This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A coupled-channel perspective analysis on bottom-strange molecular pentaquarks

Qing-Fu Song 242201003@csu.edu.cn School of Physics, Central South University, Changsha 410083, China    Qi-Fang Lü lvqifang@hunnu.edu.cn Department of Physics, Hunan Normal University, Changsha 410081, China Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410081, China Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, China    Xiaonu Xiong xnxiong@csu.edu.cn School of Physics, Central South University, Changsha 410083, China
Abstract

At present work, we systematically study various bottom-strange molecular pentaquarks to search for possible bound states and resonances by adopting one-boson-exchange model within complex scaling method. According to our calculations, we predict several bound and resonant states for bottom baryon Yb(Λb,Σb)K¯()Y_{b}(\Lambda_{b},\Sigma_{b})\bar{K}^{(*)} and YbK()Y_{b}K^{(*)} systems. In particular, a bound state in the I(JP)=1/2(1/2)I(J^{P})=1/2(1/2^{-}) ΣbK¯/ΛbK¯/ΣbK¯\Sigma_{b}\bar{K}/\Lambda_{b}\bar{K}^{*}/\Sigma_{b}\bar{K}^{*} system may correspond to the particle Ξb(6227)\Xi_{b}(6227). Meanwhile, the predicted bound state with 63036269MeV6303\sim 6269~{}\rm{MeV} in the I(JP)=1/2(1/2)ΣbK/ΛbK/ΣbKI(J^{P})=1/2(1/2^{-})\Sigma_{b}K/\Lambda_{b}K^{*}/\Sigma_{b}K^{*} system is flavor exotic and does not appear in the spectroscopy of conventional baryons, which provides a practical way to clarify the nature of particle Ξb(6227)\Xi_{b}(6227). We highly hope that our proposals can offer helpful information for the future experimental searches.

molecular states, coupled-channel analysis, complex scaling method
pacs:
12.39.Pn, 13.75.Lb, 14.40.Rt

I introduction

After the discovery of the X(3872)X(3872) on the Belle experiment Belle:2003nnu in 2003, a large amount of data has been accumulated in the past two decades in high energy collision experiments. In the mean while, a series of new phenomenology studies related to the XYZXYZ and Pc/TccP_{c}/T_{cc} states have been reported Liu:2019zoy ; Liu:2015fea . A detialed investigation of those exotic hadron states provides new insights for decoding their internal structures, which may deepen our understanding of the nonperturbative properties of quantum chromodynamics (QCD). Since many new particles locate near the hadron-hadron thresholds, these states could be naturally interpreted as candidates of molecular states Chen:2022asf ; Dong:2017gaw ; Guo:2017jvc ; Karliner:2017qhf ; Zou:2021sha ; Mai:2022eur ; Zou:2013af . It is highly desirable to identify those molecules states out of lots of candidates and predict more ones for experimental searches, which will motivate the experimental search of such molecular states.

In 2021, the LHCb collaboration reported two resonances, namely X0(2900)X_{0}(2900) and X1(2900)X_{1}(2900) in DK+D^{-}K^{+} invariant mass spectrum by analyzing the decay amplitude of the B+D+DK+B^{+}\to D^{+}D^{-}K^{+} decay channel LHCb:2020pxc ; LHCb:2020bls . Since these two states are located near the D¯K\bar{D}^{*}K^{*} and D¯1K\bar{D}_{1}^{*}K^{*} threshold, they are regarded as hadronic molecules candidates Chen:2020aos ; He:2020btl ; Burns:2020epm ; Agaev:2020nrc ; Xiao:2020ltm ; Kong:2021ohg ; Ke:2022ocs . Recently, in the analysis of Ds+π+D_{s}^{+}\pi^{+} and Ds+πD_{s}^{+}\pi^{-} invariant mass spectrum, the LHCb collaboration has observed two new peaks Tcs¯00(2900)T_{c\bar{s}0}^{0}(2900) and Tcs¯0++(2900)T_{c\bar{s}0}^{++}(2900), whose masses and widths are M(Tcs¯00)=2892±14±15M(T_{c\bar{s}0}^{0})=2892\pm 14\pm 15 MeV\rm MeV, Γ=119±26±12\Gamma=119\pm 26\pm 12 MeV\rm MeV and M(Tcs¯0++)=2921±17±19M(T_{c\bar{s}0}^{++})=2921\pm 17\pm 19 MeV\rm MeV, Γ=137±32±14\Gamma=137\pm 32\pm 14 MeV\rm MeV LHCb:2022sfr ; LHCb:2022lzp , respectively. Given their near-threshold behaviors and quantum numbers, these two Tcs¯00(++)T_{c\bar{s}0}^{0(++)} states are proposed as isovector DKD^{*}K^{*} molecules with JP=0+J^{P}=0^{+} Agaev:2022eyk ; Wang:2023hpp ; An:2022vtg .

Until now, most molecular candidates were observed in the charm sector, while the experimental observations in the bottom sector are still scarce. In 2006, the DØ Collaboration announced a narrow structure, referred to as the X(5568)X(5568) in Bs0π±B_{s}^{0}\pi^{\pm} channel D0:2016mwd . Then, the LHCb collaboration investigated the Bs0π±B_{s}^{0}\pi^{\pm} invariant mass spectrum, but no significant signal is found LHCb:2016dxl . Later, the ATLAS, CDF, and CMS collaborations ATLAS:2018udc ; CDF:2017dwr ; CMS:2017hfy released similar results. Meanwhile, the X(5568)X(5568) has been theoretically discussed in previous works Chen:2016ypj ; Xiao:2016mho ; Agaev:2016urs , and can not be assigned as an isovector BKBK molecular state. In 2021, the LHCb collaboration reported two states in B±K±B^{\pm}K^{\pm} mass spectrum, which are named as BsJ(6063)B_{sJ}(6063) and BsJ(6114)B_{sJ}(6114). If the missing photo from the B±B±γB^{*\pm}\to B^{\pm}\gamma was taken into consideration, the masses and widths were measured to be BsJ(6109):M=6108.8±1.1±0.7MeV and Γ=22±5±4MeVB_{sJ}(6109):M=6108.8\pm 1.1\pm 0.7\rm MeV\text{ and }\Gamma=22\pm 5\pm 4\rm MeV and BsJ(6158):M=6158±4±5MeV and Γ=72±18±25MeVB_{sJ}(6158):M=6158\pm 4\pm 5\rm MeV\text{ and }\Gamma=72\pm 18\pm 25\rm MeV LHCb:2020pet , respectively. In theory, the BsJ(6158)B_{sJ}(6158) was widely investigated in the literature Kong:2021ohg . Some of the existing works suggested that BsJ(6158)B_{sJ}(6158) can be interpreted as a B¯K\bar{B}K^{*} molecular state with I(JPC)=0(1+)I(J^{PC})=0(1^{+}). Also, several works showed that the existence of B¯()K()(B()K¯())\bar{B}^{(*)}K^{(*)}(B^{(*)}\bar{K}^{(*)}) molecular states are allowed Kolomeitsev:2003ac ; Guo:2006fu ; Guo:2006rp ; Sun:2018zqs .

It can be seen that numerous exotic hadronic molecular states containing heavy quarks have been observed experimentally. The heavy quark symmetry is supposed to have been proven to play a significant role in predicting undiscovered states and understanding their production mechanisms, which intrigues several theoretical studies of it Asanuma:2023atv ; Tanaka:2024siw ; Wang:2023eng ; Sakai:2023syt . In a previous work, the author investigated open charm molecular counterpart of the newly Tcs¯a0(++)T_{c\bar{s}}^{a0(++)} composed of Yc(Λc,Σc)Y_{c}(\Lambda_{c},\Sigma_{c}) and strange meson K()K^{(*)} interactions by adopting one boson exchange model. From their estimations, there can exist some bound states corresponding to the new observation Tcs¯a0(++)T_{c\bar{s}}^{a0(++)} Chen:2022svh . According to the heavy quark symmetry, on the bottom sector, the light diquark in the heavy baryons Σb/Λb\Sigma_{b}/\Lambda_{b} has the same color structure as q¯\bar{q}, as shown in Figure 1. If BsJ(6158)B_{sJ}(6158) can be explained as a B¯K\bar{B}K^{*} molecular state with I(JPC)=0(1+)I(J^{PC})=0(1^{+}), there should also exist possible isoscalar B¯()K()\bar{B}^{(*)}K^{(*)} molecular state. Under the circumstances, it is natural to conjecture whether there could exist possible open bottom molecular pentaquarks. Moreover, it is worth mentioning that, in 2018, the LHCb reported a peak in both Λb0K\Lambda_{b}^{0}K^{-} and Ξb0π\Xi_{b}^{0}\pi^{-} invariant mass spectra named Ξb(6227)\Xi_{b}(6227) LHCb:2018vuc . However, until now, whether the Ξb(6227)\Xi_{b}(6227) should be accommodated into traditional baryon λ\lambda-mode PP-wave Ξb\Xi_{b}^{\prime} with JP=3/2J^{P}=3/2^{-} and 5/25/2^{-} Chen:2018orb ; He:2021xrh ; Wang:2018fjm ; Cui:2019dzj or molecular state pure ΣbK¯\Sigma_{b}\bar{K} with JP=1/2J^{P}=1/2^{-} is still on discussion Huang:2018bed ; Zhu:2020lza ; Mutuk:2024elj . Thus, it is urgent and necessary to explore the possibility of Ξb(6227)\Xi_{b}(6227) being a molecular states and predict more bottom-strange molecular pentaquark candidates for future experiments.

Refer to caption
Figure 1: A sketch of heavy superflavor symmetry between Σb(Λb)K()\Sigma_{b}(\Lambda_{b})K^{(*)} pentaquarks and B¯K()\bar{B}K^{(*)} tetraquarks. qq stands for the light quarks (uu or dd).

