

in the second equation of (5). The velocity weight will ultimately be slowed down by f2\sqrt{\mathcal{M}}f_{2} as it decay at most as a Gaussian. We design a suitable weighted function

eκξmin{ξt}e^{\kappa\langle\xi\rangle\min\{\langle\xi\rangle\wedge t\}}

to capture this feature. By carefully analyzing the commutator between this weight function and the 𝒦s,Q\mathcal{K}_{s},\,Q operators, we complete the description of dynamic transition process (see Theorem 15).

It is interesting to note that the mechanism for gaining velocity weight and the limitation of the maximal generation both stem from collisions with the global Maxwellian. This is entirely consistent with our physical intuition.

1.6. Organization of the paper

The rest of this paper is organized as follows: In Section 2, we first prepare some basic properties of the integral operator 𝒦\mathcal{K}, and present some estimates for the damped transport equation and the linearized Boltzmann equation. In Section 3, we construct the global wave structures of the solution, fully utilizing sharp nonlinear wave interactions. In Section 4, we apply the weighted energy estimate to prove that the solution indeed decays exponentially in space-time outside the wave cone. In Section 5, we provide a quantitative description of how solution approaches a Gaussian tail in terms of the microscopic velocity. Finally, we present the proof of all kinds of wave interactions in Section 6.

2. Preliminaries

To begin with, we study some essential properties of the collision frequency ν(ξ)\nu\left(\xi\right), the operator 𝒦\mathcal{K} and the collision operator QQ. It is well known that there exist two positive constants ν0\nu_{0} and ν1\nu_{1} such that

ν0ξν(ξ)=3S2|qn|(ξ)𝑑n𝑑ξν1ξ\nu_{0}\left\langle\xi\right\rangle\leq\nu\left(\xi\right)=\int_{\mathbb{R}^{3}}\int_{S^{2}}\left|q\cdot n\right|\mathcal{M}\left(\xi_{\ast}\right)dnd\xi_{\ast}\leq\nu_{1}\left\langle\xi\right\rangle

for all ξ3\xi\in\mathbb{R}^{3}. In [5, Lemma 2.1 and Lemma 6.2], the following estimates of the collision kernel have been proved.

Lemma 2 ([5]).

For any β>4\beta>4, there exists a constant Cβ>0C_{\beta}>0 depending only on β\beta such that

3S2|ξξ|wβ(ξ)wβ(ξ)e14|ξ2𝑑n𝑑ξCβν(ξ)+Cβν(ξ)(1+|ξ|)2\int_{\mathbb{R}^{3}}\int_{S^{2}}\left|\xi-\xi_{\ast}\right|\frac{w_{\beta}\left(\xi\right)}{w_{\beta}\left(\xi_{\ast}^{\prime}\right)}e^{-\frac{1}{4}|\xi^{\prime 2}}dnd\xi_{\ast}\leq\frac{C}{\beta}\nu\left(\xi\right)+C_{\beta}\frac{\nu\left(\xi\right)}{\left(1+\left|\xi\right|\right)^{2}}

and

3S2|ξξ|wβ(ξ)wβ(ξ)wβ(ξ)𝑑n𝑑ξCβν(ξ)+Cβν(ξ)(1+|ξ|)2.\int_{\mathbb{R}^{3}}\int_{S^{2}}\left|\xi-\xi_{\ast}\right|\frac{w_{\beta}\left(\xi\right)}{w_{\beta}\left(\xi^{\prime}\right)w_{\beta}\left(\xi_{\ast}^{\prime}\right)}dnd\xi_{\ast}\leq\frac{C}{\beta}\nu\left(\xi\right)+C_{\beta}\frac{\nu\left(\xi\right)}{\left(1+\left|\xi\right|\right)^{2}}\hbox{.}

where C>0C>0 is a universal constant independent of β\beta. Here wβ(ξ)=ξβw_{\beta}\left(\xi\right)=\left\langle\xi\right\rangle^{\beta}.

Using this lemma, one can get the estimates for the operators 𝒦\mathcal{K} and QQ.

Lemma 3 ([5]).

For any β>4\beta>4, there exists a constant Cβ>0C_{\beta}>0 depending only on β\beta such that

ξβ|𝒦f|(Cβν(ξ)+Cβν(ξ)(1+|ξ|)2)|f|Lξ,β\left\langle\xi\right\rangle^{\beta}\left|\mathcal{K}f\right|\leq\left(\frac{C}{\beta}\nu\left(\xi\right)+C_{\beta}\frac{\nu\left(\xi\right)}{\left(1+\left|\xi\right|\right)^{2}}\right)\left|f\right|_{L_{\xi,\beta}^{\infty}}

and

|ξβQ(f,g)|Cβν(ξ)|f|Lξ,β|g|Lξ,β.\left|\left\langle\xi\right\rangle^{\beta}Q\left(f,g\right)\right|\leq C_{\beta}\nu\left(\xi\right)\left|f\right|_{L_{\xi,\beta}^{\infty}}\left|g\right|_{L_{\xi,\beta}^{\infty}}\hbox{.}

Moreover, for any R>0R>0,

χ{|ξ|R}ξβ|𝒦f|(Cβ+CβR2)ν(ξ)|f|Lξ,β.\chi_{\{\left|\xi\right|\geq R\}}\left\langle\xi\right\rangle^{\beta}\left|\mathcal{K}f\right|\leq\left(\frac{C}{\beta}+\frac{C_{\beta}}{R^{2}}\right)\nu\left(\xi\right)\left|f\right|_{L_{\xi,\beta}^{\infty}}\,.

In order to study the first equation of (4), we introduce the damped transport operator 𝕊t\mathbb{S}^{t}, that is, 𝕊tg0\mathbb{S}^{t}g_{0} is the solution of the equation:

tg+ξxg+ν(ξ)g=0,g(0,x,ξ)=g0.\partial_{t}g+\xi\cdot\nabla_{x}g+\nu\left(\xi\right)g=0\hbox{,}\quad g(0,x,\xi)=g_{0}\,.
Lemma 4.

Let β>4\beta>4 and M>0M>0. Assume that U(t,x,ξ)U\left(t,x,\xi\right) and h(t,x,ξ)h(t,x,\xi) satisfy

|ν(ξ)1U(t,x,ξ)|Lξ,βAet+|x|c\left|\nu\left(\xi\right)^{-1}U\left(t,x,\xi\right)\right|_{L_{\xi,\beta}^{\infty}}\leq Ae^{-\frac{t+\left|x\right|}{c}}

and

|h(t,x,ξ)|Lξ,βBet+|x|c\left|h\left(t,x,\xi\right)\right|_{L_{\xi,\beta}^{\infty}}\leq Be^{-\frac{t+\left|x\right|}{c}}

for some constants A,c>0A,c>0 with ν02>1c\frac{\nu_{0}}{2}>\frac{1}{c}. If gg satisfies the integral equation

g(t,x,ξ)=0t𝕊tτ(𝒦sh+U)(τ,x,ξ)𝑑τ,g\left(t,x,\xi\right)=\int_{0}^{t}\mathbb{S}^{t-\tau}\left(\mathcal{K}_{s}h+U\right)\left(\tau,x,\xi\right)d\tau\hbox{,}

then

|g(t,x,ξ)|Lξ,β2(A+ηB)et+|x|c,\left|g(t,x,\xi)\right|_{L_{\xi,\beta}^{\infty}}\leq 2(A+\eta B)e^{-\frac{t+\left|x\right|}{c}}\hbox{,}

where

η=η(β,R)=(Cβ+CβR2).\eta=\eta(\beta,R)=\left(\frac{C}{\beta}+\frac{C_{\beta}}{R^{2}}\right)\,.
Proof.

Let y=x(tτ)ξy=x-\left(t-\tau\right)\xi, we have

|ξβg(t,x,ξ)|\displaystyle\left|\left\langle\xi\right\rangle^{\beta}g\left(t,x,\xi\right)\right| =\displaystyle= |0teν(ξ)(tτ)ξβ[𝒦sh(τ,xξ(tτ),ξ)+U(τ,xξ(tτ),ξ)]𝑑τ|\displaystyle\left|\int_{0}^{t}e^{-\nu\left(\xi\right)\left(t-\tau\right)}\left\langle\xi\right\rangle^{\beta}\left[\mathcal{K}_{s}h\left(\tau,x-\xi\left(t-\tau\right),\xi\right)+U\left(\tau,x-\xi\left(t-\tau\right),\xi\right)\right]d\tau\right|
\displaystyle\leq 0teν(ξ)2(tτ)ν(ξ)(ν(ξ))1eν02(tτ+|xy|)ξβ[|𝒦sh(τ,y,ξ)|]𝑑τ\displaystyle\int_{0}^{t}e^{-\frac{\nu\left(\xi\right)}{2}\left(t-\tau\right)}\nu\left(\xi\right)\left(\nu\left(\xi\right)\right)^{-1}e^{-\frac{\nu_{0}}{2}\left(t-\tau+\left|x-y\right|\right)}\left\langle\xi\right\rangle^{\beta}\left[\left|\mathcal{K}_{s}h\left(\tau,y,\xi\right)\right|\right]d\tau
+0teν(ξ)2(tτ)ν(ξ)(ν(ξ))1eν02(tτ+|xy|)ξβ|U(τ,y,ξ)|𝑑τ\displaystyle+\int_{0}^{t}e^{-\frac{\nu\left(\xi\right)}{2}\left(t-\tau\right)}\nu\left(\xi\right)\left(\nu\left(\xi\right)\right)^{-1}e^{-\frac{\nu_{0}}{2}\left(t-\tau+\left|x-y\right|\right)}\left\langle\xi\right\rangle^{\beta}\left|U\left(\tau,y,\xi\right)\right|d\tau
\displaystyle\leq η0teν(ξ)2(tτ)ν(ξ)supy3eν02(tτ+|xy|)|h(τ,y,ξ)|Lξ,βdτ\displaystyle\eta\int_{0}^{t}e^{-\frac{\nu\left(\xi\right)}{2}\left(t-\tau\right)}\nu\left(\xi\right)\cdot\sup_{y\in\mathbb{R}^{3}}e^{-\frac{\nu_{0}}{2}\left(t-\tau+\left|x-y\right|\right)}\left|h\left(\tau,y,\xi\right)\right|_{L_{\xi,\beta}^{\infty}}d\tau
+0teν(ξ)2(tτ)ν(ξ)supy3eν02(tτ+|xy|)|ν1(ξ)U(τ,y,ξ)|Lξ,βdτ\displaystyle+\int_{0}^{t}e^{-\frac{\nu\left(\xi\right)}{2}\left(t-\tau\right)}\nu\left(\xi\right)\cdot\sup_{y\in\mathbb{R}^{3}}e^{-\frac{\nu_{0}}{2}\left(t-\tau+\left|x-y\right|\right)}\left|\nu^{-1}(\xi)U\left(\tau,y,\xi\right)\right|_{L_{\xi,\beta}^{\infty}}d\tau
\displaystyle\leq 2(A+ηB)et+|x|c.\displaystyle 2(A+\eta B)e^{-\frac{t+\left|x\right|}{c}}\text{.}

The proof is completed.\hfill\square

Lemma 5.

Let α>0\alpha>0 and ρ>0\rho>0. Assume that V(t,x,ξ)V\left(t,x,\xi\right) satisfies

|ν(ξ)1V(t,x,ξ)|Lξ,β(1+t)α(1+|x|21+t)ρ.\left|\nu\left(\xi\right)^{-1}V\left(t,x,\xi\right)\right|_{L_{\xi,\beta}^{\infty}}\leq\left(1+t\right)^{-\alpha}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\rho}\,.

If gg satisfies the integral equation

g(t,x,ξ)=0t𝕊tτV(τ,x,ξ)𝑑τ,g\left(t,x,\xi\right)=\int_{0}^{t}\mathbb{S}^{t-\tau}V\left(\tau,x,\xi\right)d\tau\hbox{,}

then

|g(t,x,ξ)|Lξ,βCα,ρ(1+t)α(1+|x|21+t)ρ\left|g(t,x,\xi)\right|_{L_{\xi,\beta}^{\infty}}\leq C_{\alpha,\rho}\left(1+t\right)^{-\alpha}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\rho}

for some constant Cα,ρ>0C_{\alpha,\rho}>0.

Proof.

The proof is similar to Lemma 4. It suffices to verify that

0teν(ξ)2(tτ)ν(ξ)supy3eν02(tτ+|xy|)(1+τ)α(1+|y|21+τ)ρdτ\displaystyle\int_{0}^{t}e^{-\frac{\nu\left(\xi\right)}{2}\left(t-\tau\right)}\nu\left(\xi\right)\sup_{y\in\mathbb{R}^{3}}e^{-\frac{\nu_{0}}{2}\left(t-\tau+\left|x-y\right|\right)}\left(1+\tau\right)^{-\alpha}\left(1+\frac{\left|y\right|^{2}}{1+\tau}\right)^{-\rho}d\tau
\displaystyle\leq Cα,ρ(1+t)α(1+|x|21+t)ρ.\displaystyle C_{\alpha,\rho}\left(1+t\right)^{-\alpha}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\rho}\,.

Let 0τt0\leq\tau\leq t. If |y|>|x|/2\left|y\right|>\left|x\right|/2, then

(1+|y|21+τ)ρ(1+|x|24(1+t))ρ4ρ(1+|x|21+t)ρ,\left(1+\frac{\left|y\right|^{2}}{1+\tau}\right)^{-\rho}\leq\left(1+\frac{\left|x\right|^{2}}{4\left(1+t\right)}\right)^{-\rho}\leq 4^{\rho}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\rho}\hbox{,}

and thus

eν02(tτ+|xy|)(1+τ)α(1+|y|21+τ)ρ4ρ(1+τ)α(1+|x|21+t)ρ.e^{-\frac{\nu_{0}}{2}\left(t-\tau+\left|x-y\right|\right)}\left(1+\tau\right)^{-\alpha}\left(1+\frac{\left|y\right|^{2}}{1+\tau}\right)^{-\rho}\leq 4^{\rho}\left(1+\tau\right)^{-\alpha}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\rho}\hbox{.}

If |y||x|/2\left|y\right|\leq\left|x\right|/2, then

eν02|xy|eν0|x|4Cρ(1+|x|2)ρCρ(1+|x|21+t)ρ,e^{-\frac{\nu_{0}}{2}\left|x-y\right|}\leq e^{-\frac{\nu_{0}\left|x\right|}{4}}\leq C_{\rho}\left(1+\left|x\right|^{2}\right)^{-\rho}\leq C_{\rho}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\rho}\hbox{,}

and so

eν02(tτ+|xy|)(1+τ)α(1+|y|21+τ)ρCρ(1+τ)α(1+|x|21+t)ρ.e^{-\frac{\nu_{0}}{2}\left(t-\tau+\left|x-y\right|\right)}\left(1+\tau\right)^{-\alpha}\left(1+\frac{\left|y\right|^{2}}{1+\tau}\right)^{-\rho}\leq C_{\rho}\left(1+\tau\right)^{-\alpha}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\rho}\hbox{.}

Therefore,

0teν(ξ)2(tτ)ν(ξ)supy3eν02(tτ+|xy|)(1+τ)α(1+|y|21+τ)ρdτ\displaystyle\int_{0}^{t}e^{-\frac{\nu\left(\xi\right)}{2}\left(t-\tau\right)}\nu\left(\xi\right)\sup_{y\in\mathbb{R}^{3}}e^{-\frac{\nu_{0}}{2}\left(t-\tau+\left|x-y\right|\right)}\left(1+\tau\right)^{-\alpha}\left(1+\frac{\left|y\right|^{2}}{1+\tau}\right)^{-\rho}d\tau
\displaystyle\leq (Cρ+4ρ)(1+|x|21+t)ρ0teν(ξ)2(tτ)ν(ξ)(1+τ)α𝑑τ\displaystyle\left(C_{\rho}+4^{\rho}\right)\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\rho}\int_{0}^{t}e^{-\frac{\nu\left(\xi\right)}{2}\left(t-\tau\right)}\nu\left(\xi\right)\left(1+\tau\right)^{-\alpha}d\tau
\displaystyle\leq Cα(Cρ+4ρ)(1+t)α(1+|x|21+t)ρ.\displaystyle C_{\alpha}\left(C_{\rho}+4^{\rho}\right)\left(1+t\right)^{-\alpha}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\rho}\hbox{.}

Lemma 6.

Let α>0\alpha>0 and ρ>0\rho>0. Assume that W(t,x,ξ)W\left(t,x,\xi\right) satisfies

|ν(ξ)1W(t,x,ξ)|Lξ,β(1+t)α(1+(𝐜t|x|)21+t)ρ.\left|\nu\left(\xi\right)^{-1}W\left(t,x,\xi\right)\right|_{L_{\xi,\beta}^{\infty}}\leq\left(1+t\right)^{-\alpha}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-\rho}\,.

If gg satisfies the integral equation

g(t,x,ξ)=0t𝕊tτW(τ,x,ξ)𝑑τ,g\left(t,x,\xi\right)=\int_{0}^{t}\mathbb{S}^{t-\tau}W\left(\tau,x,\xi\right)d\tau\hbox{,}

then

|g(t,x,ξ)|Lξ,βCα,ρ(1+t)α(1+(𝐜t|x|)21+t)ρ\left|g(t,x,\xi)\right|_{L_{\xi,\beta}^{\infty}}\leq C_{\alpha,\rho}\left(1+t\right)^{-\alpha}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-\rho}

for some constant Cα,ρ>0C_{\alpha,\rho}>0.

Proof.

The proof is similar to Lemma 4 and it suffices to verify that

0teν(ξ)2(tτ)ν(ξ)supy3eν02(tτ+|xy|)(1+τ)α(1+(|y|𝐜τ)21+τ)ρdτ\displaystyle\int_{0}^{t}e^{-\frac{\nu\left(\xi\right)}{2}\left(t-\tau\right)}\nu\left(\xi\right)\sup_{y\in\mathbb{R}^{3}}e^{-\frac{\nu_{0}}{2}\left(t-\tau+\left|x-y\right|\right)}\left(1+\tau\right)^{-\alpha}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-\rho}d\tau
\displaystyle\leq Cα,ρ(1+t)α(1+(𝐜t|x|)21+t)ρ\displaystyle C_{\alpha,\rho}\left(1+t\right)^{-\alpha}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-\rho}

We consider two cases |x|𝐜t\left|x\right|\geq\mathbf{c}t and |x|𝐜t\left|x\right|\leq\mathbf{c}t.

Case 1: |x|𝐜t\left|x\right|\geq\mathbf{c}t. We split 3\mathbb{R}^{3} into two parts

{y3:||y|𝐜τ|>|x|𝐜t2} and {y3:||y|𝐜τ||x|𝐜t2}.\{y\in\mathbb{R}^{3}:\left|\left|y\right|-\mathbf{c}\tau\right|>\frac{\left|x\right|-\mathbf{c}t}{2}\}\hbox{ and }\{y\in\mathbb{R}^{3}:\left|\left|y\right|-\mathbf{c}\tau\right|\leq\frac{\left|x\right|-\mathbf{c}t}{2}\}\hbox{.}

If ||y|𝐜τ||x|𝐜t2\left|\left|y\right|-\mathbf{c}\tau\right|\leq\frac{\left|x\right|-\mathbf{c}t}{2}, then

|xy|\displaystyle\left|x-y\right| \displaystyle\geq ||x||y||=x|𝐜τ+𝐜τ|yx|𝐜τ|y|𝐜τ|\displaystyle\left|\left|x\right|-\left|y\right|\right|=\left|\left|x\right|-\mathbf{c}\tau+\mathbf{c}\tau-\left|y\right|\right|\geq\left|\left|x\right|-\mathbf{c}\tau\right|-\left|\left|y\right|-\mathbf{c}\tau\right|
\displaystyle\geq |x|𝐜t|x|𝐜t2=|x|𝐜t2,\displaystyle\left|x\right|-\mathbf{c}t-\frac{\left|x\right|-\mathbf{c}t}{2}=\frac{\left|x\right|-\mathbf{c}t}{2}\hbox{,}

and thus

eν02|xy|eν0||x|𝐜t|4Cρ(1+(|x|𝐜t)2)ρCρ(1+(|x|𝐜t)21+t)ρ.e^{-\frac{\nu_{0}}{2}\left|x-y\right|}\leq e^{-\frac{\nu_{0}\left|\left|x\right|-\mathbf{c}t\right|}{4}}\leq C_{\rho}\left(1+\left(\left|x\right|-\mathbf{c}t\right)^{2}\right)^{-\rho}\leq C_{\rho}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-\rho}\hbox{.}

If ||y|𝐜τ|>|x|𝐜t2\left|\left|y\right|-\mathbf{c}\tau\right|>\frac{\left|x\right|-\mathbf{c}t}{2}, then

(1+(|y|𝐜τ)21+τ)ρ(1+(|x|𝐜t)24(1+t))ρ4ρ(1+(|x|𝐜t)21+t)ρ.\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-\rho}\leq\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{4\left(1+t\right)}\right)^{-\rho}\leq 4^{\rho}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-\rho}\hbox{.}

Therefore,

0teν(ξ)2(tτ)ν(ξ)supy3eν02(tτ+|xy|)(1+τ)α(1+(|y|𝐜τ)2(1+τ))ρdτ\displaystyle\int_{0}^{t}e^{-\frac{\nu\left(\xi\right)}{2}\left(t-\tau\right)}\nu\left(\xi\right)\sup_{y\in\mathbb{R}^{3}}e^{-\frac{\nu_{0}}{2}\left(t-\tau+\left|x-y\right|\right)}\left(1+\tau\right)^{-\alpha}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{\left(1+\tau\right)}\right)^{-\rho}d\tau
\displaystyle\leq (Cρ+4ρ)(1+(|x|𝐜t)21+t)ρ0teν(ξ)2(tτ)ν(ξ)(1+τ)α𝑑τ\displaystyle\left(C_{\rho}+4^{\rho}\right)\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-\rho}\int_{0}^{t}e^{-\frac{\nu\left(\xi\right)}{2}\left(t-\tau\right)}\nu\left(\xi\right)\left(1+\tau\right)^{-\alpha}d\tau
\displaystyle\leq Cα(Cρ+4ρ)(1+t)α(1+(|x|𝐜t)21+t)ρ.\displaystyle C_{\alpha}\left(C_{\rho}+4^{\rho}\right)\left(1+t\right)^{-\alpha}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-\rho}\hbox{.}

Case 2: |x|𝐜t\left|x\right|\leq\mathbf{c}t. If 0τt2+|x|2𝐜0\leq\tau\leq\frac{t}{2}+\frac{\left|x\right|}{2\mathbf{c}}, then

tτt(t2+|x|2𝐜)=𝐜t|x|2𝐜0,t-\tau\geq t-\left(\frac{t}{2}+\frac{\left|x\right|}{2\mathbf{c}}\right)=\frac{\mathbf{c}t-\left|x\right|}{2\mathbf{c}}\geq 0\hbox{,}

and thus

eν0(tτ)eν02𝐜(𝐜t|x|)Cρ(1+(𝐜t|x|)2)ρCρ(1+(𝐜t|x|)21+t)ρ.e^{-\nu_{0}\left(t-\tau\right)}\leq e^{-\frac{\nu_{0}}{2\mathbf{c}}\left(\mathbf{c}t-\left|x\right|\right)}\leq C_{\rho}\left(1+\left(\mathbf{c}t-\left|x\right|\right)^{2}\right)^{-\rho}\leq C_{\rho}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-\rho}\hbox{.}

It implies that

0t2+|x|2𝐜eν(ξ)2(tτ)ν(ξ)supy3eν02(tτ+|xy|)(1+τ)α(1+(|y|𝐜τ)21+τ)ρdτ\displaystyle\int_{0}^{\frac{t}{2}+\frac{\left|x\right|}{2\mathbf{c}}}e^{-\frac{\nu\left(\xi\right)}{2}\left(t-\tau\right)}\nu\left(\xi\right)\sup_{y\in\mathbb{R}^{3}}e^{-\frac{\nu_{0}}{2}\left(t-\tau+\left|x-y\right|\right)}\left(1+\tau\right)^{-\alpha}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-\rho}d\tau
\displaystyle\leq Cρ(1+(𝐜t|x|)21+t)ρ0teν(ξ)2(tτ)ν(ξ)(1+τ)α𝑑τ\displaystyle C_{\rho}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-\rho}\int_{0}^{t}e^{-\frac{\nu\left(\xi\right)}{2}\left(t-\tau\right)}\nu\left(\xi\right)\left(1+\tau\right)^{-\alpha}d\tau
\displaystyle\leq CαCρ(1+τ)α(1+(𝐜t|x|)21+t)ρ.\displaystyle C_{\alpha}C_{\rho}\left(1+\tau\right)^{-\alpha}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-\rho}\hbox{.}

If t2+|x|2𝐜τt\frac{t}{2}+\frac{\left|x\right|}{2\mathbf{c}}\leq\tau\leq t, |y|𝐜τ+|x|2\left|y\right|\leq\frac{\mathbf{c}\tau+\left|x\right|}{2}, then

𝐜τ|y|𝐜τ|x|2𝐜t|x|40,\mathbf{c}\tau-\left|y\right|\geq\frac{\mathbf{c}\tau-\left|x\right|}{2}\geq\frac{\mathbf{c}t-\left|x\right|}{4}\geq 0\hbox{,}

and so

(1+(|y|𝐜τ)21+τ)ρ(1+(𝐜t|x|)216(1+t))ρ16ρ(1+(𝐜t|x|)21+t)ρ.\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-\rho}\leq\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{16\left(1+t\right)}\right)^{-\rho}\leq 16^{\rho}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-\rho}\hbox{.}

If t2+|x|2𝐜τt\frac{t}{2}+\frac{\left|x\right|}{2\mathbf{c}}\leq\tau\leq t, |y|>𝐜τ+|x|2\left|y\right|>\frac{\mathbf{c}\tau+\left|x\right|}{2}, then

|xy||y||x|𝐜τ|x|2𝐜t|x|4,\left|x-y\right|\geq\left|y\right|-\left|x\right|\geq\frac{\mathbf{c}\tau-\left|x\right|}{2}\geq\frac{\mathbf{c}t-\left|x\right|}{4}\hbox{,}

and thus

eν02|xy|eν08(𝐜t|x|)Cρ(1+(𝐜t|x|)2)ρCρ(1+(𝐜t|x|)21+t)ρ.e^{-\frac{\nu_{0}}{2}\left|x-y\right|}\leq e^{-\frac{\nu_{0}}{8}\left(\mathbf{c}t-\left|x\right|\right)}\leq C_{\rho}\left(1+\left(\mathbf{c}t-\left|x\right|\right)^{2}\right)^{-\rho}\leq C_{\rho}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-\rho}\text{.}

Consequently,

t2+|x|2𝐜teν(ξ)2(tτ)ν(ξ)supy3eν02(tτ+|xy|)(1+τ)α(1+(|y|𝐜τ)2(1+τ))ρdτ\displaystyle\int_{\frac{t}{2}+\frac{\left|x\right|}{2\mathbf{c}}}^{t}e^{-\frac{\nu\left(\xi\right)}{2}\left(t-\tau\right)}\nu\left(\xi\right)\sup_{y\in\mathbb{R}^{3}}e^{-\frac{\nu_{0}}{2}\left(t-\tau+\left|x-y\right|\right)}\left(1+\tau\right)^{-\alpha}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{\left(1+\tau\right)}\right)^{-\rho}d\tau
\displaystyle\leq (16ρ+Cρ)(1+(𝐜t|x|)21+t)ρ0teν(ξ)2(tτ)ν(ξ)(1+τ)α𝑑τ\displaystyle\left(16^{\rho}+C_{\rho}\right)\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-\rho}\int_{0}^{t}e^{-\frac{\nu\left(\xi\right)}{2}\left(t-\tau\right)}\nu\left(\xi\right)\left(1+\tau\right)^{-\alpha}d\tau
\displaystyle\leq Cα(16ρ+Cρ)(1+t)α(1+(𝐜t|x|)21+t)ρ.\displaystyle C_{\alpha}\left(16^{\rho}+C_{\rho}\right)\left(1+t\right)^{-\alpha}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-\rho}\hbox{.}

Combining all the discussion, there exists a constant Cα,ρ>0C_{\alpha,\rho}>0 such that

0teν(ξ)2(tτ)ν(ξ)supy3eν02(tτ+|xy|)(1+τ)α(1+(|y|𝐜τ)21+τ)ρdτ\displaystyle\int_{0}^{t}e^{-\frac{\nu\left(\xi\right)}{2}\left(t-\tau\right)}\nu\left(\xi\right)\sup_{y\in\mathbb{R}^{3}}e^{-\frac{\nu_{0}}{2}\left(t-\tau+\left|x-y\right|\right)}\left(1+\tau\right)^{-\alpha}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-\rho}d\tau
\displaystyle\leq Cα,ρ(1+t)α(1+(𝐜t|x|)21+t)ρ,\displaystyle C_{\alpha,\rho}\left(1+t\right)^{-\alpha}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-\rho}\hbox{,}

as desired. ∎

For the second equation of decomposition (4), we list some basic properties of the linearized Boltzmann collision operator LL and nonlinear operator Γ\Gamma as below.

It is well known that the null space of  LL

ker(L)=span {χ0,χ1,χ2,χ3,χ4},\ker\left(L\right)=\text{span }\{\chi_{0},\chi_{1},\chi_{2},\chi_{3},\chi_{4}\}\text{,}

is a five-dimensional vector space, where

χ0=1/2, χi=ξi1/2, χ4=16(|ξ|23)1/2i=123.\chi_{0}=\mathcal{M}^{1/2},\text{ }\chi_{i}=\xi_{i}\mathcal{M}^{1/2},\text{ }\chi_{4}=\frac{1}{\sqrt{6}}\left(\left|\xi\right|^{2}-3\right)\mathcal{M}^{1/2}\text{, \ }i=1\text{, }2\text{, }3\text{.}

Let P0\mathrm{P}_{0} be the orthogonal projection with respect to the Lξ2L_{\xi}^{2} inner product onto ker(L)\mathrm{\ker}(L), and P1IdP0\mathrm{P}_{1}\equiv\mathrm{Id}-\mathrm{P}_{0}. That is, for any gLξ2g\in L^{2}_{\xi},

P0g=i=04χi,gξχi,P1g=gP0g.\mathrm{P}_{0}g=\sum_{i=0}^{4}\left<\chi_{i},g\right>_{\xi}\chi_{i}\,,\quad\mathrm{P}_{1}g=g-\mathrm{P}_{0}g\,.

The solution of the wave propagation is connected to the operator P0(ξω)P0\mathrm{P}_{0}(\xi\cdot\omega)\mathrm{P}_{0} for ω𝕊2\omega\in\mathbb{S}^{2}

(6) {P0ξωEj=λjEj,λ0=𝐜,λ1=𝐜,λ2=λ3=λ4=0,𝐜=53,E0=310χ0+12ωχ¯+15χ4,E1=310χ012ωχ¯+15χ4,E2=25χ0+35χ4,E3=ω1χ¯,E4=ω2χ¯.\left\{\begin{array}[]{l}\mathrm{P}_{0}\xi\cdot\omega E_{j}=\lambda_{j}E_{j}\,,\\[5.69054pt] \lambda_{0}=\mathbf{c}\,,\quad\lambda_{1}=-\mathbf{c}\,,\quad\lambda_{2}=\lambda_{3}=\lambda_{4}=0\,,\mathbf{c}=\sqrt{\frac{5}{3}}\,,\\[5.69054pt] E_{0}=\sqrt{\frac{3}{10}}\chi_{0}+\sqrt{\frac{1}{2}}\omega\cdot\overline{\chi}+\sqrt{\frac{1}{5}}\chi_{4}\,,\\[5.69054pt] E_{1}=\sqrt{\frac{3}{10}}\chi_{0}-\sqrt{\frac{1}{2}}\omega\cdot\overline{\chi}+\sqrt{\frac{1}{5}}\chi_{4}\,,\\[5.69054pt] E_{2}=-\sqrt{\frac{2}{5}}\chi_{0}+\sqrt{\frac{3}{5}}\chi_{4}\,,\\[5.69054pt] E_{3}=\omega_{1}\cdot\overline{\chi}\,,\\[5.69054pt] E_{4}=\omega_{2}\cdot\overline{\chi}\,.\end{array}\right.

where χ¯=(χ1,χ2,χ3)\overline{\chi}=(\chi_{1},\chi_{2},\chi_{3}), and {ω1,ω2,ω}\{\omega_{1},\omega_{2},\omega\} is an orthonormal basis of 3{\mathbb{R}}^{3}.

Lemma 7 ([26]).

The collision operator LL consists of a multiplicative operator ν(ξ)\nu(\xi) and an integral operator KK, namely,

Lf=ν(ξ)f+Kf,Lf=-\nu(\xi)f+Kf\,,

where ν(ξ)(1+|ξ|)\nu(\xi)\sim(1+|\xi|) and

|Kg|Lξ,η+1C|g|Lξ,ηη,\left|Kg\right|_{L_{\xi,\eta+1}^{\infty}}\leq C\left|g\right|_{L_{\xi,\eta}^{\infty}}\text{, }\eta\in\mathbb{R}\text{,}

for some universal constant C>0C>0.

The nonlinear operator Γ\Gamma has the following estimate

|ν1(ξ)Γ(g,h)|Lξ,ηC|g|Lξ,η|h|Lξ,ηη,\left|\nu^{-1}(\xi)\Gamma(g,h)\right|_{L_{\xi,\eta}^{\infty}}\leq C\left|g\right|_{L_{\xi,\eta}^{\infty}}\left|h\right|_{L_{\xi,\eta}^{\infty}}\text{, }\eta\in\mathbb{R}\text{,}

for some universal constant C>0C>0.

It is vital to get the space-time structure of the solution of the linearized Boltzmann equation

th+ξxh=Lh,\partial_{t}h+\xi\cdot\nabla_{x}h=Lh\text{,}

and we denote 𝔾t\mathbb{G}^{t} as its solution operator.

Lemma 8 ([26, 27]).

The solution h=𝔾th0h=\mathbb{G}^{t}h_{0} of the equation

th+ξxh=Lhh(0,x,ξ)=h0(x,ξ).\partial_{t}h+\xi\cdot\nabla_{x}h=Lh\hbox{, }h\left(0,x,\xi\right)=h_{0}\left(x,\xi\right)\hbox{.}

satisfies

|𝔾th0|Lξ,β𝒞1[(1+t)2e(|x|𝐜t)2D0(1+t)+(1+t)3/2e|x|2D0(1+t)+𝟏{|x|𝐜t}(1+t)3/2(1+|x|21+t)3/2+et+|x|c0]x|h0|Lξ,β\left|\mathbb{G}^{t}h_{0}\right|_{L_{\xi,\beta}^{\infty}}\leq\mathcal{C}_{1}\left[\begin{array}[]{l}\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{D_{0}\left(1+t\right)}}+\left(1+t\right)^{-3/2}e^{-\frac{\left|x\right|^{2}}{D_{0}\left(1+t\right)}}\\[5.69054pt] +\mathbf{1}_{\{\left|x\right|\leq\mathbf{c}t\}}\left(1+t\right)^{-3/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}+e^{-\frac{t+|x|}{c_{0}}}\end{array}\right]\ast_{x}\left|h_{0}\right|_{L_{\xi,\beta}^{\infty}}

for any β>3/2\beta>3/2 and some constants 𝒞1\mathcal{C}_{1}, c0c_{0}, D0>0D_{0}>0, where h0Lξ,β(LxLx1)h_{0}\in L_{\xi,\beta}^{\infty}(L_{x}^{\infty}\cap L_{x}^{1}). Moreover, if P1h0=0\mathrm{P}_{1}h_{0}=0, then

|𝔾th0|Lξ,β𝒞1[(1+t)5/2e(|x|𝐜t)2D0(1+t)+(1+t)2e|x|2D0(1+t)+𝟏{|x|𝐜t}(1+t)2(1+|x|21+t)3/2+et+|x|c0]x|h0|Lξ,β.\left|\mathbb{G}^{t}h_{0}\right|_{L_{\xi,\beta}^{\infty}}\leq\mathcal{C}_{1}\left[\begin{array}[]{l}\left(1+t\right)^{-5/2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{D_{0}\left(1+t\right)}}+\left(1+t\right)^{-2}e^{-\frac{\left|x\right|^{2}}{D_{0}\left(1+t\right)}}\\[5.69054pt] +\mathbf{1}_{\{\left|x\right|\leq\mathbf{c}t\}}\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}+e^{-\frac{t+|x|}{c_{0}}}\end{array}\right]\ast_{x}\left|h_{0}\right|_{L_{\xi,\beta}^{\infty}}.

3. Global wave structure

In this section we will prove the global wave structure of the equation (3)(\ref{Linearized}) which is described in the following theorem.

Theorem 9.

Let β>4\beta>4 be sufficiently large. Assume that f0Lξ,βLxf_{0}\in L_{\xi,\beta}^{\infty}L_{x}^{\infty} is compactly supported in the variable xx for all ξ\xi

f0(x,ξ)0 for |x|1ξ3.f_{0}\left(x,\xi\right)\equiv 0\text{ for }\left|x\right|\geq 1\text{, }\xi\in\mathbb{R}^{3}\text{.}

Then there exists ε>0\varepsilon>0 small enough such that the solution ff of (3)(\ref{Linearized}) exists for t>0t>0 and it can be written as f=f1+f2f=f_{1}+\sqrt{\mathcal{M}}f_{2}, where f1f_{1} and f2f_{2} satisfy (4)\left(\ref{decom-System}\right) with

|f1|Lξ,β2𝒞1εf0Lξ,βLxeν02(t+|x|),\left|f_{1}\right|_{L_{\xi,\beta}^{\infty}}\leq 2\mathcal{C}_{1}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}e^{-\frac{\nu_{0}}{2}\left(t+\left|x\right|\right)}\text{,}

and

|f2|Lξ,β\displaystyle\quad\left|f_{2}\right|_{L_{\xi,\beta}^{\infty}}
𝔅εf0Lξ,βLx[(1+t)2e(|x|𝐜t)2D^0(1+t)+(1+t)3/2e|x|2D^0(1+t)+𝟏{|x|𝐜t}(1+t)3/2(1+|x|21+t)3/2+et+|x|c^0]\displaystyle\leq\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\left[\begin{array}[]{l}\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{\widehat{D}_{0}\left(1+t\right)}}+\left(1+t\right)^{-3/2}e^{-\frac{\left|x\right|^{2}}{\widehat{D}_{0}\left(1+t\right)}}\\[5.69054pt] +\mathbf{1}_{\{\left|x\right|\leq\mathbf{c}t\}}\left(1+t\right)^{-3/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}+e^{-\frac{t+|x|}{\widehat{c}_{0}}}\end{array}\right]
+2(𝔅εf0Lξ,βLx)2[(1+t)2(1+|x|21+t)32+(1+t)52(1+(|x|𝐜t)21+t)1]\displaystyle\quad+2\mathfrak{C}\left(\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\right)^{2}\left[\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-\frac{5}{2}}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\right]

for some positive constants 𝔅,𝒞1,,D^0,c^0\mathfrak{B},\mathcal{C}_{1},\mathfrak{C},\hat{D}_{0},\hat{c}_{0}.

Proof.

To clarify the space-time structures of the solutions f1f_{1} and f2f_{2} to (4)\left(\ref{decom-System}\right), we design an iteration {fn}\{f^{n}\} with fn=f1n+f2nf^{n}=f_{1}^{n}+\sqrt{\mathcal{M}}f_{2}^{n} , as follows:

(7) {tf1n+1+ξxf1n+1+ν(ξ)f1n+1=𝒦sf1n+U(f1n,f2n)tf2n+1+ξxf2n+1=Lf2n+1+𝒦bf1n+1+Γ(f2n,f2n)\left\{\begin{array}[]{l}\partial_{t}f_{1}^{n+1}+\xi\cdot\nabla_{x}f_{1}^{n+1}+\nu\left(\xi\right)f_{1}^{n+1}=\mathcal{K}_{s}f_{1}^{n}+U(f_{1}^{n},f_{2}^{n})\vspace{3mm}\\ \partial_{t}f_{2}^{n+1}+\xi\cdot\nabla_{x}f_{2}^{n+1}=Lf_{2}^{n+1}+\mathcal{K}_{b}f_{1}^{n+1}+\Gamma(f_{2}^{n},f_{2}^{n})\end{array}\right.

with

f1n+1(0,x,ξ)=εf0(x,ξ)f2n+1(0,x,ξ)=0f10(t,x,ξ)=f20(t,x,ξ)=0,f_{1}^{n+1}\left(0,x,\xi\right)=\varepsilon f_{0}\left(x,\xi\right)\text{, }f_{2}^{n+1}\left(0,x,\xi\right)=0\text{, }\ f_{1}^{0}\left(t,x,\xi\right)=f_{2}^{0}\left(t,x,\xi\right)=0\text{,}

where

U(f1n,f2n)=Q(f1n,f1n)+Q(f1n,f2n)+Q(f2n,f1n).U(f_{1}^{n},f_{2}^{n})=Q\left(f_{1}^{n},f_{1}^{n}\right)+Q\left(f_{1}^{n},\sqrt{\mathcal{M}}f_{2}^{n}\right)+Q\left(\sqrt{\mathcal{M}}f_{2}^{n},f_{1}^{n}\right)\text{.}

We shall study the space-time structures of f1nf_{1}^{n} and f2nf_{2}^{n}. Now we rewrite (7) as integral forms:

{f1n+1=ε𝕊tf0+0t𝕊tτ[𝒦sf1n(τ)+U(f1n,f2n)(τ)]dτ=:f1,1n+1+f1,2n+1,f2n+1=0t𝔾tτ𝒦b(f1n+1)(τ)dτ+0t𝔾tτΓ(f2n,f2n)(τ)dτ=:f2,1n+1+f2,2n+1.\left\{\begin{array}[]{l}f_{1}^{n+1}=\varepsilon\mathbb{S}^{t}f_{0}+\int_{0}^{t}\mathbb{S}^{t-\tau}\left[\mathcal{K}_{s}f_{1}^{n}(\tau)+U(f_{1}^{n},f_{2}^{n})(\tau)\right]d\tau=:f_{1,1}^{n+1}+f_{1,2}^{n+1}\text{,}\vspace{3mm}\\ f_{2}^{n+1}=\int_{0}^{t}\mathbb{G}^{t-\tau}\mathcal{K}_{b}\left(f_{1}^{n+1}\right)(\tau)d\tau+\int_{0}^{t}\mathbb{G}^{t-\tau}\Gamma(f_{2}^{n},f_{2}^{n})(\tau)d\tau=:f_{2,1}^{n+1}+f_{2,2}^{n+1}\text{.}\end{array}\right.

