This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.


A characterization of Kazhdan–Lusztig right cells containing smooth elements

Zhanqiang Bai School of Mathematical Sciences, Soochow University, Suzhou 215006, P. R. China zqbai@suda.edu.cn  and  Zheng-an Chen School of Mathematical Sciences, Shanghai Jiaotong University, Shanghai 200240, P. R. China zhengan_\_chen@sjtu.edu.cn
Abstract.

Let 𝔤\mathfrak{g} be the Lie algebra 𝔰𝔩(n,)\mathfrak{sl}(n,\mathbb{C}). Its Weyl group is the symmetric group SnS_{n}. In this paper, we want to describe some Kazhdan–Lusztig right cells containing smooth elements, which is closely related to the study of associated varieties of highest weight modules of 𝔰𝔩(n,)\mathfrak{sl}(n,\mathbb{C}). Firstly, we give a complete classification of the KL right cells containing only smooth elements. Then we give a sufficient condition for a KL right cell containing only non-smooth elements by using invariant subsequences and a sufficient condition for a KL right cell containing some smooth elements. Finally, we give an efficient algorithm to find out all the smooth elements in a given KL right cell.

Keywords: Young tableau; Pattern avoidance; Kazhdan–Lusztig right cell.

2010 Mathematics Subject Classification:
Primary 20B30; Secondary 05E10

1. Introduction

In their famous paper [KL79], Kazhdan and Lusztig introduced the concepts of right, left and two-sided cells in order to study representations of the Hecke algebras associated to a Coxeter group WW. Now these concepts are studied by many people from representation theory and combinatorics.

Let G=SL(n,)G=SL(n,\mathbb{C}) be the special linear group. Let 𝔤\mathfrak{g} be its simple complex Lie algebra and 𝔥\mathfrak{h} be a Cartan subalgebra. Let Φ+Φ\Phi^{+}\subset\Phi be the set of positive roots determined by a Borel subalgebra 𝔟\mathfrak{b} of 𝔤\mathfrak{g}. Denote by Π\Pi the set of simple roots in Φ+\Phi^{+}. We fix a Borel subgroup BGB\subset G corresponding to 𝔟\mathfrak{b}. We have a triangular decomposition 𝔤=𝔫𝔥𝔫\mathfrak{g}=\mathfrak{n}\oplus\mathfrak{h}\oplus\mathfrak{n}^{-}. The Weyl group WW of 𝔤\mathfrak{g} is SnS_{n}.

For λ𝔥\lambda\in\mathfrak{h}^{*}, the Verma module M(λ)M(\lambda) is defined by

M(λ)=U(𝔤)U(𝔟)λρ,M(\lambda)=U(\mathfrak{g})\otimes_{U(\mathfrak{b})}\mathbb{C}_{\lambda-\rho},

where λρ\mathbb{C}_{\lambda-\rho} is a one-dimensional 𝔟\mathfrak{b}-module with weight λρ\lambda-\rho and ρ\rho is half the sum of positive roots. Denote by L(λ)L(\lambda) the simple quotient of M(λ)M(\lambda).

We use LwL_{w} to denote the simple highest weight 𝔤\mathfrak{g}-module of highest weight wρρ-w\rho-\rho with wWw\in W. Joseph [J84] proved that the associated variety V(Lw)V(L_{w}) is a union of orbital varieties defined as follows. Let 𝒪𝔤\mathcal{O}\subseteq\mathfrak{g} be a nilpotent GG-orbit. The irreducible components of 𝒪¯𝔫\overline{\mathcal{O}}\cap\mathfrak{n} are called orbital varieties of 𝒪\mathcal{O}. They all take the form 𝒱(w)=B(𝔫w𝔫)¯\mathcal{V}(w)=\overline{B(\mathfrak{n}\cap w\mathfrak{n})} for some wWw\in W. Melnikov [FM13, M04a, M04b, M06] did a lot of work for the properties of orbital varieties of type AA. The associated variety V(Lw)V(L_{w}) is called irreducible if and only if it contains only one orbital variety. For a long time, people conjectured that the associated variety of any highest weight module LwL_{w} is irreducible in the case of type AA (see [BB85] and [M93]). However, Williamson [W15] showed that there exist counter-examples in 2014. So the structure of V(Lw)V(L_{w}) or V(L(λ))V(L(\lambda)) is still mysterious in type AA.

We refer to [KL79] or §2.3 for the definition of Kazhdan–Lusztig right (resp. left and two-sided) cell equivalence relation and use R\stackrel{{\scriptstyle R}}{{\sim}} (resp. L\stackrel{{\scriptstyle L}}{{\sim}} and LR\stackrel{{\scriptstyle LR}}{{\sim}} ) to denote the right (resp. left and two-sided) cell equivalence relation.

Let Xw=BwB/B¯X_{w}=\overline{BwB/B} be the Schubert variety indexed by ww in the flag manifold G/BG/B. Lakshmibai and Sandhya [LS90] determined the smoothness of Schubert varieties for type AA by using pattern avoidance. It is known that for type AA, a Schubert variety is smooth if and only if certain Kazhdan–-Lusztig polynomials are trivial, see for example [CK03].

From Sagan [S01] or Bai–Xie [BX19, Lemma 4.1], we know that there is a bijection between the KL right cells in the symmetric group SnS_{n} and the Young tableaux through the famous Robinson–Schensted insertion algorithm. We use P(w)P(w) to denote the corresponding Young tableau for any wSnw\in S_{n}.

From [J84], we know that the associated variety V(Lw)V(L_{w}) is constant on each KL right cell. It is also known that if the associated variety V(Lw)V(L_{w}) is reducible, the Schubert variety XwX_{w} will be singular, see for example [BB85, Corollary 4.3.2]. So there is a relationship between the reducibility of associated varieties and non-smoothness (or smoothness) of Schubert varieties.

In this paper, we consider the following problem: For which Kazhdan–Lusztig right cell 𝒞R\mathcal{C}^{R}, the Schubert variety XwX_{w} is smooth for every w𝒞Rw\in\mathcal{C}^{R}? Equivalently, the Kazhdan–Lusztig polynomial Pe,w(q)=1P_{e,w}(q)=1 for all ww in these KL right cells 𝒞R\mathcal{C}^{R}.

For other KL right cells, we will give an algorithm to determine that it contains smooth elements or not. We have incorporated this in a simple program. The program takes some ww as the input and returns the set of smooth elements. It is available at

https://github.com/zhengan-chen/Young_\_tableaux.

From our program, we can easily find many elements in SnS_{n} such that the associated variety of LwL_{w} is irreducible. See Corollary 6.6.

This paper is organized as follows. In §2, we prepare some necessary preliminaries on associated varieties, pattern avoidance and KL right cells. In §3, we will give a complete classification of KL right cells containing only smooth elements, see Theorem 3.5. Then in §4, we describe some special KL right cells containing only non-smooth elements. In §5, we give a characterization for some special KL right cells (containing smooth elements) corresponding to some Young tableaux with two columns. In §6, we give an algorithm to find out all the smooth elements in a given KL right cell.

2. Preliminaries

In this section, we give some brief preliminaries on associated varieties of highest weight modules, pattern avoidance and the Robinson–Schensted insertion algorithm.

2.1. Associated variety

Let 𝔤\mathfrak{g} be a simple complex Lie algebra. Let MM be a finite generated U(𝔤)U(\mathfrak{g})-module. Fix a finite dimensional generating subspace M0M_{0} of MM. Let Un(𝔤)U_{n}(\mathfrak{g}) be the standard filtration of U(𝔤)U(\mathfrak{g}). Set Mn=Un(𝔤)M0M_{n}=U_{n}(\mathfrak{g})\cdot M_{0} and gr(M)=n=0grnM,\text{gr}(M)=\bigoplus\limits_{n=0}^{\infty}\text{gr}_{n}M, where grnM=Mn/Mn1\text{gr}_{n}M=M_{n}/{M_{n-1}}. Thus gr(M)\text{gr}(M) is a graded module of gr(U(𝔤))S(𝔤)\text{gr}(U(\mathfrak{g}))\simeq S(\mathfrak{g}).

Definition 2.1.

The associated variety of MM is defined by

V(M):={X𝔤f(X)=0 for all fAnnS(𝔤)(grM)}.V(M):=\{X\in\mathfrak{g}^{*}\mid f(X)=0\text{ for all~{}}f\in\operatorname{Ann}_{S(\mathfrak{g})}(\operatorname{gr}M)\}.

The above definition is independent of the choice of M0M_{0} (e.g., [NOT01]).

Let GG be a connected semisimple finite dimensional complex algebraic group with Lie algebra 𝔤\mathfrak{g}. We fix some triangular decomposition 𝔤=𝔫𝔥𝔫\mathfrak{g}=\mathfrak{n}\oplus\mathfrak{h}\oplus\mathfrak{n}^{-}. Let 𝒪\mathcal{O} be a nilpotent GG orbit. The irreducible components of 𝒪¯𝔫\overline{\mathcal{O}}\cap\mathfrak{n} are called orbital varieties associated to 𝒪\mathcal{O}. Usually, an orbital variety has the following form

𝒱(w)=B(𝔫w(𝔫))¯\mathcal{V}(w)=\overline{B(\mathfrak{n}\cap{w(\mathfrak{n})})}

for some ww in the Weyl group WW of 𝔤\mathfrak{g}, where BB is the Borel subgroup of GG corresponding the Borel subalgebra 𝔟\mathfrak{b} of 𝔤\mathfrak{g}.

We have the following propositions.

Proposition 2.2 ([J84]).

Let L(λ)L(\lambda) be a highest weight module of a simple Lie algebra 𝔤\mathfrak{g} with highest weight λρ\lambda-\rho. Then its associated variety V(L(λ))V(L(\lambda)) equals the union of some orbital varieties associated with the nilpotent coadjoint orbit 𝒪Ann(L(λ))\mathcal{O}_{Ann(L(\lambda))} in 𝔤\mathfrak{g}^{*}.

The associated variety V(L(λ))V(L(\lambda)) is called irreducible if it equals one orbital variety.

Proposition 2.3 ([BB85, Corollary 4.3.2]).

If the Schubert variety Xw=BwB/B¯X_{w}=\overline{BwB/B} is smooth, we will have V(Lw)=𝒱(w)V(L_{w})=\mathcal{V}(w).

2.2. Pattern avoidance

By the definition, an element wSnw\in S_{n} is a permutation of the set {1,2,,n}\{1,2,...,n\}. In general, we use w=(w1,,wn)w=(w_{1},...,w_{n}) to denote this permutation, where wi=w(i)w_{i}=w(i).

Firstly we have the following definition.

Definition 2.4.

The element w=(w1,,wn)Snw=(w_{1},...,w_{n})\in S_{n} contains the pattern 34123412 (resp. 42314231) if there exist integers 1i<j<k<ln1\leq i<j<k<l\leq n such that wk<wl<wi<wjw_{k}<w_{l}<w_{i}<w_{j} (resp. wl<wj<wk<wiw_{l}<w_{j}<w_{k}<w_{i}). If there is no such integers, we say ww avoids the pattern 34123412 and 42314231.

We have the following criterion for smoothness of Schubert varieties.

Proposition 2.5 ([LS90]).

For 𝔤=𝔰𝔩(n,)\mathfrak{g}=\mathfrak{sl}(n,\mathbb{C}) and W=SnW=S_{n}, the Schubert variety Xw=BwB/B¯X_{w}=\overline{BwB/B} is smooth if and only if ww avoids the two patterns 34123412 and 42314231.

In general, ww is called a smooth element when XwX_{w} is smooth.

2.3. Hecke algebra and cells

Recall that the Weyl group WW is a Coxeter group generated by S={sααΔ}S=\{s_{\alpha}\mid\alpha\in\Delta\}. Let ()\ell(-) be the length function on WW. Given an indeterminate vv, the Hecke algebra \mathcal{H} over 𝒜:=[q,q1]\mathcal{A}:=\mathbb{Z}[q,q^{-1}] is generated by TwT_{w}, wWw\in W with relations

TwTw=Tww if (ww)=(w)+(w),T_{w}T_{w^{\prime}}=T_{ww^{\prime}}\text{ if }\ell(ww^{\prime})=\ell(w)+\ell(w^{\prime}),
and (Ts+q1)(Tsq)=0 for any sS.\text{and }(T_{s}+q^{-1})(T_{s}-q)=0\text{ for any }s\in S.