Recently, we systematically study the hidden bottom molecular tetraquark with complex scaling method by adopting one-boson-exchange(OBE) model Song:2024ngu , at present work, utilizing the same formulism, we systematically study various bottom-strange molecular pentaquarks to search for possible bound states and resonances by adopting within complex scaling method Aguilar:1971ve ; Balslev:1971vb ; Moiseyev:1998gjp ; Ho:1983lwa ; He:2021xrh and Gaussian expansion method Hiyama:2003cu ; Hiyama:2018ivm . For bottom baryon Yb(Λb,Σb)Y_{b}(\Lambda_{b},\Sigma_{b}) and anti-strange meson K¯()\bar{K}^{(*)} interactions, our calculations demonstrate that some bound and resonant states are reveled. For instance, in the I(JP)=1/2(1/2)I(J^{P})=1/2(1/2^{-}) ΣbK¯/ΛbK¯/ΣbK¯\Sigma_{b}\bar{K}/\Lambda_{b}\bar{K}^{*}/\Sigma_{b}\bar{K}^{*} system, we obtain a bound state below ΣbK¯\Sigma_{b}\bar{K} threshold that can be regarded as the particle Ξb(6227)\Xi_{b}(6227). Meanwhile, we extend our study to YbK()Y_{b}K^{(*)} systems, and find two flavor exotic bound states, which can be searched in future experiments.

The rest of this paper is organized as follows. We briefly introduce the formalism of effective interactions and complex scaling method in Sec. II. In Sec. III, we present the numerical results and discussions for the YbY_{b}K()K^{(*)} and YbY_{b}K¯()\bar{K}^{(*)} systems. Finally, we summarize in Sec. 4.

II Formalism of effective interaction and complex scaling method

II.1 The effective interactions

In this work, we adopt the one-boson-exchange model to describe the interaction between the hadrons and analyze the formation mechanisms of molecular states. The chrial symmetric interacting Lagrangian which corresponds to the coupling between a bottom baryon and a light mesons, can be constructed as Liu:2011xc

3¯\displaystyle\mathcal{L}_{\mathcal{B}_{\bar{3}}} =\displaystyle= lB¯3¯σ3¯+iβB¯3¯vμ(𝒱μρμ)3¯,\displaystyle l_{B}\langle\bar{\mathcal{B}}_{\bar{3}}\sigma\mathcal{B}_{\bar{3}}\rangle+i\beta_{B}\langle\bar{\mathcal{B}}_{\bar{3}}v^{\mu}(\mathcal{V}_{\mu}-\rho_{\mu})\mathcal{B}_{\bar{3}}\rangle, (1)
6\displaystyle\mathcal{L}_{\mathcal{B}_{6}} =\displaystyle= lS𝒮¯μσ𝒮μ32g1εμνλκvκ𝒮¯μAν𝒮λ\displaystyle l_{S}\langle\bar{\mathcal{S}}_{\mu}\sigma\mathcal{S}^{\mu}\rangle-\frac{3}{2}g_{1}\varepsilon^{\mu\nu\lambda\kappa}v_{\kappa}\langle\bar{\mathcal{S}}_{\mu}A_{\nu}\mathcal{S}_{\lambda}\rangle (2)
+\displaystyle+ iβS𝒮¯μvα(𝒱abαρabα)𝒮μ+λS𝒮¯μFμν(ρ)𝒮ν,\displaystyle i\beta_{S}\langle\bar{\mathcal{S}}_{\mu}v_{\alpha}\left(\mathcal{V}_{ab}^{\alpha}-\rho_{ab}^{\alpha}\right)\mathcal{S}^{\mu}\rangle+\lambda_{S}\langle\bar{\mathcal{S}}_{\mu}F^{\mu\nu}(\rho)\mathcal{S}_{\nu}\rangle,~{}
3¯6\displaystyle\mathcal{L}_{\mathcal{B}_{\bar{3}}\mathcal{B}_{6}} =\displaystyle= ig4𝒮μ¯Aμ3¯+iλIεμνλκvμ𝒮¯νFλκ3¯+h.c..\displaystyle ig_{4}\langle\bar{\mathcal{S}^{\mu}}A_{\mu}\mathcal{B}_{\bar{3}}\rangle+i\lambda_{I}\varepsilon^{\mu\nu\lambda\kappa}v_{\mu}\langle\bar{\mathcal{S}}_{\nu}F_{\lambda\kappa}\mathcal{B}_{\bar{3}}\rangle+h.c.. (3)

The axial current AμA_{\mu}, vector current 𝒱μ\mathcal{V}_{\mu}, and the vector meson field strength tensor Fμν(ρ)F^{\mu\nu}(\rho) are defined by

𝒱μ\displaystyle\mathcal{V}_{\mu} =\displaystyle= 12(ξμξ+ξμξ),\displaystyle\frac{1}{2}(\xi^{{\dagger}}\partial_{\mu}\xi+\xi\partial_{\mu}\xi^{{\dagger}}), (4)
Aμ\displaystyle A_{\mu} =\displaystyle= 12(ξμξξμξ),\displaystyle\frac{1}{2}(\xi^{{\dagger}}\partial_{\mu}\xi-\xi\partial_{\mu}\xi^{{\dagger}}), (5)
Fμν(ρ)\displaystyle F_{\mu\nu}(\rho) =\displaystyle= μρννρμ+[ρμ,ρν],\displaystyle\partial_{\mu}\rho_{\nu}-\partial_{\nu}\rho_{\mu}+[\rho_{\mu},\rho_{\nu}], (6)

respectively. Here, ξ=exp(P/fπ)\xi=\text{exp}({P}/f_{\pi}) and ρbaμ=igVVbaμ/2\rho_{ba}^{\mu}=ig_{V}{V}_{ba}^{\mu}/\sqrt{2}. The 3¯\mathcal{B}_{\bar{3}}, μ=13(γμ+νμ)γ56+6μ\mathcal{B}_{\mu}=-\sqrt{\frac{1}{3}}(\gamma_{\mu}+\nu_{\mu})\gamma^{5}\mathcal{B}_{6}+\mathcal{B}_{6\mu}^{*}, P{P}, and V{V} denote the matrices of ground state of singly heavy baryons multiplets in 3¯F\bar{3}_{F}, 6F6_{F}, light pseudoscalar and vector mesons, respectively, whose explicit form read

6\displaystyle\mathcal{B}_{6} =\displaystyle= (Σb+Σb2Σb2Σb0),3¯=(0Λb0Λb00),\displaystyle\begin{pmatrix}\Sigma_{b}^{+}&\frac{\Sigma_{b}^{-}}{\sqrt{2}}\\ \frac{\Sigma_{b}^{-}}{\sqrt{2}}&\Sigma_{b}^{0}\end{pmatrix},\quad\mathcal{B}_{\bar{3}}=\begin{pmatrix}0&\Lambda_{b}^{0}\\ -\Lambda_{b}^{0}&0\end{pmatrix},
P\displaystyle P =\displaystyle= (π02+η6π+ππ02+η6),V=(ρ02+ω2ρ+ρρ02+ω2).\displaystyle\begin{pmatrix}\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}}&\pi^{+}\\ \pi^{-}&-\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}}\end{pmatrix},\quad V=\begin{pmatrix}\frac{\rho^{0}}{\sqrt{2}}+\frac{\omega}{\sqrt{2}}&\rho^{+}\\ \rho^{-}&-\frac{\rho^{0}}{\sqrt{2}}+\frac{\omega}{\sqrt{2}}\end{pmatrix}.

Under the SU(3) symmetry, the effective Lagrangians describing the interactions between the strange mesons and light mesons can be expressed as Lin:1999ad

PPV\displaystyle\mathcal{L}_{PPV} =\displaystyle= ig22μP(PVμVμP,\displaystyle\frac{ig}{2\sqrt{2}}\langle\partial^{\mu}P\left(PV_{\mu}-V_{\mu}P\right\rangle, (7)
VVP\displaystyle\mathcal{L}_{VVP} =\displaystyle= gVVP2ϵμναβμVναVβP,\displaystyle\frac{g_{VVP}}{\sqrt{2}}\epsilon^{\mu\nu\alpha\beta}\left\langle\partial_{\mu}V_{\nu}\partial_{\alpha}V_{\beta}P\right\rangle, (8)
VVV\displaystyle\mathcal{L}_{VVV} =\displaystyle= ig22μVν(VμVνVνVμ).\displaystyle\frac{ig}{2\sqrt{2}}\langle\partial^{\mu}V^{\nu}\left(V_{\mu}V_{\nu}-V_{\nu}V_{\mu}\right)\rangle. (9)

More specifically, one can further write the effective Lagrangian depicting the couplings as