First, one can see that f11=f1,11f_{1}^{1}=f_{1,1}^{1}, f21=f2,11f_{2}^{1}=f_{2,1}^{1} and f1,21=f2,21=0f_{1,2}^{1}=f_{2,2}^{1}=0. Since f0f_{0} is compactly supported in the unit ball with respect to the variable xx uniformly for all ξ\xi, we have

|f11|Lξ,β𝒞1εf0Lξ,βLxeν02(t+|x|)\left|f_{1}^{1}\right|_{L_{\xi,\beta}^{\infty}}\leq\mathcal{C}_{1}\varepsilon\|f_{0}\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}e^{-\frac{\nu_{0}}{2}(t+|x|)}

for some constant 𝒞1\mathcal{C}_{1}. In view of Lemmas 3, 8 and Lemmas 1921, we get

|f21|Lξ,β\displaystyle\left|f_{2}^{1}\right|_{L_{\xi,\beta}^{\infty}} =|0t𝔾tτ𝒦b(f11)(τ)𝑑τ|Lξ,β\displaystyle=\left|\int_{0}^{t}\mathbb{G}^{t-\tau}\mathcal{K}_{b}\left(f_{1}^{1}\right)(\tau)d\tau\right|_{L_{\xi,\beta}^{\infty}}
2𝒞1εf0Lξ,βLx[(2π)34eR24(Cν1β(1+R)+Cβ)]\displaystyle\leq 2\mathcal{C}_{1}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\left[\left(2\pi\right)^{\frac{3}{4}}e^{\frac{R^{2}}{4}}\left(\frac{C\nu_{1}}{\beta}\left(1+R\right)+C_{\beta}\right)\right]
𝒞1[(1+t)2e(|x|𝐜t)2D0(1+t)+(1+t)3/2e|x|2D0(1+t)+𝟏{|x|𝐜t}(1+t)3/2(1+|x|21+t)3/2+et+|x|c0]x,teν02(t+|x|)\displaystyle\cdot\mathcal{C}_{1}\left[\begin{array}[]{l}\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{D_{0}\left(1+t\right)}}+\left(1+t\right)^{-3/2}e^{-\frac{\left|x\right|^{2}}{D_{0}\left(1+t\right)}}\\[5.69054pt] +\mathbf{1}_{\{\left|x\right|\leq\mathbf{c}t\}}\left(1+t\right)^{-3/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}+e^{-\frac{t+|x|}{c_{0}}}\end{array}\right]\ast_{x,t}e^{-\frac{\nu_{0}}{2}(t+|x|)}
2𝒞2𝒞12[(2π)34eR24(Cν1β(1+R)+Cβ)]\displaystyle\leq 2\mathcal{C}_{2}\mathcal{C}_{1}^{2}\left[\left(2\pi\right)^{\frac{3}{4}}e^{\frac{R^{2}}{4}}\left(\frac{C\nu_{1}}{\beta}\left(1+R\right)+C_{\beta}\right)\right]
εf0Lξ,βLx[(1+t)2e(|x|𝐜t)2D^0(1+t)+(1+t)3/2e|x|2D^0(1+t)+𝟏{|x|𝐜t}(1+t)3/2(1+|x|21+t)3/2+et+|x|c^0]\displaystyle\cdot\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\left[\begin{array}[]{l}\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{\widehat{D}_{0}\left(1+t\right)}}+\left(1+t\right)^{-3/2}e^{-\frac{\left|x\right|^{2}}{\widehat{D}_{0}\left(1+t\right)}}\\[5.69054pt] +\mathbf{1}_{\{\left|x\right|\leq\mathbf{c}t\}}\left(1+t\right)^{-3/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}+e^{-\frac{t+|x|}{\widehat{c}_{0}}}\end{array}\right]
𝔅εf0Lξ,βLx[(1+t)2e(|x|𝐜t)2D^0(1+t)+(1+t)3/2e|x|2D^0(1+t)+𝟏{|x|𝐜t}(1+t)3/2(1+|x|21+t)3/2+et+|x|c^0].\displaystyle\leq\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\left[\begin{array}[]{l}\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{\widehat{D}_{0}\left(1+t\right)}}+\left(1+t\right)^{-3/2}e^{-\frac{\left|x\right|^{2}}{\widehat{D}_{0}\left(1+t\right)}}\\[5.69054pt] +\mathbf{1}_{\{\left|x\right|\leq\mathbf{c}t\}}\left(1+t\right)^{-3/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}+e^{-\frac{t+|x|}{\widehat{c}_{0}}}\end{array}\right]\text{.}

In fact, by definition of f1,1nf_{1,1}^{n}, we have f1,1n=f1,11f_{1,1}^{n}=f_{1,1}^{1} for all nn and so

|f1,1n|Lξ,β𝒞1εf0Lξ,βLxeν02(t+|x|).\left|f_{1,1}^{n}\right|_{L_{\xi,\beta}^{\infty}}\leq\mathcal{C}_{1}\varepsilon\|f_{0}\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}e^{-\frac{\nu_{0}}{2}(t+|x|)}\text{.}

Now we choose β>4\beta>4 and R>0R>0 sufficiently large such that the constant η(β,R)\eta\left(\beta,R\right) defined in Lemma 4 satisfies

η(β,R)=Cβ+CβR2<18.\eta\left(\beta,R\right)=\frac{C}{\beta}+\frac{C_{\beta}}{R^{2}}<\frac{1}{8}\text{.}

Fixing such β\beta and RR, we shall prove that if ε>0\varepsilon>0 is sufficiently small, we have

|f1,2n|Lξ,β𝒞1εf0Lξ,βLxeν02(t+|x|),\left|f_{1,2}^{n}\right|_{L_{\xi,\beta}^{\infty}}\leq\mathcal{C}_{1}\varepsilon\|f_{0}\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}e^{-\frac{\nu_{0}}{2}(t+|x|)}\text{,}
|f2,1n|Lξ,β𝔅εf0Lξ,βLx[(1+t)2e(|x|𝐜t)2D^0(1+t)+(1+t)3/2e|x|2D^0(1+t)+𝟏{|x|𝐜t}(1+t)3/2(1+|x|21+t)3/2+et+|x|c^0],\left|f_{2,1}^{n}\right|_{L_{\xi,\beta}^{\infty}}\leq\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\left[\begin{array}[]{l}\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{\widehat{D}_{0}\left(1+t\right)}}+\left(1+t\right)^{-3/2}e^{-\frac{\left|x\right|^{2}}{\widehat{D}_{0}\left(1+t\right)}}\\[5.69054pt] +\mathbf{1}_{\{\left|x\right|\leq\mathbf{c}t\}}\left(1+t\right)^{-3/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}+e^{-\frac{t+|x|}{\widehat{c}_{0}}}\end{array}\right]\text{,}
|f2,2n|Lξ,β2(𝔅εf0Lξ,βLx)2[(1+t)2(1+|x|21+t)32+(1+t)52(1+(|x|𝐜t)21+t)1],\left|f_{2,2}^{n}\right|_{L_{\xi,\beta}^{\infty}}\leq 2\mathfrak{C}\left(\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\right)^{2}\left[\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-\frac{5}{2}}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\right]\text{,}

for all nn\in\mathbb{N} by induction on nn, here the large constant \mathfrak{C} >0>0 will be determined later.

By induction hypothesis and Lemma 3, we have

|ν1U(f1n,f2n)|Lξ,β\displaystyle\left|\nu^{-1}U\left(f_{1}^{n},f_{2}^{n}\right)\right|_{L_{\xi,\beta}^{\infty}} \displaystyle\leq C(|f1n|Lξ,β2+2|f1n|Lξ,β|f2n|Lξ,β)\displaystyle C\left(\left|f_{1}^{n}\right|_{L_{\xi,\beta}^{\infty}}^{2}+2\left|f_{1}^{n}\right|_{L_{\xi,\beta}^{\infty}}\left|f_{2}^{n}\right|_{L_{\xi,\beta}^{\infty}}\right)
\displaystyle\leq Cεf0Lξ,βLx(4𝒞1+𝔅(1+2𝔅εf0Lξ,βLx))\displaystyle C\varepsilon\|f_{0}\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\left(4\mathcal{C}_{1}+\mathfrak{B}\left(1+2\mathfrak{CB}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\right)\right)
𝒞1εf0Lξ,βLxeν02(t+|x|).\displaystyle\cdot\mathcal{C}_{1}\varepsilon\|f_{0}\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}e^{-\frac{\nu_{0}}{2}(t+|x|)}\text{.}

By Lemma 4,

|f1,2n+1|Lξ,β\displaystyle\left|f_{1,2}^{n+1}\right|_{L_{\xi,\beta}^{\infty}} =\displaystyle= |0tξβ𝕊tτ[𝒦sf1n(τ)+U(f1n,f2n)(τ)]𝑑τ|\displaystyle\left|\int_{0}^{t}\left\langle\xi\right\rangle^{\beta}\mathbb{S}^{t-\tau}\left[\mathcal{K}_{s}f_{1}^{n}(\tau)+U(f_{1}^{n},f_{2}^{n})(\tau)\right]d\tau\right|
\displaystyle\leq [4η(β,R)+2Cεf0Lξ,βLx(4𝒞1+𝔅(1+2𝔅εf0Lξ,βLx))]\displaystyle\left[4\eta\left(\beta,R\right)+2C\varepsilon\|f_{0}\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\left(4\mathcal{C}_{1}+\mathfrak{B}\left(1+2\mathfrak{CB}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\right)\right)\right]
𝒞1εf0Lξ,βLxeν02(t+|x|)\displaystyle\cdot\mathcal{C}_{1}\varepsilon\|f_{0}\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}e^{-\frac{\nu_{0}}{2}(t+|x|)}
\displaystyle\leq 𝒞1εf0Lξ,βLxeν02(t+|x|),\displaystyle\mathcal{C}_{1}\varepsilon\|f_{0}\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}e^{-\frac{\nu_{0}}{2}(t+|x|)}\text{,}

after we choose ε>0\varepsilon>0 sufficiently small such that

2Cεf0Lξ,βLx(4𝒞1+2𝔅(1+𝔅εf0Lξ,βLx))<1/2.2C\varepsilon\|f_{0}\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\left(4\mathcal{C}_{1}+2\mathfrak{CB}\left(1+\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\right)\right)<1/2\text{.}

Therefore,

|f1,2n+1|Lξ,β𝒞1εf0Lξ,βLxeν02(t+|x|),\left|f_{1,2}^{n+1}\right|_{L_{\xi,\beta}^{\infty}}\leq\mathcal{C}_{1}\varepsilon\|f_{0}\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}e^{-\frac{\nu_{0}}{2}(t+|x|)}\text{,}

and so

|f1n+1|Lξ,β2𝒞1εf0Lξ,βLxeν02(t+|x|).\left|f_{1}^{n+1}\right|_{L_{\xi,\beta}^{\infty}}\leq 2\mathcal{C}_{1}\varepsilon\|f_{0}\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}e^{-\frac{\nu_{0}}{2}(t+|x|)}\text{.}

Likewise f2,11f_{2,1}^{1}, we have

|f2,1n+1|Lξ,β\displaystyle\left|f_{2,1}^{n+1}\right|_{L_{\xi,\beta}^{\infty}} =\displaystyle= |0t𝔾tτ𝒦b(f1n+1)(τ)𝑑τ|Lξ,β\displaystyle\left|\int_{0}^{t}\mathbb{G}^{t-\tau}\mathcal{K}_{b}\left(f_{1}^{n+1}\right)(\tau)d\tau\right|_{L_{\xi,\beta}^{\infty}}
\displaystyle\leq 2𝒞1εf0Lξ,βLx[(2π)34eR24(Cν1β(1+R)+Cβ)]\displaystyle 2\mathcal{C}_{1}\varepsilon\|f_{0}\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\left[\left(2\pi\right)^{\frac{3}{4}}e^{\frac{R^{2}}{4}}\left(\frac{C\nu_{1}}{\beta}\left(1+R\right)+C_{\beta}\right)\right]
𝒞1[(1+t)2e(|x|𝐜t)2D0(1+t)+(1+t)3/2e|x|2D0(1+t)+𝟏{|x|𝐜t}(1+t)3/2(1+|x|21+t)3/2+et+|x|c0]x,teν02(t+|x|)\displaystyle\cdot\mathcal{C}_{1}\left[\begin{array}[]{l}\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{D_{0}\left(1+t\right)}}+\left(1+t\right)^{-3/2}e^{-\frac{\left|x\right|^{2}}{D_{0}\left(1+t\right)}}\\[5.69054pt] +\mathbf{1}_{\{\left|x\right|\leq\mathbf{c}t\}}\left(1+t\right)^{-3/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}+e^{-\frac{t+|x|}{c_{0}}}\end{array}\right]\ast_{x,t}e^{-\frac{\nu_{0}}{2}(t+|x|)}
\displaystyle\leq 2𝒞2𝒞12[(2π)34eR24(Cν1β(1+R)+Cβ)]\displaystyle 2\mathcal{C}_{2}\mathcal{C}_{1}^{2}\left[\left(2\pi\right)^{\frac{3}{4}}e^{\frac{R^{2}}{4}}\left(\frac{C\nu_{1}}{\beta}\left(1+R\right)+C_{\beta}\right)\right]
εf0Lξ,βLx[(1+t)2e(|x|𝐜t)2D^0(1+t)+(1+t)3/2e|x|2D^0(1+t)+𝟏{|x|𝐜t}(1+t)3/2(1+|x|21+t)3/2+et+|x|c^0]\displaystyle\cdot\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\left[\begin{array}[]{l}\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{\widehat{D}_{0}\left(1+t\right)}}+\left(1+t\right)^{-3/2}e^{-\frac{\left|x\right|^{2}}{\widehat{D}_{0}\left(1+t\right)}}\\[5.69054pt] +\mathbf{1}_{\{\left|x\right|\leq\mathbf{c}t\}}\left(1+t\right)^{-3/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}+e^{-\frac{t+|x|}{\widehat{c}_{0}}}\end{array}\right]
\displaystyle\leq 𝔅εf0Lξ,βLx[(1+t)2e(|x|𝐜t)2D^0(1+t)+(1+t)3/2e|x|2D^0(1+t)+𝟏{|x|𝐜t}(1+t)3/2(1+|x|21+t)3/2+et+|x|c^0].\displaystyle\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\left[\begin{array}[]{l}\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{\widehat{D}_{0}\left(1+t\right)}}+\left(1+t\right)^{-3/2}e^{-\frac{\left|x\right|^{2}}{\widehat{D}_{0}\left(1+t\right)}}\\[5.69054pt] +\mathbf{1}_{\{\left|x\right|\leq\mathbf{c}t\}}\left(1+t\right)^{-3/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}+e^{-\frac{t+|x|}{\widehat{c}_{0}}}\end{array}\right]\text{.}

Also, there exits a constant 𝒞3>1\mathcal{C}_{3}>1 depending on D^0\widehat{D}_{0} and c^0\widehat{c}_{0} such that

|f2,1n+1|Lξ,β\displaystyle\left|f_{2,1}^{n+1}\right|_{L_{\xi,\beta}^{\infty}}
\displaystyle\leq 2𝒞2𝒞12[(2π)34eR24(Cν1β(1+R)+Cβ)]\displaystyle 2\mathcal{C}_{2}\mathcal{C}_{1}^{2}\left[\left(2\pi\right)^{\frac{3}{4}}e^{\frac{R^{2}}{4}}\left(\frac{C\nu_{1}}{\beta}\left(1+R\right)+C_{\beta}\right)\right]
εf0Lξ,βLx[(1+t)2e(|x|𝐜t)2D^0(1+t)+(1+t)3/2e|x|2D^0(1+t)+𝟏{|x|𝐜t}(1+t)32(1+|x|21+t)32+et+|x|c^0]\displaystyle\cdot\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\left[\begin{array}[]{l}\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{\widehat{D}_{0}\left(1+t\right)}}+\left(1+t\right)^{-3/2}e^{-\frac{\left|x\right|^{2}}{\widehat{D}_{0}\left(1+t\right)}}\\[5.69054pt] +\mathbf{1}_{\{\left|x\right|\leq\mathbf{c}t\}}\left(1+t\right)^{-\frac{3}{2}}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+e^{-\frac{t+|x|}{\widehat{c}_{0}}}\end{array}\right]
\displaystyle\leq 2𝒞3𝒞2𝒞12[(2π)34eR24(Cν1β(1+R)+Cβ)]\displaystyle 2\mathcal{C}_{3}\mathcal{C}_{2}\mathcal{C}_{1}^{2}\left[\left(2\pi\right)^{\frac{3}{4}}e^{\frac{R^{2}}{4}}\left(\frac{C\nu_{1}}{\beta}\left(1+R\right)+C_{\beta}\right)\right]
εf0Lξ,βLx[(1+t)32(1+|x|21+t)32+(1+t)2(1+(|x|𝐜t)21+t)1]\displaystyle\cdot\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\left[\left(1+t\right)^{-\frac{3}{2}}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\right]
\displaystyle\leq 𝔅εf0Lξ,βLx[(1+t)32(1+|x|21+t)32+(1+t)2(1+(|x|𝐜t)21+t)1].\displaystyle\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\left[\left(1+t\right)^{-\frac{3}{2}}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\right]\text{.}

Since f2,2n+1f_{2,2}^{n+1} satisfies the equation

tf2,2n+1+ξxf2,2n+1=Lf2,2n+1+Γ(f2n,f2n) with f2,2n+1(0,x,ξ)=0\partial_{t}f_{2,2}^{n+1}+\xi\cdot\nabla_{x}f_{2,2}^{n+1}=Lf_{2,2}^{n+1}+\Gamma\left(f_{2}^{n},f_{2}^{n}\right)\text{ with }f_{2,2}^{n+1}\left(0,x,\xi\right)=0\text{, }

we further decompose f2,2n+1f_{2,2}^{n+1} into two parts as f2,2n+1=h1n+1+h2n+1f_{2,2}^{n+1}=h_{1}^{n+1}+h_{2}^{n+1} where h1n+1h_{1}^{n+1}, h2n+1h_{2}^{n+1} satisfy the equations

{th1n+1+ξxh1n+1+ν(ξ)h1n+1=Γ(f2n,f2n),th2n+1+ξxh2n+1+ν(ξ)h2n+1=Kf2,2n+1,\left\{\begin{array}[]{l}\partial_{t}h_{1}^{n+1}+\xi\cdot\nabla_{x}h_{1}^{n+1}+\nu\left(\xi\right)h_{1}^{n+1}=\Gamma\left(f_{2}^{n},f_{2}^{n}\right)\text{,}\vspace{3mm}\\ \partial_{t}h_{2}^{n+1}+\xi\cdot\nabla_{x}h_{2}^{n+1}+\nu\left(\xi\right)h_{2}^{n+1}=Kf_{2,2}^{n+1}\text{,}\end{array}\right.

with h1n+1(0,x,ξ)=h2n+1(0,x,ξ)=0h_{1}^{n+1}\left(0,x,\xi\right)=h_{2}^{n+1}\left(0,x,\xi\right)=0. By induction hypothesis and (3),

|f2n|Lξ,β\displaystyle\left|f_{2}^{n}\right|_{L_{\xi,\beta}^{\infty}} =\displaystyle= |f2,1n+f2,2n|Lξ,β\displaystyle\left|f_{2,1}^{n}+f_{2,2}^{n}\right|_{{}_{L_{\xi,\beta}^{\infty}}}
\displaystyle\leq [𝔅εf0Lξ,βLx+2(𝔅εf0Lξ,βLx)2]\displaystyle\left[\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}+2\mathfrak{C}\left(\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\right)^{2}\right]
[(1+t)2(1+(|x|𝐜t)21+t)1+(1+t)3/2(1+|x|21+t)3/2]\displaystyle\cdot\left[\left(1+t\right)^{-2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}+\left(1+t\right)^{-3/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}\right]
\displaystyle\leq 2𝔅εf0Lξ,βLx[(1+t)2(1+(|x|𝐜t)21+t)1+(1+t)3/2(1+|x|21+t)3/2],\displaystyle 2\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\left[\left(1+t\right)^{-2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}+\left(1+t\right)^{-3/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}\right]\text{,}

so that

|ν1Γ(f2n,f2n)|Lξ,β\displaystyle\left|\nu^{-1}\Gamma\left(f_{2}^{n},f_{2}^{n}\right)\right|_{L_{\xi,\beta}^{\infty}} \displaystyle\leq C|f2n|Lξ,β2\displaystyle C\left|f_{2}^{n}\right|_{L_{\xi,\beta}^{\infty}}^{2}
\displaystyle\leq 8C(𝔅εf0Lξ,βLx)2\displaystyle 8C\left(\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\right)^{2}
[(1+t)4(1+(|x|𝐜t)21+t)2+(1+t)3(1+|x|21+t)3].\displaystyle\cdot\left[\left(1+t\right)^{-4}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-2}+\left(1+t\right)^{-3}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3}\right]\text{.}

In view of Lemmas 5 and 6, we have

|ξβh1n+1|\displaystyle\left|\left\langle\xi\right\rangle^{\beta}h_{1}^{n+1}\right|
=\displaystyle= |ξβ0t𝕊tτΓ(f2n,f2n)(τ)𝑑τ|\displaystyle\left|\left\langle\xi\right\rangle^{\beta}\int_{0}^{t}\mathbb{S}^{t-\tau}\Gamma\left(f_{2}^{n},f_{2}^{n}\right)\left(\tau\right)d\tau\right|
\displaystyle\leq 8C2(𝔅εf0Lξ,βLx)2\displaystyle 8C^{2}\left(\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\right)^{2}
[(1+t)4(1+(|x|𝐜t)2(1+t))2+(1+t)3(1+|x|2(1+t))3]\displaystyle\cdot\left[\left(1+t\right)^{-4}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{\left(1+t\right)}\right)^{-2}+\left(1+t\right)^{-3}\left(1+\frac{\left|x\right|^{2}}{\left(1+t\right)}\right)^{-3}\right]
\displaystyle\leq (𝔅εf0Lξ,βLx)2[(1+t)4(1+(|x|𝐜t)2(1+t))2+(1+t)3(1+|x|2(1+t))3].\displaystyle\mathfrak{C}\left(\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\right)^{2}\left[\left(1+t\right)^{-4}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{\left(1+t\right)}\right)^{-2}+\left(1+t\right)^{-3}\left(1+\frac{\left|x\right|^{2}}{\left(1+t\right)}\right)^{-3}\right]\text{.}

As for h2n+1h_{2}^{n+1}, we have

|ξβh2n+1|=|ξβ0t𝕊tτK(f2,2n+1)(τ,x,ξ)𝑑τ|.\left|\left\langle\xi\right\rangle^{\beta}h_{2}^{n+1}\right|=\left|\left\langle\xi\right\rangle^{\beta}\int_{0}^{t}\mathbb{S}^{t-\tau}K\left(f_{2,2}^{n+1}\right)\left(\tau,x,\xi\right)d\tau\right|\text{.}

It follows from Lemma 7 that

|ν(ξ)1ξβKf2,2n+1|LξCν0|f2,2n+1|Lξ,β1.\left|\nu\left(\xi\right)^{-1}\left\langle\xi\right\rangle^{\beta}Kf_{2,2}^{n+1}\right|_{L_{\xi}^{\infty}}\leq\frac{C}{\nu_{0}}\left|f_{2,2}^{n+1}\right|_{L_{\xi,\beta-1}^{\infty}}\text{.}

In view of Lemma 8 and (3), together with convolution estimates in Section 6.2, to be more specific, Lemmas 2227, we obtain

|f2,2n+1|Lξ,β1\displaystyle\left|f_{2,2}^{n+1}\right|_{L_{\xi,\beta-1}^{\infty}} =\displaystyle= |0tξβ1𝔾tτΓ(f2n,f2n)(τ)𝑑τ|\displaystyle\left|\int_{0}^{t}\left\langle\xi\right\rangle^{\beta-1}\mathbb{G}^{t-\tau}\Gamma\left(f_{2}^{n},f_{2}^{n}\right)\left(\tau\right)d\tau\right|
\displaystyle\leq 𝒞1ν1[(1+t)52e(|x|𝐜t)2D0(1+t)+(1+t)2e|x|2D0(1+t)+𝟏{|x|𝐜t}(1+t)2(1+|x|21+t)3/2+et+|x|c0]x,t|ν1Γ(f2n,f2n)|Lξ,β\displaystyle\mathcal{C}_{1}\nu_{1}\left[\begin{array}[]{l}\left(1+t\right)^{-\frac{5}{2}}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{D_{0}\left(1+t\right)}}+\left(1+t\right)^{-2}e^{-\frac{\left|x\right|^{2}}{D_{0}\left(1+t\right)}}\\[5.69054pt] +\mathbf{1}_{\{\left|x\right|\leq\mathbf{c}t\}}\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}+e^{-\frac{t+|x|}{c_{0}}}\end{array}\right]\ast_{x,t}\left|\nu^{-1}\Gamma\left(f_{2}^{n},f_{2}^{n}\right)\right|_{L_{\xi,\beta}^{\infty}}
\displaystyle\leq 𝒞1ν18C(𝔅εf0Lξ,βLx)2[(1+t)52e(|x|𝐜t)2D0(1+t)+(1+t)2e|x|2D0(1+t)+𝟏{|x|𝐜t}(1+t)2(1+|x|21+t)3/2+et+|x|c0]\displaystyle\mathcal{C}_{1}\nu_{1}8C\left(\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\right)^{2}\left[\begin{array}[]{l}\left(1+t\right)^{-\frac{5}{2}}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{D_{0}\left(1+t\right)}}+\left(1+t\right)^{-2}e^{-\frac{\left|x\right|^{2}}{D_{0}\left(1+t\right)}}\\[5.69054pt] +\mathbf{1}_{\{\left|x\right|\leq\mathbf{c}t\}}\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}+e^{-\frac{t+|x|}{c_{0}}}\end{array}\right]
x,t[(1+t)4(1+(|x|𝐜t)21+t)2+(1+t)3(1+|x|21+t)3]\displaystyle\ast_{x,t}\left[\left(1+t\right)^{-4}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-2}+\left(1+t\right)^{-3}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3}\right]
\displaystyle\leq 8C2𝒞1ν1(𝔅εf0Lξ,βLx)2\displaystyle 8C^{2}\mathcal{C}_{1}\nu_{1}\left(\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\right)^{2}
[(1+t)52(1+(|x|𝐜t)21+t)1+(1+t)2(1+|x|21+t)32].\displaystyle\cdot\left[\left(1+t\right)^{-\frac{5}{2}}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}+\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\right]\text{.}

Therefore, using Lemmas 5 and 6,

|h2n+1|Lξ,β\displaystyle\left|h_{2}^{n+1}\right|_{L_{\xi,\beta}^{\infty}}
\displaystyle\leq CCν08C2𝒞1ν1(𝔅εf0Lξ,βLx)2\displaystyle C\cdot\frac{C}{\nu_{0}}8C^{2}\mathcal{C}_{1}\nu_{1}\left(\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\right)^{2}
[(1+t)2(1+|x|21+t)32+(1+t)52(1+(|x|𝐜t)21+t)1]\displaystyle\cdot\left[\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-\frac{5}{2}}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\right]
\displaystyle\leq (𝔅εf0Lξ,βLx)2[(1+t)2(1+|x|21+t)32+(1+t)52(1+(|x|𝐜t)21+t)1]\displaystyle\mathfrak{C}\left(\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\right)^{2}\left[\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-\frac{5}{2}}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\right]

after we choose >0\mathfrak{C}>0 sufficiently large. Combining (3) and (3) gives

|f2,2n+1|Lξ,β2(𝔅εf0Lξ,βLx)2[(1+t)2(1+|x|21+t)32+(1+t)52(1+(|x|𝐜t)21+t)1].\left|f_{2,2}^{n+1}\right|_{L_{\xi,\beta}^{\infty}}\leq 2\mathfrak{C}\left(\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\right)^{2}\left[\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-\frac{5}{2}}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\right]\text{.}

Consequently, we get the desired estimates for f1,2nf_{1,2}^{n}, f2,1nf_{2,1}^{n}, f2,2nf_{2,2}^{n} by induction on nn.

Finally, it is straightforward to prove that {(f1n,f2n)}\left\{\left(f_{1}^{n},f_{2}^{n}\right)\right\} is a Cauchy sequence in Lξ,β(Lx2Lx)L_{\xi,\beta}^{\infty}\left(L_{x}^{2}\cap L_{x}^{\infty}\right). As a consequence, (f1n,f2n)\left(f_{1}^{n},f_{2}^{n}\right) converges to (f1,f2)\left(f_{1},f_{2}\right) in Lξ,β(Lx2Lx)L_{\xi,\beta}^{\infty}\left(L_{x}^{2}\cap L_{x}^{\infty}\right) and (f1,f2)\left(f_{1},f_{2}\right) solves the problem (4) with

|f1|Lξ,β2𝒞1εf0Lξ,βLxeν02(t+|x|),\left|f_{1}\right|_{L_{\xi,\beta}^{\infty}}\leq 2\mathcal{C}_{1}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}e^{-\frac{\nu_{0}}{2}\left(t+\left|x\right|\right)}\text{,}

and

|f2|Lξ,β\displaystyle\quad\left|f_{2}\right|_{L_{\xi,\beta}^{\infty}}
𝔅εf0Lξ,βLx[(1+t)2e(|x|𝐜t)2D^0(1+t)+(1+t)3/2e|x|2D^0(1+t)+𝟏{|x|𝐜t}(1+t)3/2(1+|x|21+t)3/2+et+|x|c^0]\displaystyle\leq\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\left[\begin{array}[]{l}\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{\widehat{D}_{0}\left(1+t\right)}}+\left(1+t\right)^{-3/2}e^{-\frac{\left|x\right|^{2}}{\widehat{D}_{0}\left(1+t\right)}}\\[5.69054pt] +\mathbf{1}_{\{\left|x\right|\leq\mathbf{c}t\}}\left(1+t\right)^{-3/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}+e^{-\frac{t+|x|}{\widehat{c}_{0}}}\end{array}\right]
+2(𝔅εf0Lξ,βLx)2[(1+t)2(1+|x|21+t)32+(1+t)52(1+(|x|𝐜t)21+t)1].\displaystyle\quad+2\mathfrak{C}\left(\mathfrak{B}\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\right)^{2}\left[\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-\frac{5}{2}}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\right]\,.

The proof of Theorem 9 is completed. ∎

4. Exponential decay outside the wave cone

In Theorem 9, the estimate for f1f_{1} is exponentially sharp, while the estimate of f2f_{2} is only polynomially sharp. The reason is that, to facilitate the closure of nonlinearity, we focused on the structure inside sound wave cone, so we chose a polynomial ansatz. However, since our initial data is compactly supported in space and f2f_{2} represents the fluid part with an essentially finite propagation speed. Therefore, we expect a faster decay in the space-like region.

In this section, we will improve the behavior of f2f_{2} outside the sound wave cone. Indeed, we can prove that f2f_{2} has exponential decay both in space and time there. The result is stated as follows.

Theorem 10.

Under the same assumption of Theorem 9, for any 0<δ10<\delta\ll 1, if ε>0\varepsilon>0 is sufficiently small, there exists a large positive constant DD depending on δ\delta, such that for |x|>(𝐜+δ)t\left|x\right|>\left(\mathbf{c}+\delta\right)t,

|f2|Lξ,βCδεex+tD,\left|f_{2}\right|_{L_{\xi,\beta}^{\infty}}\leq C_{\delta}\varepsilon e^{-\frac{\left\langle x\right\rangle+t}{D}}\text{,}

where the constant Cδ>0C_{\delta}>0 is independent of time and CδC_{\delta}\rightarrow\infty as δ0\delta\rightarrow 0.

To attain this end, we consider the weighted nonlinear equation corresponding to (4)\left(\ref{decom-System}\right). That is, let u=fw:=wf=u1+u2u=f_{w}:=wf=u_{1}+\sqrt{\mathcal{M}}u_{2}, ui=wfiu_{i}=wf_{i} (i=12)\left(i=1\text{, }2\right), where the weight function is given by

w(t,x)=exp(xMt),w\left(t,x\right)=\exp\left(\frac{\left\langle x\right\rangle-Mt}{\ell}\right)\text{,}

𝐜<M<𝐜+1\mathbf{c}<M<\mathbf{c}+1 and sufficiently large >0\ell>0. Note that by Theorem 9, f1f_{1} decays in space and time exponentially, so that u1u_{1} can be controlled if \ell is large enough, that is, there exists c0>0c_{0}>0 such that

u1Lξ,βLxu1Lξ,βLx2εec0t.\|u_{1}\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\text{, }\|u_{1}\|_{L_{\xi,\beta}^{\infty}L_{x}^{2}}\lesssim\varepsilon e^{-c_{0}t}.

In view of (4)\left(\ref{decom-System}\right), u2u_{2} satisfies the equation

{tu2+ξxu2w1(tw+ξxw)u2=Lu2+𝒦bu1+Γ(f2,u2)u2(0,x,ξ)=0.\left\{\begin{array}[]{l}\partial_{t}u_{2}+\xi\cdot\nabla_{x}u_{2}-w^{-1}\left(\partial_{t}w+\xi\cdot\nabla_{x}w\right)u_{2}=Lu_{2}+\mathcal{K}_{b}u_{1}+\Gamma(f_{2},u_{2})\vspace{3mm}\\ u_{2}\left(0,x,\xi\right)=0\text{.}\end{array}\right.

After choosing >0\ell>0 large such that  M1M\ell^{-1} is small, we have

ν~(t,x,ξ)=ν(ξ)+w1(tw+ξxw)34ν(ξ).\widetilde{\nu}\left(t,x,\xi\right)=\nu\left(\xi\right)+w^{-1}\left(\partial_{t}w+\xi\cdot\nabla_{x}w\right)\geq\frac{3}{4}\nu\left(\xi\right)\text{.}

Under this situation, we are ready to estimate u2u_{2}. Let T>0T>0 be a finite number. Denote

Cu2,T=ε1sup0tTu2Lξ,βLxCu2,T2=ε1sup0tTu2Lξ,βLx2.C_{u_{2},T}^{\infty}=\varepsilon^{-1}\sup_{0\leq t\leq T}\left\|u_{2}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\text{, \ \ \ \ }C_{u_{2},T}^{2}=\varepsilon^{-1}\sup_{0\leq t\leq T}\left\|u_{2}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{2}}\text{.}

Also denote

Cf2=ε1supt0(1+t)3/2f2Lξ,βLx,Cf22=ε1supt0(1+t)3/4f2Lξ,βLx2,\begin{array}[]{ccc}C_{f_{2}}^{\infty}=\varepsilon^{-1}\sup\limits_{t\geq 0}\left(1+t\right)^{3/2}\left\|f_{2}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\text{,}&&C_{f_{2}}^{2}=\varepsilon^{-1}\sup\limits_{t\geq 0}\left(1+t\right)^{3/4}\left\|f_{2}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{2}}\text{,}\end{array}

which are finite due to Theorem 9.

To estimate u2u_{2}, we design a Picard-type iteration: the zeroth order approximation u2(0)u_{2}^{\left(0\right)} is defined as

tu2(0)+ξxu2(0)+ν~(ξ)u2(0)=𝒦bu1+Γ(f2,u2)u2(0)(0,x,ξ)=0\partial_{t}u_{2}^{\left(0\right)}+\xi\cdot\nabla_{x}u_{2}^{\left(0\right)}+\widetilde{\nu}\left(\xi\right)u_{2}^{\left(0\right)}=\mathcal{K}_{b}u_{1}+\Gamma(f_{2},u_{2})\text{, \ }u_{2}^{\left(0\right)}\left(0,x,\xi\right)=0\text{,\ }

and define the jjth order approximation u2(j)u_{2}^{\left(j\right)}, j1j\geq 1, inductively as

tu2(j)+ξxu2(j)+ν~(ξ)u2(j)=Ku2(j1)u2(j1)(0,x,ξ)=0.\partial_{t}u_{2}^{\left(j\right)}+\xi\cdot\nabla_{x}u_{2}^{\left(j\right)}+\widetilde{\nu}\left(\xi\right)u_{2}^{\left(j\right)}=Ku_{2}^{\left(j-1\right)}\text{, \ }u_{2}^{\left(j-1\right)}\left(0,x,\xi\right)=0\text{.}

Thus, the wave part and the remainder part are defined respectively as follows:

Ww(m)=j=0mu2(j)w(m)=u2Ww(m),W_{w}^{(m)}=\sum_{j=0}^{m}u_{2}^{\left(j\right)}\text{, \ }\mathcal{R}_{w}^{\left(m\right)}=u_{2}-W_{w}^{\left(m\right)}\text{,}

w(m)\mathcal{R}_{w}^{\left(m\right)} solving the equation

tw(m)+ξxw(m)+ν~(ξ)w(m)=Kw(m)+Ku2(m)w(m)(0,x,ξ)=0.\partial_{t}\mathcal{R}_{w}^{\left(m\right)}+\xi\cdot\nabla_{x}\mathcal{R}_{w}^{\left(m\right)}+\widetilde{\nu}\left(\xi\right)\mathcal{R}_{w}^{\left(m\right)}=K\mathcal{R}_{w}^{\left(m\right)}+Ku_{2}^{\left(m\right)}\text{, \ }\mathcal{R}_{w}^{\left(m\right)}\left(0,x,\xi\right)=0\text{.}

In fact, m=6m=6 is enough to get the Hx2H_{x}^{2} regularization estimate for the remainder part. Following a similar argument as [21], we have

Lemma 11.

Let β>4\beta>4 be large enough. Then for 0tT0\leq t\leq T,

u2(j)Lξ,βLxεec0t+ε2Cu2,T(1+t)32u2(j)Lξ,βLx2εec0t+ε2Cu2,T2(1+t)32,\left\|u_{2}^{\left(j\right)}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\lesssim\varepsilon e^{-c_{0}t}+\varepsilon^{2}C_{u_{2},T}^{\infty}\left(1+t\right)^{-\frac{3}{2}}\text{, \ \ }\left\|u_{2}^{\left(j\right)}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{2}}\lesssim\varepsilon e^{-c_{0}t}+\varepsilon^{2}C_{u_{2},T}^{2}\left(1+t\right)^{-\frac{3}{2}}\text{,}

for all integers j0j\geq 0.

Lemma 12.

For 0tT0\leq t\leq T,

u2(6)Lξ2Hx2εec0t+ε2Cu2,T2(1+t)32.\left\|u_{2}^{\left(6\right)}\right\|_{L_{\xi}^{2}H_{x}^{2}}\lesssim\varepsilon e^{-c_{0}t}+\varepsilon^{2}C_{u_{2},T}^{2}\left(1+t\right)^{-\frac{3}{2}}\text{.}
Proposition 13.

(the Hx2H_{x}^{2} regularization estimate for w(6)\mathcal{R}_{w}^{\left(6\right)}) Let 0<δ10<\delta\ll 1. Then for M=𝐜+25δM=\mathbf{c}+25\delta and large >0\ell>0, the corresponding weighted remainder w(6)\mathcal{R}_{w}^{\left(6\right)} satisfies

w(6)Lξ2Hx2Cδ(ε+ε2Cu2,T2)\left\|\mathcal{R}_{w}^{\left(6\right)}\right\|_{L_{\xi}^{2}H_{x}^{2}}\leq C_{\delta}\left(\varepsilon+\varepsilon^{2}C_{u_{2},T}^{2}\right)

for some positive constant CδC_{\delta}, CδC_{\delta}\rightarrow\infty as δ0\delta\rightarrow 0.

Proof.

Note that

w1(tw+ξxw)=M+ξxx,w^{-1}\left(\partial_{t}w+\xi\cdot\nabla_{x}w\right)=-\frac{M}{\ell}+\frac{\xi\cdot x}{\ell\left\langle x\right\rangle}\text{,}
|xi[w1(tw+ξxw)]|2|ξ|x|xixj2[w1(tw+ξxw)]|6|ξ|x2\left|\partial_{x_{i}}\left[w^{-1}\left(\partial_{t}w+\xi\cdot\nabla_{x}w\right)\right]\right|\leq\frac{2\left|\xi\right|}{\ell\left\langle x\right\rangle}\text{, \ }\left|\partial_{x_{i}x_{j}}^{2}\left[w^{-1}\left(\partial_{t}w+\xi\cdot\nabla_{x}w\right)\right]\right|\leq\frac{6\left|\xi\right|}{\ell\left\langle x\right\rangle^{2}}

for 1i1\leq i, j3j\leq 3. Let 0<δ10<\delta\ll 1. Consider the quantity

B(t):=w(6)Lξ2Lx22+δ24𝔇4i=13xiw(6)Lξ2Lx22+(δ24𝔇4)2i,j=13xixj2w(6)Lξ2Lx22,B\left(t\right):=\left\|\mathcal{R}_{w}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{2}}^{2}+\frac{\delta^{2}}{4\mathfrak{D}^{4}}\sum_{i=1}^{3}\left\|\partial_{x_{i}}\mathcal{R}_{w}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{2}}^{2}+\left(\frac{\delta^{2}}{4\mathfrak{D}^{4}}\right)^{2}\sum_{i,j=1}^{3}\left\|\partial_{x_{i}x_{j}}^{2}\mathcal{R}_{w}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{2}}^{2}\text{,}

where the constant 𝔇=(3j=04|ξ|χj2dξ)1/2>1\mathfrak{D}=\left(\int_{\mathbb{R}^{3}}\sum_{j=0}^{4}\left|\xi\right|\chi_{j}^{2}d\xi\right)^{1/2}>1. The direct computation gives

12ddtw(6)Lξ2Lx22\displaystyle\frac{1}{2}\frac{d}{dt}\left\|\mathcal{R}_{w}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{2}}^{2} =\displaystyle= 3(M+ξxx)(P0w(6)+P1w(6)),(P0w(6)+P1w(6))ξ𝑑x\displaystyle\int_{\mathbb{R}^{3}}\left\langle\left(-\frac{M}{\ell}+\frac{\xi\cdot x}{\ell\left\langle x\right\rangle}\right)\left(\mathrm{P}_{0}\mathcal{R}_{w}^{\left(6\right)}+\mathrm{P}_{1}\mathcal{R}_{w}^{\left(6\right)}\right),\left(\mathrm{P}_{0}\mathcal{R}_{w}^{\left(6\right)}+\mathrm{P}_{1}\mathcal{R}_{w}^{\left(6\right)}\right)\right\rangle_{\xi}dx
+nLw(6),w(6)ξ+3Ku2(6),w(6)ξ𝑑x,\displaystyle+\int_{\mathbb{R}^{n}}\left\langle L\mathcal{R}_{w}^{\left(6\right)},\mathcal{R}_{w}^{\left(6\right)}\right\rangle_{\xi}+\int_{\mathbb{R}^{3}}\left\langle Ku_{2}^{\left(6\right)},\mathcal{R}_{w}^{\left(6\right)}\right\rangle_{\xi}dx\text{,}
12ddtxiw(6)Lξ2Lx22\displaystyle\frac{1}{2}\frac{d}{dt}\left\|\partial_{x_{i}}\mathcal{R}_{w}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{2}}^{2}
=\displaystyle= 3(M+ξxx)(P0xiw(6)+P1xiw(6)),(P0xiw(6)+P1xiw(6))ξ𝑑x\displaystyle\int_{\mathbb{R}^{3}}\left\langle\left(-\frac{M}{\ell}+\frac{\xi\cdot x}{\ell\left\langle x\right\rangle}\right)\left(\mathrm{P}_{0}\partial_{x_{i}}\mathcal{R}_{w}^{\left(6\right)}+\mathrm{P}_{1}\partial_{x_{i}}\mathcal{R}_{w}^{\left(6\right)}\right),\left(\mathrm{P}_{0}\partial_{x_{i}}\mathcal{R}_{w}^{\left(6\right)}+\mathrm{P}_{1}\partial_{x_{i}}\mathcal{R}_{w}^{\left(6\right)}\right)\right\rangle_{\xi}dx
+3L(xiw(6)),xiw(6)ξ𝑑x\displaystyle+\int_{\mathbb{R}^{3}}\left\langle L\left(\partial_{x_{i}}\mathcal{R}_{w}^{\left(6\right)}\right),\partial_{x_{i}}\mathcal{R}_{w}^{\left(6\right)}\right\rangle_{\xi}dx
+3w(6)xi[w1(tw+ξxw)],xiw(6)ξ𝑑x+3Kxiu2(6),xiw(6)ξ𝑑x,\displaystyle+\int_{\mathbb{R}^{3}}\left\langle\mathcal{R}_{w}^{\left(6\right)}\partial_{x_{i}}\left[w^{-1}\left(\partial_{t}w+\xi\cdot\nabla_{x}w\right)\right],\partial_{x_{i}}\mathcal{R}_{w}^{\left(6\right)}\right\rangle_{\xi}dx+\int_{\mathbb{R}^{3}}\left\langle K\partial_{x_{i}}u_{2}^{\left(6\right)},\partial_{x_{i}}\mathcal{R}_{w}^{\left(6\right)}\right\rangle_{\xi}dx\text{,}
12ddtxixj2w(6)Lξ2Lx22\displaystyle\frac{1}{2}\frac{d}{dt}\left\|\partial_{x_{i}x_{j}}^{2}\mathcal{R}_{w}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{2}}^{2}
=\displaystyle= 3(M+ξxx)(P0xixj2w(6)+P1xixj2w(6)),(P0xixj2w(6)+P1xixj2w(6))ξ𝑑x\displaystyle\int_{\mathbb{R}^{3}}\left\langle\left(-\frac{M}{\ell}+\frac{\xi\cdot x}{\ell\left\langle x\right\rangle}\right)\left(\mathrm{P}_{0}\partial_{x_{i}x_{j}}^{2}\mathcal{R}_{w}^{\left(6\right)}+\mathrm{P}_{1}\partial_{x_{i}x_{j}}^{2}\mathcal{R}_{w}^{\left(6\right)}\right),\left(\mathrm{P}_{0}\partial_{x_{i}x_{j}}^{2}\mathcal{R}_{w}^{\left(6\right)}+\mathrm{P}_{1}\partial_{x_{i}x_{j}}^{2}\mathcal{R}_{w}^{\left(6\right)}\right)\right\rangle_{\xi}dx
+3L(xixj2w(6)),xixj2w(6)ξ+3xiw(6)xj[w1(tw+ξxw)],xixj2w(6)ξ𝑑x\displaystyle+\int_{\mathbb{R}^{3}}\left\langle L\left(\partial_{x_{i}x_{j}}^{2}\mathcal{R}_{w}^{\left(6\right)}\right),\partial_{x_{i}x_{j}}^{2}\mathcal{R}_{w}^{\left(6\right)}\right\rangle_{\xi}+\int_{\mathbb{R}^{3}}\left\langle\partial_{x_{i}}\mathcal{R}_{w}^{\left(6\right)}\cdot\partial_{x_{j}}\left[w^{-1}\left(\partial_{t}w+\xi\cdot\nabla_{x}w\right)\right],\partial_{x_{i}x_{j}}^{2}\mathcal{R}_{w}^{\left(6\right)}\right\rangle_{\xi}dx
+3xjw(6)xi[w1(tw+ξxw)],xixj2w(6)ξ𝑑x\displaystyle+\int_{\mathbb{R}^{3}}\left\langle\partial_{x_{j}}\mathcal{R}_{w}^{\left(6\right)}\cdot\partial_{x_{i}}\left[w^{-1}\left(\partial_{t}w+\xi\cdot\nabla_{x}w\right)\right],\partial_{x_{i}x_{j}}^{2}\mathcal{R}_{w}^{\left(6\right)}\right\rangle_{\xi}dx
+3w(6)xixj2[w1(tw+ξxw)],xixj2w(6)ξ𝑑x\displaystyle+\int_{\mathbb{R}^{3}}\left\langle\mathcal{R}_{w}^{\left(6\right)}\partial_{x_{i}x_{j}}^{2}\left[w^{-1}\left(\partial_{t}w+\xi\cdot\nabla_{x}w\right)\right],\partial_{x_{i}x_{j}}^{2}\mathcal{R}_{w}^{\left(6\right)}\right\rangle_{\xi}dx
+3K(xixj2u2(6)),xixj2w(6)ξ𝑑x.\displaystyle+\int_{\mathbb{R}^{3}}\left\langle K\left(\partial_{x_{i}x_{j}}^{2}u_{2}^{\left(6\right)}\right),\partial_{x_{i}x_{j}}^{2}\mathcal{R}_{w}^{\left(6\right)}\right\rangle_{\xi}dx\text{.}

Using the fact that in (6)

P0(xξ|x|)P0g=λ1g,E1ξE1+λ2g,E2ξE2x0,\mathrm{P}_{0}\left(\frac{x\cdot\xi}{\left|x\right|}\right)\mathrm{P}_{0}g=\lambda_{1}\left\langle g,E_{1}\right\rangle_{\xi}E_{1}+\lambda_{2}\left\langle g,E_{2}\right\rangle_{\xi}E_{2}\text{, }x\neq 0\text{,}

where λ1=λ2=𝐜\lambda_{1}=-\lambda_{2}=\mathbf{c}, we have

12ddtB(t)\displaystyle\frac{1}{2}\frac{d}{dt}B\left(t\right)
=\displaystyle= 1(M𝐜δ3δ81δ34𝔇4)P0w(6)Lξ2Lx22(ν01𝔇24δ3δ𝔇281δ34𝔇6)P1w(6)Lσ2Lx22\displaystyle-\frac{1}{\ell}\left(M-\mathbf{c}-\delta-3\delta-\frac{81\delta^{3}}{4\mathfrak{D}^{4}}\right)\left\|\mathrm{P}_{0}\mathcal{R}_{w}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{2}}^{2}-\left(\nu_{0}-\frac{1}{\ell}-\frac{\mathfrak{D}^{2}}{4\ell\delta}-\frac{3\delta}{\ell\mathfrak{D}^{2}}-\frac{81\delta^{3}}{4\ell\mathfrak{D}^{6}}\right)\left\|\mathrm{P}_{1}\mathcal{R}_{w}^{\left(6\right)}\right\|_{L_{\sigma}^{2}L_{x}^{2}}^{2}
+δ24𝔇4i=13{1(M𝐜δ6δ)P0xiw(6)Lξ2Lx22(ν01𝔇24δ6δ34𝔇6)P1xiw(6)Lσ2Lx22}\displaystyle+\frac{\delta^{2}}{4\mathfrak{D}^{4}}\sum_{i=1}^{3}\left\{-\frac{1}{\ell}\left(M-\mathbf{c}-\delta-6\delta\right)\left\|\mathrm{P}_{0}\partial_{x_{i}}\mathcal{R}_{w}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{2}}^{2}-\left(\nu_{0}-\frac{1}{\ell}-\frac{\mathfrak{D}^{2}}{4\ell\delta}-\frac{6\delta^{3}}{4\ell\mathfrak{D}^{6}}\right)\left\|\mathrm{P}_{1}\partial_{x_{i}}\mathcal{R}_{w}^{\left(6\right)}\right\|_{L_{\sigma}^{2}L_{x}^{2}}^{2}\right\}
+(δ24𝔇4)2i,j=13{1(M𝐜4δ)P0xixj2(6)Lξ2Lx22(ν01𝔇24δ3δ𝔇2)P1xixj2w(6)Lσ2Lx2ξ2}\displaystyle+\left(\frac{\delta^{2}}{4\mathfrak{D}^{4}}\right)^{2}\sum_{i,j=1}^{3}\left\{-\frac{1}{\ell}\left(M-\mathbf{c}-4\delta\right)\left\|\mathrm{P}_{0}\partial_{x_{i}x_{j}}^{2}\mathcal{R}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{2}}^{2}-\left(\nu_{0}-\frac{1}{\ell}-\frac{\mathfrak{D}^{2}}{4\ell\delta}-\frac{3\delta}{\ell\mathfrak{D}^{2}}\right)\left\|\mathrm{P}_{1}\partial_{x_{i}x_{j}}^{2}\mathcal{R}_{w}^{\left(6\right)}\right\|_{L_{\sigma}^{2}L_{x}^{2}\xi}^{2}\right\}
+Cu2(6)Lξ2Lx2w(6)Lξ2Lx2+δ24𝔇4i=13[Cxiu2(6)Lξ2Lx2xiw(6)Lξ2Lx2]\displaystyle+C\left\|u_{2}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{2}}\left\|\mathcal{R}_{w}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{2}}+\frac{\delta^{2}}{4\mathfrak{D}^{4}}\sum_{i=1}^{3}\left[C\left\|\partial_{x_{i}}u_{2}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{2}}\left\|\partial_{x_{i}}\mathcal{R}_{w}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{2}}\right]
+(δ24𝔇4)2i,j=13[Cxixj2u2(6)Lξ2Lx2xixj2w(6)Lξ2Lx2]\displaystyle+\left(\frac{\delta^{2}}{4\mathfrak{D}^{4}}\right)^{2}\sum_{i,j=1}^{3}\left[C\left\|\partial_{x_{i}x_{j}}^{2}u_{2}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{2}}\left\|\partial_{x_{i}x_{j}}^{2}\mathcal{R}_{w}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{2}}\right]
\displaystyle\leq 3C[u2(6)Lξ2Lx22+δ24𝔇4i=13xiu2(6)Lξ2Lx22+(δ24𝔇4)2i,j=13xixj2u2(6)Lξ2Lx22]1/2B(t)\displaystyle 3C\left[\left\|u_{2}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{2}}^{2}+\frac{\delta^{2}}{4\mathfrak{D}^{4}}\sum_{i=1}^{3}\left\|\partial_{x_{i}}u_{2}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{2}}^{2}+\left(\frac{\delta^{2}}{4\mathfrak{D}^{4}}\right)^{2}\sum_{i,j=1}^{3}\left\|\partial_{x_{i}x_{j}}^{2}u_{2}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{2}}^{2}\right]^{1/2}\sqrt{B\left(t\right)}
\displaystyle\leq 3Cu2(6)Lξ2Hx2B(t)\displaystyle 3C\left\|u_{2}^{\left(6\right)}\right\|_{L_{\xi}^{2}H_{x}^{2}}\sqrt{B\left(t\right)}

if we choose M=M= 𝐜+25δ\mathbf{c}+25\delta, and then choose >0\ell>0 sufficiently large such that ν0166𝔇24δ>0\nu_{0}-\frac{166}{\ell}-\frac{\mathfrak{D}^{2}}{4\ell\delta}>0. Under this choice, we have

B(t)0t3Cu2(6)Lξ2Hx2𝑑τε+ε2Cu2,T2\sqrt{B\left(t\right)}\leq\int_{0}^{t}3C\left\|u_{2}^{\left(6\right)}\right\|_{L_{\xi}^{2}H_{x}^{2}}d\tau\lesssim\varepsilon+\varepsilon^{2}C_{u_{2},T}^{2}

by Lemma 12, so that

w(6)Lξ2Hx2Cδ(ε+ε2Cu2,T2),\left\|\mathcal{R}_{w}^{\left(6\right)}\right\|_{L_{\xi}^{2}H_{x}^{2}}\leq C_{\delta}\left(\varepsilon+\varepsilon^{2}C_{u_{2},T}^{2}\right)\text{,}

for some positive constant CδC_{\delta}, CδC_{\delta}\rightarrow\infty as δ0\delta\rightarrow 0. The proof of this proposition is complete. ∎

Therefore, the Sobolev inequality implies that

w(6)Lξ2LxCδ(ε+ε2Cu2,T2).\left\|\mathcal{R}_{w}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{\infty}}\lesssim C_{\delta}\left(\varepsilon+\varepsilon^{2}C_{u_{2},T}^{2}\right).