The unique elements CwC_{w} such that

Cw¯=Cw,CwTwmod<0\overline{C_{w}}=C_{w},\qquad C_{w}\equiv T_{w}\mod{\mathcal{H}_{<0}}

are known as the Kazhdan–Lusztig (KL) basis of \mathcal{H}, where ¯:\bar{\,}:\mathcal{H}\rightarrow\mathcal{H} is the bar involution such that q¯=q1\bar{q}=q^{-1}, Tw¯=Tw11\overline{T_{w}}=T_{w^{-1}}^{-1}, and <0=wW𝒜<0Tw\mathcal{H}_{<0}=\bigoplus_{w\in W}\mathcal{A}_{<0}T_{w} with 𝒜<0=q1[q1]\mathcal{A}_{<0}=q^{-1}\mathbb{Z}[q^{-1}].

If CyC_{y} occurs in the expansion of hCwhC_{w} (resp. CwhC_{w}h) with respect to the KL-basis for some hh\in\mathcal{H}, then we write yLwy\leftarrow_{L}w (resp. yRwy\leftarrow_{R}w). Extend L\leftarrow_{L} (resp. R\leftarrow_{R}) to a preorder L\leq_{L} (resp. R\leq_{R}) on WW. For x,wWx,w\in W, write xLRwx\leq_{LR}w if there exists x=w1,,wn=wx=w_{1},\cdots,w_{n}=w such that for every 1i<n1\leq i<n we have either wiLwi+1w_{i}\leq_{L}w_{i+1} or wiRwi+1w_{i}\leq_{R}w_{i+1}. Let L\stackrel{{\scriptstyle L}}{{\sim}}, R\stackrel{{\scriptstyle R}}{{\sim}}, LR\stackrel{{\scriptstyle LR}}{{\sim}} be the equivalence relations associated with L\stackrel{{\scriptstyle L}}{{\sim}}, R\stackrel{{\scriptstyle R}}{{\sim}}, LR\stackrel{{\scriptstyle LR}}{{\sim}} (for example, xLwx\stackrel{{\scriptstyle L}}{{\sim}}w if and only if xLwx\leq_{L}w and wLxw\leq_{L}x). The equivalence classes on WW for L\sim_{L}, R\sim_{R}, LR\sim_{LR} are called left cells, right cells and two-sided cells respectively.

Proposition 2.6 ([S82, II. 9.8]).

Suppose x,ySnx,y\in S_{n}. Then we have 𝒱(x)=𝒱(y)\mathcal{V}(x)=\mathcal{V}(y) if and only if xRyx\stackrel{{\scriptstyle R}}{{\sim}}y.

Proposition 2.7 ([J84, Lemma 6.6]; [BB85, Corollary 6.3]).

V(Lw)V(L_{w}) is constant on each KL right cell.

2.4. Robinson–Schensted insertion algorithm

In this subsection, we recall the famous Robinson–Schensted insertion algorithm. Some details can be found in [A98] and [S01].

Definition 2.8 (Robinson–Schensted insertion algorithm).

For an element wSnw\in\ S_{n}, we write w=(w1,,wn)w=(w_{1},...,w_{n}). We associate to ww a Young tableau P(w)P(w) as follows. Let P0P_{0} be an empty Young tableau. Assume that we have constructed Young tableau PkP_{k} associated to (w1,,wk)(w_{1},\cdots,w_{k}), 0k<n0\leq k<n. Then Pk+1P_{k+1} is obtained by adding wk+1w_{k+1} to PkP_{k} as follows. Firstly we add wk+1w_{k+1} to the first row of PkP_{k} by replacing the leftmost entry xx in the first row which is strictly bigger than wk+1w_{k+1}. (If there is no such an entry xx, we just add a box with entry wk+1w_{k+1} to the right side of the first row, and end this process). Then add xx to the next row as the same way of adding wk+1w_{k+1} to the first row. Finally we put P(w)=PnP(w)=P_{n}. Let Q(w)Q(w) be the recording tableau such that 1,2,,n1,2,...,n are placed in the QQ’s so that shape of PkP_{k} equal to the shape of QkQ_{k} for all 1kn1\leq k\leq n. Thus Q(w)=QnQ(w)=Q_{n} and sh(P(w))=sh(Q(w))\mathrm{sh}(P(w))=\mathrm{sh}(Q(w)).

We use p(w)=[p1,,pk]p(w)=[p_{1},...,p_{k}] to denote the shape of P(w)P(w), where pip_{i} is the number of boxes in the ii-th row of P(w)P(w). So [p1,,pk][p_{1},...,p_{k}] is a partition of nn, denoted by p(w)np(w)\vdash n.

Proposition 2.9 ([S01, Theorem 3.1.1 &\& Theorem 3.6.6]).

The map w(P(w),Q(w))w\rightarrow(P(w),Q(w)) is a bijection between elements of SnS_{n} and pairs of standard tableaux of the same shape p(w)np(w)\vdash n. We also have P(w1)=Q(w)P(w^{-1})=Q(w) and Q(w1)=P(w)Q(w^{-1})=P(w) for any wSnw\in S_{n}.

Proposition 2.10 ( [A98] or [KL79]).

For 𝔤=𝔰𝔩(n,)\mathfrak{g}=\mathfrak{sl}(n,\mathbb{C}) and W=SnW=S_{n}, two elements xx and yy in SnS_{n} are in the same KL right cell if and only if P(x)=P(y)P(x)=P(y).

Definition 2.11.

Suppose x<y<zx<y<z. Then w,πSnw,\pi\in S_{n} differ by a Knuth relation of the first kind, if

w=(w1,,y,x,z,,xn) and π=(x1,,y,z,x,,xn) or vice versa.w=(w_{1},...,y,x,z,...,x_{n})\text{~{}and~{}}\pi=(x_{1},...,y,z,x,...,x_{n})\text{~{}or vice versa}.

They differ by a Knuth relation of the second kind, if

w=(w1,,x,z,y,,xn) and π=(x1,,z,x,y,,xn) or vice versa.w=(w_{1},...,x,z,y,...,x_{n})\text{~{}and~{}}\pi=(x_{1},...,z,x,y,...,x_{n})\text{~{}or vice versa}.

The two elements are Knuth equivalent, written wKπw\stackrel{{\scriptstyle K}}{{\sim}}\pi, if there is a sequence of elements in SnS_{n} such that w=π1,,πN=πw=\pi_{1},...,\pi_{N}=\pi such that πi\pi_{i} and πi+1\pi_{i+1} differ by a Knuth relation of the first kind or second kind for all 1iN11\leq i\leq N-1.

Proposition 2.12 ( [K70]).

For two elements xx and yy in SnS_{n}, we have xKyx\stackrel{{\scriptstyle K}}{{\sim}}y if and only if P(x)=P(y)P(x)=P(y).

Definition 2.13.

If PP is a Young tableau, then the row word of PP is the permutation

πP=RNRN1R1,\pi_{P}=R_{N}R_{N-1}\cdots R_{1},

where RiR_{i} is the ii-th row of PP.

The column word of PP is the permutation

πPc=C1tC2tCkt,\pi^{c}_{P}=C^{t}_{1}C^{t}_{2}\cdots C^{t}_{k},

where CiC_{i} is the ii-th column of PP and CitC^{t}_{i} is the transpose of CiC_{i} and is starting from the bottom of CiC_{i}.

Example 2.14.

Suppose

P(w)=13245,P(w)={\leavevmode\hbox to51.62pt{\vbox to34.54pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-34.34364pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-17.07182pt}\pgfsys@moveto{25.60774pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.10774pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@lineto{0.0pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-34.14365pt}\pgfsys@moveto{8.5359pt}{-25.60774pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-28.82996pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@lineto{34.14365pt}{-34.14365pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-34.14365pt}\pgfsys@moveto{25.60774pt}{-25.60774pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.10774pt}{-28.82996pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$4$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{34.14365pt}{0.0pt}\pgfsys@moveto{34.14365pt}{0.0pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@lineto{51.21548pt}{-17.07182pt}\pgfsys@lineto{51.21548pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{51.21548pt}{-17.07182pt}\pgfsys@moveto{42.67957pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.17957pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$5$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},}

then the corresponding row word is πP=(2,4,1,3,5)\pi_{P}=(2,4,1,3,5) and column word is πPc=(2,1,4,3,5)\pi^{c}_{P}=(2,1,4,3,5).

The following propositition is very useful in the proof our main results.

Proposition 2.15 ([S01, Theorem 3.5.3]).

Consider πSn\pi\in S_{n}. The length of the longest increasing subsequence of π\pi is the length of the first row of P(π)P(\pi). The length of the longest decreasing subsequence of π\pi is the length of the first column of P(π)P(\pi).

3. Smooth KL right cells

In this section, we will determine the KL right cells where all elements are smooth. Our result is based on a simple observation.

Lemma 3.1.

Let πSn\pi\in S_{n}, for every ii, the relative position of ii and i+1i+1 remains unchanged under the action of the Knuth relation.

Proof.

Based on the definition of the Knuth relation, if we want to change the position of two elements, we need the help of the middle number. But for i and i+1, there is not such middle number. So the lemma is correct. ∎

Before we give the proof of our result, we discuss some special cases.

Proposition 3.2.

Let P be a Young tableau. The shape of P is [2,1,,1]=[2,1n2][2,1,\dots,1]=[2,1^{n-2}]. Let πP=(n,,k+1,k1,,2,1,k)\pi_{P}=(n,\dots,k+1,k-1,\dots,2,1,k) be the row word of PP. Then the right cell corresponding to the permutation πP\pi_{P} will be one of the two followings:

  1. (1)

    All elements in the right cell corresponding to πP=(n,,3,1,2)\pi_{P}=(n,\dots,3,1,2) or πP=(n1,,2,1,n)\pi_{P}=(n-1,\dots,2,1,n) will be smooth;

  2. (2)

    The right cell contains smooth and non-smooth elements for 2<k<n2<k<n.

Proof.

We use [n,m][n,m] to denote the set {n,n+1,,m}\{n,n+1,...,m\} for n<mn<m. We use ``k"``k" to denote the kk-th largest element in the pattern 42314231 and the pattern 34123412 for a given permutation πSn\pi\in S_{n}.

For case one, we can easily find that the pattern 34123412 will not appear. For the pattern 42314231, if we consider πP=(n,,3,1,2)\pi_{P}=(n,\dots,3,1,2), you will find that we can only take ``2"``2" from [2,n][2,n]. But Lemma 3.1 implies possible ``3"``3" is before ``2"``2", which implies that the pattern 42314231 will not appear. If we consider πP=(n1,,2,1,n)\pi_{P}=(n-1,\dots,2,1,n) , the discussion is similar.

For the case two, we find that there are no pattern 34123412 and 42314231 in the initial permutation. But after some Knuth relation, the pattern 42314231 will appear:

πP=(n1,,k+1,k1,,2,1,k)K(n1,,k+1,k1,,2,k,1)\pi_{P}=(n-1,\dots,k+1,k-1,\dots,2,1,k)\stackrel{{\scriptstyle K}}{{\sim}}(n-1,\dots,k+1,k-1,\dots,2,k,1)

since 2<k<n2<k<n. Now, (k+1,k-1,k,1) will satisfy the pattern 42314231. ∎

Proposition 3.3.

Let PP be a Young tableau. The shape of PP is [n1,1][n-1,1]. Then the elements in the right cells are all smooth.

Proof.

Let πP=(k,1,2,,k1,k+1,,n)\pi_{P}=(k,1,2,\dots,k-1,k+1,\dots,n) for some 2kn2\leq k\leq n.

For the pattern 42314231, note that it has a subsequence (4,2,1)(4,2,1). So by Proposition 2.15, the length of the first column of P(πP)P(\pi_{P}) is larger than 22, which is a contradiction.