σ\displaystyle\mathcal{L}_{\sigma} =\displaystyle= lB¯3¯σ3¯lS¯6σ6,\displaystyle l_{B}\langle\bar{\mathcal{B}}_{\bar{3}}\sigma\mathcal{B}_{\bar{3}}\rangle-l_{S}\langle\bar{\mathcal{B}}_{6}\sigma\mathcal{B}_{6}\rangle, (10)
P\displaystyle\mathcal{L}_{{P}} =\displaystyle= ig12fπεμνλκvκ¯6γμγλνP6\displaystyle i\frac{g_{1}}{2f_{\pi}}\varepsilon^{\mu\nu\lambda\kappa}v_{\kappa}\langle\bar{\mathcal{B}}_{6}\gamma_{\mu}\gamma_{\lambda}\partial_{\nu}{P}\mathcal{B}_{6}\rangle (11)
\displaystyle- 13g4fπ¯6γ5(γμ+vμ)μP3¯+h.c.,\displaystyle\sqrt{\frac{1}{3}}\frac{g_{4}}{f_{\pi}}\langle\bar{\mathcal{B}}_{6}\gamma^{5}\left(\gamma^{\mu}+v^{\mu}\right)\partial_{\mu}{P}\mathcal{B}_{\bar{3}}\rangle+h.c.,
V\displaystyle\mathcal{L}_{{V}} =\displaystyle= 12βBgV¯3¯vV3¯βSgV2¯6vV6\displaystyle\frac{1}{\sqrt{2}}\beta_{B}g_{V}\langle\bar{\mathcal{B}}_{\bar{3}}v\cdot{V}\mathcal{B}_{\bar{3}}\rangle-\frac{\beta_{S}g_{V}}{\sqrt{2}}\langle\bar{\mathcal{B}}_{6}v\cdot{V}\mathcal{B}_{6}\rangle (12)
\displaystyle- λIgV6εμνλκvμ¯6γ5γν(λVκκVλ)3¯+h.c.\displaystyle\frac{\lambda_{I}g_{V}}{\sqrt{6}}\varepsilon^{\mu\nu\lambda\kappa}v_{\mu}\langle\bar{\mathcal{B}}_{6}\gamma^{5}\gamma_{\nu}\left(\partial_{\lambda}{V}_{\kappa}-\partial_{\kappa}{V}_{\lambda}\right)\mathcal{B}_{\bar{3}}\rangle+h.c.
\displaystyle- iλgV32¯6γμγν(μVννVμ)6,\displaystyle i\frac{\lambda g_{V}}{3\sqrt{2}}\langle\bar{\mathcal{B}}_{6}\gamma_{\mu}\gamma_{\nu}\left(\partial^{\mu}{V}^{\nu}-\partial^{\nu}{V}^{\mu}\right)\mathcal{B}_{6}\rangle,
K()K()σ\displaystyle\mathcal{L}_{K^{(*)}K^{(*)}\sigma} =\displaystyle= gσmKK¯KσgσmKK¯Kσ,\displaystyle g_{\sigma}m_{K}\bar{K}K\sigma-g_{\sigma}m_{K^{*}}\bar{K}^{*}\cdot K^{*}\sigma, (13)
PKK\displaystyle\mathcal{L}_{PKK^{*}} =\displaystyle= ig4[(K¯μKK¯Kμ)(𝝉μ𝝅+μη3)\displaystyle\frac{ig}{4}\left[\left(\bar{K}^{*\mu}K-\bar{K}K^{*\mu}\right)\left(\bm{\tau}\cdot\partial_{\mu}\bm{\pi}+\frac{\partial_{\mu}{\eta}}{\sqrt{3}}\right)\right. (14)
+\displaystyle+ (μK¯KμK¯μμK)(𝝉𝝅+η3)],\displaystyle\left.\left(\partial_{\mu}\bar{K}K^{*\mu}-\bar{K}^{*\mu}\partial_{\mu}K\right)\left(\bm{\tau}\cdot\bm{\pi}+\frac{\eta}{\sqrt{3}}\right)\right],
VKK\displaystyle\mathcal{L}_{{V}KK} =\displaystyle= ig4[K¯μKμK¯K](𝝉𝝆μ+ωμ),\displaystyle\frac{ig}{4}\left[\bar{K}\partial_{\mu}K-\partial_{\mu}\bar{K}K\right]\left(\bm{\tau}\cdot\bm{\rho}^{\mu}+{\omega}^{\mu}\right), (15)
VKK\displaystyle\mathcal{L}_{{V}K^{*}K^{*}} =\displaystyle= ig4[(K¯μμKνμK¯νKμ)(𝝉𝝆ν+ων)\displaystyle\frac{ig}{4}\left[\left(\bar{K}_{\mu}^{*}\partial^{\mu}K^{*\nu}-\partial^{\mu}\bar{K}^{*\nu}K_{\mu}^{*}\right)\left(\bm{\tau}\cdot\bm{\rho}_{\nu}+\omega_{\nu}\right)\right. (16)
+(μK¯νKνK¯νμKν)(𝝉𝝆μ+ωμ)\displaystyle\left.+\left(\partial^{\mu}\bar{K}^{*\nu}K_{\nu}^{*}-\bar{K}_{\nu}^{*}\partial^{\mu}K^{*\nu}\right)\left(\bm{\tau}\cdot\bm{\rho}_{\mu}+\omega_{\mu}\right)\right.
+(K¯νKμK¯μKν)(𝝉μ𝝆ν+μων)],\displaystyle\left.+\left(\bar{K}_{\nu}^{*}K^{*}_{\mu}-\bar{K}_{\mu}^{*}K^{*}_{\nu}\right)\left(\bm{\tau}\cdot\partial^{\mu}\bm{\rho}^{\nu}+\partial^{\mu}\omega^{\nu}\right)\right],
PKK\displaystyle\mathcal{L}_{PK^{*}K^{*}} =\displaystyle= gVVPεμναβμK¯ναKβ(𝝉𝝅+η3),\displaystyle g_{VVP}\varepsilon_{\mu\nu\alpha\beta}\partial^{\mu}\bar{K}^{*\nu}\partial^{\alpha}K^{*\beta}\left(\bm{\tau}\cdot\bm{\pi}+\frac{\eta}{\sqrt{3}}\right), (17)
VKK\displaystyle\mathcal{L}_{VKK^{*}} =\displaystyle= gVVPεμναβ(μK¯νK+K¯μKν)\displaystyle g_{VVP}\varepsilon_{\mu\nu\alpha\beta}\left(\partial^{\mu}\bar{K}^{*\nu}K+\bar{K}\partial^{\mu}{K}^{*\nu}\right) (18)
(𝝉α𝝆β+αωβ).\displaystyle\left(\bm{\tau}\cdot\partial^{\alpha}\bm{\rho}^{\beta}+\partial^{\alpha}{\omega}^{\beta}\right).
Table 1: The effective potentials for Yb(Λb,Σb)K¯()Y_{b}(\Lambda_{b},\Sigma_{b})\bar{K}^{(*)} systems.
Processes Effective potentials
VΛbK¯ΛbK¯V_{\Lambda_{b}\bar{K}^{*}\to\Lambda_{b}\bar{K}^{*}} lBgσ(ϵ2ϵ4)χ3χ1Y(Λ,mσ,r)βBgVg4(ϵ2ϵ4)χ3χ1Y(Λ,mω,r)l_{B}g_{\sigma}(\bm{\epsilon}_{2}\cdot\bm{\epsilon}_{4}^{{\dagger}})\chi_{3}^{{\dagger}}\chi_{1}Y(\Lambda,m_{\sigma},r)-\frac{\beta_{B}g_{V}g}{4}(\bm{\epsilon}_{2}\cdot\bm{\epsilon}_{4}^{{\dagger}})\chi_{3}^{{\dagger}}\chi_{1}Y(\Lambda,m_{\omega},r)
VΛbK¯ΣbK¯V_{\Lambda_{b}\bar{K}^{*}\to\Sigma_{b}\bar{K}^{*}} 16g4gVVPfπ1(r,𝝈,iϵ2×ϵ4)Y(Λ0,mπ0,r)162λIgVgmK2(r,𝝈,iϵ2×ϵ4)Y(Λ0,mρ0,r)-\frac{1}{6}\frac{g_{4}g_{VVP}}{f_{\pi}}\mathcal{F}_{1}(r,\bm{\sigma},i\bm{\epsilon}_{2}\times\bm{\epsilon}_{4}^{{\dagger}})Y(\Lambda_{0},m_{\pi 0},r)-\frac{1}{6\sqrt{2}}\frac{\lambda_{I}g_{V}g}{m_{K^{*}}}\mathcal{F}_{2}(r,\bm{\sigma},i\bm{\epsilon}_{2}\times\bm{\epsilon}_{4}^{{\dagger}})Y(\Lambda_{0},m_{\rho 0},r)
VΣbK¯ΣbK¯V_{\Sigma_{b}\bar{K}^{*}\to\Sigma_{b}\bar{K}^{*}} +12lSgσχ3χ1ϵ2ϵ3Y(Λ,mσ,r)+g1gVVP62fπ1(r,𝝈,iϵ2×ϵ4)𝒢(I)Y(Λ,mπ,r)g1gVVP182fπ1(r,𝝈,iϵ2×ϵ4)Y(Λ,mη,r)+\frac{1}{2}l_{S}g_{\sigma}\chi_{3}^{{\dagger}}\chi_{1}\bm{\epsilon}_{2}\cdot\bm{\epsilon}_{3}^{{\dagger}}Y(\Lambda,m_{\sigma},r)+\frac{g_{1}g_{VVP}}{6\sqrt{2}f_{\pi}}\mathcal{F}_{1}(r,\bm{\sigma},i\bm{\epsilon}_{2}\times\bm{\epsilon}_{4}^{{\dagger}})\mathcal{G}(I)Y(\Lambda,m_{\pi},r)-\frac{g_{1}g_{VVP}}{18\sqrt{2}f_{\pi}}\mathcal{F}_{1}(r,\bm{\sigma},i\bm{\epsilon}_{2}\times\bm{\epsilon}_{4}^{{\dagger}})Y(\Lambda,m_{\eta},r)
+18βSgVgχ3χ1ϵ2ϵ3𝒢(I)Y(Λ,mρ,r)+λSgVg83mΣbχ3χ1ϵ2ϵ3𝒢(I)2Y(Λ,mρ,r)λSgVg243mK2(r,𝝈,iϵ2×ϵ4)𝒢(I)Y(Λ,mρ,r)+\frac{1}{8}\beta_{S}g_{V}g\chi_{3}^{{\dagger}}\chi_{1}\bm{\epsilon}_{2}\cdot\bm{\epsilon}_{3}^{{\dagger}}\mathcal{G}(I)Y(\Lambda,m_{\rho},r)+\frac{\lambda_{S}g_{V}g}{8\sqrt{3}m_{\Sigma_{b}}}\chi_{3}^{{\dagger}}\chi_{1}\bm{\epsilon}_{2}\cdot\bm{\epsilon}_{3}^{{\dagger}}\mathcal{G}(I)\nabla^{2}Y(\Lambda,m_{\rho},r)-\frac{\lambda_{S}g_{V}g}{24\sqrt{3}m_{K^{*}}}\mathcal{F}_{2}(r,\bm{\sigma},i\bm{\epsilon}_{2}\times\bm{\epsilon}_{4}^{{\dagger}})\mathcal{G}(I)Y(\Lambda,m_{\rho},r)
18βSgVgχ3χ1ϵ2ϵ3Y(Λ,mω,r)λSgVg83mΣbχ3χ1ϵ2ϵ32Y(Λ,mω,r)+λSgVg243mK2(r,𝝈,iϵ2×ϵ4)Y(Λ,mω,r)-\frac{1}{8}\beta_{S}g_{V}g\chi_{3}^{{\dagger}}\chi_{1}\bm{\epsilon}_{2}\cdot\bm{\epsilon}_{3}^{{\dagger}}Y(\Lambda,m_{\omega},r)-\frac{\lambda_{S}g_{V}g}{8\sqrt{3}m_{\Sigma_{b}}}\chi_{3}^{{\dagger}}\chi_{1}\bm{\epsilon}_{2}\cdot\bm{\epsilon}_{3}^{{\dagger}}\nabla^{2}Y(\Lambda,m_{\omega},r)+\frac{\lambda_{S}g_{V}g}{24\sqrt{3}m_{K^{*}}}\mathcal{F}_{2}(r,\bm{\sigma},i\bm{\epsilon}_{2}\times\bm{\epsilon}_{4}^{{\dagger}})Y(\Lambda,m_{\omega},r)
VΣbK¯ΣbK¯V_{\Sigma_{b}\bar{K}\to\Sigma_{b}\bar{K}} 12lSgσχ3χ1Y(Λ,mσ,r)+𝒢(I)8βSgVgχ3χ1Y(Λ,mρ,r)𝒢(I)24mΣbλSgVgχ3χ12Y(Λ,mρ,r)\frac{1}{2}l_{S}g_{\sigma}\chi_{3}^{{\dagger}}\chi_{1}Y(\Lambda,m_{\sigma},r)+\frac{\mathcal{G}(I)}{8}\beta_{S}g_{V}g\chi_{3}^{{\dagger}}\chi_{1}Y(\Lambda,m_{\rho},r)-\frac{\mathcal{G}(I)}{24m_{\Sigma_{b}}}\lambda_{S}g_{V}g\chi_{3}^{{\dagger}}\chi_{1}\nabla^{2}Y(\Lambda,m_{\rho},r)
18βSgVgχ3χ1Y(Λ,mω,r)+124mΣbλSgVgχ3χ12Y(Λ,mω,r)-\frac{1}{8}\beta_{S}g_{V}g\chi_{3}^{{\dagger}}\chi_{1}Y(\Lambda,m_{\omega},r)+\frac{1}{24m_{\Sigma_{b}}}\lambda_{S}g_{V}g\chi_{3}^{{\dagger}}\chi_{1}\nabla^{2}Y(\Lambda,m_{\omega},r)
VΛbK¯ΣbK¯V_{\Lambda_{b}\bar{K}^{*}\to\Sigma_{b}\bar{K}} 16g4gfπmKmK1(r,𝝈,ϵ2)U(Λ1,mπ1,r)λIgVgVVP32mKmK2(r,𝝈,ϵ2)Y(Λ1,mρ1,r)\frac{1}{6}\frac{g_{4}g}{f_{\pi}\sqrt{m_{K}m_{K^{*}}}}\mathcal{F}_{1}(r,\bm{\sigma},\bm{\epsilon}_{2})U(\Lambda_{1},m_{\pi 1},r)-\frac{\lambda_{I}g_{V}g_{VVP}}{3\sqrt{2}}\sqrt{\frac{m_{K^{*}}}{m_{K}}}\mathcal{F}_{2}(r,\bm{\sigma},\bm{\epsilon}_{2})Y(\Lambda_{1},m_{\rho 1},r)
VΣbK¯ΣbK¯V_{\Sigma_{b}\bar{K}^{*}\to\Sigma_{b}\bar{K}} g1g1(r,𝝈,ϵ2)242fπmKmK𝒢(I)Y(Λ2,mπ2,r)+g1g722fπmKmK1(r,𝝈,ϵ2)Y(Λ2,mη2,r)-\frac{g_{1}g\mathcal{F}_{1}(r,\bm{\sigma},\bm{\epsilon}_{2})}{24\sqrt{2}f_{\pi}\sqrt{m_{K}m_{K^{*}}}}\mathcal{G}(I)Y(\Lambda_{2},m_{\pi 2},r)+\frac{g_{1}g}{72\sqrt{2}f_{\pi}\sqrt{m_{K}m_{K^{*}}}}\mathcal{F}_{1}(r,\bm{\sigma},\bm{\epsilon}_{2})Y(\Lambda_{2},m_{\eta 2},r)
+λSgVgVVP63mKmK2(r,𝝈,ϵ2)𝒢(I)Y(Λ2,mρ2,r)λSgVgVVP63mKmK2(r,𝝈,ϵ2)Y(Λ2,mω2,r)+\frac{\lambda_{S}g_{V}g_{VVP}}{6\sqrt{3}}\sqrt{\frac{m_{K^{*}}}{m_{K}}}\mathcal{F}_{2}(r,\bm{\sigma},\bm{\epsilon}_{2})\mathcal{G}(I)Y(\Lambda_{2},m_{\rho 2},r)-\frac{\lambda_{S}g_{V}g_{VVP}}{6\sqrt{3}}\sqrt{\frac{m_{K^{*}}}{m_{K}}}\mathcal{F}_{2}(r,\bm{\sigma},\bm{\epsilon}_{2})Y(\Lambda_{2},m_{\omega 2},r)