Combining this with Lemma 11, we have

u2Lξ2Lx\displaystyle\left\|u_{2}\right\|_{L_{\xi}^{2}L_{x}^{\infty}} \displaystyle\leq W(6)Lξ2Lx+w(6)Lξ2Lx\displaystyle\left\|W^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{\infty}}+\left\|\mathcal{R}_{w}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{\infty}}
\displaystyle\lesssim W(6)Lξ,βLx+w(6)Lξ2Lx\displaystyle\left\|W^{\left(6\right)}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}+\left\|\mathcal{R}_{w}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{\infty}}
\displaystyle\lesssim εec0t+ε2Cu2,T(1+t)32+Cδ(ε+ε2Cu2,T2).\displaystyle\varepsilon e^{-c_{0}t}+\varepsilon^{2}C_{u_{2},T}^{\infty}\left(1+t\right)^{-\frac{3}{2}}+C_{\delta}\left(\varepsilon+\varepsilon^{2}C_{u_{2},T}^{2}\right)\,.

According to the wave-remainder decomposition, u2=W(7)+w(7)u_{2}=W^{\left(7\right)}+\mathcal{R}_{w}^{\left(7\right)} and

w(7)=0texp(τtν~(r,x(tr)ξ,ξ)𝑑r)(Kw(6))(τ)𝑑τ.\mathcal{R}_{w}^{\left(7\right)}=\int_{0}^{t}\exp\left(-\int_{\tau}^{t}\widetilde{\nu}\left(r,x-\left(t-r\right)\xi,\xi\right)dr\right)\left(K\mathcal{R}_{w}^{\left(6\right)}\right)\left(\tau\right)d\tau\text{.}

Since

w(7)LξLx0te34ν0(tτ)w(6)Lξ2Lx(τ)𝑑τ,\left\|\mathcal{R}_{w}^{\left(7\right)}\right\|_{L_{\xi}^{\infty}L_{x}^{\infty}}\lesssim\int_{0}^{t}e^{-\frac{3}{4}\nu_{0}\left(t-\tau\right)}\left\|\mathcal{R}_{w}^{\left(6\right)}\right\|_{L_{\xi}^{2}L_{x}^{\infty}}\left(\tau\right)d\tau\text{,}

we get

u2LξLxεec0t+ε2Cu2,T(1+t)32+Cδ(ε+ε2Cu2,T2).\left\|u_{2}\right\|_{L_{\xi}^{\infty}L_{x}^{\infty}}\lesssim\varepsilon e^{-c_{0}t}+\varepsilon^{2}C_{u_{2},T}^{\infty}\left(1+t\right)^{-\frac{3}{2}}+C_{\delta}\left(\varepsilon+\varepsilon^{2}C_{u_{2},T}^{2}\right)\,.

By finite steps of bootstrap argument, we obtain the desired Lξ,βLxL_{\xi,\beta}^{\infty}L_{x}^{\infty} estimate for u2u_{2}. Similarly, by Lemma 11, Proposition 13, and the bootstrap argument, we obtain Lξ,βLx2L_{\xi,\beta}^{\infty}L_{x}^{2} estimate for u2u_{2} as well. We summarize the estimates for u2u_{2} as below.

Proposition 14.

Let β>4\beta>4 be large enough and let 0<δ10<\delta\ll 1. Then for M=𝐜+25δM=\mathbf{c}+25\delta and large >0\ell>0, the corresponding u2u_{2} satisfies

Cu2,T2C1[1+εCu2,T2+Cδ(1+εCu2,T2)]C_{u_{2},T}^{2}\leq C_{1}\left[1+\varepsilon C_{u_{2},T}^{2}+C_{\delta}\left(1+\varepsilon C_{u_{2},T}^{2}\right)\right]
Cu2,TC2[1+εCu2,T+Cδ(1+εCu2,T2)]C_{u_{2},T}^{\infty}\leq C_{2}\left[1+\varepsilon C_{u_{2},T}^{\infty}+C_{\delta}\left(1+\varepsilon C_{u_{2},T}^{2}\right)\right]

for some positive constants C1C_{1} and C2C_{2} dependent on f0Lξ,β(LxLx2)\|f_{0}\|_{L_{\xi,\beta}^{\infty}\left(L_{x}^{\infty}\cap L_{x}^{2}\right)} but independent of TT and δ\delta.

Now, we are ready to prove Theorem 10. For any fixed 0<δ10<\delta\ll 1, we take M=𝐜+25δM=\mathbf{c}+25\delta, and consider the weight function

w(x,t)=exp(xMt),w\left(x,t\right)=\exp\left(\frac{\left\langle x\right\rangle-Mt}{\ell}\right)\,\text{,}

with >0\ell>0 being chosen large. In view of Proposition 14, choosing ε>0\varepsilon>0 sufficiently small gives

|u2|Lξ,βCCδε,\left|u_{2}\right|_{L_{\xi,\beta}^{\infty}}\leq CC_{\delta}\varepsilon\text{,}

for some positive constant CC dependent on f0Lξ,β(LxLx2)\|f_{0}\|_{L_{\xi,\beta}^{\infty}\left(L_{x}^{\infty}\cap L_{x}^{2}\right)}.

Note that |x|>(M+δ)t=(𝐜+26δ)t\left|x\right|>\left(M+\delta\right)t=\left(\mathbf{c}+26\delta\right)t, we have

xMt\displaystyle\left\langle x\right\rangle-Mt =\displaystyle= δ2Mx2+δ2M+2x2+δ2MMt\displaystyle\frac{\frac{\delta}{2M}\left\langle x\right\rangle}{2+\frac{\delta}{2M}}+\frac{2\left\langle x\right\rangle}{2+\frac{\delta}{2M}}-Mt
>\displaystyle> δ2Mx2+δ2M+δ2t2+δ2Mδ(x+t)4M+δ.\displaystyle\frac{\frac{\delta}{2M}\left\langle x\right\rangle}{2+\frac{\delta}{2M}}+\frac{\frac{\delta}{2}t}{2+\frac{\delta}{2M}}\geq\frac{\delta\left(\left\langle x\right\rangle+t\right)}{4M+\delta}\text{.}

Then for |x|>(𝐜+26δ)t\left|x\right|>\left(\mathbf{c}+26\delta\right)t,

eδ(x+t)(4M+δ)|f2|Lξ,β|u2|Lξ,βCCδεe^{\frac{\delta\left(\left\langle x\right\rangle+t\right)}{\left(4M+\delta\right)\ell}}\left|f_{2}\right|_{L_{\xi,\beta}^{\infty}}\leq\left|u_{2}\right|_{L_{\xi,\beta}^{\infty}}\leq CC_{\delta}\varepsilon

which implies that

|f2|Lξ,βCCδεeδ(x+t)(4M+δ).\left|f_{2}\right|_{L_{\xi,\beta}^{\infty}}\leq CC_{\delta}\varepsilon e^{-\frac{\delta\left(\left\langle x\right\rangle+t\right)}{\left(4M+\delta\right)\ell}}\text{.}

The proof of Theorem 10 is complete.

5. The transition from polynomial tail to Gaussian tail

In this section, we study the behavior of f1f_{1} in the microscopic variable as tt increases. We provide a quantitative description of how the velocity variable transitions from a polynomial tail to a Gaussian tail. The result is as follows:

Theorem 15.

Let β>4\beta>4, R>0R>0 be sufficiently large and 0<κ<min{1/40<\kappa<\min\{1/4, ν0/2}\nu_{0}/2\}. Assume that f0f_{0} satisfies the same condition as in Theorem 9. If ε>0\varepsilon>0 is sufficiently small, then there exists a constant C¯β>0\overline{C}_{\beta}>0 only depending on β\beta such that

|f1(t,x,ξ)|C¯βεξβeκρ(ξ,t)f0(x,ξ)Lξ,βLx\left|f_{1}\left(t,x,\xi\right)\right|\leq\overline{C}_{\beta}\varepsilon\left\langle\xi\right\rangle^{-\beta}e^{-\kappa\rho\left(\xi,t\right)}\left\|f_{0}\left(x,\xi\right)\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}

for all t0t\geq 0, x3x\in\mathbb{R}^{3}, ξ3\xi\in\mathbb{R}^{3}, where ρ(ξ,t)=ξ(ξt)\rho\left(\xi,t\right)=\left\langle\xi\right\rangle\left(\left\langle\xi\right\rangle\wedge t\right). Consequently, for any fixed t>0t>0, then

|𝟏{ξt}f1|εξβeκξ2|\mathbf{1}_{\{\left<\xi\right>\leq t\}}f_{1}|\lesssim\varepsilon\left\langle\xi\right\rangle^{-\beta}e^{-\kappa\left<\xi\right>^{2}}

and

|𝟏{ξ>t}f1|εξβeκt2.|\mathbf{1}_{\{\left<\xi\right>>t\}}f_{1}|\lesssim\varepsilon\left\langle\xi\right\rangle^{-\beta}e^{-\kappa t^{2}}\,.

Firstly, we need some estimate for the weight function eκρ(ξ,t)e^{\kappa\rho\left(\xi,t\right)}. For simplicity, we define

(20) ρ(ξ,t)=ρ¯(|ξ|,t)ξ3t0,\rho\left(\xi,t\right)=\overline{\rho}\left(\left|\xi\right|,t\right)\hbox{, }\xi\in\mathbb{R}^{3}\hbox{, }t\geq 0\hbox{,}

with ρ¯(z,t)=(1+z2)1/2((1+z2)1/2t)\overline{\rho}\left(z,t\right)=\left(1+z^{2}\right)^{1/2}\left(\left(1+z^{2}\right)^{1/2}\wedge t\right), t0t\geq 0. Now, we give an inequality regarding the function ρ¯\overline{\rho}.

Lemma 16.

Let ρ¯(z,t)\overline{\rho}\left(z,t\right) be a function defined by

ρ¯(z,t)=(1+z2)1/2((1+z2)1/2t)\overline{\rho}\left(z,t\right)=\left(1+z^{2}\right)^{1/2}\left(\left(1+z^{2}\right)^{1/2}\wedge t\right)

for zz\in\mathbb{R} and t0t\geq 0. Then

ρ¯(a,t)+ρ¯(b,t)ρ¯(a2+b2,t)\overline{\rho}\left(a,t\right)+\overline{\rho}\left(b,t\right)\geq\overline{\rho}\left(\sqrt{a^{2}+b^{2}},t\right)

for all aa, b0b\geq 0.

Proof.

If either a=0a=0 or b=0b=0, it is trivial. By symmetry, we may assume that b>a>0b>a>0 and so a2+b2>b>a>0\sqrt{a^{2}+b^{2}}>b>a>0. In the following we discuss the inequality in four cases.

Case 1: ta2+b2>b>a>0t\geq\sqrt{a^{2}+b^{2}}>b>a>0. Then

ρ¯(a,t)+ρ¯(b,t)=2+a2+b2=1+ρ¯(a2+b2,t)ρ¯(a2+b2,t).\overline{\rho}\left(a,t\right)+\overline{\rho}\left(b,t\right)=2+a^{2}+b^{2}=1+\overline{\rho}\left(\sqrt{a^{2}+b^{2}},t\right)\geq\overline{\rho}\left(\sqrt{a^{2}+b^{2}},t\right)\hbox{.}

Case 2: a2+b2>b>a>t\sqrt{a^{2}+b^{2}}>b>a>t. Then

ρ¯(a2+b2,t)\displaystyle\overline{\rho}\left(\sqrt{a^{2}+b^{2}},t\right) =\displaystyle= (1+a2+b2)1/2t(1+a2+1+b2)1/2t\displaystyle\left(1+a^{2}+b^{2}\right)^{1/2}t\leq\left(1+a^{2}+1+b^{2}\right)^{1/2}t
\displaystyle\leq (1+a2)1/2t+(1+b2)1/2t=ρ¯(a,t)+ρ¯(b,t).\displaystyle\left(1+a^{2}\right)^{1/2}t+\left(1+b^{2}\right)^{1/2}t=\overline{\rho}\left(a,t\right)+\overline{\rho}\left(b,t\right)\hbox{.}

Case 3: a2+b2>t>b>a\sqrt{a^{2}+b^{2}}>t>b>a. Then

ρ¯(a,t)+ρ¯(b,t)=2+a2+b2(1+a2+b2)1/2t=ρ¯(a2+b2,t).\overline{\rho}\left(a,t\right)+\overline{\rho}\left(b,t\right)=2+a^{2}+b^{2}\geq\left(1+a^{2}+b^{2}\right)^{1/2}t=\overline{\rho}\left(\sqrt{a^{2}+b^{2}},t\right)\hbox{.}

Case 4: a2+b2>b>t>a\sqrt{a^{2}+b^{2}}>b>t>a. Then

[ρ¯(a,t)+ρ¯(b,t)]2[ρ¯(a2+b2,t)]2\displaystyle\left[\overline{\rho}\left(a,t\right)+\overline{\rho}\left(b,t\right)\right]^{2}-\left[\overline{\rho}\left(\sqrt{a^{2}+b^{2}},t\right)\right]^{2}
=\displaystyle= [1+a2+(1+b2)1/2t]2(1+a2+b2)t2\displaystyle\left[1+a^{2}+\left(1+b^{2}\right)^{1/2}t\right]^{2}-\left(1+a^{2}+b^{2}\right)t^{2}
=\displaystyle= (1+a2)2+2(1+a2)(1+b2)1/2ta2t22(1+a2)t2a2t20.\displaystyle\left(1+a^{2}\right)^{2}+2\left(1+a^{2}\right)\left(1+b^{2}\right)^{1/2}t-a^{2}t^{2}\geq 2\left(1+a^{2}\right)t^{2}-a^{2}t^{2}\geq 0\hbox{.}

As a=b>0a=b>0, it is a consequence of Case 1-Case 3. Gathering all the cases, the proof is complete. \hfill\square

According to this lemma, we can prove the following weighted estimate regarding QQ and 𝒦\mathcal{K}.

Lemma 17.

Let β>4\beta>4, κ>0\kappa>0 and let ρ(ξ,t)\rho\left(\xi,t\right) be defined by (20)(\ref{weight-exponent}). Then there exists a constant Cβ>0C_{\beta}>0 depending only on β\beta such that

(21) 3𝕊2|(ξξ)n|ξβξβξβeκρ(ξ,t)eκρ(ξ,t)eκρ(ξ,t)𝑑n𝑑ξ(Cβ+Cβξ2)ν(ξ).\int_{\mathbb{R}^{3}}\int_{\mathbb{S}^{2}}\left|\left(\xi-\xi_{\ast}\right)\cdot n\right|\frac{\left\langle\xi\right\rangle^{\beta}}{\left\langle\xi_{\ast}^{\prime}\right\rangle^{\beta}\left\langle\xi^{\prime}\right\rangle^{\beta}}\frac{e^{\kappa\rho\left(\xi,t\right)}}{e^{\kappa\rho\left(\xi_{\ast}^{\prime},t\right)}e^{\kappa\rho\left(\xi^{\prime},t\right)}}dnd\xi_{*}\leq\left(\frac{C}{\beta}+\frac{C_{\beta}}{\left\langle\xi\right\rangle^{2}}\right)\nu\left(\xi\right)\hbox{.}

Moreover, if 0<κ<140<\kappa<\frac{1}{4}, we have

(22) 3𝕊2|(ξξ)n|ξβξβe14|ξ2eκρ(ξ,t)eκρ(ξ,t)eκρ(ξ,t)𝑑n𝑑ξ(Cβ+Cβξ2)ν(ξ).\int_{\mathbb{R}^{3}}\int_{\mathbb{S}^{2}}\left|\left(\xi-\xi_{\ast}\right)\cdot n\right|\frac{\left\langle\xi\right\rangle^{\beta}}{\left\langle\xi_{\ast}^{\prime}\right\rangle^{\beta}}e^{-\frac{1}{4}|\xi^{\prime 2}}\frac{e^{\kappa\rho\left(\xi,t\right)}}{e^{\kappa\rho\left(\xi_{\ast}^{\prime},t\right)}e^{\kappa\rho\left(\xi^{\prime},t\right)}}dnd\xi_{*}\leq\left(\frac{C}{\beta}+\frac{C_{\beta}}{\left\langle\xi\right\rangle^{2}}\right)\nu\left(\xi\right)\hbox{.}
Proof.

Let η=ξξ\eta=\xi^{\prime}-\xi and ω=ξξ\omega=\xi_{\ast}-\xi^{\prime}. Then ηω\eta\bot\omega, ξ=ξ+η\xi^{\prime}=\xi+\eta, ξ=ξ+η+ω\xi_{\ast}=\xi+\eta+\omega, ξ=ξ+ω\xi_{\ast}^{\prime}=\xi+\omega. By change of variables,

3𝕊2|(ξξ)n|ξβξβξβeκρ(ξ,t)eκρ(ξ,t)eκρ(ξ,t)𝑑n𝑑ξ\displaystyle\int_{\mathbb{R}^{3}}\int_{\mathbb{S}^{2}}\left|\left(\xi-\xi_{\ast}\right)\cdot n\right|\frac{\left\langle\xi\right\rangle^{\beta}}{\left\langle\xi_{\ast}^{\prime}\right\rangle^{\beta}\left\langle\xi^{\prime}\right\rangle^{\beta}}\frac{e^{\kappa\rho\left(\xi,t\right)}}{e^{\kappa\rho\left(\xi_{\ast}^{\prime},t\right)}e^{\kappa\rho\left(\xi^{\prime},t\right)}}dnd\xi_{*}
\displaystyle\leq 3{ω : ηω}1|η|ξβξ+ωβξ+ηβeκρ(ξ,t)eκρ(ξ+ω,t)eκρ(ξ+η,t)dωdη=:I.\displaystyle\int_{\mathbb{R}^{3}}\int_{\{\omega\hbox{ }:\hbox{ }\eta\bot\omega\}}\frac{1}{\left|\eta\right|}\frac{\left\langle\xi\right\rangle^{\beta}}{\left\langle\xi+\omega\right\rangle^{\beta}\left\langle\xi+\eta\right\rangle^{\beta}}\frac{e^{\kappa\rho\left(\xi,t\right)}}{e^{\kappa\rho\left(\xi+\omega,t\right)}e^{\kappa\rho\left(\xi+\eta,t\right)}}d\omega d\eta=:\mathrm{I}\hbox{.}

We split ξ\xi into two parts

ξ=ξ+ξξ=(ξη)η|η|2ξωξω|ξ|2=|ξ|2+|ξ|2.\xi=\xi_{\|}+\xi_{\bot}\hbox{, }\xi_{\bot}=\frac{\left(\xi\cdot\eta\right)\eta}{\left|\eta\right|^{2}}\hbox{, }\xi_{\|}\|\omega\hbox{, }\xi_{\bot}\bot\omega\hbox{, }\left|\xi\right|^{2}=\left|\xi_{\|}\right|^{2}+\left|\xi_{\bot}\right|^{2}\hbox{.}

Then

I\displaystyle\mathrm{I} =\displaystyle= 3ξβeκ[ρ(ξ,t)ρ(ξ+η,t)]ξ+ηβ|η|{ω : ηω}eκ(1+|ξ+ω|2+|ξ|2)1/2((1+|ξ+ω|2+|ξ|2)1/2t)(1+|ξ+ω|2+|ξ|2)β/2𝑑ω𝑑η\displaystyle\int_{\mathbb{R}^{3}}\frac{\left\langle\xi\right\rangle^{\beta}e^{\kappa\left[\rho\left(\xi,t\right)-\rho\left(\xi+\eta,t\right)\right]}}{\left\langle\xi+\eta\right\rangle^{\beta}\left|\eta\right|}\int_{\{\omega\hbox{ }:\hbox{ }\eta\bot\omega\}}\frac{e^{-\kappa\left(1+\left|\xi_{\|}+\omega\right|^{2}+\left|\xi_{\bot}\right|^{2}\right)^{1/2}\left(\left(1+\left|\xi_{\|}+\omega\right|^{2}+\left|\xi_{\bot}\right|^{2}\right)^{1/2}\wedge t\right)}}{\left(1+\left|\xi_{\|}+\omega\right|^{2}+\left|\xi_{\bot}\right|^{2}\right)^{\beta/2}}d\omega d\eta
=\displaystyle= 3ξβeκ[ρ(ξ,t)ρ(ξ+η,t)]ξ+ηβ|η|2eκ(1+|ϖ|2+|ξ|2)1/2[(1+|ϖ|2+|ξ|2)1/2t](1+|ϖ|2+|ξ|2)β/2𝑑ϖ𝑑η.\displaystyle\int_{\mathbb{R}^{3}}\frac{\left\langle\xi\right\rangle^{\beta}e^{\kappa\left[\rho\left(\xi,t\right)-\rho\left(\xi+\eta,t\right)\right]}}{\left\langle\xi+\eta\right\rangle^{\beta}\left|\eta\right|}\int_{\mathbb{R}^{2}}\frac{e^{-\kappa\left(1+\left|\varpi\right|^{2}+\left|\xi_{\bot}\right|^{2}\right)^{1/2}\left[\left(1+\left|\varpi\right|^{2}+\left|\xi_{\bot}\right|^{2}\right)^{1/2}\wedge t\right]}}{\left(1+\left|\varpi\right|^{2}+\left|\xi_{\bot}\right|^{2}\right)^{\beta/2}}d\varpi d\eta\hbox{.}

Making a change of variable by ϖ=1+|ξ|2z\varpi=\sqrt{1+\left|\xi_{\bot}\right|^{2}}z gives

2eκ(1+|ϖ|2+|ξ|2)1/2[(1+|ϖ|2+|ξ|2)1/2t](1+|ϖ|2+|ξ|2)β/2𝑑ϖ\displaystyle\int_{\mathbb{R}^{2}}\frac{e^{-\kappa\left(1+\left|\varpi\right|^{2}+\left|\xi_{\bot}\right|^{2}\right)^{1/2}\left[\left(1+\left|\varpi\right|^{2}+\left|\xi_{\bot}\right|^{2}\right)^{1/2}\wedge t\right]}}{\left(1+\left|\varpi\right|^{2}+\left|\xi_{\bot}\right|^{2}\right)^{\beta/2}}d\varpi
=\displaystyle= (1+|ξ|2)β222eκ(1+|ξ|2)1/2(1+|z|2)1/2[(1+|ξ|2)1/2(1+|z|2)1/2t](1+|z|2)β/2𝑑z\displaystyle\left(1+\left|\xi_{\bot}\right|^{2}\right)^{-\frac{\beta-2}{2}}\int_{\mathbb{R}^{2}}\frac{e^{-\kappa\left(1+\left|\xi_{\bot}\right|^{2}\right)^{1/2}\left(1+\left|z\right|^{2}\right)^{1/2}\left[\left(1+\left|\xi_{\bot}\right|^{2}\right)^{1/2}\left(1+\left|z\right|^{2}\right)^{1/2}\wedge t\right]}}{\left(1+\left|z\right|^{2}\right)^{\beta/2}}dz
=\displaystyle= 2πξβ21eκξζ[ξζt]ζβ1𝑑ζ.\displaystyle\frac{2\pi}{\left\langle\xi_{\bot}\right\rangle^{\beta-2}}\int_{1}^{\infty}\frac{e^{-\kappa\left\langle\xi_{\bot}\right\rangle\zeta\left[\left\langle\xi_{\bot}\right\rangle\zeta\wedge t\right]}}{\zeta^{\beta-1}}d\zeta\hbox{.}

If ξt\left\langle\xi_{\bot}\right\rangle\geq t, then

2πξβ21eκξζ[ξζt]ζβ1𝑑ζ\displaystyle\frac{2\pi}{\left\langle\xi_{\bot}\right\rangle^{\beta-2}}\int_{1}^{\infty}\frac{e^{-\kappa\left\langle\xi_{\bot}\right\rangle\zeta\left[\left\langle\xi_{\bot}\right\rangle\zeta\wedge t\right]}}{\zeta^{\beta-1}}d\zeta =\displaystyle= 2πξβ21eκξtζζβ1𝑑ζ\displaystyle\frac{2\pi}{\left\langle\xi_{\bot}\right\rangle^{\beta-2}}\int_{1}^{\infty}\frac{e^{-\kappa\left\langle\xi_{\bot}\right\rangle t\zeta}}{\zeta^{\beta-1}}d\zeta
\displaystyle\leq 2πβ2eκξtξβ2=2πβ2eκρ(ξ,t)ξβ2.\displaystyle\frac{2\pi}{\beta-2}\frac{e^{-\kappa\left\langle\xi_{\bot}\right\rangle t}}{\left\langle\xi_{\bot}\right\rangle^{\beta-2}}=\frac{2\pi}{\beta-2}\frac{e^{-\kappa\rho(\xi_{\bot},t)}}{\left\langle\xi_{\bot}\right\rangle^{\beta-2}}\hbox{.}

If ξ<t\left\langle\xi_{\bot}\right\rangle<t, then ξζ<t\left\langle\xi_{\bot}\right\rangle\zeta<t for ζ<t/ξ\zeta<t/\left\langle\xi_{\bot}\right\rangle and thus

2πξβ21eκξζ[ξζτ]ζβ1𝑑ζ\displaystyle\frac{2\pi}{\left\langle\xi_{\bot}\right\rangle^{\beta-2}}\int_{1}^{\infty}\frac{e^{-\kappa\left\langle\xi_{\bot}\right\rangle\zeta\left[\left\langle\xi_{\bot}\right\rangle\zeta\wedge\tau\right]}}{\zeta^{\beta-1}}d\zeta =\displaystyle= 2πξβ2[1tξeκξ2ζ2ζβ1𝑑ζ+tξeκξζtζβ1𝑑ζ]\displaystyle\frac{2\pi}{\left\langle\xi_{\bot}\right\rangle^{\beta-2}}\left[\int_{1}^{\frac{t}{\left\langle\xi_{\bot}\right\rangle}}\frac{e^{-\kappa\left\langle\xi_{\bot}\right\rangle^{2}\zeta^{2}}}{\zeta^{\beta-1}}d\zeta+\int_{\frac{t}{\left\langle\xi_{\bot}\right\rangle}}^{\infty}\frac{e^{-\kappa\left\langle\xi_{\bot}\right\rangle\zeta t}}{\zeta^{\beta-1}}d\zeta\right]
\displaystyle\leq 2πβ21ξβ2(eκξ2+eκt2)4πβ2eκρ(ξ,t)ξβ2.\displaystyle\frac{2\pi}{\beta-2}\frac{1}{\left\langle\xi_{\bot}\right\rangle^{\beta-2}}\left(e^{-\kappa\left\langle\xi_{\bot}\right\rangle^{2}}+e^{-\kappa t^{2}}\right)\leq\frac{4\pi}{\beta-2}\frac{e^{-\kappa\rho(\xi_{\bot},t)}}{\left\langle\xi_{\bot}\right\rangle^{\beta-2}}\hbox{.}

Therefore,

I4πβ23ξβξ+ηβξβ2eκ[ρ(ξ,t)ρ(ξ+η,t)ρ(ξ,t)]|η|𝑑η.\mathrm{I}\leq\frac{4\pi}{\beta-2}\int_{\mathbb{R}^{3}}\frac{\left\langle\xi\right\rangle^{\beta}}{\left\langle\xi+\eta\right\rangle^{\beta}\left\langle\xi_{\bot}\right\rangle^{\beta-2}}\frac{e^{\kappa\left[\rho\left(\xi,t\right)-\rho\left(\xi+\eta,t\right)-\rho(\xi_{\bot},t)\right]}}{\left|\eta\right|}d\eta\hbox{.}

Observe that |ξ|2+|ξ+η|2=|ξ|2+|ξ|2+2ξη+|η|2=|ξ|2+|ξ|2+2ξη+|η|2=|ξ|2+|ξ+η|2\left|\xi_{\bot}\right|^{2}+\left|\xi+\eta\right|^{2}=\left|\xi_{\bot}\right|^{2}+\left|\xi\right|^{2}+2\xi\cdot\eta+\left|\eta\right|^{2}=\left|\xi_{\bot}\right|^{2}+\left|\xi\right|^{2}+2\xi_{\bot}\cdot\eta+\left|\eta\right|^{2}=\left|\xi\right|^{2}+\left|\xi_{\bot}+\eta\right|^{2}. Hence,

ρ(ξ,t)ρ(ξ+η,t)ρ(ξ,t)\displaystyle\rho\left(\xi,t\right)-\rho\left(\xi+\eta,t\right)-\rho(\xi_{\bot},t) =\displaystyle= ρ¯(|ξ|,t)ρ¯(|ξ+η|,t)ρ¯(|ξ|,t)\displaystyle\overline{\rho}\left(\left|\xi\right|,t\right)-\overline{\rho}\left(\left|\xi+\eta\right|,t\right)-\overline{\rho}(\left|\xi_{\bot}\right|,t)
\displaystyle\leq ρ¯(|ξ|2+|ξ+η|2,t)ρ¯(|ξ+η|,t)ρ¯(|ξ|,t)0,\displaystyle\overline{\rho}\left(\sqrt{\left|\xi_{\bot}\right|^{2}+\left|\xi+\eta\right|^{2}},t\right)-\overline{\rho}\left(\left|\xi+\eta\right|,t\right)-\overline{\rho}(\left|\xi_{\bot}\right|,t)\leq 0\hbox{,}

the last inequality being valid due to Lemma 16. It follows

I4πβ231|η|ξβξ+ηβξβ2𝑑η=4πβ231|ξξ|ξβξβξβ2𝑑ξ.\mathrm{I}\leq\frac{4\pi}{\beta-2}\int_{\mathbb{R}^{3}}\frac{1}{\left|\eta\right|}\frac{\left\langle\xi\right\rangle^{\beta}}{\left\langle\xi+\eta\right\rangle^{\beta}\left\langle\xi_{\bot}\right\rangle^{\beta-2}}d\eta=\frac{4\pi}{\beta-2}\int_{\mathbb{R}^{3}}\frac{1}{\left|\xi^{\prime}-\xi\right|}\frac{\left\langle\xi\right\rangle^{\beta}}{\left\langle\xi^{\prime}\right\rangle^{\beta}\left\langle\xi_{\bot}\right\rangle^{\beta-2}}d\xi^{\prime}\hbox{.}

According to the estimate in the proof of [5, Lemma 2.11], there exists a constant Cβ>0C_{\beta}>0 depending only on β\beta such that

I4πβ231|ξξ|ξβξβξβ2𝑑ξ(Cβ+Cβξ2)ν(ξ),\mathrm{I}\leq\frac{4\pi}{\beta-2}\int_{\mathbb{R}^{3}}\frac{1}{\left|\xi^{\prime}-\xi\right|}\frac{\left\langle\xi\right\rangle^{\beta}}{\left\langle\xi^{\prime}\right\rangle^{\beta}\left\langle\xi_{\bot}\right\rangle^{\beta-2}}d\xi^{\prime}\leq\left(\frac{C}{\beta}+\frac{C_{\beta}}{\left\langle\xi\right\rangle^{2}}\right)\nu\left(\xi\right)\hbox{,}

where C>0C>0 is a universal constant. This completes the proof of (21).

For the estimate of (22), applying the same argument as (21), one gets

3𝕊2|(ξξ)n|ξβξβe14|ξ2eκρ(ξ,t)eκρ(ξ,t)eκρ(ξ,t)𝑑n𝑑ξ\displaystyle\quad\int_{\mathbb{R}^{3}}\int_{\mathbb{S}^{2}}\left|\left(\xi-\xi_{\ast}\right)\cdot n\right|\frac{\left\langle\xi\right\rangle^{\beta}}{\left\langle\xi_{\ast}^{\prime}\right\rangle^{\beta}}e^{-\frac{1}{4}|\xi^{\prime 2}}\frac{e^{\kappa\rho\left(\xi,t\right)}}{e^{\kappa\rho\left(\xi_{\ast}^{\prime},t\right)}e^{\kappa\rho\left(\xi^{\prime},t\right)}}dnd\xi_{*}
4πβ231|ξξ|ξβe14|ξ2ξβ2𝑑ξ.\displaystyle\leq\frac{4\pi}{\beta-2}\int_{\mathbb{R}^{3}}\frac{1}{\left|\xi^{\prime}-\xi\right|}\frac{\left\langle\xi\right\rangle^{\beta}}{e^{\frac{1}{4}|\xi^{\prime 2}}\left\langle\xi_{\bot}\right\rangle^{\beta-2}}d\xi^{\prime}\,.

Then one can modify the argument in [5, Lemma 2.11] (in fact, it is easier) to conclude our result. ∎

Corollary 18.

Let β>4\beta>4, κ>0\kappa>0 and let ρ(ξ,t)\rho\left(\xi,t\right) be defined by (20)(\ref{weight-exponent}). Then there exists a constant Cβ′′>0C_{\beta}^{{}^{\prime\prime}}>0 depending only on β\beta such that

eκρ(ξ,t)ξβ|Q(g,h)|Cβ′′ν(ξ)|eκρ(ξ,t)g|Lξ,β|eκρ(ξ,t)h|Lξ,β.e^{\kappa\rho\left(\xi,t\right)}\left\langle\xi\right\rangle^{\beta}\left|Q\left(g,h\right)\right|\leq C_{\beta}^{{}^{\prime\prime}}\nu\left(\xi\right)\left|e^{\kappa\rho\left(\xi,t\right)}g\right|_{L_{\xi,\beta}^{\infty}}\left|e^{\kappa\rho\left(\xi,t\right)}h\right|_{L_{\xi,\beta}^{\infty}}\hbox{.}

Moreover, for any R>0R>0, and 0<κ<140<\kappa<\frac{1}{4}, we have

χ{|ξ|R}eκρ(ξ,t)ξβ|𝒦f|(Cβ+CβR2)ν(ξ)|eκρ(ξ,t)f|Lξ,β.\chi_{\{\left|\xi\right|\geq R\}}e^{\kappa\rho\left(\xi,t\right)}\left\langle\xi\right\rangle^{\beta}\left|\mathcal{K}f\right|\leq\left(\frac{C}{\beta}+\frac{C_{\beta}}{R^{2}}\right)\nu\left(\xi\right)\left|e^{\kappa\rho(\xi,t)}f\right|_{L_{\xi,\beta}^{\infty}}\,.
Proof.

We only prove the estimate of QQ since the estimate of 𝒦\mathcal{K} is similar. By definition of QQ,

eκρ(ξ,t)ξβ|Q(g,h)|\displaystyle e^{\kappa\rho\left(\xi,t\right)}\left\langle\xi\right\rangle^{\beta}\left|Q\left(g,h\right)\right| \displaystyle\leq |eκρ(ξ,t)g|Lξ,β|eκρ(ξ,t)h|Lξ,β\displaystyle\left|e^{\kappa\rho\left(\xi,t\right)}g\right|_{L_{\xi,\beta}^{\infty}}\left|e^{\kappa\rho\left(\xi,t\right)}h\right|_{L_{\xi,\beta}^{\infty}}
[3𝕊2|(ξξ)n|ξβξβξβeκρ(ξ,t)eκρ(ξ,t)eκρ(ξ,t)dndξ\displaystyle\cdot\left[\int_{\mathbb{R}^{3}}\int_{\mathbb{S}^{2}}\left|\left(\xi-\xi_{\ast}\right)\cdot n\right|\frac{\left\langle\xi\right\rangle^{\beta}}{\left\langle\xi_{\ast}^{\prime}\right\rangle^{\beta}\left\langle\xi^{\prime}\right\rangle^{\beta}}\frac{e^{\kappa\rho\left(\xi,t\right)}}{e^{\kappa\rho\left(\xi_{\ast}^{\prime},t\right)}e^{\kappa\rho\left(\xi^{\prime},t\right)}}dnd\xi_{\ast}\right.
+3𝕊2|(ξξ)n|1ξβeκρ(ξ,τ)dndξ].\displaystyle\left.+\int_{\mathbb{R}^{3}}\int_{\mathbb{S}^{2}}\left|\left(\xi-\xi_{\ast}\right)\cdot n\right|\frac{1}{\left\langle\xi_{\ast}\right\rangle^{\beta}e^{\kappa\rho\left(\xi_{\ast},\tau\right)}}dnd\xi_{\ast}\right]\hbox{.}

In view of Lemma 17,

3𝕊2|(ξξ)n|ξβξβξβeκρ(ξ,t)eκρ(ξ,t)eκρ(ξ,t)𝑑n𝑑ξCβν(ξ)\int_{\mathbb{R}^{3}}\int_{\mathbb{S}^{2}}\left|\left(\xi-\xi_{\ast}\right)\cdot n\right|\frac{\left\langle\xi\right\rangle^{\beta}}{\left\langle\xi_{\ast}^{\prime}\right\rangle^{\beta}\left\langle\xi^{\prime}\right\rangle^{\beta}}\frac{e^{\kappa\rho\left(\xi,t\right)}}{e^{\kappa\rho\left(\xi_{\ast}^{\prime},t\right)}e^{\kappa\rho\left(\xi^{\prime},t\right)}}dnd\xi_{\ast}\leq C_{\beta}^{\prime}\nu\left(\xi\right)

for some Cβ>0C_{\beta}^{\prime}>0. By straightforward computation,

3𝕊2|(ξξ)n|1ξβeκρ(ξ,τ)𝑑n𝑑ξ\displaystyle\int_{\mathbb{R}^{3}}\int_{\mathbb{S}^{2}}\left|\left(\xi-\xi_{\ast}\right)\cdot n\right|\frac{1}{\left\langle\xi_{\ast}\right\rangle^{\beta}e^{\kappa\rho\left(\xi_{\ast},\tau\right)}}dnd\xi_{\ast}
\displaystyle\leq 4π[|ξ||ξ||ξξ|1ξβ𝑑ξ+|ξ|>|ξ||ξξ|1ξβ𝑑ξ]\displaystyle 4\pi\left[\int_{\left|\xi_{\ast}\right|\leq\left|\xi\right|}\left|\xi-\xi_{\ast}\right|\frac{1}{\left\langle\xi_{\ast}\right\rangle^{\beta}}d\xi_{\ast}+\int_{\left|\xi_{\ast}\right|>\left|\xi\right|}\left|\xi-\xi_{\ast}\right|\frac{1}{\left\langle\xi_{\ast}\right\rangle^{\beta}}d\xi_{\ast}\right]
\displaystyle\leq (4π)2(2|ξ|β3+2β41ξβ4).\displaystyle\left(4\pi\right)^{2}\left(\frac{2\left|\xi\right|}{\beta-3}+\frac{2}{\beta-4}\frac{1}{\left\langle\xi\right\rangle^{\beta-4}}\right)\hbox{.}

Hence,

eκρ(ξ,t)ξβ|Q(g,h)|Cβ′′ν(ξ)|eκρ(ξ,t)g|Lξ,β|eκρ(ξ,t)h|Lξ,βe^{\kappa\rho\left(\xi,t\right)}\left\langle\xi\right\rangle^{\beta}\left|Q\left(g,h\right)\right|\leq C_{\beta}^{{}^{\prime\prime}}\nu\left(\xi\right)\left|e^{\kappa\rho\left(\xi,t\right)}g\right|_{L_{\xi,\beta}^{\infty}}\left|e^{\kappa\rho\left(\xi,t\right)}h\right|_{L_{\xi,\beta}^{\infty}}

for some constant Cβ′′>0C_{\beta}^{{}^{\prime\prime}}>0 only depending upon β\beta, as desired. ∎

Proof of Theorem 15.