For the pattern 34123412, if ``3"``3" is taken from [1,k1][1,k-1], then we can’t find ``12"``12". If ``3"``3" is taken from [k,n][k,n], we will take ``12"``12" from [1,k1][1,k-1]. But now the length of the longest increasing subsequence is less than before, which is a contradiction.

So the pattern 42314231 and 34123412 can not appear in any element of any KL right cell corresponding to some πP=(k,1,2,,k1,k+1,,n)\pi_{P}=(k,1,2,\dots,k-1,k+1,\dots,n). ∎

Remark 3.4.

From the above two propositions, we can see that we cannot simply use symmetry to make inferences. The nature of PP and PtP^{t} may be completely different.

Now we give the theorem:

Theorem 3.5.

Let n>0n\in\mathbb{Z}_{>0}. Suppose PP is a standard Young tableau with nn boxes. Then its corresponding KL right cell consists entirely of smooth elements if and only if PP is one of the followings:

  1. (1)

    When the shape of PP is [n][n] or [1,,1]=[1n][1,\dots,1]=[1^{n}], we will have:

    P=12nP={\leavevmode\hbox to68.69pt{\vbox to17.47pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-17.27182pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-17.07182pt}\pgfsys@moveto{25.60774pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.10774pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{34.14365pt}{0.0pt}\pgfsys@moveto{34.14365pt}{0.0pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@lineto{51.21548pt}{-17.07182pt}\pgfsys@lineto{51.21548pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{51.21548pt}{-17.07182pt}\pgfsys@moveto{42.67957pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{38.92957pt}{-11.0359pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{51.21548pt}{0.0pt}\pgfsys@moveto{51.21548pt}{0.0pt}\pgfsys@lineto{51.21548pt}{-17.07182pt}\pgfsys@lineto{68.28731pt}{-17.07182pt}\pgfsys@lineto{68.28731pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{68.28731pt}{-17.07182pt}\pgfsys@moveto{59.75139pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.75021pt}{-10.68867pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$n$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}

    or

    P=12n;P={\leavevmode\hbox to17.47pt{\vbox to68.69pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-68.4873pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@lineto{0.0pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-34.14365pt}\pgfsys@moveto{8.5359pt}{-25.60774pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-28.82996pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-34.14365pt}\pgfsys@moveto{0.0pt}{-34.14365pt}\pgfsys@lineto{0.0pt}{-51.21548pt}\pgfsys@lineto{17.07182pt}{-51.21548pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-51.21548pt}\pgfsys@moveto{8.5359pt}{-42.67957pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.7859pt}{-45.17957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-51.21548pt}\pgfsys@moveto{0.0pt}{-51.21548pt}\pgfsys@lineto{0.0pt}{-68.28731pt}\pgfsys@lineto{17.07182pt}{-68.28731pt}\pgfsys@lineto{17.07182pt}{-51.21548pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-68.28731pt}\pgfsys@moveto{8.5359pt}{-59.75139pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.53473pt}{-61.90416pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$n$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}};
  2. (2)

    When the shape of PP is [2,1,,1]=[2,1n1][2,1,\dots,1]=[2,1^{n-1}] or [n1,1][n-1,1], we will have:

    P=123nP={\leavevmode\hbox to34.54pt{\vbox to68.69pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-68.4873pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-17.07182pt}\pgfsys@moveto{25.60774pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.10774pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@lineto{0.0pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-34.14365pt}\pgfsys@moveto{8.5359pt}{-25.60774pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-28.82996pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-34.14365pt}\pgfsys@moveto{0.0pt}{-34.14365pt}\pgfsys@lineto{0.0pt}{-51.21548pt}\pgfsys@lineto{17.07182pt}{-51.21548pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-51.21548pt}\pgfsys@moveto{8.5359pt}{-42.67957pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.7859pt}{-45.17957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-51.21548pt}\pgfsys@moveto{0.0pt}{-51.21548pt}\pgfsys@lineto{0.0pt}{-68.28731pt}\pgfsys@lineto{17.07182pt}{-68.28731pt}\pgfsys@lineto{17.07182pt}{-51.21548pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-68.28731pt}\pgfsys@moveto{8.5359pt}{-59.75139pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.53473pt}{-61.90416pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$n$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}

    or

    P=1n2n1P=\scriptsize{\leavevmode\hbox to45.92pt{\vbox to91.45pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-91.24916pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{11.38113pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.63113pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@moveto{34.14343pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.04262pt}{-12.88808pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$n$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@lineto{0.0pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-45.52458pt}\pgfsys@moveto{11.38113pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.63113pt}{-36.39899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-45.52458pt}\pgfsys@moveto{0.0pt}{-45.52458pt}\pgfsys@lineto{0.0pt}{-68.28688pt}\pgfsys@lineto{22.76228pt}{-68.28688pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-68.28688pt}\pgfsys@moveto{11.38113pt}{-56.90573pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.75613pt}{-58.65573pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-68.28688pt}\pgfsys@moveto{0.0pt}{-68.28688pt}\pgfsys@lineto{0.0pt}{-91.04916pt}\pgfsys@lineto{22.76228pt}{-91.04916pt}\pgfsys@lineto{22.76228pt}{-68.28688pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-91.04916pt}\pgfsys@moveto{11.38113pt}{-79.66801pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.8081pt}{-81.92357pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$n-1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}

    or

    P=1k2k1k+1n;P=\scriptsize{\leavevmode\hbox to159.74pt{\vbox to45.92pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-45.72458pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{11.38113pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.63113pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@lineto{0.0pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-45.52458pt}\pgfsys@moveto{11.38113pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.44885pt}{-36.57397pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@moveto{34.14343pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.39343pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@moveto{56.90573pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.28073pt}{-13.13113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{91.04916pt}{-22.76228pt}\pgfsys@moveto{79.66801pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{73.26352pt}{-13.81168pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k-1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{91.04916pt}{0.0pt}\pgfsys@moveto{91.04916pt}{0.0pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@lineto{113.81146pt}{-22.76228pt}\pgfsys@lineto{113.81146pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{113.81146pt}{-22.76228pt}\pgfsys@moveto{102.43031pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{94.47026pt}{-13.52002pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k+1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{113.81146pt}{0.0pt}\pgfsys@moveto{113.81146pt}{0.0pt}\pgfsys@lineto{113.81146pt}{-22.76228pt}\pgfsys@lineto{136.57376pt}{-22.76228pt}\pgfsys@lineto{136.57376pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{136.57376pt}{-22.76228pt}\pgfsys@moveto{125.19261pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{122.56761pt}{-13.13113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{136.57376pt}{0.0pt}\pgfsys@moveto{136.57376pt}{0.0pt}\pgfsys@lineto{136.57376pt}{-22.76228pt}\pgfsys@lineto{159.33604pt}{-22.76228pt}\pgfsys@lineto{159.33604pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{159.33604pt}{-22.76228pt}\pgfsys@moveto{147.9549pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{145.85408pt}{-12.88808pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$n$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}};
  3. (3)

    When the shape of PP is [k,1,,1]=[k,1nk][k,1,\dots,1]=[k,1^{n-k}] for some 2<k<n12<k<n-1 and the length of the first column is larger than 22, we will have:

    P=12ii+1nP=\scriptsize{\leavevmode\hbox to91.45pt{\vbox to91.45pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-91.24916pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{11.38113pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.63113pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@lineto{0.0pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-45.52458pt}\pgfsys@moveto{11.38113pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.63113pt}{-36.39899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-45.52458pt}\pgfsys@moveto{0.0pt}{-45.52458pt}\pgfsys@lineto{0.0pt}{-68.28688pt}\pgfsys@lineto{22.76228pt}{-68.28688pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-68.28688pt}\pgfsys@moveto{11.38113pt}{-56.90573pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.75613pt}{-58.65573pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-68.28688pt}\pgfsys@moveto{0.0pt}{-68.28688pt}\pgfsys@lineto{0.0pt}{-91.04916pt}\pgfsys@lineto{22.76228pt}{-91.04916pt}\pgfsys@lineto{22.76228pt}{-68.28688pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-91.04916pt}\pgfsys@moveto{11.38113pt}{-79.66801pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{10.17534pt}{-81.97635pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$i$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@moveto{34.14343pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{26.90987pt}{-13.39781pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$i+1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@moveto{56.90573pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.28073pt}{-13.13113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{91.04916pt}{-22.76228pt}\pgfsys@moveto{79.66801pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{77.5672pt}{-12.88808pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$n$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}

    or

    P=12ii+1nP=\scriptsize{\leavevmode\hbox to91.45pt{\vbox to91.45pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-91.24916pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{11.38113pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.63113pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@moveto{34.14343pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.39343pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@moveto{56.90573pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.28073pt}{-13.13113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{91.04916pt}{-22.76228pt}\pgfsys@moveto{79.66801pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{78.46222pt}{-13.68947pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$i$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@lineto{0.0pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-45.52458pt}\pgfsys@moveto{11.38113pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.14757pt}{-36.16011pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$i+1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-45.52458pt}\pgfsys@moveto{0.0pt}{-45.52458pt}\pgfsys@lineto{0.0pt}{-68.28688pt}\pgfsys@lineto{22.76228pt}{-68.28688pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-68.28688pt}\pgfsys@moveto{11.38113pt}{-56.90573pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.75613pt}{-58.65573pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-68.28688pt}\pgfsys@moveto{0.0pt}{-68.28688pt}\pgfsys@lineto{0.0pt}{-91.04916pt}\pgfsys@lineto{22.76228pt}{-91.04916pt}\pgfsys@lineto{22.76228pt}{-68.28688pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-91.04916pt}\pgfsys@moveto{11.38113pt}{-79.66801pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.28032pt}{-81.17496pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$n$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}

    or

    P=12ikni+1k1;P=\scriptsize{\leavevmode\hbox to159.74pt{\vbox to91.45pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-91.24916pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{11.38113pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.63113pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@moveto{34.14343pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.39343pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@moveto{56.90573pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.28073pt}{-13.13113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{91.04916pt}{-22.76228pt}\pgfsys@moveto{79.66801pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{78.46222pt}{-13.68947pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$i$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{91.04916pt}{0.0pt}\pgfsys@moveto{91.04916pt}{0.0pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@lineto{113.81146pt}{-22.76228pt}\pgfsys@lineto{113.81146pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{113.81146pt}{-22.76228pt}\pgfsys@moveto{102.43031pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{100.49803pt}{-13.81168pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{113.81146pt}{0.0pt}\pgfsys@moveto{113.81146pt}{0.0pt}\pgfsys@lineto{113.81146pt}{-22.76228pt}\pgfsys@lineto{136.57376pt}{-22.76228pt}\pgfsys@lineto{136.57376pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{136.57376pt}{-22.76228pt}\pgfsys@moveto{125.19261pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{122.56761pt}{-13.13113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{136.57376pt}{0.0pt}\pgfsys@moveto{136.57376pt}{0.0pt}\pgfsys@lineto{136.57376pt}{-22.76228pt}\pgfsys@lineto{159.33604pt}{-22.76228pt}\pgfsys@lineto{159.33604pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{159.33604pt}{-22.76228pt}\pgfsys@moveto{147.9549pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{145.85408pt}{-12.88808pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$n$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@lineto{0.0pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-45.52458pt}\pgfsys@moveto{11.38113pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.14757pt}{-36.16011pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$i+1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-45.52458pt}\pgfsys@moveto{0.0pt}{-45.52458pt}\pgfsys@lineto{0.0pt}{-68.28688pt}\pgfsys@lineto{22.76228pt}{-68.28688pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-68.28688pt}\pgfsys@moveto{11.38113pt}{-56.90573pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.75613pt}{-58.65573pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-68.28688pt}\pgfsys@moveto{0.0pt}{-68.28688pt}\pgfsys@lineto{0.0pt}{-91.04916pt}\pgfsys@lineto{22.76228pt}{-91.04916pt}\pgfsys@lineto{22.76228pt}{-68.28688pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-91.04916pt}\pgfsys@moveto{11.38113pt}{-79.66801pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.97664pt}{-82.09856pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k-1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}};
  4. (4)

    When the shape of PP is [n2,2][n-2,2], we will have:

    P=13k1k+1n2k.P=\scriptsize{\leavevmode\hbox to159.74pt{\vbox to45.92pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-45.72458pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{11.38113pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.63113pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@moveto{34.14343pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.39343pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@moveto{56.90573pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.28073pt}{-13.13113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{91.04916pt}{-22.76228pt}\pgfsys@moveto{79.66801pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{73.26352pt}{-13.81168pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k-1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{91.04916pt}{0.0pt}\pgfsys@moveto{91.04916pt}{0.0pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@lineto{113.81146pt}{-22.76228pt}\pgfsys@lineto{113.81146pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{113.81146pt}{-22.76228pt}\pgfsys@moveto{102.43031pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{94.47026pt}{-13.52002pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k+1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{113.81146pt}{0.0pt}\pgfsys@moveto{113.81146pt}{0.0pt}\pgfsys@lineto{113.81146pt}{-22.76228pt}\pgfsys@lineto{136.57376pt}{-22.76228pt}\pgfsys@lineto{136.57376pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{136.57376pt}{-22.76228pt}\pgfsys@moveto{125.19261pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{122.56761pt}{-13.13113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{136.57376pt}{0.0pt}\pgfsys@moveto{136.57376pt}{0.0pt}\pgfsys@lineto{136.57376pt}{-22.76228pt}\pgfsys@lineto{159.33604pt}{-22.76228pt}\pgfsys@lineto{159.33604pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{159.33604pt}{-22.76228pt}\pgfsys@moveto{147.9549pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{145.85408pt}{-12.88808pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$n$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@lineto{0.0pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-45.52458pt}\pgfsys@moveto{11.38113pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.63113pt}{-36.39899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{45.52458pt}{-45.52458pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-45.52458pt}\pgfsys@moveto{34.14343pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.21115pt}{-36.57397pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}.
Proof.

