This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A critical branching process with immigration in random environment111This work is supported by the Russian Science Foundation under grant 19-11-00111.

Afanasyev V.I Steklov Mathematical Institute of Russian Academy of Sciences, 8 Gubkin St., Moscow, 119991, Russia Email: viafan@mi.ras.ru
Abstract

A Galton-Watson branching process with immigration evolving in a random environment is considered. Its associated random walk is assumed to be oscillating. We prove a functional limit theorem in which the process under consideration is normalized by a random coefficient depending on the random environment only. The distribution of the limiting process is described in terms of a strictly stable Levy process and a sequence of independent and identically distributed random variables which is independent of this process.

keywords:
Branching process in random environment, branching process with immigration, functional limit theorem
journal: Journal of  Templates

1. Introduction and statement of main result

Let (Ω,,𝐏)\left(\Omega,\mathcal{F},\mathbf{P}\right) be a probability space and Δ\Delta be the space of probability measures on 𝐍0:={0,1,}\mathbf{N}_{0}:=\left\{0,1,\ldots\right\} equipped with the metric of total variation. A random environment is a sequence of random elements Q1,Q2,Q_{1},Q_{2},\ldots, mapping the space (Ω,,𝐏)\left(\Omega,\mathcal{F},\mathbf{P}\right) into Δ2\Delta^{2}. Thus, QnQ_{n} for each n𝐍n\in\mathbf{N} has the form (Fn,Gn)\left(F_{n},G_{n}\right), where Fn,GnF_{n},G_{n} are probability measures on 𝐍0\mathbf{N}_{0}. A branching process with immigration in random environment ((BPIRE)) is a stochastic process possessing the following properties. For a fixed random environment {Qn,n𝐍}\left\{Q_{n},n\in\mathbf{N}\right\} this is an inhomogeneous branching Galton-Watson process with immigration (see [1], Chapter 6, § 7). Here, for each n𝐍n\in\mathbf{N}, the number of immigrants joining the (n1)\left(n-1\right)th generation has the distribution GnG_{n} and the offspring reproduction law of particles of the (n1)\left(n-1\right)th generation is FnF_{n}.

Let ZnZ_{n} be the size of nnth generation without the immigrants which joined this generation (we assume that Z0=0Z_{0}=0), ηn\eta_{n} be the number of immigrants which joined the nnth generation. Let fn()f_{n}\left(\cdot\right)\ and gn()g_{n}\left(\cdot\right) be generating functions of distributions FnF_{n}\ and GnG_{n} respectively.

We consider this model under the assumption that the random elements Q1,Q2,Q_{1},Q_{2},\ldots are independent and identically distributed. A more detailed definition of the BPIRE can be found in [2].

Set for i𝐍i\in\mathbf{N}

Xi=lnfi(1),μi=gi(1)X_{i}=\ln f_{i}^{\prime}\left(1\right),\qquad\mu_{i}=g_{i}^{\prime}\left(1\right)

(suppose that 0<f1(1)<+0<f_{1}^{\prime}\left(1\right)<+\infty, 0<gi(1)<+0<g_{i}^{\prime}\left(1\right)<+\infty a.s.). Introduce the so-called associated random walk:

S0=0,Sn=i=1nXi,n𝐍.S_{0}=0,\qquad S_{n}=\sum\limits_{i=1}^{n}X_{i},\,n\in\mathbf{N}.

It is clear that the random vectors (X1,μ1),(X2,μ2),\left(X_{1},\mu_{1}\right),\left(X_{2},\mu_{2}\right),\ldots are independent and identically distributed under our assumptions.

We impose the following restriction on the distribution of X1X_{1}.

Hypothesis A. The distribution of X1X_{1} belongs without centering to the domain of attraction of some stable law with index α(0,2]\alpha\in\left(0,2\right] and the limit law is not a one-sided stable law.

Under Hypothesis A the Skorokhod functional limit theorem is valid (see, for instance, [3], Chapter 16): there are such positive normalizing constants CnC_{n} that, as nn\rightarrow\infty,

WnDW,W_{n}\stackrel{{\scriptstyle D}}{{\to}}W, (1)

where Wn={Cn1Snt,t0}W_{n}=\left\{C_{n}^{-1}S_{\left\lfloor nt\right\rfloor},\,t\geq 0\right\}, the process W={W(t),t0}W=\left\{W\left(t\right),\,t\geq 0\right\} is a strictly stable Levy process with index α(0,2]\alpha\in\left(0,2\right] and the symbol D\stackrel{{\scriptstyle D}}{{\to}} means convergence in distribution in the space D[0,+)D\left[0,+\infty\right) with Skorokhod topology. Moreover,

Cn=n1/αl(n),C_{n}=n^{1/\alpha}l\left(n\right),

where {l(n),n𝐍}\left\{l\left(n\right),n\in\mathbf{N}\right\} is a slowly varying sequence. It is known that the finite-dimensional distributions of the process WW are absolutely continuous. Note that ρ:=𝐏(W(1)>0)(0,1)\rho:=\mathbf{P}\left(W\left(1\right)>0\right)\in\left(0,1\right) given Hypothesis A. Thus, the Spitzer-Doney condition is satisfied:

limn𝐏(Sn>0)=ρ(0,1).\lim_{n\rightarrow\infty}\mathbf{P}\left(S_{n}>0\right)=\rho\in\left(0,1\right). (2)

The Spitzer-Doney condition means that the random walk {Sn}\left\{S_{n}\right\} is oscillating. As result, the absolute values of its strict descending ladder heights constitute a renewal process with the corresponding renewal function v(x)v\left(x\right), x0x\geq 0 (see [4] for a detailed definition of the function v()v\left(\cdot\right)). Similarly, weak ascending ladder heights of the random walk {Sn}\left\{S_{n}\right\} generate a renewal process with the corresponding renewal function u(x)u\left(x\right), x0x\geq 0.

The aim of this paper is to prove a functional limit theorem for the process {Znt,t0}\left\{Z_{\left\lfloor nt\right\rfloor},\,t\geq 0\right\}, as nn\rightarrow\infty (see Theorem 1).

We need some notation and definitions to formulate the theorem. Let for n𝐍n\in\mathbf{N}

Mn=max1inSi,Ln=min0inSi.M_{n}=\max_{1\leq i\leq n}S_{i},\qquad L_{n}=\min_{0\leq i\leq n}S_{i}.

It is known (see, for instance, [4], Lemma 2.5) that, if the Spitzer-Doney condition (2) is satisfied, then, as nn\rightarrow\infty,

{(Qi,Si,μi),i𝐍|Ln0}D{(Qi+,Si+,μi+),i𝐍},\left\{\left.\left(Q_{i},S_{i},\mu_{i}\right),\,i\in\mathbf{N}\,\right|\,L_{n}\geq 0\right\}\stackrel{{\scriptstyle D}}{{\to}}\left\{\left(Q_{i}^{+},S_{i}^{+},\mu_{i}^{+}\right),\,i\in\mathbf{N}\right\}, (3)
{(Qi,Si,μi),i𝐍|Mn<0}D{(Qi,Si,μi),i𝐍},\left\{\left.\left(Q_{i},S_{i},\mu_{i}\right),\,i\in\mathbf{N}\right|\,M_{n}\,<0\right\}\stackrel{{\scriptstyle D}}{{\to}}\left\{\left(Q_{i}^{-},S_{i}^{-},\mu_{i}^{-}\right),\,i\in\mathbf{N}\right\}, (4)

where {(Qi+,Si+,μi+)}\left\{\left(Q_{i}^{+},S_{i}^{+},\mu_{i}^{+}\right)\right\}, {(Qi,Si,μi)}\left\{\left(Q_{i}^{-},S_{i}^{-},\mu_{i}^{-}\right)\right\} are some random sequences. Moreover: a) the sequences {Qi+,i𝐍}\left\{Q_{i}^{+},\,i\in\mathbf{N}\right\}, {Qi,i𝐍}\left\{Q_{i}^{-},\,i\in\mathbf{N}\right\} can be viewed as some random environments; b) the sequences {Si+,i𝐍}\left\{S_{i}^{+},\,i\in\mathbf{N}\right\}, {Si,i𝐍}\left\{S_{i}^{-},\,i\in\mathbf{N}\right\} are the corresponding associated random walks (S0+=S0=0S_{0}^{+}=S_{0}^{-}=0); c) the sequences {μi+,i𝐍}\left\{\mu_{i}^{+},\,i\in\mathbf{N}\right\} and {μi,i𝐍}\left\{\mu_{i}^{-},\,i\in\mathbf{N}\right\} are positive and constructed by {Qi+,i𝐍}\left\{Q_{i}^{+},\,i\in\mathbf{N}\right\} and {Qi,i𝐍}\left\{Q_{i}^{-},\,i\in\mathbf{N}\right\}, respectively, the same as the sequence {μi,i𝐍}\left\{\mu_{i},\,i\in\mathbf{N}\right\} is constructed by {Qi,i𝐍}\left\{Q_{i},\,i\in\mathbf{N}\right\}. Suppose that the sequences {Qi+,i𝐍}\left\{Q_{i}^{+},\,i\in\mathbf{N}\right\}, {Qi,i𝐍}\left\{Q_{i}^{-},\,i\in\mathbf{N}\right\} are defined on the same probability space (Ω,,𝐏)\left(\Omega^{\ast},\mathcal{F}^{\ast},\mathbf{P}^{\ast}\right) and are independent (below we denote the expectation on this probability space by 𝐄\mathbf{E}^{\ast}).

We now come back to our initial BPIRE. Set 𝐍i={i,i+1,}\mathbf{N}_{i}=\left\{i,i+1,\ldots\right\} for i𝐙i\in\mathbf{Z}. Fix i𝐍0i\in\mathbf{N}_{0} and, for n𝐍in\in\mathbf{N}_{i}, denote by Zi,nZ_{i,n} the total number of particles in the nnth generation which are the descendants of the immigrants joined the iith generation (we assume that Zi,n=0Z_{i,n}=0 for ini\geq n and i<0i<0). Note that the random sequence {ηi;Zi,n,n𝐍i+1}\left\{\eta_{i};\,Z_{i,n},\,n\in\mathbf{N}_{i+1}\right\} is a usual (without immigration) branching process in the random environment {Gi+1;Fn,n𝐍i+1}\left\{G_{i+1};\,F_{n},\,n\in\mathbf{N}_{i+1}\right\}. In particular, if the random environment is fixed, then Gi+1G_{i+1} is the distribution of the random variable ηi\eta_{i} which should be interpreted as the number of particles in the initial generation. Set for n𝐍in\in\mathbf{N}_{i}

ai,n=e(SnSi).a_{i,n}=e^{-\left(S_{n}-S_{i}\right)}.

The sequence {ηi;ai,nZi,n,n𝐍i+1}\left\{\eta_{i};\,a_{i,n}Z_{i,n},\,n\in\mathbf{N}_{i+1}\right\} is a nonnegative martingale if the random environment {Gi+1;Fn,n𝐍i+1}\left\{G_{i+1};\,F_{n},\,n\in\mathbf{N}_{i+1}\right\} is fixed. Hence (without assuming that the random environment is fixed), there is a finite limit limnai,nZi,n\lim_{n\rightarrow\infty}a_{i,n}Z_{i,n} 𝐏\mathbf{P}-a.s.