With the above Lagrangian at hand, one can obtain the relevant potentials straightforwardly by using the Breit approximation. The effective potential in momentum space reads

𝒱h1h2h3h4(𝒒)\displaystyle\mathcal{V}^{h_{1}h_{2}\to h_{3}h_{4}}(\bm{q}) =\displaystyle= (h1h2h3h4)4m1m2m3m4,\displaystyle-\frac{\mathcal{M}(h_{1}h_{2}\to h_{3}h_{4})}{4\sqrt{m_{1}m_{2}m_{3}m_{4}}}, (19)

in which (h1h2h3h4)\mathcal{M}(h_{1}h_{2}\to h_{3}h_{4}) denotes the scattering amplitude for the h1h2h3h4h_{1}h_{2}\to h_{3}h_{4} process and mim_{i} is the mass of the particle hih_{i}. The Fourier transformation with respect to 𝒒\bm{q} leads to the effective potential in position space,

𝒱(𝒓)=d3𝒒(2π)3ei𝒒𝒓𝒱(𝒒)2(q2,mi2),\displaystyle\mathcal{V}(\bm{r})=\int\frac{d^{3}\bm{q}}{(2\pi)^{3}}e^{i\bm{q}\cdot\bm{r}}\mathcal{V}(\bm{q})\mathcal{F}^{2}(q^{2},m_{i}^{2}), (20)

where \mathcal{F} denotes the form factor with explicit form

(q2,mi2)=Λ2mi2Λ2q2.\displaystyle\mathcal{F}(q^{2},m_{i}^{2})=\frac{\Lambda^{2}-m_{i}^{2}}{\Lambda^{2}-q^{2}}. (21)

Here, the parameter Λ\Lambda is introduced as an UV cut-off originates from the fact that the hadrons have a non-zero size to account for the inner structures of the interacting hadrons.

The corresponding one-boson-exchange effective potentialsare taken from Ref. Chen:2022svh and listed in Table 1, where 𝒢=2\mathcal{G}=-2 for I=1/2I=1/2 system and 𝒢=1\mathcal{G}=1 for I=3/2I=3/2 system. The explicit expressions for factors 1,2\mathcal{F}_{1,2}, UU and YY in the effective potentials listed in Table 1 are given by

1(r,𝐚,𝐛)\displaystyle\mathcal{F}_{1}(r,\mathbf{a},\mathbf{b}) =\displaystyle= χ3(𝐚𝐛2+S(r^,𝐚,𝐛)rr1rr)χ1\displaystyle\chi_{3}^{\dagger}\bigg{(}\mathbf{a}\cdot\mathbf{b}\nabla^{2}+S(\hat{r},\mathbf{a},\mathbf{b})r\frac{\partial}{\partial r}\frac{1}{r}\frac{\partial}{\partial r}\bigg{)}\chi_{1}
2(r,𝐚,𝐛)\displaystyle\mathcal{F}_{2}(r,\mathbf{a},\mathbf{b}) =\displaystyle= χ3(2𝐚𝐛2S(r^,𝐚,𝐛)rr1rr)χ1\displaystyle\chi_{3}^{\dagger}\bigg{(}2\mathbf{a}\cdot\mathbf{b}\nabla^{2}-S(\hat{r},\mathbf{a},\mathbf{b})r\frac{\partial}{\partial r}\frac{1}{r}\frac{\partial}{\partial r}\bigg{)}\chi_{1}
U(Λ,m,r)\displaystyle U(\Lambda,m,r) =\displaystyle= 14πr(cos(mr)eΛr)Λ2+m28πΛeΛr\displaystyle\frac{1}{4\pi r}\bigg{(}\text{cos}(mr)-e^{-\Lambda r}\bigg{)}-\frac{\Lambda^{2}+m^{2}}{8\pi\Lambda}e^{-\Lambda r}
Y(Λ,m,r)\displaystyle Y(\Lambda,m,r) =\displaystyle= 14πr(emreΛr)Λ2m28πΛeΛr,\displaystyle\frac{1}{4\pi r}(e^{-mr}-e^{-\Lambda r})-\frac{\Lambda^{2}-m^{2}}{8\pi\Lambda}e^{-\Lambda r}, (22)

where S(r^,𝐚,𝐛)3(r^𝐚)(r^𝐛)𝐚𝐛S(\hat{r},\mathbf{a},\mathbf{b})\equiv 3(\hat{r}\cdot\mathbf{a})(\hat{r}\cdot\mathbf{b})-\mathbf{a}\cdot\mathbf{b}. The values of relevant parameters are listed in Table 2 Liu:2011xc ; Chen:2017xat ; Kaymakcalan:1983qq .