(1)(1). It is obvious that the elements of right cells corresponding to (1,2,,n)(1,2,\dots,n) and (n,n1,,1)(n,n-1,\dots,1) are smooth, since we can’t find any Knuth relations in those permutations.

(2)(2). First, we consider Young tableaux with only one row and one column whose length is larger than one. Since we have discussed about the case (2)(2) in Proposition 3.2, we only focus on case (3)(3).

(3)(3). Let πP\pi_{P} be like (,a,1,b,)(\dots,a,1,b,\dots). Now there is only one Knuth relation in πP\pi_{P}, which is (a,1,b)(a,1,b).

If a<ba<b, we will have πPK(,a,b,1,)\pi_{P}\stackrel{{\scriptstyle K}}{{\sim}}(\dots,a,b,1,\dots). If the leftmost element, denoted as cc, of πP\pi_{P} is larger than bb, cab1cab1 will be the pattern 42314231. So we assume that c<bc<b, πP\pi_{P} is like (i,i1,,2,1,i+1,,n)(i,i-1,\dots,2,1,i+1,\dots,n). We claim that the elements of the right cell will avoid the pattern 34123412 and 42314231.

First, we consider the pattern 34123412. If ``3"``3" is taken from [3,i][3,i]. By Lemma 3.1 , we note ``4"``4" can only be taken from [i+1,n][i+1,n] and ``1",``2"``1",``2" can only be taken from [1,``3"1][1,``3"-1]. However, by Lemma 3.1, ``2"``2" must be before ``1"``1". It is absurd. If ``3"``3" is taken from [i+1,n][i+1,n], the discussion is the same. When we consider the pattern 42314231, we find that ``2"``2" must be taken from [1,i][1,i] and ``3"``3" must be taken from [i+1,n][i+1,n]. Using Lemma 3.1, we note that ``4"``4" must be after ``3"``3", which is a contradiction. So all elements of this right cell will avoid the pattern 34123412 and 42314231.

If a>ba>b, we note that the lengths of the first row and first column are both larger than 22 and let πP=(,a,1,b,d,)\pi_{P}=(\dots,a,1,b,d,\dots).

If a<da<d, we can use the Knuth relation to change πP\pi_{P} into (,1,a,d,b,)(\dots,1,a,d,b,\dots). If the leftmost element of the changed permutation is larger than dd, then we have the pattern 42314231. So we assume the leftmost element of the changed permutation is smaller than dd, then πPKπP=(i,,3,1,2,i+1,,n)\pi_{P}\stackrel{{\scriptstyle K}}{{\sim}}\pi^{\prime}_{P}=(i,\dots,3,1,2,i+1,\dots,n). First we claim that there is no pattern like 34123412. Observing πP\pi^{\prime}_{P}, we find that the longest increasing subsequence is (1,2,i+1,,n)(1,2,i+1,\dots,n). But if we have the pattern 34123412, we find that ``1",``2"``1",``2" must be 1,21,2 and ``4"``4" must be taken from [i+1,n][i+1,n]. But when the pattern exists, the length of the longest increasing subsequence of the changed permutation is less than ni+2n-i+2 , which is a contraction. As for the pattern 42314231, we can easily find a contradiction in the relative position between ``2"``2" and ``3"``3".

If a>da>d and aa is larger than the last element of πP\pi_{P}, we may assume πPKπP′′=(n,,i+1,1,2,,i)\pi_{P}\stackrel{{\scriptstyle K}}{{\sim}}\pi^{\prime\prime}_{P}=(n,\dots,i+1,1,2,\dots,i). We claim that the elements of the right cell are all smooth. For the pattern 34123412, if we take ``3"``3" from [i+1,n][i+1,n], we can not find ``4"``4". If we take ``3"``3" from [1,i][1,i], we can not find ``2"``2". As for the pattern 42314231, we know that ``4"``4" can only be taken from [i+1,n][i+1,n]. Then if ``2"``2" is also taken from [i+1,n][i+1,n], we can’t find ``3"``3". If ``2"``2" is taken from [1,i][1,i], we can’t find ``1"``1".

If there exists an element in the first row of PP larger than aa, denoted as kk, and the leftmost element cc of πP\pi_{P} is larger than kk. Then we can write

πP=(c,,a,1,2,3,,a1,k,).\pi_{P}=(c,\dots,a,1,2,3,\dots,a-1,k,\dots).

Using the Knuth relations, we have:

(c,,a,1,2,3,,a1,k,)\displaystyle(c,\dots,a,1,2,3,\dots,a-1,k,\dots) K(c,,1,a,2,3,,a1,k,)\displaystyle\stackrel{{\scriptstyle K}}{{\sim}}(c,\dots,1,a,2,3,\dots,a-1,k,\dots)
K(c,,1,2,a,3,,a1,k,)\displaystyle\stackrel{{\scriptstyle K}}{{\sim}}(c,\dots,1,2,a,3,\dots,a-1,k,\dots)
K()\displaystyle\stackrel{{\scriptstyle K}}{{\sim}}(\dots)
K(c,,1,2,3,,a,a1,k,)\displaystyle\stackrel{{\scriptstyle K}}{{\sim}}(c,\dots,1,2,3,\dots,a,a-1,k,\dots)
K(c,,1,2,3,,a,k,a1).\displaystyle\stackrel{{\scriptstyle K}}{{\sim}}(c,\dots,1,2,3,\dots,a,k,a-1\dots).

We find that (c,a,k,a1)(c,a,k,a-1) has the pattern 42314231, which implies that the right cell has a non-smooth element.

If the leftmost element is smaller than kk. We can write

πP=(k1,,i+1,1,2,3,,i,k,).\pi_{P}=(k-1,\dots,i+1,1,2,3,\dots,i,k,\dots).

For the pattern 34123412, if ``3"``3" is taken from [1,i][1,i], we can’t find ``1"``1" and ``2"``2". If ``3"``3" is taken from [i+1,k1][i+1,k-1], ``4"``4" must be taken from [k,n][k,n], then ``1"``1" and ``2"``2" must be taken from [1,i][1,i]. But the length of the longest increasing subsequence will decrease, which is a contradiction. If ``3"``3" is taken from [k,n][k,n], the contradiction is the same.

For the pattern 42314231, if we take ``4"``4" from [i+1,k1][i+1,k-1], then if we take ``2"``2" from [i+1,k1][i+1,k-1], ``3"``3" will have no choice. If we take ``2"``2" from [1,i][1,i], ``1"``1" will have no choice. If we take ``4"``4" from [1,i][1,i], ``1"``1" and ``2"``2" will have no choices. If we take ``4"``4" from [k,n][k,n], we will find that ``3"``3" will have no choice.

(4)(4). Now we consider Young tableaux with multiple rows and columns whose lengths are larger than one. We find that if the given Young tableau PP has more than three rows whose lengths are larger than one, the pattern 42314231 will appear. And if the length of the second row is larger than 22, the pattern 34123412 will also appear. Also the first element of the second row, denoted it by bb, must be 22. Otherwise, we will find b,c,1,ab,c,1,a will satisfy the pattern 34123412. So the Young tableau corresponding to πP\pi_{P} and avoiding the pattern 34123412 and 42314231 must be like:

P(w)=1a2c.P(w)=\leavevmode\hbox to51.62pt{\vbox to51.62pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-51.41548pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-17.07182pt}\pgfsys@moveto{25.60774pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{22.9648pt}{-10.68867pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$a$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@lineto{0.0pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-34.14365pt}\pgfsys@moveto{8.5359pt}{-25.60774pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-28.82996pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@lineto{34.14365pt}{-34.14365pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-34.14365pt}\pgfsys@moveto{25.60774pt}{-25.60774pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.44397pt}{-27.76051pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$c$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-17.07182pt}\pgfsys@moveto{25.60774pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.60774pt}{-8.5359pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{34.14365pt}{0.0pt}\pgfsys@moveto{34.14365pt}{0.0pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@lineto{51.21548pt}{-17.07182pt}\pgfsys@lineto{51.21548pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{51.21548pt}{-17.07182pt}\pgfsys@moveto{42.67957pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{38.92957pt}{-11.0359pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-34.14365pt}\pgfsys@moveto{0.0pt}{-34.14365pt}\pgfsys@lineto{0.0pt}{-51.21548pt}\pgfsys@lineto{17.07182pt}{-51.21548pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-51.21548pt}\pgfsys@moveto{8.5359pt}{-42.67957pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.7859pt}{-45.17957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

If there exists some element larger than cc in the first column, πP\pi_{P} will have the pattern 42314231. So we can assume the elements in the first colunm are samller than cc.

If PP has only two rows, the corresponding tableau will be like:

P=132k,P=\leavevmode\hbox to51.62pt{\vbox to34.54pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-34.34364pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-17.07182pt}\pgfsys@moveto{25.60774pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.10774pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@lineto{0.0pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-34.14365pt}\pgfsys@moveto{8.5359pt}{-25.60774pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-28.82996pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@lineto{34.14365pt}{-34.14365pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-34.14365pt}\pgfsys@moveto{25.60774pt}{-25.60774pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{22.84732pt}{-29.07996pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{34.14365pt}{0.0pt}\pgfsys@moveto{34.14365pt}{0.0pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@lineto{51.21548pt}{-17.07182pt}\pgfsys@lineto{51.21548pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{51.21548pt}{-17.07182pt}\pgfsys@moveto{42.67957pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{38.92957pt}{-11.0359pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},

and πP=(2,k,1,3,)\pi_{P}=(2,k,1,3,\dots). For the pattern 34123412, if we take ``4"``4" from [3,k1][3,k-1], we can’t find the correct ``2"``2". If we take ``4"``4" from [k+1,n][k+1,n], denoted it as ll, then ``2"``2" must be taken from [3,k1][3,k-1], denoted it as jj. Now the length of the longest increasing subsequence is actually less than before, which is a contradiction. For the pattern 42314231, since the length of the first column is 22, there will be no longer decreasing subsequence. So it avoids the pattern 42314231.