Set

Qi={Qi+,i𝐍,Qi+1,i𝐙𝐍,Q_{i}^{\ast}=\left\{\begin{array}[]{c}Q_{i}^{+},\qquad i\in\mathbf{N},\\ Q_{-i+1}^{-},\qquad i\in\mathbf{Z\setminus N,}\end{array}\right.
Si={Si+,i𝐍0,Si,i𝐙𝐍0,S_{i}^{\ast}=\left\{\begin{array}[]{c}S_{i}^{+},\qquad\qquad i\in\mathbf{N}_{0}\mathbf{,}\\ -S_{-i}^{-},\qquad i\in\mathbf{Z\setminus N}_{0}\mathbf{,}\end{array}\right.
μi={μi+,i𝐍,μi+1,i𝐙𝐍.\mu_{i}^{\ast}=\left\{\begin{array}[]{c}\mu_{i}^{+},\qquad\qquad i\in\mathbf{N},\\ \mu_{-i+1}^{-},\qquad i\in\mathbf{Z\setminus N.}\end{array}\right.

The sequence :={Qk,k𝐙}\mathcal{E}^{\ast}:=\left\{Q_{k}^{\ast},\,k\in\mathbf{Z}\right\} can be considered as a random environment (we denote the components of QkQ_{k}^{\ast} by GkG_{k}^{\ast}\ and FkF_{k}^{\ast}). We assume that the probability space (Ω,,𝐏)\left(\Omega^{\ast},\mathcal{F}^{\ast},\mathbf{P}^{\ast}\right) is reach enough for we are able to define on it a branching process with immigration in the random environment \mathcal{E}^{\ast}. Fix i𝐙i\in\mathbf{Z} and, for j𝐍ij\in\mathbf{N}_{i}, denote by Zi,jZ_{i,j}^{\ast} the total number of particles in the jjth generation being descendants of immigrants which joined the iith generation (we denote the number of such immigrants as ηi\eta_{i}^{\ast}). Note that the sequence {ηi;Zi,j,j𝐍i+1}\left\{\eta_{i}^{\ast};\,Z_{i,j}^{\ast},\,j\in\mathbf{N}_{i+1}\right\} is a branching process in the random environment {Gi+1;Fj,j𝐍i+1}\left\{G_{i+1}^{\ast};\,F_{j}^{\ast},\,j\in\mathbf{N}_{i+1}\right\} with the initial value ηi\eta_{i}^{\ast}. The sequence {SjSi,j𝐍i}\left\{S_{j}^{\ast}-S_{i}^{\ast},\,j\in\mathbf{N}_{i}\right\} is the associated random walk and the random variable μi\mu_{i}^{\ast} is under fixed environment the mean of the random variable ηi\eta_{i}^{\ast}. Set

ai,j=e(SjSi).a_{i,j}^{\ast}=e^{-\left(S_{j}^{\ast}-S_{i}^{\ast}\right)}.

In accordance with the above the limit

limjai,jZi,j=:ζi\lim_{j\rightarrow\infty}a_{i,j}^{\ast}Z_{i,j}^{\ast}=:\zeta_{i}^{\ast} (5)

exists 𝐏\mathbf{P}^{\ast}-a.s. and 𝐏(ζi>0)>0\mathbf{P}^{\ast}\left(\zeta_{i}^{\ast}>0\right)>0 for i𝐍0i\in\mathbf{N}_{0} (see [4], Proposition 3.1).

Introduce the following random series:

Σ1:=i𝐙μi+1eSi,Σ2:=i𝐙ζieSi\Sigma_{1}:=\sum\limits_{i\in\mathbf{Z}}\mu_{i+1}^{\ast}e^{-S_{i}^{\ast}},\qquad\Sigma_{2}:=\sum\limits_{i\in\mathbf{Z}}\zeta_{i}^{\ast}e^{-S_{i}^{\ast}}

It is clear that Σ1>0\Sigma_{1}>0 𝐏\mathbf{P}^{\ast}-a.s. and 𝐏(Σ2>0)>0\mathbf{P}^{\ast}\left(\Sigma_{2}>0\right)>0. Both series converge 𝐏\mathbf{P}^{\ast}-a.s. under certain restrictions (see Lemma 4).

Let WW be a strictly stable Levy process with index α\alpha (in the sequel we call WW simply the Levy process). By the Levy process we specify the (lower) level L={L(t),t0}L=\left\{L\left(t\right),\,t\geq 0\right\} of the Levy process as

L(t)=infs[0,t]W(s).L\left(t\right)=\inf_{s\in\left[0,t\right]}W\left(s\right).

Let, further, γ1,γ2,\gamma_{1},\gamma_{2},\ldots be an independent of WW sequence of independent random variables distributed as the random variable Σ2/Σ1\Sigma_{2}/\Sigma_{1}.

By these ingredients we define finite-dimensional distributions of a random process Y={Y(t),t0}Y=\left\{Y(t),\,t\geq 0\right\} which plays an important role in the sequel. First we set Y(0)=0Y(0)=0. Consider an arbitrary m𝐍m\in\mathbf{N} and arbitrary moments t1,t2,,tmt_{1},t_{2},\ldots,t_{m}: 0=t0<t1<t2<<tm0=t_{0}<t_{1}<t_{2}<\ldots<t_{m}. The random vector {Y(t1),,Y(tm)}\left\{Y(t_{1}),\ldots,Y(t_{m})\right\} coincides in distribution with the following vector Y^:={Y^1,,Y^m}\widehat{Y}:=\left\{\widehat{Y}_{1},\ldots,\widehat{Y}_{m}\right\}. We describe at first the possible values of the vector Y^\widehat{Y}. Its first several coordinates coincide with γ1\gamma_{1}, the next several coordinates coincide with γ2\gamma_{2} and so on up to the mmth coordinate. The coordinates of the vector Y^\widehat{Y} are specified according to the level LL of the Levy process WW. The first coordinate Y^1\widehat{Y}_{1} is equal to γ1\gamma_{1}. Let the coordinate Y^k\widehat{Y}_{k} for some k<mk<m be known. For instance, Y^k=γl\widehat{Y}_{k}=\gamma_{l} for some l𝐍l\in\mathbf{N}. If the level of the Levy process at the moment tk+1t_{k+1} remains the same as at moment tkt_{k}, i.e. L(tk+1)=L(tk)L\left(t_{k+1}\right)=L\left(t_{k}\right), then Y^k+1=γl\widehat{Y}_{k+1}=\gamma_{l}. If the level of the Levy process at the moment tk+1t_{k+1} is changed, i.e. L(tk+1)<L(tk)L\left(t_{k+1}\right)<L\left(t_{k}\right), then Y^k+1=γl+1\widehat{Y}_{k+1}=\gamma_{l+1}.

Set for n𝐍0n\in\mathbf{N}_{0}

an=eSn,bn=i=0n1μi+1eSi(b0=0).a_{n}=e^{-S_{n}},\qquad b_{n}=\sum\limits_{i=0}^{n-1}\mu_{i+1}e^{-S_{i}}\ (b_{0}=0).

Introduce for each n𝐍n\in\mathbf{N} the random process Yn={Yn(t),t0}Y_{n}=\left\{Y_{n}\left(t\right),\,t\geq 0\right\}, where

Yn(0)=0,Yn(t)=antbntZnt.Y_{n}\left(0\right)=0,\qquad Y_{n}\left(t\right)=\frac{a_{\left\lfloor nt\right\rfloor}}{b_{\left\lfloor nt\right\rfloor}}Z_{\left\lfloor nt\right\rfloor}.

Note that for k𝐍k\in\mathbf{N} the ratio bk/akb_{k}/a_{k} is equal to the mean of ZkZ_{k} for a fixed random environment.

Let the symbol \Rightarrow means convergence of random processes in the sense of finite-dimensional distributions and ln+x=max(0,lnx)\ln^{+}x=\max\left(0,\ln x\right) for x>0x>0.

Theorem 1. If Hypothesis A is valid and 𝐄(ln+μ1)α+ε<+\mathbf{E}\left(\ln^{+}\mu_{1}\right)^{\alpha+\varepsilon}<+\infty for some ε>0\varepsilon>0, then, as nn\rightarrow\infty,

YnY.Y_{n}\Rightarrow Y.

A detailed description of the theory of critical (when Hypothesis A is valid) branching processes in random environment is available in [4] and [5].

A particular case of a subcritical BPIRE (when the offspring generating function fn()f_{n}\left(\cdot\right) is fractional-linear and gn(s)sg_{n}\left(s\right)\equiv s for each n𝐍n\in\mathbf{N}) was considered in [6]. The main attention there was paid to obtaining an exponential estimate for the tail distribution of the so-called life period of this process (i.e., the time until the first extinction). A more general class of subcritical BPIRE was analyzed in [7] where a limit theorem describing the population size at a distant moment was proved and an exponential estimate for the tail distribution of the life period was established. A strong law of large numbers and a central limit theorem for a wide class of subcritical BPIRE were proved in [8].

A critical BPIRE was considered in [9] where sufficient conditions of transience and recurrence were obtained. The author of [10], studying a random walk in random environment, proved a particular case of Theorem 1 (when the offspring generating function fn()f_{n}\left(\cdot\right) is fractional-linear and gn(s)sg_{n}\left(s\right)\equiv s for each n𝐍n\in\mathbf{N}). We would like to stress that the proof used in the present paper differs significantly from that one given in [10]. We also mention the papers [11], [12] and [13] in which critical and supercritical processes (with stopped immigration) are considered under some restrictions on their lifetime.

Recent papers [2] and [14] contain exact asymptotic formulae for the tail distribution of the life period for critical and subcritical BPIRE.

2. Auxiliary statements

Let τn\tau_{n} be the first moment when the minimum of the random walk S0,,SnS_{0},\ldots,S_{n} is attained:

τn=min{i:Si=Ln, 0in}.\tau_{n}=\min\left\{i:S_{i}=L_{n},\,0\leq i\leq n\right\}.

Set for n𝐍n\in\mathbf{N}

Si,n={Sτn+iSτn,i𝐍(τn),0,i𝐙𝐍(τn).S_{i,n}^{\prime}=\left\{\begin{array}[]{c}S_{\tau_{n}+i}-S_{\tau_{n}},\qquad i\in\mathbf{N}_{\left(-\tau_{n}\right)},\\ 0,\qquad\qquad i\in\mathbf{Z\setminus N}_{\left(-\tau_{n}\right)}.\end{array}\right.

For positive integers numbers n1<n2n_{1}<n_{2} set

Ln1,n2=minn1in2Si.L_{n_{1},n_{2}}=\min_{n_{1}\leq i\leq n_{2}}S_{i}.

