This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A change of measure preserving the affine structure in the BNS model for commodity markets

Fred Espen Benth
Centre of Mathematics for Applications
University of Oslo
P.O. Box 1053, Blindern
N–0316 Oslo, Norway
fredb@math.uio.no http://folk.uio.no/fredb/
 and  Salvador Ortiz-Latorre
Centre of Mathematics for Applications
University of Oslo
P.O. Box 1053, Blindern
N–0316 Oslo, Norway
salvador.ortiz-latorre@cma.uio.no
(Date: July 30, 2025)
Abstract.

For a commodity spot price dynamics given by an Ornstein-Uhlenbeck process with Barndorff-Nielsen and Shephard stochastic volatility, we price forwards using a class of pricing measures that simultaneously allow for change of level and speed in the mean reversion of both the price and the volatility. The risk premium is derived in the case of arithmetic and geometric spot price processes, and it is demonstrated that we can provide flexible shapes that is typically observed in energy markets. In particular, our pricing measure preserves the affine model structure and decomposes into a price and volatility risk premium, and in the geometric spot price model we need to resort to a detailed analysis of a system of Riccati equations, for which we show existence and uniqueness of solution and asymptotic properties that explains the possible risk premium profiles. Among the typical shapes, the risk premium allows for a stochastic change of sign, and can attain positive values in the short end of the forward market and negative in the long end.

We are grateful for the financial support from the project ”Energy Markets: Modeling, Optimization and Simulation (EMMOS)”, funded by the Norwegian Research Council under grant Evita/205328.
copyright: ©2001: enter name of copyright holder

1. Introduction

Benth and Ortiz-Latorre [9] analysed a structure preserving class of pricing measures for Ornstein-Uhlenbeck (OU) processes with applications to forward pricing in commodity markets. In particular, they considered multi-factor OU models driven by Lévy processes having positive jumps (so-called subordinators) or Brownian motions for the spot price dynamics and analysed the risk premium when the level and speed of mean reversion in these factor processes were changed.

In this paper we continue this study for OU processes driven by Brownian motion, but with a stochastic volatility perturbing the driving noise. The stochastic volatility process is modelled again as an OU process, but driven by a subordinator. This class of stochastic volatility models were first introduced by Barndorff-Nielsen and Shephard [1] for equity prices, and later analysed by Benth [2] in commodity markets. Indeed, the present paper is considering a class of pricing measures preserving the affine structure of the spot price model analysed in Benth [2].

Our spot price dynamics is a generalization of the Schwartz model (see Schwartz [23]) to account for stochastic volatility. The Schwartz model have been applied to many different commodity markets, including oil (see Schwartz [23]), power (see Lucia and Schwartz [20]), weather (see Benth and Šaltytė Benth [4]) and freight (see Benth, Koekebakker and Taib [8]). Like Lucia and Schwartz [20], we analyse both geometric and arithmetic models for the spot price evolution. There exists many extensions of the model, typically allowing for more factors in the spot price dynamics, as well as modelling the convenience yield and interest rates (see Eydeland and Wolyniec [11] and Geman [13] for more on such models). In Benth [2], the Schwartz model with stochastic volatility has been applied to model empirically UK gas prices. Also other stochastic volatility models like the Heston have been suggested in the context of commodity markets (see Eydeland and Wolyniec [11] and Geman [13] for a discussion and further references).

The class of pricing measures we study here allows for a simultaneous change of speed and level of mean reversion for both the (logarithmic) spot price and the stochastic volatility process. The mean reversion level can be flexibly shifted up or down, while the speed of mean reversion can be slowed down. It significantly extends the Esscher transform, which only allows for changes in the level of mean reversion. Indeed, it decomposes the risk premium into a price and volatility premium. It has been studied empirically in some commodity markets for multi-factor models in Benth, Cartea and Pedraz [7]. As we show, the class of pricing measures preserves the affine structure of the model, but leads to a rather complex stochastic driver for the stochastic volatility. For the arithmetic spot model we can derive analytic forward prices and risk premium curves. On the other hand, the geometric model is far more complex, but the affine structure can be exploited to reduce the forward pricing to solving a system of Riccati equations by resorting to the theory of Kallsen and Muhle-Karbe [18]. The forward price becomes a function of both the spot and the volatility, and has a deterministic asymptotic dynamics when we are far from maturity.

By careful analysis of the associated system of Riccati equations, we can study the implied risk premium of our class of measure change as a function of its parameters. The risk premium is defined as the difference between the forward price and the predicted spot price at maturity, and is a notion of great importance in commodity markets since it measures the price for entering a forward hedge position in the commodity (see e.g. Geman [13] for more on this). In particular, under rather mild assumptions on the parameters, we can show that the risk premium may change sign stochastically, and may be positive for short times to maturity and negative when maturity is farther out in time. This is a profile of the risk premium that one may expect in power markets based on both economical and empirical findings. Geman and Vasicek [14] argue that retailers in the power market may induce a hedging pressure by entering long positions in forwards to protect themselves against sudden price increases (spikes). This may lead to positive risk premia, whereas producers induce a negative premium in the long end of the forward curve since they hedge by selling their production. This economic argument for a positive premium in the short end is backed up by empirical evidence from the German power market found in Benth, Cartea and Kiesel [6]. In the geometric model, we show that the sign of the risk premium depends explicitly on the current level of the logarithmic spot price.

We recover the Esscher transform in a special case of our pricing measure. The Esscher transform is a popular tool for introducing a pricing measure in commodity markets, or, equivalently, to model the risk premium. For constant market prices of risk, which are defined as the shift in level of mean reversion, we preserve the affine structure of the model as well as the Lévy property of the driving noises of the two OU processes that we consider (indeed, the spot price dynamics is driven by a Brownian motion). We find such pricing measures in for example Lucia and Schwartz [20], Kolos and Ronn [19] and Schwartz and Smith [24]. We refer the reader to Benth, Šaltytė Benth and Koekebakker [5] for a thorough discussion and references to the application of Esscher transform in power and related markets. We note that the Esscher transform was first introduced and applied to insurance as a tool to model the premium charged for covering a given risk exposure and later adopted in pricing in incomplete financial markets (see Gerber and Shiu [15]). In many ways, in markets where the underlying commodity is not storable (that is, cannot be traded in a portfolio), the pricing of forwards and futures can be viewed as an exercise in determining an insurance premium. Our more general change of measure is still structure preserving, however, risk is priced also in the sense that one slows down the speed of mean reversion. Such a reduction allow the random fluctuations of the spot and the stochastic volatility last longer under the pricing measure than under the objective probability, and thus spreads out the risk.

Although our analysis has a clear focus on the stylized facts of the risk premium in power markets, the proposed class of pricing measures is clearly also relevant in other commodity markets. As already mentioned, markets like weather and freight share some similarities with power in that the underlying ”spot” is not storable. Also in more classical commodity markets like oil and gas there are evidences of stochastic volatility and spot prices following a mean-reversion dynamics, at least as a component of the spot. Moreover, in the arithmetic case our analysis relates to the concept of unspanned volatility in commodity markets, extensively studied by Trolle and Schwartz [25]. The forward price will not depend on the stochastic volatility factor, and hence one cannot hedge options by forwards alone. Interestingly, the corresponding geometric model will in fact span the stochastic volatility.

We present our results as follows. In the next Section we present the spot model, and follow up in Section 3 with introducing our pricing measure validating that this is indeed an equivalent probability. In Section 4 we derive forward prices under the arithmetic spot price model, and analyse the implied risk premium. Section 5 considers the corresponding forward prices and the implied risk premium for the geometric spot price model. Here we exploit the affine structure of the model to analyse the associated Riccati equation, and provide insight into the potential risk premium profiles that our set-up can generate. Both Section 4 and 5 have numerous empirical examples.

2. Mathematical model

Suppose that (Ω,,{t}t[0,T],P)(\Omega,\mathcal{F},\{\mathcal{F}_{t}\}_{t\in[0,T]},P) is a complete filtered probability space, where T>0T>0 is a fixed finite time horizon. On this probability space there are defined WW, a standard Wiener process, and L,L, a pure jump Lévy subordinator with finite expectation, that is a Lévy process with the following Lévy-Itô representation L(t)=0t0zNL(ds,dz),t[0,T],L(t)=\int_{0}^{t}\int_{0}^{\infty}zN^{L}(ds,dz),t\in[0,T], where NL(ds,dz)N^{L}(ds,dz) is a Poisson random measure with Lévy measure \ell satisfying 0z(dz)<.\int_{0}^{\infty}z\ell(dz)<\infty. We shall suppose that WW and LL are independent of each other.

As we are going to consider an Esscher change of measure and geometric spot price models, we introduce the following assumption on the existence of exponential moments of LL.

Assumption 1.

Suppose that

ΘLsup{θ+:𝔼[eθL(1)]<},\Theta_{L}\triangleq\sup\{\theta\in\mathbb{R}_{+}:\mathbb{E}[e^{\theta L(1)}]<\infty\}, (2.1)

is a constant strictly greater than one, which may be \infty.

Some remarks are in order.

Remark 2.1.

In (,ΘL)(-\infty,\Theta_{L}) the cumulant (or log moment generating) function κL(θ)log𝔼P[eθL(1)]\kappa_{L}(\theta)\triangleq\log\mathbb{E}_{P}[e^{\theta L(1)}] is well defined and analytic. As 0(,ΘL)0\in(-\infty,\Theta_{L}), LL has moments of all orders. Also, κL(θ)\kappa_{L}(\theta) is convex, which yields that κL′′(θ)0\kappa_{L}^{\prime\prime}(\theta)\geq 0 and, hence, that κL(θ)\kappa_{L}^{\prime}(\theta) is non decreasing. Finally, as a consequence of L0,a.s.L\geq 0,a.s., we have that κL(θ)\kappa_{L}^{\prime}(\theta) is non negative.

Remark 2.2.

Thanks to the Lévy-Kintchine representation of LL we can express κL(θ)\kappa_{L}(\theta) and its derivatives in terms of the Lévy measure .\ell. We have that for θ(,ΘL)\theta\in(-\infty,\Theta_{L})

κL(θ)\displaystyle\kappa_{L}(\theta) =0(eθz1)(dz)<,\displaystyle=\int_{0}^{\infty}(e^{\theta z}-1)\ell(dz)<\infty,
κL(n)(θ)\displaystyle\kappa_{L}^{(n)}(\theta) =0zneθz(dz)<,n,\displaystyle=\int_{0}^{\infty}z^{n}e^{\theta z}\ell(dz)<\infty,\quad n\in\mathbb{N},

showing, in fact, that κL(n)(θ)>0,n.\kappa_{L}^{(n)}(\theta)>0,n\in\mathbb{N}.

Consider the OU processes

X(t)\displaystyle X(t) =X(0)α0tX(s)𝑑s+0tσ(s)𝑑W(s)t[0,T],\displaystyle=X(0)-\alpha\int_{0}^{t}X(s)ds+\int_{0}^{t}\sigma(s)dW(s)\quad t\in[0,T], (2.2)
σ2(t)\displaystyle\sigma^{2}(t) =σ2(0)ρ0tσ2(s)𝑑s+L(t),t[0,T],\displaystyle=\sigma^{2}(0)-\rho\int_{0}^{t}\sigma^{2}(s)ds+L(t),\quad t\in[0,T], (2.3)

with α,ρ>0,X(0),σ2(0)>0.\alpha,\rho>0,X(0)\in\mathbb{R},\sigma^{2}(0)>0. Note that, in equation 2.2, XX is written as a sum of a finite variation process and a martingale. We may also rewrite equation 2.3 as a sum of a finite variation part and pure jump martingale

σ2(t)=σ2(0)+0t(κL(0)ρσ2(s))𝑑s+0t0zN~L(ds,dz),t[0,T],\sigma^{2}(t)=\sigma^{2}(0)+\int_{0}^{t}(\kappa_{L}^{\prime}(0)-\rho\sigma^{2}(s))ds+\int_{0}^{t}\int_{0}^{\infty}z\tilde{N}^{L}(ds,dz),\quad t\in[0,T],

where N~L(ds,dz)NL(ds,dz)ds(dz)\tilde{N}^{L}(ds,dz)\triangleq N^{L}(ds,dz)-ds\ \ell(dz) is the compensated version of NL(ds,dz)N^{L}(ds,dz). In the notation of Shiryaev [22], page 669, the predictable characteristic triplets (with respect to the pseudo truncation function g(x)=xg(x)=x) of XX and σ2\sigma^{2} are given by

(BX(t),CX(t),νX(dt,dz))=(α0tX(s))ds,0tσ2(s)ds,0),t[0,T],(B^{X}(t),C^{X}(t),\nu^{X}(dt,dz))=(-\alpha\int_{0}^{t}X(s))ds,\int_{0}^{t}\sigma^{2}(s)ds,0),\quad t\in[0,T],

and

(Bσ2(t),Cσ2(t),νσ2(dt,dz))=(0t(κL(0)ρσ2(s))𝑑s,0,(dz)dt),t[0,T],(B^{\sigma^{2}}(t),C^{\sigma^{2}}(t),\nu^{\sigma^{2}}(dt,dz))=(\int_{0}^{t}(\kappa_{L}^{\prime}(0)-\rho\sigma^{2}(s))ds,0,\ell(dz)dt),\quad t\in[0,T],

respectively. In addition, applying Itô’s Formula to eαtX(t)e^{\alpha t}X(t) and eρtσ2(t),e^{\rho t}\sigma^{2}(t), one can find the following explicit expressions for X(t)X(t) and σ2(t)\sigma^{2}(t)

X(t)\displaystyle X(t) =X(s)eα(ts)+stσ(u)eα(tu)𝑑W(u),\displaystyle=X(s)e^{-\alpha(t-s)}+\int_{s}^{t}\sigma(u)e^{-\alpha(t-u)}dW(u), (2.4)
σ2(t)\displaystyle\sigma^{2}(t) =σ2(s)eρ(ts)+κL(0)ρ(1eρ(ts))+st0eρ(tu)zN~L(du,dz),\displaystyle=\sigma^{2}(s)e^{-\rho(t-s)}+\frac{\kappa_{L}^{\prime}(0)}{\rho}(1-e^{-\rho(t-s)})+\int_{s}^{t}\int_{0}^{\infty}e^{-\rho(t-u)}z\tilde{N}^{L}(du,dz), (2.5)

where 0stT.0\leq s\leq t\leq T.

Using the notation in Kallsen and Muhle-Karbe [18], we have that the process Z=(Z1(t),Z2(t))(σ2(t),X(t))Z=(Z^{1}(t),Z_{2}(t))\triangleq(\sigma^{2}(t),X(t)) has affine differential characteristics given by

β0\displaystyle\beta_{0} =(κL(0)0),γ0=(0000),φ0(A)=0𝟏A(z,0)(dz),A(2)\displaystyle=\left(\begin{array}[c]{c}\kappa_{L}^{\prime}(0)\\ 0\end{array}\right),\quad\gamma_{0}=\left(\begin{array}[c]{cc}0&0\\ 0&0\end{array}\right),\quad\varphi_{0}(A)=\int_{0}^{\infty}\boldsymbol{1}_{A}(z,0)\ell(dz),\forall A\in\mathcal{B}(\mathbb{R}^{2})
β1\displaystyle\beta_{1} =(ρ0),γ1=(0001),φ1(A)0,A(2),\displaystyle=\left(\begin{array}[c]{c}-\rho\\ 0\end{array}\right),\quad\gamma_{1}=\left(\begin{array}[c]{cc}0&0\\ 0&1\end{array}\right),\quad\varphi_{1}(A)\equiv 0,\forall A\in\mathcal{B}(\mathbb{R}^{2}),
β2\displaystyle\beta_{2} =(0α),γ2=(0000),φ2(A)0,A(2).\displaystyle=\left(\begin{array}[c]{c}0\\ -\alpha\end{array}\right),\quad\gamma_{2}=\left(\begin{array}[c]{cc}0&0\\ 0&0\end{array}\right),\quad\varphi_{2}(A)\equiv 0,\forall A\in\mathcal{B}(\mathbb{R}^{2}).

These characteristics are admissible and correspond to an affine process in +×.\mathbb{R}_{+}\times\mathbb{R}.

3. The change of measure

We will consider a parametrized family of measure changes which will allow us to simultaneously modify the speed and the level of mean reversion in equations (2.2) and (2.3). The density processes of these measure changes will be determined by the stochastic exponential of certain martingales. To this end, consider the following family of kernels

Gθ1,β1(t)\displaystyle G_{\theta_{1},\beta_{1}}(t) σ1(t)(θ1+αβ1X(t)),t[0,T],\displaystyle\triangleq\sigma^{-1}(t)\left(\theta_{1}+\alpha\beta_{1}X(t)\right),\quad t\in[0,T], (3.1)
Hθ2,β2(t,z)\displaystyle H_{\theta_{2},\beta_{2}}(t,z) eθ2z(1+ρβ2κL′′(θ2)zσ2(t)),t[0,T],z.\displaystyle\triangleq e^{\theta_{2}z}\left(1+\frac{\rho\beta_{2}}{\kappa_{L}^{\prime\prime}(\theta_{2})}z\sigma^{2}(t-)\right),\quad t\in[0,T],z\in\mathbb{R}. (3.2)

The parameters β¯(β1,β2)\bar{\beta}\triangleq(\beta_{1},\beta_{2}) and θ¯(θ1,θ2)\bar{\theta}\triangleq(\theta_{1},\theta_{2}) will take values on the following sets β¯[0,1]2,θ¯D¯L×DL,\bar{\beta}\in[0,1]^{2},\bar{\theta}\in\bar{D}_{L}\triangleq\mathbb{R}\times D_{L},where DL(,ΘL/2)D_{L}\triangleq(-\infty,\Theta_{L}/2) and ΘL\Theta_{L} is given by equation (2.1). By Assumption 1 and Remarks 2.1 and 2.2, these kernels are well defined.

Example 3.1.

Typical examples of ,ΘL\ell,\Theta_{L} and DLD_{L} are the following:

  1. (1)

    Bounded support: LL has a jump of size a,a, i.e. =δa.\ell=\delta_{a}. In this case ΘL=\Theta_{L}=\infty and DL=.D_{L}=\mathbb{R}.

  2. (2)

    Finite activity: LL is a compound Poisson process with exponential jumps, i.e., (dz)=ceλz1(0,)dz,\ell(dz)=ce^{-\lambda z}1_{(0,\infty)}\allowbreak dz, for some c>0c>0 and λ>0.\lambda>0. In this case ΘL=λ\Theta_{L}=\lambda and DL=(,λ/2).D_{L}=(-\infty,\lambda/2).

  3. (3)

    Infinite activity: LL is a tempered stable subordinator, i.e., (dz)=cz(1+α)eλz1(0,)dz,\ell(dz)=cz^{-(1+\alpha)}\allowbreak e^{-\lambda z}\allowbreak 1_{(0,\infty)}dz, for some c>0,λ>0c>0,\lambda>0 and α[0,1).\alpha\in[0,1). In this case also ΘL=λ\Theta_{L}=\lambda and DL=(,λ/2).D_{L}=(-\infty,\lambda/2).

Next, for β¯[0,1]2,θ¯D¯L,\bar{\beta}\in[0,1]^{2},\bar{\theta}\in\bar{D}_{L}, define the following family of Wiener and Poisson integrals

G~θ1,β1(t)\displaystyle\tilde{G}_{\theta_{1},\beta_{1}}(t) 0tGθ1,β1(s)𝑑W(s),t[0,T],\displaystyle\triangleq\int_{0}^{t}G_{\theta_{1},\beta_{1}}(s)dW(s),\quad t\in[0,T],
H~θ2,β2(t)\displaystyle\tilde{H}_{\theta_{2},\beta_{2}}(t) 0t0(Hθ2,β2(s,z)1)N~L(ds,dz),t[0,T],\displaystyle\triangleq\int_{0}^{t}\int_{0}^{\infty}\left(H_{\theta_{2},\beta_{2}}(s,z)-1\right)\tilde{N}^{L}(ds,dz),\quad t\in[0,T],

associated to the kernels Gθ1,β1G_{\theta_{1},\beta_{1}} and Hθ2,β2,H_{\theta_{2},\beta_{2}}, respectively.

We propose a family of measure changes given by Qθ¯,β¯P,β¯[0,1]2,θ¯D¯L,Q_{\bar{\theta},\bar{\beta}}\sim P,\bar{\beta}\in[0,1]^{2},\bar{\theta}\in\bar{D}_{L}, with

dQθ¯,β¯dP|t(G~θ1,β1+H~θ2,β2)(t),t[0,T].\left.\frac{dQ_{\bar{\theta},\bar{\beta}}}{dP}\right|_{\mathcal{F}_{t}}\triangleq\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}}+\tilde{H}_{\theta_{2},\beta_{2}})(t),\quad t\in[0,T]. (3.3)

Let us assume for a moment that (G~θ1,β1+H~θ2,β2)\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}}+\tilde{H}_{\theta_{2},\beta_{2}}) is a strictly positive true martingale (this will be proven in Theorem 3.4 below): Then, by Girsanov’s theorem for semimartingales (Theorems 1 and 3, pages 702 and 703 in Shiryaev [22]), the process X(t)X(t) and σ2(t)\sigma^{2}(t) become

X(t)\displaystyle X(t) =X(0)+BQθ¯,β¯X(t)+σ(t)WQθ¯,β¯(t),t[0,T],\displaystyle=X(0)+B_{Q_{\bar{\theta},\bar{\beta}}}^{X}(t)+\sigma(t)W_{Q_{\bar{\theta},\bar{\beta}}}(t),\quad t\in[0,T],
σ2(t)\displaystyle\sigma^{2}(t) =σ2(0)+BQθ¯,β¯σ2(t)+0t0zN~Qθ¯,β¯L(ds,dz),t[0,T],\displaystyle=\sigma^{2}(0)+B_{Q_{\bar{\theta},\bar{\beta}}}^{\sigma^{2}}(t)+\int_{0}^{t}\int_{0}^{\infty}z\tilde{N}_{Q_{\bar{\theta},\bar{\beta}}}^{L}(ds,dz),\quad t\in[0,T],

with

BQθ¯,β¯X(t)\displaystyle B_{Q_{\bar{\theta},\bar{\beta}}}^{X}(t) =0t(θ1α(1β1)X(s))𝑑s,t[0,T],\displaystyle=\int_{0}^{t}(\theta_{1}-\alpha(1-\beta_{1})X(s))ds,\quad t\in[0,T], (3.4)
BQθ¯,β¯σ2(t)\displaystyle B_{Q_{\bar{\theta},\bar{\beta}}}^{\sigma^{2}}(t) =0t(κL(0)ρσ2(s))𝑑s+0t0z(Hθ2,β2(s,z)1)(dz)𝑑s\displaystyle=\int_{0}^{t}(\kappa_{L}^{\prime}(0)-\rho\sigma^{2}(s))ds+\int_{0}^{t}\int_{0}^{\infty}z(H_{\theta_{2},\beta_{2}}(s,z)-1)\ell(dz)ds (3.5)
=0t{(κL(0)ρσ2(s))+0z(eθ2z1)(dz)\displaystyle=\int_{0}^{t}\{(\kappa_{L}^{\prime}(0)-\rho\sigma^{2}(s))+\int_{0}^{\infty}z(e^{\theta_{2}z}-1)\ell(dz)
+ρβ2κL′′(θ2)0z2eθ2z(dz)σ2(s)}ds\displaystyle\qquad+\frac{\rho\beta_{2}}{\kappa_{L}^{\prime\prime}(\theta_{2})}\int_{0}^{\infty}z^{2}e^{\theta_{2}z}\ell(dz)\sigma^{2}(s-)\}ds
=0t(κL(θ2)ρ(1β2)σ2(s))𝑑s,t[0,T],\displaystyle=\int_{0}^{t}\left(\kappa_{L}^{\prime}(\theta_{2})-\rho(1-\beta_{2})\sigma^{2}(s)\right)ds,\quad t\in[0,T],

where WQθ¯,β¯W_{Q_{\bar{\theta},\bar{\beta}}} is a Qθ¯,β¯Q_{\bar{\theta},\bar{\beta}}-standard Wiener process and the Qθ¯,β¯Q_{\bar{\theta},\bar{\beta}}-compensator measure of σ2\sigma^{2} (and LL) is

vQθ¯,β¯σ2(dt,dz)=vQθ¯,β¯L(dt,dz)=Hθ2,β2(t,z)(dz)dt.v_{Q_{\bar{\theta},\bar{\beta}}}^{\sigma^{2}}(dt,dz)=v_{Q_{\bar{\theta},\bar{\beta}}}^{L}(dt,dz)=H_{\theta_{2},\beta_{2}}(t,z)\ell(dz)dt.