The last case we need to consider is:

P=12kk+1jnP=\scriptsize{\leavevmode\hbox to91.45pt{\vbox to91.45pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-91.24916pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{11.38113pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.63113pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@lineto{0.0pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-45.52458pt}\pgfsys@moveto{11.38113pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.63113pt}{-36.39899pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-45.52458pt}\pgfsys@moveto{0.0pt}{-45.52458pt}\pgfsys@lineto{0.0pt}{-68.28688pt}\pgfsys@lineto{22.76228pt}{-68.28688pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-68.28688pt}\pgfsys@moveto{11.38113pt}{-56.90573pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.75613pt}{-58.65573pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-68.28688pt}\pgfsys@moveto{0.0pt}{-68.28688pt}\pgfsys@lineto{0.0pt}{-91.04916pt}\pgfsys@lineto{22.76228pt}{-91.04916pt}\pgfsys@lineto{22.76228pt}{-68.28688pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-91.04916pt}\pgfsys@moveto{11.38113pt}{-79.66801pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.44885pt}{-82.09856pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@moveto{34.14343pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{26.18338pt}{-13.52002pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k+1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{45.52458pt}{-45.52458pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-45.52458pt}\pgfsys@moveto{34.14343pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.50177pt}{-35.77122pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$j$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@moveto{56.90573pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.28073pt}{-13.13113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{91.04916pt}{-22.76228pt}\pgfsys@moveto{79.66801pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{77.5672pt}{-12.88808pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$n$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}

Now πP=(k,k1,,3,2,j,1,k+1,,j1,j+1,,n)\pi_{P}=(k,k-1,\dots,3,2,j,1,k+1,\dots,j-1,j+1,\dots,n). We can easily find that

πP=\displaystyle\pi_{P}= (k,k1,,3,2,j,1,k+1,,j1,j+1,,n)\displaystyle(k,k-1,\dots,3,2,j,1,k+1,\dots,j-1,j+1,\dots,n)
K\displaystyle\stackrel{{\scriptstyle K}}{{\sim}} (k,k1,,3,j,2,1,k+1,,j1,j+1,,n)\displaystyle(k,k-1,\dots,3,j,2,1,k+1,\dots,j-1,j+1,\dots,n)
K\displaystyle\stackrel{{\scriptstyle K}}{{\sim}} (k,k1,,3,j,2,k+1,1,,j1,j+1,,n).\displaystyle(k,k-1,\dots,3,j,2,k+1,1,\dots,j-1,j+1,\dots,n).

So (j,2,k+1,1)(j,2,k+1,1) satisfies the pattern 42314231. Thus PP contains some non-smooth element. ∎

We call a KL right cell in the above theorem a smooth KL right cell. If we use 𝒞R(P)\mathcal{C}_{R}(P) to denote the corresponding KL right cell for a given Young tableau PP, we will have the following.

Corollary 3.6.

A KL right cell 𝒞R(P)\mathcal{C}_{R}(P) is a smooth cell if and only if its column word πPc\pi_{P}^{c} is one of the following elements:

  • x1=(1,2,,n)x_{1}=(1,2,...,n);

  • x2=(n,n1,,1)x_{2}=(n,n-1,...,1);

  • x3=(n,n1,,3,1,2)x_{3}=(n,n-1,...,3,1,2);

  • x4=(n1,n2,,1,n)x_{4}=(n-1,n-2,...,1,n);

  • yk=(k,1,2,,k1,k+1,,n)y_{k}=(k,1,2,...,k-1,k+1,...,n), 2kn2\leq k\leq n;

  • zi=(i,i1,,1,i+1,i+2,,n)z_{i}=(i,i-1,...,1,i+1,i+2,...,n), 3in23\leq i\leq n-2;

  • zit=(n,n1,,i+1,1,2,3,,i)z^{t}_{i}=(n,n-1,...,i+1,1,2,3,...,i), 3in23\leq i\leq n-2;

  • sik=(n,n1,,i+1,1,2,3,,i)s_{ik}=(n,n-1,...,i+1,1,2,3,...,i), 1i<kn21\leq i<k\leq n-2;

  • tk=(2,1,k,3,4,,k1,k+1,,n)t_{k}=(2,1,k,3,4,...,k-1,k+1,...,n), 4kn4\leq k\leq n.

4. Some examples of KL right cells with non-smooth elements

By Lemma 3.1, we can find some special KL right cells with all elements being non-smooth. In general, we prove that the permutations corresponding to these tableaux have some invariant subsequences under the action of the Knuth relations to illustrate their non-smoothness.

4.1. Invariant subsequences with the pattern 34123412

Proposition 4.1.

For k3k\geq 3, we have the fact that all elements of the following KL right cells are non-smooth:

P=12kk+1k+22kP=\scriptsize{\leavevmode\hbox to91.45pt{\vbox to45.92pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-45.72458pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{11.38113pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.63113pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@moveto{34.14343pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.39343pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@moveto{56.90573pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.28073pt}{-13.13113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{91.04916pt}{-22.76228pt}\pgfsys@moveto{79.66801pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{77.73573pt}{-13.81168pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@lineto{0.0pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-45.52458pt}\pgfsys@moveto{11.38113pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.42108pt}{-36.28232pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k+1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{45.52458pt}{-45.52458pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-45.52458pt}\pgfsys@moveto{34.14343pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{26.18338pt}{-36.28232pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k+2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{-45.52458pt}\pgfsys@lineto{68.28688pt}{-45.52458pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{68.28688pt}{-45.52458pt}\pgfsys@moveto{56.90573pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.28073pt}{-35.89343pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{-45.52458pt}\pgfsys@lineto{91.04916pt}{-45.52458pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{91.04916pt}{-45.52458pt}\pgfsys@moveto{79.66801pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.98573pt}{-36.57397pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2k$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}

and

P=12kk+1k+2k+32k+1.P={\scriptsize{\leavevmode\hbox to114.21pt{\vbox to45.92pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-45.72458pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{11.38113pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.63113pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@moveto{34.14343pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.39343pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@moveto{56.90573pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.28073pt}{-13.13113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{91.04916pt}{-22.76228pt}\pgfsys@moveto{79.66801pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{77.73573pt}{-13.81168pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{91.04916pt}{0.0pt}\pgfsys@moveto{91.04916pt}{0.0pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@lineto{113.81146pt}{-22.76228pt}\pgfsys@lineto{113.81146pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{113.81146pt}{-22.76228pt}\pgfsys@moveto{102.43031pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{94.47026pt}{-13.52002pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k+1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@lineto{0.0pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-45.52458pt}\pgfsys@moveto{11.38113pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.42108pt}{-36.28232pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k+2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{45.52458pt}{-45.52458pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-45.52458pt}\pgfsys@moveto{34.14343pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{26.18338pt}{-36.28232pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k+3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{-45.52458pt}\pgfsys@lineto{68.28688pt}{-45.52458pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{68.28688pt}{-45.52458pt}\pgfsys@moveto{56.90573pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.28073pt}{-35.89343pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{-45.52458pt}\pgfsys@lineto{91.04916pt}{-45.52458pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{91.04916pt}{-45.52458pt}\pgfsys@moveto{79.66801pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{69.95796pt}{-36.28232pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2k+1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}}.

Actually, (k+1,k+2,k1,k)(k+1,k+2,k-1,k) and (k+2,k+3,k,k+1)(k+2,k+3,k,k+1) are respectively the invariant subsequences.

Proof.

We only prove the first case and the second one is exactly the same. By Lemma 3.1, k+1k+1 is always before kk, k+2k+2 is always after k+1k+1 and k1k-1 is before kk. If the relative position of (k+1,k+2,k1,k)(k+1,k+2,k-1,k) will not change under the action of the Knuth relations, we can prove the proposition. If not, the only possibility is that k+2k+2 is after k1k-1 under some actions of the Knuth relations. But now there will exist an increasing subsequence (1,2,,k1,k+2,,2k)(1,2,\dots,k-1,k+2,\dots,2k) by Lemma 3.1. The length of the subsequence is 2k22k-2. But we know that the longest increasing subsequence is the length of the first row by Proposition 2.15. So we have 2k2k2k-2\leq k, which means k2k\leq 2. This is a contradiction since k3k\geq 3.

For the following two cases, we can similarly prove that all elements of the given KL right cells are non-smooth:

P=12k2k+1k+1k+22kP=\scriptsize{\leavevmode\hbox to114.67pt{\vbox to45.92pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-45.72458pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{11.38113pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.63113pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@moveto{34.14343pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.39343pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@moveto{56.90573pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.28073pt}{-13.13113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{91.04916pt}{-22.76228pt}\pgfsys@moveto{79.66801pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{77.73573pt}{-13.81168pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{91.04916pt}{0.0pt}\pgfsys@moveto{91.04916pt}{0.0pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@lineto{113.81146pt}{-22.76228pt}\pgfsys@lineto{113.81146pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{113.81146pt}{-22.76228pt}\pgfsys@moveto{102.43031pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{92.72026pt}{-13.52002pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2k+1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@lineto{0.0pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-45.52458pt}\pgfsys@moveto{11.38113pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.42108pt}{-36.28232pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k+1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{45.52458pt}{-45.52458pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-45.52458pt}\pgfsys@moveto{34.14343pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{26.18338pt}{-36.28232pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k+2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{-45.52458pt}\pgfsys@lineto{68.28688pt}{-45.52458pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{68.28688pt}{-45.52458pt}\pgfsys@moveto{56.90573pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.28073pt}{-35.89343pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{-45.52458pt}\pgfsys@lineto{91.04916pt}{-45.52458pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{91.04916pt}{-45.52458pt}\pgfsys@moveto{79.66801pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.98573pt}{-36.57397pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2k$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}

and

P=12k2k+1k+1k+22k.P=\scriptsize{\leavevmode\hbox to91.91pt{\vbox to68.69pt{\pgfpicture\makeatletter\hbox{\hskip 0.66203pt\lower-68.48688pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{11.38113pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.63113pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@moveto{34.14343pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.39343pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@moveto{56.90573pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.28073pt}{-13.13113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{91.04916pt}{-22.76228pt}\pgfsys@moveto{79.66801pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{77.73573pt}{-13.81168pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-45.52458pt}\pgfsys@moveto{0.0pt}{-45.52458pt}\pgfsys@lineto{0.0pt}{-68.28688pt}\pgfsys@lineto{22.76228pt}{-68.28688pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-68.28688pt}\pgfsys@moveto{11.38113pt}{-56.90573pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.67108pt}{-59.04462pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2k+1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@lineto{0.0pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-45.52458pt}\pgfsys@moveto{11.38113pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.42108pt}{-36.28232pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k+1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{45.52458pt}{-45.52458pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-45.52458pt}\pgfsys@moveto{34.14343pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{26.18338pt}{-36.28232pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k+2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{-45.52458pt}\pgfsys@lineto{68.28688pt}{-45.52458pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{68.28688pt}{-45.52458pt}\pgfsys@moveto{56.90573pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.28073pt}{-35.89343pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{-45.52458pt}\pgfsys@lineto{91.04916pt}{-45.52458pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{91.04916pt}{-45.52458pt}\pgfsys@moveto{79.66801pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{75.98573pt}{-36.57397pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2k$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.}

Now we give a sufficient condition that all elements in a given KL right cell are non-smooth.

Proposition 4.2.