Lemma 1. If the Spitzer-Doney condition (2) is satisfied, then, as nn\rightarrow\infty,

{Si,n,i𝐙}D{Si,i𝐙}.\left\{S_{i,n}^{\prime},\,i\in\mathbf{Z}\right\}\stackrel{{\scriptstyle D}}{{\to}}\left\{S_{i}^{\ast},\,i\in\mathbf{Z}\right\}. (6)

Proof. We demonstrate for simplicity only convergence of one-dimensional distributions. Fix i𝐍0i\in\mathbf{N}_{0}. Let AA be a one-dimensional SiS_{i}^{\ast}-continuous (relative to the measure 𝐏\mathbf{P}^{\ast}) Borel set. Then for nin\geq i

𝐏(Si,nA,τn+in)\displaystyle\mathbf{P}\left(S_{i,n}^{\prime}\in A,\,\tau_{n}+i\leq n\right)
=\displaystyle= k=0ni𝐏(Si,nA,τn=k)\displaystyle\sum\limits_{k=0}^{n-i}\mathbf{P}\left(S_{i,n}^{\prime}\in A,\,\tau_{n}=k\right)
=\displaystyle= k=0ni𝐏(Sk+iSkA,Sk<Lk1,SkLk+1,n)\displaystyle\sum\limits_{k=0}^{n-i}\mathbf{P}\left(S_{k+i}-S_{k}\in A,\,S_{k}<L_{k-1},\,S_{k}\leq L_{k+1,n}\right)

and by the Markov property of random walks we have that

𝐏(Sk+iSkA,Sk<Lk1,SkLk+1,n)\displaystyle\mathbf{P}\left(S_{k+i}-S_{k}\in A,\,S_{k}<L_{k-1},\,S_{k}\leq L_{k+1,n}\right)
=\displaystyle= 𝐏(Sk<Lk1)𝐏(Sk+iSkA,SkLk+1,n)\displaystyle\mathbf{P}\left(S_{k}<L_{k-1}\right)\mathbf{P}\left(S_{k+i}-S_{k}\in A,\,S_{k}\leq L_{k+1,n}\right)
=\displaystyle= 𝐏(Sk<Lk1)𝐏(SiA,Lnk0)\displaystyle\mathbf{P}\left(S_{k}<L_{k-1}\right)\mathbf{P}\left(S_{i}\in A,\,L_{n-k}\,\geq 0\right)
=\displaystyle= 𝐏(SiA|Lnk0)𝐏(Sk<Lk1)𝐏(Lnk0)\displaystyle\mathbf{P}\left(\left.S_{i}\in A\,\right|\,L_{n-k}\,\geq 0\right)\mathbf{P}\left(S_{k}<L_{k-1}\right)\mathbf{P}\left(L_{n-k}\,\geq 0\right)
=\displaystyle= 𝐏(SiA|Lnk0)𝐏(τn=k).\displaystyle\mathbf{P}\left(\left.S_{i}\in A\,\right|\,L_{n-k}\,\geq 0\right)\mathbf{P}\left(\tau_{n}=k\right).

Thus,

𝐏(Si,nA,τn+in)=k=0ni𝐏(SiA|Lnk0)𝐏(τn=k).\mathbf{P}\left(S_{i,n}^{\prime}\in A,\,\tau_{n}+i\leq n\right)=\sum\limits_{k=0}^{n-i}\mathbf{P}\left(\left.S_{i}\in A\,\right|\,L_{n-k}\,\geq 0\right)\mathbf{P}\left(\tau_{n}=k\right). (7)

If the Spitzer-Doney condition is satisfied, then the following generalized arcsine law is valid (see, for instance, [15], Chapter 8, Theorem 8.9.9): for x[0,1]x\in\left[0,1\right]

limn𝐏(τnnx)=sin(πρ)π0xuρ1(1u)ρ𝑑u.\lim_{n\rightarrow\infty}\mathbf{P}\left(\frac{\tau_{n}}{n}\leq x\right)=\frac{\sin\left(\pi\rho\right)}{\pi}\int\limits_{0}^{x}u^{\rho-1}\left(1-u\right)^{-\rho}du. (8)

We pass to the limit in formula (7), as nn\rightarrow\infty. Due to (8)

limn𝐏(τn+in)=limn𝐏(τn/n1i/n)=1.\lim_{n\rightarrow\infty}\mathbf{P}\left(\tau_{n}+i\leq n\right)={\lim_{n\rightarrow\infty}}\mathbf{P}\left(\tau_{n}/n\leq 1-i/n\right)=1.

Therefore the limit of the left-hand side of (7) coincides with the limit of probability 𝐏(Si,nA)\mathbf{P}\left(S_{i,n}^{\prime}\in A\right), as nn\rightarrow\infty, if at least one of these limits exists.

If ε(0,1)\varepsilon\in\left(0,1\right) and nn is large enough, then by (7)

𝐏(Si,nA,τn+in)=P1(n,ε)+P2(n,ε),\mathbf{P}\left(S_{i,n}^{\prime}\in A,\,\tau_{n}+i\leq n\right)=P_{1}\left(n,\varepsilon\right)+P_{2}\left(n,\varepsilon\right), (9)

where

P1(n,ε)=k=0(1ε)n𝐏(SiA|Lnk0)𝐏(τn=k),P_{1}\left(n,\varepsilon\right)=\sum\limits_{k=0}^{\left\lfloor\left(1-\varepsilon\right)n\right\rfloor}\mathbf{P}\left(\left.S_{i}\in A\,\right|\,L_{n-k}\,\geq 0\right)\mathbf{P}\left(\tau_{n}=k\right),
P2(n,ε)=k=(1ε)n+1ni𝐏(SiA|Lnk0)𝐏(τn=k).P_{2}\left(n,\varepsilon\right)=\sum\limits_{k=\left\lfloor\left(1-\varepsilon\right)n\right\rfloor+1}^{n-i}\mathbf{P}\left(\left.S_{i}\in A\,\right|\,L_{n-k}\,\geq 0\right)\mathbf{P}\left(\tau_{n}=k\right).

Clearly,

P2(n,ε)\displaystyle P_{2}\left(n,\varepsilon\right) \displaystyle\leq k=(1ε)n+1n𝐏(τn=k)=𝐏(τn>(1ε)n)\displaystyle\sum\limits_{k=\left\lfloor\left(1-\varepsilon\right)n\right\rfloor+1}^{n}\mathbf{P}\left(\tau_{n}=k\right)=\mathbf{P}\left(\tau_{n}>\left\lfloor\left(1-\varepsilon\right)n\right\rfloor\right)
n1sin(πρ)π01εuρ1(1u)ρ𝑑uε00.\displaystyle\stackrel{{\scriptstyle n\rightarrow\infty}}{{\longrightarrow}}1-\frac{\sin\left(\pi\rho\right)}{\pi}\int\limits_{0}^{1-\varepsilon}u^{\rho-1}\left(1-u\right)^{-\rho}du\stackrel{{\scriptstyle\varepsilon\rightarrow 0}}{{\longrightarrow}}0.

Therefore

limε0lim supnP2(n,ε)=0.\lim_{\varepsilon\rightarrow 0}{\limsup_{n\rightarrow\infty}}P_{2}\left(n,\varepsilon\right)=0. (10)

In view of (3) the probability 𝐏(SiA|Lnk0)\mathbf{P}\left(\left.S_{i}\in A\,\right|\,L_{n-k}\,\geq 0\right) tends, as nn\rightarrow\infty, to 𝐏(Si+A)=𝐏(SiA)\mathbf{P}^{\ast}\left(S_{i}^{+}\in A\,\right)=\mathbf{P}^{\ast}\left(S_{i}^{\ast}\in A\,\right) uniformly over 0k(1ε)n0\leq k\leq\left\lfloor\left(1-\varepsilon\right)n\right\rfloor. Consequently,

limnP1(n,ε)\displaystyle\lim_{n\rightarrow\infty}P_{1}\left(n,\varepsilon\right) =\displaystyle= 𝐏(SiA)limnk=0(1ε)n𝐏(τn=k)\displaystyle\mathbf{P}^{\ast}\left(S_{i}^{\ast}\in A\,\right){\lim_{n\rightarrow\infty}}\sum\limits_{k=0}^{\left\lfloor\left(1-\varepsilon\right)n\right\rfloor}\mathbf{P}\left(\tau_{n}=k\right)
=\displaystyle= 𝐏(SiA)limn𝐏(τn(1ε)n)\displaystyle\mathbf{P}^{\ast}\left(S_{i}^{\ast}\in A\,\right){\lim_{n\rightarrow\infty}}\mathbf{P}\left(\tau_{n}\leq\left\lfloor\left(1-\varepsilon\right)n\right\rfloor\right)
=\displaystyle= 𝐏(SiA)sin(πρ)π01εuρ1(1u)ρ𝑑u\displaystyle\mathbf{P}^{\ast}\left(S_{i}^{\ast}\in A\,\right)\frac{\sin\left(\pi\rho\right)}{\pi}\int\limits_{0}^{1-\varepsilon}u^{\rho-1}\left(1-u\right)^{-\rho}du
ε0𝐏(SiA)\displaystyle\stackrel{{\scriptstyle\varepsilon\rightarrow 0}}{{\longrightarrow}}\mathbf{P}^{\ast}\left(S_{i}^{\ast}\in A\,\right)

implying

limε0limnP1(n,ε)=𝐏(SiA).{\lim_{\varepsilon\rightarrow 0}}{\lim_{n\rightarrow\infty}}P_{1}\left(n,\varepsilon\right)=\mathbf{P}^{\ast}\left(S_{i}^{\ast}\in A\,\right). (11)

It follows from relations (9)-(11) that for i𝐍0i\in\mathbf{N}_{0}

limn𝐏(Si,nA,τn+in)=𝐏(SiA).{\lim_{n\rightarrow\infty}}\mathbf{P}\left(S_{i,n}^{\prime}\in A,\,\tau_{n}+i\leq n\right)=\mathbf{P}^{\ast}\left(S_{i}^{\ast}\in A\,\right).