In conclusion, the semimartingale triplet for XX and σ2\sigma^{2} under Qθ¯,β¯Q_{\bar{\theta},\bar{\beta}} are given by (BQθ¯,β¯X,0σ2(s)𝑑s,0)(B_{Q_{\bar{\theta},\bar{\beta}}}^{X},\int_{0}^{\cdot}\sigma^{2}(s)ds,0) and (BQθ¯,β¯σ2,0,vQθ¯,β¯σ2),(B_{Q_{\bar{\theta},\bar{\beta}}}^{\sigma^{2}},0,v_{Q_{\bar{\theta},\bar{\beta}}}^{\sigma^{2}}), respectively.

Remark 3.2.

Under Qθ¯,β¯,Q_{\bar{\theta},\bar{\beta}}, the process Z=(σ2(t),X(t))Z=(\sigma^{2}(t),X(t)) is affine with differential characteristics given by

β0\displaystyle\beta_{0} =(κL(θ2)θ1),γ0=(0000),φ0(A)=0𝟏A(z,0)eθ2z(dz),A(2),\displaystyle=\left(\begin{array}[c]{c}\kappa_{L}^{\prime}(\theta_{2})\\ \theta_{1}\end{array}\right),\quad\gamma_{0}=\left(\begin{array}[c]{cc}0&0\\ 0&0\end{array}\right),\quad\varphi_{0}(A)=\int_{0}^{\infty}\boldsymbol{1}_{A}(z,0)e^{\theta_{2}z}\ell(dz),\forall A\in\mathcal{B}(\mathbb{R}^{2}),
β1\displaystyle\beta_{1} =(ρ(1β2)0),γ1=(0001),φ1(A)=0𝟏A(z,0)ρβ2κL′′(θ2)zeθ2z(dz),A(2),\displaystyle=\left(\begin{array}[c]{c}-\rho(1-\beta_{2})\\ 0\end{array}\right),\quad\gamma_{1}=\left(\begin{array}[c]{cc}0&0\\ 0&1\end{array}\right),\quad\varphi_{1}(A)=\int_{0}^{\infty}\boldsymbol{1}_{A}(z,0)\frac{\rho\beta_{2}}{\kappa_{L}^{\prime\prime}(\theta_{2})}ze^{\theta_{2}z}\ell(dz),\forall A\in\mathcal{B}(\mathbb{R}^{2}),
β2\displaystyle\beta_{2} =(0α(1β1)),γ2=(0000),φ2(A)0,A(2).\displaystyle=\left(\begin{array}[c]{c}0\\ -\alpha(1-\beta_{1})\end{array}\right),\quad\gamma_{2}=\left(\begin{array}[c]{cc}0&0\\ 0&0\end{array}\right),\quad\varphi_{2}(A)\equiv 0,\forall A\in\mathcal{B}(\mathbb{R}^{2}).

These characteristics are admissible and correspond to an affine process in +×.\mathbb{R}_{+}\times\mathbb{R}.

Remark 3.3.

Under Qθ¯,β¯,Q_{\bar{\theta},\bar{\beta}}, σ2\sigma^{2} still satisfies the Langevin equation with different parameters, that is, the measure change preserves the structure of the equations for σ2\sigma^{2}. However, the process LL is not a Lévy process under Qθ¯,β¯Q_{\bar{\theta},\bar{\beta}}, but it remains a semimartingale. The equation for XX is the same under the new measure but with different parameters. Therefore, one can use Itô’s Formula again to obtain the following explicit expressions for XX and σ2\sigma^{2}

X(t)\displaystyle X(t) =X(s)eα(1β1)(ts)+θ1α(1β1)(1eα(1β1)(ts))\displaystyle=X(s)e^{-\alpha(1-\beta_{1})(t-s)}+\frac{\theta_{1}}{\alpha(1-\beta_{1})}(1-e^{-\alpha(1-\beta_{1})(t-s)}) (3.6)
+stσ(u)eα(1β1)(tu)𝑑WQθ¯,β¯(u),\displaystyle\qquad+\int_{s}^{t}\sigma(u)e^{-\alpha(1-\beta_{1})(t-u)}dW_{Q_{\bar{\theta},\bar{\beta}}}(u),
σ2(t)\displaystyle\sigma^{2}(t) =σ2(s)eρ(1β2)(ts)+κL(θ2)ρ(1β2)(1eρ(1β2)(ts))\displaystyle=\sigma^{2}(s)e^{-\rho(1-\beta_{2})(t-s)}+\frac{\kappa_{L}^{\prime}(\theta_{2})}{\rho(1-\beta_{2})}(1-e^{-\rho(1-\beta_{2})(t-s)}) (3.7)
+st0eρ(1β2)(tu)zN~Qθ,βL(du,dz),\displaystyle\qquad+\int_{s}^{t}\int_{0}^{\infty}e^{-\rho(1-\beta_{2})(t-u)}z\tilde{N}_{Q_{\theta,\beta}}^{L}(du,dz),

where 0stT.0\leq s\leq t\leq T.

We prove that Qθ¯,β¯Q_{\bar{\theta},\bar{\beta}} is a true probability measure, that is, (G~θ1,β1+H~θ2,β2)(t)\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}}+\tilde{H}_{\theta_{2},\beta_{2}})(t) is a strictly positive true martingale under PP for tTt\leq T. We have the following theorem.

Theorem 3.4.

Let θD¯L,β¯[0,1]2\theta\in\bar{D}_{L},\bar{\beta}\in[0,1]^{2}. Then (G~θ1,β1+H~θ2,β2)={(G~θ1,β1+H~θ2,β2)(t)}t[0,T]\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}}+\tilde{H}_{\theta_{2},\beta_{2}})=\{\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}}+\tilde{H}_{\theta_{2},\beta_{2}})(t)\}_{t\in[0,T]} is a strictly positive true martingale under PP.

Proof.

That (G~θ1,β1+H~θ2,β2)\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}}+\tilde{H}_{\theta_{2},\beta_{2}}) is strictly positive follows easily from the fact that the Lévy process LL is a subordinator as this yields strictly positive jumps of G~θ1,β1+H~θ2,β2\tilde{G}_{\theta_{1},\beta_{1}}+\tilde{H}_{\theta_{2},\beta_{2}}. It holds that [G~θ1,β1,H~θ2,β2],[\tilde{G}_{\theta_{1},\beta_{1}},\tilde{H}_{\theta_{2},\beta_{2}}], the quadratic co-variation between G~θ1,β1\tilde{G}_{\theta_{1},\beta_{1}} and H~θ2,β2,\tilde{H}_{\theta_{2},\beta_{2}}, is identically zero, by Yor’s formula in Protter [21, Theorem 38]. Hence, we can write

(G~θ1,β1+H~θ2,β2)(t)=(G~θ1,β1)(t)(H~θ2,β2)(t),t[0,T].\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}}+\tilde{H}_{\theta_{2},\beta_{2}})(t)=\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}})(t)\mathcal{E}(\tilde{H}_{\theta_{2},\beta_{2}})(t),\quad t\in[0,T]. (3.8)

By classical martingale theory, we know that (G~θ1,β1+H~θ2,β2)\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}}+\tilde{H}_{\theta_{2},\beta_{2}}) is a true martingale if and only if

𝔼P[(G~θ1,β1+H~θ2,β2)(T)]=1,\mathbb{E}_{P}[\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}}+\tilde{H}_{\theta_{2},\beta_{2}})(T)]=1,

which, using Yor’s formula, is equivalent to showing that

𝔼P[(G~θ1,β1)(T)(H~θ2,β2)(T)]=1.\mathbb{E}_{P}[\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}})(T)\mathcal{E}(\tilde{H}_{\theta_{2},\beta_{2}})(T)]=1.

Let, TL\mathcal{F}_{T}^{L} be the σ\sigma-algebra generated by LL up to time T,T, then we have that

𝔼P[(G~θ1,β1)(T)(H~θ2,β2)(T)]=𝔼P[𝔼P[(G~θ1,β1)(T)|TL](H~θ2,β2)(T)].\mathbb{E}_{P}[\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}})(T)\mathcal{E}(\tilde{H}_{\theta_{2},\beta_{2}})(T)]=\mathbb{E}_{P}[\mathbb{E}_{P}[\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}})(T)|\mathcal{F}_{T}^{L}]\mathcal{E}(\tilde{H}_{\theta_{2},\beta_{2}})(T)].

If we show that 𝔼P[(G~θ1,β1)(T)|TL]1,\mathbb{E}_{P}[\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}})(T)|\mathcal{F}_{T}^{L}]\equiv 1, then we will have finished, because by Theorem 3.10 in Benth and Ortiz-Latorre [9], we have that (H~θ2,β2)\mathcal{E}(\tilde{H}_{\theta_{2},\beta_{2}}) is a true martingale and, hence, 𝔼P[(H~θ2,β2)(T)]=1.\mathbb{E}_{P}[\mathcal{E}(\tilde{H}_{\theta_{2},\beta_{2}})(T)]=1. The idea of the proof is based on the fact that 𝔼P[(G~θ1,β1)(T)|TL]\mathbb{E}_{P}[\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}})(T)|\mathcal{F}_{T}^{L}] is the expectation of (G~θ1,β1)(T)\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}})(T) assuming that σ(t)\sigma(t) is a deterministic function that, in addition, is bounded below by σ(0)eρt.\sigma(0)e^{-\rho t}. Using this information one can show that, conditionally on knowing σ,(G~θ1,β1)\sigma,\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}}) is a true martingale and, hence, 𝔼P[(G~θ1,β1)(T)]=1.\mathbb{E}_{P}[\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}})(T)]=1. Let us sketch the proof that is basically the same as in Section 3.1 in [9] but, now, with σ\sigma being a function. First, we show that, conditionally on TL,\mathcal{F}_{T}^{L}, G~θ1,β1\tilde{G}_{\theta_{1},\beta_{1}} is a square integrable PP-martingale because

𝔼P[(G~θ1,β1)2|TL]\displaystyle\mathbb{E}_{P}[(\tilde{G}_{\theta_{1},\beta_{1}})^{2}|\mathcal{F}_{T}^{L}] =𝔼P[0Tσ2(t)(θ1+αβ1X(t))2𝑑t|TL]\displaystyle=\mathbb{E}_{P}[\int_{0}^{T}\sigma^{-2}(t)\left(\theta_{1}+\alpha\beta_{1}X(t)\right)^{2}dt|\mathcal{F}_{T}^{L}]
2σ(0)2e2ρT(θ12T+α2𝔼P[0TX2(t)𝑑t])<,\displaystyle\leq 2\sigma(0)^{-2}e^{2\rho T}\left(\theta_{1}^{2}T+\alpha^{2}\mathbb{E}_{P}[\int_{0}^{T}X^{2}(t)dt]\right)<\infty,

(see Proposition 3.6. in [9]). To show that (G~θ1,β1)\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}}) is a PP-martingale on [0,T],[0,T], we consider a reducing sequence of stopping times {τn}n1\{\tau_{n}\}_{n\geq 1} for (G~θ1,β1)\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}}) and, proceeding as in Theorem 3.7 in [9], we define a sequence of probability measure {Qθ1,β1n}n1\{Q_{\theta_{1},\beta_{1}}^{n}\}_{n\geq 1} with Radon-Nykodim densities given by dQθ1,β1ndP|t(G~θ1,β1)τn(t),t[0,T],n1.\left.\frac{dQ_{\theta_{1},\beta_{1}}^{n}}{dP}\right|_{\mathcal{F}_{t}}\triangleq\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}})^{\tau_{n}}(t),t\in[0,T],n\geq 1. Doing the same reasonings as in Theorem 3.7 in [9], we reduce the problem to prove that

supn1𝔼Qθ1,β1n[0T𝟏[0,τn](Gθ1,β1(t))2𝑑t]<.\sup_{n\geq 1}\mathbb{E}_{Q_{\theta_{1},\beta_{1}}^{n}}[\int_{0}^{T}\boldsymbol{1}_{[0,\tau_{n}]}(G_{\theta_{1},\beta_{1}}(t))^{2}dt]<\infty.

Now, one has

𝔼Qθ1,β1n[0T𝟏[0,τn](Gθ1,β1(t))2𝑑t]2σ(0)2e2ρT(θ12T+α2𝔼Qθ1,β1n[0T𝟏[0,τn]X2(t)𝑑t]).\mathbb{E}_{Q_{\theta_{1},\beta_{1}}^{n}}[\int_{0}^{T}\boldsymbol{1}_{[0,\tau_{n}]}(G_{\theta_{1},\beta_{1}}(t))^{2}dt]\leq 2\sigma(0)^{-2}e^{2\rho T}\left(\theta_{1}^{2}T+\alpha^{2}\mathbb{E}_{Q_{\theta_{1},\beta_{1}}^{n}}[\int_{0}^{T}\boldsymbol{1}_{[0,\tau_{n}]}X^{2}(t)dt]\right).

To bound the last expectation in the previous expression we use that we know the dynamics of X(t)X(t) for t[0,τn]t\in[0,\tau_{n}] under Qθ1,β1nQ_{\theta_{1},\beta_{1}}^{n}, which is obtained from equation (3.6) by setting s=0s=0 and t<τn.t<\tau_{n}. Therefore, we can write

𝔼Qθ1,β1n[0T𝟏[0,τn](t)X(t)2𝑑t]\displaystyle\mathbb{E}_{Q_{\theta_{1},\beta_{1}}^{n}}[\int_{0}^{T}\boldsymbol{1}_{[0,\tau_{n}]}(t)X(t)^{2}dt]
2{𝔼Qθ1,β1n[0T𝟏[0,τn](t)(X(0)eα(1β1)t+θ1α(1β1)(1eα(1β1)t))2dt]\displaystyle\qquad\leq 2\left\{\mathbb{E}_{Q_{\theta_{1},\beta_{1}}^{n}}[\int_{0}^{T}\boldsymbol{1}_{[0,\tau_{n}]}(t)\left(X(0)e^{-\alpha(1-\beta_{1})t}+\frac{\theta_{1}}{\alpha(1-\beta_{1})}\left(1-e^{-\alpha(1-\beta_{1})t}\right)\right)^{2}dt]\right.
+𝔼Qθ1,β1n[0T𝟏[0,τn](t)(0tσ(s)eα(1β1)(ts)dWQθ1,β1n(s))2dt]}\displaystyle\qquad\qquad\left.+\mathbb{E}_{Q_{\theta_{1},\beta_{1}}^{n}}[\int_{0}^{T}\boldsymbol{1}_{[0,\tau_{n}]}(t)\left(\int_{0}^{t}\sigma(s)e^{-\alpha(1-\beta_{1})(t-s)}dW_{Q_{\theta_{1},\beta_{1}}^{n}}(s)\right)^{2}dt]\right\}
2T{(|X(0)|+(|θ1|)T)2+σ(0)2e2ρTT2}<.\displaystyle\qquad\leq 2T\{\left(\left|X(0)\right|+\left(\left|\theta_{1}\right|\right)T\right)^{2}+\sigma(0)^{-2}e^{2\rho T}T^{2}\}<\infty.

Here, we have used that the function η(x)(1exa)/xa\eta(x)\triangleq(1-e^{-xa})/x\leq a for x,a0,x,a\geq 0, and that

𝔼Qθ1,β1n[(0tσ(s)eα(1β1)(ts)𝑑WQθ1,β1n(s))2]\displaystyle\mathbb{E}_{Q_{\theta_{1},\beta_{1}}^{n}}[\left(\int_{0}^{t}\sigma(s)e^{-\alpha(1-\beta_{1})(t-s)}dW_{Q_{\theta_{1},\beta_{1}}^{n}}(s)\right)^{2}]
=σ(0)2e2ρT0te2α(1β1)(ts)𝑑sσ(0)2e2ρTT.\displaystyle\qquad\qquad=\sigma(0)^{-2}e^{2\rho T}\int_{0}^{t}e^{-2\alpha(1-\beta_{1})(t-s)}ds\leq\sigma(0)^{-2}e^{2\rho T}T.

The Theorem follows. ∎

We also have the following result on the independence of the driving noise processes after the change of measure:

Lemma 3.5.

Under Qθ¯,β¯Q_{\bar{\theta},\bar{\beta}}, the Brownian motion WQθ¯,β¯W_{Q_{\bar{\theta},\bar{\beta}}} and the random measure NQθ¯,β¯LN_{Q_{\bar{\theta},\bar{\beta}}}^{L} are independent.

Proof.

To prove the independence of WQθ¯,β¯W_{Q_{\bar{\theta},\bar{\beta}}} and NQθ¯,β¯LN_{Q_{\bar{\theta},\bar{\beta}}}^{L} under Qθ¯,β¯,Q_{\bar{\theta},\bar{\beta}}, it is sufficient to prove that

𝔼Qθ¯,β¯[exp(ij=1k(μjWQθ¯,β¯(tj)+ξj0tj0zN~Qθ¯,β¯L(ds,dz)))]\displaystyle\mathbb{E}_{Q_{\bar{\theta},\bar{\beta}}}[\exp(\mathrm{i}\sum_{j=1}^{k}\left(\mu_{j}W_{Q_{\bar{\theta},\bar{\beta}}}(t_{j})+\xi_{j}\int_{0}^{t_{j}}\int_{0}^{\infty}z\tilde{N}_{Q_{\bar{\theta},\bar{\beta}}}^{L}(ds,dz)\right))]
=𝔼Qθ¯,β¯[exp(ij=1kμjWQθ¯,β¯(tj))]𝔼Qθ¯,β¯[exp(ij=1kξj0tj0zN~Qθ¯,β¯L(ds,dz))],\displaystyle\qquad=\mathbb{E}_{Q_{\bar{\theta},\bar{\beta}}}[\exp(\mathrm{i}\sum_{j=1}^{k}\mu_{j}W_{Q_{\bar{\theta},\bar{\beta}}}(t_{j}))]\mathbb{E}_{Q_{\bar{\theta},\bar{\beta}}}[\exp(\mathrm{i}\sum_{j=1}^{k}\xi_{j}\int_{0}^{t_{j}}\int_{0}^{\infty}z\tilde{N}_{Q_{\bar{\theta},\bar{\beta}}}^{L}(ds,dz))],

for any μj,ξj,j=1,,k\mu_{j},\xi_{j}\in\mathbb{R},j=1,...,k and 0t1<t2<<tk1<tkT.0\leq t_{1}<t_{2}<\cdots<t_{k-1}<t_{k}\leq T. We will make use of the following notation: given a process Z={Z(t)}t[0,T]Z=\{Z(t)\}_{t\in[0,T]} we will denote by ΔjZ=Z(tj)Z(tj1),j=1,,k,\Delta_{j}Z=Z(t_{j})-Z(t_{j-1}),j=1,...,k, where t0=0,t_{0}=0, by convention. We have that

𝔼Qθ¯,β¯[exp(ij=1k(μjWQθ¯,β¯(tj)+ξj0tj0zN~Qθ¯,β¯L(ds,dz)))]\displaystyle\mathbb{E}_{Q_{\bar{\theta},\bar{\beta}}}[\exp(\mathrm{i}\sum_{j=1}^{k}\left(\mu_{j}W_{Q_{\bar{\theta},\bar{\beta}}}(t_{j})+\xi_{j}\int_{0}^{t_{j}}\int_{0}^{\infty}z\tilde{N}_{Q_{\bar{\theta},\bar{\beta}}}^{L}(ds,dz)\right))]
=𝔼P[(G~θ1,β1+H~θ2,β2)(tk)exp(ij=1k(μjWQθ¯,β¯(tj)+ξj0tj0zN~Qθ¯,β¯L(ds,dz)))]\displaystyle=\mathbb{E}_{P}[\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}}+\tilde{H}_{\theta_{2},\beta_{2}})(t_{k})\exp(\mathrm{i}\sum_{j=1}^{k}\left(\mu_{j}W_{Q_{\bar{\theta},\bar{\beta}}}(t_{j})+\xi_{j}\int_{0}^{t_{j}}\int_{0}^{\infty}z\tilde{N}_{Q_{\bar{\theta},\bar{\beta}}}^{L}(ds,dz)\right))]
=𝔼P[𝔼P[(G~θ1,β1)(tk)exp(ij=1kμjWQθ¯,β¯(tj))|tkL](H~θ2,β2)(tk)exp(ij=1kξj0tj0zN~Qθ¯,β¯L(ds,dz))],\displaystyle=\mathbb{E}_{P}[\mathbb{E}_{P}[\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}})(t_{k})\exp(\mathrm{i}\sum_{j=1}^{k}\mu_{j}W_{Q_{\bar{\theta},\bar{\beta}}}(t_{j}))|\mathcal{F}_{t_{k}}^{L}]\mathcal{E}(\tilde{H}_{\theta_{2},\beta_{2}})(t_{k})\exp(\mathrm{i}\sum_{j=1}^{k}\xi_{j}\int_{0}^{t_{j}}\int_{0}^{\infty}z\tilde{N}_{Q_{\bar{\theta},\bar{\beta}}}^{L}(ds,dz))],

and

𝔼P[(G~θ1,β1)(tk)exp(ij=1kμjWQθ¯,β¯(tj))|tkL]\displaystyle\mathbb{E}_{P}[\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}})(t_{k})\exp(\mathrm{i}\sum_{j=1}^{k}\mu_{j}W_{Q_{\bar{\theta},\bar{\beta}}}(t_{j}))|\mathcal{F}_{t_{k}}^{L}]
=𝔼P[(G~θ1,β1)(tk1)exp(tk1tkGθ1,β1(s)dW(s)12tk1tkGθ1,β12(s)ds)\displaystyle=\mathbb{E}_{P}[\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}})(t_{k-1})\exp(\int_{t_{k-1}}^{t_{k}}G_{\theta_{1},\beta_{1}}(s)dW(s)-\frac{1}{2}\int_{t_{k-1}}^{t_{k}}G_{\theta_{1},\beta_{1}}^{2}(s)ds)
×exp(ij=1k1μjWQθ¯,β¯(tj)+iμkWQθ¯,β¯(tk1)+iμkΔWQθ¯,β¯)|tkL]\displaystyle\qquad\times\exp(\mathrm{i}\sum_{j=1}^{k-1}\mu_{j}W_{Q_{\bar{\theta},\bar{\beta}}}(t_{j})+\mathrm{i}\mu_{k}W_{Q_{\bar{\theta},\bar{\beta}}}(t_{k-1})+\mathrm{i}\mu_{k}\Delta W_{Q_{\bar{\theta},\bar{\beta}}})|\mathcal{F}_{t_{k}}^{L}]
=𝔼P[(G~θ1,β1)(tk1)exp(ij=1k1μjWQθ¯,β¯(tj)+iμkWQθ¯,β¯(tk1))\displaystyle=\mathbb{E}_{P}[\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}})(t_{k-1})\exp(\mathrm{i}\sum_{j=1}^{k-1}\mu_{j}W_{Q_{\bar{\theta},\bar{\beta}}}(t_{j})+\mathrm{i}\mu_{k}W_{Q_{\bar{\theta},\bar{\beta}}}(t_{k-1}))
×𝔼P[exp(tk1tkGθ1,β1(s)dW(s)12tk1tkGθ1,β12(s)ds\displaystyle\qquad\times\mathbb{E}_{P}[\exp(\int_{t_{k-1}}^{t_{k}}G_{\theta_{1},\beta_{1}}(s)dW(s)-\frac{1}{2}\int_{t_{k-1}}^{t_{k}}G_{\theta_{1},\beta_{1}}^{2}(s)ds
+iμk(ΔkWtk1tkGθ1,β1(s)ds))|tkLtk1W]|tkL].\displaystyle\qquad+\mathrm{i}\mu_{k}\left(\Delta_{k}W-\int_{t_{k-1}}^{t_{k}}G_{\theta_{1},\beta_{1}}(s)ds\right))|\mathcal{F}_{t_{k}}^{L}\vee\mathcal{F}_{t_{k-1}}^{W}]|\mathcal{F}_{t_{k}}^{L}].