In virtue of (4)\left(\ref{decom-System}\right), f1f_{1} can be expressed as

f1=𝕊tf0+0t𝕊tτ[Ksf1+Q(f1,f1)+Q(f1,f2)+Q(f2,f1)](τ)𝑑τ.f_{1}=\mathbb{S}^{t}f_{0}+\int_{0}^{t}\mathbb{S}^{t-\tau}\left[K_{s}f_{1}+Q\left(f_{1},f_{1}\right)+Q\left(f_{1},\sqrt{\mathcal{M}}f_{2}\right)+Q\left(\sqrt{\mathcal{M}}f_{2},f_{1}\right)\right]\left(\tau\right)d\tau\hbox{.}

Let T>0T>0 be any number and denote

u(t,x,ξ)=ξβeκρ(ξ,t)f1(t,x,ξ).u\left(t,x,\xi\right)=\left\langle\xi\right\rangle^{\beta}e^{\kappa\rho\left(\xi,t\right)}f_{1}\left(t,x,\xi\right)\hbox{.}

Multiplying ξβeκρ(ξ,t)\left\langle\xi\right\rangle^{\beta}e^{\kappa\rho\left(\xi,t\right)} on both sides of the integral equation gives

ξβeκρ(ξ,t)f1\displaystyle\left\langle\xi\right\rangle^{\beta}e^{\kappa\rho\left(\xi,t\right)}f_{1} =\displaystyle= ε𝕊t(ξβeκρ(ξ,t)f0)+0tξβeκρ(ξ,t)𝕊tτQ(f1,f1)(τ)𝑑τ\displaystyle\varepsilon\mathbb{S}^{t}\left(\left\langle\xi\right\rangle^{\beta}e^{\kappa\rho\left(\xi,t\right)}f_{0}\right)+\int_{0}^{t}\left\langle\xi\right\rangle^{\beta}e^{\kappa\rho\left(\xi,t\right)}\mathbb{S}^{t-\tau}Q\left(f_{1},f_{1}\right)\left(\tau\right)d\tau
+0tξβeκρ(ξ,t)𝕊tτ[Ksf1+Q(f1,f2)+Q(f2,f1)](τ)𝑑τ\displaystyle+\int_{0}^{t}\left\langle\xi\right\rangle^{\beta}e^{\kappa\rho\left(\xi,t\right)}\mathbb{S}^{t-\tau}\left[K_{s}f_{1}+Q\left(f_{1},\sqrt{\mathcal{M}}f_{2}\right)+Q\left(\sqrt{\mathcal{M}}f_{2},f_{1}\right)\right]\left(\tau\right)d\tau
=\displaystyle= :I+II+III.\displaystyle:\mathrm{I}+\mathrm{II}+\mathrm{III}\hbox{.}

At first, it is easy to see

(23) |I|εξβeν0ξt+κξt|f0|LξLxεf0Lξ,βLx,\left|\mathrm{I}\right|\leq\varepsilon\left\|\left\langle\xi\right\rangle^{\beta}e^{-\nu_{0}\left\langle\xi\right\rangle t+\kappa\left\langle\xi\right\rangle t}\left|f_{0}\right|\right\|_{L_{\xi}^{\infty}L_{x}^{\infty}}\leq\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\hbox{,}

since κρ(ξ,t)κξt\kappa\rho\left(\xi,t\right)\leq\kappa\left\langle\xi\right\rangle t.

As for II\mathrm{II} and III\mathrm{III}, we can find

eν(ξ)(tτ)eκρ(ξ,t)e(ν0κ)ξ(tτ)eκρ(ξ,τ)e^{-\nu\left(\xi\right)\left(t-\tau\right)}e^{\kappa\rho\left(\xi,t\right)}\leq e^{-\left(\nu_{0}-\kappa\right)\left\langle\xi\right\rangle\left(t-\tau\right)}e^{\kappa\rho\left(\xi,\tau\right)}

for all ξ\xi and 0τt0\leq\tau\leq t. To see this, for ξ>t\left\langle\xi\right\rangle>t, we have ρ(ξ,t)=ξt\rho\left(\xi,t\right)=\left\langle\xi\right\rangle t and thus

eν(ξ)(tτ)eκρ(ξ,t)=eν(ξ)(tτ)eκξte(ν0κ)ξ(tτ)eκξτ=e(ν0κ)ξ(tτ)eκρ(ξ,τ);e^{-\nu\left(\xi\right)\left(t-\tau\right)}e^{\kappa\rho\left(\xi,t\right)}=e^{-\nu\left(\xi\right)\left(t-\tau\right)}e^{\kappa\left\langle\xi\right\rangle t}\leq e^{-\left(\nu_{0}-\kappa\right)\left\langle\xi\right\rangle\left(t-\tau\right)}e^{\kappa\left\langle\xi\right\rangle\tau}=e^{-\left(\nu_{0}-\kappa\right)\left\langle\xi\right\rangle\left(t-\tau\right)}e^{\kappa\rho\left(\xi,\tau\right)}\hbox{;}

for ξt\left\langle\xi\right\rangle\leq t, we have ρ(ξ,t)=ξ2\rho\left(\xi,t\right)=\left\langle\xi\right\rangle^{2}, so that

eν(ξ)(tτ)eκρ(ξ,t)\displaystyle e^{-\nu\left(\xi\right)\left(t-\tau\right)}e^{\kappa\rho\left(\xi,t\right)} \displaystyle\leq eν0ξ(tτ)eκξ2=e(ν0κ)ξ(tτ)eκξ(ξt)+κξτ\displaystyle e^{-\nu_{0}\left\langle\xi\right\rangle\left(t-\tau\right)}e^{\kappa\left\langle\xi\right\rangle^{2}}=e^{-\left(\nu_{0}-\kappa\right)\left\langle\xi\right\rangle\left(t-\tau\right)}e^{\kappa\left\langle\xi\right\rangle\left(\left\langle\xi\right\rangle-t\right)+\kappa\left\langle\xi\right\rangle\tau}
\displaystyle\leq e(ν0κ)ξ(tτ)eκρ(ξ,τ).\displaystyle e^{-\left(\nu_{0}-\kappa\right)\left\langle\xi\right\rangle\left(t-\tau\right)}e^{\kappa\rho\left(\xi,\tau\right)}\hbox{.}

Therefore,

|II|0te(ν0κ)ξ(tτ)eκρ(ξ,τ)ξβ|Q(f1,f1)(τ)|𝑑τ,\left|\mathrm{II}\right|\leq\int_{0}^{t}e^{-\left(\nu_{0}-\kappa\right)\left\langle\xi\right\rangle\left(t-\tau\right)}e^{\kappa\rho\left(\xi,\tau\right)}\left\langle\xi\right\rangle^{\beta}\left|Q\left(f_{1},f_{1}\right)\left(\tau\right)\right|d\tau\hbox{,}
|III|0e(ν0κ)ξ(tτ)ξβeκρ(ξ,τ)|[Ksf1+Q(f1,f2)+Q(f2,f1)](τ)|𝑑τ.\left|\mathrm{III}\right|\leq\int_{0}^{\infty}e^{-\left(\nu_{0}-\kappa\right)\left\langle\xi\right\rangle\left(t-\tau\right)}\left\langle\xi\right\rangle^{\beta}e^{\kappa\rho\left(\xi,\tau\right)}\left|\left[K_{s}f_{1}+Q\left(f_{1},\sqrt{\mathcal{M}}f_{2}\right)+Q\left(\sqrt{\mathcal{M}}f_{2},f_{1}\right)\right]\left(\tau\right)\right|d\tau\hbox{.}

By Corollary 18, we have

(24) |II|Cβ′′sup0tTuLξLx20te(ν0κ)ξ(tτ)ν(ξ)𝑑τCβ′′ν1ν0κ(sup0tTuLξLx)2.\left|\mathrm{II}\right|\leq C_{\beta}^{\prime\prime}\sup_{0\leq t\leq T}\left\|u\right\|_{L_{\xi}^{\infty}L_{x}^{\infty}}^{2}\int_{0}^{t}e^{-\left(\nu_{0}-\kappa\right)\left\langle\xi\right\rangle\left(t-\tau\right)}\nu\left(\xi\right)d\tau\leq\frac{C_{\beta}^{\prime\prime}\nu_{1}}{\nu_{0}-\kappa}\left(\sup_{0\leq t\leq T}\left\|u\right\|_{L_{\xi}^{\infty}L_{x}^{\infty}}\right)^{2}\hbox{.}

Regarding III\mathrm{III}, in view of Theorem 9 and Corollary 18, together the fact that

eκρ(ξ,τ)=eκξ(ξτ)e|ξ|24eκξ2|ξ|24e1/4,e^{\kappa\rho\left(\xi,\tau\right)}\sqrt{\mathcal{M}}=e^{\kappa\left\langle\xi\right\rangle\left(\left\langle\xi\right\rangle\wedge\tau\right)}e^{-\frac{\left|\xi\right|^{2}}{4}}\leq e^{\kappa\left\langle\xi\right\rangle^{2}-\frac{\left|\xi\right|^{2}}{4}}\leq e^{1/4}\hbox{,}

we have

0e(ν0κ)ξ(tτ)ξβeκρ(ξ,τ)|Q(f1,f2)+Q(f2,f1)|𝑑τ\displaystyle\int_{0}^{\infty}e^{-\left(\nu_{0}-\kappa\right)\left\langle\xi\right\rangle\left(t-\tau\right)}\left\langle\xi\right\rangle^{\beta}e^{\kappa\rho\left(\xi,\tau\right)}\left|Q\left(f_{1},\sqrt{\mathcal{M}}f_{2}\right)+Q\left(\sqrt{\mathcal{M}}f_{2},f_{1}\right)\right|d\tau
\displaystyle\leq 2Cβ′′sup0tTuLξLxsup0tTeκρ(ξ,τ)f2Lξ,βLx0te(ν0κ)ξ(tτ)ν(ξ)𝑑τ\displaystyle 2C_{\beta}^{\prime\prime}\sup_{0\leq t\leq T}\left\|u\right\|_{L_{\xi}^{\infty}L_{x}^{\infty}}\cdot\sup_{0\leq t\leq T}\left\|e^{\kappa\rho\left(\xi,\tau\right)}\sqrt{\mathcal{M}}f_{2}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\int_{0}^{t}e^{-\left(\nu_{0}-\kappa\right)\left\langle\xi\right\rangle\left(t-\tau\right)}\nu\left(\xi\right)d\tau
\displaystyle\leq (C~βεν0κf0Lξ,βLx)sup0tTuLξLx.\displaystyle\left(\frac{\widetilde{C}_{\beta}\varepsilon}{\nu_{0}-\kappa}\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\right)\sup_{0\leq t\leq T}\left\|u\right\|_{L_{\xi}^{\infty}L_{x}^{\infty}}\hbox{.}

By Corollary 18,

0e(ν0κ)ξ(tτ)ξβeκρ(ξ,τ)|Ksf1|𝑑τ\displaystyle\int_{0}^{\infty}e^{-\left(\nu_{0}-\kappa\right)\left\langle\xi\right\rangle\left(t-\tau\right)}\left\langle\xi\right\rangle^{\beta}e^{\kappa\rho\left(\xi,\tau\right)}\left|K_{s}f_{1}\right|d\tau
\displaystyle\leq (Cβ+CβR2)sup0tTuLξLx0e(ν0κ)ξ(tτ)ν(ξ)𝑑τ\displaystyle\left(\frac{C}{\beta}+\frac{C_{\beta}}{R^{2}}\right)\sup_{0\leq t\leq T}\left\|u\right\|_{L_{\xi}^{\infty}L_{x}^{\infty}}\int_{0}^{\infty}e^{-\left(\nu_{0}-\kappa\right)\left\langle\xi\right\rangle\left(t-\tau\right)}\nu\left(\xi\right)d\tau
\displaystyle\leq ν1ν0κ(Cβ+CβR2)sup0tTuLξLx14sup0tTuLξLx,\displaystyle\frac{\nu_{1}}{\nu_{0}-\kappa}\left(\frac{C}{\beta}+\frac{C_{\beta}}{R^{2}}\right)\sup_{0\leq t\leq T}\left\|u\right\|_{L_{\xi}^{\infty}L_{x}^{\infty}}\leq\frac{1}{4}\sup_{0\leq t\leq T}\left\|u\right\|_{L_{\xi}^{\infty}L_{x}^{\infty}}\hbox{,}

after choosing β>4\beta>4 and R>0R>0 sufficiently large. Hence,

(25) |III|(14+C~βεν0κf0Lξ,βLx)sup0tTuLξLx.\left|\mathrm{III}\right|\leq\left(\frac{1}{4}+\frac{\widetilde{C}_{\beta}\varepsilon}{\nu_{0}-\kappa}\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\right)\sup_{0\leq t\leq T}\left\|u\right\|_{L_{\xi}^{\infty}L_{x}^{\infty}}\hbox{.}

Combining (23), (24) and (25), we have

sup0tTuLξLx\displaystyle\sup_{0\leq t\leq T}\left\|u\right\|_{L_{\xi}^{\infty}L_{x}^{\infty}} \displaystyle\leq εf0Lξ,βLx+(14+C~βεν0κf0Lξ,βLx)sup0tTuLξLx\displaystyle\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}+\left(\frac{1}{4}+\frac{\widetilde{C}_{\beta}\varepsilon}{\nu_{0}-\kappa}\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\right)\sup_{0\leq t\leq T}\left\|u\right\|_{L_{\xi}^{\infty}L_{x}^{\infty}}
+Cβ′′ν1ν0κ(sup0tTuLξLx)2.\displaystyle+\frac{C_{\beta}^{\prime\prime}\nu_{1}}{\nu_{0}-\kappa}\left(\sup_{0\leq t\leq T}\left\|u\right\|_{L_{\xi}^{\infty}L_{x}^{\infty}}\right)^{2}\hbox{.}

We may assume that Cβ′′ν1ν0κ>1\frac{C_{\beta}^{\prime\prime}\nu_{1}}{\nu_{0}-\kappa}>1. Choosing ε>0\varepsilon>0 sufficiently small such that

C~βεν0κf0Lξ,βLx<14 and (4Cβ′′ν1ν0κ)2εf0(x,ξ)Lξ,βLx<1,\frac{\widetilde{C}_{\beta}\varepsilon}{\nu_{0}-\kappa}\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}<\frac{1}{4}\hbox{ and }\left(\frac{4C_{\beta}^{\prime\prime}\nu_{1}}{\nu_{0}-\kappa}\right)^{2}\varepsilon\left\|f_{0}\left(x,\xi\right)\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}<1\hbox{,}

we obtain

sup0tTuLξLx2εf0Lξ,βLx+2Cβ′′ν1ν0κ(sup0tTuLξLx)2.\sup_{0\leq t\leq T}\left\|u\right\|_{L_{\xi}^{\infty}L_{x}^{\infty}}\leq 2\varepsilon\left\|f_{0}\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}+\frac{2C_{\beta}^{\prime\prime}\nu_{1}}{\nu_{0}-\kappa}\left(\sup_{0\leq t\leq T}\left\|u\right\|_{L_{\xi}^{\infty}L_{x}^{\infty}}\right)^{2}\hbox{.}

Since u(0,x,ξ)LξLx=f1(0,x,ξ)Lξ,βLx=εf0(x,ξ)Lξ,βLx\left\|u\left(0,x,\xi\right)\right\|_{L_{\xi}^{\infty}L_{x}^{\infty}}=\left\|f_{1}\left(0,x,\xi\right)\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}=\varepsilon\left\|f_{0}\left(x,\xi\right)\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}},

sup0tTuLξLx(4Cβ′′ν1ν0κ)εf0(x,ξ)Lξ,βLx,\sup_{0\leq t\leq T}\left\|u\right\|_{L_{\xi}^{\infty}L_{x}^{\infty}}\leq\left(\frac{4C_{\beta}^{\prime\prime}\nu_{1}}{\nu_{0}-\kappa}\right)\varepsilon\left\|f_{0}\left(x,\xi\right)\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}\hbox{,}

for any finite T>0T>0. Consequently,

ξβeκρ(ξ,t)|f1(t,x,ξ)|=|u(t,x,ξ)|C¯βεf0(x,ξ)Lξ,βLx\left\langle\xi\right\rangle^{\beta}e^{\kappa\rho\left(\xi,t\right)}\left|f_{1}\left(t,x,\xi\right)\right|=\left|u\left(t,x,\xi\right)\right|\leq\overline{C}_{\beta}\varepsilon\left\|f_{0}\left(x,\xi\right)\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}

for some constant C¯β>0\overline{C}_{\beta}>0 depending only on β\beta, i.e.,

|f1(t,x,ξ)|C¯βεξβeκρ(ξ,t)f0(x,ξ)Lξ,βLx\left|f_{1}\left(t,x,\xi\right)\right|\leq\overline{C}_{\beta}\varepsilon\left\langle\xi\right\rangle^{-\beta}e^{-\kappa\rho\left(\xi,t\right)}\left\|f_{0}\left(x,\xi\right)\right\|_{L_{\xi,\beta}^{\infty}L_{x}^{\infty}}

for all t0t\geq 0, x3x\in\mathbb{R}^{3}, ξ3\xi\in\mathbb{R}^{3}. ∎

6. Some convolution estimates

In this section, we will compute the interactions between different wave patterns, which are essential for determining the precise space-time structure of the solution. Although these estimates appear complicated, there is a clear physical picture behind them (see Section 6.2 for some illustrations). The proofs in fact aim to translate this heuristic picture into refined convolution estimates.

To facilitate the estimates, we decompose space-time domain into the following 55 regions:

D1\displaystyle D_{1} ={|x|1+t},\displaystyle=\left\{|x|\leq\sqrt{1+t}\right\}\,,
D2\displaystyle\ D_{2} ={𝐜t1+t|x|𝐜t+1+t},\displaystyle=\left\{\mathbf{c}t-\sqrt{1+t}\leq|x|\leq\mathbf{c}t+\sqrt{1+t}\right\}\,,
D3\displaystyle D_{3} ={|x|𝐜t+1+t},\displaystyle=\left\{|x|\geq\mathbf{c}t+\sqrt{1+t}\right\}\,,
D4\displaystyle D_{4} ={1+t|x|12𝐜t},\displaystyle=\left\{\sqrt{1+t}\leq|x|\leq\frac{1}{2}\mathbf{c}t\right\}\,,
D5\displaystyle D_{5} ={12𝐜t|x|𝐜t1+t}.\displaystyle=\left\{\frac{1}{2}\mathbf{c}t\leq|x|\leq\mathbf{c}t-\sqrt{1+t}\right\}\,.

6.1. Linear interaction

Lemma 19 (Diffusion wave convolved with exponential decay).
(1+t)3/2e|x|2D0(1+t)x,tet+|x|c0(1+t)3/2e|x|2D^(1+t)+et+|x|c^,\left(1+t\right)^{-3/2}e^{-\frac{\left|x\right|^{2}}{D_{0}\left(1+t\right)}}\ast_{x,t}e^{-\frac{t+\left|x\right|}{c_{0}}}\lesssim\left(1+t\right)^{-3/2}e^{-\frac{\left|x\right|^{2}}{\widehat{D}\left(1+t\right)}}+e^{-\frac{t+\left|x\right|}{\widehat{c}}}\hbox{,}

for some constants c^\widehat{c} and D^>0\widehat{D}>0.

Lemma 20 (Huygens wave convolved with exponential decay).
A\displaystyle A =\displaystyle= (1+t)2e(|x|𝐜t)2D0(1+t)x,tet+|x|c0\displaystyle\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{D_{0}\left(1+t\right)}}\ast_{x,t}e^{-\frac{t+\left|x\right|}{c_{0}}}
\displaystyle\lesssim (1+t)2e(|x|𝐜t)2D^(1+t)+et+|x|c^,\displaystyle\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{\widehat{D}\left(1+t\right)}}+e^{-\frac{t+\left|x\right|}{\widehat{c}}}\hbox{,}

for some constants c^\widehat{c} and D^>0\widehat{D}>0.

Lemma 21 (Riesz wave convolved with exponential decay).
B\displaystyle B =\displaystyle= 𝟏{|x|𝐜t}(1+t)3/2(1+|x|21+t)3/2x,tet+|x|c0\displaystyle\mathbf{1}_{\{\left|x\right|\leq\mathbf{c}t\}}\left(1+t\right)^{-3/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}\ast_{x,t}e^{-\frac{t+\left|x\right|}{c_{0}}}
\displaystyle\lesssim 𝟏{|x|<𝐜t}(1+t)3/2(1+|x|21+t)3/2+et+|x|c^0+(1+t)2e(|x|𝐜t)2D^0(1+t),\displaystyle\mathbf{1}_{\{\left|x\right|<\mathbf{c}t\}}\left(1+t\right)^{-3/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}+e^{-\frac{t+\left|x\right|}{\widehat{c}_{0}}}+\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{\widehat{D}_{0}\left(1+t\right)}}\hbox{,}

for some constants c^0,D^0>0\widehat{c}_{0},\widehat{D}_{0}>0.


The proof of Lemma 19 is easy and hence we omit it.

Proof of Lemma 20 (Huygens wave convolved with exponential decay).

We rewrite

A=0t3(1+τ)2e(|y|𝐜τ)2D0(1+τ)e(tτ)+|xy|c0𝑑y𝑑τ.A=\int_{0}^{t}\int_{\mathbb{R}^{3}}\left(1+\tau\right)^{-2}e^{-\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{D_{0}\left(1+\tau\right)}}e^{-\frac{\left(t-\tau\right)+\left|x-y\right|}{c_{0}}}dyd\tau\hbox{.}

We discuss the integral AA in each domain DiD_{i} (1i5)\left(1\leq i\leq 5\right) for which (x,t)\left(x,t\right) belongs to.

Case 1: (x,t)D1\left(x,t\right)\in D_{1}. Direct computation gives

A\displaystyle A \displaystyle\lesssim 0t23(1+τ)2et2c0|xy|c0𝑑y𝑑τ+t2t|y|𝐜τ2(1+τ)2e(|y|𝐜τ)2D0(1+τ)e(tτ)+|xy|c0𝑑y𝑑τ\displaystyle\int_{0}^{\frac{t}{2}}\int_{\mathbb{R}^{3}}\left(1+\tau\right)^{-2}e^{-\frac{t}{2c_{0}}-\frac{\left|x-y\right|}{c_{0}}}dyd\tau+\int_{\frac{t}{2}}^{t}\int_{\left|y\right|\leq\frac{\mathbf{c}\tau}{2}}\left(1+\tau\right)^{-2}e^{-\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{D_{0}\left(1+\tau\right)}}e^{-\frac{\left(t-\tau\right)+\left|x-y\right|}{c_{0}}}dyd\tau
+t2t|y|>𝐜τ2(1+τ)2e(|y|𝐜τ)2D0(1+τ)e(tτ)+|xy|c0𝑑y𝑑τ\displaystyle+\int_{\frac{t}{2}}^{t}\int_{\left|y\right|>\frac{\mathbf{c}\tau}{2}}\left(1+\tau\right)^{-2}e^{-\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{D_{0}\left(1+\tau\right)}}e^{-\frac{\left(t-\tau\right)+\left|x-y\right|}{c_{0}}}dyd\tau
\displaystyle\lesssim et2c0+e𝐜2t32D0t2t3(1+τ)2e|xy|c0𝑑y𝑑τ\displaystyle e^{-\frac{t}{2c_{0}}}+e^{-\frac{\mathbf{c}^{2}t}{32D_{0}}}\int_{\frac{t}{2}}^{t}\int_{\mathbb{R}^{3}}\left(1+\tau\right)^{-2}e^{-\frac{\left|x-y\right|}{c_{0}}}dyd\tau
+t2t|y|>𝐜τ2(1+τ)2e(|y|𝐜τ)2D0(1+τ)e(tτ)+|xy|c0𝑑y𝑑τ\displaystyle+\int_{\frac{t}{2}}^{t}\int_{\left|y\right|>\frac{\mathbf{c}\tau}{2}}\left(1+\tau\right)^{-2}e^{-\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{D_{0}\left(1+\tau\right)}}e^{-\frac{\left(t-\tau\right)+\left|x-y\right|}{c_{0}}}dyd\tau
\displaystyle\lesssim et2c0+e𝐜t32D0+t2t|y|>𝐜τ2(1+τ)2e(|y|𝐜τ)2D0(1+τ)e(tτ)+|xy|c0𝑑y𝑑τ.\displaystyle e^{-\frac{t}{2c_{0}}}+e^{-\frac{\mathbf{c}t}{32D_{0}}}+\int_{\frac{t}{2}}^{t}\int_{\left|y\right|>\frac{\mathbf{c}\tau}{2}}\left(1+\tau\right)^{-2}e^{-\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{D_{0}\left(1+\tau\right)}}e^{-\frac{\left(t-\tau\right)+\left|x-y\right|}{c_{0}}}dyd\tau\hbox{.}

Note that if t2τt\frac{t}{2}\leq\tau\leq t, |y|>𝐜τ2\left|y\right|>\frac{\mathbf{c}\tau}{2}, then

|xy||y||x|𝐜t41+t𝐜t8+𝐜t81+t𝐜t8\left|x-y\right|\geq\left|y\right|-\left|x\right|\geq\frac{\mathbf{c}t}{4}-\sqrt{1+t}\geq\frac{\mathbf{c}t}{8}+\frac{\mathbf{c}t}{8}-\sqrt{1+t}\geq\frac{\mathbf{c}t}{8}

for t40t\geq 40, so that

t2t|y|>𝐜τ2(1+τ)2e(|y|𝐜τ)2D0(1+τ)e(tτ)+|xy|c0𝑑y𝑑τ\displaystyle\int_{\frac{t}{2}}^{t}\int_{\left|y\right|>\frac{\mathbf{c}\tau}{2}}\left(1+\tau\right)^{-2}e^{-\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{D_{0}\left(1+\tau\right)}}e^{-\frac{\left(t-\tau\right)+\left|x-y\right|}{c_{0}}}dyd\tau
\displaystyle\lesssim e𝐜t8c0t2t|y|>𝐜τ2(1+τ)2e(|y|𝐜τ)2D0(1+τ)𝑑y𝑑τ\displaystyle e^{-\frac{\mathbf{c}t}{8c_{0}}}\int_{\frac{t}{2}}^{t}\int_{\left|y\right|>\frac{\mathbf{c}\tau}{2}}\left(1+\tau\right)^{-2}e^{-\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{D_{0}\left(1+\tau\right)}}dyd\tau
\displaystyle\lesssim e𝐜t8c0t2t(1+τ)2+52𝑑τe𝐜t16c0,\displaystyle e^{-\frac{\mathbf{c}t}{8c_{0}}}\int_{\frac{t}{2}}^{t}\left(1+\tau\right)^{-2+\frac{5}{2}}d\tau\lesssim e^{-\frac{\mathbf{c}t}{16c_{0}}}\hbox{,}

for t40t\geq 40. Consequently,

Aet2c0+e𝐜t32D0+e𝐜t16c0et+|x|c^A\lesssim e^{-\frac{t}{2c_{0}}}+e^{-\frac{\mathbf{c}t}{32D_{0}}}+e^{-\frac{\mathbf{c}t}{16c_{0}}}\lesssim e^{-\frac{t+\left|x\right|}{\widehat{c}}}

for all t0t\geq 0, where 1c^=12min{12c0,𝐜32D0,𝐜16c0}\frac{1}{\widehat{c}}=\frac{1}{2}\min\{\frac{1}{2c_{0}},\frac{\mathbf{c}}{32D_{0}},\frac{\mathbf{c}}{16c_{0}}\}.


Case 2: (x,t)D2\left(x,t\right)\in D_{2}.

A\displaystyle A \displaystyle\lesssim 0t23(1+τ)2et2c0e|xy|c0𝑑y𝑑τ+t2t3(1+t)2e(tτ)+|xy|c0𝑑y𝑑τ\displaystyle\int_{0}^{\frac{t}{2}}\int_{\mathbb{R}^{3}}\left(1+\tau\right)^{-2}e^{-\frac{t}{2c_{0}}}e^{-\frac{\left|x-y\right|}{c_{0}}}dyd\tau+\int_{\frac{t}{2}}^{t}\int_{\mathbb{R}^{3}}\left(1+t\right)^{-2}e^{-\frac{\left(t-\tau\right)+\left|x-y\right|}{c_{0}}}dyd\tau
\displaystyle\lesssim et2c0+(1+t)2(1+t)2(1+t)2e(|x|𝐜t)2D(1+t).\displaystyle e^{-\frac{t}{2c_{0}}}+\left(1+t\right)^{-2}\lesssim\left(1+t\right)^{-2}\lesssim\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{D\left(1+t\right)}}\hbox{.}

Case 3: (x,t)D3\left(x,t\right)\in D_{3}. We split the integral AA into four parts

A\displaystyle A =\displaystyle= 0t2(|y||x|+𝐜τ2+|y|>|x|+𝐜τ2)()𝑑y𝑑τ+t2t(|y||x|+𝐜τ2+|y|>|x|+𝐜τ2)()𝑑y𝑑τ\displaystyle\int_{0}^{\frac{t}{2}}\left(\int_{\left|y\right|\leq\frac{\left|x\right|+\mathbf{c}\tau}{2}}+\int_{\left|y\right|>\frac{\left|x\right|+\mathbf{c}\tau}{2}}\right)\left(\cdots\right)dyd\tau+\int_{\frac{t}{2}}^{t}\left(\int_{\left|y\right|\leq\frac{\left|x\right|+\mathbf{c}\tau}{2}}+\int_{\left|y\right|>\frac{\left|x\right|+\mathbf{c}\tau}{2}}\right)\left(\cdots\right)dyd\tau
=\displaystyle= :A11+A12+A21+A22.\displaystyle:A_{11}+A_{12}+A_{21}+A_{22}\hbox{.}

Note that if |y||x|+𝐜τ2\left|y\right|\leq\frac{\left|x\right|+\mathbf{c}\tau}{2}, then

|xy||x||y||x|𝐜τ2=|x|𝐜t2+𝐜(tτ)2.\left|x-y\right|\geq\left|x\right|-\left|y\right|\geq\frac{\left|x\right|-\mathbf{c}\tau}{2}=\frac{\left|x\right|-\mathbf{c}t}{2}+\frac{\mathbf{c}\left(t-\tau\right)}{2}\hbox{.}

if |y|>|x|+𝐜τ2\left|y\right|>\frac{\left|x\right|+\mathbf{c}\tau}{2}, then

|y|𝐜τ>|x|𝐜τ2=|x|𝐜t2+𝐜(tτ)2.\left|y\right|-\mathbf{c}\tau>\frac{\left|x\right|-\mathbf{c}\tau}{2}=\frac{\left|x\right|-\mathbf{c}t}{2}+\frac{\mathbf{c}\left(t-\tau\right)}{2}\hbox{.}

It immediately follows that

A11\displaystyle A_{11} \displaystyle\lesssim 0t2|y||x|+𝐜τ2(1+τ)2e|xy|2c0et2c0e|xy|2c0𝑑y𝑑τ\displaystyle\int_{0}^{\frac{t}{2}}\int_{\left|y\right|\leq\frac{\left|x\right|+\mathbf{c}\tau}{2}}\left(1+\tau\right)^{-2}e^{-\frac{\left|x-y\right|}{2c_{0}}}e^{-\frac{t}{2c_{0}}}e^{-\frac{\left|x-y\right|}{2c_{0}}}dyd\tau
\displaystyle\lesssim 0t23(1+τ)2e|xy|2c0et2c012c0(|x|2𝐜t4)𝑑y𝑑τet2c012c0(|x|2𝐜t4)et2c0|x|8c0,\displaystyle\int_{0}^{\frac{t}{2}}\int_{\mathbb{R}^{3}}\left(1+\tau\right)^{-2}e^{-\frac{\left|x-y\right|}{2c_{0}}}e^{-\frac{t}{2c_{0}}-\frac{1}{2c_{0}}\left(\frac{\left|x\right|}{2}-\frac{\mathbf{c}t}{4}\right)}dyd\tau\lesssim e^{-\frac{t}{2c_{0}}-\frac{1}{2c_{0}}\left(\frac{\left|x\right|}{2}-\frac{\mathbf{c}t}{4}\right)}\lesssim e^{-\frac{t}{2c_{0}}-\frac{\left|x\right|}{8c_{0}}}\hbox{,}
A120t23(1+τ)2e(|x|𝐜t)24D0(1+t)et2c0e|xy|c0e(|x|𝐜t)24D0(1+t)et2c0,A_{12}\lesssim\int_{0}^{\frac{t}{2}}\int_{\mathbb{R}^{3}}\left(1+\tau\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{4D_{0}\left(1+t\right)}}e^{-\frac{t}{2c_{0}}}e^{-\frac{\left|x-y\right|}{c_{0}}}\lesssim e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{4D_{0}\left(1+t\right)}}e^{-\frac{t}{2c_{0}}}\hbox{,}
A22t2t|y||x|+𝐜τ2(1+t)2e(|x|𝐜t)24D0(1+t)e(tτ)+|xy|c0𝑑y𝑑τ(1+t)2e(|x|𝐜t)24D0(1+t).A_{22}\lesssim\int_{\frac{t}{2}}^{t}\int_{\left|y\right|\geq\frac{\left|x\right|+\mathbf{c}\tau}{2}}\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{4D_{0}\left(1+t\right)}}e^{-\frac{\left(t-\tau\right)+\left|x-y\right|}{c_{0}}}dyd\tau\lesssim\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{4D_{0}\left(1+t\right)}}\hbox{.}

As for A21A_{21},

A21\displaystyle A_{21} \displaystyle\lesssim t2t|y||x|+𝐜τ2(1+τ)2e(|y|𝐜τ)2D0(1+τ)e|x|𝐜t2c0𝑑y𝑑τ\displaystyle\int_{\frac{t}{2}}^{t}\int_{\left|y\right|\leq\frac{\left|x\right|+\mathbf{c}\tau}{2}}\left(1+\tau\right)^{-2}e^{-\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{D_{0}\left(1+\tau\right)}}e^{-\frac{\left|x\right|-\mathbf{c}t}{2c_{0}}}dyd\tau
\displaystyle\lesssim e|x|𝐜t2c0t2t(1+τ)2+52𝑑τ(1+t)32e|x|𝐜t2c0(1+t)32e1+t4c0e|x|𝐜t4c0\displaystyle e^{-\frac{\left|x\right|-\mathbf{c}t}{2c_{0}}}\int_{\frac{t}{2}}^{t}\left(1+\tau\right)^{-2+\frac{5}{2}}d\tau\lesssim\left(1+t\right)^{\frac{3}{2}}e^{-\frac{\left|x\right|-\mathbf{c}t}{2c_{0}}}\lesssim\left(1+t\right)^{\frac{3}{2}}e^{-\frac{\sqrt{1+t}}{4c_{0}}}e^{-\frac{\left|x\right|-\mathbf{c}t}{4c_{0}}}
\displaystyle\lesssim (1+t)2e|x|𝐜t4c0,\displaystyle\left(1+t\right)^{-2}e^{-\frac{\left|x\right|-\mathbf{c}t}{4c_{0}}}\hbox{,}

since |x|𝐜t1+t\left|x\right|-\mathbf{c}t\geq\sqrt{1+t}. Now we discuss two cases: (i) |x|𝐜t12(1+t)\left|x\right|-\mathbf{c}t\leq\frac{1}{2}\left(1+t\right), and (ii) |x|𝐜t12(1+t)\left|x\right|-\mathbf{c}t\geq\frac{1}{2}\left(1+t\right). For case (i),

|x|𝐜t2(|x|𝐜t)21+t,\left|x\right|-\mathbf{c}t\geq\frac{2\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\hbox{,}

which follows that

e|x|𝐜t4c0e(|x|𝐜t)22c0(1+t).e^{-\frac{\left|x\right|-\mathbf{c}t}{4c_{0}}}\lesssim e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{2c_{0}\left(1+t\right)}}\hbox{.}

For case (ii), it is easy to see

(1+t)2(|x|𝐜t)\left(1+t\right)\leq 2\left(\left|x\right|-\mathbf{c}t\right)

and thus

|x|=||x|𝐜t+𝐜t|(|x|𝐜t)+𝐜t(1+2𝐜)(|x|𝐜t)<4(|x|𝐜t),\left|x\right|=\left|\left|x\right|-\mathbf{c}t+\mathbf{c}t\right|\leq\left(\left|x\right|-\mathbf{c}t\right)+\mathbf{c}t\leq\left(1+2\mathbf{c}\right)\left(\left|x\right|-\mathbf{c}t\right)<4\left(\left|x\right|-\mathbf{c}t\right)\hbox{,}

so that

e|x|𝐜t4c0=e|x|𝐜t8c0e|x|𝐜t8c0e(1+t)16c0e|x|32c0et16c0e|x|32c0.e^{-\frac{\left|x\right|-\mathbf{c}t}{4c_{0}}}=e^{-\frac{\left|x\right|-\mathbf{c}t}{8c_{0}}}e^{-\frac{\left|x\right|-\mathbf{c}t}{8c_{0}}}\lesssim e^{-\frac{\left(1+t\right)}{16c_{0}}}e^{-\frac{\left|x\right|}{32c_{0}}}\lesssim e^{-\frac{t}{16c_{0}}}e^{-\frac{\left|x\right|}{32c_{0}}}\hbox{.}

Hence,

A21(1+t)2e(|x|𝐜t)22c0(1+t)+et16c0e|x|32c0.A_{21}\lesssim\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{2c_{0}\left(1+t\right)}}+e^{-\frac{t}{16c_{0}}}e^{-\frac{\left|x\right|}{32c_{0}}}\hbox{.}

Combining all above estimates, we have

A(1+t)2e(|x|𝐜t)2D^(1+t)+et+|x|c^A\lesssim\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{\widehat{D}\left(1+t\right)}}+e^{-\frac{t+\left|x\right|}{\widehat{c}}}

for some constants c^\widehat{c} and D^>0\widehat{D}>0.


Case 4: (x,t)D4\left(x,t\right)\in D_{4}. We split the integral into two parts

A=(023t+23tt)3()dydτ=:A1+A2.A=\left(\int_{0}^{\frac{2}{3}t}+\int_{\frac{2}{3}t}^{t}\right)\int_{\mathbb{R}^{3}}\left(\cdots\right)dyd\tau=:A_{1}+A_{2}\hbox{.}

For A1A_{1},

A1023t3(1+τ)2e|xy|c0et3c0𝑑y𝑑τet3c0et6c0e|x|3c0𝐜A_{1}\lesssim\int_{0}^{\frac{2}{3}t}\int_{\mathbb{R}^{3}}\left(1+\tau\right)^{-2}e^{-\frac{\left|x-y\right|}{c_{0}}}e^{-\frac{t}{3c_{0}}}dyd\tau\lesssim e^{-\frac{t}{3c_{0}}}\lesssim e^{-\frac{t}{6c_{0}}}e^{-\frac{\left|x\right|}{3c_{0}\mathbf{c}}}

since 1+t|x|𝐜t/2\sqrt{1+t}\leq\left|x\right|\leq\mathbf{c}t/2.

