This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\newaliascnt

definitiontheorem \aliascntresetthedefinition \newaliascntlemmatheorem \aliascntresetthelemma \newaliascntclaimtheorem \aliascntresettheclaim \newaliascntfacttheorem \aliascntresetthefact \newaliascntobservationtheorem \aliascntresettheobservation \newaliascntconjecturetheorem \aliascntresettheconjecture \newaliascntcorollarytheorem \aliascntresetthecorollary \newaliascntremarktheorem \aliascntresettheremark \newaliascntpropositiontheorem \aliascntresettheproposition

99% Revenue with Constant Enhanced Competition

Linda Cai
Princeton University
tcai@princeton.edu
   Raghuvansh R. Saxena
Princeton University
rrsaxena@princeton.edu
Abstract

The enhanced competition paradigm is an attempt at bridging the gap between simple and optimal auctions. In this line of work, given an auction setting with mm items and nn bidders, the goal is to find the smallest nnn^{\prime}\geq n such that selling the items to nn^{\prime} bidders through a simple auction generates (almost) the same revenue as the optimal auction.

Recently, Feldman, Friedler, and Rubinstein [EC, 2018] showed that an arbitrarily large constant fraction of the optimal revenue from selling mm items to a single bidder can be obtained via simple auctions with a constant number of bidders. However, their techniques break down even for two bidders, and can only show a bound of n=nO(logmn)n^{\prime}=n\cdot O(\log\frac{m}{n}).

Our main result is that n=O(n)n^{\prime}=O(n) bidders suffice for all values of mm and nn. That is, we show that, for all mm and nn, an arbitrarily large constant fraction of the optimal revenue from selling mm items to nn bidders can be obtained via simple auctions with O(n)O(n) bidders.margin: Linda Note! margin: Linda Note! Linda Note: Specifically, the simple auction can be any auction that guarantees a constant fraction of the optimal revenue. The total number of bidders needed is optimal up to constant factors.]Notes:1: Linda: Specifically, the simple auction can be any auction that guarantees a constant fraction of the optimal revenue. The total number of bidders needed is optimal up to constant factors.]Notes:1: Specifically, the simple auction can be any auction that guarantees a constant fraction of the optimal revenue. The total number of bidders needed is optimal up to constant factors. Moreover, when the items are regular, we can achieve the same result through auctions that are prior-independent, i.e., they do not depend on the distribution from which the bidders’ valuations are sampled.

1 Introduction

That optimal auctions are not simple and simple auctions are not optimal is the theme of a lot of recent work on designing auctions for multi-item multi-bidder settings. Indeed, it has been well demonstrated that revenue-optimal auctions selling mm items to nn additive bidders suffer from several undesirable properties, such as the need for randomization, non-monotonicity, computational intractability, etc. [Thanassoulis04, ManelliV07, Pavlov11, HartN13, DaskalakisDT14, HartR15, DaskalakisDT17], that make them impractical. On the other hand, the state of the art bounds for simple auctions only show that they obtain a small constant fraction of the optimal revenue [ChawlaHK07, ChawlaHMS10, ChawlaMS10, HartN12, LiY13, BabaioffILW14, BateniDHS15, Yao15, RubinsteinW15, ChawlaMS15, ChawlaM16, CaiDW16, CaiZ17, EdenFFTW17a].

The enhanced competition paradigm is an attempt at bridging the gap between simple and optimal auctions. In this paradigm, given an auction setting with mm items and nn independent and identically distributed additive bidders, the goal is to find the smallest number nnn^{\prime}\geq n of bidders such that simple auctions with nn^{\prime} bidders (almost) match the revenue of the optimal auction with nn bidders. If such a result can be shown, then it conveys the message that an auctioneer aspiring to get the optimal revenue with nn bidders need not spend all his energy on finding the optimal, even if impractical, auction with nn bidders. Instead, he can try to rope in nnn^{\prime}-n more bidders and get the same revenue using a simple and practical auction format.

The focus of this paper is to show enhanced competition results for general auction settings where n=O(n)n^{\prime}=O(n) is at most a constant times nn. The first such result is found in the seminal work of Bulow and Klemperer [BulowK96] where it was shown that the revenue of the optimal auction selling a single item to nn bidders is at most the revenue of the simple VCG auction with n+1n+1 bidders, as long as the distribution of the bidders’ valuation for the item is regular111A (continuous) distribution with probability density function f()f(\cdot) and cumulative density function F()F(\cdot) is regular if the function x1F(x)f(x)x-\frac{1-F(x)}{f(x)} is monotone non-decreasing..

The only other enhanced competition result with n=O(n)n^{\prime}=O(n) is in [FeldmanFR18] where it is shown that, for any ϵ>0\epsilon>0, a (1ϵ)(1-\epsilon)-fraction of the revenue of the optimal auction selling mm items to a single bidder can be obtained by either selling the items separately, or by selling the grand bundle, to a constant number of bidders. However, the techniques used in [FeldmanFR18] do not generalize to n>1n>1 bidders and finding enhanced competition results with n=O(n)n^{\prime}=O(n) for n>1n>1 bidders remains an open problem222[FeldmanFR18] also show that, for any ϵ>0\epsilon>0, when nmn\gg m, i.e., when the number of bidders is much larger than the number of items, then, even without “enhancing” competition, i.e., with n=nn^{\prime}=n, the revenue of selling the items separately obtains a (1ϵ)(1-\epsilon)-fraction of the revenue of the optimal auction. In other words, these settings are competitive enough for enhanced competition to not yield great gains in the revenue. Thus, the interesting range of parameters is 1<nm1<n\ll m. See [BeyhaghiW19] for a related result..

1.1 Our Results

Our main theorem is the first enhanced competition result with n=O(n)n^{\prime}=O(n) that works for all mm and nn.

Theorem 1.1 (Informal).

Consider an auction setting where mm items are being sold to nn bidders. Let ϵ>0\epsilon>0 and n=O(n/ϵ)n^{\prime}=O(n/\epsilon). At least one of the following hold:

  1. 1.

    A (1ϵ)(1-\epsilon)-fraction of the optimal revenue with nn bidders is obtained by a VCG auction with nn^{\prime} bidders.

  2. 2.

    A simple auction (either selling the items separately using Myerson’s optimal auction or a VCG auction with an entry fee) with nn^{\prime} bidders generates more revenue than the optimal auction with nn bidders.

Note that aside from Case 1 where the optimal revenue with nn^{\prime} bidders is nearly matched by the revenue of a VCG auction with nn bidders, Theorem 1.1 actually promises that simple auctions with nn^{\prime} bidders outperform the optimal auction with nn bidders. This is interesting as all known “hard” instances for enhanced competition results involve the equal-revenue distribution333The equal revenue distribution is the distribution defined by F(x)=11xF(x)=1-\frac{1}{x} for all x1x\geq 1. for which Case 1 does not hold [EdenFFTW17b, FeldmanFR18]. Thus, we outperform the optimal auction in all of these “hard” cases.

In fact, when Case 1 does not hold, then, at the cost of increasing the total number of bidders by another constant factor, our techniques can also show that a simple auction as in Case 2 with this increased number of bidders obtains much more, say a 100100 times more, revenue than the revenue of the optimal auction with nn bidders. As far as we know, this is the first enhanced competition result that not only outperforms the optimal revenue but actually obtains revenue that is significantly larger. At least this stronger version of Case 2 cannot be shown for general distributions, and some condition like Case 1 not being true is necessary444To see why, consider an item such that the values for this item are sampled from a distribution that is supported on the interval [1,2][1,2]. Even with one bidder, setting a posted price of 11 achieves revenue 11, while no number of additional bidders can get revenue larger than 22..

Moreover, as we discuss in Section 2 below, our proof of Theorem 1.1 is the same for all values of mm and nn, avoiding the case analysis in [FeldmanFR18] that uses different techniques to prove a claim similar to Theorem 1.1 in the case n=1n=1 and in the case nmn\sim m.

Prior-independent auctions.

Finally, we mention that even though Theorem 1.1 matches the optimal revenue with nn bidders using a simple auction with nn^{\prime} bidders, the simple auction that it uses in Case 2 is prior-dependent, i.e., the auctioneer needs to know the distribution from which the bidders’ sample their valuations in order to run the auction. Dependence on the prior is necessary555The example to keep in mind is a single-item single-bidder setting where the value of the bidder for the item is sampled from a distribution that, for some p>1p>1, takes the value 0 with probability 11p1-\frac{1}{p}, and the value pp with probability 1p\frac{1}{p}. For such a distribution, it is impossible to design an auction with any non-trivial revenue guarantee without the knowledge of pp. when there is no other promise on the distribution of the bidders’ valuation. However, when these distributions are promised to be regular, there is a long line of work that focuses on developing prior-independent auctions [BulowK96, DevanurHKN11, AzarDMW13, AzarKW14, GoldnerK16, EdenFFTW17b]. We contribute to this line of work by showing the following prior-independent analogue of Theorem 1.1.

Theorem 1.2 (Informal).

Consider an auction setting where mm regular items are being sold to nn bidders. Let ϵ>0\epsilon>0 and n=O(n/ϵ)n^{\prime}=O(n/\epsilon) margin: Linda Note! margin: Linda Note! Linda Note: n=O(n/ϵ2)n^{\prime}=O(n/\epsilon^{2})]Notes:2: Linda: n=O(n/ϵ𝟐)n^{\prime}=O(n/\epsilon^{2})]Notes:2: n=O(n/ϵ𝟐)n^{\prime}=O(n/\epsilon^{2}). At least one of the following hold:

  1. 1.

    A (1ϵ)(1-\epsilon)-fraction of the optimal revenue with nn bidders is obtained by a VCG auction with nn^{\prime} bidders.

  2. 2.

    A prior-independent VCG auction with an entry fee and nn^{\prime} bidders generates margin: Linda Note! margin: Linda Note! Linda Note: 1/ϵ1/\epsilon times]Notes:3: Linda: 𝟏/ϵ1/\epsilon times]Notes:3: 𝟏/ϵ1/\epsilon times more revenue than the optimal auction with nn bidders.

margin: Linda Note! margin: Linda Note!

Linda Note: Theorem 1.2 immediately implies that there exists a prior-independent auction with n=O(n/ϵ2)n^{\prime}=O(n/\epsilon^{2}) bidders which achieves a (1ϵ)(1-\epsilon) faction of the optimal revenue: we can simply run VCG auction with probability (1ϵ)(1-\epsilon) and run the prior-independent VCG auction with entry fee with probability ϵ\epsilon.]Notes:4: Linda: Theorem 1.2 immediately implies that there exists a prior-independent auction with n=O(n/ϵ𝟐)n^{\prime}=O(n/\epsilon^{2}) bidders which achieves a (𝟏ϵ)(1-\epsilon) faction of the optimal revenue: we can simply run VCG auction with probability (𝟏ϵ)(1-\epsilon) and run the prior-independent VCG auction with entry fee with probability ϵ\epsilon.]Notes:4: Theorem 1.2 immediately implies that there exists a prior-independent auction with n=O(n/ϵ𝟐)n^{\prime}=O(n/\epsilon^{2}) bidders which achieves a (𝟏ϵ)(1-\epsilon) faction of the optimal revenue: we can simply run VCG auction with probability (𝟏ϵ)(1-\epsilon) and run the prior-independent VCG auction with entry fee with probability ϵ\epsilon. We mention that parts of our proof of Theorem 1.2 draw inspiration from [GoldnerK16] and that all properties of Theorem 1.1 mentioned above also apply to Theorem 1.2. We also note that we can even extend the prior-independent mechanisms that we develop to certain settings of irregular distributions. Specifically, it is possible to combine our proof of Theorem 1.2 with ideas from [SivanS13] to get analogous claims for the form of irregular distributions considered there.

1.2 Related Work

Besides the works mentioned above, our work is also related to the following works.

Enhanced competition results with n=ω(n)n^{\prime}=\omega(n).

The focus of the current paper is getting enhanced competition results with n=O(n)n^{\prime}=O(n). However, there is a long line of work focusing on getting enhanced competition results with larger nn^{\prime}. Among the first such works were those of [RoughgardenTY20] and [EdenFFTW17b] which show the bounds n=mn^{\prime}=m and n=O(n+m)n^{\prime}=O(n+m) for unit-demand and additive bidders respectively. These works were followed by [FeldmanFR18] and [BeyhaghiW19] which improve these bounds to n=nO(logmn)n^{\prime}=n\cdot O(\log\frac{m}{n}) for additive bidders. We remark that [FeldmanFR18] focuses on getting a (1ϵ)(1-\epsilon)-fraction of the optimal revenue with nn bidders while all the other works outperform the optimal revenue with nn bidders.

One key difference between the current work and the foregoing works is that all of them focus on upper bounding the optimal revenue with nn bidders by the revenue of an auction that sells the items separately with nn^{\prime} bidders, while we also consider VCG auctions with an entry fee. It is known that when restricting attention to auctions that sell the items separately, one cannot get a bound better than n=nΩ(logmn)n^{\prime}=n\cdot\Omega(\log\frac{m}{n}) [FeldmanFR18, BeyhaghiW19]. Thus, these works cannot hope to get n=O(n)n^{\prime}=O(n) like we do.

The duality framework.

We prove Theorem 1.1 and Theorem 1.2 using the duality framework of [CaiDW16]. In this work, [CaiDW16] view the problem of finding the optimal revenue as a linear program, and analyze it in terms of its Lagrangian dual. The duality framework shown in this work is extremely general, and in particular, is the first one that also applies to multi-bidder settings. In fact, it also applies to settings beyond the additive bidder setting we consider in this paper but we shall not need those ideas.

The [CaiDW16] framework has been used in a lot of subsequent work on getting enhanced competition results in particular and approximately revenue optimal mechanisms in general. Examples include [LiuP18, CaiZ17, EdenFFTW17b, EdenFFTW17a, BrustleCWZ17, DevanurW17, FuLLT18, BeyhaghiW19]. Our duality based proof also uses tools and ideas from [Ronen01, GoldnerK16].

1.3 Our Techniques

We now summarize the most important ideas in this work, focusing solely on Theorem 1.1. A more comprehensive overview can be found immediately below in Section 2.

As mentioned in Subsection 1.2 above, several works have studied how many bidders are necessary for the revenue obtained by selling the items separately to surpass the optimal revenue from selling to nn bidders. Due to these works, we now know that the answer is n=nΘ(logmn)n^{\prime}=n\cdot\Theta(\log\frac{m}{n}), and thus any result that works for n=O(n)n^{\prime}=O(n) (when nmn\ll m) must use auctions other than just selling the items separately.

The only such enhanced competition result in the literature is by [FeldmanFR18] and shows Theorem 1.1 when n=1n=1. The proof proceeds by first bounding the optimal revenue when selling to a single bidder by the core-tail decomposition of [LiY13]. The resulting bound is the sum of the welfare from the bidders with a “low” value for the items (the Core) and the revenue from the bidders with a “high” value for the items (the Tail). The next step is to upper bound the sum of Core and Tail by the revenue of a simple auction with n=O(1)n^{\prime}=O(1) bidders.

The term Tail turns out to be easier to bound than Core, and the reason is that Core corresponds to the welfare of some distribution and bounding it in terms of the revenue of some other distribution is like comparing apples to oranges. We get around this problem by adopting a different approach that tries to bound the welfare term coming from the Core with another welfare term. Specifically, our main lemma, that works for any nn and any distribution, shows that if Case 1 of Theorem 1.1 does not hold, then, the welfare with nn bidders can be upper bounded by, say, a 120\frac{1}{20} fraction of the welfare with n=O(n)n^{\prime}=O(n) bidders.

Unfortunately, even though Core corresponds to the welfare of some distribution and our main lemma applies to welfare of any distribution, it cannot be applied to Core as it assumes that the values of all the bidders are drawn independently and identically from the same distribution, a property that Core does not satisfy in general. This turns out to be a major obstacle and to get around it, we have to start from scratch. This time, instead of starting with the core-tail decomposition of [LiY13], we start with the virtual welfare based upper bound on the revenue from [CaiDW16]. We are able to extend our main lemma to this notion of virtual welfare, and show that unless Case 1 of Theorem 1.1 holds, the virtual welfare with nn bidders can be upper bounded by a 120\frac{1}{20} fraction of the virtual welfare with n=O(n)n^{\prime}=O(n) bidders.

To finish the proof, we use techniques from [CaiDW16] to upper bound the virtual welfare with nn^{\prime} bidders by 2020 times the revenue of simple auctions, i.e. either selling the items separately or through a VCG auction with an entry fee, with nn^{\prime} bidders.

2 Technical Overview

In this section, we cover the main ideas behind the proof of Theorem 1.1 and Theorem 1.2. As the proofs have significant overlap, we focus only on Theorem 1.1 for the most part.

2.1 The [FeldmanFR18] Result

As mentioned above, the work of [FeldmanFR18], showed, amongst other results, that Theorem 1.1 holds in the case n=1n=1, i.e., when there is only one bidder. In this special case, Theorem 1.1 reduces to showing that 99% of the revenue can be obtained by either selling the items separately, or selling the grand bundle, to a (large enough) constant number of bidders. The main tool in this result of [FeldmanFR18] is the core-tail decomposition of [LiY13].

Core-tail decomposition.

The key insight in the core-tail decomposition framework is to set a cutoff tjt_{j} for each item j[m]j\in[m] and reason separately about the case where the values of the bidders for item jj are “low”, i.e. at most tjt_{j}, and when they are “high”, i.e., more than tjt_{j}. We say that an item jj is in the Core if its value is low, and say that it is in the Tail otherwise. Core-tail decomposition says that, for any choice of the cutoffs tjt_{j}, the optimal revenue 𝖱𝖾𝗏\mathsf{Rev} is at most the optimal welfare from the items in the Core and the optimal revenue from the items in the Tail.

Thus, in order to show that 99% of the revenue is upper bounded by either the revenue obtained by selling separately, or that obtained by selling the grand bundle to a constant number of bidders, it is sufficient to show that, for some choice of the cutoff, the sum total of the welfare from the Core and the revenue from the Tail is also upper bounded by the maximum of selling separately or selling the grand bundle to a constant number of bidders. The specific cutoff in [FeldmanFR18] is involved, and for simplicity in this overview, we shall assume that the cutoff is just a large, say the (1δ)(1-\delta)-th for some small δ>0\delta>0, quantile.

Bounding the revenue from the Tail is the easy part, and uses the observation that the probability that a given item is in the Tail is at most δ\delta. In fact, one can show that the revenue from the Tail is only a small fraction, say δ\sqrt{\delta}, of the revenue obtained by selling the items separately to a constant number of bidders.

Bounding the Core.

The hard part is to bound the welfare from the Core, and it is here that the n=1n=1 assumption is crucially used. When n=1n=1, the welfare is simply the sum of the bidder’s value for all the items in the Core. Being the sum of independent random values that are bounded (below the cutoff), one would expect that the welfare from the Core would be reasonably well concentrated in an interval of size roughly equal to the standard deviation.

It turns out that, with the right choice of the cutoffs, the standard deviation is much smaller than the revenue obtained by selling the items separately to a constant number of bidders. This implies that either the expected welfare of the Core is at most the revenue obtained by selling the items separately to a constant number of bidders, or one can expect (with at least some small constant probability) that the sum of values of a bidder for all the items is very close to the welfare from the Core.

In the latter case, when there are many bidders, it is very likely that there exists a bidder whose total value for all the items is around the welfare from the Core. Thus, an auction that sells the grand bundle around this price will likely generate revenue equal to the welfare from the Core, proving the result.

2.2 Difficulty in Extending to Multiple Bidders

Interestingly, the core-tail decomposition framework used in [FeldmanFR18] extends, with some changes (see Subsection 2.5), to the n>1n>1 case. Moreover, the analysis of the Tail can be done in essentially the same way, and the only part of the argument above that does not extend to the n>1n>1 case is bounding the Core.

Specifically, what breaks is that the welfare of the Core is no longer the sum over all items of the value the (only) bidder has for the item. Instead, the welfare in the n>1n>1 case equals the sum over all items of the maximum value that any bidder has for the item. Thus, even if one can somehow show that it is highly concentrated around some value, say xx, it is not clear how to design an auction with a constant-factor more bidders whose revenue is at least xx.

In particular, selling the grand bundle at price xx does not work, as it is no longer guaranteed that there will be a bidder whose value for the grand bundle will be around xx. All the concentration of the welfare buys us in this case is that if we take the sum of the maximum value of nn bidders for all the items, we are likely to get xx. However, it is not clear how to realize this maximum value as the revenue of a simple auction.

2.3 Our Approach

The difficulty described above is serious, as we are trying to upper bound the welfare by the revenue, when it is known that the former may be arbitrarily larger than the latter in the worst case. What is supposed to save us is that the distribution of the values in the Core is not a general distribution as, for example, its support is upper bounded by the cutoff. Using this upper bound on the support, prior work [Yao15, CaiDW16, amongst others] has shown that the welfare of the Core is at most a constant (actually, <20<20) times the revenue of a (simple) auction. However, getting this constant down all the way to 11, even with more bidders seems challenging.

Our way around this difficulty is to upper bound the welfare of the Core in two steps: (1) Firstly, we show that if (99%99\% of the) Core is larger than revenue obtained by selling separately to a constant-factor larger number of bidders, then the welfare of the Core can be bounded by a small constant (say, 120\frac{1}{20}) of the welfare of the Core with a constant-factor larger number of bidders. The hope is that proving such a bound is easier as it requires bounding the welfare term by another welfare term. (2) Next, we invoke the known results about the welfare of the Core being at most 2020 times the revenue of simple auctions on the Core with the larger number of bidders to get our result about the Core with the smaller number of bidders.

Overall, this scheme will give us that if (99%99\% of the) Core is larger than the revenue obtained by selling separately to a constant-factor larger number of bidders, then the welfare of the Core can be bounded by the revenue of a simple auction with constant-factor larger bidders, as desired.

2.4 Our Proof When n=1n=1

Step 2 of our two-step approach above follows from known results, and in this subsection, we show Step 1. We note that our proof for this part does not even require the welfare to come from the Core and it actually works for any distribution. In fact, it does not even require n=1n=1 and works for all nn, but as we shall explain in Subsection 2.5, it will only fit in our overall framework when n=1n=1.

The main idea, for the one item case, is captured in the following informal lemma. Using linearity of expectation and the fact that the bidders are additive, a similar lemma can also be shown for the multi-item case.

Lemma \thelemma (Informal).