Moreover, using similar arguments to those used in the proof of Theorem 3.4, we have that

exp(0t(Gθ1,β1(s)+iμk)𝑑W(s)120t(Gθ1,β1(s)+iμk)2𝑑s),\exp(\int_{0}^{t}(G_{\theta_{1},\beta_{1}}(s)+\mathrm{i}\mu_{k})dW(s)-\frac{1}{2}\int_{0}^{t}(G_{\theta_{1},\beta_{1}}(s)+\mathrm{i}\mu_{k})^{2}ds),

is a tkLtW\mathcal{F}_{t_{k}}^{L}\vee\mathcal{F}_{t}^{W}-martingale and, then, we get

𝔼P[exp(tk1tkGθ1,β1(s)𝑑W(s)12tk1tkGθ1,β12(s)𝑑s+iμk(ΔkWtk1tkGθ1,β1(s)𝑑s))|tkLtk1W]\displaystyle\mathbb{E}_{P}[\exp(\int_{t_{k-1}}^{t_{k}}G_{\theta_{1},\beta_{1}}(s)dW(s)-\frac{1}{2}\int_{t_{k-1}}^{t_{k}}G_{\theta_{1},\beta_{1}}^{2}(s)ds+\mathrm{i}\mu_{k}\left(\Delta_{k}W-\int_{t_{k-1}}^{t_{k}}G_{\theta_{1},\beta_{1}}(s)ds\right))|\mathcal{F}_{t_{k}}^{L}\vee\mathcal{F}_{t_{k-1}}^{W}]
=e12μk2Δkt𝔼P[exp(tk1tk(Gθ1,β1(s)+iμk)𝑑W(s)12tk1tk(Gθ1,β1(s)+iμk)2𝑑s)|tkLtk1W]\displaystyle=e^{-\frac{1}{2}\mu_{k}^{2}\Delta_{k}t}\mathbb{E}_{P}[\exp(\int_{t_{k-1}}^{t_{k}}(G_{\theta_{1},\beta_{1}}(s)+\mathrm{i}\mu_{k})dW(s)-\frac{1}{2}\int_{t_{k-1}}^{t_{k}}(G_{\theta_{1},\beta_{1}}(s)+\mathrm{i}\mu_{k})^{2}ds)|\mathcal{F}_{t_{k}}^{L}\vee\mathcal{F}_{t_{k-1}}^{W}]
=e12μk2Δkt.\displaystyle=e^{-\frac{1}{2}\mu_{k}^{2}\Delta_{k}t}.

Therefore,

𝔼P[(G~θ1,β1)(tk)exp(ij=1kμjWQθ¯,β¯(tj))|tkL]\displaystyle\mathbb{E}_{P}[\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}})(t_{k})\exp(\mathrm{i}\sum_{j=1}^{k}\mu_{j}W_{Q_{\bar{\theta},\bar{\beta}}}(t_{j}))|\mathcal{F}_{t_{k}}^{L}]
=e12μk2Δkt𝔼P[(G~θ1,β1)(tk1)exp(ij=1k1μjWQθ¯,β¯(tj)+iμkWQθ¯,β¯(tk1))|tkL].\displaystyle=e^{-\frac{1}{2}\mu_{k}^{2}\Delta_{k}t}\mathbb{E}_{P}[\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}})(t_{k-1})\exp(\mathrm{i}\sum_{j=1}^{k-1}\mu_{j}W_{Q_{\bar{\theta},\bar{\beta}}}(t_{j})+\mathrm{i}\mu_{k}W_{Q_{\bar{\theta},\bar{\beta}}}(t_{k-1}))|\mathcal{F}_{t_{k}}^{L}].

Repeating the previous conditioning trick, one gets that

𝔼P[(G~θ1,β1)(tk)exp(ij=1kμjWQθ¯,β¯(tj))|tkL]=exp(12j=1k(q=jkμq2)Δjt).\mathbb{E}_{P}[\mathcal{E}(\tilde{G}_{\theta_{1},\beta_{1}})(t_{k})\exp(\mathrm{i}\sum_{j=1}^{k}\mu_{j}W_{Q_{\bar{\theta},\bar{\beta}}}(t_{j}))|\mathcal{F}_{t_{k}}^{L}]=\exp\left(-\frac{1}{2}\sum_{j=1}^{k}\left(\sum_{q=j}^{k}\mu_{q}^{2}\right)\Delta_{j}t\right).

and, therefore,

𝔼Qθ¯,β¯[exp(ij=1k(μjWQθ¯,β¯(tj)+ξj0tj0zN~Qθ¯,β¯L(ds,dz)))]\displaystyle\mathbb{E}_{Q_{\bar{\theta},\bar{\beta}}}[\exp(\mathrm{i}\sum_{j=1}^{k}\left(\mu_{j}W_{Q_{\bar{\theta},\bar{\beta}}}(t_{j})+\xi_{j}\int_{0}^{t_{j}}\int_{0}^{\infty}z\tilde{N}_{Q_{\bar{\theta},\bar{\beta}}}^{L}(ds,dz)\right))]
=exp(12j=1k(q=jkμq)2Δjt)𝔼Qθ¯,β¯[exp(ij=1kξj0tj0zN~Qθ¯,β¯L(ds,dz))]\displaystyle=\exp\left(-\frac{1}{2}\sum_{j=1}^{k}\left(\sum_{q=j}^{k}\mu_{q}\right)^{2}\Delta_{j}t\right)\mathbb{E}_{Q_{\bar{\theta},\bar{\beta}}}[\exp(\mathrm{i}\sum_{j=1}^{k}\xi_{j}\int_{0}^{t_{j}}\int_{0}^{\infty}z\tilde{N}_{Q_{\bar{\theta},\bar{\beta}}}^{L}(ds,dz))]

On the other hand,

𝔼Qθ¯,β¯[exp(ij=1kμjWQθ¯,β¯(tj))]\displaystyle\mathbb{E}_{Q_{\bar{\theta},\bar{\beta}}}[\exp(\mathrm{i}\sum_{j=1}^{k}\mu_{j}W_{Q_{\bar{\theta},\bar{\beta}}}(t_{j}))] =𝔼Qθ¯,β¯[exp(ij=1k(q=jkμq)ΔjWQθ¯,β¯)]\displaystyle=\mathbb{E}_{Q_{\bar{\theta},\bar{\beta}}}[\exp(\mathrm{i}\sum_{j=1}^{k}\left(\sum_{q=j}^{k}\mu_{q}\right)\Delta_{j}W_{Q_{\bar{\theta},\bar{\beta}}})]
=exp(12j=1k(q=jkμq)2Δjt),\displaystyle=\exp\left(-\frac{1}{2}\sum_{j=1}^{k}\left(\sum_{q=j}^{k}\mu_{q}\right)^{2}\Delta_{j}t\right),

and we can conclude the proof. ∎

One of the particularities of electricity markets is that power is a non storable commodity and for that reason is not a directly tradeable financial asset. This entails that one can not derive the forward price of electricity from the classical buy-and-hold hedging argument. Using a risk-neutral pricing argument (see Benth, Šaltytė Benth and Koekebakker [5]), under the assumption of deterministic interest rates, the forward price at time 0t0\leq t, with time of delivery TT with tT<T,t\leq T<T^{\ast}, is given by FQ(t,T)𝔼Q[S(T)|t].F_{Q}(t,T)\triangleq\mathbb{E}_{Q}[S(T)|\mathcal{F}_{t}]. Here, QQ is any probability measure equivalent to the historical measure PP and t\mathcal{F}_{t} is the market information up to time tt. In what follows we will use the probability measure Q=Qθ¯,β¯Q=Q_{\bar{\theta},\bar{\beta}} introduced above, and let the spot price dynamics be given in terms of the process X(t)X(t) and σ2(t)\sigma^{2}(t) in (2.2)-(2.3). This will provide us with a parametric class of structure-preserving probability measures, extending the Esscher transform but still being reasonably analytically tractable from a pricing point of view.

Our choice of pricing measure can also be applied to temperature futures markets, where the underlying ”asset” is a temperature index measured in some location. Temperature is clearly not financially tradeable. There is empirical evidence for mean-reversion and stochastic volatility in temperature data, see Benth and Šaltytė Benth [3]. Yet another example is the freight rate market, where the ”spot” typically is an index obtained from opinions of traders. See Benth, Koekebakker and Taib [8] for stochastic modelling of freight rate spot data, with models of the form (2.2)-(2.3).

Oil and gas can typically be stored, and one can build a pricing model for forwards by including storage and transportation costs, as well as the convenience yield (see e.g. Eydeland and Wolyniec [11] and Geman [13]). However, we may also in this case use the probability measure Q=Qθ¯,β¯Q=Q_{\bar{\theta},\bar{\beta}} as a parametric class of pricing measures. Firstly, the underlying spot assets do not need to be (local) martingales under the pricing measure in these markets, although the assets are tradable, since there are frictions yielding market incompleteness. Secondly, the probability measures provide a flexible way to model the risk premium (as we shall see later), and therefore may be attractive over models that directly specifies the dynamics of a convenience yield, say (see e.g. Eydeland and Wolyniec [11] for such models). Note that in Benth [2], a model for the spot given by (2.2)-(2.3) has been shown to fit gas prices reasonably well.

We note that in electricity markets, the delivery of the underlying power takes place over a period of time [T1,T2],[T_{1},T_{2}], where 0<T1<T2<T.0<T_{1}<T_{2}<T^{\ast}. We call such contracts swap contracts and we will denote their price at time tT1t\leq T_{1} by

FQ(t,T1,T2)𝔼Q[1T2T1T1T2S(T)𝑑T|t].F_{Q}(t,T_{1},T_{2})\triangleq\mathbb{E}_{Q}\left[\frac{1}{T_{2}-T_{1}}\int_{T_{1}}^{T_{2}}S(T)dT|\mathcal{F}_{t}\right].

We can use the stochastic Fubini theorem to relate the price of forwards and swaps

FQ(t,T1,T2)1T2T1T1T2FQ(t,T)𝑑T.F_{Q}(t,T_{1},T_{2})\triangleq\frac{1}{T_{2}-T_{1}}\int_{T_{1}}^{T_{2}}F_{Q}(t,T)dT.

The risk premium for forward prices with a fixed delivery time is defined by the following expression

RQF(t,T)𝔼Q[S(T)|t]𝔼P[S(T)|t],R_{Q}^{F}(t,T)\triangleq\mathbb{E}_{Q}[S(T)|\mathcal{F}_{t}]-\mathbb{E}_{P}[S(T)|\mathcal{F}_{t}],

and for swap prices by

RQS(t,T1,T2)FQ(t,T1,T2)𝔼Q[1T2T1T1T2S(T)𝑑T|t]R_{Q}^{S}(t,T_{1},T_{2})\triangleq F_{Q}(t,T_{1},T_{2})-\mathbb{E}_{Q}[\frac{1}{T_{2}-T_{1}}\int_{T_{1}}^{T_{2}}S(T)dT|\mathcal{F}_{t}]

It is simple to see that

RQS(t,T1,T2)=1T2T1T1T2RQF(t,T)𝑑T.R_{Q}^{S}(t,T_{1},T_{2})=\frac{1}{T_{2}-T_{1}}\int_{T_{1}}^{T_{2}}R_{Q}^{F}(t,T)dT.

The risk premium measures the price discount a producer (seller) of power must accept compared to the predicted spot price at delivery. We shall use the risk premium to analyse the effect of our measure change on forward prices, and to discuss these in relation to stylized facts from the power markets.

4. Arithmetic spot model

We are interested in applying the previous probability measure change to study the implied risk premium. The first model for the spot price SS that we are going to consider is the arithmetic one. We define the arithmetic spot price model by

S(t)=Λa(t)+X(t),t[0,T],S(t)=\Lambda_{a}(t)+X(t),\quad t\in[0,T^{\ast}], (4.1)

where T>0T^{\ast}>0 is a fixed time horizon. The processes Λa\Lambda_{a} is assumed to be deterministic and it accounts for the seasonalities observed in the spot prices. We note in passing that such models have been considered by several authors for various energy markets. We refer to Lucia and Schwartz [20] for power markets and Dornier and Querel [10] for temperature derivatives with no stochastic volatility. More recently Benth, Šaltytė Benth and Koekebakker [5] has a general discussion of arithmetic models in energy markets (see also Garcia, Klüppelberg and Müller [12] for power markets), and Benth, Šaltytė Benth [3] for temperature markets with stochastic volatility.

In order to compute the forward prices and the risk premium associated to them in this model, we need to know the dynamics of SS (that is, of XX and σ2\sigma^{2}) under PP and under Q.Q. Explicit expressions for XX and σ2\sigma^{2} under PP are given by equations (2.4)\left(\ref{Equ_X_Explicit_P}\right) and (2.5),\left(\ref{Equ_Sigma_Explicit_P}\right), respectively. In the rest of this section, Q=Qθ¯,β¯,θ¯D¯L,β¯[0,1]2Q=Q_{\bar{\theta},\bar{\beta}},\bar{\theta}\in\bar{D}_{L},\bar{\beta}\in[0,1]^{2} defined by (3.3),\left(\ref{EquDefQ}\right), and the explicit expressions for XX and σ2\sigma^{2} under QQ are given in Remark 3.3,\ref{Remark_Dynamics_Q}, equations (3.6)\left(\ref{EquXDynam-Q}\right) and (3.7),\left(\ref{EquSigmaDynam-Q}\right), respectively.

Proposition 1.

The forward price FQ(t,T)F_{Q}(t,T) in the arithmetic spot model 4.1 is given by

FQ(t,T)=Λa(T)+X(t)eα(1β1)(Tt)+θ1α(1β1)(1eα(1β1)(Tt)).F_{Q}(t,T)=\Lambda_{a}(T)+X(t)e^{-\alpha(1-\beta_{1})(T-t)}+\frac{\theta_{1}}{\alpha(1-\beta_{1})}(1-e^{-\alpha(1-\beta_{1})(T-t)}).
Proof.

By equation (3.6)\left(\ref{EquXDynam-Q}\right) and using the basic properties of the conditional expectation we have that

FQ(t,T)\displaystyle F_{Q}(t,T) =𝔼Q[S(T)|t]=Λa(T)+X(t)eα(1β1)(Tt)\displaystyle=\mathbb{E}_{Q}[S(T)|\mathcal{F}_{t}]=\Lambda_{a}(T)+X(t)e^{-\alpha(1-\beta_{1})(T-t)}
+θ1α(1β1)(1eα(1β1)(Tt))\displaystyle\qquad+\frac{\theta_{1}}{\alpha(1-\beta_{1})}(1-e^{-\alpha(1-\beta_{1})(T-t)})
+𝔼Q[tTσ(s)eα(1β1)(Ts)𝑑WQ(s)|t].\displaystyle\qquad+\mathbb{E}_{Q}[\int_{t}^{T}\sigma(s)e^{-\alpha(1-\beta_{1})(T-s)}dW_{Q}(s)|\mathcal{F}_{t}].

Hence, the proof follows by showing that σ(t)eα(1β1)t\sigma(t)e^{\alpha(1-\beta_{1})t} belongs to L2(Ω×[0,T],Qdt)L^{2}(\Omega\times[0,T],Q\otimes dt)because, then, 0tσ(s)eα(1β1)s𝑑WQ(s)\int_{0}^{t}\sigma(s)e^{\alpha(1-\beta_{1})s}dW_{Q}(s) is a QQ-martingale and

𝔼Q[tTσ(s)eα(1β1)(Ts)𝑑WQ(s)|t]=eα(1β1)T𝔼Q[tTσ(s)eα(1β1)s𝑑WQ(s)|t]=0.\mathbb{E}_{Q}[\int_{t}^{T}\sigma(s)e^{-\alpha(1-\beta_{1})(T-s)}dW_{Q}(s)|\mathcal{F}_{t}]=e^{-\alpha(1-\beta_{1})T}\mathbb{E}_{Q}[\int_{t}^{T}\sigma(s)e^{\alpha(1-\beta_{1})s}dW_{Q}(s)|\mathcal{F}_{t}]=0.

Using the dynamics of σ2\sigma^{2} under Q,Q, see equation (3.7)(\ref{EquSigmaDynam-Q}), we get

𝔼Q[σ2(t)]\displaystyle\mathbb{E}_{Q}[\sigma^{2}(t)] =σ2(0)eρ(1β2)t+κL(θ2)ρ(1β2)(1eρ(1β2)t)\displaystyle=\sigma^{2}(0)e^{-\rho(1-\beta_{2})t}+\frac{\kappa_{L}^{\prime}(\theta_{2})}{\rho(1-\beta_{2})}(1-e^{-\rho(1-\beta_{2})t})
+𝔼Q[0t0eρ(1β2)(ts)zN~QL(ds,dz)]\displaystyle\qquad+\mathbb{E}_{Q}[\int_{0}^{t}\int_{0}^{\infty}e^{-\rho(1-\beta_{2})(t-s)}z\tilde{N}_{Q}^{L}(ds,dz)]
σ2(0)+κL(θ2)t\displaystyle\leq\sigma^{2}(0)+\kappa_{L}^{\prime}(\theta_{2})t

because 0t0eρ(1β2)szN~QL(ds,dz)\int_{0}^{t}\int_{0}^{\infty}e^{-\rho(1-\beta_{2})s}z\tilde{N}_{Q}^{L}(ds,dz) is a QQ-martingale starting at 0,0, see Lemma 4.3 in Benth and Ortiz-Latorre [9]. Hence,

𝔼Q[0Tσ2(t)e2αt𝑑t]\displaystyle\mathbb{E}_{Q}[\int_{0}^{T}\sigma^{2}(t)e^{2\alpha t}dt] =0T𝔼Q[σ2(t)]e2αt𝑑t\displaystyle=\int_{0}^{T}\mathbb{E}_{Q}[\sigma^{2}(t)]e^{2\alpha t}dt
0T(σ2(0)+κL(θ2)t)e2αt𝑑t\displaystyle\leq\int_{0}^{T}\left(\sigma^{2}(0)+\kappa_{L}^{\prime}(\theta_{2})t\right)e^{2\alpha t}dt
T(σ2(0)+κL(θ2)T)e2αT<,\displaystyle\leq T\left(\sigma^{2}(0)+\kappa_{L}^{\prime}(\theta_{2})T\right)e^{2\alpha T}<\infty,

and we can conclude. ∎

Using the previous result on forward prices we get the following formula for the risk premium.

Theorem 4.1.

The risk premium RQF(t,T)R_{Q}^{F}(t,T) for the forward price in the arithmetic spot model (4.1)\left(\ref{Equ_Arith_Model}\right) is given by

RQF(t,T)=X(t)eα(Tt)(eαβ1(Tt)1)+θ1α(1β1)(1eα(1β1)(Tt)).R_{Q}^{F}(t,T)=X(t)e^{-\alpha(T-t)}\left(e^{\alpha\beta_{1}(T-t)}-1\right)+\frac{\theta_{1}}{\alpha(1-\beta_{1})}(1-e^{-\alpha(1-\beta_{1})(T-t)}).

We now analyse the risk premium in more detail under various conditions.

4.1. Discussion on the risk premium

The first remarkable property of this measure change is that it only depends on the parameters that change the speed and level of mean reversion, i.e., θ1\theta_{1} and β1.\beta_{1}. Moreover, if θ1=β1=0\theta_{1}=\beta_{1}=0 we have RQF(t,T)0,R_{Q}^{F}(t,T)\equiv 0, whatever the values of θ2\theta_{2} and β2\beta_{2} This means that, in the arithmetic model, we can have very different pricing measures regarding the volatility properties and have zero risk premium. In other words, there is an unspanned volatility component that can not be explained by just observing the forward curve. Secondly, as long as the parameter β10,\beta_{1}\neq 0, the risk premium is stochastic. Note that when β¯=(0,0),\bar{\beta}=(0,0), our measure change coincides with the Esscher transform. In the Esscher case, the risk premium has a deterministic evolution given by

RQF(t,T)=θ1α(1eα(Tt)),R_{Q}^{F}(t,T)=\frac{\theta_{1}}{\alpha}(1-e^{-\alpha(T-t)}), (4.2)

an already known result, see Benth [2].

From now on we shall rewrite the expressions for the risk premium in terms of the time to maturity τ=Tt\tau=T-t and, slightly abusing the notation, we will write RQF(t,τ)R_{Q}^{F}(t,\tau) instead of RQF(t,t+τ).R_{Q}^{F}(t,t+\tau). We fix the parameters of the model under the historical measure P,P, i.e., α\alpha and ρ,\rho, and study the possible sign of RQF(t,τ)R_{Q}^{F}(t,\tau) in terms of the change of measure parameters, i.e., β¯=(β1,β2)\bar{\beta}=(\beta_{1},\beta_{2}) and θ¯=(θ1,θ2)\bar{\theta}=(\theta_{1},\theta_{2}) and the time to maturity τ.\tau. In fact, we just change θ1\theta_{1} and β1\beta_{1} because the risk premium does not depend on the values of θ2\theta_{2} and β2.\beta_{2}. Note that present time tt just enters into the picture through the stochastic component XX and not through the volatility process σ2(t).\sigma^{2}(t). We are going to study the cases θ1=0,β1=0\theta_{1}=0,\beta_{1}=0 and the general case separately. Moreover, in order to graphically illustrate the discussion we plot the risk premium profiles obtained assuming that the subordinator LL is a compound Poisson process with jump intensity c/λ>0c/\lambda>0 and exponential jump sizes with mean λ.\lambda. That is, LL will have the Lévy measure given in Example 3.1. We shall measure the time to maturity τ\tau in days and plot RQF(t,τ)R_{Q}^{F}(t,\tau) for τ[0,360],\tau\in[0,360], roughly one year. We fix the values of the following parameters

α=0.127,ρ=1.11,c=0.4,λ=2.\alpha=0.127,\rho=1.11,c=0.4,\lambda=2.

The speed of mean reversion for the factor α\alpha yields a half-life of log(2)/0.127=5.47\log(2)/0.127=5.47 days, while the one for the volatility ρ\rho yields a half-life of log(2)/1.11=0.65\log(2)/1.11=0.65 days (see e.g., Benth, Šaltytė Benth and Koekebakker [5] for the concept of half-life). The values for cc and λ\lambda give jumps with mean 0.50.5 and frequency of 55 spikes in the volatility per month. The values for the speed of mean reversion are obtained from an empirical analysis of the UK gas spot prices conducted in Benth [2].

The following lemma will help in the discussion.

Lemma 4.2.

We have that

RQF(t,τ)\displaystyle R_{Q}^{F}(t,\tau) =X(t)eατ(eαβ1τ1)+θ1α(1β1)(1eα(1β1)τ).\displaystyle=X(t)e^{-\alpha\tau}\left(e^{\alpha\beta_{1}\tau}-1\right)+\frac{\theta_{1}}{\alpha(1-\beta_{1})}(1-e^{-\alpha(1-\beta_{1})\tau})\,.

Moreover,

limτRQF(t,τ)=θ1α(1β1),andlimτ0τRQF(t,τ)=X(t)αβ1+θ1.\lim_{\tau\rightarrow\infty}R_{Q}^{F}(t,\tau)=\frac{\theta_{1}}{\alpha(1-\beta_{1})}\,,\qquad\text{and}\qquad\lim_{\tau\rightarrow 0}\frac{\partial}{\partial\tau}R_{Q}^{F}(t,\tau)=X(t)\alpha\beta_{1}+\theta_{1}\,.
Proof.

Follows easily form the expression of RQF(t,τ)R_{Q}^{F}(t,\tau) in Theorem 4.1. ∎

  • Changing the level of mean reversion (Esscher transform): Setting β1=0,\beta_{1}=0, the probability measure QQ only changes the level of mean reversion for the factor XX (which is assumed to be zero under the historical measure PP). On the other hand, the risk premium is deterministic and cannot change with changing market conditions. From equation (4.2),\left(\ref{LemmaArithmetic}\right), we get that the sign of RQF(t,τ)R_{Q}^{F}(t,\tau) is the same for any time to maturity τ\tau and it is equal to the sign of θ1.\theta_{1}. See Figures 1a and 1b.

  • Changing the speed of mean reversion: Setting θ1=0,\theta_{1}=0, the probability measure QQ only changes the speed of mean reversion for the factor XX. Note that in this case the risk premium is stochastic and it changes with market conditions. By Lemma 4.2 we have that the risk premium is given by

    RQF(t,τ)=X(t)eατ(eαβ1τ1),R_{Q}^{F}(t,\tau)=X(t)e^{-\alpha\tau}\left(e^{\alpha\beta_{1}\tau}-1\right),

    with RQ(t,τ)0R^{Q}(t,\tau)\rightarrow 0 as time to maturity τ\tau tends to infinity. On the other hand, we have that

    limτ0τRQF(t,τ)\displaystyle\lim_{\tau\rightarrow 0}\frac{\partial}{\partial\tau}R_{Q}^{F}(t,\tau) =X(t)αβ1.\displaystyle=X(t)\alpha\beta_{1}.

    Hence the risk premium will vanish in the long end of the market. In the short end, it can be both positive or negative and stochastically varying with X(t)X(t). See Figure 1c, where the impact of X(t)X(t) in the short end is evident as a strongly increasing (from zero) risk premium. A negative value of X(t)X(t) would lead to a downward pointing risk premium, before converging to zero.