For A2A_{2}, we decompose 3\mathbb{R}^{3} into two parts

A2=23tt(|y||x|+𝐜τ2+|y|>|x|+𝐜τ2)()dydτ=:A21+A22.A_{2}=\int_{\frac{2}{3}t}^{t}\left(\int_{\left|y\right|\leq\frac{\left|x\right|+\mathbf{c}\tau}{2}}+\int_{\left|y\right|>\frac{\left|x\right|+\mathbf{c}\tau}{2}}\right)\left(\cdots\right)dyd\tau=:A_{21}+A_{22}\hbox{.}

If 23tτt\frac{2}{3}t\leq\tau\leq t, |y||x|+𝐜τ2\left|y\right|\leq\frac{\left|x\right|+\mathbf{c}\tau}{2}, then

𝐜τ|y|𝐜τ|x|2𝐜t3𝐜t4=𝐜t12𝐜t|x|12.\mathbf{c}\tau-\left|y\right|\geq\frac{\mathbf{c}\tau-\left|x\right|}{2}\geq\frac{\mathbf{c}t}{3}-\frac{\mathbf{c}t}{4}=\frac{\mathbf{c}t}{12}\geq\frac{\mathbf{c}t-\left|x\right|}{12}\hbox{.}

If 23tτt\frac{2}{3}t\leq\tau\leq t, |y|>|x|+𝐜τ2\left|y\right|>\frac{\left|x\right|+\mathbf{c}\tau}{2}, then

|xy||y||x|𝐜τ|x|2𝐜t12𝐜t|x|12.\left|x-y\right|\geq\left|y\right|-\left|x\right|\geq\frac{\mathbf{c}\tau-\left|x\right|}{2}\geq\frac{\mathbf{c}t}{12}\geq\frac{\mathbf{c}t-\left|x\right|}{12}\hbox{.}

Hence,

A21\displaystyle A_{21} \displaystyle\lesssim 23tt|y||x|+𝐜τ2(1+τ)2e(|y|𝐜τ)2D0(1+τ)e(tτ)+|xy|c0𝑑y𝑑τ\displaystyle\int_{\frac{2}{3}t}^{t}\int_{\left|y\right|\leq\frac{\left|x\right|+\mathbf{c}\tau}{2}}\left(1+\tau\right)^{-2}e^{-\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{D_{0}\left(1+\tau\right)}}e^{-\frac{\left(t-\tau\right)+\left|x-y\right|}{c_{0}}}dyd\tau
\displaystyle\lesssim (1+t)2e(𝐜t|x|)2144D0(1+t),\displaystyle\left(1+t\right)^{-2}e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{144D_{0}\left(1+t\right)}}\hbox{,}

and

A22\displaystyle A_{22} \displaystyle\lesssim 23tt|y|>|x|+𝐜τ2(1+t)2etτc0e|xy|2c0e𝐜t|x|24c0𝑑y𝑑τ\displaystyle\int_{\frac{2}{3}t}^{t}\int_{\left|y\right|>\frac{\left|x\right|+\mathbf{c}\tau}{2}}\left(1+t\right)^{-2}e^{-\frac{t-\tau}{c_{0}}}e^{-\frac{\left|x-y\right|}{2c_{0}}}e^{-\frac{\mathbf{c}t-\left|x\right|}{24c_{0}}}dyd\tau
\displaystyle\lesssim (1+t)2e𝐜t|x|24c0.\displaystyle\left(1+t\right)^{-2}e^{-\frac{\mathbf{c}t-\left|x\right|}{24c_{0}}}\hbox{.}

Since t1t\geq 1 and 𝐜t|x|>𝐜t2𝐜4(1+t)\mathbf{c}t-\left|x\right|>\frac{\mathbf{c}t}{2}\geq\frac{\mathbf{c}}{4}\left(1+t\right) for (x,t)D4\left(x,t\right)\in D_{4},

𝐜(1+t)4(𝐜t|x|),\mathbf{c}\left(1+t\right)\leq 4\left(\mathbf{c}t-\left|x\right|\right)\hbox{,}

and thus

|x|=||x|𝐜t+𝐜t|𝐜t|x|+𝐜t5(𝐜t|x|),\left|x\right|=\left|\left|x\right|-\mathbf{c}t+\mathbf{c}t\right|\leq\mathbf{c}t-\left|x\right|+\mathbf{c}t\leq 5\left(\mathbf{c}t-\left|x\right|\right)\hbox{,}

which implies that

e𝐜t|x|24c0=e𝐜t|x|48c0e𝐜t|x|48c0e𝐜(1+t)192c0e|x|240c0e𝐜t192c0e|x|240c0.e^{-\frac{\mathbf{c}t-\left|x\right|}{24c_{0}}}=e^{-\frac{\mathbf{c}t-\left|x\right|}{48c_{0}}}e^{-\frac{\mathbf{c}t-\left|x\right|}{48c_{0}}}\lesssim e^{-\frac{\mathbf{c}\left(1+t\right)}{192c_{0}}}e^{-\frac{\left|x\right|}{240c_{0}}}\lesssim e^{-\frac{\mathbf{c}t}{192c_{0}}}e^{-\frac{\left|x\right|}{240c_{0}}}\hbox{.}

Therefore,

A22e𝐭96c0e|x|192c0.A_{22}\lesssim e^{-\frac{\mathbf{t}}{96c_{0}}}e^{-\frac{\left|x\right|}{192c_{0}}}\hbox{.}

Combining this with A1A_{1} and A11A_{11}, we get the desired estimate

Aet6c0e|x|3c0𝐜+(1+t)2e(𝐜t|x|)2144D0(1+t)+e𝐭96c0e|x|192c0.A\lesssim e^{-\frac{t}{6c_{0}}}e^{-\frac{\left|x\right|}{3c_{0}\mathbf{c}}}+\left(1+t\right)^{-2}e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{144D_{0}\left(1+t\right)}}+e^{-\frac{\mathbf{t}}{96c_{0}}}e^{-\frac{\left|x\right|}{192c_{0}}}\hbox{.}

Case 5: (x,t)D5\left(x,t\right)\in D_{5}. We split the integral AA into three parts

A=(0t2+t2t2+|x|2𝐜+t2+|x|2𝐜t)3()dydτ=:A1+A2+A3.A=\left(\int_{0}^{\frac{t}{2}}+\int_{\frac{t}{2}}^{\frac{t}{2}+\frac{\left|x\right|}{2\mathbf{c}}}+\int_{\frac{t}{2}+\frac{\left|x\right|}{2\mathbf{c}}}^{t}\right)\int_{\mathbb{R}^{3}}\left(\cdots\right)dyd\tau=:A_{1}+A_{2}+A_{3}\hbox{.}

It immediately follows that

A10t23(1+τ)2e|xy|c0et2c0𝑑y𝑑τet2c0et4c0|x|4𝐜c0,A_{1}\lesssim\int_{0}^{\frac{t}{2}}\int_{\mathbb{R}^{3}}\left(1+\tau\right)^{-2}e^{-\frac{\left|x-y\right|}{c_{0}}}e^{-\frac{t}{2c_{0}}}dyd\tau\lesssim e^{-\frac{t}{2c_{0}}}\lesssim e^{-\frac{t}{4c_{0}}-\frac{\left|x\right|}{4\mathbf{c}c_{0}}}\hbox{,}

and

A2\displaystyle A_{2} \displaystyle\lesssim t2t2+|x|2𝐜3(1+τ)2e(|y|𝐜τ)2D0(1+τ)e(tτ)+|xy|c0𝑑y𝑑τ\displaystyle\int_{\frac{t}{2}}^{\frac{t}{2}+\frac{\left|x\right|}{2\mathbf{c}}}\int_{\mathbb{R}^{3}}\left(1+\tau\right)^{-2}e^{-\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{D_{0}\left(1+\tau\right)}}e^{-\frac{\left(t-\tau\right)+\left|x-y\right|}{c_{0}}}dyd\tau
\displaystyle\lesssim (1+t)2t2t2+|x|2𝐜3e|xy|c0etτ2c0e12c0(t2|x|2𝐜)𝑑y𝑑τ\displaystyle\left(1+t\right)^{-2}\int_{\frac{t}{2}}^{\frac{t}{2}+\frac{\left|x\right|}{2\mathbf{c}}}\int_{\mathbb{R}^{3}}e^{-\frac{\left|x-y\right|}{c_{0}}}e^{-\frac{t-\tau}{2c_{0}}}e^{-\frac{1}{2c_{0}}\left(\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}\right)}dyd\tau
\displaystyle\lesssim (1+t)2e𝐜t|x|4c0𝐜.\displaystyle\left(1+t\right)^{-2}e^{-\frac{\mathbf{c}t-\left|x\right|}{4c_{0}\mathbf{c}}}\hbox{.}

For A3A_{3}, we decompose 3\mathbb{R}^{3} into two parts

A3=t2+|x|2𝐜t(|y||x|+𝐜τ2+|y|>|x|+𝐜τ2)()𝑑y𝑑τ=A31+A32.A_{3}=\int_{\frac{t}{2}+\frac{\left|x\right|}{2\mathbf{c}}}^{t}\left(\int_{\left|y\right|\leq\frac{\left|x\right|+\mathbf{c}\tau}{2}}+\int_{\left|y\right|>\frac{\left|x\right|+\mathbf{c}\tau}{2}}\right)\left(\cdots\right)dyd\tau=A_{31}+A_{32}\hbox{.}

If t2+|x|2𝐜τt\frac{t}{2}+\frac{\left|x\right|}{2\mathbf{c}}\leq\tau\leq t, |y||x|+𝐜τ2\left|y\right|\leq\frac{\left|x\right|+\mathbf{c}\tau}{2}, then

𝐜τ|y|𝐜τ|x|2𝐜t|x|4.\mathbf{c}\tau-\left|y\right|\geq\frac{\mathbf{c}\tau-\left|x\right|}{2}\geq\frac{\mathbf{c}t-\left|x\right|}{4}\hbox{.}

If t2+|x|2𝐜τt\frac{t}{2}+\frac{\left|x\right|}{2\mathbf{c}}\leq\tau\leq t, |y|>|x|+𝐜τ2\left|y\right|>\frac{\left|x\right|+\mathbf{c}\tau}{2}, then

|xy||y||x|>𝐜τ|x|2𝐜t|x|4.\left|x-y\right|\geq\left|y\right|-\left|x\right|>\frac{\mathbf{c}\tau-\left|x\right|}{2}\geq\frac{\mathbf{c}t-\left|x\right|}{4}\hbox{.}

Hence,

A3\displaystyle A_{3} =\displaystyle= A31+A32\displaystyle A_{31}+A_{32}
\displaystyle\lesssim t2+|x|2𝐜t|y||x|+𝐜τ2(1+t)2e(𝐜t|x|)216D0(1+t)e(tτ)+|xy|c0𝑑y𝑑τ\displaystyle\int_{\frac{t}{2}+\frac{\left|x\right|}{2\mathbf{c}}}^{t}\int_{\left|y\right|\leq\frac{\left|x\right|+\mathbf{c}\tau}{2}}\left(1+t\right)^{-2}e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{16D_{0}\left(1+t\right)}}e^{-\frac{\left(t-\tau\right)+\left|x-y\right|}{c_{0}}}dyd\tau
+t2+|x|2𝐜t|y|>|x|+𝐜τ2(1+t)2e|xy|2c0etτc0e𝐜t|x|8c0𝑑y𝑑τ\displaystyle+\int_{\frac{t}{2}+\frac{\left|x\right|}{2\mathbf{c}}}^{t}\int_{\left|y\right|>\frac{\left|x\right|+\mathbf{c}\tau}{2}}\left(1+t\right)^{-2}e^{-\frac{\left|x-y\right|}{2c_{0}}}e^{-\frac{t-\tau}{c_{0}}}e^{-\frac{\mathbf{c}t-\left|x\right|}{8c_{0}}}dyd\tau
\displaystyle\lesssim (1+t)2e(𝐜t|x|)216D0(1+t)+(1+t)2e𝐜t|x|8c0.\displaystyle\left(1+t\right)^{-2}e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{16D_{0}\left(1+t\right)}}+\left(1+t\right)^{-2}e^{-\frac{\mathbf{c}t-\left|x\right|}{8c_{0}}}\hbox{.}

Since 1+t𝐜t|x|𝐜t2𝐜2(1+t)\sqrt{1+t}\leq\mathbf{c}t-\left|x\right|\leq\frac{\mathbf{c}t}{2}\leq\frac{\mathbf{c}}{2}\left(1+t\right), we have

𝐜t|x|2(𝐜t|x|)2𝐜(1+t),\mathbf{c}t-\left|x\right|\geq\frac{2\left(\mathbf{c}t-\left|x\right|\right)^{2}}{\mathbf{c}\left(1+t\right)}\hbox{,}

and thus

e𝐜t|x|4c0𝐜e(𝐜t|x|)22c0𝐜2(1+t)e𝐜t|x|8c0e(𝐜t|x|)24c0𝐜(1+t).e^{-\frac{\mathbf{c}t-\left|x\right|}{4c_{0}\mathbf{c}}}\lesssim e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{2c_{0}\mathbf{c}^{2}\left(1+t\right)}}\hbox{, \ \ }e^{-\frac{\mathbf{c}t-\left|x\right|}{8c_{0}}}\lesssim e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{4c_{0}\mathbf{c}\left(1+t\right)}}\hbox{.}

Consequently,

A2(1+t)2e(𝐜t|x|)22c0𝐜2(1+t)A3(1+t)2e(𝐜t|x|)216D0(1+t)+(1+t)2e(𝐜t|x|)24c0𝐜(1+t).A_{2}\lesssim\left(1+t\right)^{-2}e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{2c_{0}\mathbf{c}^{2}\left(1+t\right)}}\hbox{, \ \ }A_{3}\lesssim\left(1+t\right)^{-2}e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{16D_{0}\left(1+t\right)}}+\left(1+t\right)^{-2}e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{4c_{0}\mathbf{c}\left(1+t\right)}}\hbox{.}

Combining this with A1A_{1}, we get the desired estimate. ∎

Proof of Lemma 21 (Riesz wave convolved with exponential decay). .

We compute the integral for two cases: |x|>𝐜t\left|x\right|>\mathbf{c}t and |x|𝐜t\left|x\right|\leq\mathbf{c}t.

Case 1: |x|>𝐜t\left|x\right|>\mathbf{c}t. Let 0τt0\leq\tau\leq t. If |x|>𝐜t\left|x\right|>\mathbf{c}t and |y|<𝐜τ\left|y\right|<\mathbf{c}\tau, then

|xy||x||y||x|𝐜t+𝐜t|y||x|𝐜t0.\left|x-y\right|\geq\left|x\right|-\left|y\right|\geq\left|x\right|-\mathbf{c}t+\mathbf{c}t-\left|y\right|\geq\left|x\right|-\mathbf{c}t\geq 0\hbox{.}

Hence,

0t3e(tτ)+|xy|c01{|y|<𝐜τ}(1+τ)3/2(1+|y|21+τ)3/2𝑑y𝑑τ\displaystyle\int_{0}^{t}\int_{\mathbb{R}^{3}}e^{-\frac{\left(t-\tau\right)+\left|x-y\right|}{c_{0}}}1_{\{\left|y\right|<\mathbf{c}\tau\}}\left(1+\tau\right)^{-3/2}\left(1+\frac{\left|y\right|^{2}}{1+\tau}\right)^{-3/2}dyd\tau
\displaystyle\lesssim e|x|𝐜t2c00t3etτc0e|xy|2c0(1+τ)3/2(1+|y|21+τ)3/2𝑑y𝑑τ\displaystyle e^{-\frac{\left|x\right|-\mathbf{c}t}{2c_{0}}}\int_{0}^{t}\int_{\mathbb{R}^{3}}e^{-\frac{t-\tau}{c_{0}}}e^{-\frac{\left|x-y\right|}{2c_{0}}}\left(1+\tau\right)^{-3/2}\left(1+\frac{\left|y\right|^{2}}{1+\tau}\right)^{-3/2}dyd\tau
=\displaystyle= e|x|𝐜t2c0(0t2+t2t)3()dydτ=:B1+B2.\displaystyle e^{-\frac{\left|x\right|-\mathbf{c}t}{2c_{0}}}\left(\int_{0}^{\frac{t}{2}}+\int_{\frac{t}{2}}^{t}\right)\int_{\mathbb{R}^{3}}\left(\cdots\right)dyd\tau=:B_{1}+B_{2}\hbox{.}

It immediately follows that

B1et2c0e|x|𝐜t2c00t23e|xy|2c0(1+τ)3/2𝑑y𝑑τet2c0e|x|𝐜t2c0.B_{1}\leq e^{-\frac{t}{2c_{0}}}e^{-\frac{\left|x\right|-\mathbf{c}t}{2c_{0}}}\int_{0}^{\frac{t}{2}}\int_{\mathbb{R}^{3}}e^{-\frac{\left|x-y\right|}{2c_{0}}}\left(1+\tau\right)^{-3/2}dyd\tau\lesssim e^{-\frac{t}{2c_{0}}}e^{-\frac{\left|x\right|-\mathbf{c}t}{2c_{0}}}\hbox{.}

As for B2B_{2},

B2\displaystyle B_{2} =\displaystyle= e|x|𝐜t2c0t2t(|y||x|2+|y|>|x|2)etτc0e|xy|2c0(1+τ)3/2(1+|y|21+τ)3/2𝑑y𝑑τ\displaystyle e^{-\frac{\left|x\right|-\mathbf{c}t}{2c_{0}}}\int_{\frac{t}{2}}^{t}\left(\int_{\left|y\right|\leq\frac{\left|x\right|}{2}}+\int_{\left|y\right|>\frac{\left|x\right|}{2}}\right)e^{-\frac{t-\tau}{c_{0}}}e^{-\frac{\left|x-y\right|}{2c_{0}}}\left(1+\tau\right)^{-3/2}\left(1+\frac{\left|y\right|^{2}}{1+\tau}\right)^{-3/2}dyd\tau
\displaystyle\leq e|x|𝐜t2c0e|x|8c0t2t|y||x|2etτc0e|xy|4c0𝑑y𝑑τ\displaystyle e^{-\frac{\left|x\right|-\mathbf{c}t}{2c_{0}}}e^{-\frac{\left|x\right|}{8c_{0}}}\int_{\frac{t}{2}}^{t}\int_{\left|y\right|\leq\frac{\left|x\right|}{2}}e^{-\frac{t-\tau}{c_{0}}}e^{-\frac{\left|x-y\right|}{4c_{0}}}dyd\tau
+(1+t)3/2(1+|x|21+t)3/2e|x|𝐜t2c0t2t|y|>|x|2etτc0e|xy|2c0𝑑y𝑑τ\displaystyle+\left(1+t\right)^{-3/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}e^{-\frac{\left|x\right|-\mathbf{c}t}{2c_{0}}}\int_{\frac{t}{2}}^{t}\int_{\left|y\right|>\frac{\left|x\right|}{2}}e^{-\frac{t-\tau}{c_{0}}}e^{-\frac{\left|x-y\right|}{2c_{0}}}dyd\tau
\displaystyle\lesssim e|x|𝐜t2c0e|x|8c0+(1+t)3e|x|𝐜t2c0(1+t)3e|x|𝐜t2c0.\displaystyle e^{-\frac{\left|x\right|-\mathbf{c}t}{2c_{0}}}e^{-\frac{\left|x\right|}{8c_{0}}}+\left(1+t\right)^{-3}e^{-\frac{\left|x\right|-\mathbf{c}t}{2c_{0}}}\lesssim\left(1+t\right)^{-3}e^{-\frac{\left|x\right|-\mathbf{c}t}{2c_{0}}}\hbox{.}

since |x|>𝐜t\left|x\right|>\mathbf{c}t.

Now, we consider the cases: 0|x|𝐜t2𝐜(1+t)0\leq\left|x\right|-\mathbf{c}t\leq 2\mathbf{c}\left(1+t\right) and |x|𝐜t2𝐜(1+t)\left|x\right|-\mathbf{c}t\geq 2\mathbf{c}\left(1+t\right). For 0|x|𝐜t2𝐜(1+t)0\leq\left|x\right|-\mathbf{c}t\leq 2\mathbf{c}\left(1+t\right), we have

|x|𝐜t(|x|𝐜t)22𝐜(1+t),\left|x\right|-\mathbf{c}t\geq\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{2\mathbf{c}\left(1+t\right)}\hbox{,}

so that

e|x|𝐜t2c0e(|x|𝐜t)24𝐜c0(1+t).e^{-\frac{\left|x\right|-\mathbf{c}t}{2c_{0}}}\leq e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{4\mathbf{c}c_{0}\left(1+t\right)}}\hbox{.}

For |x|𝐜t2𝐜(1+t)\left|x\right|-\mathbf{c}t\geq 2\mathbf{c}\left(1+t\right), it follows that

|x|𝐜t=|x|2+|x|2𝐜t|x|2+𝐜t2|x|2+t2,\left|x\right|-\mathbf{c}t=\frac{\left|x\right|}{2}+\frac{\left|x\right|}{2}-\mathbf{c}t\geq\frac{\left|x\right|}{2}+\frac{\mathbf{c}t}{2}\geq\frac{\left|x\right|}{2}+\frac{t}{2}\hbox{,}

and thus

e|x|𝐜t2c0e|x|+t4c0.e^{-\frac{\left|x\right|-\mathbf{c}t}{2c_{0}}}\leq e^{-\frac{\left|x\right|+t}{4c_{0}}}\hbox{.}

Consequently,

0t3e(tτ)+|xy|c01{|y|<𝐜τ}(1+τ)3/2(1+|y|21+τ)3/2𝑑y𝑑τ\displaystyle\int_{0}^{t}\int_{\mathbb{R}^{3}}e^{-\frac{\left(t-\tau\right)+\left|x-y\right|}{c_{0}}}1_{\{\left|y\right|<\mathbf{c}\tau\}}\left(1+\tau\right)^{-3/2}\left(1+\frac{\left|y\right|^{2}}{1+\tau}\right)^{-3/2}dyd\tau
\displaystyle\lesssim (1+t)3e(|x|𝐜t)24𝐜c0(1+t)+e|x|+t4c0.\displaystyle\left(1+t\right)^{-3}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{4\mathbf{c}c_{0}\left(1+t\right)}}+e^{-\frac{\left|x\right|+t}{4c_{0}}}\hbox{.}

Case 2: |x|<𝐜t\left|x\right|<\mathbf{c}t. Direct computation gives

B\displaystyle B \displaystyle\lesssim et2c00t/23e(tτ)+|xy|c0𝑑y𝑑τ\displaystyle e^{-\frac{t}{2c_{0}}}\int_{0}^{t/2}\int_{\mathbb{R}^{3}}e^{-\frac{\left(t-\tau\right)+\left|x-y\right|}{c_{0}}}dyd\tau
+(1+t)3/2(1+|x|21+t)3/2t/2t|y|>|x|2e(tτ)+|xy|c0𝑑y𝑑τ\displaystyle+\left(1+t\right)^{-3/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}\int_{t/2}^{t}\int_{\left|y\right|>\frac{\left|x\right|}{2}}e^{-\frac{\left(t-\tau\right)+\left|x-y\right|}{c_{0}}}dyd\tau
+(1+t)3/2e|x|4c0t/2t|y||x|2etτc0e|xy|2c0𝑑y𝑑τ\displaystyle+\left(1+t\right)^{-3/2}e^{-\frac{\left|x\right|}{4c_{0}}}\int_{t/2}^{t}\int_{\left|y\right|\leq\frac{\left|x\right|}{2}}e^{-\frac{t-\tau}{c_{0}}}e^{-\frac{\left|x-y\right|}{2c_{0}}}dyd\tau
\displaystyle\lesssim et2c0+(1+t)3/2(1+|x|21+t)3/2\displaystyle e^{-\frac{t}{2c_{0}}}+\left(1+t\right)^{-3/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}
\displaystyle\lesssim et+|x|4cc0+𝟏{|x|<𝐜t}(1+t)3/2(1+|x|21+t)3/2.\displaystyle e^{-\frac{t+\left|x\right|}{4cc_{0}}}+\mathbf{1}_{\{\left|x\right|<\mathbf{c}t\}}\left(1+t\right)^{-3/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}\hbox{.}

To sum up,

B𝟏{|x|<𝐜t}(1+t)3/2(1+|x|21+t)3/2+et+|x|c^0+(1+t)2e(|x|𝐜t)2D^0(1+t)B\lesssim\mathbf{1}_{\{\left|x\right|<\mathbf{c}t\}}\left(1+t\right)^{-3/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3/2}+e^{-\frac{t+\left|x\right|}{\widehat{c}_{0}}}+\left(1+t\right)^{-2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{\widehat{D}_{0}\left(1+t\right)}}

for some constants D^0\widehat{D}_{0}, c^0>0\widehat{c}_{0}>0. ∎

6.2. Nonlinear wave interaction

Lemma 22 (Diffusion wave convolved with Diffusion wave).
(1+t)2(1+|x|21+t)32x,t(1+t)3(1+|x|21+t)3\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}*_{x,t}\left(1+t\right)^{-3}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3}
\displaystyle\lesssim (1+t)2(1+|x|21+t)32.\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{.}
Lemma 23 (Space-time exponential decay convolved with Huygens wave).
et+|x|c0x,t(1+t)4(1+(|x|𝐜t)21+t)2\displaystyle e^{-\frac{t+|x|}{c_{0}}}*_{x,t}\left(1+t\right)^{-4}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-2}
\displaystyle\lesssim (1+t)4(1+(|x|𝐜t)21+t)2.\displaystyle\left(1+t\right)^{-4}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-2}\hbox{.}
Lemma 24 (Riesz wave convolved with Huygens wave).
I\displaystyle I =\displaystyle= 𝟏{|x|𝐜t}(1+t)2(1+|x|21+t)32x,t(1+t)4(1+(|x|𝐜t)21+t)2\displaystyle\mathbf{1}_{\{\left|x\right|\leq\mathbf{c}t\}}\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\ast_{x,t}\left(1+t\right)^{-4}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-2}
\displaystyle\lesssim (1+t)2(1+|x|21+t)32+(1+t)5/2(1+(|x|𝐜t)21+t)1.\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{.}
Lemma 25 (Huygens wave convolved with Huygens wave).
J\displaystyle J =\displaystyle= (1+t)5/2e(|x|𝐜t)2D0(1+t)x,t(1+t)4(1+(|x|𝐜t)21+t)2\displaystyle\left(1+t\right)^{-5/2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{D_{0}\left(1+t\right)}}*_{x,t}\left(1+t\right)^{-4}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-2}
\displaystyle\lesssim (1+t)2(1+|x|21+t)32+(1+t)5/2(1+(|x|𝐜t)21+t)1.\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{.}
Lemma 26 (Huygens wave convolved with diffusion wave).
K\displaystyle K =\displaystyle= (1+t)5/2e(|x|𝐜t)2D0(1+t)x,t(1+t)3(1+|x|21+t)3\displaystyle\left(1+t\right)^{-5/2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{D_{0}\left(1+t\right)}}*_{x,t}\left(1+t\right)^{-3}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3}
\displaystyle\lesssim (1+t)2(1+|x|21+t)32+(1+t)5/2(1+(|x|𝐜t)21+t)1.\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{.}
Lemma 27 (Diffusion wave convolutied with Huygens wave).
L\displaystyle L =\displaystyle= (1+t)2e|x|2D0(1+t)x,t(1+t)4(1+(|x|𝐜t)21+t)2\displaystyle\left(1+t\right)^{-2}e^{-\frac{\left|x\right|^{2}}{D_{0}\left(1+t\right)}}\ast_{x,t}\left(1+t\right)^{-4}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-2}
\displaystyle\lesssim (1+t)2(1+|x|21+t)32+(1+t)5/2(1+(|x|𝐜t)21+t)1.\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{.}

We omit the proof of Lemma 22 and Lemma 23. Before we proceed to the detailed proof of Lemmas 24-27, let us present some heuristic calculations to help understand the mechanism of nonlinear wave interactions. We use two examples for illustration: the convolution of two Huygens waves (Lemma 25) and convolution of diffusion wave with a Huygens wave (Lemma 27).

Heuristic estimate for Lemma 25.

Set 𝐜=1\mathbf{c}=1 for simplicity. Then

(26) J=0t3(1+ts)5/2e(|xy|(ts))2D0(ts)(1+s)4(1+(|y|s)21+s)2𝑑y𝑑s.J=\int_{0}^{t}\int_{{\mathbb{R}}^{3}}(1+t-s)^{-5/2}e^{-\frac{(\lvert x-y\rvert-(t-s))^{2}}{D_{0}(t-s)}}(1+s)^{-4}\Bigl{(}1+\frac{\left(\left|y\right|-s\right)^{2}}{1+s}\Bigr{)}^{-2}dyds.

We can interpret (1+ts)5/2e(|xy|(ts))2D0(ts)(1+t-s)^{-5/2}e^{-\frac{(\lvert x-y\rvert-(t-s))^{2}}{D_{0}(t-s)}} as a receiver located at (x,t)(x,t) that can only receive signals along the wave cone concentrated on |xy|=(ts)\lvert x-y\rvert=(t-s) with thickness ts\sqrt{t-s}. Similarly, (1+s)4(1+(|y|s)21+s)2(1+s)^{-4}\Bigl{(}1+\frac{\left(\left|y\right|-s\right)^{2}}{1+s}\Bigr{)}^{-2} can be viewed as a sender located at (0,0)(0,0) that sends signals along the wave cone concentrated on |y|=s\lvert y\rvert=s with thickness s\sqrt{s}.

Refer to caption
Refer to caption
Figure 2. Interaction between two Huygens waves

During the interaction process, the interaction becomes strong in the following space-time region (See Figure 2)

(27) E={(y,s)|||xy|(ts)|O(1)ts and ||y|s|O(1)s}.E=\left\{(y,s)\big{|}\,\lvert\lvert x-y\rvert-(t-s)\rvert\leq O(1)\sqrt{t-s}\mbox{ and }\lvert\lvert y\rvert-s\rvert\leq O(1)\sqrt{s}\right\}.

Inside this region, the space decay terms in the convolution are of order O(1)O(1), and the decay is mainly from time factor. The key point is the sharp estimate of the volume for the strong interaction region.

If |x|>t\lvert x\rvert>t, as ss increases from 0 to tt, the receiving and sending wave cones are almost disjoint, so the interaction is very weak.

Now we focus the case where O(1)t<|x|<tO(1)tO(1)\sqrt{t}<\lvert x\rvert<t-O(1)\sqrt{t}. The interaction process starts at s=(t|x|)/2s=(t-\lvert x\rvert)/2 and ends at s=(t+|x|)/2s=(t+\lvert x\rvert)/2 (See Figure 2). To satisfy the condition in (27), one has

{||xy|(ts)|O(1)ts,||y|s|O(1)s.\left\{\begin{aligned} &\lvert\lvert x-y\rvert-(t-s)\rvert\leq O(1)\sqrt{t-s},\\ &\lvert\lvert y\rvert-s\rvert\leq O(1)\sqrt{s}.\end{aligned}\right.

Let r=|y|r=\lvert y\rvert, θ\theta be the angle between xx and yy, and set O(1)=1O(1)=1. The above constraints are equivalent to

(28) {||x|2+r22r|x|cosθ(ts)|ts,|rs|s,\left\{\begin{aligned} &\lvert\sqrt{\lvert x\rvert^{2}+r^{2}-2r|x|\cos\theta}-(t-s)\rvert\leq\sqrt{t-s},\\ &\lvert r-s\rvert\leq\sqrt{s},\end{aligned}\right.

The first equation of (28) implies

|x|2+r2(ts)2(ts)2r|x|(ts)3/2r|x|cosθ|x|2+r2(ts)2(ts)2r|x|+(ts)3/2r|x|\frac{\lvert x\rvert^{2}+r^{2}-(t-s)^{2}-(t-s)}{2r\lvert x\rvert}-\frac{(t-s)^{3/2}}{r\lvert x\rvert}\leq\cos\theta\leq\frac{\lvert x\rvert^{2}+r^{2}-(t-s)^{2}-(t-s)}{2r\lvert x\rvert}+\frac{(t-s)^{3/2}}{r\lvert x\rvert}

This leads to

Δcosθ(ts)3/2r|x|.\Delta\cos\theta\approx\frac{(t-s)^{3/2}}{r\lvert x\rvert}.

For ss large, rsr\approx s, Δrs\Delta r\approx\sqrt{s}. Then inside the strong interaction region, (26) is approximated by

J\displaystyle J t|x|2t+|x|2(1+ts)5/2(1+s)4s2sr2dr(ts)3/2s|x|sinθdθ𝑑s\displaystyle\approx\int_{\frac{t-\lvert x\rvert}{2}}^{\frac{t+\lvert x\rvert}{2}}(1+t-s)^{-5/2}(1+s)^{-4}\underset{r^{2}dr}{\underbrace{s^{2}\sqrt{s}}}\,\underset{\sin\theta d\theta}{\underbrace{\frac{(t-s)^{3/2}}{s\lvert x\rvert}}}ds
t|x|2t+|x|2(1+ts)1(1+s)5/2𝑑s1|x|\displaystyle\lesssim\int_{\frac{t-\lvert x\rvert}{2}}^{\frac{t+\lvert x\rvert}{2}}(1+t-s)^{-1}(1+s)^{-5/2}ds\frac{1}{\lvert x\rvert}
(t|x|2t2(1+t)1(1+s)5/2𝑑s+t2t+|x|2(1+ts)1(1+t)5/2𝑑s)1|x|\displaystyle\lesssim\Bigl{(}\int_{\frac{t-\lvert x\rvert}{2}}^{\frac{t}{2}}(1+t)^{-1}(1+s)^{-5/2}ds+\int_{\frac{t}{2}}^{\frac{t+\lvert x\rvert}{2}}(1+t-s)^{-1}(1+t)^{-5/2}ds\Bigr{)}\frac{1}{\lvert x\rvert}
[(1+t)1(1+t|x|)3/2+(1+t)5/2lntt|x|]1|x|.\displaystyle\lesssim\Bigl{[}(1+t)^{-1}(1+t-\lvert x\rvert)^{-3/2}+(1+t)^{-5/2}\ln\frac{t}{t-\lvert x\rvert}\Bigr{]}\frac{1}{\lvert x\rvert}.

When t|x|t/2\sqrt{t}\leq\lvert x\rvert\leq t/2, it is bounded by

(1+t)5/2|x|1(1+t)2(1+|x|21+t)3/2.(1+t)^{-5/2}\lvert x\rvert^{-1}\lesssim(1+t)^{-2}\Bigl{(}1+\frac{\lvert x\rvert^{2}}{1+t}\Bigr{)}^{-3/2}.

When t/2|x|ttt/2\leq\lvert x\rvert\leq t-\sqrt{t}, it is bounded by

t2(1+t|x|)3/2+(1+t)5/2t2(t|x|)2(1+t)1t5/2(1+(t|x|)21+t)1.t^{-2}(1+t-\lvert x\rvert)^{-3/2}+(1+t)^{-5/2}\frac{t^{2}}{(t-\lvert x\rvert)^{2}}(1+t)^{-1}\lesssim t^{-5/2}\Bigl{(}1+\frac{(t-\lvert x\rvert)^{2}}{1+t}\Bigr{)}^{-1}.

This is the desired estimate in Lemma 25. ∎

Heuristic estimate for Lemma 26.

Set 𝐜=1\mathbf{c}=1, and one has

K=0t3(1+ts)5/2e(|xy|(ts))2D0(1+ts)(1+s)3(1+|y|21+s)3𝑑y𝑑s.K=\int_{0}^{t}\int_{\mathbb{R}^{3}}\left(1+t-s\right)^{-5/2}e^{-\frac{\left(\left|x-y\right|-(t-s)\right)^{2}}{D_{0}\left(1+t-s\right)}}\left(1+s\right)^{-3}\left(1+\frac{\left|y\right|^{2}}{1+s}\right)^{-3}dyds.

Similar as heuristics argument of Lemma 25, we view (1+ts)5/2e(|xy|(ts))2D0(1+ts)(1+t-s)^{-5/2}e^{-\frac{\left(\left|x-y\right|-(t-s)\right)^{2}}{D_{0}\left(1+t-s\right)}} as a receiver and (1+s)3(1+|y|21+s)3\left(1+s\right)^{-3}\left(1+\frac{\left|y\right|^{2}}{1+s}\right)^{-3} as a sender, to have the following figure representing the interaction:

Refer to caption
Figure 3. Interaction between Huygens and diffusion wave

For O(1)t|x|tO(1)tO(1)\sqrt{t}\leq\lvert x\rvert\leq t-O(1)\sqrt{t}, the interaction occurs at st|x|s\approx t-\lvert x\rvert and its duration is of the order s\sqrt{s}. So the volume of the interaction region in space-time is approximated by

s3/2vol of spacesvol of time\underset{\mbox{vol of space}}{\underbrace{s^{3/2}}}\cdot\underset{\mbox{vol of time}}{\underbrace{\sqrt{s}}}

The contribution of the integrand during the interaction is approximated by

(1+ts)5/2(1+s)3|st|x|.(1+t-s)^{-5/2}(1+s)^{-3}\Big{|}_{s\approx t-\lvert x\rvert}.

So we conclude

K\displaystyle K (1+ts)5/2(1+s)3s2|st|x|(1+|x|)5/2(1+t|x|)1\displaystyle\approx(1+t-s)^{-5/2}(1+s)^{-3}s^{2}\Big{|}_{s\approx t-\lvert x\rvert}\approx(1+\lvert x\rvert)^{-5/2}(1+t-\lvert x\rvert)^{-1}
{(1+t)1(1+|x|)5/2(1+t)2(1+|x|21+t)3/2,t|x|t/2,(1+t)5/2(1+t|x|)1(1+t)5/2(1+(t|x|)21+t)1,t/2|x|tt.\displaystyle\lesssim\begin{cases}(1+t)^{-1}(1+\lvert x\rvert)^{-5/2}\lesssim(1+t)^{-2}\Bigl{(}1+\frac{\lvert x\rvert^{2}}{1+t}\Bigr{)}^{-3/2},&\sqrt{t}\leq\lvert x\rvert\leq t/2,\\ (1+t)^{-5/2}(1+t-\lvert x\rvert)^{-1}\lesssim(1+t)^{-5/2}\Bigl{(}1+\frac{(t-\lvert x\rvert)^{2}}{1+t}\Bigr{)}^{-1},&t/2\leq\lvert x\rvert\leq t-\sqrt{t}.\end{cases}

This yields the desired estimate in Lemma 26. ∎

Other convolutions can be estimated heuristically in a similar manner. It turns out that the convolutions in Lemmas 25 and 26 are the dominated ones among all the nonlinear wave couplings.

We now begin the rigorous proofs, transforming the previous heuristic calculations into refined (and complex) convolution estimates!

Proof of Lemma 24.

(Riesz wave convolved with Huygens wave).

Case 1: (x,t)D1\left(x,t\right)\in D_{1}. Direct computation gives

I\displaystyle I =\displaystyle= (0t2+t2t)3()𝑑y𝑑τ\displaystyle\left(\int_{0}^{\frac{t}{2}}+\int_{\frac{t}{2}}^{t}\right)\int_{\mathbb{R}^{3}}\left(\cdots\right)dyd\tau
\displaystyle\lesssim (1+t)20t23(1+τ)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\left(1+t\right)^{-2}\int_{0}^{\frac{t}{2}}\int_{\mathbb{R}^{3}}\left(1+\tau\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
+(1+t)4t2t|xy|𝐜(tτ)(1+tτ)2(1+|xy|2D0(1+tτ))32𝑑y𝑑τ\displaystyle+\left(1+t\right)^{-4}\int_{\frac{t}{2}}^{t}\int_{\left|x-y\right|\leq\mathbf{c}\left(t-\tau\right)}\left(1+t-\tau\right)^{-2}\left(1+\frac{\left|x-y\right|^{2}}{D_{0}\left(1+t-\tau\right)}\right)^{-\frac{3}{2}}dyd\tau
\displaystyle\lesssim (1+t)2+(1+t)4(1+t)3/4(1+t)2(1+|x|21+t)32.\displaystyle\left(1+t\right)^{-2}+\left(1+t\right)^{-4}\left(1+t\right)^{3/4}\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

Case 2: (x,t)D2\left(x,t\right)\in D_{2}. We split the integral II into two parts

I=(0t4+t4t)3()dydτ=:I1+I2.I=\left(\int_{0}^{\frac{t}{4}}+\int_{\frac{t}{4}}^{t}\right)\int_{\mathbb{R}^{3}}\left(\cdots\right)dyd\tau=:I_{1}+I_{2}\hbox{.}

For I2I_{2}, one can see that

I2\displaystyle I_{2} \displaystyle\lesssim (1+t)4t4t3𝟏{|xy|𝐜(tτ)}(1+tτ)2(1+|xy|2D0(1+tτ))32𝑑y𝑑τ\displaystyle\left(1+t\right)^{-4}\int_{\frac{t}{4}}^{t}\int_{\mathbb{R}^{3}}\mathbf{1}_{\{\left|x-y\right|\leq\mathbf{c}\left(t-\tau\right)\}}\left(1+t-\tau\right)^{-2}\left(1+\frac{\left|x-y\right|^{2}}{D_{0}\left(1+t-\tau\right)}\right)^{-\frac{3}{2}}dyd\tau
\displaystyle\lesssim (1+t)4t4t(1+tτ)1/4𝑑τ(1+t)4(1+t)3/4\displaystyle\left(1+t\right)^{-4}\int_{\frac{t}{4}}^{t}\left(1+t-\tau\right)^{-1/4}d\tau\lesssim\left(1+t\right)^{-4}\left(1+t\right)^{3/4}
\displaystyle\lesssim (1+t)5/2(1+(|x|𝐜t)21+t)1.\displaystyle\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{.}

For I1I_{1}, we further decompose 3\mathbb{R}^{3} into two parts

I1=(0t4|y|23|x|+0t4|y|>23|x|)()dydτ=I11+I12.I_{1}=\left(\int_{0}^{\frac{t}{4}}\int_{\left|y\right|\leq\frac{2}{3}\left|x\right|}+\int_{0}^{\frac{t}{4}}\int_{\left|y\right|>\frac{2}{3}\left|x\right|}\right)\left(\cdots\right)dyd\tau=I_{11}+I_{12}\hbox{.}

If |y|23|x|\left|y\right|\leq\frac{2}{3}\left|x\right|, then we have

|xy||x||y||x|3,\left|x-y\right|\geq\left|x\right|-\left|y\right|\geq\frac{\left|x\right|}{3}\hbox{,}

and thus

I11\displaystyle I_{11} \displaystyle\lesssim (1+t)2(1+|x|21+t)320t43(1+τ)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\int_{0}^{\frac{t}{4}}\int_{\mathbb{R}^{3}}\left(1+\tau\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)2(1+|x|21+t)320t4(1+τ)4(1+τ)52𝑑τ\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\int_{0}^{\frac{t}{4}}\left(1+\tau\right)^{-4}\left(1+\tau\right)^{\frac{5}{2}}d\tau
\displaystyle\lesssim (1+t)2(1+|x|21+t)32.\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

If |y|>23|x|\left|y\right|>\frac{2}{3}\left|x\right| and 0τt40\leq\tau\leq\frac{t}{4},

|y|𝐜τ23|x|𝐜τ|x|3+13(𝐜t1+t)𝐜t4|x|3+124𝐜t\left|y\right|-\mathbf{c}\tau\geq\frac{2}{3}\left|x\right|-\mathbf{c}\tau\geq\frac{\left|x\right|}{3}+\frac{1}{3}\left(\mathbf{c}t-\sqrt{1+t}\right)-\frac{\mathbf{c}t}{4}\geq\frac{\left|x\right|}{3}+\frac{1}{24}\mathbf{c}t

for t40t\geq 40. We mention here that (x,t)D2\left(x,t\right)\in D_{2} with t2+21+𝐜2𝐜2(3.15)t\geq\frac{2+2\sqrt{1+\mathbf{c}^{2}}}{\mathbf{c}^{2}}(\doteqdot 3.15) implies that |x|1+t\left|x\right|\geq\sqrt{1+t}. Hence for t40t\geq 40,

I12\displaystyle I_{12} \displaystyle\lesssim (1+|x|2)320t4|y|>23|x|𝟏{|xy|𝐜(tτ)}(1+tτ)2(1+|xy|2D0(1+tτ))32\displaystyle\left(1+\left|x\right|^{2}\right)^{-\frac{3}{2}}\int_{0}^{\frac{t}{4}}\int_{\left|y\right|>\frac{2}{3}\left|x\right|}\mathbf{1}_{\{\left|x-y\right|\leq\mathbf{c}\left(t-\tau\right)\}}\left(1+t-\tau\right)^{-2}\left(1+\frac{\left|x-y\right|^{2}}{D_{0}\left(1+t-\tau\right)}\right)^{-\frac{3}{2}}
(1+τ)52(1+(|y|𝐜τ)21+τ)12dydτ\displaystyle\cdot\left(1+\tau\right)^{-\frac{5}{2}}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-\frac{1}{2}}dyd\tau
\displaystyle\lesssim (1+|x|2)320t4{|y|>23|x|}{|xy|𝐜(tτ)}(1+tτ)2(1+|xy|2D0(1+tτ))32\displaystyle\left(1+\left|x\right|^{2}\right)^{-\frac{3}{2}}\int_{0}^{\frac{t}{4}}\int_{\left\{\left|y\right|>\frac{2}{3}\left|x\right|\right\}\cap\{\left|x-y\right|\leq\mathbf{c}\left(t-\tau\right)\}}\left(1+t-\tau\right)^{-2}\left(1+\frac{\left|x-y\right|^{2}}{D_{0}\left(1+t-\tau\right)}\right)^{-\frac{3}{2}}
(1+τ)52(1+|xy|21+tτ)12dydτ\displaystyle\cdot\left(1+\tau\right)^{-\frac{5}{2}}\left(1+\frac{\left|x-y\right|^{2}}{1+t-\tau}\right)^{-\frac{1}{2}}dyd\tau
\displaystyle\lesssim (1+|x|2)320t4(1+τ)523(1+tτ)2(1+|xy|2D0(1+tτ))2𝑑y𝑑τ\displaystyle\left(1+\left|x\right|^{2}\right)^{-\frac{3}{2}}\int_{0}^{\frac{t}{4}}\left(1+\tau\right)^{-\frac{5}{2}}\int_{\mathbb{R}^{3}}\left(1+t-\tau\right)^{-2}\left(1+\frac{\left|x-y\right|^{2}}{D_{0}\left(1+t-\tau\right)}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)1/2(1+|x|2)32(1+t)2(1+|x|21+t)32,\displaystyle(1+t)^{-1/2}\left(1+\left|x\right|^{2}\right)^{-\frac{3}{2}}\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{,}

and for 0t400\leq t\leq 40,

I12\displaystyle I_{12} \displaystyle\lesssim (1+t)320t43(1+τ)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\left(1+t\right)^{-\frac{3}{2}}\int_{0}^{\frac{t}{4}}\int_{\mathbb{R}^{3}}\left(1+\tau\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim C(1+t)5/2(1+(|x|𝐜t)21+t)1.\displaystyle C\lesssim\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{.}

Thereupon,

I1(1+t)2(1+|x|21+t)32+(1+t)5/2(1+(|x|𝐜t)21+t)1,I_{1}\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{,}

and so

I(1+t)2(1+|x|21+t)32+(1+t)5/2(1+(|x|𝐜t)21+t)1.I\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{.}

Case 3: (x,t)D3\left(x,t\right)\in D_{3}. We split the integral II into two parts

I=(0t2+t2t)3()dydτ=:I1+I2.I=\left(\int_{0}^{\frac{t}{2}}+\int_{\frac{t}{2}}^{t}\right)\int_{\mathbb{R}^{3}}\left(\cdots\right)dyd\tau=:I_{1}+I_{2}\hbox{.}

For I1I_{1}, we decompose 3\mathbb{R}^{3} into two parts as follows:

I1=0t2(|y|23|x|+|y|>23|x|)()dydτ=:I11+I12.I_{1}=\int_{0}^{\frac{t}{2}}\left(\int_{\left|y\right|\leq\frac{2}{3}\left|x\right|}+\int_{\left|y\right|>\frac{2}{3}\left|x\right|}\right)\left(\ldots\right)dyd\tau=:I_{11}+I_{12}\hbox{.}

If |y|23|x|\left|y\right|\leq\frac{2}{3}\left|x\right|, then

|xy||x|3,\left|x-y\right|\geq\frac{\left|x\right|}{3}\hbox{,}

and thus

I11\displaystyle I_{11} \displaystyle\lesssim (1+t)2(1+|x|21+t)320t23(1+τ)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\int_{0}^{\frac{t}{2}}\int_{\mathbb{R}^{3}}\left(1+\tau\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)2(1+|x|21+t)32.\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

If |y|>23|x|\left|y\right|>\frac{2}{3}\left|x\right| and 0τt20\leq\tau\leq\frac{t}{2}, we have

|y|𝐜τ23|x|𝐜t2=16|x|+12(|x|𝐜t)16𝐜t,\left|y\right|-\mathbf{c}\tau\geq\frac{2}{3}\left|x\right|-\frac{\mathbf{c}t}{2}=\frac{1}{6}\left|x\right|+\frac{1}{2}\left(\left|x\right|-\mathbf{c}t\right)\geq\frac{1}{6}\mathbf{c}t\hbox{,}

so that

I12\displaystyle I_{12} \displaystyle\lesssim (1+|x|2)320t2|y|>23|x|𝟏{|xy|𝐜(tτ)}(1+tτ)2(1+|xy|2D0(1+tτ))32\displaystyle\left(1+\left|x\right|^{2}\right)^{-\frac{3}{2}}\int_{0}^{\frac{t}{2}}\int_{\left|y\right|>\frac{2}{3}\left|x\right|}\mathbf{1}_{\{\left|x-y\right|\leq\mathbf{c}\left(t-\tau\right)\}}\left(1+t-\tau\right)^{-2}\left(1+\frac{\left|x-y\right|^{2}}{D_{0}\left(1+t-\tau\right)}\right)^{-\frac{3}{2}}
(1+τ)52(1+(|y|𝐜τ)21+τ)12dydτ\displaystyle\cdot\left(1+\tau\right)^{-\frac{5}{2}}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-\frac{1}{2}}dyd\tau
\displaystyle\lesssim (1+|x|2)320t2{|y|23|x|}{|xy|𝐜(tτ)}(1+tτ)2(1+τ)52(1+|xy|2(1+tτ))2𝑑y𝑑τ\displaystyle\left(1+\left|x\right|^{2}\right)^{-\frac{3}{2}}\int_{0}^{\frac{t}{2}}\int_{\left\{\left|y\right|\geq\frac{2}{3}\left|x\right|\right\}\cap\{\left|x-y\right|\leq\mathbf{c}\left(t-\tau\right)\}}\left(1+t-\tau\right)^{-2}\left(1+\tau\right)^{-\frac{5}{2}}\cdot\left(1+\frac{\left|x-y\right|^{2}}{\left(1+t-\tau\right)}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+|x|2)320t2(1+τ)523(1+tτ)2(1+|xy|2(1+tτ))2𝑑y𝑑τ\displaystyle\left(1+\left|x\right|^{2}\right)^{-\frac{3}{2}}\int_{0}^{\frac{t}{2}}\left(1+\tau\right)^{-\frac{5}{2}}\cdot\int_{\mathbb{R}^{3}}\left(1+t-\tau\right)^{-2}\left(1+\frac{\left|x-y\right|^{2}}{\left(1+t-\tau\right)}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)1/2(1+|x|2)32(1+t)1/2(1+t2+|x|22)32(1+t)2(1+|x|21+t)32\displaystyle(1+t)^{-1/2}\left(1+\left|x\right|^{2}\right)^{-\frac{3}{2}}\lesssim(1+t)^{-1/2}\left(\frac{1+t}{2}+\frac{\left|x\right|^{2}}{2}\right)^{-\frac{3}{2}}\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}

since |x|1+t\left|x\right|\geq\sqrt{1+t}. Therefore,

I1(1+t)2(1+|x|21+t)32.I_{1}\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

For I2I_{2}, we decompose 3\mathbb{R}^{3} into two parts

I2=t2t(|y|𝐜τ|x|ct2+|y|𝐜τ>|x|ct2)()𝑑y𝑑τ=I21+I22I_{2}=\int_{\frac{t}{2}}^{t}\left(\int_{\left|y\right|-\mathbf{c}\tau\leq\frac{\left|x\right|-ct}{2}}+\int_{\left|y\right|-\mathbf{c}\tau>\frac{\left|x\right|-ct}{2}}\right)\left(\cdots\right)dyd\tau=I_{21}+I_{22}\hbox{. }