Let ϵ>0\epsilon>0. Consider a single item and nn bidders each of whose value for the item are sampled from a distribution DD. If (1ϵ)(1-\epsilon) times the welfare of the nn bidders is larger than the revenue generated from a second price auction with 20nϵ\frac{20n}{\epsilon} bidders, then, the welfare with nn bidders is at most 120\frac{1}{20} times the welfare with 20nϵ\frac{20n}{\epsilon} bidders.

Proof.

Define n=20nϵn^{\prime}=\frac{20n}{\epsilon} for convenience, and let viv_{i} for i[n]i\in[n^{\prime}] be the value of the ithi^{\text{th}} bidder for the item. As we assume our bidders to be independent and identically distributed, this is just an independent sample from DD.

Next, note that as welfare is just the maximum value of the item, we have that the expected welfare with nn bidders is just the expected value of maxi[n]vi\max_{i\in[n]}v_{i} while the expected welfare with nn^{\prime} bidders is just the expected value of maxi[n]vi\max_{i\in[n^{\prime}]}v_{i}. Now if the maximizer (we disregard all issues about tie-breaking in this informal lemma and assume that the maximizer is unique) on viv_{i} over all nn^{\prime} bidders lies in the first nn bidders, an event (which we denote by EE) that happens with probability nn=ϵ20\frac{n}{n^{\prime}}=\frac{\epsilon}{20} as the bidders are identically distributed, then the maximum value amongst the first nn bidders equals that amongst all the nn^{\prime} bidders. Otherwise, the maximum value amongst the first nn is at most the second highest value amongst all the nn^{\prime} bidders. We get that:

𝔼[welfare with n]ϵ20𝔼[welfare with nE]+Pr(E¯)𝔼[2nd highest value with nE¯].\mathop{{}\mathbb{E}}\left[\text{welfare with $n$}\right]\leq\frac{\epsilon}{20}\cdot\mathop{{}\mathbb{E}}\left[\text{welfare with $n^{\prime}$}\mid E\right]+\Pr\left\lparen\overline{E}\right\rparen\cdot\mathop{{}\mathbb{E}}\left[\text{$\operatorname*{2nd}$ highest value with $n^{\prime}$}\mid\overline{E}\right].

Now, using basic conditional probability, we can upper bound the second term by the expected second highest value overall, which is just the revenue of a second price auction with nn^{\prime} bidders. We get:

𝔼[welfare with n]ϵ20𝔼[welfare with nE]+Revenue from 2nd price auction.\mathop{{}\mathbb{E}}\left[\text{welfare with $n$}\right]\leq\frac{\epsilon}{20}\cdot\mathop{{}\mathbb{E}}\left[\text{welfare with $n^{\prime}$}\mid E\right]+\text{Revenue from $\operatorname*{2nd}$ price auction}.

As we assume that (1ϵ)(1-\epsilon) times the welfare of the nn bidders is larger than the revenue generated from a second price auction, we get:

ϵ𝔼[welfare with n]ϵ20𝔼[welfare with nE].\epsilon\cdot\mathop{{}\mathbb{E}}\left[\text{welfare with $n$}\right]\leq\frac{\epsilon}{20}\cdot\mathop{{}\mathbb{E}}\left[\text{welfare with $n^{\prime}$}\mid E\right].

To finish, we remove the conditioning on EE noting that the expected value of the maximum is independent of where the maximizer is. This gives:

𝔼[welfare with n]120𝔼[welfare with n],\mathop{{}\mathbb{E}}\left[\text{welfare with $n$}\right]\leq\frac{1}{20}\cdot\mathop{{}\mathbb{E}}\left[\text{welfare with $n^{\prime}$}\right],

as claimed in the lemma. ∎

2.5 The n>1n>1 Case

As mentioned above, Subsection 2.4 is very general and works for all distributions and all nn. However, it does require that: (i) The distribution for different bidders are independent and identical, so that the probability that EE happens is nn\frac{n}{n^{\prime}}. (ii) The distribution does not depend on the number nn^{\prime} of bidders participating in the auction, so that the distribution with nn bidders is the same as the distribution of the first nn bidders when there are actually nn^{\prime} bidders in total.

Both these properties hold for the n=1n=1 case, when the distribution of the Core for all the bidders is determined by the same cutoff that is not a function of the total number of bidders in the auction. However, core-tail type arguments for the multiple bidder (n>1n>1) case often have a more involved cutoff, that may be different for each bidder, and may also depend on the second highest value (amongst all the bidders) of the item concerned [Yao15, CaiDW16]. As the distribution of the second highest value depends on the number of bidders in the auction, the resulting distribution of the Core does not satisfy either of the two properties above.

Due to these complications in the core-tail framework for the n>1n>1 case, we are forced to adopt a different approach that avoids the core-tail decomposition framework altogether! This becomes possible only because our proof of Subsection 2.4 works for all distributions, and not just those that correspond to the core of some other distribution. The goal now is to apply Subsection 2.4 on a carefully chosen notion of ‘virtual welfare’. This notion of virtual welfare must satisfy the following properties in addition to Properties i and ii above: (iii) It must be an upper bound on the optimal revenue, so that upper bounding it using Subsection 2.4 also gives a bound on the optimal revenue. (iv) It must be within a constant factor of the revenue of a (simple) auction so that, after applying Subsection 2.4, we can upper bound the virtual welfare with nn^{\prime} bidders by the revenue of the simple auction. (v) The virtual values must be at most the corresponding values, so that the expected second highest virtual value is at most the revenue of a second price auction.

Duality based virtual values.

To construct such a virtual value function, we use the duality framework of [CaiDW16]. In fact, the work [CaiDW16] itself defines a virtual value function that satisfies Properties iiiiv, and v above but does not satisfy Properties i and ii. As a result, we cannot use the results shown in [CaiDW16] as a black box, but are able to suitably adapt them for our purposes.

More specifically, we define a new duality-based revenue benchmark that we call the independent utilities, or the IU-benchmark. This (randomized) benchmark is parameterized by an integer kk666In the actual proof, we set k=nk=n^{\prime}. and is defined as follows: Consider a bidder i[n]i\in[n] and suppose that bidder ii has value vi,jv_{i,j} for item j[m]j\in[m]. For each such bidder, we sample valuations for k1k-1 “ghost”-bidders and simulate a second price auction with bidder ii and the ghost bidders. If item jj gets him the highest (breaking ties lexicographically) non-negative utility in this auction, the virtual value of bidder ii for item jj is the Myerson’s (ironed) virtual value corresponding to vi,jv_{i,j}. Otherwise, it is equal to vi,jv_{i,j}.

As the ghost bidders are sampled independently and identically for each bidder (and also independently of nn), our virtual value function satisfies Properties i and ii. Moreover, as, like [CaiDW16], it is based on the utilities obtained in a second price auction, it is close enough to [CaiDW16] to retain Properties iiiiv, and v, and we can finish our proof of Theorem 1.1.

Proving Theorem 1.2.

We show Theorem 1.2 using the same framework. The only change is that Property iv needs to replaced by a prior-independent version. Namely, we want: (iv*) The virtual welfare must be within a constant factor of the revenue of a (simple) prior independent auction. We show that the IU-virtual welfare defined above also satisfies this property. For this, we take inspiration from [GoldnerK16] and get prior-independence by using the bids of one of the bidders to get some estimate of the prior distribution. Adapting the proof in [GoldnerK16] to IU-virtual welfare is done in Section 4.

2.6 Organization

For readers not familiar with duality or this line of work, we overview all the necessary definitions in Section 3. All our definitions and notations defined in Section 3 are standard, so expert readers can jump to Section 4 without losing continuity. It is in Section 4 and Section 5 that we prove our main result, and specifically, Section 4 is the analogue of Subsection 2.4 for IU-virtual welfare. Finally, Appendix A and Appendix B have the proofs of some standard lemmas that are used in Section 4 and Section 5.

3 Preliminaries

We use \mathbb{R} to denote the set of real numbers and +\mathbb{R}^{+} to denote the set of non-negative real numbers. For a real number xx, we use x+x^{+} to denote max(x,0)\max(x,0). For k,m>0k,m>0 and w(m)kw\in\left\lparen\mathbb{R}^{m}\right\rparen^{k}, we use max(w)m\max(w)\in\mathbb{R}^{m} to denote the vector obtained by taking the coordinate wise maximum of ww. That is, for all j[m]j\in[m], the jthj^{\text{th}} coordinate of max(w)\max(w), which shall be denote by max(w)|j\max(w)|_{j}, is max(w)|j=maxi[k]wi,j\max(w)|_{j}=\max_{i\in[k]}w_{i,j}.

3.1 Probability Theory

Let 𝒱\mathcal{V} be a finite set and 𝒟\mathcal{D} be a probability distribution over 𝒱\mathcal{V}. Let f:𝒱[0,1]f:\mathcal{V}\to[0,1] denote the probability mass function of 𝒟\mathcal{D}, i.e., for all x𝒱x\in\mathcal{V}, we have f(x)=Pry𝒟(y=x)f(x)=\Pr_{y\sim\mathcal{D}}(y=x).

Expectation and Variance.

For a function g:𝒱g:\mathcal{V}\to\mathbb{R}, the expectation of g()g(\cdot) is defined as:

𝔼x𝒟[g(x)]=x𝒱f(x)g(x).\mathop{{}\mathbb{E}}_{x\sim\mathcal{D}}\left[g(x)\right]=\sum_{x\in\mathcal{V}}f(x)\cdot g(x).

The variance of g()g(\cdot) is:

𝖵𝖺𝗋x𝒟(g(x))=𝔼x𝒟[(g(x)𝔼x𝒟[g(x)])2]=𝔼x𝒟[(g(x))2](𝔼x𝒟[g(x)])2.\mathsf{Var}_{x\sim\mathcal{D}}\left\lparen g(x)\right\rparen=\mathop{{}\mathbb{E}}_{x\sim\mathcal{D}}\left[\left\lparen g(x)-\mathop{{}\mathbb{E}}_{x\sim\mathcal{D}}\left[g(x)\right]\right\rparen^{2}\right]=\mathop{{}\mathbb{E}}_{x\sim\mathcal{D}}\left[\left\lparen g(x)\right\rparen^{2}\right]-\left\lparen\mathop{{}\mathbb{E}}_{x\sim\mathcal{D}}\left[g(x)\right]\right\rparen^{2}.

We omit x𝒟x\sim\mathcal{D} from the above notations when it is clear from the context.

Independence.

We say two functions g1,g2:𝒱g_{1},g_{2}:\mathcal{V}\to\mathbb{R} are independent of each other if for all a,ba,b\in\mathbb{R}, we have

Prx𝒟(g1(x)=a,g2(x)=b)=Prx𝒟(g1(x)=a)Prx𝒟(g2(x)=b).\Pr_{x\sim\mathcal{D}}\left\lparen g_{1}(x)=a,g_{2}(x)=b\right\rparen=\Pr_{x\sim\mathcal{D}}\left\lparen g_{1}(x)=a\right\rparen\cdot\Pr_{x\sim\mathcal{D}}\left\lparen g_{2}(x)=b\right\rparen.

For k>0k>0, we say that kk functions g1,g2,,gk:𝒱g_{1},g_{2},\cdots,g_{k}:\mathcal{V}\to\mathbb{R} are (pairwise) independent if gig_{i} and gjg_{j} are independent for all iji\neq j.

Standard lemmas.

The following are some standard facts and lemmas that we shall use:

Fact \thefact.

For any function g()g(\cdot), we have:

  1. 1.

    Bounds on variance:

    0𝖵𝖺𝗋x𝒟(g(x))𝔼x𝒟[(g(x))2].0\leq\mathsf{Var}_{x\sim\mathcal{D}}\left\lparen g(x)\right\rparen\leq\mathop{{}\mathbb{E}}_{x\sim\mathcal{D}}\left[\left\lparen g(x)\right\rparen^{2}\right].
  2. 2.

    Chebyshev’s inequality: For all a0a\geq 0, we have

    Prx𝒟(|g(x)𝔼[g(x)]|a)𝖵𝖺𝗋(g(x))a2.\Pr_{x\sim\mathcal{D}}\left\lparen\left\lvert g(x)-\mathop{{}\mathbb{E}}\left[g(x)\right]\right\rvert\geq a\right\rparen\leq\frac{\mathsf{Var}\left\lparen g(x)\right\rparen}{a^{2}}.
  3. 3.

    Linearity of variance assuming independence: For all k>0k>0 and all g1,g2,,gk:𝒱g_{1},g_{2},\cdots,g_{k}:\mathcal{V}\to\mathbb{R} that are pairwise independent, we have

    𝖵𝖺𝗋(i=1kgi(x))=i=1k𝖵𝖺𝗋(gi(x)).\mathsf{Var}\left\lparen\sum_{i=1}^{k}g_{i}(x)\right\rparen=\sum_{i=1}^{k}\mathsf{Var}\left\lparen g_{i}(x)\right\rparen.
Lemma \thelemma ([CaiDW16], Lemma 3737777All theorem numbers from [CaiDW16] are from the arXiv version https://arxiv.org/abs/1812.01577 , etc.).

For all functions g:𝒱+g:\mathcal{V}\to\mathbb{R}^{+}, it holds that:

𝖵𝖺𝗋x𝒟(g(x))𝔼x𝒟[(g(x))2]2(maxx𝒱g(x)Pry𝒟(g(y)g(x)))(maxx𝒱g(x)).\mathsf{Var}_{x\sim\mathcal{D}}\left\lparen g(x)\right\rparen\leq\mathop{{}\mathbb{E}}_{x\sim\mathcal{D}}\left[\left\lparen g(x)\right\rparen^{2}\right]\leq 2\cdot\left\lparen\max_{x\in\mathcal{V}}g(x)\cdot\Pr_{y\sim\mathcal{D}}\left\lparen g(y)\geq g(x)\right\rparen\right\rparen\cdot\left\lparen\max_{x\in\mathcal{V}}g(x)\right\rparen.
Proof.

The first inequality follows from Subsection 3.1, item 1. For the second, let a1<a2<<ama_{1}<a_{2}<\cdots<a_{m} be all the values of g(x)g(x) when x𝒱x\in\mathcal{V} and let a0a_{0} be a negative number arbitrarily close to 0. We have:

𝔼x𝒟[(g(x))2]\displaystyle\mathop{{}\mathbb{E}}_{x\sim\mathcal{D}}\left[\left\lparen g(x)\right\rparen^{2}\right] =x𝒱f(x)(g(x))2\displaystyle=\sum_{x\in\mathcal{V}}f(x)\cdot\left\lparen g(x)\right\rparen^{2}
=i=1mai2Prx𝒟(g(x)=ai)\displaystyle=\sum_{i=1}^{m}a_{i}^{2}\cdot\Pr_{x\sim\mathcal{D}}\left\lparen g(x)=a_{i}\right\rparen
=i=1mai2(Prx𝒟(g(x)>ai1)Prx𝒟(g(x)>ai))\displaystyle=\sum_{i=1}^{m}a_{i}^{2}\cdot\left\lparen\Pr_{x\sim\mathcal{D}}\left\lparen g(x)>a_{i-1}\right\rparen-\Pr_{x\sim\mathcal{D}}\left\lparen g(x)>a_{i}\right\rparen\right\rparen
=a02+i=1m(ai2ai12)Prx𝒟(g(x)ai).\displaystyle=a_{0}^{2}+\sum_{i=1}^{m}\left\lparen a_{i}^{2}-a_{i-1}^{2}\right\rparen\cdot\Pr_{x\sim\mathcal{D}}\left\lparen g(x)\geq a_{i}\right\rparen.

Using the identity x2y2=(x+y)(xy)x^{2}-y^{2}=(x+y)(x-y), we get:

𝔼x𝒟[(g(x))2]\displaystyle\mathop{{}\mathbb{E}}_{x\sim\mathcal{D}}\left[\left\lparen g(x)\right\rparen^{2}\right] a02+i=1m(aiai1)2aiPrx𝒟(g(x)ai)\displaystyle\leq a_{0}^{2}+\sum_{i=1}^{m}\left\lparen a_{i}-a_{i-1}\right\rparen\cdot 2a_{i}\cdot\Pr_{x\sim\mathcal{D}}\left\lparen g(x)\geq a_{i}\right\rparen
a02+2(maxx𝒱g(x)Pry𝒟(g(y)g(x)))i=1m(aiai1)\displaystyle\leq a_{0}^{2}+2\cdot\left\lparen\max_{x\in\mathcal{V}}g(x)\cdot\Pr_{y\sim\mathcal{D}}\left\lparen g(y)\geq g(x)\right\rparen\right\rparen\cdot\sum_{i=1}^{m}\left\lparen a_{i}-a_{i-1}\right\rparen
a02+2(maxx𝒱g(x)Pry𝒟(g(y)g(x)))(maxx𝒱g(x)a0).\displaystyle\leq a_{0}^{2}+2\cdot\left\lparen\max_{x\in\mathcal{V}}g(x)\cdot\Pr_{y\sim\mathcal{D}}\left\lparen g(y)\geq g(x)\right\rparen\right\rparen\cdot\left\lparen\max_{x\in\mathcal{V}}g(x)-a_{0}\right\rparen.

The lemma follows as a0<0a_{0}<0 was arbitrary. ∎

3.2 Auction Design Theory

The paper deals with Bayesian auction design for multiple items and multiple independent additive bidders. Formally, this setting is defined by a tuple (n,m,{𝒟j}j=1m)\left\lparen n,m,\{\mathcal{D}_{j}\}_{j=1}^{m}\right\rparen, where n>0n>0 denotes the number of bidders, m>0m>0 denotes the number of items, and 𝒟j\mathcal{D}_{j}, for j[m]j\in[m], is a distribution with a finite support 𝒱j+\mathcal{V}_{j}\subseteq\mathbb{R}^{+}. We shall assume that, for all j[m]j\in[m], all elements in 𝒱j\mathcal{V}_{j} have non-zero probability under 𝒟j\mathcal{D}_{j}. This is without loss of generality as we can simply remove all elements that have zero probability.

We define 𝒟=×j=1m𝒟j\mathcal{D}=\bigtimes_{j=1}^{m}\mathcal{D}_{j}, 𝒱=×j=1m𝒱j\mathcal{V}=\bigtimes_{j=1}^{m}\mathcal{V}_{j} and use 𝒟\mathcal{D} and {𝒟j}j=1m\{\mathcal{D}_{j}\}_{j=1}^{m} interchangeably. Bidder i[n]i\in[n] has a private valuation vi,jv_{i,j} for each item j[m]j\in[m], that is sampled (independently for all bidders and items) from the distribution 𝒟j\mathcal{D}_{j}. We shall viv_{i} to denote the tuple (vi,1,,vi,m)𝒱(v_{i,1},\cdots,v_{i,m})\in\mathcal{V}, viv_{-i} to denote the tuple (v1,,vi1,vi+1,vn)(v_{1},\cdots,v_{i-1},v_{i+1},\cdots v_{n}), and vv to denote the tuple (v1,,vn)𝒱n(v_{1},\cdots,v_{n})\in\mathcal{V}^{n}. We sometimes use (vi,vi)(v_{i},v_{-i}) instead of vv if we want to emphasize the valuation of bidder ii.

We reserve fj()f_{j}(\cdot) to denote the probability mass function corresponding to 𝒟j\mathcal{D}_{j} and Fj()F_{j}(\cdot) to denote the cumulative mass function, i.e., Fj(x)=Pry𝒟j(yx)F_{j}(x)=\Pr_{y\sim\mathcal{D}_{j}}(y\leq x). For all k>0k>0, we use f(k)f^{(k)} and F(k)F^{(k)} to denote the probability mass function and the cumulative mass function for the distribution 𝒟k=𝒟×𝒟××𝒟k times\mathcal{D}^{k}=\underbrace{\mathcal{D}\times\mathcal{D}\times\cdots\times\mathcal{D}}_{k\text{~{}times}}. We omit kk when k=1k=1. We may also write ff^{*} and FF^{*} if kk is clear from context.

3.2.1 Definition of an Auction

Let (n,m,𝒟)(n,m,\mathcal{D}) be an auction setting as above. For our purposes, owing to the revelation principle, it is enough to think of an auction as a pair of functions 𝒜=(π,p)\mathcal{A}=(\pi,p) with the following types:

π\displaystyle\pi :𝒱n([0,1]m)n,\displaystyle:\mathcal{V}^{n}\to\left\lparen[0,1]^{m}\right\rparen^{n},
p\displaystyle p :𝒱nn.\displaystyle:\mathcal{V}^{n}\to\mathbb{R}^{n}.

Here, the function π\pi represents the ‘allocation function’ of the auction 𝒜\mathcal{A}. It takes a tuple v𝒱nv\in\mathcal{V}^{n} of ‘reported valuations’ and outputs for all bidders i[n]i\in[n] and items j[m]j\in[m], the probability that bidder ii gets item jj when the reported types are vv. As every item can be allocated at most once, we require for all v𝒱nv\in\mathcal{V}^{n} and j[m]j\in[m] (here, πi,j(v)\pi_{i,j}(v) denotes the (i,j)th(i,j)^{\text{th}} coordinate of π(v)\pi(v)) that:

i=1nπi,j(v)1.\sum_{i=1}^{n}\pi_{i,j}(v)\leq 1. (1)

The function pp denotes the ‘payment function’ of the auction. It takes a tuple v𝒱nv\in\mathcal{V}^{n} of reported valuations and outputs for all bidders i[n]i\in[n], the amount bidder ii must pay the auctioneer. We shall use pi(v)p_{i}(v) to denote the ithi^{\text{th}} coordinate of p(v)p(v).

The functions π¯()\overline{\pi}(\cdot) and p¯()\overline{p}(\cdot).

For a bidder i[n]i\in[n], we define the functions π¯i:𝒱[0,1]m\overline{\pi}_{i}:\mathcal{V}\to[0,1]^{m} and p¯i:𝒱\overline{p}_{i}:\mathcal{V}\to\mathbb{R} to be the expectation over the other bidders’ valuations of the functions π\pi and pp respectively. Formally, for vi𝒱v_{i}\in\mathcal{V}, we have:

π¯i(vi)=𝔼vi𝒟n1[πi(vi,vi)]andp¯i(vi)=𝔼vi𝒟n1[pi(vi,vi)].\overline{\pi}_{i}(v_{i})=\mathop{{}\mathbb{E}}_{v_{-i}\sim\mathcal{D}^{n-1}}\left[\pi_{i}(v_{i},v_{-i})\right]\hskip 28.45274pt\text{and}\hskip 28.45274pt\overline{p}_{i}(v_{i})=\mathop{{}\mathbb{E}}_{v_{-i}\sim\mathcal{D}^{n-1}}\left[p_{i}(v_{i},v_{-i})\right]. (2)
(Bayesian) truthfulness.