  • Changing the level and speed of mean reversion simultaneously: In the general case we can get risk premium profiles with positive values in the short end of the forward curve and negative values in the long end, by choosing θ1<0\theta_{1}<0 but close to zero and β1\beta_{1} close to 1,1, assuming that X(t)X(t) is positive. See Figure 1d. We recall from Geman [13] that there is empirical and economical evidence for a positive risk premium in the short end of the power forward market, while in the long end one expects the sign of the risk premium to be negative as is the typical situation in commodity forward markets.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Refer to caption
(d)
Figure 1. Risk premium profiles when LL is a Compound Poisson process with exponentially distributed jumps. We take ρ=1.11,α=0.127,λ=2,c=0.4,X(t)=2.5,σ(t)=0.25.\rho=1.11,\alpha=0.127,\lambda=2,c=0.4,X(t)=2.5,\sigma(t)=0.25.
Remark 4.3.

Note that in order to get a change of sign in the risk premium one must change the level and speed of mean reversion simultaneously, see Figure 1d. It is not possible to get the sign change by using solely the Esscher transform, or only modifying the speed of mean reversion of the factors.

5. Geometric spot model

The second model for the spot price SS is the geometric one. We define the geometric spot price model by

S(t)=Λg(t)exp(X(t)),t[0,T],S(t)=\Lambda_{g}(t)\exp(X(t)),\quad t\in[0,T^{\ast}], (5.1)

where T>0T^{\ast}>0 is a fixed time horizon. The process Λg\Lambda_{g} is assumed to be deterministic and it accounts for the seasonalities observed in the spot prices. The forward and the swap contracts are defined analogously to the arithmetic model.

Proposition 2.

The forward price FQ(t,T)F_{Q}(t,T) in the geometric spot model (5.1)\left(\ref{Equ_Geom_Model}\right) is given by

FQ(t,T)\displaystyle F_{Q}(t,T) =Λg(T)exp(X(t)eα(1β1)(Tt)+σ2(t)eρ(1β2)(Tt)1e(2αρ(1β2))(Tt)2(2αρ(1β2)))\displaystyle=\Lambda_{g}(T)\exp\left(X(t)e^{-\alpha(1-\beta_{1})(T-t)}+\sigma^{2}(t)e^{-\rho(1-\beta_{2})(T-t)}\frac{1-e^{-(2\alpha-\rho(1-\beta_{2}))(T-t)}}{2(2\alpha-\rho(1-\beta_{2}))}\right)
×exp(κL(θ2)2ρ(1β2)(1e2α(Tt)2αeρ(1β2)(Tt)1e(2αρ(1β2))(Tt)(2αρ(1β2))))\displaystyle\qquad\times\exp\left(\frac{\kappa_{L}^{\prime}(\theta_{2})}{2\rho(1-\beta_{2})}\left(\frac{1-e^{-2\alpha(T-t)}}{2\alpha}-e^{-\rho(1-\beta_{2})(T-t)}\frac{1-e^{-(2\alpha-\rho(1-\beta_{2}))(T-t)}}{(2\alpha-\rho(1-\beta_{2}))}\right)\right)
×exp(θ1α(1β1)(1eα(1β1)(Tt)))\displaystyle\qquad\times\exp\left(\frac{\theta_{1}}{\alpha(1-\beta_{1})}(1-e^{-\alpha(1-\beta_{1})(T-t)})\right)
×𝔼Q[exp(e2αT2tTe(2αρ(1β2))s(ts0eρ(1β2)uzN~QL(du,dz))𝑑s)|t]\displaystyle\qquad\times\mathbb{E}_{Q}\left[\exp\left(\frac{e^{-2\alpha T}}{2}\int_{t}^{T}e^{(2\alpha-\rho(1-\beta_{2}))s}\left(\int_{t}^{s}\int_{0}^{\infty}e^{\rho(1-\beta_{2})u}z\tilde{N}_{Q}^{L}(du,dz)\right)ds\right)|\mathcal{F}_{t}\right]

In the particular case Q=P,Q=P, it holds that

FP(t,T)\displaystyle F_{P}(t,T) =Λg(T)exp(X(t)eα(Tt)+σ2(t)eρ(Tt)1e(2αρ)(Tt)2(2αρ))\displaystyle=\Lambda_{g}(T)\exp\left(X(t)e^{-\alpha(T-t)}+\sigma^{2}(t)e^{-\rho(T-t)}\frac{1-e^{-(2\alpha-\rho)(T-t)}}{2(2\alpha-\rho)}\right)
×exp(0TtκL(eρs1e(2αρ)s2(2αρ))𝑑s).\displaystyle\qquad\times\exp\left(\int_{0}^{T-t}\kappa_{L}\left(e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}\right)ds\right).
Proof.

Denote by tL\mathcal{F}_{t}^{L} the sigma algebra generated by the process LL up to time t.t. Then, we have that

𝔼Q[S(T)|t]\displaystyle\mathbb{E}_{Q}[S(T)|\mathcal{F}_{t}] =Λg(T)𝔼Q[exp(X(T))|t]\displaystyle=\Lambda_{g}(T)\mathbb{E}_{Q}[\exp(X(T))|\mathcal{F}_{t}]
=Λg(T)exp(X(t)eα(1β1)(Tt)+θ1α(1β1)(1eα(1β1)(Tt))\displaystyle=\Lambda_{g}(T)\exp\left(X(t)e^{-\alpha(1-\beta_{1})(T-t)}+\frac{\theta_{1}}{\alpha(1-\beta_{1})}(1-e^{-\alpha(1-\beta_{1})(T-t)}\right)
×𝔼Q[exp(tTσ(s)eα(1β1)(Ts)𝑑WQ(s))|t]\displaystyle\qquad\times\mathbb{E}_{Q}\left[\exp\left(\int_{t}^{T}\sigma(s)e^{-\alpha(1-\beta_{1})(T-s)}dW_{Q}(s)\right)|\mathcal{F}_{t}\right]
=Λg(T)exp(X(t)eα(1β1)(Tt)+θ1α(1β1)(1eα(1β1)(Tt))\displaystyle=\Lambda_{g}(T)\exp\left(X(t)e^{-\alpha(1-\beta_{1})(T-t)}+\frac{\theta_{1}}{\alpha(1-\beta_{1})}(1-e^{-\alpha(1-\beta_{1})(T-t)}\right)
×𝔼Q[𝔼Q[exp(tTσ(s)eα(Ts)𝑑WQ(s))|TLt]|t]\displaystyle\qquad\times\mathbb{E}_{Q}\left[\mathbb{E}_{Q}\left[\exp\left(\int_{t}^{T}\sigma(s)e^{-\alpha(T-s)}dW_{Q}(s)\right)|\mathcal{F}_{T}^{L}\vee\mathcal{F}_{t}\right]|\mathcal{F}_{t}\right]
=Λg(T)exp(X(t)eα(1β1)(Tt)+θ1α(1β1)(1eα(1β1)(Tt))\displaystyle=\Lambda_{g}(T)\exp\left(X(t)e^{-\alpha(1-\beta_{1})(T-t)}+\frac{\theta_{1}}{\alpha(1-\beta_{1})}(1-e^{-\alpha(1-\beta_{1})(T-t)}\right)
×𝔼Q[exp(12tTσ2(s)e2α(Ts)𝑑s)|t].\displaystyle\qquad\times\mathbb{E}_{Q}\left[\exp\left(\frac{1}{2}\int_{t}^{T}\sigma^{2}(s)e^{-2\alpha(T-s)}ds\right)|\mathcal{F}_{t}\right].

On the other hand, the dynamics of σ2(s)\sigma^{2}(s) can be written, for s>t,s>t, as

σ2(s)\displaystyle\sigma^{2}(s) =σ2(t)eρ(1β2)(st)+κL(θ2)ρ(1β2)(1eρ(1β2)(st))\displaystyle=\sigma^{2}(t)e^{-\rho(1-\beta_{2})(s-t)}+\frac{\kappa_{L}^{\prime}(\theta_{2})}{\rho(1-\beta_{2})}(1-e^{-\rho(1-\beta_{2})(s-t)})
+ts0eρ(1β2)(su)zN~QL(du,dz).\displaystyle\qquad+\int_{t}^{s}\int_{0}^{\infty}e^{-\rho(1-\beta_{2})(s-u)}z\tilde{N}_{Q}^{L}(du,dz).

Then, we get

𝔼Q[S(T)|t]\displaystyle\mathbb{E}_{Q}[S(T)|\mathcal{F}_{t}] =Λg(T)exp(X(t)eα(1β1)(Tt)+θ1α(1β1)(1eα(1β1)(Tt))\displaystyle=\Lambda_{g}(T)\exp\left(X(t)e^{-\alpha(1-\beta_{1})(T-t)}+\frac{\theta_{1}}{\alpha(1-\beta_{1})}(1-e^{-\alpha(1-\beta_{1})(T-t)}\right)
×𝔼Q[exp(12tT{σ2(t)eρ(1β2)(st)+κL(θ2)ρ(1β2)(1eρ(1β2)(st))\displaystyle\quad\times\mathbb{E}_{Q}\left[\exp\left(\frac{1}{2}\int_{t}^{T}\{\sigma^{2}(t)e^{-\rho(1-\beta_{2})(s-t)}+\frac{\kappa_{L}^{\prime}(\theta_{2})}{\rho(1-\beta_{2})}(1-e^{-\rho(1-\beta_{2})(s-t)})\right.\right.
+ts0eρ(1β2)(su)zNQL(du,dz)}e2α(Ts)ds)|t]\displaystyle\quad\quad+\left.\left.\int_{t}^{s}\int_{0}^{\infty}e^{-\rho(1-\beta_{2})(s-u)}zN_{Q}^{L}(du,dz)\}e^{-2\alpha(T-s)}ds\right)|\mathcal{F}_{t}\right]
=Λg(T)exp(X(t)eα(1β1)(Tt)+σ2(t)eρ(1β2)(Tt)1e(2αρ(1β2))(Tt)2(2αρ(1β2)))\displaystyle=\Lambda_{g}(T)\exp\left(X(t)e^{-\alpha(1-\beta_{1})(T-t)}+\sigma^{2}(t)e^{-\rho(1-\beta_{2})(T-t)}\frac{1-e^{-(2\alpha-\rho(1-\beta_{2}))(T-t)}}{2(2\alpha-\rho(1-\beta_{2}))}\right)
×exp(κL(θ2)2ρ(1β2)(1e2α(Tt)2αeρ(1β2)(Tt)1e(2αρ(1β2))(Tt)(2αρ(1β2))))\displaystyle\quad\times\exp\left(\frac{\kappa_{L}^{\prime}(\theta_{2})}{2\rho(1-\beta_{2})}\left(\frac{1-e^{-2\alpha(T-t)}}{2\alpha}-e^{-\rho(1-\beta_{2})(T-t)}\frac{1-e^{-(2\alpha-\rho(1-\beta_{2}))(T-t)}}{(2\alpha-\rho(1-\beta_{2}))}\right)\right)
×exp(θ1α(1β1)(1eα(1β1)(Tt)))\displaystyle\quad\times\exp\left(\frac{\theta_{1}}{\alpha(1-\beta_{1})}(1-e^{-\alpha(1-\beta_{1})(T-t)})\right)
×𝔼Q[exp(e2αT2tTe(2αρ(1β2))s(ts0eρ(1β2)uzN~QL(du,dz))𝑑s)|t]\displaystyle\quad\times\mathbb{E}_{Q}\left[\exp\left(\frac{e^{-2\alpha T}}{2}\int_{t}^{T}e^{(2\alpha-\rho(1-\beta_{2}))s}\left(\int_{t}^{s}\int_{0}^{\infty}e^{\rho(1-\beta_{2})u}z\tilde{N}_{Q}^{L}(du,dz)\right)ds\right)|\mathcal{F}_{t}\right]

Now, taking into account that NQL(du,dz)N_{Q}^{L}(du,dz) has independent increments for Q=P,Q=P, using a stochastic version of Fubini’s Theorem and the exponential moments formula for Poisson random measures we obtain

𝔼P\displaystyle\mathbb{E}_{P} [exp(e2αT2tTe(2αρ)s(ts0eρuzN~L(du,dz))𝑑s)|t]\displaystyle\left[\exp\left(\frac{e^{-2\alpha T}}{2}\int_{t}^{T}e^{(2\alpha-\rho)s}\left(\int_{t}^{s}\int_{0}^{\infty}e^{\rho u}z\tilde{N}^{L}(du,dz)\right)ds\right)|\mathcal{F}_{t}\right]
=𝔼P[exp(e2αT2tTe(2αρ)s(ts0eρuzNL(du,dz))𝑑s)]\displaystyle\qquad=\mathbb{E}_{P}\left[\exp\left(\frac{e^{-2\alpha T}}{2}\int_{t}^{T}e^{(2\alpha-\rho)s}\left(\int_{t}^{s}\int_{0}^{\infty}e^{\rho u}zN^{L}(du,dz)\right)ds\right)\right]
×exp(e2αT2tTe(2αρ)s(ts0eρuz(dz)𝑑u)𝑑s)\displaystyle\qquad\qquad\times\exp\left(-\frac{e^{-2\alpha T}}{2}\int_{t}^{T}e^{(2\alpha-\rho)s}\left(\int_{t}^{s}\int_{0}^{\infty}e^{\rho u}z\ell(dz)du\right)ds\right)
=𝔼P[exp(tT0eρ(Tu)1e(2αρ(Tu)2(2αρ)zNL(du,dz))]\displaystyle\qquad=\mathbb{E}_{P}\left[\exp\left(\int_{t}^{T}\int_{0}^{\infty}e^{-\rho(T-u)}\frac{1-e^{-(2\alpha-\rho(T-u)}}{2(2\alpha-\rho)}zN^{L}(du,dz)\right)\right]
×exp(e2αTκL(0)2ρtTe(2αρ)s(eρseρt)𝑑s)\displaystyle\qquad\qquad\times\exp\left(-\frac{e^{-2\alpha T}\kappa_{L}^{\prime}(0)}{2\rho}\int_{t}^{T}e^{(2\alpha-\rho)s}\left(e^{\rho s}-e^{\rho t}\right)ds\right)
=exp(tT0(exp(eρ(Tu)1e(2αρ)(Tu)2(2αρ)z)1)(dz)𝑑u)\displaystyle\qquad=\exp\left(\int_{t}^{T}\int_{0}^{\infty}\left(\exp\left(e^{-\rho(T-u)}\frac{1-e^{-(2\alpha-\rho)(T-u)}}{2(2\alpha-\rho)}z\right)-1\right)\ell(dz)du\right)
×exp(e2αTκL(0)2ρ(e2αTe2αt2αe2αTeρ(Tt)e2αt2αρ))\displaystyle\qquad\qquad\times\exp\left(-\frac{e^{-2\alpha T}\kappa_{L}^{\prime}(0)}{2\rho}\left(\frac{e^{2\alpha T}-e^{2\alpha t}}{2\alpha}-\frac{e^{2\alpha T}e^{-\rho(T-t)}-e^{2\alpha t}}{2\alpha-\rho}\right)\right)
=exp(0TtκL(eρs1e(2αρ)s2(2αρ))𝑑s)\displaystyle\qquad=\exp\left(\int_{0}^{T-t}\kappa_{L}\left(e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}\right)ds\right)
×exp(κL(0)2ρ(1e2α(Tt)2α+e2α(Tt)eρ(Tt)2αρ)).\displaystyle\qquad\qquad\times\exp\left(-\frac{\kappa_{L}^{\prime}(0)}{2\rho}\left(\frac{1-e^{-2\alpha(T-t)}}{2\alpha}+\frac{e^{-2\alpha(T-t)}-e^{-\rho(T-t)}}{2\alpha-\rho}\right)\right).

In the last equality we have used the definition of κL(θ)\kappa_{L}(\theta) and the change of variable s=Tu.s=T-u. Finally, combining the previous expression with the expression for 𝔼Q[S(T)|t]\mathbb{E}_{Q}[S(T)|\mathcal{F}_{t}] with Q=P,Q=P, i.e., with β1=β2=θ1=θ2=0\beta_{1}=\beta_{2}=\theta_{1}=\theta_{2}=0 we get the result ∎

Remark 5.1.

Note that 𝔼Q[S(T)]\mathbb{E}_{Q}[S(T)] can be infinite. In the case Q=P,Q=P, if ΘL=,\Theta_{L}=\infty, then 𝔼P[S(T)]<.\mathbb{E}_{P}[S(T)]<\infty. However, if ΘL<,\Theta_{L}<\infty, then 𝔼P[S(T)]<\mathbb{E}_{P}[S(T)]<\infty if and only if

0TκL(eρs1e(2αρ)s2(2αρ))𝑑s<.\int_{0}^{T}\kappa_{L}\left(e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}\right)ds<\infty. (5.2)

Condition (5.2)\left(\ref{CondFiniteUnderP}\right) imposes some restrictions on the parameters of the model α,ρ\alpha,\rho and ΘL.\Theta_{L}. For α,ρ>0,\alpha,\rho>0, consider the function Υα,ρ(t)=eρt1e(2αρ)t2(2αρ),t>0.\Upsilon_{\alpha,\rho}(t)=e^{-\rho t}\frac{1-e^{-(2\alpha-\rho)t}}{2(2\alpha-\rho)},t>0. It is easy to see that this function is strictly positive and achieves its maximum at t=log(ρ/2α)/(2αρ)t^{\ast}=-\log(\rho/2\alpha)/(2\alpha-\rho) with value Υα,ρ(t)=12ρ(ρ2α)11ρ2α.\Upsilon_{\alpha,\rho}(t^{\ast})=\frac{1}{2\rho}\left(\frac{\rho}{2\alpha}\right)^{\frac{1}{1-\frac{\rho}{2\alpha}}}. Then, it is natural to impose the following assumption on the model parameter that guarantees that condition (5.2)\left(\ref{CondFiniteUnderP}\right) is satisfied for all T>0T>0:

Assumption 2 (𝒫\mathcal{P}).

We assume that α,ρ>0\alpha,\rho>0 and ΘL\Theta_{L} satisfy

12ρ(ρ2α)11ρ2αΘLδ,\frac{1}{2\rho}\left(\frac{\rho}{2\alpha}\right)^{\frac{1}{1-\frac{\rho}{2\alpha}}}\leq\Theta_{L}-\delta,

for some δ>0.\delta>0.

Obviously, if ΘL=\Theta_{L}=\infty then assumption 𝒫\mathcal{P} is satisfied. Suppose that ΘL<,\Theta_{L}<\infty, then if we choose ρ\rho close to zero the value of α\alpha must be bounded away from zero, and viceversa, for assumption 𝒫\mathcal{P} to be satisfied.

The risk premium in the geometric case becomes:

Theorem 5.2.

The risk premium RQF(t,T)R_{Q}^{F}(t,T) for the forward price in the geometric spot model (5.1)\left(\ref{Equ_Geom_Model}\right) is given by

RQF(t,T)\displaystyle R_{Q}^{F}(t,T) =𝔼P[S(T)|t]{exp(X(t)eα(Tt)(eαβ1(Tt)1))\displaystyle=\mathbb{E}_{P}[S(T)|\mathcal{F}_{t}]\left\{\exp\left(X(t)e^{-\alpha(T-t)}(e^{\alpha\beta_{1}(T-t)}-1)\right)\right.
×exp(σ2(t)(eρ(1β2)(Tt)1e(2αρ(1β2))(Tt)2(2αρ(1β2))eρ(Tt)1e(2αρ)(Tt)2(2αρ)))\displaystyle\qquad\times\left.\exp\left(\sigma^{2}(t)\left(e^{-\rho(1-\beta_{2})(T-t)}\frac{1-e^{-(2\alpha-\rho(1-\beta_{2}))(T-t)}}{2(2\alpha-\rho(1-\beta_{2}))}-e^{-\rho(T-t)}\frac{1-e^{-(2\alpha-\rho)(T-t)}}{2(2\alpha-\rho)}\right)\right)\right.
×exp(κL(θ2)2ρ(1β2)(1e2α(Tt)2αeρ(1β2)(Tt)1e(2αρ(1β2))(Tt)(2αρ(1β2))))\displaystyle\qquad\times\exp\left(\frac{\kappa_{L}^{\prime}(\theta_{2})}{2\rho(1-\beta_{2})}\left(\frac{1-e^{-2\alpha(T-t)}}{2\alpha}-e^{-\rho(1-\beta_{2})(T-t)}\frac{1-e^{-(2\alpha-\rho(1-\beta_{2}))(T-t)}}{(2\alpha-\rho(1-\beta_{2}))}\right)\right)
×exp(θ1α(1β1)(1eα(1β1)(Tt)))\displaystyle\qquad\times\exp\left(\frac{\theta_{1}}{\alpha(1-\beta_{1})}(1-e^{-\alpha(1-\beta_{1})(T-t)})\right)
×exp(0TtκL(eρs1e(2αρ)s2(2αρ))𝑑s)\displaystyle\qquad\times\exp\left(-\int_{0}^{T-t}\kappa_{L}\left(e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}\right)ds\right)
×𝔼Q[exp(e2αT2tTe(2αρ)s(ts0eρuzNQL(du,dz))ds)|t]1}\displaystyle\qquad\times\left.\mathbb{E}_{Q}\left[\exp\left(\frac{e^{-2\alpha T}}{2}\int_{t}^{T}e^{(2\alpha-\rho)s}\left(\int_{t}^{s}\int_{0}^{\infty}e^{\rho u}zN_{Q}^{L}(du,dz)\right)ds\right)|\mathcal{F}_{t}\right]-1\right\}
Proof.

This follows immediately from Proposition 2. ∎

The risk premium in the geometric case becomes hard to analyse due to the presence of the conditional expectation in the last term, involving the jump process NQLN_{Q}^{L} with respect to QQ. In the remainder of this Section we shall rather exploit the affine structure of the model to analyse the risk premium.

5.1. An analysis of the risk premium based on the affine structure

An alternative way of computing 𝔼Q[S(T)|t],\mathbb{E}_{Q}[S(T)|\mathcal{F}_{t}], which can provide semi-explicit expressions, is to use the affine structure of Z=(Z1(t),Z2(t))=(σ2(t),X(t)).Z=(Z_{1}(t),Z_{2}(t))^{\top}=(\sigma^{2}(t),X(t))^{\top}. Let Λiθ¯,β¯(u),i=0,1,2,\Lambda_{i}^{\bar{\theta},\bar{\beta}}(u),i=0,1,2, be the Lévy exponents associated to the affine characteristics in Remark 3.2, i.e.,

Λ0θ¯,β¯(u1,u2)\displaystyle\Lambda_{0}^{\bar{\theta},\bar{\beta}}(u_{1},u_{2}) =β0u+12uγ0u+(eu1z1+u2z21u1z1u2z2)φ0(dz)\displaystyle=\beta_{0}^{\top}u+\frac{1}{2}u^{\top}\gamma_{0}u+\int(e^{u_{1}z_{1}+u_{2}z_{2}}-1-u_{1}z_{1}-u_{2}z_{2})\varphi_{0}(dz)
=κL(θ2)u1+θ1u2+0(eu1z11u1z1)eθ2z1(dz1)\displaystyle=\kappa_{L}^{\prime}(\theta_{2})u_{1}+\theta_{1}u_{2}+\int_{0}^{\infty}(e^{u_{1}z_{1}}-1-u_{1}z_{1})e^{\theta_{2}z_{1}}\ell(dz_{1})
=θ1u2+κL(u1+θ2)κL(θ2),\displaystyle=\theta_{1}u_{2}+\kappa_{L}(u_{1}+\theta_{2})-\kappa_{L}(\theta_{2}),
Λ1θ¯,β¯(u1,u2)\displaystyle\Lambda_{1}^{\bar{\theta},\bar{\beta}}(u_{1},u_{2}) =β1u+uγ1u+(eu1z1+u2z21u1z1u2z2)φ1(dz)\displaystyle=\beta_{1}^{\top}u+u^{\top}\gamma_{1}u+\int(e^{u_{1}z_{1}+u_{2}z_{2}}-1-u_{1}z_{1}-u_{2}z_{2})\varphi_{1}(dz)
=ρ(1β2)u1+u222+ρβ2κL′′(θ2)0(eu1z11u1z1)z1eθ2z1(dz1)\displaystyle=-\rho(1-\beta_{2})u_{1}+\frac{u_{2}^{2}}{2}+\frac{\rho\beta_{2}}{\kappa_{L}^{\prime\prime}(\theta_{2})}\int_{0}^{\infty}(e^{u_{1}z_{1}}-1-u_{1}z_{1})z_{1}e^{\theta_{2}z_{1}}\ell(dz_{1})
=ρu1+u222+ρβ2κL′′(θ2)(κL(u1+θ2)κL(θ2)),\displaystyle=-\rho u_{1}+\frac{u_{2}^{2}}{2}+\frac{\rho\beta_{2}}{\kappa_{L}^{\prime\prime}(\theta_{2})}(\kappa_{L}^{\prime}(u_{1}+\theta_{2})-\kappa_{L}^{\prime}(\theta_{2})),
Λ2θ¯,β¯(u1,u2)\displaystyle\Lambda_{2}^{\bar{\theta},\bar{\beta}}(u_{1},u_{2}) =β2u+uγ2u+(eu1z1+u2z21u1z1u2z2)φ2(dz)\displaystyle=\beta_{2}^{\top}u+u^{\top}\gamma_{2}u+\int(e^{u_{1}z_{1}+u_{2}z_{2}}-1-u_{1}z_{1}-u_{2}z_{2})\varphi_{2}(dz)
=α(1β1)u2.\displaystyle=-\alpha(1-\beta_{1})u_{2}.