Table 2: The relevant parameters adopted in this work.
Parameters Values
ls=2lBl_{s}=2l_{B} 7.300
g1=(8/3)g4g_{1}=(\sqrt{8}/3)g_{4} 1.000
βsgv=2βBgv\beta_{s}g_{v}=-2\beta_{B}g_{v} 12.000
λsgv=22λIgv\lambda_{s}g_{v}=-2\sqrt{2}\lambda_{I}g_{v} 19.200GeV119.200~{}\textrm{GeV}^{-1}
gσg_{\sigma} 3.650-3.650
gg 12.000
gVVPg_{VVP} 3g2/(322π2fπ)3g^{2}/(32\sqrt{2}\pi^{2}f_{\pi})
fπf_{\pi} 0.132 GeV

II.2 Complex scaling method

At the present work, in order to obtain possible poles for these investigated systems, the complex scaling method (CSM) is applied Moiseyev:1998gjp ; Ho:1983lwa . In the CSM, the relative distance 𝒓\bm{r} and the conjugate momentum 𝒑\bm{p} are replaced by

𝒓𝒓eiθ,𝒑𝒑eiθ\bm{r^{\prime}}\to\bm{r}e^{i\theta},\bm{p^{\prime}}\to\bm{p}e^{-i\theta} (23)

where the scaling angle θ\theta is chosen to bepositive. Applying such replacement to the Schrödinger equation, we get the complex scaled Schrödinger equation for the coupled channels which read

[12μj(d2dr2+lj(lj+1)r2)e2iθ+Wj]ψjθ(r)\displaystyle\left[\frac{1}{2\mu_{j}}\left(-\frac{d^{2}}{dr^{2}}+\frac{l_{j}(l_{j}+1)}{r^{2}}\right)e^{-2i\theta}+W_{j}\right]\psi_{j}^{\theta}(r)
+kVjk(reiθ)ψkθ(r)=Eψjθ(r),\displaystyle\qquad+\sum_{k}V_{jk}(re^{i\theta})\psi_{k}^{\theta}(r)=E\psi_{j}^{\theta}(r), (24)

where μj\mu_{j}, WjW_{j}, and ψjθ(r)\psi^{\theta}_{j}(r) are the reduced mass, corresponding threshold, and the orbital wave function, respectively.

It is worth noting that the properties of the solutions of the complex scaling Schrödinger equation can be predicted by the so-called ABC theorem Aguilar:1971ve ; Balslev:1971vb , which means

  1. 1.

    The wave functions for resonant states should be square-integrable on the complex plane, which is the same as bound state.

  2. 2.

    On the complex plane, the eigenvalues of the bound states and resonances are independent of the scaling angle θ\theta.

  3. 3.

    The continuum states change along the 2θ2\theta line.

According to this theorem, one can locate the poles on the complex plane. Moreover, in this work, the orbital wave functions are expanded in terms of a set of Gaussian basis functions. With the obtained wave functions, the root-mean-square (RMS) radii rRMSr_{RMS} and component proportions PP can be calculated by T.yo ; Lin:2023ihj ; Shimizu:2016rrd

rRMS2\displaystyle r_{RMS}^{2} =ψθ|r2|ψθ=ir2ψiθ(𝒓)2d3𝒓,\displaystyle=\langle\psi^{\theta}|r^{2}|\psi^{\theta}\rangle=\sum_{i}\int r^{2}\psi^{\theta}_{i}(\bm{r})^{2}d^{3}\bm{r}, (25a)
P\displaystyle P =ψiθ|ψiθ=ψiθ(𝒓)2d3𝒓,\displaystyle=\langle\psi^{\theta}_{i}|\psi^{\theta}_{i}\rangle=\int\psi^{\theta}_{i}(\bm{r})^{2}d^{3}\bm{r}, (25b)

where the ψiθ\psi^{\theta}_{i} are normalized as

iψiθψiθ=1.\displaystyle\sum_{i}\langle\psi^{\theta}_{i}\mid\psi^{\theta}_{i}\rangle=1. (26)

It is worth to mention that the scaling angle θ\theta should be larger than 1/2Arg(Γ/2E)1/2\text{Arg}(\Gamma/2E) to ensure the normalizability of wave functions of the resonant states Myo:2014ypa .

Refer to caption
Figure 2: The Λ\Lambda dependence for the bottom-strange pentaquarks systems. The red solid dots stand for the bound states. The blue open circles with bars correspond to the resonances, with the lengths of bars being the total widths of the corresponding resonances.

III Results and discussions

Performing the above procedure, we can systematically investigate the bottom-strange molecular pentaquarks by solving coupled channel Schrödinger equation. In this work, the only free parameter is the UV cutoff Λ\Lambda in Eq. (21), which may vary for different coupled systems being investigated and it lays within the range of 8005000800\sim 5000 MeV. We firstly deal with bottom baryon YbY_{b} and K¯\bar{K}^{*} meson systems to reveal possible bound and resonant states and give them reasonable interpretations. The same technique can be applied in the analysis of bottom baryon YbY_{b} and KK meson systems. Our estimations for these investigated systems depending on the cutoff value Λ\Lambda are plotted in Figure 2 and listed in Table 3. In the present work, both SDS-D wave mixing effects and coupled channel effects are taken into account. According to the isospin, spin, and parity, the bottom baryon and anti-strange meson systems can be classified as 1/2(1/2)ΣbK¯/ΛbK¯/ΣbK¯1/2(1/2^{-})\Sigma_{b}\bar{K}/\Lambda_{b}\bar{K}^{*}/\Sigma_{b}\bar{K}^{*}, 3/2(1/2)ΣbK¯/ΣbK¯3/2(1/2^{-})\Sigma_{b}\bar{K}/\Sigma_{b}\bar{K}^{*}, 1/2(3/2)ΛbK¯/ΣbK¯1/2(3/2^{-})\Lambda_{b}\bar{K}^{*}/\Sigma_{b}\bar{K}^{*}, and 3/2(3/2)ΣbK¯3/2(3/2^{-})\Sigma_{b}\bar{K}^{*} channel, respectively. The corresponding classification also exists for the bottom baryon and strange meson systems.

Table 3: The numerical results for the obtained bound states.
Λ(MeV)\Lambda(\rm{MeV}) rRMS(fm)r_{RMS}(\rm{fm}) E(MeV)E(\rm{MeV}) (ΣbK¯(2S1/2)(\Sigma_{b}\bar{K}(^{2}S_{1/2}) ΣbK¯(2S1/2)\Sigma_{b}\bar{K}^{*}(^{2}S_{1/2}) ΣbK¯(4D3/2))\Sigma_{b}\bar{K}^{*}(^{4}D_{3/2}))
I(JP)=3/2(1/2)I(J^{P})=3/2(1/2^{-}) 3600 3.77 6304.84 (99.08 0.47 0.45)
3850 1.44 6292.68 (95.75 2.28 1.97)
4100 1.03 6278.37 (92.78 3.97 3.25)
Λ(MeV)\Lambda(\rm{MeV}) rRMS(fm)r_{RMS}(\rm{fm}) E(MeV)E(\rm{MeV}) (ΛbK¯(4S3/2)\Lambda_{b}\bar{K}^{*}(^{4}S_{3/2}) ΛbK¯(2D3/2)\Lambda_{b}\bar{K}^{*}(^{2}D_{3/2}) ΛbK¯(4D3/2)\Lambda_{b}\bar{K}^{*}(^{4}D_{3/2}) ΣbK¯(4S3/2)\Sigma_{b}\bar{K}^{*}(^{4}S_{3/2}) ΣbK¯(2D3/2)\Sigma_{b}\bar{K}^{*}(^{2}D_{3/2}) ΣbK¯(4D3/2)\Sigma_{b}\bar{K}^{*}(^{4}D_{3/2}))
I(JP)=1/2(3/2)I(J^{P})=1/2(3/2^{-}) 1360 1.69 6509 (0.28 0.25 61.53 36.11 0.06 1.77)
1380 0.96 6499 (0.34 0.32 45.49 51.00 0.12 2.74)
1400 0.76 6487 (0.39 0.34 36.98 58.73 0.17 3.39)
Λ(MeV)\Lambda(\rm{MeV}) rRMS(fm)r_{RMS}(\rm{fm}) E(MeV)E(\rm{MeV}) (ΣbK¯(4S3/2)\Sigma_{b}\bar{K}^{*}(^{4}S_{3/2}) ΣbK¯(2D3/2)\Sigma_{b}\bar{K}^{*}(^{2}D_{3/2}) ΣbK¯(4D3/2)\Sigma_{b}\bar{K}^{*}(^{4}D_{3/2}))
I(JP)=3/2(3/2)I(J^{P})=3/2(3/2^{-}) 1300 3.90 6704 (99.26 0.16 0.58)
1400 2.36 6721 (98.67 0.29 1.04)
1500 1.61 6697 (98.17 0.40 1.43)
Λ(MeV)\Lambda(\rm{MeV}) rRMS(fm)r_{RMS}(\rm{fm}) E(MeV)E(\rm{MeV}) (ΣbK(2S1/2)(\Sigma_{b}K(^{2}S_{1/2}) ΣbK(2S1/2)\Sigma_{b}K^{*}(^{2}S_{1/2}) ΣbK(4D1/2))\Sigma_{b}K^{*}(^{4}D_{1/2}))
I(JP)=3/2(1/2)I(J^{P})=3/2(1/2^{-}) 1260 1.51 6298.01 (76.17 23.72 0.10)
1270 0.90 6284.01 (65.82 34.04 0.15)
1280 0.67 6265.52 (58.84 41.00 0.16)
Λ(MeV)\Lambda(\rm{MeV}) rRMS(fm)r_{RMS}(\rm{fm}) E(MeV)E(\rm{MeV}) (ΛbK(4S3/2)\Lambda_{b}K^{*}(^{4}S_{3/2}) ΛbK(2D3/2)\Lambda_{b}K^{*}(^{2}D_{3/2}) ΛbK(4D3/2)\Lambda_{b}K^{*}(^{4}D_{3/2}) ΣbK(4S3/2)\Sigma_{b}K^{*}(^{4}S_{3/2}) ΣbK(2D3/2)\Sigma_{b}K^{*}(^{2}D_{3/2}) ΣbK(4D3/2)\Sigma_{b}K^{*}(^{4}D_{3/2}))
I(JP)=1/2(3/2)I(J^{P})=1/2(3/2^{-}) 1260 2.64 6511 (41.20 0.06 40.34 17.16 0.32 0.92)
1280 1.38 6506 (36.97 0.09 31.78 29.28 0.45 1.43
1300 0.98 6499 (33.72 0.11 25.67 38.26 0.51 1.73)