Roughly speaking, an auction is said to be truthful if the ‘utility’ of any bidder i[n]i\in[n] is maximized (and non-negative) when they report their true valuation. As the utility of bidder ii is defined simply as the value of player ii for all items allocated to them minus the payment made by player ii, we have that an auction is truthful if for all i[n],vi,vi𝒱i\in[n],v_{i},v^{\prime}_{i}\in\mathcal{V}, we have:

j=1mπ¯i,j(vi)vi,jp¯i(vi)j=1mπ¯i,j(vi)vi,jp¯i(vi).j=1mπ¯i,j(vi)vi,jp¯i(vi)0.\begin{split}\sum_{j=1}^{m}\overline{\pi}_{i,j}(v_{i})\cdot v_{i,j}-\overline{p}_{i}(v_{i})&\geq\sum_{j=1}^{m}\overline{\pi}_{i,j}(v^{\prime}_{i})\cdot v_{i,j}-\overline{p}_{i}(v^{\prime}_{i}).\\ \sum_{j=1}^{m}\overline{\pi}_{i,j}(v_{i})\cdot v_{i,j}-\overline{p}_{i}(v_{i})&\geq 0.\end{split} (3)

Throughout this work, we restrict attention to auctions that are truthful.

Revenue.

Equation 3 implies that one should expect the bidders in a truthful auction to report their true valuations. When this happens, we can calculate the revenue generated by the auction 𝒜\mathcal{A} as follows:

𝖱𝖾𝗏(𝒜,𝒟,n)=𝔼v𝒟n[i=1npi(v)]=i=1n𝔼vi𝒟[p¯i(vi)].\mathsf{Rev}(\mathcal{A},\mathcal{D},n)=\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n}}\left[\sum_{i=1}^{n}p_{i}(v)\right]=\sum_{i=1}^{n}\mathop{{}\mathbb{E}}_{v_{i}\sim\mathcal{D}}\left[\overline{p}_{i}(v_{i})\right]. (4)

We use 𝖱𝖾𝗏(𝒟,n)\mathsf{Rev}(\mathcal{D},n) to denote the maximum possible revenue of a (truthful) auction in the setting (n,m,𝒟)(n,m,\mathcal{D}), i.e., 𝖱𝖾𝗏(𝒟,n)=max𝒜𝖱𝖾𝗏(𝒜,𝒟,n)\mathsf{Rev}(\mathcal{D},n)=\max_{\mathcal{A}}\mathsf{Rev}(\mathcal{A},\mathcal{D},n).

3.2.2 ‘Simple’ Auctions

The following well-known (truthful) auctions will be referenced throughout the proof.

VCG.

The VCG auction is a truthful auction that runs as follows: First, all bidders i[n]i\in[n] report their valuation function viv_{i} to the auctioneer. Then, for all j[m]j\in[m], item jj is given to the bidder with the highest (ties broken lexicographically) bid for item jj at a price equal to the second highest bid for item jj. Formally, we have that for all v𝒱nv\in\mathcal{V}^{n}, i[n]i\in[n], and j[m]j\in[m] that:

πi,j(v)={1,i=argmaxivi,j0,iargmaxivi,jandpi(v)=j:πi,j(v)=1maxiivi,j.\pi_{i,j}(v)=\begin{cases}1,&i=\operatorname*{arg\,max}_{i^{\prime}}v_{i^{\prime},j}\\ 0,&i\neq\operatorname*{arg\,max}_{i^{\prime}}v_{i^{\prime},j}\\ \end{cases}\hskip 28.45274pt\text{and}\hskip 28.45274ptp_{i}(v)=\sum_{j^{\prime}:\pi_{i,j^{\prime}}(v)=1}\max_{i^{\prime}\neq i}v_{i^{\prime},j^{\prime}}.

We define 𝖵𝖢𝖦(𝒟,n)\mathsf{VCG}(\mathcal{D},n) to be the revenue generated by the VCG auction.

Selling Separately.

We say that an auction sells the items separately if it can be seen as mm separate auctions, one for each item jj, such that the auction for item jj depends only on the values {vi,j}i[n]\left\{v_{i,j}\right\}_{i\in[n]} the bidders have for item jj, and the payments of the bidders is just the sum of their payments in each of the mm auctions. Formally, for all j[m]j\in[m], there exists truthful auctions 𝒜(j)=(π(j):𝒱jn[0,1]n,p(j):𝒱jnn)\mathcal{A}^{(j)}=(\pi^{(j)}:\mathcal{V}_{j}^{n}\to[0,1]^{n},p^{(j)}:\mathcal{V}_{j}^{n}\to\mathbb{R}^{n}) such that for all v𝒱nv\in\mathcal{V}^{n}, i[n]i\in[n], and j[m]j\in[m]:

πi,j(v)=πi(j)({vi,j}i[n])andpi(v)=j=1mpi(j)({vi,j}i[n]).\pi_{i,j}(v)=\pi_{i}^{(j)}\left\lparen\left\{v_{i^{\prime},j}\right\}_{i^{\prime}\in[n]}\right\rparen\hskip 28.45274pt\text{and}\hskip 28.45274ptp_{i}(v)=\sum_{j^{\prime}=1}^{m}p_{i}^{(j^{\prime})}\left\lparen\left\{v_{i^{\prime},j^{\prime}}\right\}_{i^{\prime}\in[n]}\right\rparen.

Note the VCG auction sells the items separately. We define 𝖲𝖱𝖾𝗏j(𝒟j,n)\mathsf{SRev}_{j}(\mathcal{D}_{j},n) to be the Myerson optimal revenue for selling item jj to nn bidders. It follows that 𝖲𝖱𝖾𝗏(𝒟,n)=j=1m𝖲𝖱𝖾𝗏j(𝒟j,n)\mathsf{SRev}(\mathcal{D},n)=\sum_{j=1}^{m}\mathsf{SRev}_{j}(\mathcal{D}_{j},n) is the maximum revenue generated by any auction that sells the items separately

BVCG.

A BVCG auction is defined by a number 0kn0\leq k\leq n and888We will have k=0k=0 in the proof of Theorem 1.1 and k1k\leq 1 in the proof of Theorem 1.2. and a set of non-negative numbers 𝖥𝖾𝖾i,vi\mathsf{Fee}_{i,v_{-i}}, for all i[nk]i\in[n-k] and vi𝒱n1v_{-i}\in\mathcal{V}^{n-1}. In this auction, the last kk bidders are treated as special and do not receive any items or pay anything. The first nkn-k bidders participate in a VCG auction but bidder i[nk]i\in[n-k] only gets access to the items allocated to him in the VCG auction if he pays an entry fee 𝖥𝖾𝖾i,vi\mathsf{Fee}_{i,v_{-i}} that depends on the bids vi𝒱n1v_{-i}\in\mathcal{V}^{n-1} of all the other players in addition to the prices charged by the VCG auction.

Formally, for all v𝒱nv\in\mathcal{V}^{n} and j[m]j\in[m], we have for all nk<inn-k<i\leq n that πi,j(v)=0\pi_{i,j}(v)=0 and pi(v)=0p_{i}(v)=0, and for all i[nk]i\in[n-k], we have:

πi,j(v)\displaystyle\pi_{i,j}(v) ={1,i=argmaxii[nk]vi,jj=1mmax(vi,jmaxii[nk]vi,j,0)𝖥𝖾𝖾i,vi0,otherwise\displaystyle=\begin{cases}1,&i=\operatorname*{arg\,max}_{i^{\prime}\neq i\in[n-k]}v_{i^{\prime},j}\wedge\sum_{j^{\prime}=1}^{m}\max\left\lparen v_{i,j^{\prime}}-\max_{i^{\prime}\neq i\in[n-k]}v_{i^{\prime},j^{\prime}},0\right\rparen\geq\mathsf{Fee}_{i,v_{-i}}\\ 0,&\text{otherwise}\\ \end{cases}
pi(v)\displaystyle p_{i}(v) ={𝖥𝖾𝖾i,vi+j:πi,j(v)=1maxii[nk]vi,j, if j:πi,j(v)=10,otherwise\displaystyle=\begin{cases}\mathsf{Fee}_{i,v_{-i}}+\sum_{j^{\prime}:\pi_{i,j^{\prime}}(v)=1}\max_{i^{\prime}\neq i\in[n-k]}v_{i^{\prime},j^{\prime}},&\text{~{}if~{}}\exists j^{\prime}:\pi_{i,j^{\prime}}(v)=1\\ 0,&\text{otherwise}\\ \end{cases}

We define 𝖡𝖵𝖢𝖦(𝒟,n)\mathsf{BVCG}(\mathcal{D},n) to be the maximum revenue of a BVCG auction with nn bidders. Also, define 𝖯𝖨-𝖡𝖵𝖢𝖦(𝒟,n)\mathsf{PI}\text{{-}}\mathsf{BVCG}(\mathcal{D},n) to be the maximum revenue of a prior-independent BVCG auction with nn bidders, i.e, where the values 𝖥𝖾𝖾i,vi\mathsf{Fee}_{i,v_{-i}} for all ii and viv_{-i} are not a function of the distribution 𝒟\mathcal{D}.

3.2.3 Myerson’s Virtual Values

We define the virtual value function following [CaiDW16]. Throughout this subsection, we fix our attention on a single item j[m]j\in[m] in an auction setting. The notations 𝒟j\mathcal{D}_{j}, 𝒱j\mathcal{V}_{j}, fjf_{j}, FjF_{j} will be the same as above. Recall our assumption that fj(x)>0f_{j}(x)>0 for all x𝒱jx\in\mathcal{V}_{j}.

Definition \thedefinition.

The virtual value function φj:𝒱j\varphi_{j}:\mathcal{V}_{j}\to\mathbb{R} is defined to be:

φj(x)={x, if x=max(𝒱j)x(xx)(1Fj(x))fj(x), if xmax(𝒱j).\varphi_{j}(x)=\begin{cases}x,&\text{~{}if~{}}x=\max(\mathcal{V}_{j})\\ x-\frac{\left\lparen x^{\prime}-x\right\rparen\cdot\left\lparen 1-F_{j}(x)\right\rparen}{f_{j}(x)},&\text{~{}if~{}}x\neq\max(\mathcal{V}_{j})\end{cases}.

Here, xx^{\prime} denotes the smallest element >x>x in 𝒱j\mathcal{V}_{j} and is well defined for all xmax(𝒱j)x\neq\max(\mathcal{V}_{j}).

Using the function φj()\varphi_{j}(\cdot), one can compute the ironed virtual value function as described in Algorithm 1.

Algorithm 1 Computing the ironed virtual value function φ~j:𝒱j\tilde{\varphi}_{j}:\mathcal{V}_{j}\to\mathbb{R}.
1:xmax(𝒱j)x\leftarrow\max(\mathcal{V}_{j}).
2:while 𝚃𝚛𝚞𝚎\mathtt{True} do
3:     For all y𝒱j,yxy\in\mathcal{V}_{j},y\leq x, set:
a(y)=y[y,x]𝒱jfj(y)φj(y)y[y,x]𝒱jfj(y).a(y)=\frac{\sum_{y^{\prime}\in[y,x]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})\cdot\varphi_{j}(y^{\prime})}{\sum_{y^{\prime}\in[y,x]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})}.
4:     yargmaxy𝒱j,yxa(y)y^{*}\leftarrow\operatorname*{arg\,max}_{y\in\mathcal{V}_{j},y\leq x}a(y) breaking ties in favor of larger values.
5:     For all y[y,x]𝒱jy^{\prime}\in[y^{*},x]\cap\mathcal{V}_{j}, set φ~j(y)a(y)\tilde{\varphi}_{j}(y^{\prime})\leftarrow a(y^{*}).
6:     If y=min(𝒱j)y^{*}=\min(\mathcal{V}_{j}), abort. Else, xx\leftarrow the largest element <y<y^{*} in 𝒱j\mathcal{V}_{j}.
7:end while

The ironed virtual value function φ~j()\tilde{\varphi}_{j}(\cdot) has several nice properties some of which recall below. The lemmas are adapted from [CaiDW16] which also has a more in depth discussion.

Lemma \thelemma.

For all x,x𝒱jx,x^{\prime}\in\mathcal{V}_{j} such that xxx\leq x^{\prime}, we have φ~j(x)φ~j(x)\tilde{\varphi}_{j}(x)\leq\tilde{\varphi}_{j}(x^{\prime}).

Proof.

As xxx\leq x^{\prime}, Algorithm 1 did not set the value of φ~j(x)\tilde{\varphi}_{j}(x^{\prime}) after setting the value of φ~j(x)\tilde{\varphi}_{j}(x). Using this and Line 5 of Algorithm 1, we get that it is sufficient to show that the value a(y)a(y^{*}) cannot increase between two consecutive iterations of the While loop. To this end, consider two consecutive iterations and let x1,y1,a1()x_{1},y^{*}_{1},a_{1}(\cdot) and x2,y2,a2()x_{2},y^{*}_{2},a_{2}(\cdot) be the values of the corresponding variables in the first and the second iteration respectively and note that y2x2<y1x1y^{*}_{2}\leq x_{2}<y^{*}_{1}\leq x_{1}.

By our choice of y1y^{*}_{1} in Line 4 in the first iteration, we have that a1(y1)a1(y2)a_{1}(y^{*}_{1})\geq a_{1}(y^{*}_{2}). Extending using Line 3, we get:

a1(y1)a1(y2)\displaystyle a_{1}(y^{*}_{1})\geq a_{1}(y^{*}_{2}) =y[y2,x1]𝒱jfj(y)φj(y)y[y2,x1]𝒱jfj(y)\displaystyle=\frac{\sum_{y^{\prime}\in[y^{*}_{2},x_{1}]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})\cdot\varphi_{j}(y^{\prime})}{\sum_{y^{\prime}\in[y^{*}_{2},x_{1}]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})}
=y[y2,x2]𝒱jfj(y)y[y2,x1]𝒱jfj(y)a2(y2)+y[y1,x1]𝒱jfj(y)y[y2,x1]𝒱jfj(y)a1(y1).\displaystyle=\frac{\sum_{y^{\prime}\in[y^{*}_{2},x_{2}]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})}{\sum_{y^{\prime}\in[y^{*}_{2},x_{1}]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})}\cdot a_{2}(y^{*}_{2})+\frac{\sum_{y^{\prime}\in[y^{*}_{1},x_{1}]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})}{\sum_{y^{\prime}\in[y^{*}_{2},x_{1}]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})}\cdot a_{1}(y^{*}_{1}).

It follows that a1(y1)a2(y2)a_{1}(y^{*}_{1})\geq a_{2}(y^{*}_{2}), as desired.

Lemma \thelemma.

For all x𝒱jx\in\mathcal{V}_{j}, we have φ~j(x)x\tilde{\varphi}_{j}(x)\leq x.

Proof.

Let x1,y1,a1()x_{1},y^{*}_{1},a_{1}(\cdot) be the values of the corresponding variables in the iteration when the value of φ~j(x)\tilde{\varphi}_{j}(x) is set. Observe that y1xx1y^{*}_{1}\leq x\leq x_{1}. If x=x1x=x_{1}, we simply have:

φ~j(x)=a1(y1)=y[y1,x1]𝒱jfj(y)φj(y)y[y1,x1]𝒱jfj(y)y[y1,x1]𝒱jfj(y)xy[y1,x1]𝒱jfj(y)=x,\tilde{\varphi}_{j}(x)=a_{1}(y^{*}_{1})=\frac{\sum_{y^{\prime}\in[y^{*}_{1},x_{1}]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})\cdot\varphi_{j}(y^{\prime})}{\sum_{y^{\prime}\in[y^{*}_{1},x_{1}]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})}\leq\frac{\sum_{y^{\prime}\in[y^{*}_{1},x_{1}]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})\cdot x}{\sum_{y^{\prime}\in[y^{*}_{1},x_{1}]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})}=x,

where the penultimate step uses φ(y)yx1=x\varphi(y^{\prime})\leq y^{\prime}\leq x_{1}=x by Subsubsection 3.2.3. Otherwise, we have x<x1x<x_{1}. Define x𝒱jx^{\prime}\in\mathcal{V}_{j} to be the smallest such that x<xx<x^{\prime} and observe that xx1x^{\prime}\leq x_{1}. By our choice of y1y^{*}_{1} in Line 4, we have:

a1(y1)\displaystyle a_{1}(y^{*}_{1}) a1(x)\displaystyle\geq a_{1}(x^{\prime})
=y[x,x1]𝒱jfj(y)φj(y)y[x,x1]𝒱jfj(y)\displaystyle=\frac{\sum_{y^{\prime}\in[x^{\prime},x_{1}]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})\cdot\varphi_{j}(y^{\prime})}{\sum_{y^{\prime}\in[x^{\prime},x_{1}]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})}
=a1(y1)y[y1,x1]𝒱jfj(y)y[x,x1]𝒱jfj(y)y[y1,x]𝒱jfj(y)φj(y)y[y1,x]𝒱jfj(y)y[y1,x]𝒱jfj(y)y[x,x1]𝒱jfj(y).\displaystyle=a_{1}(y^{*}_{1})\cdot\frac{\sum_{y^{\prime}\in[y^{*}_{1},x_{1}]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})}{\sum_{y^{\prime}\in[x^{\prime},x_{1}]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})}-\frac{\sum_{y^{\prime}\in[y^{*}_{1},x]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})\cdot\varphi_{j}(y^{\prime})}{\sum_{y^{\prime}\in[y^{*}_{1},x]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})}\cdot\frac{\sum_{y^{\prime}\in[y^{*}_{1},x]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})}{\sum_{y^{\prime}\in[x^{\prime},x_{1}]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})}.

Rearranging, we get:

φ~j(x)=a1(y1)y[y1,x]𝒱jfj(y)φj(y)y[y1,x]𝒱jfj(y)y[y1,x]𝒱jfj(y)xy[y1,x]𝒱jfj(y)=x,\tilde{\varphi}_{j}(x)=a_{1}(y^{*}_{1})\leq\frac{\sum_{y^{\prime}\in[y^{*}_{1},x]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})\cdot\varphi_{j}(y^{\prime})}{\sum_{y^{\prime}\in[y^{*}_{1},x]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})}\leq\frac{\sum_{y^{\prime}\in[y^{*}_{1},x]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})\cdot x}{\sum_{y^{\prime}\in[y^{*}_{1},x]\cap\mathcal{V}_{j}}f_{j}(y^{\prime})}=x,

using φ(y)yx\varphi(y^{\prime})\leq y^{\prime}\leq x by Subsubsection 3.2.3 in the penultimate step. ∎

Myerson [Myerson81] proved that when there is only one item and 𝒟\mathcal{D} is continuous, the optimal revenue is equal to the expected (Myerson’s) virtual welfare. [CaiDW16] shows that Myerson’s lemma also applies to 𝒟\mathcal{D} that are discrete. For the mm item setting considered in this paper, we get:

Proposition \theproposition (Myerson’s Lemma [Myerson81, CaiDW16]).

It holds that:

𝖲𝖱𝖾𝗏(𝒟,n)=j=1m𝖲𝖱𝖾𝗏j(𝒟j,n)=j=1m𝔼v𝒟n[maxi[n](φ~j(vi,j))+].\mathsf{SRev}(\mathcal{D},n)=\sum_{j=1}^{m}\mathsf{SRev}_{j}(\mathcal{D}_{j},n)=\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n}}\left[\max_{i\in[n]}\left\lparen\tilde{\varphi}_{j}(v_{i,j})\right\rparen^{+}\right].
Definition \thedefinition (Regular Distributions).

The distribution 𝒟j\mathcal{D}_{j} is called regular when φj()=φ~j()\varphi_{j}(\cdot)=\tilde{\varphi}_{j}(\cdot), or equivalently, when φj()\varphi_{j}(\cdot) is monotone increasing. Namely, for all x,x𝒱jx,x^{\prime}\in\mathcal{V}_{j} such that xxx\leq x^{\prime}, we have φj(x)φj(x)\varphi_{j}(x)\leq\varphi_{j}(x^{\prime}).

In the seminal paper [BulowK96], Bulow and Klemperer show that the maximum possible revenue from an auction selling one item to any number nn of bidders whose valuations for the item are sampled from the same regular distribution is at most the revenue of the (simple and prior-independent) VCG auction with n+1n+1 bidders. It follows that, when there are multiple items, we have:

Proposition \theproposition (Classic Bulow-Klemperer [BulowK96]).

If 𝒟\mathcal{D} is a product of regular distributions, 𝖲𝖱𝖾𝗏(𝒟,n)𝖵𝖢𝖦(𝒟,n+1)\mathsf{SRev}(\mathcal{D},n)\leq\mathsf{VCG}(\mathcal{D},n+1).

4 Proof of Main Result

This section formally states and proves our main results Theorem 1.1 and Theorem 1.2. Using the notation developed in Section 3, we can rewrite Theorem 1.1 as:

Theorem 4.1 (Formal statement of Theorem 1.1 and Theorem 1.2).

Let (n,m,𝒟)(n,m,\mathcal{D}) be an auction setting as in Subsection 3.2. Let ϵ>0\epsilon>0 and define n=20n/ϵn^{\prime}=20n/\epsilon. If (1ϵ)𝖱𝖾𝗏(𝒟,n)>𝖵𝖢𝖦(𝒟,n)\left\lparen 1-\epsilon\right\rparen\cdot\mathsf{Rev}(\mathcal{D},n)>\mathsf{VCG}(\mathcal{D},n^{\prime}), we have that:

𝖱𝖾𝗏(𝒟,n)max(𝖡𝖵𝖢𝖦(𝒟,n),𝖲𝖱𝖾𝗏(𝒟,n)).\mathsf{Rev}(\mathcal{D},n)\leq\max\left\lparen\mathsf{BVCG}(\mathcal{D},n^{\prime}),\mathsf{SRev}(\mathcal{D},n^{\prime})\right\rparen.

Furthermore, if 𝒟\mathcal{D} is a product of regular distributions, the same assumption also implies 𝖱𝖾𝗏(𝒟,n)𝖯𝖨-𝖡𝖵𝖢𝖦(𝒟,n+1)\mathsf{Rev}(\mathcal{D},n)\leq\mathsf{PI}\text{{-}}\mathsf{BVCG}(\mathcal{D},n^{\prime}+1).

The proof of Theorem 4.1 spans the rest of this section. We fix an auction setting (n,m,𝒟)(n,m,\mathcal{D}) and ϵ>0\epsilon>0. To simplify notation, we drop m,𝒟m,\mathcal{D} from the arguments but retain nn when we want to emphasize the number of bidders. Our proof has three main steps: First, we use the duality framework of [CaiDW16] to get a suitable upper bound on 𝖱𝖾𝗏(n)\mathsf{Rev}(n). As explained in Subsection 2.5, the “standard” duality framework seems to be insufficient for our needs, and out first step is to show a new duality benchmark, called the independent utilities, or the IU(n){\text{IU}}(n^{\prime})-benchmark.