We find the following:

Theorem 5.3.

Let β¯=(β1,β2)[0,1]2,θ¯=(θ1,θ2)D¯L.\bar{\beta}=(\beta_{1},\beta_{2})\in[0,1]^{2},\bar{\theta}=(\theta_{1},\theta_{2})\in\bar{D}_{L}. Assume that there exist functions Ψiθ¯,β¯,i=0,1,2\Psi_{i}^{\bar{\theta},\bar{\beta}},i=0,1,2 belonging to C1([0,T];2)C^{1}([0,T];\mathbb{R}^{2}) satisfying the generalised Riccati equation

ddtΨ1θ¯,β¯(t)=ρΨ1θ¯,β¯(t)+(Ψ2θ¯,β¯(t))22+ρβ2κL′′(θ2)(κL(Ψ1θ¯,β¯(t)+θ2)κL(θ2)),Ψ1θ¯,β¯(0)=0,ddtΨ2θ¯,β¯(t)=α(1β1)Ψ2θ¯,β¯(t),Ψ2θ¯,β¯(0)=1,ddtΨ0θ¯,β¯(t)=θ1Ψ2θ¯,β¯(t)+κL(Ψ1θ¯,β¯(t)+θ2)κL(θ2),Ψ0θ¯,β¯(0)=0,\begin{array}[c]{lcc}\frac{d}{dt}\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)=-\rho\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)+\frac{(\Psi_{2}^{\bar{\theta},\bar{\beta}}(t))^{2}}{2}+\frac{\rho\beta_{2}}{\kappa_{L}^{\prime\prime}(\theta_{2})}(\kappa_{L}^{\prime}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)+\theta_{2})-\kappa_{L}^{\prime}(\theta_{2})),&&\Psi_{1}^{\bar{\theta},\bar{\beta}}(0)=0,\\ \frac{d}{dt}\Psi_{2}^{\bar{\theta},\bar{\beta}}(t)=-\alpha(1-\beta_{1})\Psi_{2}^{\bar{\theta},\bar{\beta}}(t),&&\Psi_{2}^{\bar{\theta},\bar{\beta}}(0)=1,\\ \frac{d}{dt}\Psi_{0}^{\bar{\theta},\bar{\beta}}(t)=\theta_{1}\Psi_{2}^{\bar{\theta},\bar{\beta}}(t)+\kappa_{L}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)+\theta_{2})-\kappa_{L}(\theta_{2}),&&\Psi_{0}^{\bar{\theta},\bar{\beta}}(0)=0,\end{array} (5.3)

and the integrability condition

supt[0,T]κL′′(θ2+Ψ1θ¯,β¯(t))<.\sup_{t\in[0,T]}\kappa_{L}^{\prime\prime}(\theta_{2}+\Psi_{1}^{\bar{\theta},\bar{\beta}}(t))<\infty. (5.4)

Then,

𝔼Q[exp(X(T))|t]=exp(Ψ0θ¯,β¯(Tt)+Ψ1θ¯,β¯(Tt)σ2(t)+Ψ2θ¯,β¯(Tt)X(t)),\mathbb{E}_{Q}[\exp(X(T))|\mathcal{F}_{t}]=\exp\left(\Psi_{0}^{\bar{\theta},\bar{\beta}}(T-t)+\Psi_{1}^{\bar{\theta},\bar{\beta}}(T-t)\sigma^{2}(t)+\Psi_{2}^{\bar{\theta},\bar{\beta}}(T-t)X(t)\right),

and

RQF(t,T)\displaystyle R_{Q}^{F}(t,T) =𝔼P[S(T)|t]\displaystyle=\mathbb{E}_{P}[S(T)|\mathcal{F}_{t}] (5.5)
×{exp(Ψ0θ¯,β¯(Tt)0TtκL(eρs1e(2αρ)s2(2αρ))ds\displaystyle\qquad\times\left\{\exp\left(\Psi_{0}^{\bar{\theta},\bar{\beta}}(T-t)-\int_{0}^{T-t}\kappa_{L}\left(e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}\right)ds\right.\right.
+(Ψ1θ¯,β¯(Tt)eρ(Tt)1e(2αρ)(Tt)2(2αρ))σ2(t)\displaystyle\qquad+\left(\Psi_{1}^{\bar{\theta},\bar{\beta}}(T-t)-e^{-\rho(T-t)}\frac{1-e^{-(2\alpha-\rho)(T-t)}}{2(2\alpha-\rho)}\right)\sigma^{2}(t)
+(Ψ2θ¯,β¯(Tt)eα(Tt))X(t))1}.\displaystyle\qquad+\left.\left.\left(\Psi_{2}^{\bar{\theta},\bar{\beta}}(T-t)-e^{-\alpha(T-t)}\right)X(t)\right)-1\right\}.
Proof.

The result is a consequence of Theorem 5.1 in Kallsen and Muhle-Karbe [18]: Making the change of variable tTtt\rightarrow T-t, the ODE (5.3) is reduced to the one appearing in items 2. and 3. of Theorem 5.1 in Kallsen and Muhle-Karbe [18]. The integrability assumption (5.4) implies conditions 1. and 5., in Theorem 5.1, and condition 4. in that same Theorem is trivially satisfied because σ2(0)\sigma^{2}(0) and X(0)X(0) are deterministic. Hence, the conclusion of Theorem 5.1 in Kallsen and Muhle-Karbe [18], with p=(0,1),p=(0,1), holds and we get

𝔼Q[exp(X(T))|t]=exp(Ψ0θ¯,β¯(Tt)+Ψ1θ¯,β¯(Tt)σ2(t)+Ψ2θ¯,β¯(Tt)X(t)),t[0,T].\mathbb{E}_{Q}[\exp(X(T))|\mathcal{F}_{t}]=\exp\left(\Psi_{0}^{\bar{\theta},\bar{\beta}}(T-t)+\Psi_{1}^{\bar{\theta},\bar{\beta}}(T-t)\sigma^{2}(t)+\Psi_{2}^{\bar{\theta},\bar{\beta}}(T-t)X(t)\right),\quad t\in[0,T]. (5.6)

The result on the risk premium now follows easily. ∎

A couple of remarks are in place.

Remark 5.4.

The applicability of Theorem 5.3 is quite limited as it is stated. This is due to the fact that it is very difficult to see a priori if there exist functions Ψiθ¯,β¯,i=0,1,2\Psi_{i}^{\bar{\theta},\bar{\beta}},i=0,1,2 belonging to C1([0,T];2)C^{1}([0,T];\mathbb{R}^{2}) satisfying equation (5.3).\left(\ref{EquRiccatiODEGeneral}\right). One has to study existence and uniqueness of solutions of equation (5.3)\left(\ref{EquRiccatiODEGeneral}\right) and the possibility of extending the solution to arbitrary large T>0.T>0. We study this problem in Theorem 5.7.

Remark 5.5.

Note that the previous system of autonomous ODEs can be effectively reduced to a one dimensional non autonomous ODE. We have that for any θ¯D¯L,β¯[0,1]2\bar{\theta}\in\bar{D}_{L},\bar{\beta}\in[0,1]^{2}, the solution of the second equation is given by Ψ2θ¯,β¯(t)=exp(α(1β1)t)\Psi_{2}^{\bar{\theta},\bar{\beta}}(t)=\exp(-\alpha(1-\beta_{1})t). Plugging this solution to the first equation we get the following equation to solve for Ψ1θ¯,β¯(t)\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)

ddtΨ1θ¯,β¯(t)=ρΨ1θ¯,β¯(t)+e2α(1β1)t2+ρβ2κL′′(θ2)(κL(Ψ1θ¯,β¯(t)+θ2)κL(θ2)),\frac{d}{dt}\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)=-\rho\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)+\frac{e^{-2\alpha(1-\beta_{1})t}}{2}+\frac{\rho\beta_{2}}{\kappa_{L}^{\prime\prime}(\theta_{2})}(\kappa_{L}^{\prime}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)+\theta_{2})-\kappa_{L}^{\prime}(\theta_{2})), (5.7)

with initial condition Ψ1θ¯,β¯(0)=0.\Psi_{1}^{\bar{\theta},\bar{\beta}}(0)=0. The equation for Ψ0θ¯,β¯(t)\Psi_{0}^{\bar{\theta},\bar{\beta}}(t) is solved by integrating Λ0θ¯,β¯(Ψ1θ¯,β¯(t),Ψ2θ¯,β¯(t)),\Lambda_{0}^{\bar{\theta},\bar{\beta}}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(t),\Psi_{2}^{\bar{\theta},\bar{\beta}}(t)), i.e.,

Ψ0θ¯,β¯(t)\displaystyle\Psi_{0}^{\bar{\theta},\bar{\beta}}(t) =0t{θ1Ψ2θ¯,β¯(s)+κL(Ψ1θ¯,β¯(s)+θ2)κL(θ2)}𝑑s\displaystyle=\int_{0}^{t}\{\theta_{1}\Psi_{2}^{\bar{\theta},\bar{\beta}}(s)+\kappa_{L}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(s)+\theta_{2})-\kappa_{L}(\theta_{2})\}ds
=θ11eα(1β1)tα(1β1)+0t{κL(Ψ1θ¯,β¯(s)+θ2)κL(θ2)}𝑑s.\displaystyle=\theta_{1}\frac{1-e^{-\alpha(1-\beta_{1})t}}{\alpha(1-\beta_{1})}+\int_{0}^{t}\{\kappa_{L}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(s)+\theta_{2})-\kappa_{L}(\theta_{2})\}ds.

As we have already indicated, we cannot in general find the explicit solution of the system of ODEs in Theorem 5.3, and has to rely on numerical techniques. However, the main problem is to ensure the existence and uniqueness of global solutions. Before stating our main result on this question, we introduce some notation and a technical lemma.

Lemma 5.6.

Let Λθ,β,a:[0,ΘLθ)\Lambda^{\theta,\beta,a}:[0,\Theta_{L}-\theta)\rightarrow\mathbb{R} be the function defined by

Λθ,β,a(u)=ρu+a+ρβκL′′(θ)(κL(u+θ)κL(θ)),\Lambda^{\theta,\beta,a}(u)=-\rho u+a+\frac{\rho\beta}{\kappa_{L}^{\prime\prime}(\theta)}(\kappa_{L}^{\prime}(u+\theta)-\kappa_{L}^{\prime}(\theta)), (5.8)

where a0,(θ,β)DL×(0,1)a\geq 0,(\theta,\beta)\in D_{L}\times(0,1) and consider the set

𝒟b(a)={(θ,β)DL×(0,1):u[0,ΘLθ)s.t.Λθ,β,a(u)0}.\mathcal{D}_{b}(a)=\{(\theta,\beta)\in D_{L}\times(0,1):\exists u\in[0,\Theta_{L}-\theta)\quad s.t.\quad\Lambda^{\theta,\beta,a}(u)\leq 0\}.

Then, we have that:

  1. (1)

    For any (θ,β)DL×(0,1),(\theta,\beta)\in D_{L}\times(0,1), there exists a unique global minimum of the function Λθ,β,a(u)\Lambda^{\theta,\beta,a}(u) which is attained at

    um(θ,β)=(κL′′)1(κL′′(θ)β)θ,u^{m}(\theta,\beta)=\left(\kappa_{L}^{\prime\prime}\right)^{-1}\left(\frac{\kappa_{L}^{\prime\prime}(\theta)}{\beta}\right)-\theta, (5.9)

    with value

    Λθ,β,a(um(θ,β))\displaystyle\Lambda^{\theta,\beta,a}(u^{m}(\theta,\beta)) =ρ((κL′′)1(κL′′(θ2)β2)θ2)+a\displaystyle=-\rho\left(\left(\kappa_{L}^{\prime\prime}\right)^{-1}\left(\frac{\kappa_{L}^{\prime\prime}(\theta_{2})}{\beta_{2}}\right)-\theta_{2}\right)+a (5.10)
    +(ρβ2κL′′(θ2)(κL((κL′′)1(κL′′(θ2)β2))κL(θ2))).\displaystyle\qquad+\left(\frac{\rho\beta_{2}}{\kappa_{L}^{\prime\prime}(\theta_{2})}(\kappa_{L}^{\prime}(\left(\kappa_{L}^{\prime\prime}\right)^{-1}\left(\frac{\kappa_{L}^{\prime\prime}(\theta_{2})}{\beta_{2}}\right))-\kappa_{L}^{\prime}(\theta_{2}))\right).
  2. (2)

    The function Λθ,β,a(u)\Lambda^{\theta,\beta,a}(u) is strictly decreasing in (0,um(θ,β))(0,u^{m}(\theta,\beta)) and strictly increasing in (um(θ,β),ΘLθ).(u^{m}(\theta,\beta),\Theta_{L}-\theta).

  3. (3)

    For θDL\theta\in D_{L} fixed, one has that um(θ,β)ΘLθu^{m}(\theta,\beta)\uparrow\Theta_{L}-\theta when β0\beta\downarrow 0 and um(θ,β)0u^{m}(\theta,\beta)\downarrow 0 when β1.\beta\uparrow 1.

  4. (4)

    The set 𝒟b(a)\mathcal{D}_{b}(a) coincides with the set

    {(θ,β)DL×(0,1):Λθ,β,a(um(θ,β))0}.\{(\theta,\beta)\in D_{L}\times(0,1):\Lambda^{\theta,\beta,a}(u^{m}(\theta,\beta))\leq 0\}.

    Moreover, for a>0,a>0, we have the following:

    1. (a)

      If θDL\theta\in D_{L} is such that θ>ΘLa/ρ\theta>\Theta_{L}-a/\rho then β(0,1)\nexists\beta\in(0,1) such that (θ,β)𝒟b(a).(\theta,\beta)\in\mathcal{D}_{b}(a).

    2. (b)

      If θDL\theta\in D_{L} is such that θ<ΘLa/ρ\theta<\Theta_{L}-a/\rho then there exists a unique 0<βm<10<\beta_{m}<1 such that

      Λθ,β,a(um(θ,βm))=0,\Lambda^{\theta,\beta,a}(u^{m}(\theta,\beta_{m}))=0, (5.11)

      and for all β[0,βm]\beta\in[0,\beta_{m}] one has (θ,β)𝒟b(a).(\theta,\beta)\in\mathcal{D}_{b}(a).

  5. (5)

    For (θ,β)𝒟b(a),(\theta,\beta)\in\mathcal{D}_{b}(a), a>0a>0 there exists a unique zero of Λθ,β,a(u),\Lambda^{\theta,\beta,a}(u), denoted by ua0(θ,β).u_{a}^{0}(\theta,\beta). As a function of β,\beta, ua0(θ,β)u_{a}^{0}(\theta,\beta) is well defined on [0,βm],[0,\beta_{m}], strictly increasing, with ua0(θ,0)=a/ρu_{a}^{0}(\theta,0)=a/\rho and ua0(θ,βm)=um(θ,βm).u_{a}^{0}(\theta,\beta_{m})=u^{m}(\theta,\beta_{m}).

Proof.

Proof of 1.1.: According to Remark 2.2 we have that

dduΛθ,β,a(u)\displaystyle\frac{d}{du}\Lambda^{\theta,\beta,a}(u) =ρ+ρβκL′′(u+θ)κL′′(θ),\displaystyle=-\rho+\rho\beta\frac{\kappa_{L}^{\prime\prime}(u+\theta)}{\kappa_{L}^{\prime\prime}(\theta)},
d2du2Λθ,β,a(u)\displaystyle\frac{d^{2}}{du^{2}}\Lambda^{\theta,\beta,a}(u) =ρβκL′′′(u+θ)κL′′(θ)>0,\displaystyle=\rho\beta\frac{\kappa_{L}^{\prime\prime\prime}(u+\theta)}{\kappa_{L}^{\prime\prime}(\theta)}>0,

which yields that there exists a unique 0<u(θ,β)<ΘLθ0<u^{\ast}(\theta,\beta)<\Theta_{L}-\theta for θDL\theta\in D_{L} and β(0,1)\beta\in(0,1) such that Λθ,β,a(u)\Lambda^{\theta,\beta,a}(u) attains a global minimum. In fact, u(θ2,β2)u^{\ast}(\theta_{2},\beta_{2}) solves

1=βκL′′(u+θ)κL′′(θ).1=\beta\frac{\kappa_{L}^{\prime\prime}(u+\theta)}{\kappa_{L}^{\prime\prime}(\theta)}.

Moreover, by Remark 2.2 again, we have that κL′′(u)\kappa_{L}^{\prime\prime}(u) is a strictly increasing function and, hence, it has a well defined inverse (κL′′)1(v)\left(\kappa_{L}^{\prime\prime}\right)^{-1}(v) which yields that um(θ,β)u^{m}(\theta,\beta) and Λθ,β,a(um(θ,β))\Lambda^{\theta,\beta,a}(u^{m}(\theta,\beta)) are given by equations (5.9)\left(\ref{Equ_um}\right) and (5.10),\left(\ref{Equ_Lambda(um)}\right), respectively.

Proof of 2.:2.: It follows from the fact that dduΛθ,β,a(u)<0,u(0,um(θ2,β2))\frac{d}{du}\Lambda^{\theta,\beta,a}(u)<0,u\in(0,u^{m}(\theta_{2},\beta_{2})) and dduΛθ,β,a(u)>0,(um(θ,β),ΘLθ)\frac{d}{du}\Lambda^{\theta,\beta,a}(u)>0,(u^{m}(\theta,\beta),\Theta_{L}-\theta).

Proof of 3.:3.: It follows from the monotonicity of κL′′(u)\kappa_{L}^{\prime\prime}(u) and the explicit expression of um(θ,β)u^{m}(\theta,\beta) given by equation (5.9).\left(\ref{Equ_um}\right). Note that, as a function of β,\beta, um(θ,β)u^{m}(\theta,\beta) is a strictly decreasing, continuous function in (0,1).(0,1).

Proof of 4.4. and 5.:5.: For any θDL,\theta\in D_{L}, note that

aρuΛθ,0,a(u)Λθ,β,a(u),β(0,1),u[0,ΘLθ),a-\rho u\triangleq\Lambda^{\theta,0,a}(u)\leq\Lambda^{\theta,\beta,a}(u),\quad\beta\in(0,1),u\in[0,\Theta_{L}-\theta),

and Λθ,0,a(u)>0\Lambda^{\theta,0,a}(u)>0 if u(0,a/ρ).u\in(0,a/\rho). Therefore, if θ>ΘLa/ρ\theta>\Theta_{L}-a/\rho then Λθ,β,a(u)>0,u[0,ΘLθ)\Lambda^{\theta,\beta,a}(u)>0,u\in[0,\Theta_{L}-\theta) for any β(0,1).\beta\in(0,1). On the other hand, if θ<ΘLa/ρ\theta<\Theta_{L}-a/\rho we have that a/ρ[0,ΘLθ).a/\rho\in[0,\Theta_{L}-\theta). Moreover, defining the function F(u,β)=Λθ,β,a(u)F(u,\beta)=\Lambda^{\theta,\beta,a}(u) and taking into account that F(a/ρ,0)=0F(a/\rho,0)=0 and,

uF(u,β)|(u,β)=(a/ρ,0)\displaystyle\left.\frac{\partial}{\partial u}F(u,\beta)\right|_{(u,\beta)=(a/\rho,0)} =(ρ+ρβκL′′(u+θ)κL′′(θ))|(u,β)=(a/ρ,0)=ρ<0,\displaystyle=\left.\left(-\rho+\rho\beta\frac{\kappa_{L}^{\prime\prime}(u+\theta)}{\kappa_{L}^{\prime\prime}(\theta)}\right)\right|_{(u,\beta)=(a/\rho,0)}=-\rho<0,

we can apply the implicit function theorem to the equation F(u,β)=0F(u,\beta)=0 that ensures that there exists a neighborhood UU of (a/ρ,0)(a/\rho,0) in which we can write ua0=ua0(β),u_{a}^{0}=u_{a}^{0}(\beta), the root of F(u,β)=0,F(u,\beta)=0, as a function of β.\beta. Moreover, in U,U, we have that

βua0(β)\displaystyle\frac{\partial}{\partial\beta}u_{a}^{0}(\beta) =βF(ua0(β),β)uF(ua0(β),β)=ρκL′′(θ)(θ+κL(ua0(β))κL(θ))ρ+ρβκL′′(ua0(β)+θ)κL′′(θ)\displaystyle=-\frac{\frac{\partial}{\partial\beta}F(u_{a}^{0}(\beta),\beta)}{\frac{\partial}{\partial u}F(u_{a}^{0}(\beta),\beta)}=-\frac{\frac{\rho}{\kappa_{L}^{\prime\prime}(\theta)}(\theta+\kappa_{L}^{\prime}(u_{a}^{0}(\beta))-\kappa_{L}^{\prime}(\theta))}{-\rho+\rho\beta\frac{\kappa_{L}^{\prime\prime}(u_{a}^{0}(\beta)+\theta)}{\kappa_{L}^{\prime\prime}(\theta)}}
=ua0(β)01κL′′(θ+λua0(β))𝑑λκL′′(θ)βκL′′(θ+ua0(β)),\displaystyle=\frac{u_{a}^{0}(\beta)\int_{0}^{1}\kappa_{L}^{\prime\prime}(\theta+\lambda u_{a}^{0}(\beta))d\lambda}{\kappa_{L}^{\prime\prime}(\theta)-\beta\kappa_{L}^{\prime\prime}(\theta+u_{a}^{0}(\beta))},

which is positive as long as

β<κL′′(θ)κL′′(θ+ua0(β)).\beta<\frac{\kappa_{L}^{\prime\prime}(\theta)}{\kappa_{L}^{\prime\prime}(\theta+u_{a}^{0}(\beta))}.

This yields that ua0(β)u_{a}^{0}(\beta) is a well defined and strictly increasing function of β\beta for β[0,βm]\beta\in[0,\beta_{m}], where βm\beta_{m} is the root of equation

Λθ,β,a(um(θ,βm))=0.\Lambda^{\theta,\beta,a}(u^{m}(\theta,\beta_{m}))=0.

Moreover, ua0(0)=a/ρu_{a}^{0}(0)=a/\rho and ua0(βm)=uam(θ,βm).u_{a}^{0}(\beta_{m})=u_{a}^{m}(\theta,\beta_{m}). If Λθ,β,a(um(θ,β))<0,\Lambda^{\theta,\beta,a}(u^{m}(\theta,\beta))<0, the existence of u0(θ,β)u^{0}(\theta,\beta) follows from Bolzano’s Theorem and the uniqueness from the fact that Λθ,β,a(u)\Lambda^{\theta,\beta,a}(u) is strictly decreasing in (0,um(θ,β)).(0,u^{m}(\theta,\beta)).

We can now state our main result:

Theorem 5.7.