Let PP be a Young tableau and ll be the length of the first row. When PP is like:

P=12kjk+1k+2k+m,P=\scriptsize{\leavevmode\hbox to159.74pt{\vbox to68.69pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-68.48688pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{11.38113pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.63113pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@moveto{34.14343pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{32.39343pt}{-13.63669pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@moveto{56.90573pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.28073pt}{-13.13113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@moveto{68.28688pt}{0.0pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@lineto{91.04916pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{91.04916pt}{-22.76228pt}\pgfsys@moveto{79.66801pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{77.04301pt}{-13.13113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{91.04916pt}{0.0pt}\pgfsys@moveto{91.04916pt}{0.0pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@lineto{113.81146pt}{-22.76228pt}\pgfsys@lineto{113.81146pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{113.81146pt}{-22.76228pt}\pgfsys@moveto{102.43031pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{100.49803pt}{-13.81168pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{113.81146pt}{0.0pt}\pgfsys@moveto{113.81146pt}{0.0pt}\pgfsys@lineto{113.81146pt}{-22.76228pt}\pgfsys@lineto{136.57376pt}{-22.76228pt}\pgfsys@lineto{136.57376pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{136.57376pt}{-22.76228pt}\pgfsys@moveto{125.19261pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{123.55095pt}{-13.00893pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$j$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{136.57376pt}{0.0pt}\pgfsys@moveto{136.57376pt}{0.0pt}\pgfsys@lineto{136.57376pt}{-22.76228pt}\pgfsys@lineto{159.33604pt}{-22.76228pt}\pgfsys@lineto{159.33604pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{159.33604pt}{-22.76228pt}\pgfsys@moveto{147.9549pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{145.3299pt}{-13.13113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@lineto{0.0pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-45.52458pt}\pgfsys@moveto{11.38113pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.42108pt}{-36.28232pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k+1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{45.52458pt}{-45.52458pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-45.52458pt}\pgfsys@moveto{34.14343pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{26.18338pt}{-36.28232pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k+2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{-45.52458pt}\pgfsys@lineto{68.28688pt}{-45.52458pt}\pgfsys@lineto{68.28688pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{68.28688pt}{-45.52458pt}\pgfsys@moveto{56.90573pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{54.28073pt}{-35.89343pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\dots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@moveto{68.28688pt}{-22.76228pt}\pgfsys@lineto{68.28688pt}{-45.52458pt}\pgfsys@lineto{91.04916pt}{-45.52458pt}\pgfsys@lineto{91.04916pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{91.04916pt}{-45.52458pt}\pgfsys@moveto{79.66801pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{70.38492pt}{-36.28232pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k+m$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-45.52458pt}\pgfsys@moveto{0.0pt}{-45.52458pt}\pgfsys@lineto{0.0pt}{-68.28688pt}\pgfsys@lineto{22.76228pt}{-68.28688pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-68.28688pt}\pgfsys@moveto{11.38113pt}{-56.90573pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.75613pt}{-58.65573pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}},

and k+m2>lk+m-2>l, all elements of the KL right cell are non-smooth.

Proof.

The subsequence (k+1,k+2,k1,k)(k+1,k+2,k-1,k) in the row word of PP makes the pattern 34123412. If k+2k+2 is after k1k-1 under some actions of the Knuth relations, there will exist an increasing subsequence (1,2,,k1,k+2,,k+m)(1,2,\dots,k-1,k+2,\dots,k+m) in the new permutation by Lemma 3.1. The length of this subsequence is k+m2k+m-2. But based on our assumption, it is larger than the length of the first row. This is a contradiction since Proposition 2.15. ∎

Note that in the above proposition, we have kmk\geq m.

4.2. Invariant subsequences with the pattern 42314231

We find that some special permutations will have some invariant subsequences satisfying the pattern 42314231.

Proposition 4.3.

If the Young tableau PP has only two columns and is like the following:

P=k2k1kk+1k+2k+3,P=\scriptsize{\leavevmode\hbox to45.92pt{\vbox to136.97pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-136.77376pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{11.38113pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.75613pt}{-13.13113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@lineto{45.52458pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-22.76228pt}\pgfsys@moveto{34.14343pt}{-11.38113pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{31.51843pt}{-13.13113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@lineto{0.0pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-45.52458pt}\pgfsys@moveto{11.38113pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.97664pt}{-36.57397pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k-2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@moveto{22.76228pt}{-22.76228pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@lineto{45.52458pt}{-45.52458pt}\pgfsys@lineto{45.52458pt}{-22.76228pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-45.52458pt}\pgfsys@moveto{34.14343pt}{-34.14343pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{27.73894pt}{-36.57397pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k-1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-45.52458pt}\pgfsys@moveto{0.0pt}{-45.52458pt}\pgfsys@lineto{0.0pt}{-68.28688pt}\pgfsys@lineto{22.76228pt}{-68.28688pt}\pgfsys@lineto{22.76228pt}{-45.52458pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-68.28688pt}\pgfsys@moveto{11.38113pt}{-56.90573pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.44885pt}{-59.33627pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{-45.52458pt}\pgfsys@moveto{22.76228pt}{-45.52458pt}\pgfsys@lineto{22.76228pt}{-68.28688pt}\pgfsys@lineto{45.52458pt}{-68.28688pt}\pgfsys@lineto{45.52458pt}{-45.52458pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-68.28688pt}\pgfsys@moveto{34.14343pt}{-56.90573pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{26.18338pt}{-59.04462pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k+1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-68.28688pt}\pgfsys@moveto{0.0pt}{-68.28688pt}\pgfsys@lineto{0.0pt}{-91.04916pt}\pgfsys@lineto{22.76228pt}{-91.04916pt}\pgfsys@lineto{22.76228pt}{-68.28688pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-91.04916pt}\pgfsys@moveto{11.38113pt}{-79.66801pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.42108pt}{-81.8069pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k+2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{-68.28688pt}\pgfsys@moveto{22.76228pt}{-68.28688pt}\pgfsys@lineto{22.76228pt}{-91.04916pt}\pgfsys@lineto{45.52458pt}{-91.04916pt}\pgfsys@lineto{45.52458pt}{-68.28688pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-91.04916pt}\pgfsys@moveto{34.14343pt}{-79.66801pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{26.18338pt}{-81.8069pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$k+3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-91.04916pt}\pgfsys@moveto{0.0pt}{-91.04916pt}\pgfsys@lineto{0.0pt}{-113.81146pt}\pgfsys@lineto{22.76228pt}{-113.81146pt}\pgfsys@lineto{22.76228pt}{-91.04916pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-113.81146pt}\pgfsys@moveto{11.38113pt}{-102.43031pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.75613pt}{-104.18031pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{22.76228pt}{-91.04916pt}\pgfsys@moveto{22.76228pt}{-91.04916pt}\pgfsys@lineto{22.76228pt}{-113.81146pt}\pgfsys@lineto{45.52458pt}{-113.81146pt}\pgfsys@lineto{45.52458pt}{-91.04916pt}\pgfsys@closepath\pgfsys@moveto{45.52458pt}{-113.81146pt}\pgfsys@moveto{34.14343pt}{-102.43031pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{31.51843pt}{-104.18031pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-113.81146pt}\pgfsys@moveto{0.0pt}{-113.81146pt}\pgfsys@lineto{0.0pt}{-136.57376pt}\pgfsys@lineto{22.76228pt}{-136.57376pt}\pgfsys@lineto{22.76228pt}{-113.81146pt}\pgfsys@closepath\pgfsys@moveto{22.76228pt}{-136.57376pt}\pgfsys@moveto{11.38113pt}{-125.19261pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{8.75613pt}{-126.94261pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}},

then all elements of the right cell are non-smooth. Actually, the subsequence (k+2,k,k+1,k1)(k+2,k,k+1,k-1) always exists under the action of the Knuth relation, which satisfies the pattern 42314231.

Proof.

By Lemma 3.1, we find that k+2k+2 is before k+3k+3. If kk is before k+2k+2, the subsequence (k,k+2,k+3)(k,k+2,k+3) exists, which implies the length of the first row of PP is larger than 22. This is a contradiction. If k1k-1 is before k+1k+1, then the subsequence (k2,k1,k+1)(k-2,k-1,k+1) exists, which is also a contradiction. So the subsequence (k+2,k,k+1,k1)(k+2,k,k+1,k-1) always exists under the actions of the Knuth relations. ∎

Remark 4.4.

The above discussion does not indicate that for all elements in a KL right cell with all elements being non-smooth, we can find an invariant subsequence which satisfies the pattern 34123412 or 42314231. Let πP=(6,7,3,4,1,2,5)\pi_{P}=(6,7,3,4,1,2,5). Under the actions of the Knuth relations, there exists one permutation avoiding the pattern 34123412. For the pattern 42314231, we find that (6,7,3,4,1,2,5)(6,7,3,4,1,2,5) and (3,6,4,7,1,5,2)(3,6,4,7,1,5,2) don’t have common subsequences satisfying the pattern 42314231.

5. Young tableaux with two columns

The Young tableaux with only two columns always appear in representation theory of Lie algebras and Lie groups, see for example [BX19, BXX23]. Now we pay attention on KL right cells corresponding to these special tableaux. Let the Young tableau PP be as follows:

P=1bac.P={\leavevmode\hbox to34.54pt{\vbox to68.69pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-68.4873pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-17.07182pt}\pgfsys@moveto{25.60774pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.46191pt}{-12.00812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$b$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@lineto{34.14365pt}{-34.14365pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-34.14365pt}\pgfsys@moveto{25.60774pt}{-25.60774pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{21.85774pt}{-28.10774pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@lineto{0.0pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-34.14365pt}\pgfsys@moveto{8.5359pt}{-25.60774pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.7859pt}{-28.10774pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-34.14365pt}\pgfsys@moveto{0.0pt}{-34.14365pt}\pgfsys@lineto{0.0pt}{-51.21548pt}\pgfsys@lineto{17.07182pt}{-51.21548pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-51.21548pt}\pgfsys@moveto{8.5359pt}{-42.67957pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.7859pt}{-45.17957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-51.21548pt}\pgfsys@moveto{0.0pt}{-51.21548pt}\pgfsys@lineto{0.0pt}{-68.28731pt}\pgfsys@lineto{17.07182pt}{-68.28731pt}\pgfsys@lineto{17.07182pt}{-51.21548pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-68.28731pt}\pgfsys@moveto{8.5359pt}{-59.75139pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.89296pt}{-61.90416pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$a$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{-34.14365pt}\pgfsys@moveto{17.07182pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-51.21548pt}\pgfsys@lineto{34.14365pt}{-51.21548pt}\pgfsys@lineto{34.14365pt}{-34.14365pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-51.21548pt}\pgfsys@moveto{25.60774pt}{-42.67957pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.44397pt}{-44.83234pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$c$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.}

We can easily find that the permutation (a,,1,c,,b)(a,\dots,1,c,\dots,b) is the column word corresponding to PP. Now we have the following proposition.

Proposition 5.1.

Let PP be a Young tableau with two columns. PP is like the tableau above. If PP satisfies one of the following conditions:

  1. (1)

    The numbers below bb are all larger than aa.

  2. (2)

    There exist numbers below bb smaller than aa. Let dd be the largest one and the elements of the first column which are smaller than dd are also smaller than bb.

then the KL right cell will have at least one smooth element.

Proof.

Firstly we know that column word (a,,1,c,,b)(a,\dots,1,c,\dots,b) avoids the pattern 34123412. So we focus on the pattern 42314231. Let us assume that aa is ``4"``4" and bb is ``1"``1". Now if the numbers below bb are larger than aa, the pattern 42314231 will not appear. If there exist numbers below bb smaller than aa, we denote the largest one by dd. If the first column has an element ee satisfying b<e<db<e<d, the pattern 42314231 will appear. Otherwise, the pattern 42314231 will not appear.

For this point, we can further discuss the Young tableau of the following:

P=1bcda.P={\leavevmode\hbox to34.54pt{\vbox to68.69pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-68.4873pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-17.07182pt}\pgfsys@moveto{25.60774pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.46191pt}{-12.00812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$b$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@lineto{34.14365pt}{-34.14365pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-34.14365pt}\pgfsys@moveto{25.60774pt}{-25.60774pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.44397pt}{-27.76051pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$c$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@lineto{0.0pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-34.14365pt}\pgfsys@moveto{8.5359pt}{-25.60774pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.93347pt}{-29.07996pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$d$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-34.14365pt}\pgfsys@moveto{0.0pt}{-34.14365pt}\pgfsys@lineto{0.0pt}{-51.21548pt}\pgfsys@lineto{17.07182pt}{-51.21548pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-51.21548pt}\pgfsys@moveto{8.5359pt}{-42.67957pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.7859pt}{-45.17957pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-51.21548pt}\pgfsys@moveto{0.0pt}{-51.21548pt}\pgfsys@lineto{0.0pt}{-68.28731pt}\pgfsys@lineto{17.07182pt}{-68.28731pt}\pgfsys@lineto{17.07182pt}{-51.21548pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-68.28731pt}\pgfsys@moveto{8.5359pt}{-59.75139pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.89296pt}{-61.90416pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$a$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.}

First, we have the fact that the corresponding KL right cells have non-smooth elements since Theorem 3.5. From the column word expression, we have the followings:

  1. (1)

    If c>ac>a, the KL right cell will have smooth elements.