To define our benchmark, we first define the IU(n){\text{IU}}(n^{\prime})-virtual value of bidder i[n]i\in[n]. Let viv_{i} be the valuation (or the type) of bidder ii and let wiw_{-i} be the valuations of n1n^{\prime}-1 “ghost” bidders. We first partition the set 𝒱\mathcal{V} of all possible valuations for bidder ii into m+1m+1 regions based on wiw_{-i}. Namely, we define a region j(n)(wi)\mathcal{R}^{(n^{\prime})}_{j}(w_{-i}) for each item j[m]j\in[m] and also a region 0(n)(wi)=𝒱j[m]j(n)(wi)\mathcal{R}^{(n^{\prime})}_{0}(w_{-i})=\mathcal{V}\setminus\bigcup_{j\in[m]}\mathcal{R}^{(n^{\prime})}_{j}(w_{-i}) of all elements of 𝒱\mathcal{V} that are not in any of the j(n)(wi)\mathcal{R}^{(n^{\prime})}_{j}(w_{-i}). For j[m]j\in[m], we say that vij(n)(wi)v_{i}\in\mathcal{R}^{(n^{\prime})}_{j}(w_{-i}) if:

j(n)(wi)={vi𝒱|vi,jmax(wi)|jj smallest in argmaxj(vi,jmax(wi)|j)}.\mathcal{R}^{(n^{\prime})}_{j}(w_{-i})=\left\{v_{i}\in\mathcal{V}~{}\middle|~{}v_{i,j}\geq\max(w_{-i})|_{j}\wedge j\text{~{}smallest in~{}}\operatorname*{arg\,max}_{j^{\prime}}\left\lparen v_{i,j^{\prime}}-\max(w_{-i})|_{j^{\prime}}\right\rparen\right\}. (5)

Having defined these regions for each wiw_{-i}, we next consider the probability, for all j[m]j\in[m], that the valuation vij(n)(wi)v_{i}\in\mathcal{R}^{(n^{\prime})}_{j}(w_{-i}) where the probability is over choice of the types wiw_{-i} of the ghost bidders. Formally,

𝒫j(n)(vi)=Prwi𝒟n1(vij(n)(wi)).\mathcal{P}^{(n^{\prime})}_{j}(v_{i})=\Pr_{w_{-i}\sim\mathcal{D}^{n^{\prime}-1}}\left\lparen v_{i}\in\mathcal{R}^{(n^{\prime})}_{j}(w_{-i})\right\rparen. (6)

Next, for j[m]j\in[m], define the IU(n){\text{IU}}(n^{\prime})-virtual value of bidder ii for item jj as:

Φj(n)(vi)=vi,j(1𝒫j(n)(vi))+φ~j(vi,j)+𝒫j(n)(vi).\Phi^{(n^{\prime})}_{j}(v_{i})=v_{i,j}\cdot\left\lparen 1-\mathcal{P}^{(n^{\prime})}_{j}(v_{i})\right\rparen+\tilde{\varphi}_{j}(v_{i,j})^{+}\cdot\mathcal{P}^{(n^{\prime})}_{j}(v_{i}). (7)

We drop the superscript nn^{\prime} from all the above notations when it is clear from context. We now define the IU(n){\text{IU}}(n^{\prime})-benchmark as:

𝖨𝖴(n,n)=j=1m𝔼v𝒟n[maxi[n]{Φj(n)(vi)}].\mathsf{IU}(n,n^{\prime})=\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n}}\left[\max_{i\in[n]}\left\{\Phi^{(n^{\prime})}_{j}(v_{i})\right\}\right]. (8)

The first step in our proof is to show that the IU(n){\text{IU}}(n^{\prime})-benchmark indeed upper bounds 𝖱𝖾𝗏(n)\mathsf{Rev}(n).

Lemma \thelemma.

It holds that:

𝖱𝖾𝗏(n)𝖨𝖴(n,n).\mathsf{Rev}(n)\leq\mathsf{IU}(n,n^{\prime}).

The next step of the proof is to show that, under the assumption of the theorem, our IU(n){\text{IU}}(n^{\prime})-benchmark increases (significantly) as the number of bidders increases. We have:

Lemma \thelemma.

Assume that (1ϵ)𝖱𝖾𝗏(n)>𝖵𝖢𝖦(n)\left\lparen 1-\epsilon\right\rparen\cdot\mathsf{Rev}(n)>\mathsf{VCG}(n^{\prime}). We have:

𝖨𝖴(n,n)120𝖨𝖴(n,n)\mathsf{IU}(n,n^{\prime})\leq\frac{1}{20}\cdot\mathsf{IU}(n^{\prime},n^{\prime})

We mention that the choice of the constant 2020 in Section 4 is arbitrary and it can be replaced by any other value as long as the value of nn^{\prime} is changed accordingly. In fact, it can even be function of ϵ\epsilon. As the last step of the proof, we show the following upper bounds on 𝖨𝖴(n,n)\mathsf{IU}(n^{\prime},n^{\prime}).

Lemma \thelemma.

For all n′′nn^{\prime\prime}\leq n^{\prime}, we have:

𝖨𝖴(n′′,n)2𝖡𝖵𝖢𝖦(n)+6𝖲𝖱𝖾𝗏(n).\mathsf{IU}(n^{\prime\prime},n^{\prime})\leq 2\cdot\mathsf{BVCG}(n^{\prime})+6\cdot\mathsf{SRev}(n^{\prime}).
Lemma \thelemma.

If 𝒟\mathcal{D} is a product of regular distributions, then, for all n′′nn^{\prime\prime}\leq n^{\prime}, we have:

𝖨𝖴(n′′,n)17𝖯𝖨-𝖡𝖵𝖢𝖦(n+1).\mathsf{IU}(n^{\prime\prime},n^{\prime})\leq 17\cdot\mathsf{PI}\text{{-}}\mathsf{BVCG}(n^{\prime}+1).

Once we have these lemmas, Theorem 4.1 is almost direct. We include the two-line proof below.

Proof of Theorem 4.1.

By Section 4 and Section 4, we have that

𝖱𝖾𝗏(n)𝖨𝖴(n,n)120𝖨𝖴(n,n).\mathsf{Rev}(n)\leq\mathsf{IU}(n,n^{\prime})\leq\frac{1}{20}\cdot\mathsf{IU}(n^{\prime},n^{\prime}).

Next, using Section 4 and also Section 4 for the “furthermore” part, we have:

𝖱𝖾𝗏(n)max(𝖡𝖵𝖢𝖦(𝒟,n),𝖲𝖱𝖾𝗏(𝒟,n))and𝖱𝖾𝗏(n)𝖯𝖨-𝖡𝖵𝖢𝖦(𝒟,n+1).\mathsf{Rev}(n)\leq\max\left\lparen\mathsf{BVCG}(\mathcal{D},n^{\prime}),\mathsf{SRev}(\mathcal{D},n^{\prime})\right\rparen\hskip 28.45274pt\text{and}\hskip 28.45274pt\mathsf{Rev}(n)\leq\mathsf{PI}\text{{-}}\mathsf{BVCG}(\mathcal{D},n^{\prime}+1).

4.1 Proof of Section 4

Proof.

Let 𝒜\mathcal{A} be the auction that maximizes revenue amongst all (Bayesian) truthful auctions, and let (π¯,p¯)(\overline{\pi},\overline{p}) be as defined Subsection 3.2. By definition, we have that 𝖱𝖾𝗏(n)=i=1n𝔼vi𝒟[p¯i(vi)]\mathsf{Rev}(n)=\sum_{i=1}^{n}\mathop{{}\mathbb{E}}_{v_{i}\sim\mathcal{D}}\left[\overline{p}_{i}(v_{i})\right].

As the partition of 𝒱\mathcal{V} defined by {j(n)(wi)}j{0}[m]\{\mathcal{R}^{(n^{\prime})}_{j}(w_{-i})\}_{j\in\left\{0\right\}\cup[m]} is “upwards closed”999A partition {Rj}j{0}[m]\{R_{j}\}_{j\in\left\{0\right\}\cup[m]} is said to be upwards closed if for all j[m]j\in[m], vRjv\in R_{j}, and all α>0\alpha>0, if v+αej𝒱v+\alpha\cdot e_{j}\in\mathcal{V}, then vi+αejRjv_{i}+\alpha\cdot e_{j}\in R_{j} (Here, eje_{j} means the jthj^{\text{th}} standard basis of m\mathbb{R}^{m}). for all wi𝒱n1w_{-i}\in\mathcal{V}^{n^{\prime}-1}, we have from Corollary 2727 of [CaiDW16] that101010To make this paper self-contained, we recall their proof of Corollary 2727 as Appendix B in Appendix B., for all wiw_{-i}:

𝖱𝖾𝗏(n)\displaystyle\mathsf{Rev}(n) =i=1n𝔼vi𝒟[p¯i(vi)]\displaystyle=\sum_{i=1}^{n}\mathop{{}\mathbb{E}}_{v_{i}\sim\mathcal{D}}\left[\overline{p}_{i}(v_{i})\right]
i=1nj=1m𝔼vi𝒟[π¯i,j(vi)(vi,j𝟙(vij(n)(wi))+φ~j(vi,j)+𝟙(vij(n)(wi)))].\displaystyle\leq\sum_{i=1}^{n}\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v_{i}\sim\mathcal{D}}\left[\overline{\pi}_{i,j}(v_{i})\cdot\left\lparen v_{i,j}\cdot\mathds{1}\left\lparen v_{i}\notin\mathcal{R}^{(n^{\prime})}_{j}(w_{-i})\right\rparen+\tilde{\varphi}_{j}(v_{i,j})^{+}\cdot\mathds{1}\left\lparen v_{i}\in\mathcal{R}^{(n^{\prime})}_{j}(w_{-i})\right\rparen\right\rparen\right].

Therefore, by a weighted sum of the above equation over wi𝒱n1w_{-i}\in\mathcal{V}^{n^{\prime}-1},

𝖱𝖾𝗏(n)\displaystyle\mathsf{Rev}(n) i=1nj=1m𝔼vi𝒟[π¯i,j(vi)(vi,j(1𝒫j(n)(vi))+φ~j(vi,j)+𝒫j(n)(vi))]\displaystyle\leq\sum_{i=1}^{n}\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v_{i}\sim\mathcal{D}}\left[\overline{\pi}_{i,j}(v_{i})\cdot\left\lparen v_{i,j}\cdot\left\lparen 1-\mathcal{P}^{(n^{\prime})}_{j}(v_{i})\right\rparen+\tilde{\varphi}_{j}(v_{i,j})^{+}\cdot\mathcal{P}^{(n^{\prime})}_{j}(v_{i})\right\rparen\right] (Equation 6)
i=1nj=1m𝔼vi𝒟[π¯i,j(vi)Φj(n)(vi)].\displaystyle\leq\sum_{i=1}^{n}\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v_{i}\sim\mathcal{D}}\left[\overline{\pi}_{i,j}(v_{i})\cdot\Phi^{(n^{\prime})}_{j}(v_{i})\right]. (Equation 7)

Recall that the function π¯(v)\overline{\pi}(v) is just the expected value (over the randomness in viv_{-i}) of πi(vi,vi)\pi_{i}(v_{i},v_{-i}). Using this and the fact that i=1nπi,j(v)1\sum_{i=1}^{n}\pi_{i,j}(v)\leq 1 (from Equation 1), we have that:

𝖱𝖾𝗏(n)\displaystyle\mathsf{Rev}(n) i=1nj=1mvi𝒱f(vi)(vi𝒱n1f(vi)πi,j(vi,vi))Φj(n)(vi)\displaystyle\leq\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{v_{i}\in\mathcal{V}}f(v_{i})\cdot\left\lparen\sum_{v_{-i}\in\mathcal{V}^{n-1}}f^{*}(v_{-i})\cdot\pi_{i,j}(v_{i},v_{-i})\right\rparen\cdot\Phi^{(n^{\prime})}_{j}(v_{i})
i=1nj=1mv𝒱nf(v)πi,j(vi,vi)Φj(n)(vi)\displaystyle\leq\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{v\in\mathcal{V}^{n}}f^{*}(v)\cdot\pi_{i,j}(v_{i},v_{-i})\cdot\Phi^{(n^{\prime})}_{j}(v_{i})
j=1mv𝒱nf(v)maxi[n]{Φj(n)(vi)}\displaystyle\leq\sum_{j=1}^{m}\sum_{v\in\mathcal{V}^{n}}f^{*}(v)\cdot\max_{i\in[n]}\left\{\Phi^{(n^{\prime})}_{j}(v_{i})\right\} (As i=1nπi,j(v)1\sum_{i=1}^{n}\pi_{i,j}(v)\leq 1 and Φj(n)(vi)0\Phi^{(n^{\prime})}_{j}(v_{i})\geq 0)
j=1m𝔼v𝒟n[maxi[n]{Φj(n)(vi)}]\displaystyle\leq\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n}}\left[\max_{i\in[n]}\left\{\Phi^{(n^{\prime})}_{j}(v_{i})\right\}\right]
=𝖨𝖴(n,n).\displaystyle=\mathsf{IU}(n,n^{\prime}). (Equation 8)

4.2 Proof of Section 4

We start by showing a technical lemma saying that if DD is a distribution over a finite set SS\subseteq\mathbb{R} and X=x1,,xkX=x_{1},\cdots,x_{k} is a kk-length vector of independent samples from DD, the maximum value xix_{i} is independent of the maximizer ii (with the “correct” tie-braking rule). The tie breaking rule we use is the randomized tie breaking rule 𝗍𝖻\mathsf{tb} satisfying, for all i[k]i\in[k], that:

Pr(𝗍𝖻(X)=i)={0, if iargmaxi{xi}1|argmaxi{xi}|, if iargmaxi{xi}\Pr\left\lparen\mathsf{tb}(X)=i\right\rparen=\begin{cases}0,&\text{~{}if~{}}i\notin\operatorname*{arg\,max}_{i^{\prime}}\left\{x_{i^{\prime}}\right\}\\ \frac{1}{\left\lvert\operatorname*{arg\,max}_{i^{\prime}}\left\{x_{i^{\prime}}\right\}\right\rvert},&\text{~{}if~{}}i\in\operatorname*{arg\,max}_{i^{\prime}}\left\{x_{i^{\prime}}\right\}\end{cases} (9)

It holds that:

Lemma \thelemma.

Let k>0k>0, SS\subseteq\mathbb{R} be a finite set, and DD be a distribution over SS. For all sSs\in S and i[k]i\in[k], we have that

PrXDk(maxixi=s𝗍𝖻(X)=i)=PrXDk(maxixi=s).\Pr_{X\sim D^{k}}\left\lparen\max_{i^{\prime}}x_{i^{\prime}}=s\mid\mathsf{tb}(X)=i\right\rparen=\Pr_{X\sim D^{k}}\left\lparen\max_{i^{\prime}}x_{i^{\prime}}=s\right\rparen.
Proof.

We omit the subscript XDkX\sim D^{k} to keep the notation concise. Observe that we have Pr(𝗍𝖻(X)=i)=1k\Pr\left\lparen\mathsf{tb}(X)=i\right\rparen=\frac{1}{k} by symmetry and also that:

Pr(maxixi=s)=(PrxD(xs))k(PrxD(x<s))k.\Pr\left\lparen\max_{i^{\prime}}x_{i^{\prime}}=s\right\rparen=\left\lparen\Pr_{x\sim D}\left\lparen x\leq s\right\rparen\right\rparen^{k}-\left\lparen\Pr_{x\sim D}\left\lparen x<s\right\rparen\right\rparen^{k}.

This means that it is sufficient to show that:

Pr(maxixi=s𝗍𝖻(X)=i)=1k((PrxD(xs))k(PrxD(x<s))k).\Pr\left\lparen\max_{i^{\prime}}x_{i^{\prime}}=s\wedge\mathsf{tb}(X)=i\right\rparen=\frac{1}{k}\cdot\left\lparen\left\lparen\Pr_{x\sim D}\left\lparen x\leq s\right\rparen\right\rparen^{k}-\left\lparen\Pr_{x\sim D}\left\lparen x<s\right\rparen\right\rparen^{k}\right\rparen.

We show this by considering all possible values of argmaxixi\operatorname*{arg\,max}_{i^{\prime}}x_{i^{\prime}}. We have:

Pr(maxixi=s𝗍𝖻(X)=i)\displaystyle\Pr\left\lparen\max_{i^{\prime}}x_{i^{\prime}}=s\wedge\mathsf{tb}(X)=i\right\rparen =SiPr(maxixi=s𝗍𝖻(X)=iargmaxixi=S)\displaystyle=\sum_{S\ni i}\Pr\left\lparen\max_{i^{\prime}}x_{i^{\prime}}=s\wedge\mathsf{tb}(X)=i\wedge\operatorname*{arg\,max}_{i^{\prime}}x_{i^{\prime}}=S\right\rparen
=Si1|S|Pr(maxixi=sargmaxixi=S).\displaystyle=\sum_{S\ni i}\frac{1}{\left\lvert S\right\rvert}\cdot\Pr\left\lparen\max_{i^{\prime}}x_{i^{\prime}}=s\wedge\operatorname*{arg\,max}_{i^{\prime}}x_{i^{\prime}}=S\right\rparen. (Equation 9)

We can calculate the term on the right:

Pr(maxixi=s𝗍𝖻(X)=i)\displaystyle\Pr\left\lparen\max_{i^{\prime}}x_{i^{\prime}}=s\wedge\mathsf{tb}(X)=i\right\rparen =Si1|S|(PrxD(x=s))|S|(PrxD(x<s))k|S|\displaystyle=\sum_{S\ni i}\frac{1}{\left\lvert S\right\rvert}\cdot\left\lparen\Pr_{x\sim D}\left\lparen x=s\right\rparen\right\rparen^{\left\lvert S\right\rvert}\cdot\left\lparen\Pr_{x\sim D}\left\lparen x<s\right\rparen\right\rparen^{k-\left\lvert S\right\rvert}
=k=1k1k(k1k1)(PrxD(x=s))k(PrxD(x<s))kk\displaystyle=\sum_{k^{\prime}=1}^{k}\frac{1}{k^{\prime}}\cdot\binom{k-1}{k^{\prime}-1}\cdot\left\lparen\Pr_{x\sim D}\left\lparen x=s\right\rparen\right\rparen^{k^{\prime}}\cdot\left\lparen\Pr_{x\sim D}\left\lparen x<s\right\rparen\right\rparen^{k-k^{\prime}}
=k=1k1k(kk)(PrxD(x=s))k(PrxD(x<s))kk.\displaystyle=\sum_{k^{\prime}=1}^{k}\frac{1}{k}\cdot\binom{k}{k^{\prime}}\cdot\left\lparen\Pr_{x\sim D}\left\lparen x=s\right\rparen\right\rparen^{k^{\prime}}\cdot\left\lparen\Pr_{x\sim D}\left\lparen x<s\right\rparen\right\rparen^{k-k^{\prime}}.

The Binomial theorem (a+b)n=i=0n(ni)aibni(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i}a^{i}b^{n-i} then gives:

Pr(maxixi=s𝗍𝖻(X)=i)=1k((PrxD(xs))k(PrxD(x<s))k).\Pr\left\lparen\max_{i^{\prime}}x_{i^{\prime}}=s\wedge\mathsf{tb}(X)=i\right\rparen=\frac{1}{k}\cdot\left\lparen\left\lparen\Pr_{x\sim D}\left\lparen x\leq s\right\rparen\right\rparen^{k}-\left\lparen\Pr_{x\sim D}\left\lparen x<s\right\rparen\right\rparen^{k}\right\rparen.

We now prove Section 4.

Proof of Section 4.

Recall from the definition of 𝖨𝖴(n,n)\mathsf{IU}(n,n^{\prime}) in Equation 8 that 𝖨𝖴(n,n)=j=1m𝔼v𝒟n[maxi[n]{Φj(n)(vi)}]\mathsf{IU}(n,n^{\prime})=\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n}}\left[\max_{i\in[n]}\left\{\Phi^{(n^{\prime})}_{j}(v_{i})\right\}\right]. As we can always sample values for more bidders and not use them, we also have:

𝖨𝖴(n,n)=j=1m𝔼v𝒟n[maxi[n]{Φj(n)(vi)}].\mathsf{IU}(n,n^{\prime})=\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n]}\left\{\Phi^{(n^{\prime})}_{j}(v_{i})\right\}\right].

For v𝒟nv\in\mathcal{D}^{n^{\prime}}, we use Φj(n)(v)\Phi^{(n^{\prime})}_{j}(v) to denote the vector (Φj(n)(v1),,Φj(n)(vn))\left\lparen\Phi^{(n^{\prime})}_{j}(v_{1}),\cdots,\Phi^{(n^{\prime})}_{j}(v_{n^{\prime}})\right\rparen. Over the random space defined by the distribution vDnv\sim D^{n^{\prime}}, define the event :=𝗍𝖻(Φj(n)(v))[n]\mathcal{E}:=\mathsf{tb}\left\lparen\Phi^{(n^{\prime})}_{j}(v)\right\rparen\in[n]. We get:

𝖨𝖴(n,n)\displaystyle\mathsf{IU}(n,n^{\prime}) =j=1mPrv𝒟n()𝔼v𝒟n[maxi[n]{Φj(n)(vi)}]+Prv𝒟n(¯)𝔼v𝒟n[maxi[n]{Φj(n)(vi)}¯]\displaystyle=\sum_{j=1}^{m}\Pr_{v\sim\mathcal{D}^{n^{\prime}}}\left\lparen\mathcal{E}\right\rparen\cdot\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n]}\left\{\Phi^{(n^{\prime})}_{j}(v_{i})\right\}\mid\mathcal{E}\right]+\Pr_{v\sim\mathcal{D}^{n^{\prime}}}\left\lparen\overline{\mathcal{E}}\right\rparen\cdot\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n]}\left\{\Phi^{(n^{\prime})}_{j}(v_{i})\right\}\mid\overline{\mathcal{E}}\right]
=j=1mϵ20𝔼v𝒟n[maxi[n]{Φj(n)(vi)}]+Prv𝒟n(¯)𝔼v𝒟n[maxi[n]{Φj(n)(vi)}¯].\displaystyle=\sum_{j=1}^{m}\frac{\epsilon}{20}\cdot\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n]}\left\{\Phi^{(n^{\prime})}_{j}(v_{i})\right\}\mid\mathcal{E}\right]+\Pr_{v\sim\mathcal{D}^{n^{\prime}}}\left\lparen\overline{\mathcal{E}}\right\rparen\cdot\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n]}\left\{\Phi^{(n^{\prime})}_{j}(v_{i})\right\}\mid\overline{\mathcal{E}}\right]. (As Prv𝒟n()=nn=ϵ20\Pr_{v\sim\mathcal{D}^{n^{\prime}}}\left\lparen\mathcal{E}\right\rparen=\frac{n}{n^{\prime}}=\frac{\epsilon}{20})

Next, note that the maximum over the first nn coordinates is at most the maximum over all the coordinates. Moreover, conditioned on ¯\overline{\mathcal{E}}, it is at most the second highest value over all the coordinates. Using 2nd()\operatorname*{2nd}(\cdot) denote the second largest value in a set, we get that:

𝖨𝖴(n,n)j=1mϵ20𝔼v𝒟n[maxi[n]{Φj(n)(vi)}]+Prv𝒟n(¯)𝔼v𝒟n[2ndi[n]{Φj(n)(vi)}¯].\mathsf{IU}(n,n^{\prime})\leq\sum_{j=1}^{m}\frac{\epsilon}{20}\cdot\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{\Phi^{(n^{\prime})}_{j}(v_{i})\right\}\mid\mathcal{E}\right]+\Pr_{v\sim\mathcal{D}^{n^{\prime}}}\left\lparen\overline{\mathcal{E}}\right\rparen\cdot\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\operatorname*{2nd}_{i\in[n^{\prime}]}\left\{\Phi^{(n^{\prime})}_{j}(v_{i})\right\}\mid\overline{\mathcal{E}}\right].