If (θ2,β2)𝒟b(1/2)(\theta_{2},\beta_{2})\in\mathcal{D}_{b}(1/2) and (θ1,β1)×[0,1)(\theta_{1},\beta_{1})\in\mathbb{R}\times[0,1) then (Ψ0θ¯,β¯(t),Ψ1θ¯,β¯(t),Ψ2θ¯,β¯(t))(\Psi_{0}^{\bar{\theta},\bar{\beta}}(t),\Psi_{1}^{\bar{\theta},\bar{\beta}}(t),\Psi_{2}^{\bar{\theta},\bar{\beta}}(t)) are C1([0,T];)C^{1}([0,T];\mathbb{R}) for any T>0.T>0. Moreover,

(Ψ0θ¯,β¯(t),Ψ1θ¯,β¯(t),Ψ2θ¯,β¯(t))(θ1α(1β1)+0{κL(Ψ1θ¯,β¯(t)+θ2)κL(θ2)}𝑑s,0,0),t,(\Psi_{0}^{\bar{\theta},\bar{\beta}}(t),\Psi_{1}^{\bar{\theta},\bar{\beta}}(t),\Psi_{2}^{\bar{\theta},\bar{\beta}}(t))\longrightarrow\left(\frac{\theta_{1}}{\alpha(1-\beta_{1})}+\int_{0}^{\infty}\{\kappa_{L}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)+\theta_{2})-\kappa_{L}(\theta_{2})\}ds,0,0\right),\quad t\rightarrow\infty,

and

t1log(Ψ1θ¯,β¯(t),Ψ2θ¯,β¯(t))γ,t,t^{-1}\log\left\|(\Psi_{1}^{\bar{\theta},\bar{\beta}}(t),\Psi_{2}^{\bar{\theta},\bar{\beta}}(t))\right\|\rightarrow\gamma,\quad t\rightarrow\infty,

where γ=α(1β1)\gamma=-\alpha(1-\beta_{1}) or γ=ρ(1β2).\gamma=-\rho(1-\beta_{2}).

Proof.

First, recall from Remark 5.5 that the existence and uniqueness of the system of ODEs in Theorem 5.3 can be reduced to establish existence and uniqueness for the one dimensional non autonomous equation (5.7). We have to study the time dependent vector field

Λ~1θ¯,β¯(t,u)ρu+e2α(1β1)t2+ρβ2κL′′(θ2)(κL(u+θ2)κL(θ2)),β¯(0,1)2,θ¯D¯L.\tilde{\Lambda}_{1}^{\bar{\theta},\bar{\beta}}(t,u)\triangleq-\rho u+\frac{e^{-2\alpha(1-\beta_{1})t}}{2}+\frac{\rho\beta_{2}}{\kappa_{L}^{\prime\prime}(\theta_{2})}(\kappa_{L}^{\prime}(u+\theta_{2})-\kappa_{L}^{\prime}(\theta_{2})),\quad\bar{\beta}\in(0,1)^{2},\quad\bar{\theta}\in\bar{D}_{L}.

Consider

𝒟(Λ~1θ¯,β¯)int({u:Λ~1θ¯,β¯(t,u)<})=int({u:κL(u+θ2)<})=(,ΘLθ2),\mathcal{D}(\tilde{\Lambda}_{1}^{\bar{\theta},\bar{\beta}})\triangleq\mathrm{int}(\{u\in\mathbb{R}:\tilde{\Lambda}_{1}^{\bar{\theta},\bar{\beta}}(t,u)<\infty\})=\mathrm{int}(\{u\in\mathbb{R}:\kappa_{L}^{\prime}(u+\theta_{2})<\infty\})=(-\infty,\Theta_{L}-\theta_{2}),

and define

𝒟int(β¯(0,1)]2,θ¯D¯L𝒟(Λ~1θ¯,β¯))=(,ΘLΘL/2)=(,ΘL/2).\mathcal{D}\triangleq\mathrm{int}({\displaystyle\bigcap\limits_{\bar{\beta}\in(0,1)]^{2},\bar{\theta}\in\bar{D}_{L}}}\mathcal{D}(\tilde{\Lambda}_{1}^{\bar{\theta},\bar{\beta}}))=(-\infty,\Theta_{L}-\Theta_{L}/2)=(-\infty,\Theta_{L}/2).

On the other hand, for u,v𝒟(Λ~1θ¯,β¯),u,v\in\mathcal{D}(\tilde{\Lambda}_{1}^{\bar{\theta},\bar{\beta}}), one has that

|Λ~1θ¯,β¯(t,u)Λ~1θ¯,β¯(t,v)|ρ|uv|+ρβ2κL′′(θ2)0|euzevz|zeθ2z(dz),\left|\tilde{\Lambda}_{1}^{\bar{\theta},\bar{\beta}}(t,u)-\tilde{\Lambda}_{1}^{\bar{\theta},\bar{\beta}}(t,v)\right|\leq\rho\left|u-v\right|+\frac{\rho\beta_{2}}{\kappa_{L}^{\prime\prime}(\theta_{2})}\int_{0}^{\infty}\left|e^{uz}-e^{vz}\right|ze^{\theta_{2}z}\ell(dz),

and

0|euzevz|zeθ2z(dz)|uv|0e(uv+θ2)zz2(dz),\int_{0}^{\infty}\left|e^{uz}-e^{vz}\right|ze^{\theta_{2}z}\ell(dz)\leq|u-v|\int_{0}^{\infty}e^{(u\vee v+\theta_{2})z}z^{2}\ell(dz),

Moreover, note that

int({u:0z2e(u+θ2)z(dz)<})=(,ΘLθ2)=𝒟(Λ~1θ¯,β¯).\mathrm{int}(\{u\in\mathbb{R}:\int_{0}^{\infty}z^{2}e^{(u+\theta_{2})z}\ell(dz)<\infty\})=(-\infty,\Theta_{L}-\theta_{2})=\mathcal{D}(\tilde{\Lambda}_{1}^{\bar{\theta},\bar{\beta}}).

Hence, the vector field Λ~1θ¯,β¯(t,u),θ¯D¯L,β¯[0,1]2\tilde{\Lambda}_{1}^{\bar{\theta},\bar{\beta}}(t,u),\bar{\theta}\in\bar{D}_{L},\bar{\beta}\in[0,1]^{2} is well defined (i.e., finite) and locally Lipschitz in 𝒟(Λ~1).\mathcal{D}(\tilde{\Lambda}_{1}). Then, by the Picard-Lindelöf Theorem (see Theorem 3.1, page 18, in Hale [16]) we have local existence and uniqueness for Ψ1θ¯,β¯(t)\Psi_{1}^{\bar{\theta},\bar{\beta}}(t) with Ψ1θ¯,β¯(0)=0𝒟(Λ~1).\Psi_{1}^{\bar{\theta},\bar{\beta}}(0)=0\in\mathcal{D}(\tilde{\Lambda}_{1}).

Let us consider the autonomous vector field

Λ^1θ2,β2(u)ρu+12+ρβ2κL′′(θ2)(κL(u+θ2)κL(θ2)),β2(0,1),θ2DL.\hat{\Lambda}_{1}^{\theta_{2},\beta_{2}}(u)\triangleq-\rho u+\frac{1}{2}+\frac{\rho\beta_{2}}{\kappa_{L}^{\prime\prime}(\theta_{2})}(\kappa_{L}^{\prime}(u+\theta_{2})-\kappa_{L}^{\prime}(\theta_{2})),\quad\beta_{2}\in(0,1),\quad\theta_{2}\in D_{L}.

Then, as Λ^1θ2,β2(u)Λ~1θ¯,β¯(t,u)=12(1e2αt)0,\hat{\Lambda}_{1}^{\theta_{2},\beta_{2}}(u)-\tilde{\Lambda}_{1}^{\bar{\theta},\bar{\beta}}(t,u)=\frac{1}{2}(1-e^{-2\alpha t})\geq 0, for u0,u\geq 0, using a comparison theorem we have that the solution for the ODE associated to Λ~1θ¯,β¯(t,u)\tilde{\Lambda}_{1}^{\bar{\theta},\bar{\beta}}(t,u) and starting at 0 is bounded above by the corresponding solution to the ODE associated to Λ^1θ2,β2(u),\hat{\Lambda}_{1}^{\theta_{2},\beta_{2}}(u), which we will denote by Ψ^1θ2,β2(t).\hat{\Psi}_{1}^{\theta_{2},\beta_{2}}(t). By Lemma 5.6, if (θ2,β2)𝒟b(1/2)(\theta_{2},\beta_{2})\in\mathcal{D}_{b}(1/2) there exists a unique 2/ρ<u1/20(θ2,β2)um(θ2,β2)2/\rho<u_{1/2}^{0}(\theta_{2},\beta_{2})\leq u^{m}(\theta_{2},\beta_{2}) such that Λ^1θ,β(u)>0,\hat{\Lambda}_{1}^{\theta,\beta}(u)>0, for u(0,u1/20(θ2,β2))u\in(0,u_{1/2}^{0}(\theta_{2},\beta_{2})) and Λ^1θ,β(u1/20(θ2,β2))=0.\hat{\Lambda}_{1}^{\theta,\beta}(u_{1/2}^{0}(\theta_{2},\beta_{2}))=0. This yields that the solution Ψ^1θ2,β2(t)\hat{\Psi}_{1}^{\theta_{2},\beta_{2}}(t) is defined for t[0,+)t\in[0,+\infty) and monotonously converges to u1/20(θ2,β2),u_{1/2}^{0}(\theta_{2},\beta_{2}), which is a stationary point of Λ^1θ,β(u).\hat{\Lambda}_{1}^{\theta,\beta}(u). Hence, the solution Ψ1θ¯,β¯(t)\Psi_{1}^{\bar{\theta},\bar{\beta}}(t) is bounded by u1/20(θ2,β2)u_{1/2}^{0}(\theta_{2},\beta_{2}) and defined for t[0,+).t\in[0,+\infty). To prove that actually Ψ1θ¯,β¯(t)\Psi_{1}^{\bar{\theta},\bar{\beta}}(t) converges to zero it is convenient to look at the 22 dimensional system

ddtΨ1θ¯,β¯(t)=ρΨ1θ¯,β¯(t)+(Ψ2θ¯,β¯(t))22+ρβ2κL′′(θ2)(κL(Ψ1θ¯,β¯(t)+θ2)κL(θ2)),Ψ1θ¯,β¯(0)=0,ddtΨ2θ¯,β¯(t)=α(1β1)Ψ2θ¯,β¯(t),Ψ2θ¯,β¯(0)=1,\begin{array}[c]{lcc}\frac{d}{dt}\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)=-\rho\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)+\frac{(\Psi_{2}^{\bar{\theta},\bar{\beta}}(t))^{2}}{2}+\frac{\rho\beta_{2}}{\kappa_{L}^{\prime\prime}(\theta_{2})}(\kappa_{L}^{\prime}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)+\theta_{2})-\kappa_{L}^{\prime}(\theta_{2})),&&\Psi_{1}^{\bar{\theta},\bar{\beta}}(0)=0,\\ \frac{d}{dt}\Psi_{2}^{\bar{\theta},\bar{\beta}}(t)=-\alpha(1-\beta_{1})\Psi_{2}^{\bar{\theta},\bar{\beta}}(t),&&\Psi_{2}^{\bar{\theta},\bar{\beta}}(0)=1,\end{array} (5.12)

with the corresponding vector fields

Λ1θ¯,β¯(u1,u2)\displaystyle\Lambda_{1}^{\bar{\theta},\bar{\beta}}(u_{1},u_{2}) =ρu1+u222+ρβ2κL′′(θ2)(κL(u1+θ2)κL(θ2)),\displaystyle=-\rho u_{1}+\frac{u_{2}^{2}}{2}+\frac{\rho\beta_{2}}{\kappa_{L}^{\prime\prime}(\theta_{2})}(\kappa_{L}^{\prime}(u_{1}+\theta_{2})-\kappa_{L}^{\prime}(\theta_{2})),
Λ2θ¯,β¯(u1,u2)\displaystyle\Lambda_{2}^{\bar{\theta},\bar{\beta}}(u_{1},u_{2}) =α(1β1)u2.\displaystyle=-\alpha(1-\beta_{1})u_{2}.

Note that (u1,u2)=(0,0)(u_{1},u_{2})=(0,0) is a stationary point, that Λ1θ¯,β¯(0,u2)>0\Lambda_{1}^{\bar{\theta},\bar{\beta}}(0,u_{2})>0 for u2>0u_{2}>0, that Λ2θ¯,β¯(u1,0)=0\Lambda_{2}^{\bar{\theta},\bar{\beta}}(u_{1},0)=0 for u1>0u_{1}>0 and Λ2θ¯,β¯(u1,u2)<0\Lambda_{2}^{\bar{\theta},\bar{\beta}}(u_{1},u_{2})<0 for u1>0,u2>0.u_{1}>0,u_{2}>0. Hence, the region Sθ¯,β¯={(u1,u2):0u1<ΘLθ2,0u21}S_{\bar{\theta},\bar{\beta}}=\{(u_{1},u_{2}):0\leq u_{1}<\Theta_{L}-\theta_{2},0\leq u_{2}\leq 1\} is invariant for this vector field, i.e., a solution that enters Sθ¯,β¯S_{\bar{\theta},\bar{\beta}} cannot leave Sθ¯,β¯.S_{\bar{\theta},\bar{\beta}}. Moreover, we have that the vector field Λ1θ¯,β¯(u1,u2)\Lambda_{1}^{\bar{\theta},\bar{\beta}}(u_{1},u_{2}) evaluated at the line u2=0u_{2}=0 has the form

Λ1θ¯,β¯(u1,0)=ρu1+ρβ2κL′′(θ2)(κL(u1+θ2)κL(θ2)),\Lambda_{1}^{\bar{\theta},\bar{\beta}}(u_{1},0)=-\rho u_{1}+\frac{\rho\beta_{2}}{\kappa_{L}^{\prime\prime}(\theta_{2})}(\kappa_{L}^{\prime}(u_{1}+\theta_{2})-\kappa_{L}^{\prime}(\theta_{2})),

i.e., Λ1θ¯,β¯(u1,0)=Λθ2,β2,0(u1).\Lambda_{1}^{\bar{\theta},\bar{\beta}}(u_{1},0)=\Lambda^{\theta_{2},\beta_{2},0}(u_{1}). By Lemma 5.6, it then follows that Λ1θ¯,β¯(u1,0)=Λθ2,β2,0(u1)<0,\Lambda_{1}^{\bar{\theta},\bar{\beta}}(u_{1},0)=\Lambda^{\theta_{2},\beta_{2},0}(u_{1})<0, for u1(0,um(θ2,β2)).u_{1}\in(0,u^{m}(\theta_{2},\beta_{2})). In addition, if (θ2,β2)𝒟(1/2),\left(\theta_{2},\beta_{2}\right)\in\mathcal{D}(1/2), we have that u1/20(θ2,β2)<um(θ2,β2).u_{1/2}^{0}(\theta_{2},\beta_{2})<u^{m}(\theta_{2},\beta_{2}). This means that Λ1θ¯,β¯(u1,0)<0\Lambda_{1}^{\bar{\theta},\bar{\beta}}(u_{1},0)<0 for u1(0,u1/20(θ2,β2)),u_{1}\in(0,u_{1/2}^{0}(\theta_{2},\beta_{2})), which can be extended to (u1,u2)(0,u1/20(θ2,β2))×(0,δ)Rθ¯,β¯(δ)\left(u_{1},u_{2}\right)\in(0,u_{1/2}^{0}(\theta_{2},\beta_{2}))\times(0,\delta)\triangleq R_{\bar{\theta},\bar{\beta}}(\delta) for some 0<δ<1.0<\delta<1. Note that Rθ¯,β¯(δ)R_{\bar{\theta},\bar{\beta}}(\delta) is in the domain of attraction of the stationary point (0,0).(0,0). As Ψ2θ¯,β¯(t)=eα(1β1)t\Psi_{2}^{\bar{\theta},\bar{\beta}}(t)=e^{-\alpha(1-\beta_{1})t} and Ψ1θ¯,β¯(t)<u1/20(θ2,β2)\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)<u_{1/2}^{0}(\theta_{2},\beta_{2}), we have that (Ψ1θ¯,β¯(t),Ψ2θ¯,β¯(t))int(Rθ¯,β¯(δ))(\Psi_{1}^{\bar{\theta},\bar{\beta}}(t),\Psi_{2}^{\bar{\theta},\bar{\beta}}(t))\in\mathrm{int}(R_{\bar{\theta},\bar{\beta}}(\delta)) for t>log(δ)α(1β1)t>-\frac{\log(\delta)}{\alpha(1-\beta_{1})} and, hence, it converges to (0,0)(0,0) when tt tends to infinity. Note that we can look at the system (5.12)\left(\ref{Equ_2D_ODE}\right) as a perturbed linear system, i.e.,

ddtΨ1θ¯,β¯(t)=ρ(1β2)Ψ1θ¯,β¯(t)+G1(Ψ1θ¯,β¯(t),Ψ2θ¯,β¯(t)),Ψ1θ¯,β¯(0)=0,ddtΨ2θ¯,β¯(t)=α(1β1)Ψ2θ¯,β¯(t)+G2(Ψ1θ¯,β¯(t),Ψ2θ¯,β¯(t)),Ψ2θ¯,β¯(0)=1,\begin{array}[c]{lcc}\frac{d}{dt}\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)=-\rho(1-\beta_{2})\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)+G_{1}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(t),\Psi_{2}^{\bar{\theta},\bar{\beta}}(t)),&&\Psi_{1}^{\bar{\theta},\bar{\beta}}(0)=0,\\ \frac{d}{dt}\Psi_{2}^{\bar{\theta},\bar{\beta}}(t)=-\alpha(1-\beta_{1})\Psi_{2}^{\bar{\theta},\bar{\beta}}(t)+G_{2}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(t),\Psi_{2}^{\bar{\theta},\bar{\beta}}(t)),&&\Psi_{2}^{\bar{\theta},\bar{\beta}}(0)=1,\end{array}

where

G1(u1,u2)\displaystyle G_{1}(u_{1},u_{2}) =u222+ρβ2κL′′(θ2)(0101κL′′′(θ2+λ1λ2u1)𝑑λ2λ1𝑑λ1)u12,\displaystyle=\frac{u_{2}^{2}}{2}+\frac{\rho\beta_{2}}{\kappa_{L}^{\prime\prime}(\theta_{2})}(\int_{0}^{1}\int_{0}^{1}\kappa_{L}^{\prime\prime\prime}(\theta_{2}+\lambda_{1}\lambda_{2}u_{1})d\lambda_{2}\lambda_{1}d\lambda_{1})u_{1}^{2},
G2(u1,u2)\displaystyle G_{2}(u_{1},u_{2}) =0,\displaystyle=0,

and

lim(u1,u2)(0,0)(G1(u1,u2),G2(u1,u2))u12+u22=(0,0).\lim_{(u_{1},u_{2})\rightarrow(0,0)}\frac{(G_{1}(u_{1},u_{2}),G_{2}(u_{1},u_{2}))}{\sqrt{u_{1}^{2}+u_{2}^{2}}}=(0,0).

Hence, that (Ψ1θ¯,β¯(t),Ψ2θ¯,β¯(t))(\Psi_{1}^{\bar{\theta},\bar{\beta}}(t),\Psi_{2}^{\bar{\theta},\bar{\beta}}(t)) converges to zero exponentially fast follows from Theorem 3.1.(i), Chapter VII, in Hartman [17]. On the other hand, by Remark 5.5 and the monotone convergence theorem, we have that

limtΨ0θ¯,β¯(t)\displaystyle\lim_{t\rightarrow\infty}\Psi_{0}^{\bar{\theta},\bar{\beta}}(t) =limtθ11eα(1β1)tα(1β1)+0t{κL(Ψ1θ¯,β¯(s)+θ2)κL(θ2)}𝑑s\displaystyle=\lim_{t\rightarrow\infty}\theta_{1}\frac{1-e^{-\alpha(1-\beta_{1})t}}{\alpha(1-\beta_{1})}+\int_{0}^{t}\{\kappa_{L}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(s)+\theta_{2})-\kappa_{L}(\theta_{2})\}ds
=θ1α(1β1)+0{κL(Ψ1θ¯,β¯(s)+θ2)κL(θ2)}𝑑s<.\displaystyle=\frac{\theta_{1}}{\alpha(1-\beta_{1})}+\int_{0}^{\infty}\{\kappa_{L}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(s)+\theta_{2})-\kappa_{L}(\theta_{2})\}ds<\infty.

To prove that the previous integral is finite, note first that, as Ψ1θ¯,β¯(t)<u1/20(θ2,β2)\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)<u_{1/2}^{0}(\theta_{2},\beta_{2}) and the function κL(u)\kappa_{L}(u) is increasing we have that κL(Ψ1θ¯,β¯(t)+θ2)κL(u1/20(θ2,β2)+θ2).\kappa_{L}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)+\theta_{2})\leq\kappa_{L}(u_{1/2}^{0}(\theta_{2},\beta_{2})+\theta_{2}). But, by definition

0=ρu1/20(θ2,β2)+12+ρβ2κL′′(θ2)(κL(u1/20(θ2,β2)+θ2)κL(θ2)),0=-\rho u_{1/2}^{0}(\theta_{2},\beta_{2})+\frac{1}{2}+\frac{\rho\beta_{2}}{\kappa_{L}^{\prime\prime}(\theta_{2})}(\kappa_{L}^{\prime}(u_{1/2}^{0}(\theta_{2},\beta_{2})+\theta_{2})-\kappa_{L}^{\prime}(\theta_{2})),

which yields that

κL(u1/20(θ2,β2)+θ2)=κL′′(θ2)ρβ2(ρu1/20(θ2,β2)12)+κL(θ2),\kappa_{L}^{\prime}(u_{1/2}^{0}(\theta_{2},\beta_{2})+\theta_{2})=\frac{\kappa_{L}^{\prime\prime}(\theta_{2})}{\rho\beta_{2}}(\rho u_{1/2}^{0}(\theta_{2},\beta_{2})-\frac{1}{2})+\kappa_{L}^{\prime}(\theta_{2}),

which is bounded. Hence, it suffices to prove that κL(Ψ1θ¯,β¯(t)+θ2)κL(θ2)\kappa_{L}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)+\theta_{2})-\kappa_{L}(\theta_{2}) converges to zero faster than t(1+ε),t^{-(1+\varepsilon)}, for some ε>0,\varepsilon>0, when tt tends to infinity. We have that

limtt(1+ε)(κL(Ψ1θ¯,β¯(t)+θ2)κL(θ2))\displaystyle\lim_{t\rightarrow\infty}t^{(1+\varepsilon)}(\kappa_{L}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)+\theta_{2})-\kappa_{L}(\theta_{2})) =limtt(1+ε)Ψ1θ¯,β¯(t)01κL(θ2+λΨ1θ¯,β¯(t))𝑑λ\displaystyle=\lim_{t\rightarrow\infty}t^{(1+\varepsilon)}\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)\int_{0}^{1}\kappa_{L}^{\prime}(\theta_{2}+\lambda\Psi_{1}^{\bar{\theta},\bar{\beta}}(t))d\lambda
=(limtt(1+ε)Ψ1θ¯,β¯(t))(limt01κL(θ2+λΨ1θ¯,β¯(t))𝑑λ)\displaystyle=\left(\lim_{t\rightarrow\infty}t^{(1+\varepsilon)}\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)\right)\left(\lim_{t\rightarrow\infty}\int_{0}^{1}\kappa_{L}^{\prime}(\theta_{2}+\lambda\Psi_{1}^{\bar{\theta},\bar{\beta}}(t))d\lambda\right)
=κL(θ2)limtt(1+ε)Ψ1θ¯,β¯(t)=0,\displaystyle=\kappa_{L}^{\prime}(\theta_{2})\lim_{t\rightarrow\infty}t^{(1+\varepsilon)}\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)=0,

because Ψ1θ¯,β¯(t)\Psi_{1}^{\bar{\theta},\bar{\beta}}(t) converges to zero exponentially fast and limt01κL(θ2+λΨ1θ¯,β¯(t))𝑑λ=κL(θ2)\lim_{t\rightarrow\infty}\int_{0}^{1}\kappa_{L}^{\prime}(\theta_{2}+\lambda\Psi_{1}^{\bar{\theta},\bar{\beta}}(t))d\lambda=\kappa_{L}^{\prime}(\theta_{2}) by bounded convergence. ∎

An immediate consequence of the Theorem above is that the forward price will be equal to the seasonal function Λg(T)\Lambda_{g}(T) in the long end, that is, when (θ2,β2)𝒟b(1/2)(\theta_{2},\beta_{2})\in\mathcal{D}_{b}(1/2) and (θ1,β1)×[0,1)(\theta_{1},\beta_{1})\in\mathbb{R}\times[0,1), it holds that

limTFQ(t,T)Λg(T)=exp(θ1α(1β1)+0{κL(Ψ1θ¯,β¯(s)+θ2)κL(θ2)}𝑑s).\lim_{T\rightarrow\infty}\frac{F_{Q}(t,T)}{\Lambda_{g}(T)}=\exp\left(\frac{\theta_{1}}{\alpha(1-\beta_{1})}+\int_{0}^{\infty}\{\kappa_{L}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(s)+\theta_{2})-\kappa_{L}(\theta_{2})\}\,ds\right).