Thus,

limn𝐏(Si,nA)=𝐏(SiA).{\lim_{n\rightarrow\infty}}\mathbf{P}\left(S_{i,n}^{\prime}\in A\right)=\mathbf{P}^{\ast}\left(S_{i}^{\ast}\in A\,\right). (12)

We now fix i𝐍i\in\mathbf{N}. Let AA be a one-dimensional SiS_{-i}^{\ast}-continuous (relative to the measure 𝐏\mathbf{P}^{\ast}) Borel set. Then for nin\geq i

𝐏(Si,nA,τni0)\displaystyle\mathbf{P}\left(S_{-i,n}^{\prime}\in A,\,\tau_{n}-i\geq 0\right)
=\displaystyle= k=in𝐏(Si,nA,τn=k)\displaystyle\sum\limits_{k=i}^{n}\mathbf{P}\left(S_{-i,n}^{\prime}\in A,\,\tau_{n}=k\right)
=\displaystyle= k=in𝐏(SkiSkA,Sk<Lk1,SkLk+1,n)\displaystyle\sum\limits_{k=i}^{n}\mathbf{P}\left(S_{k-i}-S_{k}\in A,\,S_{k}<L_{k-1},\,S_{k}\leq L_{k+1,n}\right)

and by the Markov property and the duality property of random walks we have that

𝐏(SkiSkA,Sk<Lk1,SkLk+1,n)\displaystyle\mathbf{P}\left(S_{k-i}-S_{k}\in A,\,S_{k}<L_{k-1},\,S_{k}\leq L_{k+1,n}\right)
=\displaystyle= 𝐏(SkiSkA,Sk<Lk1)𝐏(SkLk+1,n)\displaystyle\mathbf{P}\left(S_{k-i}-S_{k}\in A,\,S_{k}<L_{k-1}\right)\mathbf{P}\left(S_{k}\leq L_{k+1,n}\right)
=\displaystyle= 𝐏(SiA,Mk<0)𝐏(SkLk+1,n)\displaystyle\mathbf{P}\left(-S_{i}\in A,\,M_{k}\,<0\right)\mathbf{P}\left(S_{k}\leq L_{k+1,n}\right)
=\displaystyle= 𝐏(SiA|Mk<0)𝐏(Mk<0)𝐏(SkLk+1,n)\displaystyle\mathbf{P}\left(\left.-S_{i}\in A\,\right|\,M_{k}<0\right)\mathbf{P}\left(M_{k}\,<0\right)\mathbf{P}\left(S_{k}\leq L_{k+1,n}\right)
=\displaystyle= 𝐏(SiA|Mk<0)𝐏(τn=k).\displaystyle\mathbf{P}\left(\left.-S_{i}\in A\,\right|\,M_{k}<0\right)\mathbf{P}\left(\tau_{n}=k\right).

Thus,

𝐏(Si,nA,τni0)=k=in𝐏(SiA|Mk<0)𝐏(τn=k),\mathbf{P}\left(S_{-i,n}^{\prime}\in A,\,\tau_{n}-i\geq 0\right)=\sum\limits_{k=i}^{n}\mathbf{P}\left(\left.-S_{i}\in A\,\right|\,M_{k}\,<0\right)\mathbf{P}\left(\tau_{n}=k\right), (13)

therefore, if ε(0,1)\varepsilon\in\left(0,1\right) and nn is large enough, then

𝐏(Si,nA,τni0)=P3(n,ε)+P4(n,ε),\mathbf{P}\left(S_{-i,n}^{\prime}\in A,\,\tau_{n}-i\geq 0\right)=P_{3}\left(n,\varepsilon\right)+P_{4}\left(n,\varepsilon\right),

where

P3(n,ε)=k=iεn𝐏(SiA|Mk<0)𝐏(τn=k),P_{3}\left(n,\varepsilon\right)=\sum\limits_{k=i}^{\left\lfloor\varepsilon n\right\rfloor}\mathbf{P}\left(\left.-S_{i}\in A\,\right|\,M_{k}\,<0\right)\mathbf{P}\left(\tau_{n}=k\right),
P4(n,ε)=k=εn+1n𝐏(SiA|Mk<0)𝐏(τn=k).P_{4}\left(n,\varepsilon\right)=\sum\limits_{k=\left\lfloor\varepsilon n\right\rfloor+1}^{n}\mathbf{P}\left(\left.-S_{i}\in A\,\right|\,M_{k}\,<0\right)\mathbf{P}\left(\tau_{n}=k\right).

It is not difficult to show (see our proof of relation (10)) that

limε0lim supnP3(n,ε)=0.{\lim_{\varepsilon\rightarrow 0}}{\limsup_{n\rightarrow\infty}}P_{3}\left(n,\varepsilon\right)=0.

Due to (4) the probability 𝐏(SiA|Mk<0)\mathbf{P}\left(\left.-S_{-i}\in A\,\right|\,M_{k}\,<0\right) tends, as nn\rightarrow\infty, to 𝐏(SiA)=𝐏(SiA)\mathbf{P}^{\ast}\left(-S_{-i}^{-}\in A\,\right)=\mathbf{P}^{\ast}\left(S_{-i}^{\ast}\in A\,\right) uniformly over εn<kn\left\lfloor\varepsilon n\right\rfloor<k\leq n. Therefore

limε0limnP4(n,ε)=𝐏(SiA).{\lim_{\varepsilon\rightarrow 0}}{\lim_{n\rightarrow\infty}}P_{4}\left(n,\varepsilon\right)=\mathbf{P}^{\ast}\left(S_{-i}^{\ast}\in A\,\right).

As result, we obtain that

limn𝐏(Si,nA,τni0)=𝐏(SiA){\lim_{n\rightarrow\infty}}\mathbf{P}\left(S_{-i,n}^{\prime}\in A,\,\tau_{n}-i\geq 0\right)=\mathbf{P}^{\ast}\left(S_{-i}^{\ast}\in A\,\right)

proving (12) for i𝐙\𝐍0i\in\mathbf{Z\backslash N}_{0}. Thus, convergence of one-dimensional distributions in (6) is established.

The lemma is proved.

Remark 1. It is not difficult to verify (see [16], Lemma 1) that relation (6) admits the following generalization: for any a0a\leq 0 and b>0b>0, as nn\rightarrow\infty,

{Si,n,i𝐙|LnCna,SnLnCnb}D{Si,i𝐙}.\left\{S_{i,n}^{\prime},\,i\in\mathbf{Z}\,\left|\,\frac{L_{n}}{C_{n}}\leq a,\,\frac{S_{n}-L_{n}}{C_{n}}\leq b\right.\right\}\stackrel{{\scriptstyle D}}{{\to}}\left\{S_{i}^{\ast},\,i\in\mathbf{Z}\right\}.

Recall that (Ω,,𝐏)\left(\Omega,\mathcal{F},\mathbf{P}\right) is the underlying probability space. Set

In(2):={(i,j):i,j{0,,n} and ij}.I_{n}^{\left(2\right)}:=\left\{\left(i,j\right):i,j\in\left\{0,\ldots,n\right\}\hbox{ and }i\leq j\right\}.

Let n\mathcal{F}_{n}, n𝐍n\in\mathbf{N}, denote the σ\sigma-algebra generated by the segment of the random environment Q1,,QnQ_{1},\ldots,Q_{n} and the random variables Zi,jZ_{i,j} for (i,j)In(2)\left(i,j\right)\in I_{n}^{\left(2\right)}. We now introduce a probability measure 𝐏+\mathbf{P}^{+} on the σ\sigma-algebra :=σ(n=1n)\mathcal{F}_{\infty}:=\sigma\left(\cup_{n=1}^{\infty}\mathcal{F}_{n}\right), defined for each n𝐍0n\in\mathbf{N}_{0} and each n\mathcal{F}_{n}-measurable nonnegative random variable β\beta by the formula

𝐄+β=𝐄(βv(Sn);Ln0).\mathbf{E}^{+}\beta=\mathbf{E}\left(\beta v\left(S_{n}\right);\,L_{n}\geq 0\right). (14)

This may require a change of the underlying probability space (see [4] for more details). Similarly, we also introduce a probability measure 𝐏\mathbf{P}^{-} on the σ\sigma-algebra \mathcal{F}_{\infty}, defined for each n𝐍0n\in\mathbf{N}_{0} and each n\mathcal{F}_{n}-measurable nonnegative random variable β\beta by the formula

𝐄β=𝐄(βu(Sn);Mn<0).\mathbf{E}^{-}\beta=\mathbf{E}\left(\beta u\left(-S_{n}\right);\,M_{n}<0\right). (15)

Recall that the functions v()v\left(\cdot\right) and u()u\left(\cdot\right) in formulae (14) and (15) are defined after relation (2). Thus, three measures 𝐏,𝐏+,𝐏\mathbf{P},\mathbf{P}^{+},\mathbf{P}^{-} are defined on one and the same measurable space (Ω,)\left(\Omega,\mathcal{F}_{\infty}\right). To explicitly indicate the measure on (Ω,)\left(\Omega,\mathcal{F}_{\infty}\right) according to which we consider this or those random elements we use the measure symbol as a lower index.

For instance, it is shown in Lemma 2.5 from [4] that

{(Qi+,Si+,μi+),i𝐍}=D{(Qi,Si,μi),i𝐍}𝐏+\left\{\left(Q_{i}^{+},S_{i}^{+},\mu_{i}^{+}\right),\,i\in\mathbf{N}\right\}\stackrel{{\scriptstyle D}}{{=}}\left\{\left(Q_{i},S_{i},\mu_{i}\right),\,i\in\mathbf{N}\right\}_{\mathbf{P}^{+}} (16)

(the lower index 𝐏+\mathbf{P}^{+} for a random sequence shows here that the measure 𝐏+\mathbf{P}^{+} is used on the space (Ω,)\left(\Omega,\mathcal{F}_{\infty}\right)). Similarly,

{(Qi,Si,μi),i𝐍}=D{(Qi,Si,μi),i𝐍}𝐏.\left\{\left(Q_{i}^{-},S_{i}^{-},\mu_{i}^{-}\right),\,i\in\mathbf{N}\right\}\stackrel{{\scriptstyle D}}{{=}}\left\{\left(Q_{i},S_{i},\mu_{i}\right),\,i\in\mathbf{N}\right\}_{\mathbf{P}^{-}}. (17)

Due to (16), (17) and our assumption about the independence of the left-hand sides of these relations, the product of probability spaces (Ω,,𝐏+)\left(\Omega,\mathcal{F}_{\infty},\mathbf{P}^{+}\right) and (Ω,,𝐏)\left(\Omega,\mathcal{F}_{\infty},\mathbf{P}^{-}\right) may be considered as a probability space (Ω,,𝐏)\left(\Omega^{\ast},\mathcal{F}^{\ast},\mathbf{P}^{\ast}\right) and, consequently, the direct product of the measures 𝐏+\mathbf{P}^{+} and 𝐏\mathbf{P}^{-} may be treated as the measure 𝐏\mathbf{P}^{\ast}.