From Subsubsection 3.2.3, we have φ~j(vi,j)vi,j\tilde{\varphi}_{j}(v_{i,j})\leq v_{i,j}, we also have Φj(n)(vi)vi,j\Phi^{(n^{\prime})}_{j}(v_{i})\leq v_{i,j} for any nn^{\prime}. This means that the second highest value of {Φj(n)(vi)}\left\{\Phi^{(n^{\prime})}_{j}(v_{i})\right\} is at most the second highest value of {vi,j}\left\{v_{i,j}\right\}. We get:

𝖨𝖴(n,n)j=1mϵ20𝔼v𝒟n[maxi[n]{Φj(n)(vi)}]+Prv𝒟n(¯)𝔼v𝒟n[2ndi[n]{vi,j}¯].\mathsf{IU}(n,n^{\prime})\leq\sum_{j=1}^{m}\frac{\epsilon}{20}\cdot\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{\Phi^{(n^{\prime})}_{j}(v_{i})\right\}\mid\mathcal{E}\right]+\Pr_{v\sim\mathcal{D}^{n^{\prime}}}\left\lparen\overline{\mathcal{E}}\right\rparen\cdot\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\operatorname*{2nd}_{i\in[n^{\prime}]}\left\{v_{i,j}\right\}\mid\overline{\mathcal{E}}\right].

To continue, note that all the second highest value of {vi,j}\left\{v_{i,j}\right\} is non-negative. We get:

𝖨𝖴(n,n)j=1mϵ20𝔼v𝒟n[maxi[n]{Φj(n)(vi)}]+𝔼v𝒟n[2ndi[n]{vi,j}].\mathsf{IU}(n,n^{\prime})\leq\sum_{j=1}^{m}\frac{\epsilon}{20}\cdot\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{\Phi^{(n^{\prime})}_{j}(v_{i})\right\}\mid\mathcal{E}\right]+\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\operatorname*{2nd}_{i\in[n^{\prime}]}\left\{v_{i,j}\right\}\right].

By definition, the second term is simply 𝖵𝖢𝖦(n)\mathsf{VCG}(n^{\prime}). We remove the conditioning from the first term using Subsection 4.2. We get:

𝖨𝖴(n,n)j=1mϵ20𝔼v𝒟n[maxi[n]{Φj(n)(vi)}]+𝖵𝖢𝖦(n).\mathsf{IU}(n,n^{\prime})\leq\sum_{j=1}^{m}\frac{\epsilon}{20}\cdot\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{\Phi^{(n^{\prime})}_{j}(v_{i})\right\}\right]+\mathsf{VCG}(n^{\prime}).

From Equation 8, we conclude:

𝖨𝖴(n,n)ϵ20𝖨𝖴(n,n)+𝖵𝖢𝖦(n).\mathsf{IU}(n,n^{\prime})\leq\frac{\epsilon}{20}\cdot\mathsf{IU}(n^{\prime},n^{\prime})+\mathsf{VCG}(n^{\prime}).

Under the assumption in Section 4, we have that (1ϵ)𝖱𝖾𝗏(n)>𝖵𝖢𝖦(n)\left\lparen 1-\epsilon\right\rparen\cdot\mathsf{Rev}(n)>\mathsf{VCG}(n^{\prime}). From Section 4, we have 𝖱𝖾𝗏(n)𝖨𝖴(n,n)\mathsf{Rev}(n)\leq\mathsf{IU}(n,n^{\prime}). Plugging in, we get:

𝖨𝖴(n,n)ϵ20𝖨𝖴(n,n)+(1ϵ)𝖨𝖴(n,n).\mathsf{IU}(n,n^{\prime})\leq\frac{\epsilon}{20}\cdot\mathsf{IU}(n^{\prime},n^{\prime})+\left\lparen 1-\epsilon\right\rparen\cdot\mathsf{IU}(n,n^{\prime}).

Rearranging gives the lemma.

5 Proofs of Section 4 and Section 4

We show Section 4 and Section 4 following the framework of [CaiDW16]. The first step is common to both the lemmas and shows that 𝖨𝖴(n′′,n)\mathsf{IU}(n^{\prime\prime},n^{\prime}) is at most 4𝖲𝖱𝖾𝗏(n)4\cdot\mathsf{SRev}(n^{\prime}) plus an additional term corresponding to the term Core in [CaiDW16]. This is captured in Subsection 5.1. The next step bounds Core in two different ways to show the two lemmas. These can be found in Subsubsection 5.2.1 and Subsubsection 5.2.2.

5.1 Step 11 – Decomposing 𝖨𝖴()\mathsf{IU}(\cdot)

Lemma \thelemma.

For all n′′nn^{\prime\prime}\leq n^{\prime}, we have:

𝖨𝖴(n′′,n)4𝖲𝖱𝖾𝗏(n)+Core,\mathsf{IU}(n^{\prime\prime},n^{\prime})\leq 4\cdot\mathsf{SRev}(n^{\prime})+{\textsc{Core}},

where we define Core as:

r𝖱𝗈𝗇,j(x)\displaystyle r^{*}_{\mathsf{Ron},j}(x) =maxy>xyPry𝒟j(yy)\displaystyle=\max_{y>x}y\cdot\Pr_{y^{\prime}\sim\mathcal{D}_{j}}\left\lparen y^{\prime}\geq y\right\rparen \displaystyle\forall j[m].\displaystyle j\in[m].
r𝖱𝗈𝗇(i)(wi)\displaystyle r^{(i)}_{\mathsf{Ron}}(w_{-i}) =j=1mr𝖱𝗈𝗇,j(max(wi)|j)\displaystyle=\sum_{j=1}^{m}r^{*}_{\mathsf{Ron},j}(\max(w_{-i})|_{j}) \displaystyle\forall i[n],wi𝒱n1.\displaystyle i\in[n^{\prime}],w_{-i}\in\mathcal{V}^{n^{\prime}-1}.
𝒯i,j(wi)\displaystyle\mathcal{T}_{i,j}(w_{-i}) =r𝖱𝗈𝗇(i)(wi)+max(wi)|j\displaystyle=r^{(i)}_{\mathsf{Ron}}(w_{-i})+\max(w_{-i})|_{j} \displaystyle\forall j[m],i[n],wi𝒱n1.\displaystyle j\in[m],i\in[n^{\prime}],w_{-i}\in\mathcal{V}^{n^{\prime}-1}.
Core=j=1mi=1nwimax(wi)|jvi,j𝒯i,j(wi)f(wi)fj(vi,j)(vi,jmax(wi)|j).{\textsc{Core}}=\sum_{j=1}^{m}\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}\sum_{\max(w_{-i})|_{j}\leq v_{i,j}\leq\mathcal{T}_{i,j}(w_{-i})}f^{*}(w_{-i})f_{j}(v_{i,j})\cdot\left\lparen v_{i,j}-\max(w_{-i})|_{j}\right\rparen.
Proof.

Fix n′′nn^{\prime\prime}\leq n^{\prime}. We first get rid of the parameter n′′n^{\prime\prime} by showing that n′′=nn^{\prime\prime}=n^{\prime} is the hardest case for the lemma. We have:

𝖨𝖴(n′′,n)\displaystyle\mathsf{IU}(n^{\prime\prime},n^{\prime}) =j=1m𝔼v𝒟n′′[maxi[n′′]{vi,j(1𝒫j(vi))+φ~j(vi,j)+𝒫j(vi)}]\displaystyle=\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime\prime}}}\left[\max_{i\in[n^{\prime\prime}]}\left\{v_{i,j}\cdot\left\lparen 1-\mathcal{P}_{j}(v_{i})\right\rparen+\tilde{\varphi}_{j}(v_{i,j})^{+}\cdot\mathcal{P}_{j}(v_{i})\right\}\right]
j=1m𝔼v𝒟n[maxi[n]{vi,j(1𝒫j(vi))+φ~j(vi,j)+𝒫j(vi)}]\displaystyle\leq\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{v_{i,j}\cdot\left\lparen 1-\mathcal{P}_{j}(v_{i})\right\rparen+\tilde{\varphi}_{j}(v_{i,j})^{+}\cdot\mathcal{P}_{j}(v_{i})\right\}\right]
=𝖨𝖴(n).\displaystyle=\mathsf{IU}(n^{\prime}).

Henceforth, we focus on upper bounding 𝖨𝖴(n)\mathsf{IU}(n^{\prime}). Note that the term 1𝒫j(vi)1-\mathcal{P}_{j}(v_{i}) in 𝖨𝖴(n)\mathsf{IU}(n^{\prime}) corresponds to the event that vij(wi)v_{i}\notin\mathcal{R}_{j}(w_{-i}). By our choice of the regions j()\mathcal{R}_{j}(\cdot), whenever this happens, either viv_{i} is less than max(wi)|j\max(w_{-i})|_{j} or there is a jjj^{\prime}\neq j such that the utility from jj^{\prime} is at least as much as that from jj. To capture these cases we define the sets111111For readers familiar with [CaiDW16], our naming of these events corresponds to that used in [CaiDW16], e.g., NF corresponds to Non-Favorite.:

EjUnd(vi)=wi𝒱n1vi,j<max(wi)|jEjSrp(vi)=wi𝒱n1jj:vi,jmax(wi)|jvi,jmax(wi)|jEjNF(vi)=EjSrp(vi)EjUnd(vi).\begin{split}E^{{\textsc{Und}}}_{j}(v_{i})&=w_{-i}\in\mathcal{V}^{n^{\prime}-1}\mid v_{i,j}<\max(w_{-i})|_{j}\\ E^{{\textsc{Srp}}}_{j}(v_{i})&=w_{-i}\in\mathcal{V}^{n^{\prime}-1}\mid\exists j^{\prime}\neq j:v_{i,j}-\max(w_{-i})|_{j}\leq v_{i,j^{\prime}}-\max(w_{-i})|_{j^{\prime}}\\ E^{{\textsc{NF}}}_{j}(v_{i})&=E^{{\textsc{Srp}}}_{j}(v_{i})\setminus E^{{\textsc{Und}}}_{j}(v_{i}).\end{split} (10)

As mentioned before, when vij(wi)v_{i}\notin\mathcal{R}_{j}(w_{-i}), we either have wiEjUnd(vi)w_{-i}\in E^{{\textsc{Und}}}_{j}(v_{i}) or wiEjNF(vi)w_{-i}\in E^{{\textsc{NF}}}_{j}(v_{i}). Thus, we have the following inequality.

1𝒫j(vi)Prwi𝒟n1(wiEjUnd(vi))+Prwi𝒟n1(wiEjNF(vi)).1-\mathcal{P}_{j}(v_{i})\leq\Pr_{w_{-i}\sim\mathcal{D}^{n^{\prime}-1}}\left\lparen w_{-i}\in E^{{\textsc{Und}}}_{j}(v_{i})\right\rparen+\Pr_{w_{-i}\sim\mathcal{D}^{n^{\prime}-1}}\left\lparen w_{-i}\in E^{{\textsc{NF}}}_{j}(v_{i})\right\rparen. (11)

Using Equation 11, we decompose 𝖨𝖴(n)\mathsf{IU}(n^{\prime}) as follows:

𝖨𝖴(n)\displaystyle\mathsf{IU}(n^{\prime}) =j=1m𝔼v𝒟n[maxi[n]{vi,j(1𝒫j(vi))+φ~j(vi,j)+𝒫j(vi)}]\displaystyle=\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{v_{i,j}\cdot\left\lparen 1-\mathcal{P}_{j}(v_{i})\right\rparen+\tilde{\varphi}_{j}(v_{i,j})^{+}\cdot\mathcal{P}_{j}(v_{i})\right\}\right]
j=1m𝔼v𝒟n[maxi[n]{vi,j(1𝒫j(vi))}]+j=1m𝔼v𝒟n[maxi[n]{φ~j(vi,j)+𝒫j(vi)}]\displaystyle\leq\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{v_{i,j}\cdot\left\lparen 1-\mathcal{P}_{j}(v_{i})\right\rparen\right\}\right]+\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{\tilde{\varphi}_{j}(v_{i,j})^{+}\cdot\mathcal{P}_{j}(v_{i})\right\}\right]
j=1m𝔼v𝒟n[maxi[n]{φ~j(vi,j)+𝒫j(vi)}]\displaystyle\leq\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{\tilde{\varphi}_{j}(v_{i,j})^{+}\cdot\mathcal{P}_{j}(v_{i})\right\}\right] (Single)
+j=1m𝔼v𝒟n[maxi[n]{vi,jPrwi(wiEjUnd(vi))}]\displaystyle\hskip 14.22636pt+\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{v_{i,j}\cdot\Pr_{w_{-i}}\left\lparen w_{-i}\in E^{{\textsc{Und}}}_{j}(v_{i})\right\rparen\right\}\right] (Under)
+j=1m𝔼v𝒟n[maxi[n]{vi,jPrwi(wiEjNF(vi))}].\displaystyle\hskip 14.22636pt+\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{v_{i,j}\cdot\Pr_{w_{-i}}\left\lparen w_{-i}\in E^{{\textsc{NF}}}_{j}(v_{i})\right\rparen\right\}\right]. (Non-Favorite)

We have now split 𝖨𝖴(n)\mathsf{IU}(n^{\prime}) into three terms, Single, Under, and Non-Favorite. We will later show that both Single and Under are at most 𝖲𝖱𝖾𝗏(n)\mathsf{SRev}(n^{\prime}). As far as the term Non-Favorite goes, we need to decompose it further. We have:

Non-Favorite =j=1m𝔼v𝒟n[maxi[n]{wif(wi)vi,j𝟙(wiEjNF(vi))}]\displaystyle=\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{\sum_{w_{-i}}f^{*}(w_{-i})\cdot v_{i,j}\cdot\mathds{1}\left\lparen w_{-i}\in E^{{\textsc{NF}}}_{j}(v_{i})\right\rparen\right\}\right]
j=1m𝔼v𝒟n[maxi[n]{wif(wi)(vi,jmax(wi)|j)𝟙(wiEjNF(vi))}]\displaystyle\leq\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{\sum_{w_{-i}}f^{*}(w_{-i})\cdot\left\lparen v_{i,j}-\max(w_{-i})|_{j}\right\rparen\cdot\mathds{1}\left\lparen w_{-i}\in E^{{\textsc{NF}}}_{j}(v_{i})\right\rparen\right\}\right]
+j=1m𝔼v𝒟n[maxi[n]{wif(wi)max(wi)|j𝟙(wiEjNF(vi))}].\displaystyle\hskip 14.22636pt+\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{\sum_{w_{-i}}f^{*}(w_{-i})\cdot\max(w_{-i})|_{j}\cdot\mathds{1}\left\lparen w_{-i}\in E^{{\textsc{NF}}}_{j}(v_{i})\right\rparen\right\}\right].

Plugging into the previous decomposition and using the fact that EjNF(vi)E^{{\textsc{NF}}}_{j}(v_{i}) and EjUnd(vi)E^{{\textsc{Und}}}_{j}(v_{i}) are disjoint by Equation 10, we get that:

𝖨𝖴(n)\displaystyle\mathsf{IU}(n^{\prime}) Single+Under\displaystyle\leq{\textsc{Single}}+{\textsc{Under}}
+j=1m𝔼v𝒟n[maxi[n]{wif(wi)max(wi)|j𝟙(wiEjUnd(vi))}]\displaystyle\hskip 14.22636pt+\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{\sum_{w_{-i}}f^{*}(w_{-i})\cdot\max(w_{-i})|_{j}\cdot\mathds{1}\left\lparen w_{-i}\notin E^{{\textsc{Und}}}_{j}(v_{i})\right\rparen\right\}\right] (Over)
+j=1m𝔼v𝒟n[i=1nwif(wi)(vi,jmax(wi)|j)𝟙(wiEjNF(vi))].\displaystyle\hskip 14.22636pt+\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}f^{*}(w_{-i})\cdot\left\lparen v_{i,j}-\max(w_{-i})|_{j}\right\rparen\cdot\mathds{1}\left\lparen w_{-i}\in E^{{\textsc{NF}}}_{j}(v_{i})\right\rparen\right]. (Surplus)

It can now be shown that Over is at most 𝖲𝖱𝖾𝗏(n)\mathsf{SRev}(n^{\prime}). However, Surplus needs to be decomposed even more before it is analyzable. For this, we first use linearity of expectation to take the expectation over vv inside. As the summand corresponding to ii only depends on viv_{i}, we get:

Surplus=j=1mi=1nwi𝔼vi[f(wi)(vi,jmax(wi)|j)𝟙(wiEjNF(vi))].{\textsc{Surplus}}=\sum_{j=1}^{m}\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}\mathop{{}\mathbb{E}}_{v_{i}}\left[f^{*}(w_{-i})\cdot\left\lparen v_{i,j}-\max(w_{-i})|_{j}\right\rparen\cdot\mathds{1}\left\lparen w_{-i}\in E^{{\textsc{NF}}}_{j}(v_{i})\right\rparen\right].

Writing the expectation is a sum and noting that wiEjNF(vi)w_{-i}\in E^{{\textsc{NF}}}_{j}(v_{i}) only happens when vi,jmax(wi)|jv_{i,j}\geq\max(w_{-i})|_{j} and wiEjSrp(vi)w_{-i}\in E^{{\textsc{Srp}}}_{j}(v_{i}) by Equation 10, we get that:

Surplusj=1mi=1nwivi,jmax(wi)|jf(wi)fj(vi,j)(vi,jmax(wi)|j)Prvi,j(wiEjSrp(vi)).{\textsc{Surplus}}\leq\sum_{j=1}^{m}\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}\sum_{v_{i,j}\geq\max(w_{-i})|_{j}}f^{*}(w_{-i})f_{j}(v_{i,j})\cdot\left\lparen v_{i,j}-\max(w_{-i})|_{j}\right\rparen\cdot\Pr_{v_{i,-j}}\left\lparen w_{-i}\in E^{{\textsc{Srp}}}_{j}(v_{i})\right\rparen.

To continue, we define, for all j[m]j\in[m], the function r𝖱𝗈𝗇,j(x)=maxy>xyPry𝒟j(yy)r^{*}_{\mathsf{Ron},j}(x)=\max_{y>x}y\cdot\Pr_{y^{\prime}\sim\mathcal{D}_{j}}\left\lparen y^{\prime}\geq y\right\rparen. This definition is identical to that in Appendix A and is closely connected to the payment of the highest bidder in Ronen’s auction for item jj when the second highest bid is xx [Ronen01]. We also define, for all i,wii,w_{-i}, the quantity r𝖱𝗈𝗇(i)(wi)=j=1mr𝖱𝗈𝗇,j(max(wi)|j)r^{(i)}_{\mathsf{Ron}}(w_{-i})=\sum_{j=1}^{m}r^{*}_{\mathsf{Ron},j}(\max(w_{-i})|_{j}) and, for all j[m]j\in[m], the quantity 𝒯i,j(wi)=r𝖱𝗈𝗇(i)(wi)+max(wi)|j\mathcal{T}_{i,j}(w_{-i})=r^{(i)}_{\mathsf{Ron}}(w_{-i})+\max(w_{-i})|_{j}. Using vi,jv_{i,-j} to denote the tuple (vi,1,,vi,j1,vi,j+1,vi,m)(v_{i,1},\cdots,v_{i,j-1},v_{i,j+1},\cdots v_{i,m}), we continue decomposing Surplus as:

Surplus j=1mi=1nwivi,j>𝒯i,j(wi)f(wi)fj(vi,j)(vi,jmax(wi)|j)Prvi,j(wiEjSrp(vi))\displaystyle\leq\sum_{j=1}^{m}\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}\sum_{v_{i,j}>\mathcal{T}_{i,j}(w_{-i})}f^{*}(w_{-i})f_{j}(v_{i,j})\cdot\left\lparen v_{i,j}-\max(w_{-i})|_{j}\right\rparen\cdot\Pr_{v_{i,-j}}\left\lparen w_{-i}\in E^{{\textsc{Srp}}}_{j}(v_{i})\right\rparen (Tail)
+j=1mi=1nwimax(wi)|jvi,j𝒯i,j(wi)f(wi)fj(vi,j)(vi,jmax(wi)|j).\displaystyle\hskip 14.22636pt+\sum_{j=1}^{m}\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}\sum_{\max(w_{-i})|_{j}\leq v_{i,j}\leq\mathcal{T}_{i,j}(w_{-i})}f^{*}(w_{-i})f_{j}(v_{i,j})\cdot\left\lparen v_{i,j}-\max(w_{-i})|_{j}\right\rparen. (Core)

We call the first term above Tail and the second term as Core. We shall show that Tail is at most 𝖲𝖱𝖾𝗏(n)\mathsf{SRev}(n^{\prime}) while Core can be bounded as a function of 𝖡𝖵𝖢𝖦(n)\mathsf{BVCG}(n^{\prime}) and 𝖲𝖱𝖾𝗏(n)\mathsf{SRev}(n^{\prime}). First, we state our final decomposition for 𝖨𝖴(n)\mathsf{IU}(n^{\prime}):

𝖨𝖴(n)Single+Under+Over+Tail+Core.\mathsf{IU}(n^{\prime})\leq{\textsc{Single}}+{\textsc{Under}}+{\textsc{Over}}+{\textsc{Tail}}+{\textsc{Core}}. (12)

To finish the proof of Subsection 5.1, we now show that each of the first four terms above is bounded by 𝖲𝖱𝖾𝗏(n)\mathsf{SRev}(n^{\prime}).