  2. (2)

    If c<ac<a and the elements of the first column which are smaller than cc are also smaller than bb, then the KL right cell will have smooth elements.

Now if the first column has elements which are smaller than cc and larger than bb, we can solve one special case.

Proposition 5.2.

Let the Young tableau PP be as follows:

P=12c3ba.P={\leavevmode\hbox to34.54pt{\vbox to85.76pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-85.55913pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-17.07182pt}\pgfsys@moveto{25.60774pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.10774pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@lineto{34.14365pt}{-34.14365pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-34.14365pt}\pgfsys@moveto{25.60774pt}{-25.60774pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.44397pt}{-27.76051pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$c$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@lineto{0.0pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-34.14365pt}\pgfsys@moveto{8.5359pt}{-25.60774pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-28.82996pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-34.14365pt}\pgfsys@moveto{0.0pt}{-34.14365pt}\pgfsys@lineto{0.0pt}{-51.21548pt}\pgfsys@lineto{17.07182pt}{-51.21548pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-51.21548pt}\pgfsys@moveto{8.5359pt}{-42.67957pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.39008pt}{-46.15178pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$b$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-51.21548pt}\pgfsys@moveto{0.0pt}{-51.21548pt}\pgfsys@lineto{0.0pt}{-68.28731pt}\pgfsys@lineto{17.07182pt}{-68.28731pt}\pgfsys@lineto{17.07182pt}{-51.21548pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-68.28731pt}\pgfsys@moveto{8.5359pt}{-59.75139pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.7859pt}{-62.25139pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\vdots$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-68.28731pt}\pgfsys@moveto{0.0pt}{-68.28731pt}\pgfsys@lineto{0.0pt}{-85.35913pt}\pgfsys@lineto{17.07182pt}{-85.35913pt}\pgfsys@lineto{17.07182pt}{-68.28731pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-85.35913pt}\pgfsys@moveto{8.5359pt}{-76.82323pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.89296pt}{-78.976pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$a$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.}

Suppose a>ca>c and 3<b<c3<b<c in the first column. Then the KL right cell has both smooth and non-smooth elements.

Proof.

Let bb be the largest element in the first column which is smaller than cc. Then πP=(a,,b,,3,c,1,2)\pi_{P}=(a,\dots,b,\dots,3,c,1,2). Using the Knuth relations, we will have:

(a,,b,,3,c,1,2)\displaystyle(a,\dots,b,\dots,3,c,1,2) K(a,,b,c,,3,1,2)\displaystyle\stackrel{{\scriptstyle K}}{{\sim}}(a,\dots,b,c,\dots,3,1,2)
K(b,a,,c,,3,1,2)\displaystyle\stackrel{{\scriptstyle K}}{{\sim}}(b,a,\dots,c,\dots,3,1,2)
K(b,a,,c,,1,3,2)\displaystyle\stackrel{{\scriptstyle K}}{{\sim}}(b,a,\dots,c,\dots,1,3,2)
K\displaystyle\stackrel{{\scriptstyle K}}{{\sim}}\dots
K(b,1,a,,c,,3,2).\displaystyle\stackrel{{\scriptstyle K}}{{\sim}}(b,1,a,\dots,c,\dots,3,2).

Obviously the permutation (b,1,a,,c,,3,2)(b,1,a,\dots,c,\dots,3,2) avoids the two patterns 34123412 and 42314231. ∎

Remark 5.3.

For a given Young tableau PP, the KL right cell 𝒞R(P)\mathcal{C}_{R}(P) will contain smooth elements if the column word πPc\pi_{P}^{c} or row word πP\pi_{P} avoids the two patterns 34123412 and 42314231. But it can happen that both πPc\pi_{P}^{c} and πP\pi_{P} are not smooth when 𝒞R(P)\mathcal{C}_{R}(P) contains smooth elements. For example, in the two-sided cell corresponding to a given partition μn\mu\vdash n, the longest element wμw_{\mu} in the parabolic subgroup WμW_{\mu} is smooth since it avoids the two patterns 34123412 and 42314231. wμw_{\mu} is the column word in the KL right cell containing wμw_{\mu}.

For

P=125346,P={\leavevmode\hbox to34.54pt{\vbox to68.69pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-68.4873pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-17.07182pt}\pgfsys@moveto{25.60774pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.10774pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@lineto{34.14365pt}{-34.14365pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-34.14365pt}\pgfsys@moveto{25.60774pt}{-25.60774pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.10774pt}{-28.82996pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$5$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@lineto{0.0pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-34.14365pt}\pgfsys@moveto{8.5359pt}{-25.60774pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-28.82996pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-34.14365pt}\pgfsys@moveto{0.0pt}{-34.14365pt}\pgfsys@lineto{0.0pt}{-51.21548pt}\pgfsys@lineto{17.07182pt}{-51.21548pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-51.21548pt}\pgfsys@moveto{8.5359pt}{-42.67957pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-45.90178pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$4$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-51.21548pt}\pgfsys@moveto{0.0pt}{-51.21548pt}\pgfsys@lineto{0.0pt}{-68.28731pt}\pgfsys@lineto{17.07182pt}{-68.28731pt}\pgfsys@lineto{17.07182pt}{-51.21548pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-68.28731pt}\pgfsys@moveto{8.5359pt}{-59.75139pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-62.9736pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$6$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}},

its column word πPc=(6,4,3,1,5,2)\pi_{P}^{c}=(6,4,3,1,5,2) contains the pattern 42314231 (since we can choose the subsequence (6,3,5,2)(6,3,5,2)) and its row word πP=(6,4,3,5,1,2)\pi_{P}=(6,4,3,5,1,2) contains the pattern 34123412 (since we can choose the subsequence (3,5,1,2)(3,5,1,2)). But from Proposition 5.2, we know that the KL right cell 𝒞R(P)\mathcal{C}_{R}(P) contains both smooth and non-smooth elements. For example w=(4,1,6,5,3,2)𝒞R(P)w=(4,1,6,5,3,2)\in\mathcal{C}_{R}(P) is smooth.

6. Right cells containing some smooth elements

In this section, we want to give some algorithms to determine that a right cell contains a smooth element or not by using the Knuth relations.

To give our algorithm, we recall the famous hook formula, which was found by Frame, Robinson and Thrall [FRT54].

Definition 6.1.

If v=(i,j)v=(i,j) is a node in the diagram or Young tableau PP, then it has hook

Hv=Hi,j={(i,j)jj}{(i,j)ii}H_{v}=H_{i,j}=\{(i,j^{\prime})\mid j^{\prime}\geq j\}\cup\{(i^{\prime},j)\mid i^{\prime}\geq i\}

with corresponding hooklength

hv=hi,j=|Hi,j|.h_{v}=h_{i,j}=|H_{i,j}|.
Example 6.2.

Let

P=125346,P={\leavevmode\hbox to34.54pt{\vbox to68.69pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-68.4873pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-17.07182pt}\pgfsys@moveto{25.60774pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.10774pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@lineto{34.14365pt}{-34.14365pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-34.14365pt}\pgfsys@moveto{25.60774pt}{-25.60774pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.10774pt}{-28.82996pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$5$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@lineto{0.0pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-34.14365pt}\pgfsys@moveto{8.5359pt}{-25.60774pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-28.82996pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-34.14365pt}\pgfsys@moveto{0.0pt}{-34.14365pt}\pgfsys@lineto{0.0pt}{-51.21548pt}\pgfsys@lineto{17.07182pt}{-51.21548pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-51.21548pt}\pgfsys@moveto{8.5359pt}{-42.67957pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-45.90178pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$4$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-51.21548pt}\pgfsys@moveto{0.0pt}{-51.21548pt}\pgfsys@lineto{0.0pt}{-68.28731pt}\pgfsys@lineto{17.07182pt}{-68.28731pt}\pgfsys@lineto{17.07182pt}{-51.21548pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-68.28731pt}\pgfsys@moveto{8.5359pt}{-59.75139pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-62.9736pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$6$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}},

then the dotted cells in

\bullet\bullet\bullet\bullet

are the hook H2,1H_{2,1} with hooklength h2,1=4h_{2,1}=4.

Proposition 6.3 (Hook formula [FRT54] ).

Let PP be a standard Young tableau and 𝒞\mathcal{C} be the corresponding Kazhdan–Lusztig right cell in the symmetric group SnS_{n}. Then

#𝒞=n!(i,j)Phi,j.\#\mathcal{C}=\frac{n!}{\prod\limits_{(i,j)\in P}h_{i,j}}.

There is another formula which is much older than the hook formula. In the following, we set 1/r!=01/r!=0 if r<0r<0 and 0!=10!=1.

Proposition 6.4 (Determinantal formula [S01] ).

Let PP be a standard Young tableau with shape p=[p1,,pl]p=[p_{1},...,p_{l}] and 𝒞\mathcal{C} be the corresponding Kazhdan–Lusztig right cell in the symmetric group SnS_{n}. Then

#𝒞=n!|(aij)l×l|,\#\mathcal{C}=\frac{n!}{|(a_{ij})_{l\times l}|},

where (aij)l×l(a_{ij})_{l\times l} is a ll by ll matrix with aij=1(pii+j)!a_{ij}=\frac{1}{(p_{i}-i+j)!}.

Some more details about this formula can be found in Sagan [S01, §3.11].

Now recall that we have xKyx\stackrel{{\scriptstyle K}}{{\sim}}y if and only if P(x)=P(y)P(x)=P(y) for any two elements xx and yy in SnS_{n}. Let wSnw\in S_{n} and P(w)P(w) be the corresponding Young tableau which corresponds to a right cell 𝒞R(P(w))\mathcal{C}^{R}(P(w)). Then we have the following algorithm to count the number of smooth elements in the right cell 𝒞R(P(w))\mathcal{C}^{R}(P(w)):

  1. (1)

    If ww is smooth, then we put it in a set and denote it by 𝒮1\mathcal{S}_{1}. If ww is not smooth, we write w=(w1,w2,w3,,wn)w=(w_{1},w_{2},w_{3},...,w_{n}) and put it in another set and denote it by 𝒩1\mathcal{N}_{1}. Thus we have #𝒮1=1\#\mathcal{S}_{1}=1 or #𝒩1=1\#\mathcal{N}_{1}=1;

  2. (2)

    From w=(w1,w2,w3,,wn)w=(w_{1},w_{2},w_{3},...,w_{n}), we consider any triple (wi,wi+1,wi+2)(w_{i},w_{i+1},w_{i+2}) for 1in21\leq i\leq n-2. If it is neither a decreasing nor an increasing sequence, we can use the Knuth relation to get a different element wi¯w^{\prime}_{\bar{i}} such that wi¯Kww^{\prime}_{\bar{i}}\stackrel{{\scriptstyle K}}{{\sim}}w. Let G1:={wi¯1in2}G_{1}:=\{w^{\prime}_{\bar{i}}\mid 1\leq i\leq n-2\}. Then we extract all smooth elements from G1G_{1} and denote this new set by 𝒮1\mathcal{S}^{\prime}_{1}. Denote 𝒩1=G1𝒮1\mathcal{N}^{\prime}_{1}=G_{1}-\mathcal{S}^{\prime}_{1}. Then we define 𝒮2=𝒮1𝒮1\mathcal{S}_{2}=\mathcal{S}^{\prime}_{1}\cup\mathcal{S}_{1} and 𝒩2=𝒩1𝒩1\mathcal{N}_{2}=\mathcal{N}^{\prime}_{1}\cup\mathcal{N}_{1};

  3. (3)

    For each element in the set G1G_{1}, we repeat the procedure described in step 22. This will yield new sets of smooth and non-smooth elements, denoted as and get some new smooth elements and non-smooth elements, denoted as 𝒮2\mathcal{S}^{\prime}_{2} and 𝒩2\mathcal{N}^{\prime}_{2} respectively. Then we define 𝒮3=𝒮2𝒮2\mathcal{S}_{3}=\mathcal{S}^{\prime}_{2}\cup\mathcal{S}_{2} and 𝒩3=𝒩2𝒩2\mathcal{N}_{3}=\mathcal{N}^{\prime}_{2}\cup\mathcal{N}_{2};

  4. (4)

    We continue the above process. Since the right cell 𝒞R(P(w))\mathcal{C}^{R}(P(w)) has a finite number of elements, and every element in 𝒞R(P(w))\mathcal{C}^{R}(P(w)) is Knuth equivalent to ww, the process will terminate after a finite number of steps. We denote the set of all smooth elements obtained throughout this process as 𝒮\mathcal{S}, and the set of all non-smooth elements as 𝒩\mathcal{N}. Then we have #𝒮+#𝒩=#𝒞R(P(w))\#\mathcal{S}+\#\mathcal{N}=\#\mathcal{C}^{R}(P(w)).