Remark 2. If a random element ξ\xi is given on the space (Ω,,𝐏+)\left(\Omega,\mathcal{F}_{\infty},\mathbf{P}^{+}\right) we can define the random element ξ+\xi^{+}, specified on the product of the spaces (Ω,,𝐏+)\left(\Omega,\mathcal{F}_{\infty},\mathbf{P}^{+}\right) and (Ω,,𝐏)\left(\Omega,\mathcal{F}_{\infty},\mathbf{P}^{-}\right) by means of the formula ξ+(ω1,ω2)=ξ(ω1)\xi^{+}\left(\omega_{1},\omega_{2}\right)=\xi\left(\omega_{1}\right) for (ω1,ω2)Ω×Ω\left(\omega_{1},\omega_{2}\right)\in\Omega\times\Omega. It is clear that 𝐏(ξ+A)=𝐏+(ξA)\mathbf{P}^{\ast}\left(\xi^{+}\in A\right)=\mathbf{P}^{+}\left(\xi\in A\right) for an arbitrary one-dimensional Borel set AA. Similarly, if a random element ξ\xi is given on the space (Ω,,𝐏)\left(\Omega,\mathcal{F}_{\infty},\mathbf{P}^{-}\right) we can define the random element ξ\xi^{-}, specified on the product of the spaces (Ω,,𝐏+)\left(\Omega,\mathcal{F}_{\infty},\mathbf{P}^{+}\right) and (Ω,,𝐏)\left(\Omega,\mathcal{F}_{\infty},\mathbf{P}^{-}\right) by means of the formula ξ(ω1,ω2)=ξ(ω2)\xi^{-}\left(\omega_{1},\omega_{2}\right)=\xi\left(\omega_{2}\right) for (ω1,ω2)Ω×Ω\left(\omega_{1},\omega_{2}\right)\in\Omega\times\Omega, and 𝐏(ξA)=𝐏(ξA)\mathbf{P}^{\ast}\left(\xi^{-}\in A\right)=\mathbf{P}^{-}\left(\xi\in A\right) for an arbitrary one-dimensional Borel set AA. In accordance with the agreement we can consider the random elements standing in the left-hand sides of formulae (16) and (17) as generated by the random elements {(Qi,Si,μi),i𝐍}𝐏+\left\{\left(Q_{i},S_{i},\mu_{i}\right),\,i\in\mathbf{N}\right\}_{\mathbf{P}^{+}} and {(Qi,Si,μi),i𝐍}𝐏\left\{\left(Q_{i},S_{i},\mu_{i}\right),\,i\in\mathbf{N}\right\}_{\mathbf{P}^{-}} respectively.

Lemma 2If the Spitzer-Doney condition (2) is satisfied, then, as nn\rightarrow\infty,

{ai,nZi,n,i𝐍0|Ln0}D{ζi,i𝐍0},\left\{\left.a_{i,n}Z_{i,n},\,i\in\mathbf{N}_{0}\,\right|\,L_{n}\,\geq 0\right\}\stackrel{{\scriptstyle D}}{{\to}}\left\{\zeta_{i}^{\ast},\,i\in\mathbf{N}_{0}\right\}, (18)

where {ζi,i𝐍0}\left\{\zeta_{i}^{\ast},\,i\in\mathbf{N}_{0}\right\} is the random sequence defined by relation (5).

Proof. By virtue of the first part of Lemma 2.5 from [4] for k𝐍k\in\mathbf{N}, as nn\rightarrow\infty,

{(ai,j,Zi,j),(i,j)Ik(2)|Ln0}D{(ai,j,Zi,j),(i,j)Ik(2)}𝐏+.\left\{\left.\left(a_{i,j},Z_{i,j}\right),\,\left(i,j\right)\in I_{k}^{\left(2\right)}\,\right|\,L_{n}\,\geq 0\right\}\stackrel{{\scriptstyle D}}{{\to}}\left\{\left(a_{i,j},Z_{i,j}\right),\,\left(i,j\right)\in I_{k}^{\left(2\right)}\right\}_{\mathbf{P}^{+}}.

Note (see [4], Section 3) that in view of (14) for a fixed i𝐍0i\in\mathbf{N}_{0} the random sequence {ηi;Zi,j,j𝐍i+1}𝐏+\left\{\eta_{i};\,Z_{i,j},\,j\in\mathbf{N}_{i+1}\right\}_{\mathbf{P}^{+}} given on the probability space (Ω,,𝐏+)\left(\Omega,\mathcal{F}_{\infty},\mathbf{P}^{+}\right) is a branching process in the random environment {Gi+1;Fn,n𝐍i+1}𝐏+\left\{G_{i+1};\,F_{n},\,n\in\mathbf{N}_{i+1}\right\}_{\mathbf{P}^{+}}. Hence, if the random environment is fixed, the sequence {ηi;ai,jZi,j,j𝐍i+1}𝐏+\left\{\eta_{i};\,a_{i,j}Z_{i,j},\,j\in\mathbf{N}_{i+1}\right\}_{\mathbf{P}^{+}} is a non-negative martingale. Because of this (without assuming that the random environment is fixed) there is 𝐏+\mathbf{P}^{+}-a.s. the finite limit

limnai,nZi,n=:ζi.\lim_{n\rightarrow\infty}a_{i,n}Z_{i,n}=:\zeta_{i}.

It means, in view of the second part of Lemma 2.5 from [4], that, as nn\rightarrow\infty,

{ai,nZi,n,i𝐍0|Ln0}D{ζi,i𝐍0}𝐏+.\left\{\left.a_{i,n}Z_{i,n},\,i\in\mathbf{N}_{0}\,\right|\,L_{n}\,\geq 0\right\}\stackrel{{\scriptstyle D}}{{\to}}\left\{\zeta_{i},\,i\in\mathbf{N}_{0}\right\}_{\mathbf{P}^{+}}.

To prove relation (18), it remains to note that in view of Remark 2

{ζi,i𝐍0}𝐏+=D{ζi,i𝐍0}.\left\{\zeta_{i},\,i\in\mathbf{N}_{0}\right\}_{\mathbf{P}^{+}}\stackrel{{\scriptstyle D}}{{=}}\left\{\zeta_{i}^{\ast},\,i\in\mathbf{N}_{0}\right\}.

The lemma is proved.

Set for n𝐍n\in\mathbf{N}

Zi,n={Zτn+i,n,i𝐍(τn),0,i𝐙𝐍(τn),Z_{i,n}^{\prime}=\left\{\begin{array}[]{c}Z_{\tau_{n}+i,n},\qquad i\in\mathbf{N}_{\left(-\tau_{n}\right)},\\ 0,\qquad i\in\mathbf{Z\setminus N}_{\left(-\tau_{n}\right)},\end{array}\right.
ai,n={an/aτn+i,i𝐍(τn),1,i𝐙𝐍(τn).a_{i,n}^{\prime}=\left\{\begin{array}[]{c}a_{n}/a_{\tau_{n}+i},\qquad i\in\mathbf{N}_{\left(-\tau_{n}\right)},\\ 1,\qquad i\in\mathbf{Z\setminus N}_{\left(-\tau_{n}\right)}.\end{array}\right.

Lemma 3If the Spitzer-Doney condition (2) is satisfied, then, as nn\rightarrow\infty,

{ai,nZi,n,i𝐙}D{ζi,i𝐙},\left\{a_{i,n}^{\prime}Z_{i,n}^{\prime},\,i\in\mathbf{Z}\right\}\stackrel{{\scriptstyle D}}{{\to}}\left\{\zeta_{i}^{\ast},\,i\in\mathbf{Z}\right\}, (19)

where {ζi,i𝐍0}\left\{\zeta_{i}^{\ast},\,i\in\mathbf{N}_{0}\right\} is the random sequence defined by relation (5).

Proof. We demonstrate for simplicity only convergence of one-dimensional distributions. Fix i𝐍0i\in\mathbf{N}_{0}. Let AA be an arbitrary one-dimensional ζi\zeta_{i}^{\ast}-continuous (relative to the measure 𝐏\mathbf{P}^{\ast}) Borel set. Then for nin\geq i

𝐏(ai,nZi,nA,τn+in)\displaystyle\mathbf{P}\left(a_{i,n}^{\prime}Z_{i,n}^{\prime}\in A,\,\tau_{n}+i\leq n\right)
=\displaystyle= k=0ni𝐏(ai,nZi,nA,τn=k)\displaystyle\sum\limits_{k=0}^{n-i}\mathbf{P}\left(a_{i,n}^{\prime}Z_{i,n}^{\prime}\in A,\,\tau_{n}=k\right)
=\displaystyle= k=0ni𝐏(anak+iZk+i,nA,Sk<Lk1,SkLk+1,n)\displaystyle\sum\limits_{k=0}^{n-i}\mathbf{P}\left(\frac{a_{n}}{a_{k+i}}Z_{k+i,n}\in A,\,S_{k}<L_{k-1},\,S_{k}\leq L_{k+1,n}\right)

and

𝐏(anak+iZk+i,nA,Sk<Lk1,SkLk+1,n)\displaystyle\mathbf{P}\left(\frac{a_{n}}{a_{k+i}}Z_{k+i,n}\in A,\,S_{k}<L_{k-1},\,S_{k}\leq L_{k+1,n}\right)
=\displaystyle= 𝐏(Sk<Lk1)𝐏(anak+iZk+i,nA,SkLk+1,n)\displaystyle\mathbf{P}\left(S_{k}<L_{k-1}\right)\mathbf{P}\left(\frac{a_{n}}{a_{k+i}}Z_{k+i,n}\in A,\,S_{k}\leq L_{k+1,n}\right)
=\displaystyle= 𝐏(Sk<Lk1)𝐏(ankaiZi,nkA,Lnk0)\displaystyle\mathbf{P}\left(S_{k}<L_{k-1}\right)\mathbf{P}\left(\frac{a_{n-k}}{a_{i}}Z_{i,n-k}\in A,\,L_{n-k}\,\geq 0\right)
=\displaystyle= 𝐏(ai,nkZi,nkA|Lnk0)𝐏(Sk<Lk1)𝐏(Lnk0)\displaystyle\mathbf{P}\left(\left.a_{i,n-k}Z_{i,n-k}\in A\,\right|\,L_{n-k}\,\geq 0\right)\mathbf{P}\left(S_{k}<L_{k-1}\right)\mathbf{P}\left(L_{n-k}\,\geq 0\right)
=\displaystyle= 𝐏(ai,nkZi,nkA|Lnk0)𝐏(τn=k).\displaystyle\mathbf{P}\left(\left.a_{i,n-k}Z_{i,n-k}\in A\,\right|\,L_{n-k}\,\geq 0\right)\mathbf{P}\left(\tau_{n}=k\right).

Thus,

𝐏(ai,nZi,nA,τn+in)\displaystyle\mathbf{P}\left(a_{i,n}^{\prime}Z_{i,n}^{\prime}\in A,\,\tau_{n}+i\leq n\right)
=\displaystyle= k=0ni𝐏(ai,nkZi,nkA|Lnk0)𝐏(τn=k).\displaystyle\sum\limits_{k=0}^{n-i}\mathbf{P}\left(\left.a_{i,n-k}Z_{i,n-k}\in A\,\right|\,L_{n-k}\,\geq 0\right)\mathbf{P}\left(\tau_{n}=k\right).

Therefore, if ε(0,1)\varepsilon\in\left(0,1\right) and nn is large enough, then

𝐏(ai,nZi,nA,τn+in)=P1(n,ε)+P2(n,ε),\mathbf{P}\left(a_{i,n}^{\prime}Z_{i,n}^{\prime}\in A,\,\tau_{n}+i\leq n\right)=P_{1}\left(n,\varepsilon\right)+P_{2}\left(n,\varepsilon\right),

where

P1(n,ε)=k=0(1ε)n𝐏(ai,nkZi,nkA|Lnk0)𝐏(τn=k),P_{1}\left(n,\varepsilon\right)=\sum\limits_{k=0}^{\left\lfloor\left(1-\varepsilon\right)n\right\rfloor}\mathbf{P}\left(\left.a_{i,n-k}Z_{i,n-k}\in A\,\right|\,L_{n-k}\,\geq 0\right)\mathbf{P}\left(\tau_{n}=k\right),
P2(n,ε)=k=(1ε)n+1ni𝐏(ai,nkZi,nkA|Lnk0)𝐏(τn=k).P_{2}\left(n,\varepsilon\right)=\sum\limits_{k=\left\lfloor\left(1-\varepsilon\right)n\right\rfloor+1}^{n-i}\mathbf{P}\left(\left.a_{i,n-k}Z_{i,n-k}\in A\,\right|\,L_{n-k}\,\geq 0\right)\mathbf{P}\left(\tau_{n}=k\right).