Note that to have this limiting de-seasonalized forward price, we must compute an integral of a nonlinear function of Ψ1θ¯,β¯(t)\Psi_{1}^{\bar{\theta},\bar{\beta}}(t), for which we do not have any explicit solution available. Note that from part 4(b) in Lemma 5.6 we have (θ2,β2)𝒟b(1/2)(\theta_{2},\beta_{2})\in\mathcal{D}_{b}(1/2) if θ2<ΘL1/2ρ\theta_{2}<\Theta_{L}-1/2\rho and β2[0,βm]\beta_{2}\in[0,\beta_{m}], for a uniquely defined 0<βm<10<\beta_{m}<1. We recall that ρ\rho is the speed of mean reversion of the stochastic volatility σ2(t)\sigma^{2}(t), and ΘL\Theta_{L} is the maximal exponential integrability of LL, the subordinator driving the same process. Thus, we must choose θ2\theta_{2} less that ΘL\Theta_{L}, by a distance given by the inverse of the speed of mean reversion. Then we know there exists an interval of β2\beta_{2}’s for which we can reduce the speed of mean reversion of σ2(t)\sigma^{2}(t). Here we see clearly the competition between the jumps of LL and the speed of mean reversion of σ2(t)\sigma^{2}(t).

We note that if we just change the levels of mean reversion, that is assuming β¯=(0,0),\bar{\beta}=(0,0), then we can compute the risk premium more explicitly. This case will correspond to an Esscher transform of both the Brownian motion driving XX and the subordinator LL driving σ2(t)\sigma^{2}(t).

Proposition 3.

Suppose that β¯=(0,0)\bar{\beta}=(0,0) and θ¯×DL.\bar{\theta}\in\mathbb{R}\times D_{L}. Then the forward price is given by

𝔼Q[exp(X(T))|t]\displaystyle\mathbb{E}_{Q}[\exp(X(T))|\mathcal{F}_{t}] =exp(eρ(Tt)1e(2αρ)(Tt)2(2αρ)σ2(t)+eα(Tt)X(t)\displaystyle=\exp\left(e^{-\rho(T-t)}\frac{1-e^{-(2\alpha-\rho)(T-t)}}{2(2\alpha-\rho)}\sigma^{2}(t)+e^{-\alpha(T-t)}X(t)\right.
+θ11eα(Tt)α+0TtκL(eρs1e(2αρ)s2(2αρ)+θ2)κL(θ2)ds),\displaystyle\qquad\left.+\theta_{1}\frac{1-e^{-\alpha(T-t)}}{\alpha}+\int_{0}^{T-t}\kappa_{L}\left(e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}+\theta_{2}\right)-\kappa_{L}(\theta_{2})ds\right),

and the risk premium by

RQF(t,T)\displaystyle R_{Q}^{F}(t,T) =𝔼P[S(T)|t]{exp(0TtκL(eρs1e(2αρ)s2(2αρ)+θ2)κL(θ2)ds\displaystyle=\mathbb{E}_{P}[S(T)|\mathcal{F}_{t}]\left\{\exp\left(\int_{0}^{T-t}\kappa_{L}\left(e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}+\theta_{2}\right)-\kappa_{L}(\theta_{2})ds\right.\right. (5.13)
0TtκL(eρs1e(2αρ)s2(2αρ))ds+θ11eα(Tt)α)1}.\displaystyle\qquad-\int_{0}^{T-t}\kappa_{L}\left(e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}\right)ds+\left.\left.\theta_{1}\frac{1-e^{-\alpha(T-t)}}{\alpha}\right)-1\right\}.
Proof.

Note that the system of generalised Riccati equations to solve is

ddtΨ1θ¯,0(t)=ρΨ1θ¯,0(t)+(Ψ2θ¯,0(t))22Ψ1θ¯,0(0)=0,ddtΨ2θ¯,0(t)=αΨ2θ¯,0(t),Ψ2θ¯,0(0)=1,ddtΨ0θ¯,0(t)=θ1Ψ2θ¯,0(t)+κL(Ψ1θ¯,0(t)+θ2)κL(θ2),Ψ0θ¯,0(0)=0.\begin{array}[c]{lcc}\frac{d}{dt}\Psi_{1}^{\bar{\theta},0}(t)=-\rho\Psi_{1}^{\bar{\theta},0}(t)+\frac{(\Psi_{2}^{\bar{\theta},0}(t))^{2}}{2}&&\Psi_{1}^{\bar{\theta},0}(0)=0,\\ \frac{d}{dt}\Psi_{2}^{\bar{\theta},0}(t)=-\alpha\Psi_{2}^{\bar{\theta},0}(t),&&\Psi_{2}^{\bar{\theta},0}(0)=1,\\ \frac{d}{dt}\Psi_{0}^{\bar{\theta},0}(t)=\theta_{1}\Psi_{2}^{\bar{\theta},0}(t)+\kappa_{L}(\Psi_{1}^{\bar{\theta},0}(t)+\theta_{2})-\kappa_{L}(\theta_{2}),&&\Psi_{0}^{\bar{\theta},0}(0)=0.\end{array}

With respect to Ψ1θ¯,0(t)\Psi_{1}^{\bar{\theta},0}(t) and Ψ2θ¯,0(t),\Psi_{2}^{\bar{\theta},0}(t), this coincides with the one satisfied by Ψ10,0(t)=eρt1e(2αρ)t2(2αρ)\Psi_{1}^{0,0}(t)=e^{-\rho t}\frac{1-e^{-(2\alpha-\rho)t}}{2(2\alpha-\rho)} and Ψ20,0(t)=eαt.\Psi_{2}^{0,0}(t)=e^{-\alpha t}. Hence, Ψ1θ¯,0(t)=eρt1e(2αρ)t2(2αρ),Ψ2θ¯,0(t)=eαt\Psi_{1}^{\bar{\theta},0}(t)=e^{-\rho t}\frac{1-e^{-(2\alpha-\rho)t}}{2(2\alpha-\rho)},\Psi_{2}^{\bar{\theta},0}(t)=e^{-\alpha t} and we just need to integrate the equation for Ψ0θ¯,0(t)\Psi_{0}^{\bar{\theta},0}(t) to obtain that

Ψ0θ¯,0(t)\displaystyle\Psi_{0}^{\bar{\theta},0}(t) =θ10tΨ2θ¯,0(s)𝑑s+0tκL(Ψ1θ¯,0(t)+θ2)κL(θ2)\displaystyle=\theta_{1}\int_{0}^{t}\Psi_{2}^{\bar{\theta},0}(s)ds+\int_{0}^{t}\kappa_{L}(\Psi_{1}^{\bar{\theta},0}(t)+\theta_{2})-\kappa_{L}(\theta_{2})
=θ11eαtα+0tκL(eρs1e(2αρ)s2(2αρ)+θ2)κL(θ2)ds,\displaystyle=\theta_{1}\frac{1-e^{-\alpha t}}{\alpha}+\int_{0}^{t}\kappa_{L}\left(e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}+\theta_{2}\right)-\kappa_{L}(\theta_{2})ds,

to conclude. ∎

Next, we present two examples where we apply the previous results.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Refer to caption
(d)
Figure 2. Some plots related to example 5.8. We take ρ=1.11,α=0.127,β1=β2=0.3.\rho=1.11,\alpha=0.127,\beta_{1}=\beta_{2}=0.3.
Example 5.8.

We start by the simplest possible case. Assume that the Lévy measure is δ{1}(dz),\delta_{\{1\}}(dz), that is, the Lévy process LL has only jumps of size 1.1. In this case ΘL=\Theta_{L}=\infty and, hence, DL=.D_{L}=\mathbb{R}. We have that κL(θ2)=eθ21\kappa_{L}(\theta_{2})=e^{\theta_{2}}-1 and κL(n)(θ2)=eθ2,n.\kappa_{L}^{(n)}(\theta_{2})=e^{\theta_{2}},n\in\mathbb{N}. Therefore, the associated generalised Riccati equation is given

ddtΨ1θ¯,β¯(t)=ρΨ1θ¯,β¯(t)+(Ψ2θ¯,β¯(t))22+ρβ2(eΨ1θ¯,β¯(t)1),Ψ1θ¯,β¯(0)=0,ddtΨ2θ¯,β¯(t)=α(1β1)Ψ2θ¯,β¯(t),Ψ2θ¯,β¯(0)=1,ddtΨ0θ¯,β¯(t)=θ1Ψ2θ¯,β¯(t)+eθ2(eΨ1θ¯,β¯(t)1),Ψ0θ¯,β¯(0)=0,\begin{array}[c]{lcc}\frac{d}{dt}\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)=-\rho\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)+\frac{(\Psi_{2}^{\bar{\theta},\bar{\beta}}(t))^{2}}{2}+\rho\beta_{2}(e^{\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)}-1),&&\Psi_{1}^{\bar{\theta},\bar{\beta}}(0)=0,\\ \frac{d}{dt}\Psi_{2}^{\bar{\theta},\bar{\beta}}(t)=-\alpha(1-\beta_{1})\Psi_{2}^{\bar{\theta},\bar{\beta}}(t),&&\Psi_{2}^{\bar{\theta},\bar{\beta}}(0)=1,\\ \frac{d}{dt}\Psi_{0}^{\bar{\theta},\bar{\beta}}(t)=\theta_{1}\Psi_{2}^{\bar{\theta},\bar{\beta}}(t)+e^{\theta_{2}}(e^{\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)}-1),&&\Psi_{0}^{\bar{\theta},\bar{\beta}}(0)=0,\end{array} (5.14)

In this example

Λ^1θ2,β2(u)=Λθ2,β2,1/2(u)=12ρu+ρβ2(eu1),\hat{\Lambda}_{1}^{\theta_{2},\beta_{2}}(u)=\Lambda^{\theta_{2},\beta_{2},1/2}(u)=\frac{1}{2}-\rho u+\rho\beta_{2}(e^{u}-1),

which does not depend on θ2.\theta_{2}. By Lemma 5.6, Λθ,β,1/2(u)\Lambda^{\theta,\beta,1/2}(u) attains its minimum at

u1/2m(θ2,β2)=log(eθ2β2)θ2=log(β2)u_{1/2}^{m}(\theta_{2},\beta_{2})=\log\left(\frac{e^{\theta_{2}}}{\beta_{2}}\right)-\theta_{2}=-\log\left(\beta_{2}\right)

and equation (5.11) reads

Λθ2,β2,1/2(u1/2m)=12+ρlog(β2)+ρ(1β2)=0.\Lambda^{\theta_{2},\beta_{2},1/2}(u_{1/2}^{m})=\frac{1}{2}+\rho\log\left(\beta_{2}\right)+\rho(1-\beta_{2})=0. (5.15)

Using the Lambert W function, i.e., the function defined by W(z)eW(z)=z,z,(z)e^{\mathrm{W}(z)}=z,z\in\mathbb{C}, we get that βm,\beta_{m}, the root of equation (5.15) is given by

βm=W(e(1+12ρ)).\beta_{m}=-\mathrm{W}(-e^{-\left(1+\frac{1}{2\rho}\right)}).

Hence, according to Lemma 5.6, the set 𝒟b(12)={(θ2,β2):β2[0,βm]}\mathcal{D}_{b}(\frac{1}{2})=\{(\theta_{2},\beta_{2}):\beta_{2}\in[0,\beta_{m}]\} and if β2[0,βm]\beta_{2}\in[0,\beta_{m}] there exists a unique root u1/20(θ2,β2)u_{1/2}^{0}(\theta_{2},\beta_{2}) of equation Λθ2,β2,1/2(u)=0\Lambda^{\theta_{2},\beta_{2},1/2}(u)=0 satisfying u1/20(θ2,β2)u1/2m(θ2,β2)u_{1/2}^{0}(\theta_{2},\beta_{2})\leq u_{1/2}^{m}(\theta_{2},\beta_{2}). This root is given by

u1/20(β2)=12ρ(β2+W(β2e(12ρβ2))).u_{1/2}^{0}(\beta_{2})=\frac{1}{2\rho}-\left(\beta_{2}+\mathrm{W}(-\beta_{2}e^{(\frac{1}{2\rho}-\beta_{2})})\right).

See Figure 2 for a graphical illustration of this case.

Refer to caption
(a)
Refer to caption
(b)
Refer to caption
(c)
Refer to caption
(d)
Figure 3. Some plots related to example 5.9. We take ρ=1.11,α=0.127,λ=2,θ1,θ2=5,β1=β2=0.45.\rho=1.11,\alpha=0.127,\lambda=2,\theta_{1}\in\mathbb{R},\theta_{2}=-5,\beta_{1}=\beta_{2}=0.45.
Example 5.9.

Assume that the Lévy measure is (dz)=ceλz𝟏(0,),\ell(dz)=ce^{-\lambda z}\boldsymbol{1}_{(0,\infty)}, that is, LL is a compound Poisson process with intensity c/λc/\lambda and exponentially distributed jumps with mean 1/λ.1/\lambda. In this case ΘL=λ\Theta_{L}=\lambda and, hence, DL=(,λ/2).D_{L}=\mathbb{(-\infty},\lambda/2). We have that κL(θ)=cθ/λ(λθ)\kappa_{L}(\theta)=c\theta/\lambda(\lambda-\theta) and κL(n)(θ)=cn!/(λθ)n+1,n.\kappa_{L}^{(n)}(\theta)=cn!/(\lambda-\theta)^{n+1},n\in\mathbb{N}. Therefore, the associated generalised Riccati equation is given by

ddtΨ1θ¯,β¯(t)=ρΨ1θ¯,β¯(t)+(Ψ2θ¯,β¯(t))22+ρβ2(λθ2)32{1(λθ2Ψ1θ¯,β¯(t))21(λθ2)2},Ψ1θ¯,β¯(0)=0,ddtΨ2θ¯,β¯(t)=α(1β1)Ψ2θ¯,β¯(t),Ψ2θ¯,β¯(0)=1,ddtΨ0θ¯,β¯(t)=θ1Ψ2θ¯,β¯(t)+c(Ψ1θ¯,β¯(t)+θ2)λ(λθ2Ψ1θ¯,β¯(t))cθ2λ(λθ2),Ψ0θ¯,β¯(0)=0,\begin{array}[c]{lcc}\frac{d}{dt}\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)=-\rho\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)+\frac{(\Psi_{2}^{\bar{\theta},\bar{\beta}}(t))^{2}}{2}+\frac{\rho\beta_{2}(\lambda-\theta_{2})^{3}}{2}\left\{\frac{1}{(\lambda-\theta_{2}-\Psi_{1}^{\bar{\theta},\bar{\beta}}(t))^{2}}-\frac{1}{(\lambda-\theta_{2})^{2}}\right\},&&\Psi_{1}^{\bar{\theta},\bar{\beta}}(0)=0,\\ \frac{d}{dt}\Psi_{2}^{\bar{\theta},\bar{\beta}}(t)=-\alpha(1-\beta_{1})\Psi_{2}^{\bar{\theta},\bar{\beta}}(t),&&\Psi_{2}^{\bar{\theta},\bar{\beta}}(0)=1,\\ \frac{d}{dt}\Psi_{0}^{\bar{\theta},\bar{\beta}}(t)=\theta_{1}\Psi_{2}^{\bar{\theta},\bar{\beta}}(t)+\frac{c(\Psi_{1}^{\bar{\theta},\bar{\beta}}(t)+\theta_{2})}{\lambda(\lambda-\theta_{2}-\Psi_{1}^{\bar{\theta},\bar{\beta}}(t))}-\frac{c\theta_{2}}{\lambda(\lambda-\theta_{2})},&&\Psi_{0}^{\bar{\theta},\bar{\beta}}(0)=0,\end{array} (5.16)

In this example,

Λ^1θ2,β2(u)=Λθ2,β2,1/2(u)=12ρu+ρβ2(λθ2)32{1(λθ2u)21(λθ2)2}.\hat{\Lambda}_{1}^{\theta_{2},\beta_{2}}(u)=\Lambda^{\theta_{2},\beta_{2},1/2}(u)=\frac{1}{2}-\rho u+\frac{\rho\beta_{2}(\lambda-\theta_{2})^{3}}{2}\left\{\frac{1}{(\lambda-\theta_{2}-u)^{2}}-\frac{1}{(\lambda-\theta_{2})^{2}}\right\}.

By Lemma 5.6, Λθ,β,1/2(u):[0,λθ2)\Lambda^{\theta,\beta,1/2}(u):[0,\lambda-\theta_{2})\rightarrow\mathbb{R} attains its minimum at

u1/2m(θ2,β2)=(λθ2)(1β21/3)u_{1/2}^{m}(\theta_{2},\beta_{2})=\left(\lambda-\theta_{2}\right)\left(1-\beta_{2}^{1/3}\right)

and equation (5.11) reads

Λθ2,β2,1/2(u1/2m(θ2,β2))=12ρ(λθ2)+32ρ(λθ2)β21/312ρ(λθ2)β2=0.\Lambda^{\theta_{2},\beta_{2},1/2}(u_{1/2}^{m}(\theta_{2},\beta_{2}))=\frac{1}{2}-\rho(\lambda-\theta_{2})+\frac{3}{2}\rho(\lambda-\theta_{2})\beta_{2}^{1/3}-\frac{1}{2}\rho(\lambda-\theta_{2})\beta_{2}=0. (5.17)

According to Lemma 5.6, if θ2>λ12ρ\theta_{2}>\lambda-\frac{1}{2\rho} then β2(0,1)\nexists\beta_{2}\in(0,1) such that (θ2,β2)𝒟b(12).(\theta_{2},\beta_{2})\in\mathcal{D}_{b}(\frac{1}{2}). If θ2<λ12ρ\theta_{2}<\lambda-\frac{1}{2\rho} then there exists βm(0,1)\beta_{m}\in(0,1) such that (θ2,β2)𝒟b(12)(\theta_{2},\beta_{2})\in\mathcal{D}_{b}(\frac{1}{2}) for all β2(0,βm)\beta_{2}\in(0,\beta_{m}) and βm\beta_{m} is the unique solution of equation (5.17)\left(\ref{Equ_Beta_m_Exp}\right) lying in (0,1).(0,1). Making the change of variable z=β1/3,z=\beta^{1/3}, equation (5.17)\left(\ref{Equ_Beta_m_Exp}\right) is reduced to a cubic equation and we get

βm=((2a(λ,ρ,θ2)24a(λ,ρ,θ2))1/3+(a(λ,ρ,θ2)24a(λ,ρ,θ2)2)1/3)3,\beta_{m}=\left(\left(\frac{2}{\sqrt{a(\lambda,\rho,\theta_{2})^{2}-4}-a(\lambda,\rho,\theta_{2})}\right)^{1/3}+\left(\frac{\sqrt{a(\lambda,\rho,\theta_{2})^{2}-4}-a(\lambda,\rho,\theta_{2})}{2}\right)^{1/3}\right)^{3},

where

a(λ,ρ,θ2)2ρ(λθ2)1ρ(λθ2)>0.a(\lambda,\rho,\theta_{2})\triangleq\frac{2\rho(\lambda-\theta_{2})-1}{\rho(\lambda-\theta_{2})}>0.

Finally, if (θ2,β2)𝒟b(12)(\theta_{2},\beta_{2})\in\mathcal{D}_{b}(\frac{1}{2}) there exists a unique root u1/20(β2)u_{1/2}^{0}(\beta_{2}) of equation Λθ2,β2,1/2(u)=0\Lambda^{\theta_{2},\beta_{2},1/2}(u)=0 satisfying u1/20(θ2,β2)u1/2m(θ2,β2)u_{1/2}^{0}(\theta_{2},\beta_{2})\leq u_{1/2}^{m}(\theta_{2},\beta_{2}). Making the change of variable y=λθ2λθ2u,y=\frac{\lambda-\theta_{2}}{\lambda-\theta_{2}-u}, we can reduce the equation Λθ2,β2,1/2(u)=0\Lambda^{\theta_{2},\beta_{2},1/2}(u)=0 to the cubic equation

P3(y)β2y3(a(λ,ρ,θ2)+β2)y+2=0,P_{3}(y)\triangleq\beta_{2}y^{3}-\left(a(\lambda,\rho,\theta_{2})+\beta_{2}\right)y+2=0,

which can be solved explicitely. Inverting the change of variable, we can get an explicit expression for u1/20(θ2,β2).u_{1/2}^{0}(\theta_{2},\beta_{2}). We refrain to write this explicit formula because it is too lengthy.

See Figure 3 for some graphical illustrations of this example.

5.2. Discussion on the risk premium

The next step is to analyse qualitatively the possible risk premium profiles that can be obtained using our change of measure. In particular, we are interested to be able to generate risk profiles with positive values in the short end of the forward curve and negative values in the long end. In what follows we shall make use of the Musiela parametrization τ=Tt\tau=T-t and we will slightly abuse the notation by denoting RQF(t,T)R_{Q}^{F}(t,T) by RQF(t,τ).R_{Q}^{F}(t,\tau). We also fix the parameters of the model under the historical measure P,P, i.e., α\alpha and ρ,\rho, and study the possible sign of RQF(t,τ)R_{Q}^{F}(t,\tau) in terms of the change of measure parameters, i.e., β¯=(β1,β2)\bar{\beta}=(\beta_{1},\beta_{2}) and θ¯=(θ1,θ2)\bar{\theta}=(\theta_{1},\theta_{2}) and the time to maturity τ.\tau.

In contrast to the arithmetic model, the present time enters into the risk premium not only through the stochastic components X,X, but also through the stochastic volatility σ2.\sigma^{2}. Moreover, in the geometric model, the risk premium will also depend on the parameters θ2\theta_{2} and β2,\beta_{2}, which change the level and speed of mean reversion for the volatility process. We are going to study the cases θ¯=(0,0),β¯=(0,0)\bar{\theta}=(0,0),\bar{\beta}=(0,0) and the general case separately. Moreover, in order to graphically illustrate the discussion we plot the risk premium profiles obtained assuming that the subordinator LL is a compound Poisson process with jump intensity c/λ>0c/\lambda>0 and exponential jump sizes with mean λ.\lambda. That is, LL will have the Lévy measure given in Example 3.1. We shall measure the time to maturity τ\tau in days and plot RQF(t,τ)R_{Q}^{F}(t,\tau) for different maturity periods. We fix the parameters of the model under the historical measure PP using the same values as in the arithmetic case, i.e.,

α=0.127,ρ=1.11,c=0.4,λ=2.\alpha=0.127,\rho=1.11,c=0.4,\lambda=2.

Finally, in the sequel, we are going to suppose that we are under the assumptions of Theorem 5.7, i.e., the values θ2,β2\theta_{2},\beta_{2} are such that (θ2,β2)𝒟b(1/2)\left(\theta_{2},\beta_{2}\right)\in\mathcal{D}_{b}(1/2) and Ψ0θ¯,β¯,Ψ1θ¯,β¯\Psi_{0}^{\bar{\theta},\bar{\beta}},\Psi_{1}^{\bar{\theta},\bar{\beta}} and Ψ2θ¯,β¯\Psi_{2}^{\bar{\theta},\bar{\beta}} are globally defined and the exponential affine formula (5.6)\left(\ref{Equ_Exp_Affine_Formula}\right) holds.

The following lemma will help us in the discussion to follow.

Lemma 5.10.

The sign of the risk premium RQF(t,τ)R_{Q}^{F}(t,\tau) is the same as the sign of the function

Σ(t,τ)Ψ0θ¯,β¯(τ)Ψ00,0(τ)+(Ψ1θ¯,β¯(τ)Ψ10,0(τ))σ2(t)+(Ψ2θ¯,β¯(τ)Ψ20,0(τ))X(t).\Sigma(t,\tau)\triangleq\Psi_{0}^{\bar{\theta},\bar{\beta}}(\tau)-\Psi_{0}^{0,0}(\tau)+(\Psi_{1}^{\bar{\theta},\bar{\beta}}(\tau)-\Psi_{1}^{0,0}(\tau))\sigma^{2}(t)+(\Psi_{2}^{\bar{\theta},\bar{\beta}}(\tau)-\Psi_{2}^{0,0}(\tau))X(t).

Moreover,

limτΣ(t,τ)\displaystyle\lim_{\tau\rightarrow\infty}\Sigma(t,\tau) =θ1α(1β1)+001κL(λΨ1θ¯,β¯(s)+θ2)𝑑λΨ1θ¯,β¯(s)𝑑s\displaystyle=\frac{\theta_{1}}{\alpha(1-\beta_{1})}+\int_{0}^{\infty}\int_{0}^{1}\kappa_{L}^{\prime}\left(\lambda\Psi_{1}^{\bar{\theta},\bar{\beta}}(s)+\theta_{2}\right)d\lambda\Psi_{1}^{\bar{\theta},\bar{\beta}}(s)ds (5.18)
001κL(λeρs1e(2αρ)s2(2αρ))𝑑λeρs1e(2αρ)s2(2αρ)𝑑s,\displaystyle\qquad-\int_{0}^{\infty}\int_{0}^{1}\kappa_{L}^{\prime}\left(\lambda e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}\right)d\lambda e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}ds,

and

limτ0ddτΣ(t,τ)=θ1+αβ1X(t).\lim_{\tau\rightarrow 0}\frac{d}{d\tau}\Sigma(t,\tau)=\theta_{1}+\alpha\beta_{1}X(t). (5.19)
Proof.