III.1 Bottom baryon and anti-strange meson systems

In this subsection, we firstly discuss the coupled I(JPC)=1/2(1/2)I(J^{PC})=1/2(1/2^{-}) ΣbK¯/ΛbK¯/ΣbK¯\Sigma_{b}\bar{K}/\Lambda_{b}\bar{K}^{*}/\Sigma_{b}\bar{K}^{*} systems. As shown in Fig. 2(a), one could find that a bound state and a resonance emerge within the range Λ=8801100\Lambda=880\sim 1100 MeV\rm{MeV}. When the cutoff Λ\Lambda is set to 880 MeV\rm{MeV}, the bound state locates below ΣbK¯\Sigma_{b}\bar{K} threshold with binding energy about 44 MeV\rm{MeV}, the rRMSr_{RMS} is 3 fm\rm{fm} and dominated by the ΣbK¯(2S1/2)\Sigma_{b}\bar{K}(^{2}S_{1/2}) channel. Sliding the cutoff to 10801080 MeV\rm{MeV}, the mass varies to be around 6222 MeV\rm{MeV} and the rRMSr_{RMS} varies to be 0.8 fm\rm{fm}, which is consistent with the sizes of exotic hadronic molecular state. Thus, this bound state is a good candidate of the particle Ξb(6227)\Xi_{b}(6227). These results favors the conclusion in Refs. Huang:2018bed ; Zhu:2020lza ; Mutuk:2024elj . Meanwhile, with the cutoff Λ=970\Lambda=970 MeV\rm{MeV}, we can obtain a resonant state with E=669317iE=6693-17i MeV\rm MeV and rRMS=1.70+1.43ir_{RMS}=1.70+1.43i fm\rm{fm}, which is mainly composed of the ΣbK¯(2S1/2)\Sigma_{b}\bar{K}^{*}(^{2}S_{1/2}) component. Also, it can be regarded as a good hadronic molecular state. Moreover, our predictions indicate that the pion exchange potential is crucial to form the resonance while the contribution from η\eta exchange interaction is negligible. For the 3/2(1/2)3/2(1/2^{-}) ΣbK¯\Sigma_{b}\bar{K}^{*} state, when the cutoff Λ\Lambda lies in the range of 33603360 to 41004100 MeV\rm{MeV}, a loosely bound state is found with rRMSr_{\text{RMS}} varying between 44 and 11 fm\rm{fm}. However, this range for cutoff value is quite different from the empirical value of the deuteron, and then no molecular state is favored in the 3/2(1/2)3/2(1/2^{-}) ΣbK¯/ΣbK¯\Sigma_{b}\bar{K}/\Sigma_{b}\bar{K}^{*} system.

Refer to caption
Figure 3: The complex energy eigenvalues of I(JP)=1/2(1/2)I(J^{P})=1/2(1/2^{-}) system with varying the angle θ\theta from 304030^{\circ}\sim 40^{\circ}.

Besides, we have I(JP)=1/2(3/2)ΛbK¯/ΣbK¯I(J^{P})=1/2(3/2^{-})\Lambda_{b}\bar{K}^{*}/\Sigma_{b}\bar{K}^{*} channel for YbY_{b} and K¯()\bar{K}^{(*)} system, and the corresponding results are listed in Table 3. According to our estimations, a bound state exists below ΛbK¯\Lambda_{b}\bar{K}^{*} threshold, dominated by ΛbK¯(4D3/2)\Lambda_{b}\bar{K}^{*}(^{4}D_{3/2}) and ΣbK¯(4S3/2)\Sigma_{b}\bar{K}^{*}(^{4}S_{3/2}) channel, and is sensitive to the cutoff value. Since the cutoff value consists with the empirical value for deuteron, the I(JP)=1/2(3/2)ΛbK¯/ΣbK¯I(J^{P})=1/2(3/2^{-})\Lambda_{b}\bar{K}^{*}/\Sigma_{b}\bar{K}^{*} can be regarded as a possible molecular state candidate. In the I(JP)=3/2(3/2)I(J^{P})=3/2(3/2^{-}) ΣbK¯\Sigma_{b}\bar{K}^{*} system, a weakly bound state with energy of 67036703 MeV\rm{MeV} appears at cutoff 13001300 MeV\rm{MeV} and is dominated by SS-wave channel. If only the one pion exchange potential is considered, a bound state is obtain with cutoff 24002400 MeV\rm{MeV}, which means that the potentials of ρ\rho and ω\omega exchanges are helpful to form the bound state.

III.2 Bottom baryon and strange meson systems

For YcK()Y_{c}K^{(*)} systems, the effective potentials from the ω\omega and π\pi exchanges are in completely contrast with YcK¯()Y_{c}\bar{K}^{(*)} systems. Unlike bottom baryon and anti-strange meson systems, for bottom baryon and strange meson systems, one can only obtain bound state solutions. The corresponding numerical results are collected in Table 3 and Figure 2(b). For coupled ΣbK/ΛbK/ΣbK\Sigma_{b}K/\Lambda_{b}K^{*}/\Sigma_{b}K^{*} with I(JP)=1/2(1/2)I(J^{P})=1/2(1/2^{-}) system, a loosely bound state below ΣbK\Sigma_{b}K channel is estimated. When the cutoff lies in the range of 9201100920\sim 1100 MeV, the mass varies from 6304 to 6269 MeV\rm{MeV} and the rRMSr_{RMS} decreases from 3 to 1fm\rm{fm}, which can be regarded as a good molecular candidate. When the single channel ΣbK\Sigma_{b}K is considered, one also can obtain a bound state at Λ=1900MeV\Lambda=1900~{}\rm{MeV} that is larger than 920 MeV\rm{MeV}. This foundation also indicates that the coupled channel effect is important to form a molecule. For the I(JP)=3/2(1/2)I(J^{P})=3/2(1/2^{-}) ΣbK/ΣbK\Sigma_{b}K/\Sigma_{b}K^{*} system, we also obtain a bound state solution when cutoff lies in a range of 126012701260\sim 1270 MeV\rm{MeV}. The predicted mass varies from 6298 to 6284 MeV\rm{MeV} and the corresponding rRMSr_{RMS} decreases from 1.51.5 to 0.90.9 fm\rm{fm}, which is sensitive to cutoff value and may be a molecular state.

As for the ΛbK/ΣbK\Lambda_{b}K^{*}/\Sigma_{b}K^{*} system with I(JP)=1/2(3/2)I(J^{P})=1/2(3/2^{-}), at the cutoff is 1260 MeV\rm MeV, a bound state below the ΛbK\Lambda_{b}K^{*} threshold emerges. One can also find that when only ΣbK\Sigma_{b}K^{*} channel is considered, a loosely bound state appears, which is listed in Table 3. Finally, for the I(JP)=3/2(3/2)I(J^{P})=3/2(3/2^{-}) ΣbK\Sigma_{b}K^{*} system, we can not obtain any bound state solution with Λ=8005000\Lambda=800\sim 5000 MeV.

Table 4: The summary of our predictions for bottom strange pentaquark molecular state systems with cutoff Λ\Lambda in a range of 8001100800\sim 1100 MeV\rm MeV. Here, the , ""("×")"\checkmark"("\times") represents that the corresponding state may (may not) form a molecular state.
I(JPC)I(J^{PC}) Mass(MeV)(\rm MeV) Width(MeV)(\rm MeV) rRMS(fm)r_{RMS}(\rm fm) Status Selected decay mode
12(12)\frac{1}{2}(\frac{1}{2}^{-})ΣbK¯/ΛbK¯/ΣbK¯\Sigma_{b}\bar{K}/\Lambda_{b}\bar{K}^{*}/\Sigma_{b}\bar{K}^{*} 630162226301\sim 6222 - 2.490.732.49\sim 0.73 \checkmark ΛbK¯/Ξb()π\Lambda_{b}\bar{K}/\Xi_{b}^{(\prime)}\pi
669365166693\sim 6516 34.5831.0034.58\sim 31.00 1.70+1.43i0.61+0.51i1.70+1.43i\sim 0.61+0.51i \checkmark ΛbK¯()/ΣbK¯/ΛB¯()/ΣB¯/Ξb()π/Ξb()η/Ξbρ/Ξbω\Lambda_{b}\bar{K}^{(*)}/\Sigma_{b}\bar{K}/\Lambda\bar{B}^{(*)}/\Sigma\bar{B}/\Xi_{b}^{(\prime)}\pi/\Xi_{b}^{(\prime)}\eta/\Xi_{b}\rho/\Xi_{b}\omega
32(12)\frac{3}{2}(\frac{1}{2}^{-})ΣbK¯/ΣbK¯\Sigma_{b}\bar{K}/\Sigma_{b}\bar{K}^{*} - - - ×\times -
12(32)\frac{1}{2}(\frac{3}{2}^{-})ΛbK¯/ΣbK¯\Lambda_{b}\bar{K}^{*}/\Sigma_{b}\bar{K}^{*} - - - ×\times -
32(32)ΣbK¯\frac{3}{2}(\frac{3}{2}^{-})\Sigma_{b}\bar{K}^{*} 670367026703\sim 6702 - 3.372.623.37\sim 2.62 \checkmark ΛbK¯/ΣbK¯/ΛB¯/ΣB¯/Ξbπ/Ξbη/Ξbρ/Ξbω\Lambda_{b}\bar{K}^{*}/\Sigma_{b}^{*}\bar{K}/\Lambda\bar{B}^{*}/\Sigma\bar{B}^{*}/\Xi_{b}^{*}\pi/\Xi_{b}^{*}\eta/\Xi_{b}\rho/\Xi_{b}\omega
12(12)\frac{1}{2}(\frac{1}{2}^{-})ΣbK/ΛbK/ΣbK\Sigma_{b}K/\Lambda_{b}K^{*}/\Sigma_{b}K^{*} 630362696303\sim 6269 - 3.131.083.13\sim 1.08 \checkmark NB¯s/ΛbKN\bar{B}_{s}/\Lambda_{b}K
32(12)\frac{3}{2}(\frac{1}{2}^{-})ΣbK/ΣbK\Sigma_{b}K/\Sigma_{b}K^{*} - - - ×\times -
12(32)\frac{1}{2}(\frac{3}{2}^{-})ΛbK/ΣbK\Lambda_{b}K^{*}/\Sigma_{b}K^{*} - - - ×\times -
32(32)\frac{3}{2}(\frac{3}{2}^{-})ΣbK\Sigma_{b}K^{*} 670466926704\sim 6692 - 4.131.344.13\sim 1.34 \checkmark NB¯s/ΛbK/ΣbKN\bar{B}_{s}^{*}/\Lambda_{b}^{*}K/\Sigma_{b}^{*}K