It is easy to show (see the proof of relation (10)) that

limε0lim supnP2(n,ε)=0.{\lim_{\varepsilon\rightarrow 0}}{\limsup_{n\rightarrow\infty}}P_{2}\left(n,\varepsilon\right)=0.

By Lemma 2 the probability 𝐏(ai,nkZi,nkA|Lnk0)\mathbf{P}\left(\left.a_{i,n-k}Z_{i,n-k}\in A\,\right|\,L_{n-k}\,\geq 0\right) tends, as nn\rightarrow\infty, to 𝐏(ζiA)\mathbf{P}^{\ast}\left(\zeta_{i}^{\ast}\in A\,\right) uniformly over 0k(1ε)n0\leq k\leq\left\lfloor\left(1-\varepsilon\right)n\right\rfloor. Therefore

limε0limnP1(n,ε)=𝐏(ζiA).{\lim_{\varepsilon\rightarrow 0}}{\lim_{n\rightarrow\infty}}P_{1}\left(n,\varepsilon\right)=\mathbf{P}^{\ast}\left(\zeta_{i}^{\ast}\in A\,\right).

As result, we obtain that

limn𝐏(ai,nZi,nA,τn+in)=𝐏(ζiA).{\lim_{n\rightarrow\infty}}\mathbf{P}\left(a_{i,n}^{\prime}Z_{i,n}^{\prime}\in A,\,\tau_{n}+i\leq n\right)=\mathbf{P}^{\ast}\left(\zeta_{i}^{\ast}\in A\,\right).

This justifies the one-dimensional convergence in (19) for i𝐍0i\in\mathbf{N}_{0}.

Now fix i𝐍i\in\mathbf{N}. Then for x0x\geq 0 and nin\geq i

𝐏(ai,nZi,nx,τni0)\displaystyle\mathbf{P}\left(a_{-i,n}^{\prime}Z_{-i,n}^{\prime}\leq x,\,\tau_{n}-i\geq 0\right) (20)
=\displaystyle= k=in𝐏(ai,nZi,nx,τn=k)\displaystyle\sum\limits_{k=i}^{n}\mathbf{P}\left(a_{-i,n}^{\prime}Z_{-i,n}^{\prime}\leq x,\,\tau_{n}=k\right)
=\displaystyle= k=in𝐏(anakiZki,nx,Sk<Lk1,SkLk+1,n).\displaystyle\sum\limits_{k=i}^{n}\mathbf{P}\left(\frac{a_{n}}{a_{k-i}}Z_{k-i,n}\leq x,\,S_{k}<L_{k-1},\,S_{k}\leq L_{k+1,n}\right).

Note that the random sequence {(Zki,n,aki,n),n𝐍ki}\left\{\left(Z_{k-i,n},a_{k-i,n}\right),\,n\in\mathbf{N}_{k-i}\right\} is Markovian. Denote by Zk,n(l)Z_{k,n}\left(l\right) the number of particles of nnth generation being descendants of ll particles of kkth generation. Since Zki,n=DZk,n(l)Z_{k-i,n}\stackrel{{\scriptstyle D}}{{=}}Z_{k,n}\left(l\right) given Zki,k=lZ_{k-i,k}=l, it follows that

𝐏(anakiZki,nx,Sk<Lk1,SkLk+1,n)\displaystyle\mathbf{P}\left(\frac{a_{n}}{a_{k-i}}Z_{k-i,n}\leq x,\,S_{k}<L_{k-1},\,S_{k}\leq L_{k+1,n}\right)
=\displaystyle= 𝐄(U(Zki,k,aki,k);Sk<Lk1),\displaystyle\mathbf{E}\left(U\left(Z_{k-i,k},a_{k-i,k}\right);\,S_{k}<L_{k-1}\right),

where

U(l,y)=𝐏(ak,nZk,n(l)xy,SkLk+1,n).U\left(l,y\right)=\mathbf{P}\left(a_{k,n}Z_{k,n}\left(l\right)\leq\frac{x}{y},\,S_{k}\leq L_{k+1,n}\right).

Clearly,

U(l,y)=𝐏(a0,nkZ0,nk(l)xy,Lnk0).U\left(l,y\right)=\mathbf{P}\left(a_{0,n-k}Z_{0,n-k}\left(l\right)\leq\frac{x}{y},\,L_{n-k}\,\geq 0\right).

As result, we obtain that

𝐏(anakiZki,nx,Sk<Lk1,SkLk+1,n)\displaystyle\mathbf{P}\left(\frac{a_{n}}{a_{k-i}}Z_{k-i,n}\leq x,\,S_{k}<L_{k-1},\,S_{k}\leq L_{k+1,n}\right) (21)
=\displaystyle= 𝐄(Hnk(Zki,k,xaki,k)|Sk<Lk1)𝐏(Sk<Lk1)𝐏(Lnk0)\displaystyle\mathbf{E}\left(\left.H_{n-k}\left(Z_{k-i,k},\frac{x}{a_{k-i,k}}\right)\,\right|\,S_{k}<L_{k-1}\right)\mathbf{P}\left(S_{k}<L_{k-1}\right)\mathbf{P}\left(L_{n-k}\,\geq 0\right)
=\displaystyle= 𝐄(Hnk(Zki,k,x/aki,k)|Sk<Lk1)𝐏(τn=k),\displaystyle\mathbf{E}\left(\left.H_{n-k}\left(Z_{k-i,k},x/a_{k-i,k}\right)\,\right|\,S_{k}<L_{k-1}\right)\mathbf{P}\left(\tau_{n}=k\right),

where

Hn(l,x)=𝐏(a0,nZ0,n(l)x|Ln0)H_{n}\left(l,x\right)=\mathbf{P}\left(\left.a_{0,n}Z_{0,n}\left(l\right)\leq x\,\right|\,L_{n}\,\geq 0\right)

for l𝐍0l\in\mathbf{N}_{0} and x0x\geq 0.

Set Qk,l=(Qk,,Ql)Q_{k,l}=\left(Q_{k},\ldots,Q_{l}\right) for k,l𝐍k,l\in\mathbf{N}. In the sequel, we will to explicitly include a random environment in the notation. For example, we will write Zki,kQki+1,kZ_{k-i,k}\left\langle Q_{k-i+1,k}\right\rangle instead of Zki,kZ_{k-i,k}. Set

Qk=Q~1,,Qki+1=Q~i,,Q1=Q~kQ_{k}=\widetilde{Q}_{1},\ldots,Q_{k-i+1}=\widetilde{Q}_{i},\ldots,Q_{1}=\widetilde{Q}_{k}

and consider a branching process with immigration in the random environment Q~1,,Q~k\widetilde{Q}_{1},\ldots,\widetilde{Q}_{k}. Then

𝐄(Hnk(Zki,kQki+1,k,x/aki,k)|Sk<Lk1)=𝐄(Hnk(Z0,iQ~i,1,x/a~0,i)|M~k<0),\begin{array}[]{c}\mathbf{E}\left(\left.H_{n-k}\left(Z_{k-i,k}\left\langle Q_{k-i+1,k}\right\rangle,x/a_{k-i,k}\right)\,\right|\,S_{k}<L_{k-1}\right)\\ =\mathbf{E}\left(\left.H_{n-k}\left(Z_{0,i}\left\langle\widetilde{Q}_{i,1}\right\rangle,x/\widetilde{a}_{0,i}\right)\,\right|\,\widetilde{M}_{k}\,<0\right),\end{array}

where the symbols a~0,i,M~k,Q~i,1\widetilde{a}_{0,i},\widetilde{M}_{k},\widetilde{Q}_{i,1} have the same meaning for the random environment Q~1,,,Q~k\widetilde{Q}_{1},,\ldots,\widetilde{Q}_{k} as the symbols a0,i,Mk,Qi,1a_{0,i},M_{k},Q_{i,1} mean for the random environment Q1,,QkQ_{1},\ldots,Q_{k}. Further, the random environments Q~1,,,Q~k\widetilde{Q}_{1},,\ldots,\widetilde{Q}_{k} and Q1,,,QkQ_{1},,\ldots,Q_{k} are identically distributed. Therefore

𝐄(Hnk(Z0,iQ~i,1,x/a~0,i)|M~k<0)\displaystyle\mathbf{E}\left(\left.H_{n-k}\left(Z_{0,i}\left\langle\widetilde{Q}_{i,1}\right\rangle,x/\widetilde{a}_{0,i}\right)\,\right|\,\widetilde{M}_{k}\,<0\right)
=\displaystyle= 𝐄(Hnk(Z0,iQi,1,x/a0,i)|Mk<0).\displaystyle\mathbf{E}\left(\left.H_{n-k}\left(Z_{0,i}\left\langle Q_{i,1}\right\rangle,x/a_{0,i}\right)\,\right|\,M_{k}\,<0\right).

As result, we obtain that

𝐄(Hnk(Zki,kQki+1,k,x/aki,k)|Sk<Lk1)\displaystyle\mathbf{E}\left(\left.H_{n-k}\left(Z_{k-i,k}\left\langle Q_{k-i+1,k}\right\rangle,x/a_{k-i,k}\right)\,\right|\,S_{k}<L_{k-1}\right) (22)
=\displaystyle= 𝐄(Hnk(Z0,iQi,1,x/a0,i)|Mk<0).\displaystyle\mathbf{E}\left(\left.H_{n-k}\left(Z_{0,i}\left\langle Q_{i,1}\right\rangle,x/a_{0,i}\right)\,\right|\,M_{k}\,<0\right).

Set ψi=Z0,iQi,1\psi_{i}=Z_{0,i}\left\langle Q_{i,1}\right\rangle. We have from (20)-(22) that

𝐏(ai,nZi,nx,τni0)\displaystyle\mathbf{P}\left(a_{-i,n}^{\prime}Z_{-i,n}^{\prime}\leq x,\,\tau_{n}-i\geq 0\right)
=\displaystyle= k=in𝐄(Hnk(ψi,x/a0,i)|Mk<0)𝐏(τn=k).\displaystyle\sum\limits_{k=i}^{n}\mathbf{E}\left(\left.H_{n-k}\left(\psi_{i},x/a_{0,i}\right)\,\right|\,M_{k}\,<0\right)\mathbf{P}\left(\tau_{n}=k\right).