Bounding Single.

If the term Single did not have the factor 𝒫j(vi)\mathcal{P}_{j}(v_{i}) inside, it will just be maximum (over all auctions) value of (Myerson’s) ironed virtual welfare, and we could use Subsubsection 3.2.3 to finish the proof. As adding the factor 𝒫j(vi)\mathcal{P}_{j}(v_{i}) can only decrease the value of Single, we derive:

Singlej=1m𝔼v𝒟n[maxi[n]{φ~j(vi,j)+}]𝖲𝖱𝖾𝗏(n).{\textsc{Single}}\leq\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{\tilde{\varphi}_{j}(v_{i,j})^{+}\right\}\right]\leq\mathsf{SRev}(n^{\prime}).
Bounding Under.

Roughly speaking, the term vi,jv_{i,j} contributes to Under only if it is not the highest amongst nn^{\prime} bids. As the fact that vi,jv_{i,j} is not the highest amongst nn^{\prime} bids implies that it is also not the highest amongst n+1n^{\prime}+1 bids, we get:

Under j=1m𝔼v𝒟n[maxi[n]{wif(wi)vi,j𝟙(vi,j<max(wi)|j)}]\displaystyle\leq\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{\sum_{w_{-i}}f^{*}(w_{-i})\cdot v_{i,j}\cdot\mathds{1}\left\lparen v_{i,j}<\max(w_{-i})|_{j}\right\rparen\right\}\right] (Equation 10)
j=1m𝔼v𝒟n[maxi[n]{wf(w)vi,j𝟙(vi,jmax(w)|j)}].\displaystyle\leq\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{\sum_{w}f^{*}(w)\cdot v_{i,j}\cdot\mathds{1}\left\lparen v_{i,j}\leq\max(w)|_{j}\right\rparen\right\}\right].

Now, consider each term ww inside the max as the bids of nn^{\prime} bidders. In this interpretation (as formalized in Appendix A), the term inside the max is at most the revenue generated by a VCG auction where the reserve for item jj is vi,jv_{i,j}. Using Appendix A, we get:

Underj=1m𝔼v𝒟n[maxi[n]{𝖲𝖱𝖾𝗏j(n)}]=j=1m𝖲𝖱𝖾𝗏j(n)=𝖲𝖱𝖾𝗏(n).{\textsc{Under}}\leq\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{\mathsf{SRev}_{j}(n^{\prime})\right\}\right]=\sum_{j=1}^{m}\mathsf{SRev}_{j}(n^{\prime})=\mathsf{SRev}(n^{\prime}).
Bounding Over.

We first manipulate Over so that wiw_{-i} can be moved outside the max. Using Equation 10, we have:

Over j=1m𝔼v𝒟n[maxi[n]{wf(w)max(wi)|j𝟙(vi,jmax(wi)|j)}]\displaystyle\leq\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{\sum_{w}f^{*}(w)\cdot\max(w_{-i})|_{j}\cdot\mathds{1}\left\lparen v_{i,j}\geq\max(w_{-i})|_{j}\right\rparen\right\}\right]
wf(w)j=1m𝔼v𝒟n[maxi[n]{max(wi)|j𝟙(vi,jmax(wi)|j)}].\displaystyle\leq\sum_{w}f^{*}(w)\cdot\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v\sim\mathcal{D}^{n^{\prime}}}\left[\max_{i\in[n^{\prime}]}\left\{\max(w_{-i})|_{j}\cdot\mathds{1}\left\lparen v_{i,j}\geq\max(w_{-i})|_{j}\right\rparen\right\}\right].

We now analyze the term corresponding to each ww separately. For each ww, consider a sequential posted price auction that sells each item separately. When selling item jj, the auction visits the bidders in non-increasing order of max(wi)|j\max(w_{-i})|_{j} and offers them the item at price max(wi)|j\max(w_{-i})|_{j}. The revenue generated by this auction is at least term corresponding to ww above. Appendix A formalizes this and gives:

Overwf(w)𝖲𝖱𝖾𝗏(n)=𝖲𝖱𝖾𝗏(n).{\textsc{Over}}\leq\sum_{w}f^{*}(w)\cdot\mathsf{SRev}(n^{\prime})=\mathsf{SRev}(n^{\prime}).
Bounding Tail.

At a high level, the term Tail is large only when bidder ii gets high utility from item jj but there exists an item jjj^{\prime}\neq j that gives even higher utility. This should be unlikely. More formally, by Equation 10 and a union bound, we have:

Prvi,j(wiEjSrp(vi))jjPrvi,j(vi,jmax(wi)|jvi,jmax(wi)|j).\Pr_{v_{i,-j}}\left\lparen w_{-i}\in E^{{\textsc{Srp}}}_{j}(v_{i})\right\rparen\leq\sum_{j^{\prime}\neq j}\Pr_{v_{i,j^{\prime}}}\left\lparen v_{i,j}-\max(w_{-i})|_{j}\leq v_{i,j^{\prime}}-\max(w_{-i})|_{j^{\prime}}\right\rparen.

As Tail only sums over vi,j>𝒯i,j(wi)max(wi)|jv_{i,j}>\mathcal{T}_{i,j}(w_{-i})\geq\max(w_{-i})|_{j}, the definition of r𝖱𝗈𝗇,j(x)r^{*}_{\mathsf{Ron},j^{\prime}}(x) allows us to further bound this by:

Prvi,j(wiEjSrp(vi))jjr𝖱𝗈𝗇,j(max(wi)|j)vi,jmax(wi)|jr𝖱𝗈𝗇(i)(wi)vi,jmax(wi)|j.\begin{split}\Pr_{v_{i,-j}}\left\lparen w_{-i}\in E^{{\textsc{Srp}}}_{j}(v_{i})\right\rparen&\leq\sum_{j^{\prime}\neq j}\frac{r^{*}_{\mathsf{Ron},j^{\prime}}(\max(w_{-i})|_{j^{\prime}})}{v_{i,j}-\max(w_{-i})|_{j}}\\ &\leq\frac{r^{(i)}_{\mathsf{Ron}}(w_{-i})}{v_{i,j}-\max(w_{-i})|_{j}}.\end{split} (12)

Plugging Equation 12 into the term Tail, we have:

Tailj=1mi=1nwivi,j>𝒯i,j(wi)f(wi)fj(vi,j)r𝖱𝗈𝗇(i)(wi)j=1mi=1nwif(wi)r𝖱𝗈𝗇(i)(wi)Prvi,j(vi,j>𝒯i,j(wi)).\begin{split}{\textsc{Tail}}&\leq\sum_{j=1}^{m}\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}\sum_{v_{i,j}>\mathcal{T}_{i,j}(w_{-i})}f^{*}(w_{-i})f_{j}(v_{i,j})\cdot r^{(i)}_{\mathsf{Ron}}(w_{-i})\\ &\leq\sum_{j=1}^{m}\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}f^{*}(w_{-i})\cdot r^{(i)}_{\mathsf{Ron}}(w_{-i})\cdot\Pr_{v_{i,j}}\left\lparen v_{i,j}>\mathcal{T}_{i,j}(w_{-i})\right\rparen.\end{split} (13)

Now, we claim that r𝖱𝗈𝗇(i)(wi)Prvi,j(vi,j>𝒯i,j(wi))r𝖱𝗈𝗇,j(max(wi)|j)r^{(i)}_{\mathsf{Ron}}(w_{-i})\cdot\Pr_{v_{i,j}}\left\lparen v_{i,j}>\mathcal{T}_{i,j}(w_{-i})\right\rparen\leq r^{*}_{\mathsf{Ron},j}(\max(w_{-i})|_{j}). In the case Prvi,j(vi,j>𝒯i,j(wi))=0\Pr_{v_{i,j}}\left\lparen v_{i,j}>\mathcal{T}_{i,j}(w_{-i})\right\rparen=0, this holds trivially. Otherwise, there exists x𝒱jx\in\mathcal{V}_{j} be the smallest such that x>𝒯i,j(wi)=r𝖱𝗈𝗇(i)(wi)+max(wi)|jx>\mathcal{T}_{i,j}(w_{-i})=r^{(i)}_{\mathsf{Ron}}(w_{-i})+\max(w_{-i})|_{j} and we get:

r𝖱𝗈𝗇(i)(wi)Prvi,j(vi,j>𝒯i,j(wi))xPrvi,j(vi,jx)r𝖱𝗈𝗇,j(max(wi)|j).r^{(i)}_{\mathsf{Ron}}(w_{-i})\cdot\Pr_{v_{i,j}}\left\lparen v_{i,j}>\mathcal{T}_{i,j}(w_{-i})\right\rparen\leq x\cdot\Pr_{v_{i,j}}\left\lparen v_{i,j}\geq x\right\rparen\leq r^{*}_{\mathsf{Ron},j}(\max(w_{-i})|_{j}).

We continue Equation 13 as:

Tailj=1mi=1nwif(wi)r𝖱𝗈𝗇,j(max(wi)|j).{\textsc{Tail}}\leq\sum_{j=1}^{m}\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}f^{*}(w_{-i})\cdot r^{*}_{\mathsf{Ron},j}(\max(w_{-i})|_{j}).

The last expression is closely related to the revenue of a Ronen’s auction [Ronen01] that sells the items separately, and is captured in Appendix A. Using Appendix A, we conclude:

Tail𝖲𝖱𝖾𝗏(n).{\textsc{Tail}}\leq\mathsf{SRev}(n^{\prime}).

This concludes the proof of Subsection 5.1. ∎

5.2 Step 22 – Bounding Core

The next (and final) step in the proof of Section 4 and Section 4 is to upper bound the term Core that was left unanalyzed in Subsection 5.1. To this end, we first recall some definitions made in Subsection 5.1. Recall that, for all j[m]j\in[m], r𝖱𝗈𝗇,j(x)=maxy>xyPry𝒟j(yy)r^{*}_{\mathsf{Ron},j}(x)=\max_{y>x}y\cdot\Pr_{y^{\prime}\sim\mathcal{D}_{j}}\left\lparen y^{\prime}\geq y\right\rparen roughly (but not exactly) corresponds to the payment of the highest bidder in a Ronen’s auction when the second highest bid is xx. We also defined, for all i,wii,w_{-i} r𝖱𝗈𝗇(i)(wi)=j=1mr𝖱𝗈𝗇,j(max(wi)|j)r^{(i)}_{\mathsf{Ron}}(w_{-i})=\sum_{j=1}^{m}r^{*}_{\mathsf{Ron},j}(\max(w_{-i})|_{j}) and for all j[m]j\in[m], 𝒯i,j(wi)=r𝖱𝗈𝗇(i)(wi)+max(wi)|j\mathcal{T}_{i,j}(w_{-i})=r^{(i)}_{\mathsf{Ron}}(w_{-i})+\max(w_{-i})|_{j}. The term Core equals:

Core=j=1mi=1nwimax(wi)|jvi,j𝒯i,j(wi)f(wi)fj(vi,j)(vi,jmax(wi)|j).{\textsc{Core}}=\sum_{j=1}^{m}\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}\sum_{\max(w_{-i})|_{j}\leq v_{i,j}\leq\mathcal{T}_{i,j}(w_{-i})}f^{*}(w_{-i})f_{j}(v_{i,j})\cdot\left\lparen v_{i,j}-\max(w_{-i})|_{j}\right\rparen.

Observe that the term (vi,jmax(wi)|j)\left\lparen v_{i,j}-\max(w_{-i})|_{j}\right\rparen in the above equation is closely related to the utility that bidder with valuation viv_{i} gets from item jj in a VCG auction when the bids of the other bidders are wiw_{-i}. To capture this, we define the notation:

𝖴𝗍𝗂𝗅i,j,wi(vi,j)\displaystyle\mathsf{Util}_{i,j,w_{-i}}(v_{i,j}) =max(vi,jmax(wi)|j,0)\displaystyle=\max\left\lparen v_{i,j}-\max(w_{-i})|_{j},0\right\rparen
𝖴𝗍𝗂𝗅^i,j,wi(vi,j)\displaystyle\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v_{i,j}) =𝖴𝗍𝗂𝗅i,j,wi(vi,j)𝟙(𝖴𝗍𝗂𝗅i,j,wi(vi,j)r𝖱𝗈𝗇(i)(wi)).\displaystyle=\mathsf{Util}_{i,j,w_{-i}}(v_{i,j})\cdot\mathds{1}\left\lparen\mathsf{Util}_{i,j,w_{-i}}(v_{i,j})\leq r^{(i)}_{\mathsf{Ron}}(w_{-i})\right\rparen.

These will primarily be used in the following form:

𝖴i,wi(vi)=j=1m𝖴𝗍𝗂𝗅i,j,wi(vi,j)and𝖴^i,wi(vi)=j=1m𝖴𝗍𝗂𝗅^i,j,wi(vi,j).\mathsf{U}_{i,w_{-i}}(v_{i})=\sum_{j=1}^{m}\mathsf{Util}_{i,j,w_{-i}}(v_{i,j})\hskip 28.45274pt\text{and}\hskip 28.45274pt\hat{\mathsf{U}}_{i,w_{-i}}(v_{i})=\sum_{j=1}^{m}\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v_{i,j}). (14)

Using this notation, Core satsifies:

Core=i=1nwif(wi)𝔼vi[𝖴^i,wi(vi)].{\textsc{Core}}=\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}f^{*}(w_{-i})\cdot\mathop{{}\mathbb{E}}_{v_{i}}\left[\hat{\mathsf{U}}_{i,w_{-i}}(v_{i})\right]. (15)

Observe that, written this way, Core is closely related to the random variable 𝖴^i,wi(vi)\hat{\mathsf{U}}_{i,w_{-i}}(v_{i}). It is in this form that we upper bound Core in Subsubsection 5.2.1 and Subsubsection 5.2.2. But first, let us show using Subsection 3.1 that the variance of 𝖴^i,wi(vi)\hat{\mathsf{U}}_{i,w_{-i}}(v_{i}) is small.

Lemma \thelemma.

It holds for all i[n]i\in[n^{\prime}] and all wiw_{-i} that:

𝖵𝖺𝗋vi𝒟(𝖴^i,wi(vi))2(r𝖱𝗈𝗇(i)(wi))2.\mathsf{Var}_{v_{i}\sim\mathcal{D}}\left\lparen\hat{\mathsf{U}}_{i,w_{-i}}(v_{i})\right\rparen\leq 2\cdot\left\lparen r^{(i)}_{\mathsf{Ron}}(w_{-i})\right\rparen^{2}.
Proof.

Recall that 𝒟=×j=1m𝒟j\mathcal{D}=\bigtimes_{j=1}^{m}\mathcal{D}_{j} is such that all the items are independent. Using the fact that variance is linear when over independent random variables (Subsection 3.1, item 3) and Equation 14, we get:

𝖵𝖺𝗋vi𝒟(𝖴^i,wi(vi))=j=1m𝖵𝖺𝗋vi,j𝒟j(𝖴𝗍𝗂𝗅^i,j,wi(vi,j)).\mathsf{Var}_{v_{i}\sim\mathcal{D}}\left\lparen\hat{\mathsf{U}}_{i,w_{-i}}(v_{i})\right\rparen=\sum_{j=1}^{m}\mathsf{Var}_{v_{i,j}\sim\mathcal{D}_{j}}\left\lparen\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v_{i,j})\right\rparen. (16)

Our goal now is to bound each term using Subsection 3.1. To this end, note that 𝖴𝗍𝗂𝗅^i,j,wi(vi,j)\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v_{i,j}) is always at most r𝖱𝗈𝗇(i)(wi)r^{(i)}_{\mathsf{Ron}}(w_{-i}) and thus, we can conclude that maxvi,j𝖴𝗍𝗂𝗅^i,j,wi(vi,j)r𝖱𝗈𝗇(i)(wi)\max_{v_{i,j}}\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v_{i,j})\leq r^{(i)}_{\mathsf{Ron}}(w_{-i}). Moreover, we have for all vi,jv_{i,j} that

𝖴𝗍𝗂𝗅^i,j,wi(vi,j)Prvi,j𝒟j(𝖴𝗍𝗂𝗅^i,j,wi(vi,j)𝖴𝗍𝗂𝗅^i,j,wi(vi,j))𝖴𝗍𝗂𝗅^i,j,wi(vi,j)Prvi,j𝒟j(vi,jmax(wi)|j+𝖴𝗍𝗂𝗅^i,j,wi(vi,j)).\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v_{i,j})\cdot\Pr_{v^{\prime}_{i,j}\sim\mathcal{D}_{j}}\left\lparen\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v^{\prime}_{i,j})\geq\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v_{i,j})\right\rparen\\ \leq\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v_{i,j})\cdot\Pr_{v^{\prime}_{i,j}\sim\mathcal{D}_{j}}\left\lparen v^{\prime}_{i,j}\geq\max(w_{-i})|_{j}+\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v_{i,j})\right\rparen.

Now, if 𝖴𝗍𝗂𝗅^i,j,wi(vi,j)=0\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v_{i,j})=0, then, the right hand side is 0 and consequently, is at most r𝖱𝗈𝗇,j(max(wi)|j)r^{*}_{\mathsf{Ron},j}(\max(w_{-i})|_{j}). We show that the latter holds even when 𝖴𝗍𝗂𝗅^i,j,wi(vi,j)>0\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v_{i,j})>0. Indeed, we have:

𝖴𝗍𝗂𝗅^i,j,wi(vi,j)Prvi,j𝒟j(vi,jmax(wi)|j+𝖴𝗍𝗂𝗅^i,j,wi(vi,j))\displaystyle\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v_{i,j})\cdot\Pr_{v^{\prime}_{i,j}\sim\mathcal{D}_{j}}\left\lparen v^{\prime}_{i,j}\geq\max(w_{-i})|_{j}+\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v_{i,j})\right\rparen
(𝖴𝗍𝗂𝗅^i,j,wi(vi,j)+max(wi)|j)Prvi,j𝒟j(vi,jmax(wi)|j+𝖴𝗍𝗂𝗅^i,j,wi(vi,j))\displaystyle\hskip 14.22636pt\leq\left\lparen\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v_{i,j})+\max(w_{-i})|_{j}\right\rparen\cdot\Pr_{v^{\prime}_{i,j}\sim\mathcal{D}_{j}}\left\lparen v^{\prime}_{i,j}\geq\max(w_{-i})|_{j}+\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v_{i,j})\right\rparen
r𝖱𝗈𝗇,j(max(wi)|j).\displaystyle\hskip 14.22636pt\leq r^{*}_{\mathsf{Ron},j}(\max(w_{-i})|_{j}). (Definition of r𝖱𝗈𝗇,j()r^{*}_{\mathsf{Ron},j}(\cdot))

Thus, we can conclude that:

maxvi,j𝖴𝗍𝗂𝗅^i,j,wi(vi,j)Prvi,j𝒟j(𝖴𝗍𝗂𝗅^i,j,wi(vi,j)𝖴𝗍𝗂𝗅^i,j,wi(vi,j))r𝖱𝗈𝗇,j(max(wi)|j).\max_{v_{i,j}}\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v_{i,j})\cdot\Pr_{v^{\prime}_{i,j}\sim\mathcal{D}_{j}}\left\lparen\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v^{\prime}_{i,j})\geq\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v_{i,j})\right\rparen\leq r^{*}_{\mathsf{Ron},j}(\max(w_{-i})|_{j}).

Plugging this and maxvi,j𝖴𝗍𝗂𝗅^i,j,wi(vi,j)r𝖱𝗈𝗇(i)(wi)\max_{v_{i,j}}\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v_{i,j})\leq r^{(i)}_{\mathsf{Ron}}(w_{-i}) into Subsection 3.1, we get:

𝖵𝖺𝗋vi,j𝒟j(𝖴𝗍𝗂𝗅^i,j,wi(vi,j))2r𝖱𝗈𝗇,j(max(wi)|j)r𝖱𝗈𝗇(i)(wi).\mathsf{Var}_{v_{i,j}\sim\mathcal{D}_{j}}\left\lparen\widehat{\mathsf{Util}}_{i,j,w_{-i}}(v_{i,j})\right\rparen\leq 2\cdot r^{*}_{\mathsf{Ron},j}(\max(w_{-i})|_{j})\cdot r^{(i)}_{\mathsf{Ron}}(w_{-i}).

Plugging into Equation 16, we get:

𝖵𝖺𝗋vi𝒟(𝖴^i,wi(vi))2r𝖱𝗈𝗇(i)(wi)j=1mr𝖱𝗈𝗇,j(max(wi)|j)2(r𝖱𝗈𝗇(i)(wi))2.\mathsf{Var}_{v_{i}\sim\mathcal{D}}\left\lparen\hat{\mathsf{U}}_{i,w_{-i}}(v_{i})\right\rparen\leq 2\cdot r^{(i)}_{\mathsf{Ron}}(w_{-i})\cdot\sum_{j=1}^{m}r^{*}_{\mathsf{Ron},j}(\max(w_{-i})|_{j})\leq 2\cdot\left\lparen r^{(i)}_{\mathsf{Ron}}(w_{-i})\right\rparen^{2}.

5.2.1 Bounding Core for Section 4

In this section, we finish our proof of Section 4 by upper bounding the right hand side of Equation 15 by the revenue of a BVCG auction (and 𝖲𝖱𝖾𝗏(n)\mathsf{SRev}(n^{\prime})). Specifically, we shall consider a BVCG auction with nn^{\prime} bidders, where the fee charged for player ii, when the types of the other bidders are wiw_{-i} is:

𝖥𝖾𝖾i,wi=max(𝔼vi[𝖴^i,wi(vi)]2r𝖱𝗈𝗇(i)(wi),0).\mathsf{Fee}_{i,w_{-i}}=\max\left\lparen\mathop{{}\mathbb{E}}_{v_{i}}\left[\hat{\mathsf{U}}_{i,w_{-i}}(v_{i})\right]-2\cdot r^{(i)}_{\mathsf{Ron}}(w_{-i}),0\right\rparen.

The following lemma shows that most bidders will agree to pay this extra fee, and thus, expectation of the total fee is at most 2𝖡𝖵𝖢𝖦(n)2\cdot\mathsf{BVCG}(n^{\prime}).

Lemma \thelemma.