If |y|𝐜τ|x|𝐜t2\left|y\right|-\mathbf{c}\tau\leq\frac{\left|x\right|-\mathbf{c}t}{2}, we have

|xy||x|(|x|𝐜t2)𝐜τ|x|𝐜t2,\left|x-y\right|\geq\left|x\right|-\left(\frac{\left|x\right|-\mathbf{c}t}{2}\right)-\mathbf{c}\tau\geq\frac{\left|x\right|-\mathbf{c}t}{2}\hbox{,}

and thus

I21\displaystyle I_{21} \displaystyle\lesssim (1+(|x|𝐜t)2)32t2t3(1+tτ)1/2(1+τ)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\left(1+\left(\left|x\right|-\mathbf{c}t\right)^{2}\right)^{-\frac{3}{2}}\int_{\frac{t}{2}}^{t}\int_{\mathbb{R}^{3}}(1+t-\tau)^{-1/2}\left(1+\tau\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)32(1+(|x|𝐜t)21+t)32t2t(1+tτ)1/2(1+τ)4(1+τ)52𝑑τ\displaystyle\left(1+t\right)^{-\frac{3}{2}}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-\frac{3}{2}}\int_{\frac{t}{2}}^{t}(1+t-\tau)^{-1/2}\left(1+\tau\right)^{-4}\left(1+\tau\right)^{\frac{5}{2}}d\tau
\displaystyle\lesssim (1+t)5/2(1+(|x|𝐜t)21+t)32.\displaystyle\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

If |y|𝐜τ>|x|𝐜t2\left|y\right|-\mathbf{c}\tau>\frac{\left|x\right|-\mathbf{c}t}{2}, then

I22\displaystyle I_{22} \displaystyle\lesssim (1+t)4(1+(|x|𝐜t)21+t)2t2t{|xy|𝐜(tτ)}(1+tτ)2(1+|xy|2D0(1+tτ))32𝑑y𝑑τ\displaystyle\left(1+t\right)^{-4}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-2}\int_{\frac{t}{2}}^{t}\int_{\{\left|x-y\right|\leq\mathbf{c}\left(t-\tau\right)\}}\left(1+t-\tau\right)^{-2}\left(1+\frac{\left|x-y\right|^{2}}{D_{0}\left(1+t-\tau\right)}\right)^{-\frac{3}{2}}dyd\tau
\displaystyle\lesssim (1+t)4(1+(|x|𝐜t)21+t)2t2t(1+tτ)1/2ln(1+tτ)𝑑τ\displaystyle\left(1+t\right)^{-4}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-2}\int_{\frac{t}{2}}^{t}(1+t-\tau)^{-1/2}\ln\left(1+t-\tau\right)d\tau
\displaystyle\lesssim (1+t)3(1+(|x|𝐜t)21+t)2.\displaystyle\left(1+t\right)^{-3}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-2}\hbox{.}

Therefore,

I2(1+t)5/2(1+(|x|𝐜t)21+t)32.I_{2}\lesssim\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

Combining all the estimates, we get desired estimate

I(1+t)2(1+|x|21+t)32+(1+t)5/2(1+(|x|𝐜t)21+t)32.I\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

Case 4: (x,t)D4\left(x,t\right)\in D_{4}. In this region 1+t|x|𝐜t2\sqrt{1+t}\leq\left|x\right|\leq\frac{\mathbf{c}t}{2}. We split the integral II into three parts:

I\displaystyle I =\displaystyle= 0t3(1+tτ)4(1+(|xy|𝐜(tτ))21+tτ)2(1+τ)2(1+|y|2D0(1+τ))32𝟏{|y|𝐜τ}𝑑y𝑑τ\displaystyle\int_{0}^{t}\int_{\mathbb{R}^{3}}\left(1+t-\tau\right)^{-4}\left(1+\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{1+t-\tau}\right)^{-2}\left(1+\tau\right)^{-2}\left(1+\frac{\left|y\right|^{2}}{D_{0}\left(1+\tau\right)}\right)^{-\frac{3}{2}}\mathbf{1}_{\{\left|y\right|\leq\mathbf{c}\tau\}}dyd\tau
=\displaystyle= (0t2|x|2𝐜+t2|x|2𝐜t|x|2𝐜+t|x|2𝐜t)3()dydτ=:I1+I2+I3.\displaystyle\left(\int_{0}^{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}+\int_{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}^{t-\frac{\left|x\right|}{2\mathbf{c}}}+\int_{t-\frac{\left|x\right|}{2\mathbf{c}}}^{t}\right)\int_{\mathbb{R}^{3}}\left(\cdots\right)dyd\tau=:I_{1}+I_{2}+I_{3}\hbox{.}

For I1I_{1}, we decompose 3\mathbb{R}^{3} into two parts

I1=0t2|x|2𝐜(|y|𝐜(tτ)|x|2+|y|>𝐜(tτ)|x|2)=:I11+I12.I_{1}=\int_{0}^{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}\left(\int_{\left|y\right|\leq\frac{\mathbf{c}\left(t-\tau\right)-\left|x\right|}{2}}+\int_{\left|y\right|>\frac{\mathbf{c}\left(t-\tau\right)-\left|x\right|}{2}}\right)=:I_{11}+I_{12}\hbox{.}

If 0τt2|x|2𝐜0\leq\tau\leq\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}} and |y|𝐜(tτ)|x|2\left|y\right|\leq\frac{\mathbf{c}\left(t-\tau\right)-\left|x\right|}{2}, then

𝐜(tτ)|xy|𝐜(tτ)|x||y|𝐜t|x|4,\mathbf{c}\left(t-\tau\right)-\left|x-y\right|\geq\mathbf{c}\left(t-\tau\right)-\left|x\right|-\left|y\right|\geq\frac{\mathbf{c}t-\left|x\right|}{4}\hbox{,}

so that

I11\displaystyle I_{11} \displaystyle\lesssim (1+t+|x|)4(1+(𝐜t|x|)21+t)20t2|y|𝐜τ(1+τ)2(1+|y|2D0(1+τ))32𝑑y𝑑τ\displaystyle\left(1+t+\left|x\right|\right)^{-4}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-2}\int_{0}^{\frac{t}{2}}\int_{\left|y\right|\leq\mathbf{c}\tau}\left(1+\tau\right)^{-2}\left(1+\frac{\left|y\right|^{2}}{D_{0}\left(1+\tau\right)}\right)^{-\frac{3}{2}}dyd\tau
\displaystyle\lesssim (1+t)4(1+(𝐜t|x|)21+t)2(1+t)3/4(1+t)13/4(1+(𝐜t|x|)21+t)2.\displaystyle\left(1+t\right)^{-4}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-2}\left(1+t\right)^{3/4}\lesssim\left(1+t\right)^{-13/4}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-2}\hbox{.}

If 0τt2|x|2𝐜0\leq\tau\leq\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}} and |y|>𝐜(tτ)|x|2\left|y\right|>\frac{\mathbf{c}\left(t-\tau\right)-\left|x\right|}{2}, then

|y|>𝐜(tτ)|x|2𝐜t|x|4,\left|y\right|>\frac{\mathbf{c}\left(t-\tau\right)-\left|x\right|}{2}\geq\frac{\mathbf{c}t-\left|x\right|}{4}\hbox{,}

and thus

I12\displaystyle I_{12} \displaystyle\lesssim (1+t2+|x|2𝐜)4(1+(𝐜t|x|)2)320t2|x|𝐜3(1+τ)1/2(1+(|xy|𝐜(tτ))21+tτ)2𝑑y𝑑τ\displaystyle\left(1+\frac{t}{2}+\frac{\left|x\right|}{2\mathbf{c}}\right)^{-4}\left(1+\left(\mathbf{c}t-\left|x\right|\right)^{2}\right)^{-\frac{3}{2}}\int_{0}^{\frac{t}{2}-\frac{\left|x\right|}{\mathbf{c}}}\int_{\mathbb{R}^{3}}(1+\tau)^{-1/2}\left(1+\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{1+t-\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)4(1+(𝐜t|x|)2)320t2(1+τ)1/2(1+tτ)52𝑑τ\displaystyle\left(1+t\right)^{-4}\left(1+\left(\mathbf{c}t-\left|x\right|\right)^{2}\right)^{-\frac{3}{2}}\int_{0}^{\frac{t}{2}}(1+\tau)^{-1/2}\left(1+t-\tau\right)^{\frac{5}{2}}d\tau
\displaystyle\lesssim (1+t)4((𝐜t|x|)22+1+t2)32(1+t)72(1+t)5/2(1+(𝐜t|x|)21+t)1\displaystyle\left(1+t\right)^{-4}\left(\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{2}+\frac{1+t}{2}\right)^{-\frac{3}{2}}\left(1+t\right)^{\frac{7}{2}}\lesssim\left(1+t\right)^{-5/2}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-1}

since 𝐜t|x|𝐜t2\mathbf{c}t-\left|x\right|\geq\frac{\mathbf{c}t}{2}. Therefore,

I1(1+t)5/2(1+(𝐜t|x|)21+t)1.I_{1}\lesssim\left(1+t\right)^{-5/2}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-1}\hbox{.}

For I2I_{2}, we use the spherical coordinates to obtain

I2\displaystyle I_{2} \displaystyle\lesssim t2|x|2𝐜t|x|2𝐜00π(1+tτ)4(1+(|x|2+r22r|x|cosθ𝐜(tτ))21+tτ)2\displaystyle\int_{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}^{t-\frac{\left|x\right|}{2\mathbf{c}}}\int_{0}^{\infty}\int_{0}^{\pi}\left(1+t-\tau\right)^{-4}\left(1+\frac{\left(\sqrt{\left|x\right|^{2}+r^{2}-2r\left|x\right|\cos\theta}-\mathbf{c}\left(t-\tau\right)\right)^{2}}{1+t-\tau}\right)^{-2}
(1+τ)2(1+|r|2(1+τ))32𝟏{r𝐜τ}r2sinθdθdrdτ\displaystyle\cdot\left(1+\tau\right)^{-2}\left(1+\frac{\left|r\right|^{2}}{\left(1+\tau\right)}\right)^{-\frac{3}{2}}\mathbf{1}_{\{r\leq\mathbf{c}\tau\}}r^{2}\sin\theta d\theta drd\tau
\displaystyle\lesssim t2|x|2𝐜t|x|2𝐜0||x|r||x|+r(1+tτ)4(1+(z𝐜(tτ))21+tτ)2z(1+τ)2\displaystyle\int_{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}^{t-\frac{\left|x\right|}{2\mathbf{c}}}\int_{0}^{\infty}\int_{\left|\left|x\right|-r\right|}^{\left|x\right|+r}\left(1+t-\tau\right)^{-4}\left(1+\frac{\left(z-\mathbf{c}\left(t-\tau\right)\right)^{2}}{1+t-\tau}\right)^{-2}z\left(1+\tau\right)^{-2}
(1+r2(1+τ))32r|x|𝟏{r𝐜τ}dzdrdτ\displaystyle\cdot\left(1+\frac{r^{2}}{\left(1+\tau\right)}\right)^{-\frac{3}{2}}\frac{r}{\left|x\right|}\mathbf{1}_{\{r\leq\mathbf{c}\tau\}}dzdrd\tau
\displaystyle\lesssim |x|1t2|x|2𝐜t|x|2𝐜0(1+tτ)4+32(1+τ)2r(1+r2(1+τ))32𝟏{r𝐜τ}𝑑r𝑑τ\displaystyle\left|x\right|^{-1}\int_{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}^{t-\frac{\left|x\right|}{2\mathbf{c}}}\int_{0}^{\infty}\left(1+t-\tau\right)^{-4+\frac{3}{2}}\left(1+\tau\right)^{-2}\cdot r\left(1+\frac{r^{2}}{\left(1+\tau\right)}\right)^{-\frac{3}{2}}\mathbf{1}_{\{r\leq\mathbf{c}\tau\}}drd\tau
\displaystyle\lesssim |x|1t2|x|2𝐜t|x|2𝐜(1+tτ)52(1+τ)1𝑑τ\displaystyle\left|x\right|^{-1}\int_{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}^{t-\frac{\left|x\right|}{2\mathbf{c}}}\left(1+t-\tau\right)^{-\frac{5}{2}}\left(1+\tau\right)^{-1}d\tau
\displaystyle\lesssim |x|1(1+|x|2𝐜)32(1+t2|x|2𝐜)1\displaystyle\left|x\right|^{-1}\left(1+\frac{\left|x\right|}{2\mathbf{c}}\right)^{-\frac{3}{2}}\left(1+\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}\right)^{-1}
\displaystyle\lesssim (1+t)1/2(1+|x|)3(1+t)2(1+|x|21+t)32.\displaystyle(1+t)^{-1/2}\left(1+\left|x\right|\right)^{-3}\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

by setting z=|x|2+r22r|x|cosθz=\sqrt{\left|x\right|^{2}+r^{2}-2r\left|x\right|\cos\theta} and sinθdθ=zr|x|dz\sin\theta d\theta=\frac{z}{r\left|x\right|}dz.

For I3I_{3}, we decompose 3\mathbb{R}^{3} into two parts

I3=t|x|2𝐜t(|y||x|𝐜(tτ)2+|y|>|x|𝐜(tτ)2)=:I31+I32.I_{3}=\int_{t-\frac{\left|x\right|}{2\mathbf{c}}}^{t}\left(\int_{\left|y\right|\leq\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}+\int_{\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}\right)=:I_{31}+I_{32}\hbox{.}

If t|x|2𝐜τtt-\frac{\left|x\right|}{2\mathbf{c}}\leq\tau\leq t, |y||x|𝐜(tτ)2\left|y\right|\leq\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}, then

|xy|𝐜(tτ)|x||y|𝐜(tτ)|x|𝐜(tτ)2|x|4.\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\geq\left|x\right|-\left|y\right|-\mathbf{c}\left(t-\tau\right)\geq\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}\geq\frac{\left|x\right|}{4}\hbox{.}

If t|x|2𝐜τtt-\frac{\left|x\right|}{2\mathbf{c}}\leq\tau\leq t, |y|>|x|𝐜(tτ)2\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}, then

|y|>|x|𝐜(tτ)2|x|4.\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}\geq\frac{\left|x\right|}{4}\hbox{.}

Hence,

I31\displaystyle I_{31} \displaystyle\lesssim (1+|x|2)32t|x|2𝐜t|y||x|𝐜(tτ)2(1+tτ)52(1+τ)2(1+|y|2D0(1+τ))2𝑑y𝑑τ\displaystyle\left(1+\left|x\right|^{2}\right)^{-\frac{3}{2}}\int_{t-\frac{\left|x\right|}{2\mathbf{c}}}^{t}\int_{\left|y\right|\leq\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}\left(1+t-\tau\right)^{-\frac{5}{2}}\left(1+\tau\right)^{-2}\left(1+\frac{\left|y\right|^{2}}{D_{0}\left(1+\tau\right)}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)1/2(1+|x|2)32(1+t)2(1+|x|2(1+t))32,\displaystyle(1+t)^{-1/2}\left(1+\left|x\right|^{2}\right)^{-\frac{3}{2}}\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{\left(1+t\right)}\right)^{-\frac{3}{2}}\hbox{,}

since |x|1+t\left|x\right|\geq\sqrt{1+t}, and

I32\displaystyle I_{32} \displaystyle\lesssim (1+t)2(1+|x|2(1+t))32t|x|2𝐜t3(1+tτ)4(1+(|xy|𝐜(tτ))21+tτ)2𝑑y𝑑τ\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{\left(1+t\right)}\right)^{-\frac{3}{2}}\int_{t-\frac{\left|x\right|}{2\mathbf{c}}}^{t}\int_{\mathbb{R}^{3}}\left(1+t-\tau\right)^{-4}\left(1+\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{1+t-\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)2(1+|x|2(1+t))32.\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{\left(1+t\right)}\right)^{-\frac{3}{2}}\hbox{.}

Therefore,

I3(1+t)2(1+|x|2(1+t))32.I_{3}\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{\left(1+t\right)}\right)^{-\frac{3}{2}}\hbox{.}

Combining all the estimates yields

I(1+t)2(1+|x|2(1+t))32+(1+t)5/2(1+(𝐜t|x|)21+t)1.I\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{\left(1+t\right)}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-5/2}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-1}\hbox{.}

Case 5: (x,t)D5\left(x,t\right)\in D_{5}. In this region 𝐜t/2|x|𝐜t1+t\mathbf{c}t/2\leq\left|x\right|\leq\mathbf{c}t-\sqrt{1+t}. Now we split the integral II into three parts

I\displaystyle I =\displaystyle= 0t3(1+tτ)4(1+(|xy|𝐜(tτ))21+tτ)2(1+τ)2(1+|y|2D0(1+τ))32𝟏{|y|𝐜τ}𝑑y𝑑τ\displaystyle\int_{0}^{t}\int_{\mathbb{R}^{3}}\left(1+t-\tau\right)^{-4}\left(1+\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{1+t-\tau}\right)^{-2}\left(1+\tau\right)^{-2}\left(1+\frac{\left|y\right|^{2}}{D_{0}\left(1+\tau\right)}\right)^{-\frac{3}{2}}\mathbf{1}_{\{\left|y\right|\leq\mathbf{c}\tau\}}dyd\tau
=\displaystyle= (0t2|x|2𝐜+t2|x|2𝐜12(t+32(t|x|𝐜))+12(t+32(t|x|𝐜))t)3()dydτ=:I1+I2+I3.\displaystyle\left(\int_{0}^{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}+\int_{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}^{\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)}+\int_{\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)}^{t}\right)\int_{\mathbb{R}^{3}}\left(\cdots\right)dyd\tau=:I_{1}+I_{2}+I_{3}\hbox{.}

For I1I_{1}, the estimate is the same as the I1I_{1} of Case 4, so

I1(1+t)5/2(1+(𝐜t|x|)21+t)1.I_{1}\lesssim\left(1+t\right)^{-5/2}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-1}\hbox{.}

For I2I_{2}, we use the spherical coordinates to obtain

I2\displaystyle I_{2} =\displaystyle= t2|x|2𝐜12(t+32(t|x|𝐜))00π(1+tτ)4(1+(|x|2+r22r|x|cosθ𝐜(tτ))21+tτ)2\displaystyle\int_{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}^{\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)}\int_{0}^{\infty}\int_{0}^{\pi}\left(1+t-\tau\right)^{-4}\left(1+\frac{\left(\sqrt{\left|x\right|^{2}+r^{2}-2r\left|x\right|\cos\theta}-\mathbf{c}\left(t-\tau\right)\right)^{2}}{1+t-\tau}\right)^{-2}
(1+τ)2(1+r2D0(1+τ))32𝟏{r𝐜τ}r2sinθdθdrdτ\displaystyle\cdot\left(1+\tau\right)^{-2}\left(1+\frac{r^{2}}{D_{0}\left(1+\tau\right)}\right)^{-\frac{3}{2}}\mathbf{1}_{\{r\leq\mathbf{c}\tau\}}r^{2}\sin\theta d\theta drd\tau
=\displaystyle= 1|x|t2|x|2𝐜12(t+32(t|x|𝐜))0||x|r||x|+r(1+tτ)4(1+(z𝐜(tτ))21+tτ)2z(1+τ)2\displaystyle\frac{1}{\left|x\right|}\int_{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}^{\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)}\int_{0}^{\infty}\int_{\left|\left|x\right|-r\right|}^{\left|x\right|+r}\left(1+t-\tau\right)^{-4}\left(1+\frac{\left(z-\mathbf{c}\left(t-\tau\right)\right)^{2}}{1+t-\tau}\right)^{-2}z\left(1+\tau\right)^{-2}
r(1+r2D0(1+τ))32𝟏{r𝐜τ}dzdrdτ\displaystyle\cdot r\left(1+\frac{r^{2}}{D_{0}\left(1+\tau\right)}\right)^{-\frac{3}{2}}\mathbf{1}_{\{r\leq\mathbf{c}\tau\}}dzdrd\tau
\displaystyle\lesssim |x|1t2|x|2𝐜12(t+32(t|x|𝐜))(1+tτ)52(1+τ)1𝑑τ\displaystyle\left|x\right|^{-1}\int_{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}^{\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)}\left(1+t-\tau\right)^{-\frac{5}{2}}\left(1+\tau\right)^{-1}d\tau
\displaystyle\lesssim |x|1(1+3|x|4𝐜t4)32(1+t2|x|2𝐜)1\displaystyle\left|x\right|^{-1}\left(1+\frac{3\left|x\right|}{4\mathbf{c}}-\frac{t}{4}\right)^{-\frac{3}{2}}\left(1+\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}\right)^{-1}
\displaystyle\lesssim |x|1(1+t)1/2(1+t4|x|4𝐜+|x|𝐜t2)1(1+t2|x|2𝐜)1\displaystyle\left|x\right|^{-1}(1+t)^{-1/2}\left(1+\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}+\frac{\left|x\right|}{\mathbf{c}}-\frac{t}{2}\right)^{-1}\left(1+\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}\right)^{-1}
\displaystyle\lesssim (1+t)5/2(1+(𝐜t|x|)21+t)1\displaystyle\left(1+t\right)^{-5/2}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-1}

by setting z=|x|2+r22r|x|cosθz=\sqrt{\left|x\right|^{2}+r^{2}-2r\left|x\right|\cos\theta} and sinθdθ=zr|x|dz\sin\theta d\theta=\frac{z}{r\left|x\right|}dz.

For I3I_{3}, we decompose 3\mathbb{R}^{3} into two parts

I3=12(t+32(t|x|𝐜))t(|y||x|𝐜(tτ)2+|y|>|x|𝐜(tτ)2)()dydτ=:I31+I32.I_{3}=\int_{\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)}^{t}\left(\int_{\left|y\right|\leq\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}+\int_{\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}\right)\left(\cdots\right)dyd\tau=:I_{31}+I_{32}\hbox{.}

If 12(t+32(t|x|𝐜))τt\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)\leq\tau\leq t, |y||x|𝐜(tτ)2\left|y\right|\leq\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}, then

|xy|𝐜(tτ)|x|𝐜(tτ)2𝐜t+|x|8=𝐜t|x|8+|x|4.\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\geq\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}\geq\frac{\mathbf{c}t+\left|x\right|}{8}=\frac{\mathbf{c}t-\left|x\right|}{8}+\frac{|x|}{4}\hbox{.}

If 12(t+32(t|x|𝐜))τt\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)\leq\tau\leq t, |y|>|x|𝐜(tτ)2\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}, then

|y|>|x|𝐜(tτ)2𝐜t|x|8+|x|4.\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}\geq\frac{\mathbf{c}t-\left|x\right|}{8}+\frac{|x|}{4}\hbox{.}

Hence,

I31\displaystyle I_{31} \displaystyle\lesssim (1+(𝐜t|x|)2)212(t+32(t|x|𝐜))t|y|𝐜τ(1+tτ)2(1+τ)2(1+|y|2D0(1+τ))32𝑑y𝑑τ\displaystyle\left(1+\left(\mathbf{c}t-\left|x\right|\right)^{2}\right)^{-2}\int_{\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)}^{t}\int_{|y|\leq\mathbf{c}\tau}\left(1+t-\tau\right)^{-2}\left(1+\tau\right)^{-2}\left(1+\frac{\left|y\right|^{2}}{D_{0}\left(1+\tau\right)}\right)^{-\frac{3}{2}}dyd\tau
\displaystyle\lesssim (1+(𝐜t|x|)2)212(t+32(t|x|𝐜))t(1+tτ)2(1+τ)1/4𝑑τ\displaystyle\left(1+\left(\mathbf{c}t-\left|x\right|\right)^{2}\right)^{-2}\int_{\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)}^{t}\left(1+t-\tau\right)^{-2}(1+\tau)^{-1/4}d\tau
\displaystyle\lesssim (1+t)1/4(1+(𝐜t|x|)2)2(1+t)9/4(1+(𝐜t|x|)21+t)2.\displaystyle(1+t)^{-1/4}\left(1+\left(\mathbf{c}t-\left|x\right|\right)^{2}\right)^{-2}\lesssim\left(1+t\right)^{-9/4}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-2}\hbox{.}

On the other hand,

I31\displaystyle I_{31} \displaystyle\lesssim (1+|x|2)212(t+32(t|x|𝐜))t|y|𝐜τ(1+tτ)2(1+τ)2(1+|y|2D0(1+τ))32𝑑y𝑑τ\displaystyle\left(1+|x|^{2}\right)^{-2}\int_{\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)}^{t}\int_{|y|\leq\mathbf{c}\tau}\left(1+t-\tau\right)^{-2}\left(1+\tau\right)^{-2}\left(1+\frac{\left|y\right|^{2}}{D_{0}\left(1+\tau\right)}\right)^{-\frac{3}{2}}dyd\tau
\displaystyle\lesssim (1+t)17/4.\displaystyle(1+t)^{-17/4}\hbox{.}

By interpolation, one has

I31(1+t)13/4(1+(𝐜t|x|)21+t)1.I_{31}\lesssim(1+t)^{-13/4}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-1}\,.

For I32I_{32},

I32\displaystyle I_{32} \displaystyle\lesssim 12(t+32(t|x|𝐜))t(1+|x|𝐜(tτ))3(1+τ)1/2\displaystyle\int_{\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)}^{t}\left(1+\left|x\right|-\mathbf{c}\left(t-\tau\right)\right)^{-3}(1+\tau)^{-1/2}
|y|>|x|𝐜(tτ)2(1+tτ)4(1+(|xy|𝐜(tτ))21+tτ)2dydτ\displaystyle\cdot\int_{\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}\left(1+t-\tau\right)^{-4}\left(1+\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{1+t-\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim 12(t+32(t|x|𝐜))t(1+|x|𝐜(tτ))3(1+tτ)4+52(1+τ)12𝑑τ\displaystyle\int_{\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)}^{t}\left(1+\left|x\right|-\mathbf{c}\left(t-\tau\right)\right)^{-3}\left(1+t-\tau\right)^{-4+\frac{5}{2}}\left(1+\tau\right)^{-\frac{1}{2}}d\tau
\displaystyle\lesssim (1+t)7/2(1+t)1/2(1+|x|)3(1+t)2(1+|x|2(1+t))32,\displaystyle\left(1+t\right)^{-7/2}\lesssim(1+t)^{-1/2}\left(1+\left|x\right|\right)^{-3}\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{\left(1+t\right)}\right)^{-\frac{3}{2}}\hbox{,}

so that

I3(1+t)2(1+|x|2(1+t))32+(1+t)5/2(1+(𝐜t|x|)21+t)1.I_{3}\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{\left(1+t\right)}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-5/2}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-1}\hbox{.}

To sum up,

I(1+t)2(1+|x|2(1+t))32+(1+t)5/2(1+(𝐜t|x|)21+t)1.I\leq\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{\left(1+t\right)}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-5/2}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-1}\hbox{.}

Proof of Lemma 25.

(Huygens wave convolved with Huygens wave).

Case 1: (x,t)D1D2\left(x,t\right)\in D_{1}\cup D_{2}. Direct computation gives

J\displaystyle J \displaystyle\lesssim 0t23(1+t)5/2(1+τ)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\int_{0}^{\frac{t}{2}}\int_{\mathbb{R}^{3}}\left(1+t\right)^{-5/2}\left(1+\tau\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
+t2t3(1+tτ)5/2e(|xy|𝐜(tτ))2D0(1+tτ)(1+t)4𝑑y𝑑τ\displaystyle+\int_{\frac{t}{2}}^{t}\int_{\mathbb{R}^{3}}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+t\right)^{-4}dyd\tau
\displaystyle\lesssim (1+t)5/20t2(1+τ)4(1+τ)52𝑑τ+(1+t)4t2t(1+tτ)5/2(1+tτ)52𝑑τ\displaystyle\left(1+t\right)^{-5/2}\int_{0}^{\frac{t}{2}}\left(1+\tau\right)^{-4}\left(1+\tau\right)^{\frac{5}{2}}d\tau+\left(1+t\right)^{-4}\int_{\frac{t}{2}}^{t}\left(1+t-\tau\right)^{-5/2}\left(1+t-\tau\right)^{\frac{5}{2}}d\tau
\displaystyle\lesssim (1+t)5/2.\displaystyle\left(1+t\right)^{-5/2}\hbox{.}

Case 2: (x,t)D3\left(x,t\right)\in D_{3}. We split the integral JJ into four parts

J\displaystyle J =\displaystyle= 0t2(|y|𝐜τ|x|𝐜t2+|y|𝐜τ>|x|𝐜t2)()𝑑y𝑑τ+t2t(|y|𝐜τ|x|𝐜t2+|y|𝐜τ>|x|𝐜t2)()𝑑y𝑑τ\displaystyle\int_{0}^{\frac{t}{2}}\left(\int_{\left|y\right|-\mathbf{c}\tau\leq\frac{\left|x\right|-\mathbf{c}t}{2}}+\int_{\left|y\right|-\mathbf{c}\tau>\frac{\left|x\right|-\mathbf{c}t}{2}}\right)\left(\cdots\right)dyd\tau+\int_{\frac{t}{2}}^{t}\left(\int_{\left|y\right|-\mathbf{c}\tau\leq\frac{\left|x\right|-\mathbf{c}t}{2}}+\int_{\left|y\right|-\mathbf{c}\tau>\frac{\left|x\right|-\mathbf{c}t}{2}}\right)\left(\cdots\right)dyd\tau
=\displaystyle= J11+J12+J21+J22.\displaystyle J_{11}+J_{12}+J_{21}+J_{22}\hbox{.}

Note that if |y|𝐜τ|x|𝐜t2\left|y\right|-\mathbf{c}\tau\leq\frac{\left|x\right|-\mathbf{c}t}{2}, then

|xy|𝐜(tτ)|x||y|𝐜(tτ)|x|𝐜t2.\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\geq\left|x\right|-\left|y\right|-\mathbf{c}\left(t-\tau\right)\geq\frac{\left|x\right|-\mathbf{c}t}{2}\hbox{.}

Hence,

J11\displaystyle J_{11} \displaystyle\lesssim 0t2|y|𝐜τ|x|𝐜t2(1+t)5/2e(|x|𝐜t)2D0(1+t)(1+τ)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\int_{0}^{\frac{t}{2}}\int_{\left|y\right|-\mathbf{c}\tau\leq\frac{\left|x\right|-\mathbf{c}t}{2}}\left(1+t\right)^{-5/2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{D_{0}\left(1+t\right)}}\left(1+\tau\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim 0t2(1+t)5/2e(|x|𝐜t)2D0(1+t)(1+τ)4(1+τ)52𝑑τ(1+t)5/2e(|x|𝐜t)2D0(1+t).\displaystyle\int_{0}^{\frac{t}{2}}\left(1+t\right)^{-5/2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{D_{0}\left(1+t\right)}}\left(1+\tau\right)^{-4}\left(1+\tau\right)^{\frac{5}{2}}d\tau\lesssim\left(1+t\right)^{-5/2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{D_{0}\left(1+t\right)}}\hbox{.}

For J12J_{12}, we have

J12\displaystyle J_{12} \displaystyle\lesssim 0t2|y|𝐜τ>|x|𝐜t2(1+tτ)5/2e(|xy|𝐜(tτ))2D0(1+tτ)(1+τ)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\int_{0}^{\frac{t}{2}}\int_{\left|y\right|-\mathbf{c}\tau>\frac{\left|x\right|-\mathbf{c}t}{2}}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+\tau\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim 0t2(1+tτ)5/2(1+tτ)52(1+τ)2(1+(|x|𝐜t)2)2𝑑τ\displaystyle\int_{0}^{\frac{t}{2}}\left(1+t-\tau\right)^{-5/2}\left(1+t-\tau\right)^{\frac{5}{2}}\left(1+\tau\right)^{-2}\left(1+\left(\left|x\right|-\mathbf{c}t\right)^{2}\right)^{-2}d\tau
\displaystyle\lesssim (1+|x|𝐜t)4,\displaystyle\left(1+\left|x\right|-\mathbf{c}t\right)^{-4}\hbox{,}

and

J12\displaystyle J_{12} \displaystyle\lesssim 0t2|y|𝐜τ>|x|𝐜t2(1+t)5/2(1+τ)2(1+|y|𝐜τ)4𝑑y𝑑τ\displaystyle\int_{0}^{\frac{t}{2}}\int_{\left|y\right|-\mathbf{c}\tau>\frac{\left|x\right|-\mathbf{c}t}{2}}\left(1+t\right)^{-5/2}\left(1+\tau\right)^{-2}\left(1+\left|y\right|-\mathbf{c}\tau\right)^{-4}dyd\tau
\displaystyle\lesssim 0t2(1+t)5/2(1+τ)2𝐜τ+|x|𝐜t2(1+r𝐜τ)4r2𝑑r𝑑τ\displaystyle\int_{0}^{\frac{t}{2}}\left(1+t\right)^{-5/2}\left(1+\tau\right)^{-2}\int_{\mathbf{c}\tau+\frac{\left|x\right|-\mathbf{c}t}{2}}^{\infty}\left(1+r-\mathbf{c}\tau\right)^{-4}r^{2}drd\tau
\displaystyle\lesssim 0t2(1+t)5/2(1+τ)2|x|𝐜t2(1+r)4(r+𝐜τ)2𝑑r𝑑τ\displaystyle\int_{0}^{\frac{t}{2}}\left(1+t\right)^{-5/2}\left(1+\tau\right)^{-2}\int_{\frac{\left|x\right|-\mathbf{c}t}{2}}^{\infty}\left(1+r\right)^{-4}\left(r+\mathbf{c}\tau\right)^{2}drd\tau
\displaystyle\lesssim 0t2(1+t)5/2(1+τ)2[r1+𝐜τr2+(𝐜τ)2r3]r=|x|𝐜t2𝑑τ\displaystyle\int_{0}^{\frac{t}{2}}\left(1+t\right)^{-5/2}\left(1+\tau\right)^{-2}\left[r^{-1}+\mathbf{c}\tau\cdot r^{-2}+\left(\mathbf{c}\tau\right)^{2}r^{-3}\right]_{r=\frac{\left|x\right|-\mathbf{c}t}{2}}d\tau
\displaystyle\lesssim (1+t)5/2[(1+|x|𝐜t)1+ln(2+t)(1+|x|𝐜t)2+t(1+|x|𝐜t)3]\displaystyle\left(1+t\right)^{-5/2}\left[\left(1+\left|x\right|-\mathbf{c}t\right)^{-1}+\ln\left(2+t\right)\left(1+\left|x\right|-\mathbf{c}t\right)^{-2}+t\left(1+\left|x\right|-\mathbf{c}t\right)^{-3}\right]
\displaystyle\lesssim (1+t)5/2(1+|x|𝐜t)1[1+ln(2+t)(1+1+t)1+t(1+1+t)2]\displaystyle\left(1+t\right)^{-5/2}\left(1+\left|x\right|-\mathbf{c}t\right)^{-1}\left[1+\ln\left(2+t\right)\left(1+\sqrt{1+t}\right)^{-1}+t\left(1+\sqrt{1+t}\right)^{-2}\right]
\displaystyle\lesssim (1+t)5/2(1+|x|𝐜t)1,\displaystyle\left(1+t\right)^{-5/2}\left(1+\left|x\right|-\mathbf{c}t\right)^{-1}\hbox{,}

which implies that

J12\displaystyle J_{12} =\displaystyle= (J12)13(J12)23[(1+|x|𝐜t)4]13[(1+t)5/2(1+|x|𝐜t)1]23\displaystyle\left(J_{12}\right)^{\frac{1}{3}}\left(J_{12}\right)^{\frac{2}{3}}\lesssim\left[\left(1+\left|x\right|-\mathbf{c}t\right)^{-4}\right]^{\frac{1}{3}}\left[\left(1+t\right)^{-5/2}\left(1+\left|x\right|-\mathbf{c}t\right)^{-1}\right]^{\frac{2}{3}}
\displaystyle\lesssim (1+t)53(1+|x|𝐜t)2\displaystyle\left(1+t\right)^{-\frac{5}{3}}\left(1+\left|x\right|-\mathbf{c}t\right)^{-2}
\displaystyle\lesssim (1+t)83(1+(|x|𝐜t)21+t)1.\displaystyle\left(1+t\right)^{-\frac{8}{3}}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{.}

For J21J_{21} and J22J_{22}, it follows that

J21\displaystyle J_{21} \displaystyle\lesssim t2t|y|𝐜τ|x|𝐜t2(1+tτ)5/2e(|x|𝐜t)22D0(1+t)e(|xy|𝐜(tτ))22D0(1+tτ)(1+t)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\int_{\frac{t}{2}}^{t}\int_{\left|y\right|-\mathbf{c}\tau\leq\frac{\left|x\right|-\mathbf{c}t}{2}}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{2D_{0}\left(1+t\right)}}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{2D_{0}\left(1+t-\tau\right)}}\left(1+t\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)4e(|x|𝐜t)22D0(1+t)t2t(1+tτ)5/2(1+tτ)52𝑑τ\displaystyle\left(1+t\right)^{-4}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{2D_{0}\left(1+t\right)}}\int_{\frac{t}{2}}^{t}\left(1+t-\tau\right)^{-5/2}\left(1+t-\tau\right)^{\frac{5}{2}}d\tau
\displaystyle\lesssim (1+t)3e(|x|𝐜t)22D0(1+t),\displaystyle\left(1+t\right)^{-3}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{2D_{0}\left(1+t\right)}}\hbox{,}
J22\displaystyle J_{22} \displaystyle\lesssim t2t|y|𝐜τ>|x|𝐜t2(1+tτ)5/2e(|xy|𝐜(tτ))2D0(1+tτ)(1+t)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\int_{\frac{t}{2}}^{t}\int_{\left|y\right|-\mathbf{c}\tau>\frac{\left|x\right|-\mathbf{c}t}{2}}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+t\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim t2t(1+tτ)5/2(1+tτ)52(1+t)4(1+(|x|𝐜t)21+t)2𝑑τ\displaystyle\int_{\frac{t}{2}}^{t}\left(1+t-\tau\right)^{-5/2}\left(1+t-\tau\right)^{\frac{5}{2}}\left(1+t\right)^{-4}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-2}d\tau
\displaystyle\lesssim (1+t)3(1+(|x|𝐜t)21+t)2.\displaystyle\left(1+t\right)^{-3}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-2}\hbox{.}

Gathering all the estimates, we can conclude that

J(1+t)5/2(1+(|x|𝐜t)21+t)1.J\lesssim\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{.}

Case 3: (x,t)D4\left(x,t\right)\in D_{4}. We split the integral into four parts

J\displaystyle J =\displaystyle= (0t4|x|4𝐜+t4|x|4𝐜t2+t2t2+14(t+|x|𝐜)+t2+14(t+|x|𝐜)t)3()𝑑y𝑑τ\displaystyle\left(\int_{0}^{\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}}+\int_{\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}}^{\frac{t}{2}}+\int_{\frac{t}{2}}^{\frac{t}{2}+\frac{1}{4}\left(t+\frac{\left|x\right|}{\mathbf{c}}\right)}+\int_{\frac{t}{2}+\frac{1}{4}\left(t+\frac{\left|x\right|}{\mathbf{c}}\right)}^{t}\right)\int_{\mathbb{R}^{3}}\left(\cdots\right)dyd\tau
=\displaystyle= :J1+J2+J3+J4.\displaystyle:J_{1}+J_{2}+J_{3}+J_{4}\hbox{.}

For J1J_{1}, we decompose 3\mathbb{R}^{3} into two parts

J1=0t4|x|4𝐜(|y|𝐜t|x|2+|y|>𝐜t|x|2)3()dydτ=:J11+J12.J_{1}=\int_{0}^{\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}}\left(\int_{\left|y\right|\leq\frac{\mathbf{c}t-\left|x\right|}{2}}+\int_{\left|y\right|>\frac{\mathbf{c}t-\left|x\right|}{2}}\right)\int_{\mathbb{R}^{3}}\left(\cdots\right)dyd\tau=:J_{11}+J_{12}\hbox{.}

If 0τt4|x|4𝐜0\leq\tau\leq\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}, |y|𝐜t|x|2\left|y\right|\leq\frac{\mathbf{c}t-\left|x\right|}{2}, then

𝐜(tτ)|xy|𝐜(tτ)|x||y|𝐜t|x|4𝐜t8.\mathbf{c}\left(t-\tau\right)-\left|x-y\right|\geq\mathbf{c}\left(t-\tau\right)-\left|x\right|-\left|y\right|\geq\frac{\mathbf{c}t-\left|x\right|}{4}\geq\frac{\mathbf{c}t}{8}\hbox{.}

Hence,

J11\displaystyle J_{11} \displaystyle\lesssim 0t4|x|4𝐜|y|𝐜t|x|2(1+ts)5/2e(|x|𝐜t)22D0(1+t)(1+τ)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\int_{0}^{\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}}\int_{\left|y\right|\leq\frac{\mathbf{c}t-\left|x\right|}{2}}\left(1+t-s\right)^{-5/2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{2D_{0}\left(1+t\right)}}\left(1+\tau\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)5/2e(|x|𝐜t)22D0(1+t)0t4|x|4𝐜(1+τ)4(1+τ)52𝑑τ(1+t)5/2e(|x|𝐜t)22D0(1+t),\displaystyle\left(1+t\right)^{-5/2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{2D_{0}\left(1+t\right)}}\int_{0}^{\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}}\left(1+\tau\right)^{-4}\left(1+\tau\right)^{\frac{5}{2}}d\tau\lesssim\left(1+t\right)^{-5/2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{2D_{0}\left(1+t\right)}}\hbox{,}

and

J12\displaystyle J_{12} \displaystyle\lesssim 0t4|x|4𝐜|y|>𝐜t|x|2(1+tτ)5/2e(|xy|𝐜(tτ))2D0(1+tτ)(1+τ)2(1+(𝐜t|x|)2)2𝑑y𝑑τ\displaystyle\int_{0}^{\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}}\int_{\left|y\right|>\frac{\mathbf{c}t-\left|x\right|}{2}}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+\tau\right)^{-2}\left(1+\left(\mathbf{c}t-\left|x\right|\right)^{2}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)40t4|x|4𝐜(1+tτ)5/2(1+tτ)52(1+τ)2𝑑τ\displaystyle\left(1+t\right)^{-4}\int_{0}^{\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}}\left(1+t-\tau\right)^{-5/2}\left(1+t-\tau\right)^{\frac{5}{2}}\left(1+\tau\right)^{-2}d\tau
\displaystyle\lesssim (1+t)4(1+t)1(1+|x|)3(1+t)5/2(1+|x|21+t)32,\displaystyle\left(1+t\right)^{-4}\lesssim\left(1+t\right)^{-1}\left(1+\left|x\right|\right)^{-3}\lesssim\left(1+t\right)^{-5/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{,}

since 1+t|x|𝐜t2\sqrt{1+t}\leq\left|x\right|\leq\frac{\mathbf{c}t}{2}, so that

J1(1+t)5/2e(|x|𝐜t)22D0(1+t)+(1+t)5/2(1+|x|21+t)32.J_{1}\lesssim\left(1+t\right)^{-5/2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{2D_{0}\left(1+t\right)}}+\left(1+t\right)^{-5/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

For J2J_{2} and J3J_{3},

J2\displaystyle J_{2} \displaystyle\lesssim t4|x|4𝐜t23(1+t)5/2e(|xy|𝐜(tτ))2D0(1+tτ)(1+τ)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\int_{\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}}^{\frac{t}{2}}\int_{\mathbb{R}^{3}}\left(1+t\right)^{-5/2}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+\tau\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)5/2(1+t4|x|4𝐜)40t3e(|xy|𝐜(tτ))2D0(1+tτ)(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\left(1+t\right)^{-5/2}\left(1+\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}\right)^{-4}\int_{0}^{t}\int_{\mathbb{R}^{3}}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)5/2(1+t)4(1+t)3(1+t)7/2(1+t)2(1+|x|21+t)32,\displaystyle\left(1+t\right)^{-5/2}\left(1+t\right)^{-4}\left(1+t\right)^{3}\lesssim\left(1+t\right)^{-7/2}\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{,}
J3\displaystyle J_{3} \displaystyle\lesssim t2t2+14(t+|x|𝐜)3(1+tτ)5/2e(|xy|𝐜(tτ))2D0(1+tτ)(1+t)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\int_{\frac{t}{2}}^{\frac{t}{2}+\frac{1}{4}\left(t+\frac{\left|x\right|}{\mathbf{c}}\right)}\int_{\mathbb{R}^{3}}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+t\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+14(t|x|𝐜))5/2(1+t)40t3e(|xy|𝐜(tτ))2D0(1+tτ)(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\left(1+\frac{1}{4}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)^{-5/2}\left(1+t\right)^{-4}\int_{0}^{t}\int_{\mathbb{R}^{3}}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)13/2(1+t)3(1+t)2(1+|x|21+t)32,\displaystyle\left(1+t\right)^{-13/2}\left(1+t\right)^{3}\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{,}

due to Lemma 5.4 of [24].