Therefore, if ε(0,1)\varepsilon\in\left(0,1\right) and nn is large enough, then

𝐏(ai,nZi,nx,τni0)=P3(n,ε)+P4(n,ε)+P5(n,ε),\mathbf{P}\left(a_{-i,n}^{\prime}Z_{-i,n}^{\prime}\leq x,\,\tau_{n}-i\geq 0\right)=P_{3}\left(n,\varepsilon\right)+P_{4}\left(n,\varepsilon\right)+P_{5}\left(n,\varepsilon\right), (23)

where

P3(n,ε)=k=iεn𝐄(Hnk(ψi,x/a0,i)|Mk<0)𝐏(τn=k),P_{3}\left(n,\varepsilon\right)=\sum\limits_{k=i}^{\left\lfloor\varepsilon n\right\rfloor}\mathbf{E}\left(\left.H_{n-k}\left(\psi_{i},x/a_{0,i}\right)\,\right|\,M_{k}\,<0\right)\mathbf{P}\left(\tau_{n}=k\right),
P4(n,ε)=k=(1ε)n+1n𝐄(Hnk(ψi,x/a0,i)|Mk<0)𝐏(τn=k),P_{4}\left(n,\varepsilon\right)=\sum\limits_{k=\left\lfloor\left(1-\varepsilon\right)n\right\rfloor+1}^{n}\mathbf{E}\left(\left.H_{n-k}\left(\psi_{i},x/a_{0,i}\right)\,\right|\,M_{k}\,<0\right)\mathbf{P}\left(\tau_{n}=k\right),
P5(n,ε)=k=εn+1(1ε)n𝐄(Hnk(ψi,x/a0,i)|Mk<0)𝐏(τn=k).P_{5}\left(n,\varepsilon\right)=\sum\limits_{k=\left\lfloor\varepsilon n\right\rfloor+1}^{\left\lfloor\left(1-\varepsilon\right)n\right\rfloor}\mathbf{E}\left(\left.H_{n-k}\left(\psi_{i},x/a_{0,i}\right)\,\right|\,M_{k}\,<0\right)\mathbf{P}\left(\tau_{n}=k\right).

Similar to relation (10) we conclude that

limε0lim supnP3(n,ε)=0,{\lim_{\varepsilon\rightarrow 0}}{\limsup_{n\rightarrow\infty}}P_{3}\left(n,\varepsilon\right)=0, (24)
limε0lim supnP4(n,ε)=0.{\lim_{\varepsilon\rightarrow 0}}{\limsup_{n\rightarrow\infty}}P_{4}\left(n,\varepsilon\right)=0. (25)

Let l𝐍0l\in\mathbf{N}_{0} be fixed. It is not difficult to demonstrate that

limna0,nZ0,n(l)=:ζ0(l)\lim_{n\rightarrow\infty}a_{0,n}Z_{0,n}\left(l\right)=:\zeta_{0}\left(l\right) (26)

exists a.s. on the probability space (Ω,,𝐏+)\left(\Omega,\mathcal{F}_{\infty},\mathbf{P}^{+}\right). By the arguments to those used in Lemma 2 one can show, as nn\rightarrow\infty,

{a0,nZ0,n(l),i𝐍0|Ln0}D{ζ0(l),i𝐍0}𝐏+.\left\{\left.a_{0,n}Z_{0,n}\left(l\right),\,i\in\mathbf{N}_{0}\,\right|\,L_{n}\,\geq 0\right\}\stackrel{{\scriptstyle D}}{{\to}}\left\{\zeta_{0}\left(l\right),\,i\in\mathbf{N}_{0}\right\}_{\mathbf{P}^{+}}. (27)

For x0x\geq 0 set

H(l,x)=𝐏+(ζ0(l)x).H\left(l,x\right)=\mathbf{P}^{+}\left(\zeta_{0}\left(l\right)\leq x\right).

It follows from (27) that

limnHn(l,x)=H(l,x)\lim_{n\rightarrow\infty}H_{n}\left(l,x\right)=H\left(l,x\right) (28)

if x0x\geq 0 belongs to the set of continuity points of H(l,)H\left(l,\cdot\right) (with respect to the second argument). By Lemma 2.5 in [4]

{Z0,iQi,1,a0,i|Mn<0}D(Z0,iQi,1,a0,i)𝐏\left\{\left.Z_{0,i}\left\langle Q_{i,1}\right\rangle,a_{0,i}\,\right|\,M_{n}\,<0\right\}\stackrel{{\scriptstyle D}}{{\to}}\left(Z_{0,i}\left\langle Q_{i,1}\right\rangle,a_{0,i}\right)_{\mathbf{P}^{-}}

as nn\rightarrow\infty. Therefore

{ψi,a0,i|Mn<0}D(Zi,0,ai,0).\left\{\left.\psi_{i},a_{0,i}\,\right|\,M_{n}\,<0\right\}\stackrel{{\scriptstyle D}}{{\to}}\left(Z_{-i,0}^{\ast},a_{-i,0}^{\ast}\right). (29)

We show that, for fixed l𝐍0l\in\mathbf{N}_{0} and K>0K>0

limn𝐄(Hnk(l,x/a0,i)I{ψi=l,x/a0,iK}|Mk<0)\displaystyle\lim_{n\rightarrow\infty}\mathbf{E}\left(\left.H_{n-k}\left(l,x/a_{0,i}\right)I_{\left\{\psi_{i}=l,\,x/a_{0,i}\leq K\right\}}\,\right|\,M_{k}\,<0\right) (30)
=\displaystyle= 𝐄(H(l,x/ai,0);Zi,0=l,x/ai,0K)\displaystyle\mathbf{E}^{\ast}\left(H\left(l,x/a_{-i,0}^{\ast}\right);\,Z_{-i,0}^{\ast}=l,\,x/a_{-i,0}^{\ast}\leq K\right)

uniformly over εn<k(1ε)n\left\lfloor\varepsilon n\right\rfloor<k\leq\left\lfloor\left(1-\varepsilon\right)n\right\rfloor (here IAI_{A} is the indicator of the event AA). Let 0=x0<x1<<xm=K0=x_{0}<x_{1}<\ldots<x_{m}=K for some m𝐍m\in\mathbf{N}. The monotonicity of the function H(l,)H\left(l,\cdot\right) with respect to the second argument gives

𝐄(Hnk(l,x/a0,i)I{ψi=l,x/a0,iK}|Mk<0)\displaystyle\mathbf{E}\left(\left.H_{n-k}\left(l,x/a_{0,i}\right)I_{\left\{\psi_{i}=l,\,x/a_{0,i}\leq K\right\}}\,\right|\,M_{k}\,<0\right) (31)
=\displaystyle= j=1m𝐄(Hnk(l,x/a0,i)I{ψi=l,xj1<x/a0,ixj}|Mk<0)\displaystyle\sum\limits_{j=1}^{m}\mathbf{E}\left(\left.H_{n-k}\left(l,x/a_{0,i}\right)I_{\left\{\psi_{i}=l,\,x_{j-1}<x/a_{0,i}\leq x_{j}\right\}}\,\right|\,M_{k}\,<0\right)
\displaystyle\leq j=1mHnk(l,xj)𝐏(ψi=l,xj1<x/a0,ixj|Mk<0).\displaystyle\sum\limits_{j=1}^{m}H_{n-k}\left(l,x_{j}\right)\mathbf{P}\left(\left.\psi_{i}=l,\,x_{j-1}<x/a_{0,i}\leq x_{j}\,\right|\,M_{k}\,<0\right).

In view of (28) and (29) the right-hand side of (31) converges, as nn\rightarrow\infty, to

j=1mH(l,xj)𝐏(Zi,0=l,xj1<x/ai,0xj)\sum\limits_{j=1}^{m}H\left(l,x_{j}\right)\mathbf{P}^{\ast}\left(Z_{-i,0}^{\ast}=l,\,x_{j-1}<x/a_{-i,0}^{\ast}\leq x_{j}\right)

uniformly over εn<k(1ε)n\left\lfloor\varepsilon n\right\rfloor<k\leq\left\lfloor\left(1-\varepsilon\right)n\right\rfloor, if the selected x1,,xmx_{1},\ldots,x_{m} are simultaneously the continuity points of H(l,)H\left(l,\cdot\right) with respect to the second argument and of 𝐏(Zi,0=l,x/ai,0y)\mathbf{P}^{\ast}\left(Z_{-i,0}^{\ast}=l,\,x/a_{-i,0}^{\ast}\leq y\right) with respect to yy. Thus, if δ>0\delta>0 and nn is large enough, the following inequality holds

𝐄(Hnk(l,x/a0,i)I{ψi=l,x/a0,iK}|Mk<0)\displaystyle\mathbf{E}\left(\left.H_{n-k}\left(l,x/a_{0,i}\right)I_{\left\{\psi_{i}=l,\,x/a_{0,i}\leq K\right\}}\,\right|\,M_{k}\,<0\right) (32)
\displaystyle\leq j=1mH(l,xj)𝐏(Zi,0=l,xj1<(ai,0)1xxj)+δ\displaystyle\sum\limits_{j=1}^{m}H\left(l,x_{j}\right)\mathbf{P}^{\ast}\left(Z_{-i,0}^{\ast}=l,\,x_{j-1}<\left(a_{-i,0}^{\ast}\right)^{-1}x\leq x_{j}\right)+\delta

for εn<k(1ε)n\left\lfloor\varepsilon n\right\rfloor<k\leq\left\lfloor\left(1-\varepsilon\right)n\right\rfloor. Similarly, if δ>0\delta>0 and nn is large enough, then

𝐄(Hnk(l,x/a0,i)I{ψi=l,x/a0,iK}|Mk<0)\displaystyle\mathbf{E}\left(\left.H_{n-k}\left(l,x/a_{0,i}\right)I_{\left\{\psi_{i}=l,\,x/a_{0,i}\leq K\right\}}\,\right|\,M_{k}\,<0\right) (33)
\displaystyle\geq j=1mH(l,xj1)𝐏(Zi,0=l,xj1<x/ai,0xj)δ\displaystyle\sum\limits_{j=1}^{m}H\left(l,x_{j-1}\right)\mathbf{P}^{\ast}\left(Z_{-i,0}^{\ast}=l,\,x_{j-1}<x/a_{-i,0}^{\ast}\leq x_{j}\right)-\delta

for εn<k(1ε)n\left\lfloor\varepsilon n\right\rfloor<k\leq\left\lfloor\left(1-\varepsilon\right)n\right\rfloor. Since 0H(l,x)10\leq H\left(l,x\right)\leq 1 for x0x\geq 0, the sums in the right-hand sides of (32) and (33) converge, as max1jm(xjxj1)0\max_{1\leq j\leq m}\left(x_{j}-x_{j-1}\right)\rightarrow 0, to (see [17], Chapter 2, § 6, Section 11)

𝐄[H(l,x/ai,0);Zi,0=l,x/ai,0K].\mathbf{E}^{\ast}\left[H\left(l,x/a_{-i,0}^{\ast}\right);\,Z_{-i,0}^{\ast}=l,\,x/a_{-i,0}^{\ast}\leq K\right].