It holds that:

i=1nwif(wi)𝖥𝖾𝖾i,wi2𝖡𝖵𝖢𝖦(n).\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}f^{*}(w_{-i})\cdot\mathsf{Fee}_{i,w_{-i}}\leq 2\cdot\mathsf{BVCG}(n^{\prime}).
Proof.

Consider the BVCG auction defined by 𝖥𝖾𝖾i,wi\mathsf{Fee}_{i,w_{-i}}. That is, consider the auction where the auctioneer first asks all bidders i[n]i\in[n^{\prime}] for their bids wiw_{i} and runs a VCG auction based on these bids. If bidder i[n]i\in[n^{\prime}] is not allocated any items in the VCG auction, he departs without paying anything. Otherwise, he gets all the items allocated to him in the VCG auction if and only if he agrees to pay an amount equal to 𝖥𝖾𝖾i,wi\mathsf{Fee}_{i,w_{-i}} in addition to the prices charged by the VCG auction.

This auction is truthful as we ensure that 𝖥𝖾𝖾i,wi0\mathsf{Fee}_{i,w_{-i}}\geq 0. Moreover, if bidder ii does not pay at least 𝖥𝖾𝖾i,wi\mathsf{Fee}_{i,w_{-i}}, we must have that his utility from the VCG auction is (strictly) smaller that 𝖥𝖾𝖾i,wi\mathsf{Fee}_{i,w_{-i}}. Thus, we get the following lower bound on 𝖡𝖵𝖢𝖦(n)\mathsf{BVCG}(n^{\prime}).

𝖡𝖵𝖢𝖦(n)\displaystyle\mathsf{BVCG}(n^{\prime}) i=1nw𝒱nf(w)𝖥𝖾𝖾i,wi𝟙(𝖥𝖾𝖾i,wi𝖴i,wi(wi))\displaystyle\geq\sum_{i=1}^{n^{\prime}}\sum_{w\in\mathcal{V}^{n^{\prime}}}f^{*}(w)\cdot\mathsf{Fee}_{i,w_{-i}}\cdot\mathds{1}\left\lparen\mathsf{Fee}_{i,w_{-i}}\leq\mathsf{U}_{i,w_{-i}}(w_{i})\right\rparen
i=1nwif(wi)𝖥𝖾𝖾i,wiPrwi(𝖥𝖾𝖾i,wi𝖴i,wi(wi))\displaystyle\geq\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}f^{*}(w_{-i})\cdot\mathsf{Fee}_{i,w_{-i}}\cdot\Pr_{w_{i}}\left\lparen\mathsf{Fee}_{i,w_{-i}}\leq\mathsf{U}_{i,w_{-i}}(w_{i})\right\rparen
i=1nwif(wi)𝖥𝖾𝖾i,wiPrwi(𝖥𝖾𝖾i,wi𝖴^i,wi(wi)),\displaystyle\geq\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}f^{*}(w_{-i})\cdot\mathsf{Fee}_{i,w_{-i}}\cdot\Pr_{w_{i}}\left\lparen\mathsf{Fee}_{i,w_{-i}}\leq\hat{\mathsf{U}}_{i,w_{-i}}(w_{i})\right\rparen,

where the last step is because 𝖴\mathsf{U} upper bounds 𝖴^\hat{\mathsf{U}}. The next step is to lower bound the probability on the right hand side. We do this using Chebyshev’s inequality (Subsection 3.1, item 2) and use the variance bound in Subsection 5.2. We have:

Prwi(𝖴^i,wi(wi)<𝖥𝖾𝖾i,wi)12.\Pr_{w_{i}}\left\lparen\hat{\mathsf{U}}_{i,w_{-i}}(w_{i})<\mathsf{Fee}_{i,w_{-i}}\right\rparen\leq\frac{1}{2}.

Plugging in, we have:

𝖡𝖵𝖢𝖦(n)i=1nwif(wi)𝖥𝖾𝖾i,wi12.\mathsf{BVCG}(n^{\prime})\geq\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}f^{*}(w_{-i})\cdot\mathsf{Fee}_{i,w_{-i}}\cdot\frac{1}{2}.

and the lemma follows. ∎

We now present our proof of Section 4.

Proof of Section 4.

From Equation 15 and the definition of 𝖥𝖾𝖾i,wi\mathsf{Fee}_{i,w_{-i}}, we have:

Core i=1nwif(wi)(𝖥𝖾𝖾i,wi+2r𝖱𝗈𝗇(i)(wi))\displaystyle\leq\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}f^{*}(w_{-i})\cdot\left\lparen\mathsf{Fee}_{i,w_{-i}}+2\cdot r^{(i)}_{\mathsf{Ron}}(w_{-i})\right\rparen
i=1nwif(wi)𝖥𝖾𝖾i,wi+2i=1nwif(wi)r𝖱𝗈𝗇(i)(wi)\displaystyle\leq\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}f^{*}(w_{-i})\cdot\mathsf{Fee}_{i,w_{-i}}+2\cdot\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}f^{*}(w_{-i})\cdot r^{(i)}_{\mathsf{Ron}}(w_{-i})
i=1nwif(wi)𝖥𝖾𝖾i,wi+2j=1mi=1nwif(wi)r𝖱𝗈𝗇,j(max(wi)|j).\displaystyle\leq\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}f^{*}(w_{-i})\cdot\mathsf{Fee}_{i,w_{-i}}+2\cdot\sum_{j=1}^{m}\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}f^{*}(w_{-i})\cdot r^{*}_{\mathsf{Ron},j}(\max(w_{-i})|_{j}).

These two terms can be bounded by Subsubsection 5.2.1 and Appendix A respectively yielding Core2𝖡𝖵𝖢𝖦(n)+2𝖲𝖱𝖾𝗏(n){\textsc{Core}}\leq 2\cdot\mathsf{BVCG}(n^{\prime})+2\cdot\mathsf{SRev}(n^{\prime}). Plugging into Subsection 5.1, we get:

𝖨𝖴(n′′,n)4𝖲𝖱𝖾𝗏(n)+Core2𝖡𝖵𝖢𝖦(n)+6𝖲𝖱𝖾𝗏(n).\mathsf{IU}(n^{\prime\prime},n^{\prime})\leq 4\cdot\mathsf{SRev}(n^{\prime})+{\textsc{Core}}\leq 2\cdot\mathsf{BVCG}(n^{\prime})+6\cdot\mathsf{SRev}(n^{\prime}).

5.2.2 Bounding Core for Section 4

Now, we finish our proof of Section 4 by upper bounding the right hand side of Equation 15 by the revenue of a prior-independent BVCG auction. The auction defined in Subsubsection 5.2.1 was not prior independent as to compute the fees charged to the bidders required knowledge of the distribution 𝒟\mathcal{D}. Our main idea follows [GoldnerK16], we construct an auction with n+1n^{\prime}+1 bidders, and treat the last bidder as ‘special’. This special bidder does not receive any items or pay anything, but his bids allow us to get a good enough estimate of the distribution 𝒟\mathcal{D}.

We shall reserve ss to denote the bid of the special bidder and w𝒱nw\in\mathcal{V}^{n^{\prime}} will denote the bids of the other bidders. For i[n]i\in[n^{\prime}], the notation wiw_{i} will (as before) denote the bid of player ii, while wiw_{-i} will denote the bids of all the other players excluding the special player. This time the fee for player i[n]i\in[n^{\prime}] is defined as (recall Equation 14):

𝖥𝖾𝖾i,wi,s=𝖴i,wi(s).\mathsf{Fee}_{i,w_{-i},s}=\mathsf{U}_{i,w_{-i}}(s). (17)

Importantly, this is determined by the bids of the bidders and is independent of 𝒟\mathcal{D}. We also define, for all ii and wiw_{-i}, the set 𝒩i,wi\mathcal{N}_{i,w_{-i}} as follows:

𝒩i,wi={v𝒱|𝖴^i,wi(v)12𝔼v𝒟[𝖴^i,wi(v)]}.\mathcal{N}_{i,w_{-i}}=\left\{v\in\mathcal{V}~{}\middle|~{}\hat{\mathsf{U}}_{i,w_{-i}}(v)\geq\frac{1}{2}\cdot\mathop{{}\mathbb{E}}_{v^{\prime}\sim\mathcal{D}}\left[\hat{\mathsf{U}}_{i,w_{-i}}(v^{\prime})\right]\right\}. (18)

We now show a prior-independent analogue of Subsubsection 5.2.1.

Lemma \thelemma.

It holds that:

i=1nwif(wi)Prv𝒟(v𝒩i,wi)2𝔼v𝒟[𝖴^i,wi(v)]4𝖯𝖨-𝖡𝖵𝖢𝖦(n+1).\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}f^{*}(w_{-i})\cdot\Pr_{v^{\prime}\sim\mathcal{D}}\left\lparen v^{\prime}\in\mathcal{N}_{i,w_{-i}}\right\rparen^{2}\cdot\mathop{{}\mathbb{E}}_{v^{\prime}\sim\mathcal{D}}\left[\hat{\mathsf{U}}_{i,w_{-i}}(v^{\prime})\right]\leq 4\cdot\mathsf{PI}\text{{-}}\mathsf{BVCG}(n^{\prime}+1).
Proof.

We follow the proof approach in Subsubsection 5.2.1 but this time use the fees defined in Equation 17 as they are prior-independent. More specifically, we consider the auction that first receives the bids ww and ss of the non-special and special players respectively and runs a VCG auction based on ww. Thus, the special bidder never receives or pays anything. If bidder i[n]i\in[n^{\prime}] is not allocated any items in the VCG auction, he departs without paying anything. Otherwise, he gets all the items allocated to him in the VCG auction if and only if he agrees to pay an amount equal to 𝖥𝖾𝖾i,wi,s\mathsf{Fee}_{i,w_{-i},s} in addition to the prices charged by the VCG auction.

This auction is truthful as we ensure that 𝖥𝖾𝖾i,wi,s0\mathsf{Fee}_{i,w_{-i},s}\geq 0. Moreover, if bidder ii does not pay at least the amount 𝖥𝖾𝖾i,wi,s\mathsf{Fee}_{i,w_{-i},s}, we must have that his utility from the VCG auction is (strictly) smaller than 𝖥𝖾𝖾i,wi,s\mathsf{Fee}_{i,w_{-i},s}. From Equation 17, we get the following lower bound on the revenue of this auction:

𝖯𝖨-𝖡𝖵𝖢𝖦(n+1)\displaystyle\mathsf{PI}\text{{-}}\mathsf{BVCG}(n^{\prime}+1) i=1ns𝒱w𝒱nf(s)f(w)𝖴i,wi(s)𝟙(𝖴i,wi(s)𝖴i,wi(wi))\displaystyle\geq\sum_{i=1}^{n^{\prime}}\sum_{s\in\mathcal{V}}\sum_{w\in\mathcal{V}^{n^{\prime}}}f(s)f^{*}(w)\cdot\mathsf{U}_{i,w_{-i}}(s)\cdot\mathds{1}\left\lparen\mathsf{U}_{i,w_{-i}}(s)\leq\mathsf{U}_{i,w_{-i}}(w_{i})\right\rparen
i=1nwis,wi𝒩i,wif(s)f(wi)f(wi)𝖴i,wi(s)𝟙(𝖴i,wi(s)𝖴i,wi(wi)).\displaystyle\geq\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}\sum_{s,w_{i}\in\mathcal{N}_{i,w_{-i}}}f(s)f(w_{i})f^{*}(w_{-i})\cdot\mathsf{U}_{i,w_{-i}}(s)\cdot\mathds{1}\left\lparen\mathsf{U}_{i,w_{-i}}(s)\leq\mathsf{U}_{i,w_{-i}}(w_{i})\right\rparen.

As 𝖴\mathsf{U} upper bounds 𝖴^\hat{\mathsf{U}} and we only consider s𝒩i,wis\in\mathcal{N}_{i,w_{-i}}, we have 𝖴i,wi(s)𝖴^i,wi(s)12𝔼v𝒟[𝖴^i,wi(v)]\mathsf{U}_{i,w_{-i}}(s)\geq\hat{\mathsf{U}}_{i,w_{-i}}(s)\geq\frac{1}{2}\cdot\mathop{{}\mathbb{E}}_{v^{\prime}\sim\mathcal{D}}\left[\hat{\mathsf{U}}_{i,w_{-i}}(v^{\prime})\right]. Plugging in, we have:

𝖯𝖨-𝖡𝖵𝖢𝖦(n+1)12i=1nwif(wi)𝔼v𝒟[𝖴^i,wi(v)]s,wi𝒩i,wif(s)f(wi)𝟙(𝖴i,wi(s)𝖴i,wi(wi)).\mathsf{PI}\text{{-}}\mathsf{BVCG}(n^{\prime}+1)\\ \geq\frac{1}{2}\cdot\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}f^{*}(w_{-i})\cdot\mathop{{}\mathbb{E}}_{v^{\prime}\sim\mathcal{D}}\left[\hat{\mathsf{U}}_{i,w_{-i}}(v^{\prime})\right]\cdot\sum_{s,w_{i}\in\mathcal{N}_{i,w_{-i}}}f(s)f(w_{i})\cdot\mathds{1}\left\lparen\mathsf{U}_{i,w_{-i}}(s)\leq\mathsf{U}_{i,w_{-i}}(w_{i})\right\rparen.

By symmetry, we conclude that:

𝖯𝖨-𝖡𝖵𝖢𝖦(n+1)14i=1nwif(wi)Prv𝒟(v𝒩i,wi)2𝔼v𝒟[𝖴^i,wi(v)].\mathsf{PI}\text{{-}}\mathsf{BVCG}(n^{\prime}+1)\geq\frac{1}{4}\cdot\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}f^{*}(w_{-i})\cdot\Pr_{v^{\prime}\sim\mathcal{D}}\left\lparen v^{\prime}\in\mathcal{N}_{i,w_{-i}}\right\rparen^{2}\cdot\mathop{{}\mathbb{E}}_{v^{\prime}\sim\mathcal{D}}\left[\hat{\mathsf{U}}_{i,w_{-i}}(v^{\prime})\right].

We now present our proof of Section 4.

Proof of Section 4.

Call a pair i,wii,w_{-i} “high” if

𝔼v𝒟[𝖴^i,wi(v)]6r𝖱𝗈𝗇(i)(wi),\mathop{{}\mathbb{E}}_{v^{\prime}\sim\mathcal{D}}\left[\hat{\mathsf{U}}_{i,w_{-i}}(v^{\prime})\right]\geq 6\cdot r^{(i)}_{\mathsf{Ron}}(w_{-i}), (19)

and call it “low” otherwise. Using Chebyshev’s inequality (Subsection 3.1, item 2) and the variance bound in Subsection 5.2, we have for all high (i,wi)(i,w_{-i}) that:

1Prv𝒟(v𝒩i,wi)4𝖵𝖺𝗋vi𝒟(𝖴^i,wi(vi))(𝔼v𝒟[𝖴^i,wi(v)]2)29.1-\Pr_{v^{\prime}\sim\mathcal{D}}\left\lparen v^{\prime}\in\mathcal{N}_{i,w_{-i}}\right\rparen\leq\frac{4\cdot\mathsf{Var}_{v_{i}\sim\mathcal{D}}\left\lparen\hat{\mathsf{U}}_{i,w_{-i}}(v_{i})\right\rparen}{\left\lparen\mathop{{}\mathbb{E}}_{v^{\prime}\sim\mathcal{D}}\left[\hat{\mathsf{U}}_{i,w_{-i}}(v^{\prime})\right]^{2}\right\rparen}\leq\frac{2}{9}.

Thus, if the pair (i,wi)(i,w_{-i}) is high, we get that Prv𝒟(v𝒩i,wi)\Pr_{v^{\prime}\sim\mathcal{D}}\left\lparen v^{\prime}\in\mathcal{N}_{i,w_{-i}}\right\rparen is at least 79\frac{7}{9}. We now bound Core from Equation 15 and finish the proof. We have:

Core high (i,wi)f(wi)𝔼v𝒟[𝖴^i,wi(v)]+low (i,wi)f(wi)𝔼v𝒟[𝖴^i,wi(v)]\displaystyle\leq\sum_{\text{high~{}}(i,w_{-i})}f^{*}(w_{-i})\cdot\mathop{{}\mathbb{E}}_{v^{\prime}\sim\mathcal{D}}\left[\hat{\mathsf{U}}_{i,w_{-i}}(v^{\prime})\right]+\sum_{\text{low~{}}(i,w_{-i})}f^{*}(w_{-i})\cdot\mathop{{}\mathbb{E}}_{v^{\prime}\sim\mathcal{D}}\left[\hat{\mathsf{U}}_{i,w_{-i}}(v^{\prime})\right]
8149high (i,wi)f(wi)Prv𝒟(v𝒩i,wi)2𝔼v𝒟[𝖴^i,wi(v)]\displaystyle\leq\frac{81}{49}\cdot\sum_{\text{high~{}}(i,w_{-i})}f^{*}(w_{-i})\cdot\Pr_{v^{\prime}\sim\mathcal{D}}\left\lparen v^{\prime}\in\mathcal{N}_{i,w_{-i}}\right\rparen^{2}\cdot\mathop{{}\mathbb{E}}_{v^{\prime}\sim\mathcal{D}}\left[\hat{\mathsf{U}}_{i,w_{-i}}(v^{\prime})\right]
+6low (i,wi)f(wi)r𝖱𝗈𝗇(i)(wi),\displaystyle\hskip 28.45274pt+6\cdot\sum_{\text{low~{}}(i,w_{-i})}f^{*}(w_{-i})\cdot r^{(i)}_{\mathsf{Ron}}(w_{-i}),

where, for high (i,wi)(i,w_{-i}), we plug in Prv𝒟(v𝒩i,wi)79\Pr_{v^{\prime}\sim\mathcal{D}}\left\lparen v^{\prime}\in\mathcal{N}_{i,w_{-i}}\right\rparen\geq\frac{7}{9}, while for low (i,wi)(i,w_{-i}), we use Equation 19. This gives:

Core8149i=1nwif(wi)Prv𝒟(v𝒩i,wi)2𝔼v𝒟[𝖴^i,wi(v)]+6i=1nwif(wi)r𝖱𝗈𝗇(i)(wi).{\textsc{Core}}\leq\frac{81}{49}\cdot\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}f^{*}(w_{-i})\cdot\Pr_{v^{\prime}\sim\mathcal{D}}\left\lparen v^{\prime}\in\mathcal{N}_{i,w_{-i}}\right\rparen^{2}\cdot\mathop{{}\mathbb{E}}_{v^{\prime}\sim\mathcal{D}}\left[\hat{\mathsf{U}}_{i,w_{-i}}(v^{\prime})\right]+6\cdot\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}f^{*}(w_{-i})\cdot r^{(i)}_{\mathsf{Ron}}(w_{-i}).

Using Subsubsection 5.2.2 and using the definition of r𝖱𝗈𝗇(i)(wi)r^{(i)}_{\mathsf{Ron}}(w_{-i}), we get:

Core7𝖯𝖨-𝖡𝖵𝖢𝖦(n+1)+6j=1mi=1nwif(wi)r𝖱𝗈𝗇,j(max(wi)|j).{\textsc{Core}}\leq 7\cdot\mathsf{PI}\text{{-}}\mathsf{BVCG}(n^{\prime}+1)+6\cdot\sum_{j=1}^{m}\sum_{i=1}^{n^{\prime}}\sum_{w_{-i}}f^{*}(w_{-i})\cdot r^{*}_{\mathsf{Ron},j}(\max(w_{-i})|_{j}).

Using Appendix A on the second term, we have Core7𝖯𝖨-𝖡𝖵𝖢𝖦(n+1)+6𝖲𝖱𝖾𝗏(n){\textsc{Core}}\leq 7\cdot\mathsf{PI}\text{{-}}\mathsf{BVCG}(n^{\prime}+1)+6\cdot\mathsf{SRev}(n^{\prime}). Plugging into Subsection 5.1, we get 𝖨𝖴(n′′,n)4𝖲𝖱𝖾𝗏(n)+Core7𝖯𝖨-𝖡𝖵𝖢𝖦(n+1)+10𝖲𝖱𝖾𝗏(n)\mathsf{IU}(n^{\prime\prime},n^{\prime})\leq 4\cdot\mathsf{SRev}(n^{\prime})+{\textsc{Core}}\leq 7\cdot\mathsf{PI}\text{{-}}\mathsf{BVCG}(n^{\prime}+1)+10\cdot\mathsf{SRev}(n^{\prime}). As we assumed that all the items are regular, we have from Subsubsection 3.2.3 that 𝖲𝖱𝖾𝗏(n)𝖵𝖢𝖦(n+1)𝖯𝖨-𝖡𝖵𝖢𝖦(n+1)\mathsf{SRev}(n^{\prime})\leq\mathsf{VCG}(n^{\prime}+1)\leq\mathsf{PI}\text{{-}}\mathsf{BVCG}(n^{\prime}+1). This yields:

𝖨𝖴(n′′,n)17𝖯𝖨-𝖡𝖵𝖢𝖦(n+1).\mathsf{IU}(n^{\prime\prime},n^{\prime})\leq 17\cdot\mathsf{PI}\text{{-}}\mathsf{BVCG}(n^{\prime}+1).

Appendix A Some Lower Bounds on 𝖲𝖱𝖾𝗏()\mathsf{SRev}(\cdot)

In this section, we analyze the revenue of some auctions that sell the items separately. By definition, the revenue of any such auction is a lower bound for 𝖲𝖱𝖾𝗏()\mathsf{SRev}(\cdot). All lemmas in this section are for a fixed auction setting (n,m,𝒟)(n,m,\mathcal{D}) (see Section 3).

Lemma \thelemma (VCG with reserves).

Fix item j[m]j\in[m]. For all x0x\geq 0, it holds that:

v𝒱nf(v)x𝟙(max(v)|jx)𝖲𝖱𝖾𝗏j(n).\sum_{v\in\mathcal{V}^{n}}f^{*}(v)\cdot x\cdot\mathds{1}\left\lparen\max(v)|_{j}\geq x\right\rparen\leq\mathsf{SRev}_{j}(n).
Proof.

Consider the auction that sells item jj through a VCG auction with reserve xx. Namely, it solicits bits vi,jv_{i,j} for item jj for each bidder i[m]i\in[m] and proceeds as follows: If the highest bid is at least xx, then allocate this item to the highest bidder for a price equal to the maximum of xx and the second highest bid. Otherwise, the item stays unallocated. Clearly, the auction is truthful and generates revenue at least:

v𝒱nf(v)x𝟙(max(v)|jx).\sum_{v\in\mathcal{V}^{n}}f^{*}(v)\cdot x\cdot\mathds{1}\left\lparen\max(v)|_{j}\geq x\right\rparen.