For J4J_{4}, we decompose 3\mathbb{R}^{3} into two parts

J4=t2+14(t+|x|𝐜)t(|y||x|+𝐜t2+|y|>|x|+𝐜t2)()dydτ=:J41+J42.J_{4}=\int_{\frac{t}{2}+\frac{1}{4}\left(t+\frac{\left|x\right|}{\mathbf{c}}\right)}^{t}\left(\int_{\left|y\right|\leq\frac{\left|x\right|+\mathbf{c}t}{2}}+\int_{\left|y\right|>\frac{\left|x\right|+\mathbf{c}t}{2}}\right)\left(\cdots\right)dyd\tau=:J_{41}+J_{42}\hbox{.}

If t2+14(t+|x|𝐜)τt\frac{t}{2}+\frac{1}{4}\left(t+\frac{\left|x\right|}{\mathbf{c}}\right)\leq\tau\leq t, |y||x|+𝐜t2\left|y\right|\leq\frac{\left|x\right|+\mathbf{c}t}{2}, then

𝐜τ|y|𝐜t2+14(𝐜t+|x|)|x|+𝐜t2𝐜t|x|4𝐜t8.\mathbf{c}\tau-\left|y\right|\geq\frac{\mathbf{c}t}{2}+\frac{1}{4}\left(\mathbf{c}t+\left|x\right|\right)-\frac{\left|x\right|+\mathbf{c}t}{2}\geq\frac{\mathbf{c}t-\left|x\right|}{4}\geq\frac{\mathbf{c}t}{8}\hbox{.}

If t2+14(t+|x|𝐜)τt\frac{t}{2}+\frac{1}{4}\left(t+\frac{\left|x\right|}{\mathbf{c}}\right)\leq\tau\leq t, |y|>|x|+𝐜t2\left|y\right|>\frac{\left|x\right|+\mathbf{c}t}{2}, then

|xy|𝐜(tτ)\displaystyle\left|x-y\right|-\mathbf{c}\left(t-\tau\right) \displaystyle\geq |y||x|𝐜(tτ)|x|+𝐜t2|x|𝐜t+𝐜t2+14(𝐜t+|x|)\displaystyle\left|y\right|-\left|x\right|-\mathbf{c}\left(t-\tau\right)\geq\frac{\left|x\right|+\mathbf{c}t}{2}-\left|x\right|-\mathbf{c}t+\frac{\mathbf{c}t}{2}+\frac{1}{4}\left(\mathbf{c}t+\left|x\right|\right)
\displaystyle\geq 𝐜t|x|4𝐜t8.\displaystyle\frac{\mathbf{c}t-\left|x\right|}{4}\geq\frac{\mathbf{c}t}{8}\hbox{.}

Hence,

J41\displaystyle J_{41} \displaystyle\lesssim t2+14(t+|x|𝐜)t|y||x|+𝐜t2(1+tτ)5/2e(|xy|𝐜(tτ))2D0(1+tτ)(1+t)4(1+(𝐜t|x|)21+t)2𝑑y𝑑τ\displaystyle\int_{\frac{t}{2}+\frac{1}{4}\left(t+\frac{\left|x\right|}{\mathbf{c}}\right)}^{t}\int_{\left|y\right|\leq\frac{\left|x\right|+\mathbf{c}t}{2}}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+t\right)^{-4}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)4(1+(𝐜t|x|)21+t)2(1+t)\displaystyle\left(1+t\right)^{-4}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-2}(1+t)
\displaystyle\lesssim (1+t)5(1+t)2(1+|x|)3(1+t)7/2(1+|x|21+t)32,\displaystyle\left(1+t\right)^{-5}\lesssim\left(1+t\right)^{-2}\left(1+\left|x\right|\right)^{-3}\lesssim\left(1+t\right)^{-7/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{,}
J42\displaystyle J_{42} \displaystyle\lesssim t2+14(t+|x|𝐜)t|y|>|x|+𝐜t2(1+tτ)5/2e(𝐜t|x|)22D0(1+t)e(|xy|𝐜(tτ))22D0(1+tτ)(1+t)4𝑑y𝑑τ\displaystyle\int_{\frac{t}{2}+\frac{1}{4}\left(t+\frac{\left|x\right|}{\mathbf{c}}\right)}^{t}\int_{\left|y\right|>\frac{\left|x\right|+\mathbf{c}t}{2}}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{2D_{0}\left(1+t\right)}}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{2D_{0}\left(1+t-\tau\right)}}\left(1+t\right)^{-4}dyd\tau
\displaystyle\lesssim (1+t)4e(𝐜t|x|)22D0(1+t)t2+14(t+|x|𝐜)t(1+tτ)52+52𝑑τ\displaystyle\left(1+t\right)^{-4}e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{2D_{0}\left(1+t\right)}}\int_{\frac{t}{2}+\frac{1}{4}\left(t+\frac{\left|x\right|}{\mathbf{c}}\right)}^{t}\left(1+t-\tau\right)^{-\frac{5}{2}+\frac{5}{2}}d\tau
\displaystyle\lesssim (1+t)3etC(1+t)7/2(1+|x|21+t)32.\displaystyle\left(1+t\right)^{-3}e^{-\frac{t}{C}}\lesssim\left(1+t\right)^{-7/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

for some C>0C>0, so that

J4(1+t)7/2(1+|x|21+t)32.J_{4}\lesssim\left(1+t\right)^{-7/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

As a result,

J(1+t)2(1+|x|21+t)32+(1+t)5/2e(|x|𝐜t)22D0(1+t)J\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-5/2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{2D_{0}\left(1+t\right)}}

for (x,t)D4\left(x,t\right)\in D_{4}.


Case 4: (x,t)D5\left(x,t\right)\in D_{5}. We split the integral JJ into five parts

J=(0t4|x|4𝐜+t4|x|4𝐜t2+t2|x|2𝐜+14(t+|x|𝐜)+|x|2𝐜+14(t+|x|𝐜)t2+14(t+|x|𝐜)+t2+14(t+|x|𝐜)t)3()dydτ=:i=15Ji.J=\left(\int_{0}^{\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}}+\int_{\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}}^{\frac{t}{2}}+\int_{\frac{t}{2}}^{\frac{|x|}{2\mathbf{c}}+\frac{1}{4}(t+\frac{|x|}{\mathbf{c}})}+\int_{\frac{|x|}{2\mathbf{c}}+\frac{1}{4}(t+\frac{|x|}{\mathbf{c}})}^{\frac{t}{2}+\frac{1}{4}(t+\frac{|x|}{\mathbf{c}})}+\int^{t}_{\frac{t}{2}+\frac{1}{4}(t+\frac{|x|}{\mathbf{c}})}\right)\int_{\mathbb{R}^{3}}\left(\cdots\right)dyd\tau=:\sum_{i=1}^{5}J_{i}\hbox{.}

For J1J_{1}, we decompose 3\mathbb{R}^{3} into two parts

J1=0t4|x|4𝐜(|y|𝐜t|x|2+|y|>𝐜t|x|2)()dydτ=:J11+J12.J_{1}=\int_{0}^{\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}}\left(\int_{\left|y\right|\leq\frac{\mathbf{c}t-\left|x\right|}{2}}+\int_{\left|y\right|>\frac{\mathbf{c}t-\left|x\right|}{2}}\right)\left(\cdots\right)dyd\tau=:J_{11}+J_{12}\hbox{.}

If 0τt4|x|4𝐜0\leq\tau\leq\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}, |y|𝐜t|x|2\left|y\right|\leq\frac{\mathbf{c}t-\left|x\right|}{2}, then

𝐜(tτ)|xy|𝐜(tτ)(|x|+|y|)𝐜t|x|4.\mathbf{c}\left(t-\tau\right)-\left|x-y\right|\geq\mathbf{c}\left(t-\tau\right)-\left(\left|x\right|+\left|y\right|\right)\geq\frac{\mathbf{c}t-\left|x\right|}{4}\hbox{.}

If 0τt4|x|4𝐜0\leq\tau\leq\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}, |y|>𝐜t|x|2\left|y\right|>\frac{\mathbf{c}t-\left|x\right|}{2}, then

|y|𝐜τ𝐜t|x|4.\left|y\right|-\mathbf{c}\tau\geq\frac{\mathbf{c}t-\left|x\right|}{4}\hbox{.}

Hence,

J11\displaystyle J_{11} \displaystyle\lesssim 0t4|x|4𝐜|y|𝐜t|x|2(1+t)5/2e(𝐜t|x|)2D0(1+t)(1+τ)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\int_{0}^{\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}}\int_{\left|y\right|\leq\frac{\mathbf{c}t-\left|x\right|}{2}}\left(1+t\right)^{-5/2}e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{D_{0}\left(1+t\right)}}\left(1+\tau\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)5/2e(𝐜t|x|)2D0(1+t)0𝐜t|x|4(1+τ)4+52𝑑τ(1+t)5/2e(𝐜t|x|)2D0(1+t).\displaystyle\left(1+t\right)^{-5/2}e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{D_{0}\left(1+t\right)}}\int_{0}^{\frac{\mathbf{c}t-\left|x\right|}{4}}\left(1+\tau\right)^{-4+\frac{5}{2}}d\tau\lesssim\left(1+t\right)^{-5/2}e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{D_{0}\left(1+t\right)}}\hbox{.}

For J12J_{12}, we have

J12\displaystyle J_{12} \displaystyle\lesssim 0t4|x|4𝐜|y|>𝐜t|x|2(1+tτ)5/2e(|xy|𝐜(tτ))2D0(1+tτ)(1+τ)2(1+(𝐜t|x|)2)2𝑑y𝑑τ\displaystyle\int_{0}^{\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}}\int_{\left|y\right|>\frac{\mathbf{c}t-\left|x\right|}{2}}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+\tau\right)^{-2}\left(1+\left(\mathbf{c}t-\left|x\right|\right)^{2}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+(𝐜t|x|)2)20𝐜t|x|4(1+τ)2𝑑τ\displaystyle\left(1+\left(\mathbf{c}t-\left|x\right|\right)^{2}\right)^{-2}\int_{0}^{\frac{\mathbf{c}t-\left|x\right|}{4}}\left(1+\tau\right)^{-2}d\tau
\displaystyle\lesssim (1+𝐜t|x|)4,\displaystyle\left(1+\mathbf{c}t-\left|x\right|\right)^{-4}\hbox{,}

and

J12\displaystyle J_{12} \displaystyle\lesssim 0t4|x|4𝐜(1+t)5/2(1+τ)2𝐜t|x|2(1+r𝐜τ)4r2𝑑r𝑑τ\displaystyle\int_{0}^{\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}}\left(1+t\right)^{-5/2}\left(1+\tau\right)^{-2}\int_{\frac{\mathbf{c}t-\left|x\right|}{2}}^{\infty}\left(1+r-\mathbf{c}\tau\right)^{-4}r^{2}drd\tau
\displaystyle\lesssim 0𝐜t|x|4(1+t)5/2(1+τ)2(1+𝐜t|x|)1𝑑τ\displaystyle\int_{0}^{\frac{\mathbf{c}t-\left|x\right|}{4}}\left(1+t\right)^{-5/2}\left(1+\tau\right)^{-2}\left(1+\mathbf{c}t-\left|x\right|\right)^{-1}d\tau
\displaystyle\lesssim (1+t)5/2(1+𝐜t|x|)1,\displaystyle\left(1+t\right)^{-5/2}\left(1+\mathbf{c}t-\left|x\right|\right)^{-1}\hbox{,}

which implies that

J12\displaystyle J_{12} \displaystyle\lesssim (J12)13(J12)23[(1+𝐜t|x|)4]13[(1+t)5/2(1+𝐜t|x|)1]23\displaystyle\left(J_{12}\right)^{\frac{1}{3}}\left(J_{12}\right)^{\frac{2}{3}}\lesssim\left[\left(1+\mathbf{c}t-\left|x\right|\right)^{-4}\right]^{\frac{1}{3}}\left[\left(1+t\right)^{-5/2}\left(1+\mathbf{c}t-\left|x\right|\right)^{-1}\right]^{\frac{2}{3}}
\displaystyle\lesssim (1+t)53(1+𝐜t|x|)2(1+t)83(1+(𝐜t|x|)21+t)1.\displaystyle\left(1+t\right)^{-\frac{5}{3}}\left(1+\mathbf{c}t-\left|x\right|\right)^{-2}\lesssim\left(1+t\right)^{-\frac{8}{3}}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-1}\hbox{.}

Therefore, we get

J1(1+t)5/2e(𝐜t|x|)2D0(1+t)+(1+t)83(1+(𝐜t|x|)21+t)1.J_{1}\lesssim\left(1+t\right)^{-5/2}e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{D_{0}\left(1+t\right)}}+\left(1+t\right)^{-\frac{8}{3}}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-1}\hbox{.}

For J2J_{2}, we use the spherical coordinates to obtain

J2\displaystyle J_{2} \displaystyle\lesssim t4|x|4𝐜t200π(1+tτ)5/2e(|x|2+r22r|x|cosθ𝐜(tτ))2D0(1+tτ)(1+τ)4(1+(r𝐜τ)21+τ)2r2sinθdθdrdτ\displaystyle\int_{\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}}^{\frac{t}{2}}\int_{0}^{\infty}\int_{0}^{\pi}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\sqrt{\left|x\right|^{2}+r^{2}-2r\left|x\right|\cos\theta}-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+\tau\right)^{-4}\left(1+\frac{\left(r-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}r^{2}\sin\theta d\theta drd\tau
\displaystyle\lesssim t4|x|4𝐜t20||x|r||x|+r(1+tτ)5/2e(z𝐜(tτ))2D0(1+tτ)(1+τ)4(1+(r𝐜τ)21+τ)2rz1|x|𝑑z𝑑r𝑑τ\displaystyle\int_{\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}}^{\frac{t}{2}}\int_{0}^{\infty}\int_{\left|\left|x\right|-r\right|}^{\left|x\right|+r}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(z-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+\tau\right)^{-4}\left(1+\frac{\left(r-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}rz\frac{1}{\left|x\right|}dzdrd\tau
\displaystyle\lesssim t4|x|4𝐜t200(1+tτ)5/2e(z𝐜(tτ))2D0(1+tτ)(1+τ)4(1+(r𝐜τ)21+τ)2rz1|x|𝑑z𝑑r𝑑τ\displaystyle\int_{\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}}^{\frac{t}{2}}\int_{0}^{\infty}\int_{0}^{\infty}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(z-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+\tau\right)^{-4}\left(1+\frac{\left(r-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}rz\frac{1}{\left|x\right|}dzdrd\tau
\displaystyle\lesssim t4|x|4𝐜t20(1+tτ)52+32(1+τ)4(1+(r𝐜τ)21+τ)2r|x|𝑑r𝑑τ\displaystyle\int_{\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}}^{\frac{t}{2}}\int_{0}^{\infty}\left(1+t-\tau\right)^{-\frac{5}{2}+\frac{3}{2}}\left(1+\tau\right)^{-4}\left(1+\frac{\left(r-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}\frac{r}{\left|x\right|}drd\tau
\displaystyle\lesssim (1+t)52+32|x|1t4|x|4𝐜t2(1+τ)4+32𝑑τ\displaystyle\left(1+t\right)^{-\frac{5}{2}+\frac{3}{2}}\left|x\right|^{-1}\int_{\frac{t}{4}-\frac{\left|x\right|}{4\mathbf{c}}}^{\frac{t}{2}}\left(1+\tau\right)^{-4+\frac{3}{2}}d\tau
\displaystyle\lesssim (1+t)2(1+𝐜t|x|)32(1+t)2(1+𝐜t|x|)12(1+𝐜t|x|)2\displaystyle\left(1+t\right)^{-2}\left(1+\mathbf{c}t-\left|x\right|\right)^{-\frac{3}{2}}\lesssim\left(1+t\right)^{-2}\left(1+\mathbf{c}t-\left|x\right|\right)^{\frac{1}{2}}\left(1+\mathbf{c}t-\left|x\right|\right)^{-2}
\displaystyle\lesssim (1+t)5/2(1+(𝐜t|x|)21+t)1,\displaystyle\left(1+t\right)^{-5/2}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-1}\hbox{,}

by setting z=|x|2+r22r|x|cosθz=\sqrt{\left|x\right|^{2}+r^{2}-2r\left|x\right|\cos\theta} and sinθdθ=zr|x|dz\sin\theta d\theta=\frac{z}{r\left|x\right|}dz.

For J3J_{3}, we use the spherical coordinates again to obtain

J3\displaystyle J_{3} \displaystyle\lesssim t23|x|4𝐜+t400π(1+tτ)5/2e(|x|2+r22r|x|cosθ𝐜(tτ))2D0(1+tτ)(1+t)4(1+(r𝐜τ)21+τ)2r2sinθdθdrdτ\displaystyle\int_{\frac{t}{2}}^{\frac{3|x|}{4\mathbf{c}}+\frac{t}{4}}\int_{0}^{\infty}\int_{0}^{\pi}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\sqrt{\left|x\right|^{2}+r^{2}-2r\left|x\right|\cos\theta}-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+t\right)^{-4}\left(1+\frac{\left(r-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}r^{2}\sin\theta d\theta drd\tau
\displaystyle\lesssim t23|x|4𝐜+t40||x|r||x|+r(1+tτ)5/2e(z𝐜(tτ))2D0(1+tτ)(1+t)4(1+(r𝐜τ)21+τ)2rz1|x|𝑑z𝑑r𝑑τ\displaystyle\int_{\frac{t}{2}}^{\frac{3|x|}{4\mathbf{c}}+\frac{t}{4}}\int_{0}^{\infty}\int_{\left|\left|x\right|-r\right|}^{\left|x\right|+r}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(z-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+t\right)^{-4}\left(1+\frac{\left(r-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}rz\frac{1}{\left|x\right|}dzdrd\tau
\displaystyle\lesssim (1+t)4|x|1t23|x|4𝐜+t40(1+tτ)52+32(1+(r𝐜τ)21+τ)2r𝑑r𝑑τ\displaystyle\left(1+t\right)^{-4}\left|x\right|^{-1}\int_{\frac{t}{2}}^{\frac{3|x|}{4\mathbf{c}}+\frac{t}{4}}\int_{0}^{\infty}\left(1+t-\tau\right)^{-\frac{5}{2}+\frac{3}{2}}\left(1+\frac{\left(r-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}rdrd\tau
\displaystyle\lesssim (1+t)7/2t23|x|4𝐜+t4(1+tτ)1𝑑τ\displaystyle\left(1+t\right)^{-7/2}\int_{\frac{t}{2}}^{\frac{3|x|}{4\mathbf{c}}+\frac{t}{4}}\left(1+t-\tau\right)^{-1}d\tau
\displaystyle\lesssim (1+t)7/2[ln(1+t2)ln(1+𝐜t|x|4𝐜)]\displaystyle\left(1+t\right)^{-7/2}\left[\ln\left(1+\frac{t}{2}\right)-\ln\left(1+\frac{\mathbf{c}t-|x|}{4\mathbf{c}}\right)\right]
\displaystyle\lesssim (1+t)5/2(1+(𝐜t|x|)21+t)1.\displaystyle\left(1+t\right)^{-5/2}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-1}\hbox{.}

For J4J_{4}, similar to J3J_{3}, we have

J4\displaystyle J_{4} \displaystyle\lesssim (1+t)7/23|x|4𝐜+t4|x|4𝐜+3t4(1+tτ)1𝑑τ\displaystyle\left(1+t\right)^{-7/2}\int_{\frac{3|x|}{4\mathbf{c}}+\frac{t}{4}}^{\frac{|x|}{4\mathbf{c}}+\frac{3t}{4}}\left(1+t-\tau\right)^{-1}d\tau
\displaystyle\lesssim (1+t)7/2[(1+3(𝐜t|x|)4𝐜)1(1+(𝐜t|x|)2𝐜)]\displaystyle\left(1+t\right)^{-7/2}\left[\left(1+\frac{3(\mathbf{c}t-|x|)}{4\mathbf{c}}\right)^{-1}\left(1+\frac{(\mathbf{c}t-|x|)}{2\mathbf{c}}\right)\right]
\displaystyle\lesssim (1+t)5/2(1+(𝐜t|x|)21+t)1.\displaystyle\left(1+t\right)^{-5/2}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-1}\hbox{.}

For J5J_{5}, we decompose 3\mathbb{R}^{3} into two parts

J5=t2+14(t+|x|𝐜)t(|y||x|+𝐜t2+|y|>|x|+𝐜t2)()dydτ=:J51+J52.J_{5}=\int_{\frac{t}{2}+\frac{1}{4}\left(t+\frac{\left|x\right|}{\mathbf{c}}\right)}^{t}\left(\int_{\left|y\right|\leq\frac{\left|x\right|+\mathbf{c}t}{2}}+\int_{\left|y\right|>\frac{\left|x\right|+\mathbf{c}t}{2}}\right)\left(\cdots\right)dyd\tau=:J_{51}+J_{52}\hbox{.}

If t2+14(t+|x|𝐜)τt\frac{t}{2}+\frac{1}{4}\left(t+\frac{\left|x\right|}{\mathbf{c}}\right)\leq\tau\leq t, |y||x|+𝐜t2\left|y\right|\leq\frac{\left|x\right|+\mathbf{c}t}{2}, then

𝐜τ|y|𝐜t2+14(𝐜t+|x|)|x|+𝐜t2𝐜t|x|4.\mathbf{c}\tau-\left|y\right|\geq\frac{\mathbf{c}t}{2}+\frac{1}{4}\left(\mathbf{c}t+\left|x\right|\right)-\frac{\left|x\right|+\mathbf{c}t}{2}\geq\frac{\mathbf{c}t-\left|x\right|}{4}\hbox{.}

If t2+14(t+|x|𝐜)τt\frac{t}{2}+\frac{1}{4}\left(t+\frac{\left|x\right|}{\mathbf{c}}\right)\leq\tau\leq t, |y|>|x|+𝐜t2\left|y\right|>\frac{\left|x\right|+\mathbf{c}t}{2}, then

|xy|𝐜(tτ)\displaystyle\left|x-y\right|-\mathbf{c}\left(t-\tau\right) \displaystyle\geq |y||x|𝐜(tτ)|x|+𝐜t2|x|𝐜t+𝐜t2+14(𝐜t+|x|)𝐜t|x|4.\displaystyle\left|y\right|-\left|x\right|-\mathbf{c}\left(t-\tau\right)\geq\frac{\left|x\right|+\mathbf{c}t}{2}-\left|x\right|-\mathbf{c}t+\frac{\mathbf{c}t}{2}+\frac{1}{4}\left(\mathbf{c}t+\left|x\right|\right)\geq\frac{\mathbf{c}t-\left|x\right|}{4}\hbox{.}

Hence,

J51\displaystyle J_{51} \displaystyle\lesssim t2+14(t+|x|𝐜)t|y||x|+𝐜t2(1+tτ)5/2e(|xy|𝐜(tτ))2D0(1+tτ)(1+t)4(1+(𝐜t|x|)21+t)2𝑑y𝑑τ\displaystyle\int_{\frac{t}{2}+\frac{1}{4}\left(t+\frac{\left|x\right|}{\mathbf{c}}\right)}^{t}\int_{\left|y\right|\leq\frac{\left|x\right|+\mathbf{c}t}{2}}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+t\right)^{-4}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)4(1+(𝐜t|x|)21+t)2(𝐜t|x|)\displaystyle\left(1+t\right)^{-4}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-2}\left(\mathbf{c}t-\left|x\right|\right)
\displaystyle\lesssim (1+t)3(1+(𝐜t|x|)21+t)2,\displaystyle\left(1+t\right)^{-3}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-2}\hbox{,}
J52\displaystyle J_{52} \displaystyle\lesssim t2+14(t+|x|𝐜)t|y|>|x|+𝐜t2(1+tτ)5/2e(𝐜t|x|)22D0(1+𝐜t|x|)e(|xy|𝐜(tτ))22D0(1+tτ)(1+t)4𝑑y𝑑τ\displaystyle\int_{\frac{t}{2}+\frac{1}{4}\left(t+\frac{\left|x\right|}{\mathbf{c}}\right)}^{t}\int_{\left|y\right|>\frac{\left|x\right|+\mathbf{c}t}{2}}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{2D_{0}\left(1+\mathbf{c}t-\left|x\right|\right)}}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{2D_{0}\left(1+t-\tau\right)}}\left(1+t\right)^{-4}dyd\tau
\displaystyle\lesssim (1+t)4e(𝐜t|x|)2D0t2+14(t+|x|𝐜)t(1+tτ)52+52𝑑τ\displaystyle\left(1+t\right)^{-4}e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)}{2D_{0}}}\int_{\frac{t}{2}+\frac{1}{4}\left(t+\frac{\left|x\right|}{\mathbf{c}}\right)}^{t}\left(1+t-\tau\right)^{-\frac{5}{2}+\frac{5}{2}}d\tau
\displaystyle\lesssim (1+t)3e(𝐜t|x|)2D0.\displaystyle\left(1+t\right)^{-3}e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)}{2D_{0}}}\hbox{.}

Gathering all the estimates, we have

J(1+t)2(1+|x|21+t)32+(1+t)5/2(1+(𝐜t|x|)21+t)1.J\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-5/2}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-1}\hbox{.}

Proof of Lemma 26.

(Huygens wave convolved with diffusion wave).

Case 1: (x,t)D1\left(x,t\right)\in D_{1}. Direct computation gives

K\displaystyle K \displaystyle\lesssim (1+t)5/20t23(1+τ)3(1+|y|21+τ)3𝑑y𝑑τ\displaystyle\left(1+t\right)^{-5/2}\int_{0}^{\frac{t}{2}}\int_{\mathbb{R}^{3}}\left(1+\tau\right)^{-3}\left(1+\frac{\left|y\right|^{2}}{1+\tau}\right)^{-3}dyd\tau
+(1+t)3t2t3(1+tτ)5/2(1+(|xy|𝐜(tτ))2D0(1+tτ))2𝑑y𝑑τ\displaystyle+\left(1+t\right)^{-3}\int_{\frac{t}{2}}^{t}\int_{\mathbb{R}^{3}}\left(1+t-\tau\right)^{-5/2}\left(1+\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)5/20t2(1+τ)3(1+τ)32𝑑y𝑑τ+(1+t)3t2t(1+tτ)5/2(1+tτ)52𝑑τ\displaystyle\left(1+t\right)^{-5/2}\int_{0}^{\frac{t}{2}}\left(1+\tau\right)^{-3}\left(1+\tau\right)^{\frac{3}{2}}dyd\tau+\left(1+t\right)^{-3}\int_{\frac{t}{2}}^{t}\left(1+t-\tau\right)^{-5/2}\left(1+t-\tau\right)^{\frac{5}{2}}d\tau
\displaystyle\lesssim (1+t)5/2+(1+t)3(1+t)(1+t)2(1+|x|21+t)32.\displaystyle\left(1+t\right)^{-5/2}+\left(1+t\right)^{-3}\left(1+t\right)\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

Case 2: (x,t)D2\left(x,t\right)\in D_{2}. We split the integral KK into two parts

K=(034t+34tt)3()dydτ=:K1+K2.K=\left(\int_{0}^{\frac{3}{4}t}+\int_{\frac{3}{4}t}^{t}\right)\int_{\mathbb{R}^{3}}\left(\cdots\right)dyd\tau=:K_{1}+K_{2}\hbox{.}

For K1K_{1}, it is easy to see

K1\displaystyle K_{1} \displaystyle\lesssim 034t3(1+t)5/2(1+τ)3(1+|y|21+τ)3𝑑y𝑑τ\displaystyle\int_{0}^{\frac{3}{4}t}\int_{\mathbb{R}^{3}}\left(1+t\right)^{-5/2}\left(1+\tau\right)^{-3}\left(1+\frac{\left|y\right|^{2}}{1+\tau}\right)^{-3}dyd\tau
\displaystyle\lesssim 034t(1+t)5/2(1+τ)3(1+τ)32𝑑τ(1+t)5/2(1+t)5/2(1+(|x|𝐜t)21+t)1.\displaystyle\int_{0}^{\frac{3}{4}t}\left(1+t\right)^{-5/2}\left(1+\tau\right)^{-3}\left(1+\tau\right)^{\frac{3}{2}}d\tau\lesssim\left(1+t\right)^{-5/2}\lesssim\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{.}

For K2K_{2}, we decompose 3\mathbb{R}^{3} into two parts

K2=34tt(|y||x|2+|y|>|x|2)()dydτ=:K21+K22.K_{2}=\int_{\frac{3}{4}t}^{t}\left(\int_{\left|y\right|\leq\frac{\left|x\right|}{2}}+\int_{\left|y\right|>\frac{\left|x\right|}{2}}\right)\left(\cdots\right)dyd\tau=:K_{21}+K_{22}.

It readily follows that

K22\displaystyle K_{22} \displaystyle\lesssim (1+t)3(1+|x|21+t)334tt|y|>|x|2(1+tτ)5/2e(|xy|𝐜(tτ))2D0(1+tτ)𝑑y𝑑τ\displaystyle\left(1+t\right)^{-3}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3}\int_{\frac{3}{4}t}^{t}\int_{\left|y\right|>\frac{\left|x\right|}{2}}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}dyd\tau
\displaystyle\lesssim (1+t)3(1+|x|21+t)334tt(1+tτ)5/2(1+tτ)52𝑑τ\displaystyle\left(1+t\right)^{-3}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3}\int_{\frac{3}{4}t}^{t}\left(1+t-\tau\right)^{-5/2}\left(1+t-\tau\right)^{\frac{5}{2}}d\tau
\displaystyle\lesssim (1+t)2(1+|x|21+t)3.\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3}\hbox{.}

If 34tτt\frac{3}{4}t\leq\tau\leq t, |y||x|2\left|y\right|\leq\frac{\left|x\right|}{2}, then

|xy|𝐜(tτ)\displaystyle\left|x-y\right|-\mathbf{c}\left(t-\tau\right) \displaystyle\geq |x||y|𝐜(tτ)|x|2𝐜t412(𝐜t1+t)𝐜t4\displaystyle\left|x\right|-\left|y\right|-\mathbf{c}\left(t-\tau\right)\geq\frac{\left|x\right|}{2}-\frac{\mathbf{c}t}{4}\geq\frac{1}{2}\left(\mathbf{c}t-\sqrt{1+t}\right)-\frac{\mathbf{c}t}{4}
\displaystyle\geq 𝐜t8+(𝐜t81+t2)𝐜t8\displaystyle\frac{\mathbf{c}t}{8}+\left(\frac{\mathbf{c}t}{8}-\frac{\sqrt{1+t}}{2}\right)\geq\frac{\mathbf{c}t}{8}

for t11t\geq 11. Hence, there exists a universal constant C>0C>0 such that

K21\displaystyle K_{21} \displaystyle\lesssim (1+t)3etC34tt3(1+tτ)5/2(1+|y|21+τ)3𝑑y𝑑τ\displaystyle\left(1+t\right)^{-3}e^{-\frac{t}{C}}\int_{\frac{3}{4}t}^{t}\int_{\mathbb{R}^{3}}\left(1+t-\tau\right)^{-5/2}\left(1+\frac{\left|y\right|^{2}}{1+\tau}\right)^{-3}dyd\tau
\displaystyle\lesssim (1+t)3etC34tt(1+tτ)5/2(1+τ)32𝑑τ\displaystyle\left(1+t\right)^{-3}e^{-\frac{t}{C}}\int_{\frac{3}{4}t}^{t}\left(1+t-\tau\right)^{-5/2}\left(1+\tau\right)^{\frac{3}{2}}d\tau
\displaystyle\lesssim etC(1+t)5/2(1+(|x|𝐜t)21+t)1\displaystyle e^{-\frac{t}{C}}\lesssim\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}

for t11t\geq 11, and

K21\displaystyle K_{21} \displaystyle\lesssim (1+t)334tt3(1+tτ)5/2(1+|y|21+τ)3𝑑y𝑑τ\displaystyle\left(1+t\right)^{-3}\int_{\frac{3}{4}t}^{t}\int_{\mathbb{R}^{3}}\left(1+t-\tau\right)^{-5/2}\left(1+\frac{\left|y\right|^{2}}{1+\tau}\right)^{-3}dyd\tau
\displaystyle\lesssim C(1+t)5/2(1+(|x|𝐜t)21+t)1\displaystyle C\lesssim\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}

for 0t110\leq t\leq 11. Therefore we can conclude that

K(1+t)2(1+|x|21+t)3+(1+t)5/2(1+(|x|𝐜t)21+t)1.K\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3}+\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{.}

Case 3: (x,t)D3\left(x,t\right)\in D_{3}. We split the integral KK into four parts

K\displaystyle K =\displaystyle= 0t2(|y||x|𝐜(tτ)2+|y|>|x|𝐜(tτ)2)()𝑑y𝑑τ+t2t(|y||x|𝐜(tτ)2+|y|>|x|𝐜(tτ)2)()𝑑y𝑑τ\displaystyle\int_{0}^{\frac{t}{2}}\left(\int_{\left|y\right|\leq\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}+\int_{\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}\right)\left(\cdots\right)dyd\tau+\int_{\frac{t}{2}}^{t}\left(\int_{\left|y\right|\leq\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}+\int_{\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}\right)\left(\cdots\right)dyd\tau
=\displaystyle= K11+K12+K21+K22.\displaystyle K_{11}+K_{12}+K_{21}+K_{22}\hbox{.}

If |y||x|𝐜(tτ)2\left|y\right|\leq\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}, then

|xy|𝐜(tτ)|x||y|𝐜(tτ)|x|𝐜(tτ)2=|x|𝐜t+𝐜τ2.\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\geq\left|x\right|-\left|y\right|-\mathbf{c}\left(t-\tau\right)\geq\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}=\frac{\left|x\right|-\mathbf{c}t+\mathbf{c}\tau}{2}\hbox{.}

Hence,

K11\displaystyle K_{11} \displaystyle\lesssim 0t2|y||x|𝐜(tτ)2(1+tτ)5/2e(|x|𝐜t)2+(𝐜τ)24D0(1+tτ)(1+τ)3(1+|y|21+τ)3𝑑y𝑑τ\displaystyle\int_{0}^{\frac{t}{2}}\int_{\left|y\right|\leq\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}+\left(\mathbf{c}\tau\right)^{2}}{4D_{0}\left(1+t-\tau\right)}}\left(1+\tau\right)^{-3}\left(1+\frac{\left|y\right|^{2}}{1+\tau}\right)^{-3}dyd\tau
\displaystyle\lesssim (1+t)5/2e(|x|𝐜t)24D0(1+t)0t2(1+τ)3(1+τ)32𝑑y𝑑τ(1+t)5/2e(|x|𝐜t)24D0(1+t),\displaystyle\left(1+t\right)^{-5/2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{4D_{0}\left(1+t\right)}}\int_{0}^{\frac{t}{2}}\left(1+\tau\right)^{-3}\left(1+\tau\right)^{\frac{3}{2}}dyd\tau\lesssim\left(1+t\right)^{-5/2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{4D_{0}\left(1+t\right)}}\hbox{,}
K12\displaystyle K_{12} \displaystyle\lesssim (1+t)5/20t2|y|>|x|𝐜(tτ)2(1+τ+|y|2)3𝑑y𝑑τ\displaystyle\left(1+t\right)^{-5/2}\int_{0}^{\frac{t}{2}}\int_{\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}\left(1+\tau+\left|y\right|^{2}\right)^{-3}dyd\tau
\displaystyle\lesssim (1+t)5/20t2|x|𝐜(tτ)2(1+r)6r2𝑑r𝑑τ(1+t)5/20t2(1+|x|𝐜t+𝐜τ)3𝑑τ\displaystyle\left(1+t\right)^{-5/2}\int_{0}^{\frac{t}{2}}\int_{\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}^{\infty}\left(1+r\right)^{-6}r^{2}drd\tau\lesssim\left(1+t\right)^{-5/2}\int_{0}^{\frac{t}{2}}\left(1+\left|x\right|-\mathbf{c}t+\mathbf{c}\tau\right)^{-3}d\tau
\displaystyle\lesssim (1+t)5/2(1+|x|𝐜t)2(1+t)7/2(1+(|x|𝐜t)21+t)1,\displaystyle\left(1+t\right)^{-5/2}\left(1+\left|x\right|-\mathbf{c}t\right)^{-2}\lesssim\left(1+t\right)^{-7/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{,}
K21\displaystyle K_{21} \displaystyle\lesssim t2t|y||x|𝐜(tτ)2(1+tτ)5/2e(|x|𝐜t)2+(𝐜τ)24D0(1+tτ)(1+τ)3(1+|y|21+τ)3𝑑y𝑑τ\displaystyle\int_{\frac{t}{2}}^{t}\int_{\left|y\right|\leq\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}+\left(\mathbf{c}\tau\right)^{2}}{4D_{0}\left(1+t-\tau\right)}}\left(1+\tau\right)^{-3}\left(1+\frac{\left|y\right|^{2}}{1+\tau}\right)^{-3}dyd\tau
\displaystyle\lesssim e(|x|𝐜t)24D0(1+t)etCt2t(1+tτ)5/2(1+τ)32𝑑τetCe(|x|𝐜t)24D0(1+t)\displaystyle e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{4D_{0}\left(1+t\right)}}e^{-\frac{t}{C}}\int_{\frac{t}{2}}^{t}\left(1+t-\tau\right)^{-5/2}\left(1+\tau\right)^{-\frac{3}{2}}d\tau\lesssim e^{-\frac{t}{C}}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{4D_{0}\left(1+t\right)}}

for some C>0C>0, and

K22\displaystyle K_{22} \displaystyle\lesssim (1+t)3(1+(|x|𝐜t)2+𝐜2t21+t)3t2t3(1+tτ)5/2e(|xy|𝐜(tτ))2D0(1+tτ)𝑑y𝑑τ\displaystyle\left(1+t\right)^{-3}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}+\mathbf{c}^{2}t^{2}}{1+t}\right)^{-3}\int_{\frac{t}{2}}^{t}\int_{\mathbb{R}^{3}}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}dyd\tau
\displaystyle\lesssim (1+t)3(1+(|x|𝐜t)21+t+t)3t2t(1+tτ)5/2(1+tτ)52𝑑τ\displaystyle\left(1+t\right)^{-3}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}+t\right)^{-3}\int_{\frac{t}{2}}^{t}\left(1+t-\tau\right)^{-5/2}\left(1+t-\tau\right)^{\frac{5}{2}}d\tau
\displaystyle\lesssim (1+t)4(1+(|x|𝐜t)21+t)1.\displaystyle\left(1+t\right)^{-4}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{.}

It implies that

K(1+t)5/2(1+(|x|𝐜t)21+t)1.K\lesssim\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{.}

Case 4: (x,t)D4\left(x,t\right)\in D_{4}. First note that 1+t|x|𝐜t/2\sqrt{1+t}\leq\left|x\right|\leq\mathbf{c}t/2 in this region. Now we split the integral KK into three parts

K=(0t2|x|2𝐜+t2|x|2𝐜t|x|2𝐜+t|x|2𝐜t)3()dydτ=:K1+K2+K3.K=\left(\int_{0}^{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}+\int_{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}^{t-\frac{\left|x\right|}{2\mathbf{c}}}+\int_{t-\frac{\left|x\right|}{2\mathbf{c}}}^{t}\right)\int_{\mathbb{R}^{3}}\left(\cdots\right)dyd\tau=:K_{1}+K_{2}+K_{3}\hbox{.}

For K1K_{1}, we decompose 3\mathbb{R}^{3} into two parts

K1=0t2|x|2𝐜(|y|𝐜(tτ)|x|2+|y|>𝐜(tτ)|x|2)()dydτ=:K11+K12.K_{1}=\int_{0}^{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}\left(\int_{\left|y\right|\leq\frac{\mathbf{c}\left(t-\tau\right)-\left|x\right|}{2}}+\int_{\left|y\right|>\frac{\mathbf{c}\left(t-\tau\right)-\left|x\right|}{2}}\right)\left(\cdots\right)dyd\tau=:K_{11}+K_{12}\hbox{.}

If 0τt2|x|2𝐜0\leq\tau\leq\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}, |y|𝐜(tτ)|x|2\left|y\right|\leq\frac{\mathbf{c}\left(t-\tau\right)-\left|x\right|}{2}, then

𝐜(tτ)|x||y|𝐜(tτ)|x|2𝐜t|x|4.\mathbf{c}\left(t-\tau\right)-\left|x\right|-\left|y\right|\geq\frac{\mathbf{c}\left(t-\tau\right)-\left|x\right|}{2}\geq\frac{\mathbf{c}t-\left|x\right|}{4}\hbox{.}

If 0τt2|x|2𝐜0\leq\tau\leq\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}, |y|>𝐜(tτ)|x|2\left|y\right|>\frac{\mathbf{c}\left(t-\tau\right)-\left|x\right|}{2}, then

|y|>𝐜t|x|4.\left|y\right|>\frac{\mathbf{c}t-\left|x\right|}{4}\hbox{.}

Hence, we have

K11\displaystyle K_{11} \displaystyle\lesssim (1+t2+|x|2𝐜)5/2e(|x|𝐜t)216D0(1+t)0t2|x|2𝐜|y|𝐜(tτ)|x|2(1+τ)3(1+(|y|𝐜τ)21+τ)3𝑑y𝑑τ\displaystyle\left(1+\frac{t}{2}+\frac{\left|x\right|}{2\mathbf{c}}\right)^{-5/2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{16D_{0}\left(1+t\right)}}\int_{0}^{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}\int_{\left|y\right|\leq\frac{\mathbf{c}\left(t-\tau\right)-\left|x\right|}{2}}\left(1+\tau\right)^{-3}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-3}dyd\tau
\displaystyle\lesssim (1+t)5/2e(|x|𝐜t)216D0(1+t)0t2|x|2𝐜(1+τ)3+32𝑑τ(1+t)5/2e(|x|𝐜t)24D0(1+t),\displaystyle\left(1+t\right)^{-5/2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{16D_{0}\left(1+t\right)}}\int_{0}^{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}\left(1+\tau\right)^{-3+\frac{3}{2}}d\tau\lesssim\left(1+t\right)^{-5/2}e^{-\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{4D_{0}\left(1+t\right)}}\hbox{,}
K12\displaystyle K_{12} \displaystyle\lesssim (1+t)5/20t2|x|2𝐜|y|𝐜(tτ)|x|2(1+τ)3(1+|y|21+τ)3𝑑y𝑑τ\displaystyle\left(1+t\right)^{-5/2}\int_{0}^{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}\int_{\left|y\right|\geq\frac{\mathbf{c}\left(t-\tau\right)-\left|x\right|}{2}}\left(1+\tau\right)^{-3}\left(1+\frac{\left|y\right|^{2}}{1+\tau}\right)^{-3}dyd\tau
\displaystyle\lesssim (1+t)5/20t2|x|2𝐜𝐜(tτ)|x|2r6r2𝑑r𝑑τ(1+t)5/2(1+𝐜t|x|)2\displaystyle\left(1+t\right)^{-5/2}\int_{0}^{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}\int_{\frac{\mathbf{c}\left(t-\tau\right)-\left|x\right|}{2}}^{\infty}r^{-6}r^{2}drd\tau\lesssim\left(1+t\right)^{-5/2}\left(1+\mathbf{c}t-\left|x\right|\right)^{-2}
\displaystyle\lesssim (1+t)7/2(1+(|x|𝐜t)21+t)1,\displaystyle\left(1+t\right)^{-7/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{,}

so that

K1(1+t)5/2(1+(|x|𝐜t)21+t)1.K_{1}\lesssim\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{.}

For K2K_{2}, we use the spherical coordinates to obtain

K2\displaystyle K_{2} =\displaystyle= t2|x|2𝐜t|x|2𝐜00π(1+tτ)5/2e(|x|2+r22r|x|cosθ𝐜(tτ))2D0(1+tτ)(1+τ)3(1+r21+τ)3r2sinθdθdrdτ\displaystyle\int_{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}^{t-\frac{\left|x\right|}{2\mathbf{c}}}\int_{0}^{\infty}\int_{0}^{\pi}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\sqrt{\left|x\right|^{2}+r^{2}-2r\left|x\right|\cos\theta}-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+\tau\right)^{-3}\left(1+\frac{r^{2}}{1+\tau}\right)^{-3}r^{2}\sin\theta d\theta drd\tau
=\displaystyle= t2|x|2𝐜t|x|2𝐜0||x|r||x|+r(1+tτ)5/2e(z𝐜(tτ))2D0(1+tτ)(1+τ)3(1+r21+τ)3r2zdzr|x|𝑑r𝑑τ\displaystyle\int_{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}^{t-\frac{\left|x\right|}{2\mathbf{c}}}\int_{0}^{\infty}\int_{\left|\left|x\right|-r\right|}^{\left|x\right|+r}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(z-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+\tau\right)^{-3}\left(1+\frac{r^{2}}{1+\tau}\right)^{-3}r^{2}\frac{zdz}{r\left|x\right|}drd\tau
\displaystyle\lesssim t2|x|2𝐜t|x|2𝐜0||x|r||x|+r(1+|x|)5/2e(cτ(𝐜tz))2D0(1+t)(1+t)3(1+r21+t)3rzdz|x|𝑑r𝑑τ\displaystyle\int_{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}^{t-\frac{\left|x\right|}{2\mathbf{c}}}\int_{0}^{\infty}\int_{\left|\left|x\right|-r\right|}^{\left|x\right|+r}\left(1+\left|x\right|\right)^{-5/2}e^{-\frac{\left(c\tau-\left(\mathbf{c}t-z\right)\right)^{2}}{D_{0}\left(1+t\right)}}\left(1+t\right)^{-3}\left(1+\frac{r^{2}}{1+t}\right)^{-3}r\frac{zdz}{\left|x\right|}drd\tau
\displaystyle\lesssim 1|x|0||x|r||x|+r(1+|x|)5/21+t(1+t)3(1+r21+t)3rz𝑑z𝑑r\displaystyle\frac{1}{\left|x\right|}\int_{0}^{\infty}\int_{\left|\left|x\right|-r\right|}^{\left|x\right|+r}\left(1+\left|x\right|\right)^{-5/2}\sqrt{1+t}\left(1+t\right)^{-3}\left(1+\frac{r^{2}}{1+t}\right)^{-3}rzdzdr
\displaystyle\lesssim (1+|x|)7/2(1+t)520||x|r||x|+r(1+r21+t)3rz𝑑z𝑑r\displaystyle\left(1+\left|x\right|\right)^{-7/2}\left(1+t\right)^{-\frac{5}{2}}\int_{0}^{\infty}\int_{\left|\left|x\right|-r\right|}^{\left|x\right|+r}\left(1+\frac{r^{2}}{1+t}\right)^{-3}rzdzdr
\displaystyle\lesssim (1+|x|)7/2(1+t)52[0|x||x|r|x|+rzr(1+r21+t)3𝑑z𝑑r+|x|r|x|r+|x|zr(1+r21+t)3𝑑z𝑑r]\displaystyle\left(1+\left|x\right|\right)^{-7/2}\left(1+t\right)^{-\frac{5}{2}}\left[\int_{0}^{\left|x\right|}\int_{\left|x\right|-r}^{\left|x\right|+r}zr\left(1+\frac{r^{2}}{1+t}\right)^{-3}dzdr+\int_{\left|x\right|}^{\infty}\int_{r-\left|x\right|}^{r+\left|x\right|}zr\left(1+\frac{r^{2}}{1+t}\right)^{-3}dzdr\right]
\displaystyle\lesssim (1+|x|)7/2(1+t)52[0|x|r2|x|(1+r21+t)3𝑑r+|x|r2|x|(1+r21+t)3𝑑r]\displaystyle\left(1+\left|x\right|\right)^{-7/2}\left(1+t\right)^{-\frac{5}{2}}\left[\int_{0}^{\left|x\right|}r^{2}\left|x\right|\left(1+\frac{r^{2}}{1+t}\right)^{-3}dr+\int_{\left|x\right|}^{\infty}r^{2}\left|x\right|\left(1+\frac{r^{2}}{1+t}\right)^{-3}dr\right]
\displaystyle\lesssim (1+|x|)7/2(1+t)52[|x|(1+t)32+|x|(1+t)32(1+|x|1+t)3]\displaystyle\left(1+\left|x\right|\right)^{-7/2}\left(1+t\right)^{-\frac{5}{2}}\left[\left|x\right|\left(1+t\right)^{\frac{3}{2}}+\left|x\right|\left(1+t\right)^{\frac{3}{2}}\left(1+\frac{\left|x\right|}{\sqrt{1+t}}\right)^{-3}\right]
\displaystyle\lesssim (1+|x|)5/2(1+t)1(1+t)2(1+|x|21+t)32.\displaystyle\left(1+\left|x\right|\right)^{-5/2}\left(1+t\right)^{-1}\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

by setting z=|x|2+r22r|x|cosθz=\sqrt{\left|x\right|^{2}+r^{2}-2r\left|x\right|\cos\theta} and sinθdθ=zr|x|dz\sin\theta d\theta=\frac{z}{r\left|x\right|}dz.