The above algorithm is called smooth elements finding algorithm (SEF algorithm for short).

Example 6.5.

Let

P=125346,P={\leavevmode\hbox to34.54pt{\vbox to68.69pt{\pgfpicture\makeatletter\hbox{\hskip 0.2pt\lower-68.4873pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{8.5359pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$1$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@lineto{34.14365pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-17.07182pt}\pgfsys@moveto{25.60774pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.10774pt}{-11.75812pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$2$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@moveto{17.07182pt}{-17.07182pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@lineto{34.14365pt}{-34.14365pt}\pgfsys@lineto{34.14365pt}{-17.07182pt}\pgfsys@closepath\pgfsys@moveto{34.14365pt}{-34.14365pt}\pgfsys@moveto{25.60774pt}{-25.60774pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.10774pt}{-28.82996pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$5$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@moveto{0.0pt}{-17.07182pt}\pgfsys@lineto{0.0pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@lineto{17.07182pt}{-17.07182pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-34.14365pt}\pgfsys@moveto{8.5359pt}{-25.60774pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-28.82996pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$3$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-34.14365pt}\pgfsys@moveto{0.0pt}{-34.14365pt}\pgfsys@lineto{0.0pt}{-51.21548pt}\pgfsys@lineto{17.07182pt}{-51.21548pt}\pgfsys@lineto{17.07182pt}{-34.14365pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-51.21548pt}\pgfsys@moveto{8.5359pt}{-42.67957pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-45.90178pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$4$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{{}{}}{{}}{}{{}}{}\pgfsys@moveto{0.0pt}{-51.21548pt}\pgfsys@moveto{0.0pt}{-51.21548pt}\pgfsys@lineto{0.0pt}{-68.28731pt}\pgfsys@lineto{17.07182pt}{-68.28731pt}\pgfsys@lineto{17.07182pt}{-51.21548pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{-68.28731pt}\pgfsys@moveto{8.5359pt}{-59.75139pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.0359pt}{-62.9736pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$6$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}},

then the hooklengths are: h11=5h_{11}=5, h1,2=2,h_{1,2}=2, h2,1=4h_{2,1}=4, h2,2=1h_{2,2}=1, h3,1=2h_{3,1}=2, h4,1=1h_{4,1}=1. Thus we have #𝒞R(P(w))=6!524121=9.\#\mathcal{C}^{R}(P(w))=\frac{6!}{5\cdot 2\cdot 4\cdot 1\cdot 2\cdot 1}=9. Let w=(6,4,3,1,5,2)w=(6,4,3,1,5,2) be the column word of PP. Then ww contains the pattern 42314231 (since we can choose the subsequence (6,3,5,2)(6,3,5,2)) and is not smooth. We consider the triples (wi,wi+1,wi+2)(w_{i},w_{i+1},w_{i+2}) and find that there are only two triples: (3,1,5)(3,1,5) and (1,5,2)(1,5,2) from which we can use the Knuth relation to get new elements. Thus we get w3¯=(6,4,3,5,1,2)=w4¯w^{\prime}_{\bar{3}}=(6,4,3,5,1,2)=w^{\prime}_{\bar{4}}, which is not smooth. Then from w3¯w^{\prime}_{\bar{3}}, we can use the triples: (4,3,5)(4,3,5), (3,5,1)(3,5,1) and (5,1,2)(5,1,2). Thus we get a new element (w3¯)2¯=(6,4,5,3,1,2){(w^{\prime}_{\bar{3}})}_{\bar{2}}=(6,4,5,3,1,2). Here (w3¯)3¯=(w3¯)4¯=(6,4,3,1,5,2)=w{(w^{\prime}_{\bar{3}})}_{\bar{3}}={(w^{\prime}_{\bar{3}})}_{\bar{4}}=(6,4,3,1,5,2)=w is not a new element. Then from (w3¯)2¯{(w^{\prime}_{\bar{3}})}_{\bar{2}}, we can use the triples: (6,4,5)(6,4,5), (4,5,3)(4,5,3) and (3,1,2)(3,1,2). Thus we get new elements ((w3¯)2¯)1¯=(4,6,5,3,1,2)({(w^{\prime}_{\bar{3}})}_{\bar{2}})_{\bar{1}}=(4,6,5,3,1,2) and ((w3¯)2¯)4¯=(4,6,5,1,3,2)({(w^{\prime}_{\bar{3}})}_{\bar{2}})_{\bar{4}}=(4,6,5,1,3,2). Here ((w3¯)2¯)2¯=(6,4,3,5,1,2)=w3¯({(w^{\prime}_{\bar{3}})}_{\bar{2}})_{\bar{2}}=(6,4,3,5,1,2)=w^{\prime}_{\bar{3}} is not a new element. We continue and get new elements (((w3¯)2¯)1¯)4¯=(4,6,5,1,3,2)(({(w^{\prime}_{\bar{3}})}_{\bar{2}})_{\bar{1}})_{\bar{4}}=(4,6,5,1,3,2) and (((w3¯)2¯)4¯)3¯=(6,4,1,5,3,2)(({(w^{\prime}_{\bar{3}})}_{\bar{2}})_{\bar{4}})_{\bar{3}}=(6,4,1,5,3,2). Then we continue and get ((((w3¯)2¯)1¯)4¯)3¯=(4,6,1,5,3,2)((({(w^{\prime}_{\bar{3}})}_{\bar{2}})_{\bar{1}})_{\bar{4}})_{\bar{3}}=(4,6,1,5,3,2) and (((((w3¯)2¯)1¯)4¯)3¯)1¯=(4,1,6,5,3,2)(((({(w^{\prime}_{\bar{3}})}_{\bar{2}})_{\bar{1}})_{\bar{4}})_{\bar{3}})_{\bar{1}}=(4,1,6,5,3,2). We find that there is only one smooth element among these 99 elements, i.e., (4,1,6,5,3,2)(4,1,6,5,3,2). We draw the process as follows:

\Tree

If we use our program “Young”, the input is {643152}\{6~{}4~{}3~{}1~{}5~{}2\}. The output will be the following:

P tableau:
1 2
3 5
4
6

Q tableau:
1 5
2 6
3
4

Hook lengths:
5 2
4 1
2
1

Number of standard Young tableaux for shape (2, 2, 1, 1): 9
Number of smooth permutations: 1
Number of non-smooth permutations: 8
Number of smooth permutations: {(4, 1, 6, 5, 3, 2)}

Thus we have the same result but it is much faster to get these results.

Corollary 6.6.

Let LwL_{w} be a highest weight module of 𝔰𝔩(n,)\mathfrak{sl}(n,\mathbb{C}). If we can find a smooth element in the KL right cell 𝒞R(P(w))\mathcal{C}^{R}(P(w)) by using our SEF algorithm, we will have V(Lw)=𝒱(w)V(L_{w})=\mathcal{V}(w).

Proof.

From Proposition 2.7, we know that V(Lw)V(L_{w}) is a constant in the KL right cell 𝒞R(P(w))\mathcal{C}^{R}(P(w)). If we can find a smooth element xx in the KL right cell 𝒞R(P(w))\mathcal{C}^{R}(P(w)) by using our SEF algorithm, we will have V(Lx)=𝒱(x)V(L_{x})=\mathcal{V}(x) by Proposition 2.3. Thus by Proposition 2.7, we will have V(Lw)=V(Lx)=𝒱(x)V(L_{w})=V(L_{x})=\mathcal{V}(x). By Proposition 2.6, 𝒱(x)=𝒱(w)\mathcal{V}(x)=\mathcal{V}(w) since xRwx\stackrel{{\scriptstyle R}}{{\sim}}w. Therefore, we have

V(Lw)=𝒱(x)=𝒱(w).V(L_{w})=\mathcal{V}(x)=\mathcal{V}(w).

Acknowledgments

The first author is supported by NSFC Grant No. 12171344.

References

  • [A98] S. Ariki, Robinson–Schensted correspondence and left cells, in: Combinatorial Methods in Representation Theory, Kyoto, 1998, in: Adv. Stud. Pure Math., vol. 28, Kinokuniya, Tokyo, 2000, pp. 1-20.
  • [BXX23] Z. Q. Bai, W. Xiao and X. Xie, Gelfand–Kirillov dimensions and associated varieties of highest weight modules, Int. Math. Res. Not. IMRN 2023, no.10, 8101-8142.
  • [BX19] Z. Q. Bai and X. Xie, Gelfand–Kirillov dimensions of highest weight Harish-Chandra modules for SU(p,q), Int. Math. Res. Not. IMRN 2019, no. 17, 4392-4418.
  • [BB85] W. Borho and J.-L. Brylinski, Differential operators on homogeneous spaces. III. Characteristic varieties of Harish-Chandra modules and of primitive ideals. Invent. Math. 80 (1985), no. 1, 1-68.
  • [CK03] J. B. Carrell and J. Kuttler, On the smooth points of TT-stable varieties in G/BG/B and the Peterson map, Invent. Math. 151 (2003), 353–370.
  • [FRT54] J. S. Frame, G. de B. Robinson and R. M. Thrall, The hook graphs of the symmetric groups, Canad. J. Math. 6 (1954), 316-324.
  • [FM13] L. Fresse and A. Melnikov, Smooth orbital varieties and orbital varieties with a dense BB-orbit. Int. Math. Res. Not. IMRN 2013, no. 5, 1122-1203.
  • [J84] A. Joseph, On the variety of a highest weight module. J. Algebra 88 (1984), no. 1, 238-278.
  • [KL79] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras. Invent. Math. 53 (1979), no. 2, 165-184.
  • [K70] D. E. Knuth, Permutations, matrices, and generalized Young tableaux. Pacific J. Math. 34 (1970), 709-727.
  • [LS90] V. Lakshmibai and B. Sandhya, Criterion for smoothness of Schubert varieties in SL(n)/BSL(n)/B, Proc. Indian Acad. Sci. Math. Sci. 100 (1990), 45-52.
  • [M93] A. Melnikov, Irreducibility of the associated varieties of simple highest weight modules in 𝔰𝔩(n)\mathfrak{sl}(n), C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no.1, 53-57.
  • [M04a] A. Melnikov, On orbital variety closures in 𝔰𝔩n\mathfrak{sl}_{n}. I. Induced Duflo order. J. Algebra 271 (2004), no. 1, 179-233.
  • [M04b] A. Melnikov, On orbital variety closures in 𝔰𝔩n\mathfrak{sl}_{n}. II. Descendants of a Richardson orbital variety. J. Algebra 271 (2004), no. 2, 698–724.
  • [M06] A. Melnikov, On orbital variety closures in 𝔰𝔩n\mathfrak{sl}_{n}. III. Geometric properties. J. Algebra 305 (2006), no. 1, 68–97.
  • [NOT01] K. Nishiyama, H. Ochiai, and K. Taniguchi, Bernstein degree and associated cycles of Harish-Chandra modules - Hermitian case, Nilpotent Orbits, Assoicated Cycles and Whittaker Models for Highest Wieght Representations (K. Nishiyama, H. Ochiai, K. Taniguchi, H. Yamashita, and S. Kato, eds.), Astérique, vol. 273, Soc. Math. France, 2001, pp. 13-80.
  • [S01] B.E. Sagan, The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions, second edition, Graduate Texts in Mathematics, vol. 203, Springer-Verlag, New York, 2001.
  • [S82] N. Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Mathematics 946, Springer, 1982.
  • [W15] G. Williamson, A reducible characteristic variety in type A. Representations of reductive groups, 517-532, Progr. Math. 312, Birkhäuser/Springer, Cham, 2015.