Thus, we can upper bound the above quantity by 𝖲𝖱𝖾𝗏j(n)\mathsf{SRev}_{j}(n) and the lemma follows. ∎

Lemma \thelemma (Sequential Posted Price).

Let non-negative numbers {xi,j}i[n],j[m]\{x_{i,j}\}_{i\in[n],j\in[m]} be given. It holds that:

j=1mv𝒱nf(v)maxi[n]{xi,j𝟙(vi,jxi,j)}𝖲𝖱𝖾𝗏(n).\sum_{j=1}^{m}\sum_{v\in\mathcal{V}^{n}}f^{*}(v)\cdot\max_{i\in[n]}\left\{x_{i,j}\cdot\mathds{1}\left\lparen v_{i,j}\geq x_{i,j}\right\rparen\right\}\leq\mathsf{SRev}(n).
Proof.

Consider the auction that sells each item j[m]j\in[m] separately through the following auction: It goes over all the bidders in decreasing order of xi,jx_{i,j}, bidder ii can either take the item and pay price xi,jx_{i,j}, in which case the auction terminates, or skip the item, in which case the auction goes to the next bidder. Clearly, the auction is truthful and generates revenue at least:

j=1mv𝒱nf(v)maxi[n]{xi,j𝟙(vi,jxi,j)}.\sum_{j=1}^{m}\sum_{v\in\mathcal{V}^{n}}f^{*}(v)\cdot\max_{i\in[n]}\left\{x_{i,j}\cdot\mathds{1}\left\lparen v_{i,j}\geq x_{i,j}\right\rparen\right\}.

Thus, we can upper bound the above quantity by 𝖲𝖱𝖾𝗏(n)\mathsf{SRev}(n) and the lemma follows. ∎

Lemma \thelemma (Ronen’s auction [Ronen01]).

For all j[m]j\in[m] and x0x\geq 0, define r𝖱𝗈𝗇,j(x)=maxy>xyPry𝒟j(yy)r^{*}_{\mathsf{Ron},j}(x)=\max_{y>x}y\cdot\Pr_{y^{\prime}\sim\mathcal{D}_{j}}\left\lparen y^{\prime}\geq y\right\rparen. It holds that:

j=1mi=1nvi𝒱n1f(vi)r𝖱𝗈𝗇,j(max(vi)|j)𝖲𝖱𝖾𝗏(n).\sum_{j=1}^{m}\sum_{i=1}^{n}\sum_{v_{-i}\in\mathcal{V}^{n-1}}f^{*}(v_{-i})\cdot r^{*}_{\mathsf{Ron},j}(\max(v_{-i})|_{j})\leq\mathsf{SRev}(n).
Proof.

Consider the auction that sells each item j[m]j\in[m] separately through the following auction: First, it solicits bids vi,jv_{i,j} for item jj from each bidder i[n]i\in[n]. Then, for i[n]i\in[n], it sets yi,j(vi)y^{*}_{i,j}(v_{-i}) to be121212We write yi,jy^{*}_{i,j} as a function of viv_{-i} but note that it only depends on the bidders’ bids for item jj. the maximizer in the definition of r𝖱𝗈𝗇,j(max(vi)|j)r^{*}_{\mathsf{Ron},j}(\max(v_{-i})|_{j}), and offers each bidder ii to purchase item jj at a price of yi,j(vi)y^{*}_{i,j}(v_{-i}). As yi,j(vi)>max(vi)|jy^{*}_{i,j}(v_{-i})>\max(v_{-i})|_{j} by definition, at most one bidder will ever purchase the item and the auction is well defined (Equation 1).

Also, as the price offered to bidder ii does not depend on his bid, the auction is also truthful. Thus, its revenue is a lower bound on 𝖲𝖱𝖾𝗏(n)\mathsf{SRev}(n) and we get:

𝖲𝖱𝖾𝗏(n)\displaystyle\mathsf{SRev}(n) j=1mv𝒱nf(v)i=1nyi,j(vi)𝟙(vi,jyi,j(vi))\displaystyle\geq\sum_{j=1}^{m}\sum_{v\in\mathcal{V}^{n}}f^{*}(v)\cdot\sum_{i=1}^{n}y^{*}_{i,j}(v_{-i})\cdot\mathds{1}\left\lparen v_{i,j}\geq y^{*}_{i,j}(v_{-i})\right\rparen
j=1mi=1nvi𝒱n1f(vi)yi,j(vi)Prvi𝒱(vi,jyi,j(vi))\displaystyle\geq\sum_{j=1}^{m}\sum_{i=1}^{n}\sum_{v_{-i}\in\mathcal{V}^{n-1}}f^{*}(v_{-i})\cdot y^{*}_{i,j}(v_{-i})\cdot\Pr_{v_{i}\in\mathcal{V}}\left\lparen v_{i,j}\geq y^{*}_{i,j}(v_{-i})\right\rparen
j=1mi=1nvi𝒱n1f(vi)r𝖱𝗈𝗇,j(max(vi)|j).\displaystyle\geq\sum_{j=1}^{m}\sum_{i=1}^{n}\sum_{v_{-i}\in\mathcal{V}^{n-1}}f^{*}(v_{-i})\cdot r^{*}_{\mathsf{Ron},j}(\max(v_{-i})|_{j}).

Appendix B Proof of Corollary 27 of [CaiDW16]

This section recalls the proof of Corollary 2727 from [CaiDW16] as Appendix B. Our presentation is different from [CaiDW16] as we do not need their ideas in full generality.

Lemma \thelemma.

Let (n,m,𝒟)(n,m,\mathcal{D}) be an auction setting as in Subsection 3.2. Let n>0n^{\prime}>0 and suppose that for all i[n]i\in[n], valuations wi𝒱n1w_{-i}\in\mathcal{V}^{n^{\prime}-1} are given. For all (π¯,p¯)(\overline{\pi},\overline{p}) that correspond to a truthful auction 𝒜\mathcal{A}, we have that:

𝖱𝖾𝗏(𝒜,n)i=1nj=1m𝔼vi[π¯i,j(vi)(vi,j𝟙(vij(n)(wi))+φ~j(vi,j)+𝟙(vij(n)(wi)))].\mathsf{Rev}(\mathcal{A},n)\leq\sum_{i=1}^{n}\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v_{i}}\left[\overline{\pi}_{i,j}(v_{i})\cdot\left\lparen v_{i,j}\cdot\mathds{1}\left\lparen v_{i}\notin\mathcal{R}^{(n^{\prime})}_{j}(w_{-i})\right\rparen+\tilde{\varphi}_{j}(v_{i,j})^{+}\cdot\mathds{1}\left\lparen v_{i}\in\mathcal{R}^{(n^{\prime})}_{j}(w_{-i})\right\rparen\right\rparen\right].
Proof.

We start with some notation. We use vv_{\varnothing} to denote a dummy valuation for the bidders and adopt the convention π¯i,j(v)=p¯i(v)=0\overline{\pi}_{i,j}(v_{\varnothing})=\overline{p}_{i}(v_{\varnothing})=0 for all i[n]i\in[n], j[m]j\in[m]. Suppose that non-negative numbers Λ={λi(vi,vi)}i[n],vi𝒱,vi𝒱{v}\Lambda=\left\{\lambda_{i}(v_{i},v^{\prime}_{i})\right\}_{i\in[n],v_{i}\in\mathcal{V},v^{\prime}_{i}\in\mathcal{V}\cup\left\{v_{\varnothing}\right\}} are given that satisfy for all i[n]i\in[n] and vi𝒱v_{i}\in\mathcal{V} that:

f(vi)vi𝒱{v}λi(vi,vi)+vi𝒱λi(vi,vi)=0.f(v_{i})-\sum_{v^{\prime}_{i}\in\mathcal{V}\cup\left\{v_{\varnothing}\right\}}\lambda_{i}(v_{i},v^{\prime}_{i})+\sum_{v^{\prime}_{i}\in\mathcal{V}}\lambda_{i}(v^{\prime}_{i},v_{i})=0. (20)

As (π¯,p¯)(\overline{\pi},\overline{p}) correspond to a truthful auction 𝒜\mathcal{A}, we have from Equation 4 that 𝖱𝖾𝗏(𝒜,n)=i=1n𝔼vi𝒟[p¯i(vi)]\mathsf{Rev}(\mathcal{A},n)=\sum_{i=1}^{n}\mathop{{}\mathbb{E}}_{v_{i}\sim\mathcal{D}}\left[\overline{p}_{i}(v_{i})\right]. Continuing using the non-negativity of λi(vi,vi)\lambda_{i}(v_{i},v^{\prime}_{i}) and Equation 3, we have:

𝖱𝖾𝗏(𝒜,n)i=1nvi𝒱f(vi)p¯i(vi)+i=1nvi𝒱vi𝒱{v}λi(vi,vi)(j=1m(π¯i,j(vi)π¯i,j(vi))vi,j(p¯i(vi)p¯i(vi))).\mathsf{Rev}(\mathcal{A},n)\leq\sum_{i=1}^{n}\sum_{v_{i}\in\mathcal{V}}f(v_{i})\cdot\overline{p}_{i}(v_{i})\\ +\sum_{i=1}^{n}\sum_{v_{i}\in\mathcal{V}}\sum_{v^{\prime}_{i}\in\mathcal{V}\cup\left\{v_{\varnothing}\right\}}\lambda_{i}(v_{i},v^{\prime}_{i})\cdot\left\lparen\sum_{j=1}^{m}\left\lparen\overline{\pi}_{i,j}(v_{i})-\overline{\pi}_{i,j}(v^{\prime}_{i})\right\rparen\cdot v_{i,j}-\left\lparen\overline{p}_{i}(v_{i})-\overline{p}_{i}(v^{\prime}_{i})\right\rparen\right\rparen.

This can be rearranged to:

𝖱𝖾𝗏(𝒜,n)i=1nvi𝒱(f(vi)vi𝒱{v}λi(vi,vi)+vi𝒱λi(vi,vi))p¯i(vi)+i=1nvi𝒱j=1m(vi𝒱{v}λi(vi,vi)vi,jvi𝒱λi(vi,vi)vi,j)π¯i,j(vi).\mathsf{Rev}(\mathcal{A},n)\leq\sum_{i=1}^{n}\sum_{v_{i}\in\mathcal{V}}\left\lparen f(v_{i})-\sum_{v^{\prime}_{i}\in\mathcal{V}\cup\left\{v_{\varnothing}\right\}}\lambda_{i}(v_{i},v^{\prime}_{i})+\sum_{v^{\prime}_{i}\in\mathcal{V}}\lambda_{i}(v^{\prime}_{i},v_{i})\right\rparen\cdot\overline{p}_{i}(v_{i})\\ +\sum_{i=1}^{n}\sum_{v_{i}\in\mathcal{V}}\sum_{j=1}^{m}\left\lparen\sum_{v^{\prime}_{i}\in\mathcal{V}\cup\left\{v_{\varnothing}\right\}}\lambda_{i}(v_{i},v^{\prime}_{i})\cdot v_{i,j}-\sum_{v^{\prime}_{i}\in\mathcal{V}}\lambda_{i}(v^{\prime}_{i},v_{i})\cdot v^{\prime}_{i,j}\right\rparen\cdot\overline{\pi}_{i,j}(v_{i}).

Plugging in Equation 20, we get:

𝖱𝖾𝗏(𝒜,n)i=1nvi𝒱j=1m(f(vi)vi,jvi𝒱λi(vi,vi)(vi,jvi,j))π¯i,j(vi).\mathsf{Rev}(\mathcal{A},n)\leq\sum_{i=1}^{n}\sum_{v_{i}\in\mathcal{V}}\sum_{j=1}^{m}\left\lparen f(v_{i})\cdot v_{i,j}-\sum_{v^{\prime}_{i}\in\mathcal{V}}\lambda_{i}(v^{\prime}_{i},v_{i})\cdot\left\lparen v^{\prime}_{i,j}-v_{i,j}\right\rparen\right\rparen\cdot\overline{\pi}_{i,j}(v_{i}).

Rearranging again, and denoting by Φi,jΛ(vi)=vi,j1f(vi)vi𝒱λi(vi,vi)(vi,jvi,j)\Phi^{\Lambda}_{i,j}(v_{i})=v_{i,j}-\frac{1}{f(v_{i})}\cdot\sum_{v^{\prime}_{i}\in\mathcal{V}}\lambda_{i}(v^{\prime}_{i},v_{i})\cdot\left\lparen v^{\prime}_{i,j}-v_{i,j}\right\rparen, we get:

𝖱𝖾𝗏(𝒜,n)i=1nvi𝒱j=1mf(vi)π¯i,j(vi)Φi,jΛ(vi).\mathsf{Rev}(\mathcal{A},n)\leq\sum_{i=1}^{n}\sum_{v_{i}\in\mathcal{V}}\sum_{j=1}^{m}f(v_{i})\cdot\overline{\pi}_{i,j}(v_{i})\cdot\Phi^{\Lambda}_{i,j}(v_{i}). (21)

Observe that Equation 21 holds for any Λ\Lambda that is non-negative and satisfies Equation 20. In order to show Appendix B, we construct a suitable Λ\Lambda and apply Equation 21. This is done by defining Λ\Lambda^{\prime} and Λ\Lambda^{*} as below and setting Λ=Λ+Λ\Lambda=\Lambda^{\prime}+\Lambda^{*}.

Defining Λ\Lambda^{\prime}.

We start with some notation. For j[m]j\in[m], let fj()f_{-j}(\cdot) denote the probability mass function of the distribution ×jj𝒟j\bigtimes_{j^{\prime}\neq j}\mathcal{D}_{j^{\prime}}. Also, for j[m]j\in[m] and vi𝒱v_{i}\in\mathcal{V}, let 𝖽𝖾𝖼j(vi)\mathsf{dec}_{j}(v_{i}) be defined to be vv_{\varnothing} if vi,j=min𝒱jv_{i,j}=\min\mathcal{V}_{j}. Otherwise define 𝖽𝖾𝖼j,k(vi)=vi,k\mathsf{dec}_{j,k}(v_{i})=v_{i,k} for all kjk\neq j and 𝖽𝖾𝖼j,j(vi)=maxx𝒱j,x<vi,jx\mathsf{dec}_{j,j}(v_{i})=\max_{x\in\mathcal{V}_{j},x<v_{i,j}}x. Recall the definition of the regions {j(n)(wi)}j{0}[m]\left\{\mathcal{R}^{(n^{\prime})}_{j}(w_{-i})\right\}_{j\in\left\{0\right\}\cup[m]} from Equation 5 and for all i[n],vi𝒱,vi𝒱{v}i\in[n],v_{i}\in\mathcal{V},v^{\prime}_{i}\in\mathcal{V}\cup\left\{v_{\varnothing}\right\}, define the numbers:

λi(vi,vi)={f(vi), if vi0(n)(wi) and vi=vPry𝒟j(yvi,j)fj(vi,j), if j[m]:vi,vij(n)(wi)vi=𝖽𝖾𝖼j(vi)Pry𝒟j(yvi,j)fj(vi,j), if j[m]:vij(n)(wi)vi=v and 𝖽𝖾𝖼j(vi)j(n)(wi)0, otherwise.\lambda^{\prime}_{i}(v_{i},v^{\prime}_{i})=\begin{cases}f(v_{i}),&\text{~{}if~{}}v_{i}\in\mathcal{R}^{(n^{\prime})}_{0}(w_{-i})\text{~{}and~{}}v^{\prime}_{i}=v_{\varnothing}\\ \Pr_{y\sim\mathcal{D}_{j}}\left\lparen y\geq v_{i,j}\right\rparen\cdot f_{-j}(v_{i,-j}),&\text{~{}if~{}}\exists j\in[m]:v_{i},v^{\prime}_{i}\in\mathcal{R}^{(n^{\prime})}_{j}(w_{-i})\wedge v^{\prime}_{i}=\mathsf{dec}_{j}(v_{i})\\ \Pr_{y\sim\mathcal{D}_{j}}\left\lparen y\geq v_{i,j}\right\rparen\cdot f_{-j}(v_{i,-j}),&\text{~{}if~{}}\exists j\in[m]:v_{i}\in\mathcal{R}^{(n^{\prime})}_{j}(w_{-i})\wedge v^{\prime}_{i}=v_{\varnothing}\\ &\hskip 28.45274pt\text{~{}and~{}}\mathsf{dec}_{j}(v_{i})\notin\mathcal{R}^{(n^{\prime})}_{j}(w_{-i})\\ 0,&\text{~{}otherwise}\end{cases}.
Defining Λ\Lambda^{*}.

For all i[n]i\in[n], we define λi()\lambda^{*}_{i}(\cdot) using the procedure described in Algorithm 2. In Line 6 of Algorithm 2, when we say we invoke Algorithm 1 restricted to values at least xx, we mean that Line 4 of Algorithm 1 would only include values that are at least xx in the argmax\operatorname*{arg\,max} and Line 6 of Algorithm 1 will abort as soon as y=xy^{*}=x (instead of when y=min(𝒱j)y^{*}=\min(\mathcal{V}_{j})). Algorithm 1 guarantees that the output φjvi,j()\varphi_{j}^{v_{i,-j}}(\cdot) produced in this manner is a lower bound of φ~j()\tilde{\varphi}_{j}(\cdot), and therefore, also a lower bound of φ~j()+\tilde{\varphi}_{j}(\cdot)^{+}, for all values at least xx. Moreover it satisfies, for all yxy\geq x and with equality when y=xy=x, that:

yy𝒱jfj(y)φjvi,j(y)yy𝒱jfj(y)φj(y).\sum_{y^{\prime}\geq y\in\mathcal{V}_{j}}f_{j}(y^{\prime})\cdot\varphi_{j}^{v_{i,-j}}(y^{\prime})\geq\sum_{y^{\prime}\geq y\in\mathcal{V}_{j}}f_{j}(y^{\prime})\cdot\varphi_{j}(y^{\prime}). (22)
Algorithm 2 Computing λi()\lambda^{*}_{i}(\cdot) for i[n]i\in[n].
1:Set λi(vi,vi)=0\lambda^{*}_{i}(v_{i},v^{\prime}_{i})=0 for all vi𝒱v_{i}\in\mathcal{V} and vi𝒱{v}v^{\prime}_{i}\in\mathcal{V}\cup\left\{v_{\varnothing}\right\}.
2:for j[m]j\in[m] do
3:     for vi,j𝒱jv_{i,-j}\in\mathcal{V}_{-j} do
4:         Smin{x𝒱j(x,vi,j)j(n)(wi)}S\leftarrow\min\left\{x\in\mathcal{V}_{j}\mid(x,v_{i,-j})\in\mathcal{R}^{(n^{\prime})}_{j}(w_{-i})\right\}. If S=S=\emptyset, continue to next iteration.
5:         xmin(S)x^{*}\leftarrow\min(S).
6:         φjvi,j()\varphi_{j}^{v_{i,-j}}(\cdot)\leftarrow the output of Algorithm 1 when restricted to values at least xx^{*}.
7:         for x𝒱jx\in\mathcal{V}_{j} such that xx<max𝒱jx^{*}\leq x<\max\mathcal{V}_{j} do
8:              xx^{\prime}\leftarrow smallest element >x>x in 𝒱j\mathcal{V}_{j}.
9:              Set both λi((x,vi,j),(x,vi,j))\lambda^{*}_{i}((x,v_{i,-j}),(x^{\prime},v_{i,-j})) and λi((x,vi,j),(x,vi,j))\lambda^{*}_{i}((x^{\prime},v_{i,-j}),(x,v_{i,-j})) to
fj(vi,j)xxx′′>x𝒱jfj(x′′)(φjvi,j(x′′)φj(x′′)).\frac{f_{-j}(v_{i,-j})}{x^{\prime}-x}\cdot\sum_{x^{\prime\prime}>x\in\mathcal{V}_{j}}f_{j}(x^{\prime\prime})\left\lparen\varphi_{j}^{v_{i,-j}}(x^{\prime\prime})-\varphi_{j}(x^{\prime\prime})\right\rparen.
10:         end for
11:     end for
12:end for

We now finish the proof of Appendix B. Having defined Λ\Lambda^{\prime} and Λ\Lambda^{\star}, we first observe that they are both non-negative (Λ\Lambda^{*} is non-negative due to Equation 22). Moreover, observe that setting Λ=Λ+Λ\Lambda=\Lambda^{\prime}+\Lambda^{*} satisfies Equation 20. Plugging into Equation 21, we get:

𝖱𝖾𝗏(𝒜,n)i=1nj=1m𝔼vi[π¯i,j(vi)Φi,jΛ(vi)].\mathsf{Rev}(\mathcal{A},n)\leq\sum_{i=1}^{n}\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v_{i}}\left[\overline{\pi}_{i,j}(v_{i})\cdot\Phi^{\Lambda}_{i,j}(v_{i})\right].

Where, using Equation 22 and Subsubsection 3.2.3, the value Φi,jΛ(vi)\Phi^{\Lambda}_{i,j}(v_{i}) can be simplified to:

Φi,jΛ(vi)=vi,j𝟙(vij(n)(wi))+φjvi,j(vi,j)𝟙(vij(n)(wi)).\Phi^{\Lambda}_{i,j}(v_{i})=v_{i,j}\cdot\mathds{1}\left\lparen v_{i}\notin\mathcal{R}^{(n^{\prime})}_{j}(w_{-i})\right\rparen+\varphi_{j}^{v_{i,-j}}(v_{i,j})\cdot\mathds{1}\left\lparen v_{i}\in\mathcal{R}^{(n^{\prime})}_{j}(w_{-i})\right\rparen.

Plugging in and using the fact that φjvi,j()φ~j()+\varphi_{j}^{v_{i,-j}}(\cdot)\leq\tilde{\varphi}_{j}(\cdot)^{+}, we get:

𝖱𝖾𝗏(𝒜,n)i=1nj=1m𝔼vi[π¯i,j(vi)(vi,j𝟙(vij(n)(wi))+φ~j(vi,j)+𝟙(vij(n)(wi)))].\mathsf{Rev}(\mathcal{A},n)\leq\sum_{i=1}^{n}\sum_{j=1}^{m}\mathop{{}\mathbb{E}}_{v_{i}}\left[\overline{\pi}_{i,j}(v_{i})\cdot\left\lparen v_{i,j}\cdot\mathds{1}\left\lparen v_{i}\notin\mathcal{R}^{(n^{\prime})}_{j}(w_{-i})\right\rparen+\tilde{\varphi}_{j}(v_{i,j})^{+}\cdot\mathds{1}\left\lparen v_{i}\in\mathcal{R}^{(n^{\prime})}_{j}(w_{-i})\right\rparen\right\rparen\right].