For K3K_{3}, we split 3\mathbb{R}^{3} into two parts

K3=t|x|2𝐜t(|y||x|𝐜(tτ)2+|y|>|x|𝐜(tτ)2)()dydτ=:K31+K32.K_{3}=\int_{t-\frac{\left|x\right|}{2\mathbf{c}}}^{t}\left(\int_{\left|y\right|\leq\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}+\int_{\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}\right)\left(\cdots\right)dyd\tau=:K_{31}+K_{32}\hbox{.}

If t|x|2𝐜<τtt-\frac{\left|x\right|}{2\mathbf{c}}<\tau\leq t, |y||x|𝐜(tτ)2\left|y\right|\leq\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}, then

|xy|𝐜(tτ)|x||y|𝐜(tτ)|x|𝐜(tτ)2|x|4.\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\geq\left|x\right|-\left|y\right|-\mathbf{c}\left(t-\tau\right)\geq\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}\geq\frac{\left|x\right|}{4}\hbox{.}

If t|x|2𝐜<τtt-\frac{\left|x\right|}{2\mathbf{c}}<\tau\leq t, |y|>|x|𝐜(tτ)2\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}, then

|y|>|x|𝐜(tτ)2|x|4.\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}\geq\frac{\left|x\right|}{4}\hbox{.}

Hence,

K31\displaystyle K_{31} \displaystyle\lesssim (1+|x|2)52t|x|2𝐜t3(1+τ)3(1+|y|21+τ)3𝑑y𝑑τ\displaystyle\left(1+|x|^{2}\right)^{-\frac{5}{2}}\int_{t-\frac{\left|x\right|}{2\mathbf{c}}}^{t}\int_{\mathbb{R}^{3}}\left(1+\tau\right)^{-3}\left(1+\frac{\left|y\right|^{2}}{1+\tau}\right)^{-3}dyd\tau
\displaystyle\lesssim (1+|x|2)52t|x|2𝐜t(1+τ)32𝑑τ\displaystyle\left(1+|x|^{2}\right)^{-\frac{5}{2}}\int_{t-\frac{\left|x\right|}{2\mathbf{c}}}^{t}\left(1+\tau\right)^{-\frac{3}{2}}d\tau
\displaystyle\lesssim (1+t)3(1+|x|21+t)32,\displaystyle\left(1+t\right)^{-3}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{,}
K32\displaystyle K_{32} \displaystyle\lesssim (1+t|x|2𝐜)3(1+|x|21+t)3t|x|2𝐜t|y|>|x|𝐜(tτ)2(1+tτ)5/2e(|xy|𝐜(tτ))2D0(1+tτ)𝑑y𝑑τ\displaystyle\left(1+t-\frac{\left|x\right|}{2\mathbf{c}}\right)^{-3}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3}\int_{t-\frac{\left|x\right|}{2\mathbf{c}}}^{t}\int_{\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}dyd\tau
\displaystyle\lesssim (1+t|x|2𝐜)3(1+|x|21+t)3t|x|2𝐜t(1+tτ)5/2(1+tτ)52𝑑τ\displaystyle\left(1+t-\frac{\left|x\right|}{2\mathbf{c}}\right)^{-3}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3}\int_{t-\frac{\left|x\right|}{2\mathbf{c}}}^{t}\left(1+t-\tau\right)^{-5/2}\left(1+t-\tau\right)^{\frac{5}{2}}d\tau
\displaystyle\lesssim (1+t)2(1+|x|21+t)3,\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-3}\hbox{,}

so that

K3(1+t)2(1+|x|21+t)32.K_{3}\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

To sum up,

K(1+t)2(1+|x|21+t)32+(1+t)5/2(1+(|x|𝐜t)21+t)1.K\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{.}

Case 5: (x,t)D5\left(x,t\right)\in D_{5}. We split the integral KK into three parts

K=(0t2|x|2𝐜+t2|x|2𝐜32(t|x|𝐜)+32(t|x|𝐜)t)3()dydτ=:K1+K2+K3.K=\left(\int_{0}^{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}+\int_{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}^{\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)}+\int_{\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)}^{t}\right)\int_{\mathbb{R}^{3}}\left(\cdots\right)dyd\tau=:K_{1}+K_{2}+K_{3}\hbox{.}

For K1K_{1}, the estimate is the same as the term K1K_{1} of Case 4 and so

K1(1+t)5/2(1+(|x|𝐜t)21+t)1.K_{1}\lesssim\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{.}

For K2K_{2}, we use the spherical coordinates to obtain

K2\displaystyle K_{2} \displaystyle\lesssim t2|x|2𝐜32(t|x|𝐜)3(1+t)5/2e(|xy|𝐜(tτ))2D0(1+tτ)(1+τ)3(1+|y|21+τ)3𝑑y𝑑τ\displaystyle\int_{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}^{\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)}\int_{\mathbb{R}^{3}}\left(1+t\right)^{-5/2}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+\tau\right)^{-3}\left(1+\frac{\left|y\right|^{2}}{1+\tau}\right)^{-3}dyd\tau
\displaystyle\lesssim t2|x|2𝐜32(t|x|𝐜)00π(1+t)5/2e(|x|2+r22r|x|cosθ𝐜(tτ))2D0(1+t)(1+τ)3(1+r21+τ)3r2sinθdθdrdτ\displaystyle\int_{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}^{\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)}\int_{0}^{\infty}\int_{0}^{\pi}\left(1+t\right)^{-5/2}e^{-\frac{\left(\sqrt{\left|x\right|^{2}+r^{2}-2r\left|x\right|\cos\theta}-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t\right)}}\left(1+\tau\right)^{-3}\left(1+\frac{r^{2}}{1+\tau}\right)^{-3}r^{2}\sin\theta d\theta drd\tau
\displaystyle\lesssim t2|x|2𝐜32(t|x|𝐜)0||x|r||x|+r(1+t)5/2e(z𝐜(tτ))2D0(1+t)z(1+𝐜t|x|)3(1+r21+τ)3r|x|𝑑z𝑑r𝑑τ\displaystyle\int_{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}^{\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)}\int_{0}^{\infty}\int_{\left|\left|x\right|-r\right|}^{\left|x\right|+r}\left(1+t\right)^{-5/2}e^{-\frac{\left(z-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t\right)}}z\left(1+\mathbf{c}t-\left|x\right|\right)^{-3}\left(1+\frac{r^{2}}{1+\tau}\right)^{-3}\frac{r}{\left|x\right|}dzdrd\tau
\displaystyle\lesssim (1+t)7/2(1+𝐜t|x|)3t2|x|2𝐜32(t|x|𝐜)0||x|r||x|+re(cτ(𝐜tz))2D0(1+t)z(1+r21+τ)3r𝑑z𝑑r𝑑τ\displaystyle\left(1+t\right)^{-7/2}\left(1+\mathbf{c}t-\left|x\right|\right)^{-3}\int_{\frac{t}{2}-\frac{\left|x\right|}{2\mathbf{c}}}^{\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)}\int_{0}^{\infty}\int_{\left|\left|x\right|-r\right|}^{\left|x\right|+r}e^{-\frac{\left(c\tau-\left(\mathbf{c}t-z\right)\right)^{2}}{D_{0}\left(1+t\right)}}z\left(1+\frac{r^{2}}{1+\tau}\right)^{-3}rdzdrd\tau
\displaystyle\lesssim (1+t)7/2(1+𝐜t|x|)3(1+t)12\displaystyle\left(1+t\right)^{-7/2}\left(1+\mathbf{c}t-\left|x\right|\right)^{-3}\left(1+t\right)^{\frac{1}{2}}
[0|x||x|r|x|+rz(1+r21+𝐜t|x|)3r𝑑z𝑑r+|x|r|x|r+|x|z(1+r21+𝐜t|x|)3r𝑑z𝑑r]\displaystyle\cdot\left[\int_{0}^{\left|x\right|}\int_{\left|x\right|-r}^{\left|x\right|+r}z\left(1+\frac{r^{2}}{1+\mathbf{c}t-\left|x\right|}\right)^{-3}rdzdr+\int_{\left|x\right|}^{\infty}\int_{r-\left|x\right|}^{r+\left|x\right|}z\left(1+\frac{r^{2}}{1+\mathbf{c}t-\left|x\right|}\right)^{-3}rdzdr\right]
\displaystyle\lesssim (1+t)3(1+𝐜t|x|)3[0|x|r2|x|(1+r21+𝐜t|x|)3𝑑r+|x|r2|x|(1+r21+𝐜t|x|)3𝑑r]\displaystyle\left(1+t\right)^{-3}\left(1+\mathbf{c}t-\left|x\right|\right)^{-3}\left[\int_{0}^{\left|x\right|}r^{2}\left|x\right|\left(1+\frac{r^{2}}{1+\mathbf{c}t-\left|x\right|}\right)^{-3}dr+\int_{\left|x\right|}^{\infty}r^{2}\left|x\right|\left(1+\frac{r^{2}}{1+\mathbf{c}t-\left|x\right|}\right)^{-3}dr\right]
\displaystyle\lesssim (1+t)3(1+𝐜t|x|)3[|x|(1+𝐜t|x|)32+|x|(1+𝐜t|x|)3(1+|x|)3]\displaystyle\left(1+t\right)^{-3}\left(1+\mathbf{c}t-\left|x\right|\right)^{-3}\left[\left|x\right|\left(1+\mathbf{c}t-\left|x\right|\right)^{\frac{3}{2}}+\left|x\right|\left(1+\mathbf{c}t-\left|x\right|\right)^{3}\left(1+\left|x\right|\right)^{-3}\right]
\displaystyle\lesssim (1+t)2(1+𝐜t|x|)32(1+t)2(1+𝐜t|x|)12(1+𝐜t|x|)2\displaystyle\left(1+t\right)^{-2}\left(1+\mathbf{c}t-\left|x\right|\right)^{-\frac{3}{2}}\lesssim\left(1+t\right)^{-2}\left(1+\mathbf{c}t-\left|x\right|\right)^{\frac{1}{2}}\left(1+\mathbf{c}t-\left|x\right|\right)^{-2}
\displaystyle\lesssim (1+t)5/2(1+(𝐜t|x|)21+t)1.\displaystyle\left(1+t\right)^{-5/2}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-1}\hbox{.}

For K3K_{3}, we decompose 3\mathbb{R}^{3} into two parts

K3=32(t|x|𝐜)t(|y||x|𝐜(tτ)2+|y|>|x|𝐜(tτ)2)()𝑑y𝑑τ=K31+K32.K_{3}=\int_{\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)}^{t}\left(\int_{\left|y\right|\leq\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}+\int_{\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}\right)\left(\cdots\right)dyd\tau=K_{31}+K_{32}\hbox{.}

If 32(t|x|𝐜)τt\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\leq\tau\leq t, |y||x|𝐜(tτ)2\left|y\right|\leq\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}, then

|xy|𝐜(tτ)|x||y|𝐜(tτ)|x|𝐜(tτ)2𝐜t|x|4.\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\geq\left|x\right|-\left|y\right|-\mathbf{c}\left(t-\tau\right)\geq\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}\geq\frac{\mathbf{c}t-\left|x\right|}{4}\hbox{.}

If 32(t|x|𝐜)τt\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\leq\tau\leq t, |y|>|x|𝐜(tτ)2\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}, then

|y|>|x|𝐜(tτ)2𝐜t|x|4.\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}\geq\frac{\mathbf{c}t-\left|x\right|}{4}\hbox{.}

Hence, we use the spherical coordinates to obtain

K31\displaystyle K_{31} \displaystyle\lesssim 32(t|x|𝐜)t0|x|𝐜(tτ)20π(1+tτ)5/2e(𝐜t|x|)232D0(1+tτ)e(|x|2+r22r|x|cosθ𝐜(tτ))22D0(1+tτ)\displaystyle\int_{\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)}^{t}\int_{0}^{\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}\int_{0}^{\pi}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{32D_{0}\left(1+t-\tau\right)}}e^{-\frac{\left(\sqrt{\left|x\right|^{2}+r^{2}-2r\left|x\right|\cos\theta}-\mathbf{c}\left(t-\tau\right)\right)^{2}}{2D_{0}\left(1+t-\tau\right)}}
(1+τ)3(1+r21+τ)3r2sinθdθdrdτ\displaystyle\cdot\left(1+\tau\right)^{-3}\left(1+\frac{r^{2}}{1+\tau}\right)^{-3}r^{2}\sin\theta d\theta drd\tau
\displaystyle\lesssim e(𝐜t|x|)232D0(1+t)32(t|x|𝐜)t0|x|𝐜(tτ)2|x|r|x|+r(1+tτ)5/2e(z𝐜(tτ))22D0(1+tτ)z(1+τ)3\displaystyle e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{32D_{0}\left(1+t\right)}}\int_{\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)}^{t}\int_{0}^{\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}\int_{\left|x\right|-r}^{\left|x\right|+r}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(z-\mathbf{c}\left(t-\tau\right)\right)^{2}}{2D_{0}\left(1+t-\tau\right)}}z\left(1+\tau\right)^{-3}
(1+r21+τ)3r|x|dzdrdτ\displaystyle\cdot\left(1+\frac{r^{2}}{1+\tau}\right)^{-3}\frac{r}{\left|x\right|}dzdrd\tau
\displaystyle\lesssim 1|x|e(𝐜t|x|)232D0(1+t)32(t|x|𝐜)t(1+tτ)5/2(1+τ)3(1+tτ)32(1+τ)𝑑τ\displaystyle\frac{1}{\left|x\right|}e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{32D_{0}\left(1+t\right)}}\int_{\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)}^{t}\left(1+t-\tau\right)^{-5/2}\left(1+\tau\right)^{-3}\left(1+t-\tau\right)^{\frac{3}{2}}\left(1+\tau\right)d\tau
\displaystyle\lesssim 1|x|e(𝐜t|x|)232D0(1+t)(32(t|x|𝐜)12(t+32(t|x|𝐜))+12(t+32(t|x|𝐜))t)(1+tτ)1(1+τ)2dτ\displaystyle\frac{1}{\left|x\right|}e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{32D_{0}\left(1+t\right)}}\left(\int_{\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)}^{\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)}+\int_{\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)}^{t}\right)\left(1+t-\tau\right)^{-1}\left(1+\tau\right)^{-2}d\tau
\displaystyle\lesssim e(𝐜t|x|)232D0(1+t)|x|[(1+3|x|4𝐜t4)1(1+32(t|x|𝐜))1+(1+t)2ln(1+3|x|4𝐜t4)]\displaystyle\frac{e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{32D_{0}\left(1+t\right)}}}{\left|x\right|}\left[\left(1+\frac{3\left|x\right|}{4\mathbf{c}}-\frac{t}{4}\right)^{-1}\left(1+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)^{-1}+\left(1+t\right)^{-2}\ln\left(1+\frac{3|x|}{4\mathbf{c}}-\frac{t}{4}\right)\right]
\displaystyle\lesssim e(𝐜t|x|)232D0(1+t)1+t(1+t)3/2(1+t)5/2(1+(𝐜tx)21+t)1,\displaystyle\frac{e^{-\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{32D_{0}\left(1+t\right)}}}{1+t}\left(1+t\right)^{-3/2}\lesssim\left(1+t\right)^{-5/2}\left(1+\frac{\left(\mathbf{c}t-x\right)^{2}}{1+t}\right)^{-1}\hbox{,}

by setting z=|x|2+r22r|x|cosθz=\sqrt{\left|x\right|^{2}+r^{2}-2r\left|x\right|\cos\theta} and sinθdθ=zr|x|dz\sin\theta d\theta=\frac{z}{r\left|x\right|}dz. As for K32K_{32}, direct computation gives

K32\displaystyle K_{32} \displaystyle\lesssim 32(t|x|𝐜)t|y|>|x|𝐜(tτ)2(1+tτ)5/2e(|xy|𝐜(tτ))2D0(1+tτ)(1+|y|2)3𝑑y𝑑τ\displaystyle\int_{\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)}^{t}\int_{\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+\left|y\right|^{2}\right)^{-3}dyd\tau
\displaystyle\lesssim (32(t|x|𝐜)12(t+32(t|x|𝐜))+12(t+32(t|x|𝐜))t)|y|>|x|𝐜(tτ)2()𝑑y𝑑τ\displaystyle\left(\int_{\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)}^{\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)}+\int_{\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)}^{t}\right)\int_{\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}(\cdot\cdot\cdot)dyd\tau
=\displaystyle= K321+K322,\displaystyle K_{321}+K_{322}\,,

we then have

K321\displaystyle K_{321} \displaystyle\lesssim 32(t|x|𝐜)12(t+32(t|x|𝐜))|y|>|x|𝐜(tτ)2(1+tτ)5/2e(|xy|𝐜(tτ))2D0(1+tτ)(1+|y|2)3𝑑y𝑑τ\displaystyle\int_{\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)}^{\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)}\int_{\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+\left|y\right|^{2}\right)^{-3}dyd\tau
\displaystyle\lesssim 32(t|x|𝐜)12(t+32(t|x|𝐜))(1+tτ)5/2(1+|x|𝐜(tτ))3𝑑τ\displaystyle\int_{\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)}^{\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)}\left(1+t-\tau\right)^{-5/2}\left(1+\left|x\right|-\mathbf{c}\left(t-\tau\right)\right)^{-3}d\tau
\displaystyle\lesssim (1+t)5/2(1+𝐜t|x|)2\displaystyle\left(1+t\right)^{-5/2}\left(1+\mathbf{c}t-\left|x\right|\right)^{-2}
\displaystyle\lesssim (1+t)7/2(1+(𝐜t|x|)21+t)1.\displaystyle\left(1+t\right)^{-7/2}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-1}\hbox{.}

and

K322\displaystyle K_{322} \displaystyle\lesssim 12(t+32(t|x|𝐜))t|y|>|x|𝐜(tτ)2(1+tτ)5/2e(|xy|𝐜(tτ))2D0(1+tτ)(1+|y|2)3𝑑y𝑑τ\displaystyle\int_{\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)}^{t}\int_{\left|y\right|>\frac{\left|x\right|-\mathbf{c}\left(t-\tau\right)}{2}}\left(1+t-\tau\right)^{-5/2}e^{-\frac{\left(\left|x-y\right|-\mathbf{c}\left(t-\tau\right)\right)^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+\left|y\right|^{2}\right)^{-3}dyd\tau
\displaystyle\lesssim 12(t+32(t|x|𝐜))t(1+|x|𝐜(tτ))6𝑑τ\displaystyle\int_{\frac{1}{2}\left(t+\frac{3}{2}\left(t-\frac{\left|x\right|}{\mathbf{c}}\right)\right)}^{t}\left(1+\left|x\right|-\mathbf{c}\left(t-\tau\right)\right)^{-6}d\tau
\displaystyle\lesssim (1+|x|+𝐜t)5\displaystyle\left(1+\left|x\right|+\mathbf{c}t\right)^{-5}
\displaystyle\lesssim (1+t)72(1+|x|21+t)32.\displaystyle\left(1+t\right)^{-\frac{7}{2}}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

It implies that

K3(1+t)5/2(1+(𝐜t|x|)21+t)1+(1+t)2(1+|x|21+t)32.K_{3}\lesssim\left(1+t\right)^{-5/2}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-1}+\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

As a consequence,

K(1+t)5/2(1+(𝐜t|x|)21+t)1+(1+t)2(1+|x|21+t)32.K\lesssim\left(1+t\right)^{-5/2}\left(1+\frac{\left(\mathbf{c}t-\left|x\right|\right)^{2}}{1+t}\right)^{-1}+\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

Proof of Lemma 27.

(Diffusion wave convolution with Huygens wave).

Case 1: (x,t)D1\left(x,t\right)\in D_{1}. We split the integral into two parts to obtain

L\displaystyle L =\displaystyle= (0t2+t2t)3()𝑑y𝑑τ\displaystyle\left(\int_{0}^{\frac{t}{2}}+\int_{\frac{t}{2}}^{t}\right)\int_{\mathbb{R}^{3}}\left(\cdots\right)dyd\tau
\displaystyle\lesssim (1+t)20t23(1+τ)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\left(1+t\right)^{-2}\int_{0}^{\frac{t}{2}}\int_{\mathbb{R}^{3}}\left(1+\tau\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
+(1+t)4t2t3(1+tτ)2(1+|xy|2D0(1+tτ))2𝑑y𝑑τ\displaystyle+\left(1+t\right)^{-4}\int_{\frac{t}{2}}^{t}\int_{\mathbb{R}^{3}}\left(1+t-\tau\right)^{-2}\left(1+\frac{\left|x-y\right|^{2}}{D_{0}\left(1+t-\tau\right)}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)20t2(1+τ)4(1+τ)52𝑑τ+(1+t)4t/2t(1+tτ)12𝑑τ\displaystyle\left(1+t\right)^{-2}\int_{0}^{\frac{t}{2}}\left(1+\tau\right)^{-4}\left(1+\tau\right)^{\frac{5}{2}}d\tau+\left(1+t\right)^{-4}\int_{t/2}^{t}\left(1+t-\tau\right)^{-\frac{1}{2}}d\tau
\displaystyle\lesssim (1+t)2(1+t)2(1+|x|21+t)32.\displaystyle\left(1+t\right)^{-2}\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

Case 2: (x,t)D2\left(x,t\right)\in D_{2}. We split the integral into two parts:

L=(0t2+t2t)3()dydτ=:L1+L2.L=\left(\int_{0}^{\frac{t}{2}}+\int_{\frac{t}{2}}^{t}\right)\int_{\mathbb{R}^{3}}\left(\cdots\right)dyd\tau=:L_{1}+L_{2}\hbox{.}

First one can see

L2\displaystyle L_{2} \displaystyle\lesssim (1+t)4t2t3(1+tτ)2(1+|xy|2D0(1+tτ))2𝑑y𝑑τ\displaystyle\left(1+t\right)^{-4}\int_{\frac{t}{2}}^{t}\int_{\mathbb{R}^{3}}\left(1+t-\tau\right)^{-2}\left(1+\frac{\left|x-y\right|^{2}}{D_{0}\left(1+t-\tau\right)}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)7/2(1+(|x|𝐜t)21+t)1.\displaystyle\left(1+t\right)^{-7/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{.}

As for L1L_{1}, we further decompose 3\mathbb{R}^{3} into two parts:

L1=0t2(|y|23|x|+|y|>23|x|)()dydτ=:L11+L12.L_{1}=\int_{0}^{\frac{t}{2}}\left(\int_{\left|y\right|\leq\frac{2}{3}\left|x\right|}+\int_{\left|y\right|>\frac{2}{3}\left|x\right|}\right)\left(\ldots\right)dyd\tau=:L_{11}+L_{12}.

If |y|23|x|\left|y\right|\leq\frac{2}{3}\left|x\right|, then we have

|xy||x||y||x|3,\left|x-y\right|\geq\left|x\right|-\left|y\right|\geq\frac{\left|x\right|}{3}\hbox{,}

and thus

L11(1+t)2(1+|x|21+t)20t2|y|23|x|(1+τ)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle L_{11}\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-2}\int_{0}^{\frac{t}{2}}\int_{\left|y\right|\leq\frac{2}{3}\left|x\right|}\left(1+\tau\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)2(1+|x|21+t)20t2(1+τ)4(1+τ)52𝑑τ(1+t)2(1+|x|21+t)2.\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-2}\int_{0}^{\frac{t}{2}}\left(1+\tau\right)^{-4}\left(1+\tau\right)^{\frac{5}{2}}d\tau\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-2}\hbox{.}

If |y|23|x|\left|y\right|\geq\frac{2}{3}\left|x\right| and 0τt20\leq\tau\leq\frac{t}{2}, then

|y|𝐜τ23|x|𝐜τ23(𝐜t1+t)𝐜t2𝐜t12+𝐜t12231+t𝐜t12\left|y\right|-\mathbf{c}\tau\geq\frac{2}{3}\left|x\right|-\mathbf{c}\tau\geq\frac{2}{3}\left(\mathbf{c}t-\sqrt{1+t}\right)-\frac{\mathbf{c}t}{2}\geq\frac{\mathbf{c}t}{12}+\frac{\mathbf{c}t}{12}-\frac{2}{3}\sqrt{1+t}\geq\frac{\mathbf{c}t}{12}

for t40t\geq 40. Hence,

0t2|y|23|x|(1+tτ)2(1+|xy|2D0(1+tτ))2(1+τ)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\int_{0}^{\frac{t}{2}}\int_{\left|y\right|\geq\frac{2}{3}\left|x\right|}\left(1+t-\tau\right)^{-2}\left(1+\frac{\left|x-y\right|^{2}}{D_{0}\left(1+t-\tau\right)}\right)^{-2}\left(1+\tau\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)40t23(1+tτ)2(1+|xy|2D0(1+tτ))2(1+τ)2𝑑y𝑑τ\displaystyle\left(1+t\right)^{-4}\int_{0}^{\frac{t}{2}}\int_{\mathbb{R}^{3}}\left(1+t-\tau\right)^{-2}\left(1+\frac{\left|x-y\right|^{2}}{D_{0}\left(1+t-\tau\right)}\right)^{-2}\left(1+\tau\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)9/2(1+(|x|𝐜t)21+t)1\displaystyle\left(1+t\right)^{-9/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}

whenever t40t\geq 40, and

0t2|y|23|x|(1+tτ)2(1+|xy|2D0(1+tτ))2(1+τ)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\int_{0}^{\frac{t}{2}}\int_{\left|y\right|\geq\frac{2}{3}\left|x\right|}\left(1+t-\tau\right)^{-2}\left(1+\frac{\left|x-y\right|^{2}}{D_{0}\left(1+t-\tau\right)}\right)^{-2}\left(1+\tau\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim C(1+t)5/2(1+(|x|𝐜t)21+t)1\displaystyle C\lesssim\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}

whenever 0t400\leq t\leq 40. Therefore, we get

L12(1+t)5/2(1+(|x|𝐜t)21+t)1.L_{12}\lesssim\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{.}

Combining all the estimates, we have

L(1+t)2(1+|x|21+t)2+(1+t)5/2(1+(|x|𝐜t)21+t)1.L\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-2}+\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-1}\hbox{.}

Case 3: (x,t)D3\left(x,t\right)\in D_{3}. We split the integral into two parts

L=(0t2+t2t)3()dydτ=:L1+L2.L=\left(\int_{0}^{\frac{t}{2}}+\int_{\frac{t}{2}}^{t}\right)\int_{\mathbb{R}^{3}}\left(\cdots\right)dyd\tau=:L_{1}+L_{2}\hbox{.}

For L1L_{1}, we further decompose the space domain into two parts:

L1=0t2(|y|23|x|+|y|>23|x|)()dydτ=:L11+L12.L_{1}=\int_{0}^{\frac{t}{2}}\left(\int_{\left|y\right|\leq\frac{2}{3}\left|x\right|}+\int_{\left|y\right|>\frac{2}{3}\left|x\right|}\right)\left(\cdots\right)dyd\tau=:L_{11}+L_{12}\hbox{.}

If |y|23|x|\left|y\right|\leq\frac{2}{3}\left|x\right|, then

|xy||x|3,\left|x-y\right|\geq\frac{\left|x\right|}{3}\hbox{,}

and thus

L11\displaystyle L_{11} \displaystyle\lesssim (1+t)2(1+|x|21+t)320t23(1+τ)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\int_{0}^{\frac{t}{2}}\int_{\mathbb{R}^{3}}\left(1+\tau\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)2(1+|x|21+t)32.\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

If |y|23|x|\left|y\right|\geq\frac{2}{3}\left|x\right| and 0τt20\leq\tau\leq\frac{t}{2}, we have

|y|𝐜τ23|x|𝐜t2=16|x|+12(|x|𝐜t),\left|y\right|-\mathbf{c}\tau\geq\frac{2}{3}\left|x\right|-\frac{\mathbf{c}t}{2}=\frac{1}{6}\left|x\right|+\frac{1}{2}\left(\left|x\right|-\mathbf{c}t\right)\hbox{,}

so that

L12\displaystyle L_{12} \displaystyle\lesssim 0t2|y|23|x|(1+tτ)2e|xy|2D0(1+tτ)(1+τ)2(1+τ+(|x|𝐜t)2)2𝑑y𝑑τ\displaystyle\int_{0}^{\frac{t}{2}}\int_{\left|y\right|\geq\frac{2}{3}\left|x\right|}\left(1+t-\tau\right)^{-2}e^{-\frac{\left|x-y\right|^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+\tau\right)^{-2}\left(1+\tau+\left(\left|x\right|-\mathbf{c}t\right)^{2}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+(|x|𝐜t)2)20t23(1+tτ)2e|xy|2D0(1+tτ)(1+τ)2𝑑y𝑑τ\displaystyle\left(1+\left(\left|x\right|-\mathbf{c}t\right)^{2}\right)^{-2}\int_{0}^{\frac{t}{2}}\int_{\mathbb{R}^{3}}\left(1+t-\tau\right)^{-2}e^{-\frac{\left|x-y\right|^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+\tau\right)^{-2}dyd\tau
\displaystyle\lesssim (1+(|x|𝐜t)2)2(1+t)1/2(1+t2+(|x|𝐜t)22)2(1+t)1/2\displaystyle\left(1+\left(\left|x\right|-\mathbf{c}t\right)^{2}\right)^{-2}(1+t)^{-1/2}\lesssim\left(\frac{1+t}{2}+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{2}\right)^{-2}(1+t)^{-1/2}
\displaystyle\lesssim (1+t)5/2(1+(|x|𝐜t)21+t)2\displaystyle\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-2}

since |x|𝐜t1+t\left|x\right|-\mathbf{c}t\geq\sqrt{1+t} for (x,t)D3\left(x,t\right)\in D_{3}. Therefore, we obtain

L1(1+t)2(1+|x|21+t)32+(1+t)5/2(1+(|x|𝐜t)21+t)2.L_{1}\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-2}\hbox{.}

Next for L2L_{2}, we decompose 3\mathbb{R}^{3} into two parts

L2=t2t(|y|𝐜τ|x|ct2+|y|𝐜τ>|x|ct2)()dydτ=:L21+L22.L_{2}=\int_{\frac{t}{2}}^{t}\left(\int_{\left|y\right|-\mathbf{c}\tau\leq\frac{\left|x\right|-ct}{2}}+\int_{\left|y\right|-\mathbf{c}\tau>\frac{\left|x\right|-ct}{2}}\right)\left(\cdots\right)dyd\tau=:L_{21}+L_{22}\hbox{.}

If |y|𝐜τ|x|𝐜t2\left|y\right|-\mathbf{c}\tau\leq\frac{\left|x\right|-\mathbf{c}t}{2}, we have

|xy||x|(|x|𝐜t2)𝐜τ|x|𝐜t2,\left|x-y\right|\geq\left|x\right|-\left(\frac{\left|x\right|-\mathbf{c}t}{2}\right)-\mathbf{c}\tau\geq\frac{\left|x\right|-\mathbf{c}t}{2}\hbox{,}

so

L21\displaystyle L_{21} \displaystyle\lesssim (1+(|x|𝐜t)21+t)2t2t3(1+tτ)2e|xy|22D0(1+tτ)(1+τ)4𝑑y𝑑τ\displaystyle\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-2}\int_{\frac{t}{2}}^{t}\int_{\mathbb{R}^{3}}\left(1+t-\tau\right)^{-2}e^{-\frac{\left|x-y\right|^{2}}{2D_{0}\left(1+t-\tau\right)}}\left(1+\tau\right)^{-4}dyd\tau
\displaystyle\lesssim (1+t)7/2(1+(|x|𝐜t)21+t)2,\displaystyle\left(1+t\right)^{-7/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-2}\hbox{,}

and

L22\displaystyle L_{22} \displaystyle\lesssim (1+(|x|𝐜t)21+t)2t2t3(1+tτ)2e|xy|2D0(1+tτ)(1+τ)4𝑑y𝑑τ\displaystyle\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-2}\int_{\frac{t}{2}}^{t}\int_{\mathbb{R}^{3}}\left(1+t-\tau\right)^{-2}e^{-\frac{\left|x-y\right|^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+\tau\right)^{-4}dyd\tau
\displaystyle\lesssim (1+t)7/2(1+(|x|𝐜t)21+t)2.\displaystyle\left(1+t\right)^{-7/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-2}\hbox{.}

Therefore,

L(1+t)2(1+|x|21+t)32+(1+t)5/2(1+(|x|𝐜t)21+t)2.L\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(1+t\right)^{-5/2}\left(1+\frac{\left(\left|x\right|-\mathbf{c}t\right)^{2}}{1+t}\right)^{-2}\hbox{.}

Case 4: (x,t)D4D5\left(x,t\right)\in D_{4}\cup D_{5}. Observe that

1+t2𝐜|x|2𝐜t2.\frac{\sqrt{1+t}}{2\mathbf{c}}\leq\frac{\left|x\right|}{2\mathbf{c}}\leq\frac{t}{2}\hbox{.}

We split the integral into three parts:

L=(0|x|2𝐜+|x|2𝐜t2+t2t)3()dydτ=:L1+L2+L3.L=\left(\int_{0}^{\frac{\left|x\right|}{2\mathbf{c}}}+\int_{\frac{\left|x\right|}{2\mathbf{c}}}^{\frac{t}{2}}+\int_{\frac{t}{2}}^{t}\right)\int_{\mathbb{R}^{3}}\left(\ldots\right)dyd\tau=:L_{1}+L_{2}+L_{3}\hbox{.}

For L1L_{1}, we decompose 3\mathbb{R}^{3} into two parts {|y|34|x|}\{\left|y\right|\leq\frac{3}{4}\left|x\right|\} and {|y|>34|x|}\{\left|y\right|>\frac{3}{4}\left|x\right|\}. If |y|34|x|\left|y\right|\geq\frac{3}{4}\left|x\right| and 0τ|x|2𝐜0\leq\tau\leq\frac{\left|x\right|}{2\mathbf{c}}, then

|y|𝐜τ14|x|.\left|y\right|-\mathbf{c}\tau\geq\frac{1}{4}\left|x\right|\hbox{.}

Thus,

L1\displaystyle L_{1} \displaystyle\lesssim (1+t)2(1+|x|21+t)320t2|y|3|x|4(1+τ)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}\int_{0}^{\frac{t}{2}}\int_{\left|y\right|\leq\frac{3\left|x\right|}{4}}\left(1+\tau\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
+(1+|x|2)20t2|y|>3|x|4(1+tτ)2e|xy|2D0(1+tτ)(1+τ)2𝑑y𝑑τ\displaystyle+\left(1+\left|x\right|^{2}\right)^{-2}\int_{0}^{\frac{t}{2}}\int_{\left|y\right|>\frac{3\left|x\right|}{4}}\left(1+t-\tau\right)^{-2}e^{-\frac{\left|x-y\right|^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+\tau\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)2(1+|x|21+t)32+(|x|22+1+t2)2(1+t)1/2\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-\frac{3}{2}}+\left(\frac{\left|x\right|^{2}}{2}+\frac{1+t}{2}\right)^{-2}(1+t)^{-1/2}
\displaystyle\lesssim (1+t)2(1+|x|1+t)32.\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

As for L2L_{2} and L3L_{3}, it immediately follows that

L2\displaystyle L_{2} \displaystyle\lesssim |x|2𝐜t23(1+tτ)2e|xy|2D0(1+tτ)(1+τ)4(1+(|y|𝐜τ)21+τ)2𝑑y𝑑τ\displaystyle\int_{\frac{\left|x\right|}{2\mathbf{c}}}^{\frac{t}{2}}\int_{\mathbb{R}^{3}}\left(1+t-\tau\right)^{-2}e^{-\frac{\left|x-y\right|^{2}}{D_{0}\left(1+t-\tau\right)}}\left(1+\tau\right)^{-4}\left(1+\frac{\left(\left|y\right|-\mathbf{c}\tau\right)^{2}}{1+\tau}\right)^{-2}dyd\tau
\displaystyle\lesssim (1+t)2(1+|x|2𝐜)2|x|2𝐜t2(1+τ)23e|xy|2D0(1+tτ)𝑑y𝑑τ\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|}{2\mathbf{c}}\right)^{-2}\int_{\frac{\left|x\right|}{2\mathbf{c}}}^{\frac{t}{2}}\left(1+\tau\right)^{-2}\int_{\mathbb{R}^{3}}e^{-\frac{\left|x-y\right|^{2}}{D_{0}\left(1+t-\tau\right)}}dyd\tau
\displaystyle\lesssim (1+t)2(1+|x|2𝐜)3(1+t)32\displaystyle\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|}{2\mathbf{c}}\right)^{-3}\left(1+t\right)^{\frac{3}{2}}
\displaystyle\lesssim (1+t)5/2(1+|x|21+t)2,\displaystyle\left(1+t\right)^{-5/2}\left(1+\frac{\left|x\right|^{2}}{1+t}\right)^{-2}\hbox{,}

and

L3\displaystyle L_{3} \displaystyle\lesssim (1+t)4t2t3(1+tτ)2e|xy|2D0(1+tτ)𝑑y𝑑τ\displaystyle\left(1+t\right)^{-4}\int_{\frac{t}{2}}^{t}\int_{\mathbb{R}^{3}}\left(1+t-\tau\right)^{-2}e^{-\frac{\left|x-y\right|^{2}}{D_{0}\left(1+t-\tau\right)}}dyd\tau
\displaystyle\lesssim (1+t)7/2(1+|x|2)32(1+t)1/2(1+t)2(1+|x|1+t)32,\displaystyle\left(1+t\right)^{-7/2}\lesssim\left(1+\left|x\right|^{2}\right)^{-\frac{3}{2}}(1+t)^{-1/2}\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|}{1+t}\right)^{-\frac{3}{2}}\hbox{,}

since 1+t|x|𝐜t\sqrt{1+t}\leq\left|x\right|\leq\mathbf{c}t. Therefore, we have

L(1+t)2(1+|x|1+t)32.L\lesssim\left(1+t\right)^{-2}\left(1+\frac{\left|x\right|}{1+t}\right)^{-\frac{3}{2}}\hbox{.}

Acknowledgments:

This work is partially supported by the National Key R&D Program of China under grant 2022YFA1007300. Y.-C. Lin is supported by the National Science and Technology Council under the grant NSTC 112-2115-M-006-006-MY2. H.-T. Wang is supported by NSFC under Grant No. 12371220 and 12031013, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No. XDA25010403. K.-C. Wu is supported by the National Science and Technology Council under the grant NSTC 112-2628-M-006-006 -MY4 and National Center for Theoretical Sciences.

References

  • [1] R. Alonso, Y. Morimoto, W. Sun and T. Yang, Non-cutoff Boltzmann equation with polynomial decay perturbations, Rev. Mat. Iberoam., 37 (2021), 189-292.
  • [2] R. Alonso, J. A. Cañizo, I. Gamba, and C. Mouhot, A new approach to the creation and propagation of exponential moments in the Boltzmann equation, Comm. Partial Differential Equations, 38 (2013), no. 1, 155-169.
  • [3] A. V. Bobylev, Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems, J. Statist. Phys., 88 (1997), no. 5-6, 1183-1214.
  • [4] S. Cameron and S. Snelson, Velocity decay estimates for Boltzmann equation with hard potentials, Nonlinearity, 33(6), (2020), 2941.
  • [5] C. Cao, Cutoff Boltzmann equation with polynomial perturbation near Maxwellian, J. Funct. Anal., 282 (2022), 179-184.
  • [6] C. Cao, R.-J. Duan and Z.-G. Li, Time velocity deacy of solution to the Non-cutoff Boltzmann equation in the whole space, Commun. Math. Anal. Appl., 3 (2024), 61-120.
  • [7] C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer (1994).
  • [8] K. Carrapatoso, I. Tristani and K.-C. Wu, Cauchy Problem and Exponential Stability for the Inhomogeneous Landau Equation, Archive for Rational Mechanics and Analysis, 221 (2016), 363-418.
  • [9] K. Carrapatoso and P. Gervais, Noncutoff Boltzmann equation with soft potentials in the whole space, Pure and Applied Analysis, 6 (2024), 253-303.
  • [10] S.-J. Deng and S.-H. Yu, Green’s function and pointwise convergence for compressible Navier-Stokes equations, Quart. Appl. Math., 75 (2017), No. 3, 433-503.
  • [11] L. Desvillettes, Some applications of the method of moments for the homogeneous Boltzmann and Kac equations, Arch. Rational Mech. Anal., 123 (1993), no. 4, 387-404.
  • [12] L.-L. Du and Z.-G. Wu, Solving the non-isentropic Navier-Stokes equations in odd space dimensions: the Green function method, J. Math. Phys. 58 (2017), No. 10, 101506, 38.
  • [13] R.-J. Duan, Z.-G. Li and S.-Q. Liu, Global mild solutions with polynomial tail for the Boltzmann equation in the whole space, arXiv:2212.04676v2.
  • [14] R. Ellis and M. Pinsky, The first and second fluid approximations to the linearized Boltzmann equation, J. Math. Pure. App., 54 (1975), 125-156.
  • [15] I. M. Gamba, V. Panferov, and C. Villani, Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation, Arch. Rational Mech. Anal. 194 (2009), no. 1, 253-282.
  • [16] R. Glassey: The Cauchy Problem in Kinetic Theory. SIAM, Philadelphia (1996)
  • [17] M.P. Gualdani, S. Mischler and C. Mouhot, Factorization of non-symmetric operators and exponential H-theorem, Mémoire de la Société Mathématique de France, 153 (2017).
  • [18] F. Hérau, D. Tonon and I. Tristani, Regularization estimates and Cauchy theory for inhomogeneous Boltzmann equation for hard potentials without cut-off, Comm. Math. Phys., 377 (2020), 697-771.
  • [19] C. Imbert, C. Mouhot, and L. Silvestre, Decay estimates for large velocities in the Boltzmann equation without cutoff, Journal de l’École polytechnique-Mathématiques 7 (2020): 143-183.
  • [20] Y.-C. Li and M.-Y. Zhong, Green’s Function and Pointwise Space-time Behaviors of the Three-Dimensional Relativistic Boltzmann Equation, arXiv:2405.06280.
  • [21] Y.-C. Lin, M.-J. Lyu, H.-T. Wang, K.-C. Wu, Space-time behavior of the Boltzmann equation with soft potentials, J. Differential Equations, 322 (2022), 180-236.
  • [22] T.-P. Liu, Interactions of nonlinear hyperbolic waves, Nonlinear analysis (Taipei, 1989), 171-183, World Sci. Publ., Teaneck, NJ, 1991.
  • [23] T.-P. Liu and S.-N. Noh, Wave propagation for the compressible Navier-Stokes equations, J. Hyperbolic Differ. Equ., 12 (2015), 385-445.
  • [24] T.-P. Liu and W.-K. Wang, The Pointwise Estimates of Diffusion Wave for the Navier-Stokes Systems in Odd Multi-Dimensions, Comm. Math. Phys., 196 (1998), 145-173.
  • [25] T.-P. Liu, S.-H. Yu, The Green’s function and large time behavior of solutions for one-dimensional Boltzmann equation, Commun. Pure App. Math., 57 (2004), 1543-1608.
  • [26] T.-P. Liu and S.-H. Yu, The Green’s function of Boltzmann equation, 3D waves, Bull. Inst. Math. Acad. Sin. (N.S.), 1 (2006), 1-78.
  • [27] T.-P. Liu and S.-H. Yu, Solving Boltzmann equation, part I: Green’s function, Bull. Inst. Math. Acad. Sin., 6 (2011), 115-243.
  • [28] S. Ukai and T. Yang, Mathematical theory of Boltzmann equation, Lecture Notes Series 8 (2006).