III.3 Further discussions

For YbK¯()Y_{b}\bar{K}^{(*)} systems, we can obtain bound states and resonances, but only bound states are revealed for YbK()Y_{b}K^{(*)} systems. The reason is that the flavor factors in the potentials for these systems are quite different, which determine the relative sign and strength and are crucial for the formation of molecular states. It is also interesting to note that the root mean square (RMS) radius rRMSr_{RMS} for the I(JPC)=1/2(1/2)ΣbK¯/ΛbK¯/ΣbK¯I(J^{PC})=1/2(1/2^{-})\Sigma_{b}\bar{K}/\Lambda_{b}\bar{K}^{*}/\Sigma_{b}\bar{K}^{*} resonances can be a complex number. In such cases, one can use the interpretation scheme proposed by T. Berggren, which generalizes the concept of expectation values from bound states to resonances Berggren:1970wto . According to this scheme, the real part of the complex rRMSr_{RMS} represents the usual physical expectation value, while the imaginary part indicates a measure of uncertainty in the observation. Numerical calculations of r2r^{2} have supported this generalized interpretation  Gyarmati:1972yac ; 1997matrix . We illustrate the The complex energy eigenvalues of I(JP)=1/2(1/2)I(J^{P})=1/2(1/2^{-}) system with varying the angle θ\theta from 304030^{\circ}\sim 40^{\circ} in Figure 3.

According to the masses and quantum numbers, we present some possible decay channels for these predicted states in Table 4. For instance, the I(JPC)=1/2(1/2)I(J^{PC})=1/2(1/2^{-}) ΣbK¯/ΛbK¯/ΣbK¯\Sigma_{b}\bar{K}/\Lambda_{b}\bar{K}^{*}/\Sigma_{b}\bar{K}^{*} bound state can be found in ΛbK¯\Lambda_{b}\bar{K} and Ξb()π\Xi_{b}^{(\prime)}\pi channels. In the literature Chen:2018orb ; He:2021xrh ; Wang:2018fjm ; Cui:2019dzj , both JP=12J^{P}=\frac{1}{2}^{-} molecular and JP=32/52J^{P}=\frac{3}{2}^{-}/\frac{5}{2}^{-} conventional interpretations exist for the particle Ξb(6227)\Xi_{b}(6227), and the spin is certainly crucial for distinguishing these two explanations. Another way to solve this puzzle is to hunt for the flavor exotic state with 63036269MeV6303\sim 6269~{}\rm{MeV} in the I(JPC)=1/2(1/2)I(J^{PC})=1/2(1/2^{-}) ΣbK/ΛbK/ΣbK\Sigma_{b}K/\Lambda_{b}K^{*}/\Sigma_{b}K^{*} system, which is the mirror state of Ξb(6227)\Xi_{b}(6227) in the molecular picture but does not appear in the three-quark picture. We highly hope that the future experiments can verify our proposals.

IV Summary

In this work, we systematically investigate the coupled YbK¯()(YbK())Y_{b}\bar{K}^{(*)}(Y_{b}K^{(*)}) system to search for possible bound states and resonances by adopting one-boson-exchange model within complex scaling method. For the coupled I(JP)=1/2(1/2)I(J^{P})=1/2(1/2^{-}) ΣbK¯/ΛbK¯/ΣbK¯\Sigma_{b}\bar{K}/\Lambda_{b}\bar{K}^{*}/\Sigma_{b}\bar{K}^{*} systems, according to our estimations, a bound state solution is obtained, which may correspond to the observed particle Ξb(6227)\Xi_{b}(6227). Meanwhile, we find a I(JPC)=1/2(1/2)I(J^{PC})=1/2(1/2^{-}) resonance near the ΣbK¯\Sigma_{b}\bar{K}^{*} threshold and a bound state in the I(JP)=1/2(3/2)I(J^{P})=1/2(3/2^{-}) ΣbK¯\Sigma_{b}\bar{K}^{*} system.

Then, when we extend our study to the YbK()Y_{b}K^{(*)} systems, two loosely bound states are obtained. It is worth pointing out that the predicted bound state with 63036269MeV6303\sim 6269~{}\rm{MeV} in the I(JP)=1/2(1/2)I(J^{P})=1/2(1/2^{-}) ΣbK/ΛbK/ΣbK\Sigma_{b}K/\Lambda_{b}K^{*}/\Sigma_{b}K^{*} system is flavor exotic and does not appear in the spectroscopy of conventional baryons, which provides a practical way to resolve the puzzle of particle Ξb(6227)\Xi_{b}(6227). We hope our predictions can offer valuable information to the future experiments observations.

ACKNOWLEDGMENTS

We would like to thank Rui Chen, Xian-Hui Zhong, Li-Cheng Sheng, and Jin-Yu Huo for useful discussions. The work of X.-N. X. and Q. F. Song is supported by the National Natural Science Foundation of China under Grants No. 12275364. Q.-F. Lü is supported by the Natural Science Foundation of Hunan Province under Grant No. 2023JJ40421, the Scientific Research Projects of Hunan Provincial Education Department under Grant No. 24B0063, and the Youth Talent Support Program of Hunan Normal University under Grant No. 2024QNTJ14.