That the sign of RQF(t,τ)R_{Q}^{F}(t,\tau) is the same as the sign of Σ(t,τ)\Sigma(t,\tau) is obvious from equation (5.5) in Theorem 5.3. From the expression for FP(t,T)F_{P}(t,T) in Proposition 2, we can deduce that

Ψ00,0(τ)\displaystyle\Psi_{0}^{0,0}(\tau) =0τκL(eρs1e(2αρ)s2(2αρ))𝑑s\displaystyle=\int_{0}^{\tau}\kappa_{L}\left(e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}\right)ds
=0τ01κL(λeρs1e(2αρ)s2(2αρ))𝑑λeρs1e(2αρ)s2(2αρ)𝑑s,\displaystyle=\int_{0}^{\tau}\int_{0}^{1}\kappa_{L}^{\prime}\left(\lambda e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}\right)d\lambda e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}ds,
Ψ10,0(τ)\displaystyle\Psi_{1}^{0,0}(\tau) =eρτ1e(2αρ)τ2(2αρ),\displaystyle=e^{-\rho\tau}\frac{1-e^{-(2\alpha-\rho)\tau}}{2(2\alpha-\rho)},
Ψ20,0(τ)\displaystyle\Psi_{2}^{0,0}(\tau) =eατ.\displaystyle=e^{-\alpha\tau}.

Furthermore, by Theorem 5.7, one has that

limτΨ0θ¯,β¯(τ)\displaystyle\lim_{\tau\rightarrow\infty}\Psi_{0}^{\bar{\theta},\bar{\beta}}(\tau) =θ1α(1β1)+0κL(Ψ1θ¯,β¯(s)+θ2)κL(θ2)ds\displaystyle=\frac{\theta_{1}}{\alpha(1-\beta_{1})}+\int_{0}^{\infty}\kappa_{L}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(s)+\theta_{2})-\kappa_{L}(\theta_{2})ds
=θ1α(1β1)+001κL(λΨ1θ¯,β¯(s)+θ2)𝑑λ𝑑s,\displaystyle=\frac{\theta_{1}}{\alpha(1-\beta_{1})}+\int_{0}^{\infty}\int_{0}^{1}\kappa_{L}^{\prime}(\lambda\Psi_{1}^{\bar{\theta},\bar{\beta}}(s)+\theta_{2})d\lambda ds,
limτΨ1θ¯,β¯(τ)\displaystyle\lim_{\tau\rightarrow\infty}\Psi_{1}^{\bar{\theta},\bar{\beta}}(\tau) =limτΨ2θ¯,β¯(τ)=0,\displaystyle=\lim_{\tau\rightarrow\infty}\Psi_{2}^{\bar{\theta},\bar{\beta}}(\tau)=0,

which yields equation (5.18). On the other hand, as Ψ2θ¯,β¯(τ)1\Psi_{2}^{\bar{\theta},\bar{\beta}}(\tau)\rightarrow 1 and Ψ1θ¯,β¯(τ)0\Psi_{1}^{\bar{\theta},\bar{\beta}}(\tau)\rightarrow 0 when τ\tau tends to zero, we have

limτ0ddτ(Ψ0θ¯,β¯(τ)Ψ00,0(τ))\displaystyle\lim_{\tau\rightarrow 0}\frac{d}{d\tau}(\Psi_{0}^{\bar{\theta},\bar{\beta}}(\tau)-\Psi_{0}^{0,0}(\tau)) =limτ0{Λ0θ¯,β¯(Ψ1θ¯,β¯(τ),Ψ2θ¯,β¯(τ))Λ00,0(Ψ10,0(τ),Ψ20,0(τ))}\displaystyle=\lim_{\tau\rightarrow 0}\{\Lambda_{0}^{\bar{\theta},\bar{\beta}}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(\tau),\Psi_{2}^{\bar{\theta},\bar{\beta}}(\tau))-\Lambda_{0}^{0,0}(\Psi_{1}^{0,0}(\tau),\Psi_{2}^{0,0}(\tau))\}
=Λ0θ¯,β¯(0,1)Λ00,0(0,1)=θ1,\displaystyle=\Lambda_{0}^{\bar{\theta},\bar{\beta}}(0,1)-\Lambda_{0}^{0,0}(0,1)=\theta_{1},
limτ0ddτ(Ψ1θ¯,β¯(τ)Ψ10,0(τ))\displaystyle\lim_{\tau\rightarrow 0}\frac{d}{d\tau}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(\tau)-\Psi_{1}^{0,0}(\tau)) =limτ0{Λ1θ¯,β¯(Ψ1θ¯,β¯(τ),Ψ2θ¯,β¯(τ))Λ10,0(Ψ10,0(τ),Ψ20,0(τ))}\displaystyle=\lim_{\tau\rightarrow 0}\{\Lambda_{1}^{\bar{\theta},\bar{\beta}}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(\tau),\Psi_{2}^{\bar{\theta},\bar{\beta}}(\tau))-\Lambda_{1}^{0,0}(\Psi_{1}^{0,0}(\tau),\Psi_{2}^{0,0}(\tau))\}
=Λ1θ¯,β¯(0,1)Λ10,0(0,1)=1/21/2=0,\displaystyle=\Lambda_{1}^{\bar{\theta},\bar{\beta}}(0,1)-\Lambda_{1}^{0,0}(0,1)=1/2-1/2=0,
limτ0ddτ(Ψ2θ¯,β¯(τ)Ψ20,0(τ))\displaystyle\lim_{\tau\rightarrow 0}\frac{d}{d\tau}(\Psi_{2}^{\bar{\theta},\bar{\beta}}(\tau)-\Psi_{2}^{0,0}(\tau)) =limτ0{Λ2θ¯,β¯(Ψ1θ¯,β¯(τ),Ψ2θ¯,β¯(τ))Λ20,0(Ψ10,0(τ),Ψ20,0(τ))}\displaystyle=\lim_{\tau\rightarrow 0}\{\Lambda_{2}^{\bar{\theta},\bar{\beta}}(\Psi_{1}^{\bar{\theta},\bar{\beta}}(\tau),\Psi_{2}^{\bar{\theta},\bar{\beta}}(\tau))-\Lambda_{2}^{0,0}(\Psi_{1}^{0,0}(\tau),\Psi_{2}^{0,0}(\tau))\}
=Λ2θ¯,β¯(0,1)Λ20,0(0,1)=α(1β1)+α=αβ1,\displaystyle=\Lambda_{2}^{\bar{\theta},\bar{\beta}}(0,1)-\Lambda_{2}^{0,0}(0,1)=-\alpha(1-\beta_{1})+\alpha=\alpha\beta_{1},

which yields equation (5.19). The proof is complete. ∎

Refer to caption
(a)
Refer to caption
(b)
Figure 4. Risk premium profiles when LL is a Compound Poisson process with exponentially distributed jumps. We take ρ=1.11,α=0.127,λ=2,0.4,X(t)=2.5,σ(t)=0.25\rho=1.11,\alpha=0.127,\lambda=2,\c{=}0.4,X(t)=2.5,\sigma(t)=0.25 Esscher case β1=β2=0.\beta_{1}=\beta_{2}=0.

We now continue with investigating in more detail the different cases of our measure change.

  • Changing the level of mean reversion (Esscher transform): Setting β¯=(0,0),\bar{\beta}=(0,0), the probability measure QQ only changes the levels of mean reversion for the factor XX and the volatility process σ2.\sigma^{2}. Although the risk premium is stochastic, its sign is deterministic. According to Proposition 3, we have that the sign of RQF(t,τ)R_{Q}^{F}(t,\tau) is equal to the sign of

    Σ(t,τ)\displaystyle\Sigma(t,\tau) =θ11eατα+0τκL(eρs1e(2αρ)s2(2αρ)+θ2)κL(θ2)ds\displaystyle=\theta_{1}\frac{1-e^{-\alpha\tau}}{\alpha}+\int_{0}^{\tau}\kappa_{L}\left(e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}+\theta_{2}\right)-\kappa_{L}(\theta_{2})ds
    0τκL(eρs1e(2αρ)s2(2αρ))𝑑s\displaystyle\qquad-\int_{0}^{\tau}\kappa_{L}\left(e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}\right)ds
    =θ11eατα\displaystyle=\theta_{1}\frac{1-e^{-\alpha\tau}}{\alpha}
    +θ20τ0101κL′′(λ2θ2+λ1eρs1e(2αρ)s2(2αρ))𝑑λ2𝑑λ1eρs1e(2αρ)s2(2αρ)𝑑s.\displaystyle\qquad+\theta_{2}\int_{0}^{\tau}\int_{0}^{1}\int_{0}^{1}\kappa_{L}^{\prime\prime}(\lambda_{2}\theta_{2}+\lambda_{1}e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)})d\lambda_{2}d\lambda_{1}e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}ds.

    Moreover, by Lemma 5.10, equations (5.18)-(5.19), and the fact that Ψ1θ¯,0(τ)=eρτ1e(2αρ)τ2(2αρ)\Psi_{1}^{\bar{\theta},0}(\tau)=e^{-\rho\tau}\frac{1-e^{-(2\alpha-\rho)\tau}}{2(2\alpha-\rho)} we get

    limτΣ(t,τ)=θ1α+θ200101κL′′(λ2θ2+λ1Ψ1θ¯,0(s))𝑑λ2𝑑λ1Ψ1θ¯,0(s)𝑑s,\lim_{\tau\rightarrow\infty}\Sigma(t,\tau)=\frac{\theta_{1}}{\alpha}+\theta_{2}\int_{0}^{\infty}\int_{0}^{1}\int_{0}^{1}\kappa_{L}^{\prime\prime}(\lambda_{2}\theta_{2}+\lambda_{1}\Psi_{1}^{\bar{\theta},0}(s))d\lambda_{2}d\lambda_{1}\Psi_{1}^{\bar{\theta},0}(s)ds,

    and

    limτ0ddτΣ(t,τ)=θ1.\lim_{\tau\rightarrow 0}\frac{d}{d\tau}\Sigma(t,\tau)=\theta_{1}.

    Note that we can write

    θ200101κL′′(λ2θ2+λ1Ψ1θ¯,0(s))𝑑λ2𝑑λ1Ψ1θ¯,0(s)𝑑s\displaystyle\theta_{2}\int_{0}^{\infty}\int_{0}^{1}\int_{0}^{1}\kappa_{L}^{\prime\prime}(\lambda_{2}\theta_{2}+\lambda_{1}\Psi_{1}^{\bar{\theta},0}(s))d\lambda_{2}d\lambda_{1}\Psi_{1}^{\bar{\theta},0}(s)ds
    =00101θ2Ψ1θ¯,0(s)0z2e(λ2θ2+λ1Ψ1θ¯,0(s))z(dz)𝑑λ2𝑑λ1𝑑s\displaystyle=\int_{0}^{\infty}\int_{0}^{1}\int_{0}^{1}\theta_{2}\Psi_{1}^{\bar{\theta},0}(s)\int_{0}^{\infty}z^{2}e^{(\lambda_{2}\theta_{2}+\lambda_{1}\Psi_{1}^{\bar{\theta},0}(s))z}\ell(dz)d\lambda_{2}d\lambda_{1}ds
    =00(eθ2z1)(eΨ1θ¯,0(s)z1)(dz)𝑑s,\displaystyle=\int_{0}^{\infty}\int_{0}^{\infty}\left(e^{\theta_{2}z}-1\right)(e^{\Psi_{1}^{\bar{\theta},0}(s)z}-1)\ell(dz)ds,

    and that eΨ1θ¯,0(s)z1>0e^{\Psi_{1}^{\bar{\theta},0}(s)z}-1>0 for s,z>0,s,z>0, Ψ1θ¯,0(s)\Psi_{1}^{\bar{\theta},0}(s) is strictly positive. Hence, if we choose 0<θ10<\theta_{1}\ small enough and θ2<0\theta_{2}<0 large enough , we obtain a risk premium which is positive in the short end of the forward curve, and negative in the long end. Note that θ2\theta_{2} must be chosen negative. Figure 4 shows graphically two possible risk premium curves for given parameters as an illustration. We recall from Benth and Ortiz-Latorre [9] that for a two-factor mean reverting stochastic dynamics of the spot price without stochastic volatility, we obtain similar deterministic risk premium profiles.

    Refer to caption
    (a)
    Refer to caption
    (b)
    Figure 5. Risk premium profiles when LL is a Compound Poisson process with exponentially distributed jumps. We take ρ=1.11,α=0.127,λ=2,0.4,X(t)=2.5,σ(t)=0.25.\rho=1.11,\alpha=0.127,\lambda=2,\c{=}0.4,X(t)=2.5,\sigma(t)=0.25. Case θ1=θ2=0.\theta_{1}=\theta_{2}=0.
  • Changing the speed of mean reversion: Setting θ¯=(0,0),\bar{\theta}=(0,0), the probability measure QQ only changes the levels of mean reversion for the factor XX and the volatility process σ2.\sigma^{2}. Both the risk premium and its sign are stochastic. According to Lemma 5.10, we have that the sign of RQF(t,τ)R_{Q}^{F}(t,\tau) is equal to the sign of

    Σ(t,τ)\displaystyle\Sigma(t,\tau) Ψ00,β¯(τ)0τ01κL(λeρs1e(2αρ)s2(2αρ))𝑑λeρs1e(2αρ)s2(2αρ)𝑑s\displaystyle\triangleq\Psi_{0}^{0,\bar{\beta}}(\tau)-\int_{0}^{\tau}\int_{0}^{1}\kappa_{L}^{\prime}\left(\lambda e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}\right)d\lambda e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}ds
    +(Ψ10,β¯(τ)eρτ1e(2αρ)τ2(2αρ))σ2(t)+(eα(1β1)τeατ)X(τ).\displaystyle\qquad+(\Psi_{1}^{0,\bar{\beta}}(\tau)-e^{-\rho\tau}\frac{1-e^{-(2\alpha-\rho)\tau}}{2(2\alpha-\rho)})\sigma^{2}(t)+(e^{-\alpha(1-\beta_{1})\tau}-e^{-\alpha\tau})X(\tau).

    Moreover,

    limτΣ(t,τ)\displaystyle\lim_{\tau\rightarrow\infty}\Sigma(t,\tau) =001κL(λΨ10,β¯(s))𝑑λΨ10,β¯(s)𝑑s\displaystyle=\int_{0}^{\infty}\int_{0}^{1}\kappa_{L}^{\prime}(\lambda\Psi_{1}^{0,\bar{\beta}}(s))d\lambda\Psi_{1}^{0,\bar{\beta}}(s)ds
    001κL(λeρs1e(2αρ)s2(2αρ))𝑑λeρs1e(2αρ)s2(2αρ)𝑑s,\displaystyle\qquad-\int_{0}^{\infty}\int_{0}^{1}\kappa_{L}^{\prime}\left(\lambda e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}\right)d\lambda e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}ds,

    and

    limτ0ddτΣ(t,τ)=αβ1X(t).\lim_{\tau\rightarrow 0}\frac{d}{d\tau}\Sigma(t,\tau)=\alpha\beta_{1}X(t).

    Note that

    Λ0,β¯(u1,u2)Λ0,0(u1,u2)=ρβ2κL′′(0)(κL(u1)κL(0))0,u10,\Lambda^{0,\bar{\beta}}(u_{1},u_{2})-\Lambda^{0,0}(u_{1},u_{2})=\frac{\rho\beta_{2}}{\kappa_{L}^{\prime\prime}(0)}\left(\kappa_{L}^{\prime}(u_{1})-\kappa_{L}^{\prime}(0)\right)\geq 0,\quad u_{1}\geq 0,

    and using a comparison theorem for ODEs, Theorem 6.1, page 31, in Hale [16], we get that Ψ10,β¯(t)eρt1e(2αρ)t2(2αρ),t0.\Psi_{1}^{0,\bar{\beta}}(t)\geq e^{-\rho t}\frac{1-e^{-(2\alpha-\rho)t}}{2(2\alpha-\rho)},t\geq 0. Hence, the risk premium will approach to a non negative value in the long end of the forward curve. In the short end, it can be positive or negative and stochastically varying with X(t).X(t). In Figure 5 we show two different risk premium curves, where we in particular notice the different convexity behaviour in the short end. As all the risk premia curves will be positive in the long end, it is not very realistic from the practical point of view to have θ¯=(0,0).\bar{\theta}=(0,0).

    Refer to caption
    (a)
    Refer to caption
    (b)
    Figure 6. Risk premium profiles when LL is a Compound Poisson process with exponentially distributed jumps. We take ρ=1.11,α=0.127,λ=2,0.4,X(t)=2.5,σ(t)=0.25.\rho=1.11,\alpha=0.127,\lambda=2,\c{=}0.4,X(t)=2.5,\sigma(t)=0.25.
  • Changing the level and speed of mean reversion simultaneously: In the general case we modify the speed and level of mean reversion for the factor XX and the volatility process σ2\sigma^{2} simultaneously. According to Lemma 5.10, we have that

    limτΣ(t,τ)\displaystyle\lim_{\tau\rightarrow\infty}\Sigma(t,\tau) =θ1α(1β1)+001κL(λΨ1θ¯,β¯(s)+θ2)𝑑λΨ1θ¯,β¯(s)𝑑s\displaystyle=\frac{\theta_{1}}{\alpha(1-\beta_{1})}+\int_{0}^{\infty}\int_{0}^{1}\kappa_{L}^{\prime}\left(\lambda\Psi_{1}^{\bar{\theta},\bar{\beta}}(s)+\theta_{2}\right)d\lambda\Psi_{1}^{\bar{\theta},\bar{\beta}}(s)ds
    001κL(λeρs1e(2αρ)s2(2αρ))𝑑λeρs1e(2αρ)s2(2αρ)𝑑s,\displaystyle\qquad-\int_{0}^{\infty}\int_{0}^{1}\kappa_{L}^{\prime}\left(\lambda e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}\right)d\lambda e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}ds,

    and

    limτ0ddτΣ(t,τ)=θ1+αβ1X(t).\lim_{\tau\rightarrow 0}\frac{d}{d\tau}\Sigma(t,\tau)=\theta_{1}+\alpha\beta_{1}X(t).

    If we choose β1=0,\beta_{1}=0, then we need to prove that for some (θ2,β2)𝒟b(1/2)(\theta_{2},\beta_{2})\in\mathcal{D}_{b}\left(1/2\right) and 0<θ10<\theta_{1} we have

    001κL(λeρs1e(2αρ)s2(2αρ))𝑑λeρs1e(2αρ)s2(2αρ)𝑑s\displaystyle\int_{0}^{\infty}\int_{0}^{1}\kappa_{L}^{\prime}\left(\lambda e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}\right)d\lambda e^{-\rho s}\frac{1-e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)}ds (5.20)
    >θ1α+001κL(λΨ1θ¯,β¯(s)+θ2)𝑑λΨ1θ¯,β¯(s)𝑑s,\displaystyle\qquad>\frac{\theta_{1}}{\alpha}+\int_{0}^{\infty}\int_{0}^{1}\kappa_{L}^{\prime}\left(\lambda\Psi_{1}^{\bar{\theta},\bar{\beta}}(s)+\theta_{2}\right)d\lambda\Psi_{1}^{\bar{\theta},\bar{\beta}}(s)ds,

    in order to ensure a risk premium that changes sign from positive to negative. In fact, inequality 5.20 holds by choosing θ1\theta_{1} small enough and θ2\theta_{2} a large negative number, because limθ2κL(θ2)=0\lim_{\theta_{2}\rightarrow-\infty}\kappa_{L}^{\prime}(\theta_{2})=0. See Figure 6 for two cases.

Remark 5.11.

In contrast to the arithmetic case, one can get a positive risk premium for short time to maturity that rapidly changes to negative by just changing the parameters of the Esscher transform, see Figure 4. Similarly to the arithmetic case, it is not possible to get the sign change by just modifying the speed of mean reversion of the factors, see Figure 5.

References

  • [1] Barndorff-Nielsen, O. E., and Shephard, N. (2001). Non-Gaussian Ornstein-Uhlenbeck models and some of their uses in economics. J. Roy. Stat. Soc. B, 63(2), pp. 167–241 (with discussion).
  • [2] Benth, F. E. (2011). The stochastic volatility model of Barndorff-Nielsen and Shepard in commodity markets. Math. Finance, 21, pp. 595–625.
  • [3] Benth, F. E., and Šaltytė Benth, J. (2011). Weather derivatives and stochastic modelling of temperature. Intern. J. Stoch. Analysis, Vol 2011, Article ID 576791, 21 pages (electronic).
  • [4] Benth, F. E., and Šaltytė Benth, J. (2013). Modeling and Pricing in Financial Markets for Weather Derivatives. World Scientific, Singapore.
  • [5] Benth, F. E., Šaltytė Benth, J. and Koekebakker, S. (2008). Stochastic Modelling of Electricity and Related Markets. World Scientific, Singapore.
  • [6] Benth, F. E., Cartea, A., and Kiesel, R. (2008). Pricing forward contracts in power markets by the certainty equivalence principle: explaining the sign of the market risk premium. J. Banking Finance, 32(10), pp. 2006–2021.
  • [7] Benth, F. E., Cartea, A., and Pedraz, C. (2013). In preparation.
  • [8] Benth, F. E., Koekebakker, S., and Taib, I. B. C. M. (2013). Stochastic dynamical modelling of spot freight rates. To appear in IMA J. Manag. Math.
  • [9] Benth, F. E. and Ortiz-Latorre, S. (2013). A pricing measure to explain the risk premium in power markets. arXiv:1308.3378 [q-fin.PR]
  • [10] Dornier, F., and Querel, M. (2000). Caution to the wind. Energy & Power Risk Manag., weather risk special report. August issue, pp. 30–32.
  • [11] Eydeland, A., and Wolyniec, K. (2003). Energy and Power Risk Management, John Wiley & Sons, Hoboken, New Jersey.
  • [12] Garcia, I., Klüppelberg, C., Müller, G. (2011). Estimation of stable CARMA models with an application to electricity spot prices. Statist. Modelling, 11(5), pp. 447–470.
  • [13] Geman, H. (2005). Commodities and Commodity Derivatives, John Wiley & Sons, Chichester.
  • [14] Geman, H., and Vasicek, O. (2001). Forwards and futures on non-storable commodities: the case of electricity. RISK, August.
  • [15] Gerber, H. U., and Shiu, E. S. W. (1994). Option pricing by Esscher transforms. Trans. Soc. Actuaries, 46, pp. 99–191 (with discussion).
  • [16] Hale, J. (1969). Ordinary Differential Equations, Pure and Applied Mathematics, Vol. XXI. Wiley-Interscience, New York.
  • [17] Hartman, P. (1964). Ordinary Differential Equations, John Wiley & Sons, Inc, New York.
  • [18] Kallsen, J. and Muhle-Karbe J. (2010). Exponentially affine martingales, affine measure changes and exponential moments of affine processes. Stoch. Proc. Applic. , 120, pp. 163–181.
  • [19] Kolos, S. P., and Ronn, E. I. (2008). Estimating the commodity market price of risk for energy prices. Energy Econ., 30, pp. 621–641.
  • [20] Lucia, J., and Schwartz E. (2002). Electricity prices and power derivatives: evidence from the Nordic Power Exchange. Rev. Deriv. Research, 5(1), pp. 5–50.
  • [21] Protter, P. E. (2004). Stochastic Integration and Differential Equations, 2nd Edition. Springer Verlag, Berlin Heidelberg New York.
  • [22] Shiryaev, A. N. (1999). Essentials of Stochastic Finance, World Scientific, Singapore.
  • [23] Schwartz, E. S. (1997). The stochastic behaviour of commodity prices: Implications for valuation and hedging. J. Finance, LII(3), pp. 923–973.
  • [24] Schwartz, E. S., and Smith, J. E. (2000). Short-term variations and long-term dynamics in commodity prices. Manag. Sci., 46(7), pp. 893–911.
  • [25] Trolle, A. B., and Schwartz, E. S. (2009). Unspanned stochastic volatility and the pricing of commodity derivatives. Rev. Financial Studies, 22(11), pp. 4423–4461.