References

  • (1) S. K. Choi et al. (Belle Collaboration), Observation of a narrow charmonium-like state in exclusive B±K±π+πJ/ψB^{\pm}\to K^{\pm}\pi^{+}\pi^{-}J/\psi decays, Phys. Rev. Lett. 91, 262001 (2003).
  • (2) Y. R. Liu, H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Prog. Part. Nucl. Phys. 107, 237-320 (2019) doi:10.1016/j.ppnp.2019.04.003 [arXiv:1903.11976 [hep-ph]].
  • (3) X. H. Liu, Q. Wang and Q. Zhao, Phys. Lett. B 757, 231-236 (2016) doi:10.1016/j.physletb.2016.03.089 [arXiv:1507.05359 [hep-ph]].
  • (4) H. X. Chen, W. Chen, X. Liu, Y. R. Liu and S. L. Zhu, An updated review of the new hadron states, Rept. Prog. Phys. 86, 026201 (2023).
  • (5) M. Mai, U. G. Meißner and C. Urbach, Towards a theory of hadron resonances, Phys. Rept. 1001, 1-66 (2023).
  • (6) F. K. Guo, C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao and B. S. Zou, Hadronic molecules, Rev. Mod. Phys.  90, 015004 (2018).
  • (7) M. Karliner, J. L. Rosner and T. Skwarnicki, Multiquark States, Ann. Rev. Nucl. Part. Sci.  68, 17 (2018).
  • (8) Y. Dong, A. Faessler and V. E. Lyubovitskij, Description of heavy exotic resonances as molecular states using phenomenological Lagrangians, Prog. Part. Nucl. Phys.  94, 282 (2017).
  • (9) B. S. Zou, Hadron spectroscopy from strangeness to charm and beauty, Nucl. Phys. A 914, 454-460 (2013).
  • (10) B. S. Zou, Building up the spectrum of pentaquark states as hadronic molecules, Sci. Bull. 66, 1258 (2021).
  • (11) R. Aaij et al. [LHCb], Phys. Rev. Lett. 125, 242001 (2020) doi:10.1103/PhysRevLett.125.242001 [arXiv:2009.00025 [hep-ex]].
  • (12) R. Aaij et al. [LHCb], Phys. Rev. D 102, 112003 (2020) doi:10.1103/PhysRevD.102.112003 [arXiv:2009.00026 [hep-ex]].
  • (13) H. X. Chen, W. Chen, R. R. Dong and N. Su, Chin. Phys. Lett. 37, no.10, 101201 (2020) doi:10.1088/0256-307X/37/10/101201 [arXiv:2008.07516 [hep-ph]].
  • (14) J. He and D. Y. Chen, Chin. Phys. C 45, no.6, 063102 (2021) doi:10.1088/1674-1137/abeda8 [arXiv:2008.07782 [hep-ph]].
  • (15) T. J. Burns and E. S. Swanson, Phys. Lett. B 813, 136057 (2021) doi:10.1016/j.physletb.2020.136057 [arXiv:2008.12838 [hep-ph]].
  • (16) S. S. Agaev, K. Azizi and H. Sundu, J. Phys. G 48, no.8, 085012 (2021) doi:10.1088/1361-6471/ac0b31 [arXiv:2008.13027 [hep-ph]].
  • (17) C. J. Xiao, D. Y. Chen, Y. B. Dong and G. W. Meng, Phys. Rev. D 103, no.3, 034004 (2021) doi:10.1103/PhysRevD.103.034004 [arXiv:2009.14538 [hep-ph]].
  • (18) H. W. Ke, Y. F. Shi, X. H. Liu and X. Q. Li, Phys. Rev. D 106, no.11, 114032 (2022) doi:10.1103/PhysRevD.106.114032 [arXiv:2210.06215 [hep-ph]].
  • (19) R. Aaij et al. [LHCb], Phys. Rev. Lett. 131, no.4, 041902 (2023) doi:10.1103/PhysRevLett.131.041902 [arXiv:2212.02716 [hep-ex]].
  • (20) R. Aaij et al. [LHCb], Phys. Rev. D 108, no.1, 012017 (2023) doi:10.1103/PhysRevD.108.012017 [arXiv:2212.02717 [hep-ex]].
  • (21) B. Wang, K. Chen, L. Meng and S. L. Zhu, Phys. Rev. D 109, no.3, 034027 (2024) doi:10.1103/PhysRevD.109.034027 [arXiv:2309.02191 [hep-ph]].
  • (22) S. S. Agaev, K. Azizi and H. Sundu, Phys. Rev. D 107, no.9, 094019 (2023) doi:10.1103/PhysRevD.107.094019 [arXiv:2212.12001 [hep-ph]].
  • (23) H. T. An, Z. W. Liu, F. S. Yu and X. Liu, Phys. Rev. D 106, no.11, L111501 (2022) doi:10.1103/PhysRevD.106.L111501 [arXiv:2207.02813 [hep-ph]].
  • (24) V. M. Abazov et al. [D0], Phys. Rev. Lett. 117, no.2, 022003 (2016) doi:10.1103/PhysRevLett.117.022003 [arXiv:1602.07588 [hep-ex]].
  • (25) R. Aaij et al. [LHCb], Phys. Rev. Lett. 117, no.15, 152003 (2016) doi:10.1103/PhysRevLett.117.152003 [arXiv:1608.00435 [hep-ex]].
  • (26) M. Aaboud et al. [ATLAS], Phys. Rev. Lett. 120, no.20, 202007 (2018) doi:10.1103/PhysRevLett.120.202007 [arXiv:1802.01840 [hep-ex]].
  • (27) T. Aaltonen et al. [CDF], Phys. Rev. Lett. 120, no.20, 202006 (2018) doi:10.1103/PhysRevLett.120.202006 [arXiv:1712.09620 [hep-ex]].
  • (28) A. M. Sirunyan et al. [CMS], Phys. Rev. Lett. 120, no.20, 202005 (2018) doi:10.1103/PhysRevLett.120.202005 [arXiv:1712.06144 [hep-ex]].
  • (29) R. Chen and X. Liu, Phys. Rev. D 94, no.3, 034006 (2016) doi:10.1103/PhysRevD.94.034006 [arXiv:1607.05566 [hep-ph]].
  • (30) C. J. Xiao and D. Y. Chen, Eur. Phys. J. A 53, no.6, 127 (2017) doi:10.1140/epja/i2017-12310-x [arXiv:1603.00228 [hep-ph]].
  • (31) S. S. Agaev, K. Azizi and H. Sundu, Eur. Phys. J. Plus 131, no.10, 351 (2016) doi:10.1140/epjp/i2016-16351-8 [arXiv:1603.02708 [hep-ph]].
  • (32) R. Aaij et al. [LHCb], Eur. Phys. J. C 81, no.7, 601 (2021) doi:10.1140/epjc/s10052-021-09305-3 [arXiv:2010.15931 [hep-ex]].
  • (33) S. Y. Kong, J. T. Zhu, D. Song and J. He, Phys. Rev. D 104, no.9, 094012 (2021) doi:10.1103/PhysRevD.104.094012 [arXiv:2106.07272 [hep-ph]].
  • (34) E. E. Kolomeitsev and M. F. M. Lutz, Phys. Lett. B 582, 39-48 (2004) doi:10.1016/j.physletb.2003.10.118 [arXiv:hep-ph/0307133 [hep-ph]].
  • (35) F. K. Guo, P. N. Shen, H. C. Chiang, R. G. Ping and B. S. Zou, Phys. Lett. B 641, 278-285 (2006) doi:10.1016/j.physletb.2006.08.064 [arXiv:hep-ph/0603072 [hep-ph]].
  • (36) F. K. Guo, P. N. Shen and H. C. Chiang, Phys. Lett. B 647, 133-139 (2007) doi:10.1016/j.physletb.2007.01.050 [arXiv:hep-ph/0610008 [hep-ph]].
  • (37) Z. F. Sun, J. J. Xie and E. Oset, Phys. Rev. D 97, no.9, 094031 (2018) doi:10.1103/PhysRevD.97.094031 [arXiv:1801.04367 [hep-ph]].
  • (38) T. Asanuma, Y. Yamaguchi and M. Harada, [arXiv:2311.04695 [hep-ph]].
  • (39) M. Tanaka, Y. Yamaguchi and M. Harada, Phys. Rev. D 110, no.1, 016024 (2024) doi:10.1103/PhysRevD.110.016024 [arXiv:2403.03548 [hep-ph]].
  • (40) B. Wang, K. Chen, L. Meng and S. L. Zhu, Phys. Rev. D 109, no.7, 074035 (2024) doi:10.1103/PhysRevD.109.074035 [arXiv:2312.13591 [hep-ph]].
  • (41) M. Sakai and Y. Yamaguchi, Phys. Rev. D 109, no.5, 054016 (2024) doi:10.1103/PhysRevD.109.054016 [arXiv:2312.08663 [hep-ph]].
  • (42) R. Chen and Q. Huang, [arXiv:2208.10196 [hep-ph]].
  • (43) R. Aaij et al. [LHCb], Phys. Rev. Lett. 121, No.7, 072002 (2018).
  • (44) B. Chen, K. W. Wei, X. Liu and A. Zhang, Phys. Rev. D 98, No.3, 031502 (2018).
  • (45) H. Z. He, W. Liang, Q. F. Lü and Y. B. Dong, Sci. China Phys. Mech. Astron. 64, No.6, 261012 (2021).
  • (46) K. L. Wang, Q. F. Lü and X. H. Zhong, Phys. Rev. D 99, No.1, 014011 (2019).
  • (47) E. L. Cui, H. M. Yang, H. X. Chen and A. Hosaka, Phys. Rev. D 99, No.9, 094021 (2019).
  • (48) H. Z. He, W. Liang, Q. F. Lü and Y. B. Dong, Sci. China Phys. Mech. Astron. 64, no.6, 261012 (2021) doi:10.1007/s11433-021-1704-x [arXiv:2102.07391 [hep-ph]].
  • (49) Y. Huang, C. j. Xiao, L. S. Geng and J. He, Phys. Rev. D 99, No.1, 014008 (2019).
  • (50) H. Zhu and Y. Huang, Chin. Phys. C 44, No.8, 083101 (2020).
  • (51) H. Mutuk, Magnetic Moment of Ξb(6227)\Xi_{b}(6227) as Molecular Pentaquark State,[arXiv:2403.13896 [hep-ph]].
  • (52) Q. F. Song, Q. F. Lü, D. Y. Chen and Y. B. Dong, Phys. Rev. D 110, no.7, 074038 (2024) doi:10.1103/PhysRevD.110.074038 [arXiv:2405.07694 [hep-ph]].
  • (53) Y. K. Ho, The method of complex coordinate rotation and its applications to atomic collision processes, Phys. Rept. 99, 1-68 (1983).
  • (54) N. Moiseyev, Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling, Phys. Rept. 302, 212-293 (1998).
  • (55) E. Hiyama, Y. Kino and M. Kamimura, Prog. Part. Nucl. Phys. 51, 223-307 (2003).
  • (56) E. Hiyama and M. Kamimura, Study of various few-body systems using Gaussian expansion method (GEM), Front. Phys. (Beijing) 13, 132106 (2018).
  • (57) Y. R. Liu and M. Oka, Phys. Rev. D 85, 014015 (2012) doi:10.1103/PhysRevD.85.014015 [arXiv:1103.4624 [hep-ph]].
  • (58) R. Chen, A. Hosaka and X. Liu, Phys. Rev. D 97, no.3, 036016 (2018) doi:10.1103/PhysRevD.97.036016 [arXiv:1711.07650 [hep-ph]].
  • (59) O. Kaymakcalan, S. Rajeev and J. Schechter, Phys. Rev. D 30, 594 (1984) doi:10.1103/PhysRevD.30.594
  • (60) J. Aguilar and J. M. Combes, Commun. Math. Phys. 22, 269-279 (1971) doi:10.1007/BF01877510
  • (61) E. Balslev and J. M. Combes, Commun. Math. Phys. 22, 280-294 (1971) doi:10.1007/BF01877511
  • (62) M. Homma, T. Myo, and K. Katō, Matrix elements of physical quantities associated with resonance states, Prog. Theor. Phys. 97, 561 (1997).
  • (63) Z. Y. Lin, J. B. Cheng, B. L. Huang and S. L. Zhu, Partial widths from analytical extension of the wave function: PcP_{c} states, Phys. Rev. D 108, 114014 (2023).
  • (64) Y. Shimizu, D. Suenaga and M. Harada, Coupled channel analysis of molecule picture of Pc(4380)P_{c}(4380), Phys. Rev. D 93, 114003 (2016).
  • (65) T. Myo, Y. Kikuchi, H. Masui and K. Katō, Recent development of complex scaling method for many-body resonances and continua in light nuclei, Prog. Part. Nucl. Phys. 79, 1-56 (2014).
  • (66) T. Berggren, On a probabilistic interpretation of expansion coefficients in the non-relativistic quantum theory of resonant states, Phys. Lett. B 33, 547-549 (1970).
  • (67) B. Gyarmati, F. Krisztinkovics and T. Vertse, On the expectation value in Gamow state, Phys. Lett. B 41, 110-112 (1972).
  • (68) M. Homma, T. Myo, K. Katō, Prog. Matrix elements of physical quantities associated with resonance states, Theor. Phys. 97 (1997) 561.
  • (69) Z. W. Lin and C. M. Ko, A Model for J/ψJ/\psi absorption in hadronic matter, Phys. Rev. C 62, 034903 (2000).