Hence, if δ>0\delta>0 and nn is large enough, then

𝐄(H(l,x/ai,0);Zi,0=l,x/ai,0K)δ\displaystyle\mathbf{E}^{\ast}\left(H\left(l,x/a_{-i,0}^{\ast}\right);\,Z_{-i,0}^{\ast}=l,\,x/a_{-i,0}^{\ast}\leq K\right)-\delta
\displaystyle\leq 𝐄(Hnk(l,x/a0,i)I{ψi=l,x/a0,iK}|Mk<0)\displaystyle\mathbf{E}\left(\left.H_{n-k}\left(l,x/a_{0,i}\right)I_{\left\{\psi_{i}=l,\,x/a_{0,i}\leq K\right\}}\,\right|\,M_{k}\,<0\right)
\displaystyle\leq 𝐄(H(l,x/ai,0);Zi,0=l,x/ai,0K)+δ\displaystyle\mathbf{E}^{\ast}\left(H\left(l,x/a_{-i,0}^{\ast}\right);\,Z_{-i,0}^{\ast}=l,\,x/a_{-i,0}^{\ast}\leq K\right)+\delta

for εn<k(1ε)n\left\lfloor\varepsilon n\right\rfloor<k\leq\left\lfloor\left(1-\varepsilon\right)n\right\rfloor. Since δ>0\delta>0 is arbitrary, we obtain the required relation (30).

Now we show that

limn𝐄(Hnk(ψi,x/a0,i)|Mk<0)=𝐄H(Zi,0,x/ai,0)\lim_{n\rightarrow\infty}\mathbf{E}\left(\left.H_{n-k}\left(\psi_{i},x/a_{0,i}\right)\,\right|\,M_{k}\,<0\right)=\mathbf{E}^{\ast}H\left(Z_{-i,0}^{\ast},x/a_{-i,0}^{\ast}\right) (34)

uniformly over εn<k(1ε)n\left\lfloor\varepsilon n\right\rfloor<k\leq\left\lfloor\left(1-\varepsilon\right)n\right\rfloor. For N𝐍N\in\mathbf{N} and K>0K>0 we write

𝐄(Hnk(ψi,x/a0,i)|Mk<0)=E1(k,n,N,K)+E2(k,n,N,K),\mathbf{E}\left(\left.H_{n-k}\left(\psi_{i},x/a_{0,i}\right)\,\right|\,M_{k}\,<0\right)=E_{1}\left(k,n,N,K\right)+E_{2}\left(k,n,N,K\right), (35)

where

E1(k,n,N,K)=𝐄(Hnk(ψi,x/a0,i)I{ψiN,x/a0,iK}|Mk<0),E_{1}\left(k,n,N,K\right)=\mathbf{E}\left(\left.H_{n-k}\left(\psi_{i},x/a_{0,i}\right)I_{\left\{\psi_{i}\leq N,\,x/a_{0,i}\leq K\right\}}\,\right|\,M_{k}\,<0\right),
E2(k,n,N,K)=𝐄(Hnk(ψi,x/a0,i)I{ψi>N}{x/a0,i>K}|Mk<0).E_{2}\left(k,n,N,K\right)=\mathbf{E}\left(\left.H_{n-k}\left(\psi_{i},x/a_{0,i}\right)I_{\left\{\psi_{i}>N\right\}\cup\left\{x/a_{0,i}>K\right\}}\,\right|\,M_{k}\,<0\right).

Since

E2(k,n,N,K)𝐏({ψi>N}{x/a0,i>K}|Mk<0),E_{2}\left(k,n,N,K\right)\leq\mathbf{P}\left(\left.\left\{\psi_{i}>N\right\}\cup\left\{x/a_{0,i}>K\right\}\,\right|\,M_{k}\,<0\right),

it follows by (29) that

limKlimNlim supnE2(k,n,N,K)=0{\lim_{K\rightarrow\infty}}{\lim_{N\rightarrow\infty}}{\limsup_{n\rightarrow\infty}}E_{2}\left(k,n,N,K\right)=0 (36)

uniformly over εn<k(1ε)n\left\lfloor\varepsilon n\right\rfloor<k\leq\left\lfloor\left(1-\varepsilon\right)n\right\rfloor. Clearly,

E1(k,n,N,K)=l=0N𝐄(Hnk(l,x/a0,i)I{ψi=l,x/a0,iK}|Mk<0).E_{1}\left(k,n,N,K\right)=\sum\limits_{l=0}^{N}\mathbf{E}\left(\left.H_{n-k}\left(l,x/a_{0,i}\right)I_{\left\{\psi_{i}=l,\,x/a_{0,i}\leq K\right\}}\,\right|\,M_{k}\,<0\right).

Hence, using (30) we conclude that

limKlimNlimnE1(k,n,N,K)=𝐄H(Zi,0,x/ai,0).{\lim_{K\rightarrow\infty}}{\lim_{N\rightarrow\infty}}\lim_{n\rightarrow\infty}E_{1}\left(k,n,N,K\right)=\mathbf{E}^{\ast}H\left(Z_{-i,0}^{\ast},x/a_{-i,0}^{\ast}\right). (37)

uniformly over εn<k(1ε)n\left\lfloor\varepsilon n\right\rfloor<k\leq\left\lfloor\left(1-\varepsilon\right)n\right\rfloor. Combining (35)-(37) we obtain the desired relation (34).

It follows from (34) that

limε0limnP5(n,ε)=𝐄H(Zi,0,x/ai,0).\lim_{\varepsilon\rightarrow 0}\lim_{n\rightarrow\infty}P_{5}\left(n,\varepsilon\right)=\mathbf{E}^{\ast}H\left(Z_{-i,0}^{\ast},x/a_{-i,0}^{\ast}\right). (38)

Now (23)-(25) and (38) imply

limn𝐏(ai,nZi,nx,τni0)=𝐄H(Zi,0,x/ai,0).\lim_{n\rightarrow\infty}\mathbf{P}\left(a_{-i,n}^{\prime}Z_{-i,n}^{\prime}\leq x,\,\tau_{n}-i\geq 0\right)=\mathbf{E}^{\ast}H\left(Z_{-i,0}^{\ast},x/a_{-i,0}^{\ast}\right).

Hence,

limn𝐏(ai,nZi,nx)=𝐄H(Zi,0,x/ai,0).\lim_{n\rightarrow\infty}\mathbf{P}\left(a_{-i,n}^{\prime}Z_{-i,n}^{\prime}\leq x\right)=\mathbf{E}^{\ast}H\left(Z_{-i,0}^{\ast},x/a_{-i,0}^{\ast}\right). (39)

We now analyze a branching process with immigration in the random environment {Qk,k𝐙}\left\{Q_{k}^{\ast},\,k\in\mathbf{Z}\right\}. The random sequence {(Zi,n,ai,n),n𝐍i}\left\{\left(Z_{-i,n}^{\ast},a_{-i,n}^{\ast}\right),\,n\in\mathbf{N}_{-i}\right\} is Markovian. Denote by Zk,n(l)Z_{k,n}^{\ast}\left(l\right) the number of particles in nnth generation which are descendants of ll particles of the kkth generation. Note that

{(Z0,n(l),a0,n),n𝐍0}=D{(Z0,n(l),a0,n),n𝐍0}𝐏+.\left\{\left(Z_{0,n}^{\ast}\left(l\right),a_{0,n}^{\ast}\right),\,n\in\mathbf{N}_{0}\right\}\stackrel{{\scriptstyle D}}{{=}}\left\{\left(Z_{0,n}\left(l\right),a_{0,n}\right),\,n\in\mathbf{N}_{0}\right\}_{\mathbf{P}^{+}}. (40)

Since Zi,n=DZ0,n(l)Z_{-i,n}^{\ast}\stackrel{{\scriptstyle D}}{{=}}Z_{0,n}^{\ast}\left(l\right) given Zi,0=lZ_{-i,0}^{\ast}=l, it follows that, for any bounded and continuous function f:𝐑𝐑f:\mathbf{R}\rightarrow\mathbf{R} and n𝐍in\in\mathbf{N}_{-i},

𝐄f(ai,nZi,n)=𝐄Vn(Zi,0,1/ai,0),\mathbf{E}^{\ast}f\left(a_{-i,n}^{\ast}Z_{-i,n}^{\ast}\right)=\mathbf{E}^{\ast}V_{n}\left(Z_{-i,0}^{\ast},1/a_{-i,0}^{\ast}\right), (41)

where

Vn(l,y)=𝐄f(a0,nZ0,n(l)/y).V_{n}\left(l,y\right)=\mathbf{E}^{\ast}f\left(a_{0,n}^{\ast}Z_{0,n}^{\ast}\left(l\right)/y\right).

By (40)

Vn(l,y)=𝐄+f(a0,nZ0,n(l)/y).V_{n}\left(l,y\right)=\mathbf{E}^{+}f\left(a_{0,n}Z_{0,n}\left(l\right)/y\right). (42)

In view of (5), as nn\rightarrow\infty,

ai,nZi,nDζi,a_{-i,n}^{\ast}Z_{-i,n}^{\ast}\stackrel{{\scriptstyle D}}{{\to}}\zeta_{-i}^{\ast}, (43)

and in view of (26)

(a0,nZ0,n(l))𝐏+D(ζ0(l))𝐏+.\left(a_{0,n}Z_{0,n}\left(l\right)\right)_{\mathbf{P}^{+}}\stackrel{{\scriptstyle D}}{{\to}}\left(\zeta_{0}\left(l\right)\right)_{\mathbf{P}^{+}}. (44)

Using (42), (44) and applying the dominated convergence theorem we see that

limnVn(l,y)=V(l,y),\lim_{n\rightarrow\infty}V_{n}\left(l,y\right)=V\left(l,y\right), (45)

where

V(l,y)=𝐄+f(ζ0(l)/y).V\left(l,y\right)=\mathbf{E}^{+}f\left(\zeta_{0}\left(l\right)/y\right).

Applying the dominated convergence theorem again we obtain from (41), (43) and (45) that

𝐄f(ζi)=𝐄V(Zi,0,1/ai,0).\mathbf{E}^{\ast}f\left(\zeta_{-i}^{\ast}\right)=\mathbf{E}^{\ast}V\left(Z_{-i,0}^{\ast},1/a_{-i,0}^{\ast}\right). (46)

Fix x0x\geq 0. As relation (46) is valid for any bounded and continuous function ff, it is valid, even when a function ff is the indicator of the semi-axis (,x]\left(-\infty,x\right]. It means that

𝐏(ζix)=𝐄H(Zi,0,x/ai,0)\mathbf{P}^{\ast}\left(\zeta_{-i}^{\ast}\leq x\right)=\mathbf{E}^{\ast}H\left(Z_{-i,0}^{\ast},x/a_{-i,0}^{\ast}\right) (47)

(we take into account that V(l,y)=H(l,xy)V\left(l,y\right)=H\left(l,xy\right) for the specified function ff).

Equalities (39) and (47) imply the one-dimensional convergence in relation (19) for i𝐙𝐍0i\in\mathbf{Z\setminus N}_{0}.

The lemma is proved.

Remark 3. It is not difficult to verify that (19) admits the following generalization: for any a0a\leq 0 and b>0b>0, as nn\rightarrow\infty,

{ai,nZi,n,i𝐙|LnCna,SnLnCnb}D{ζi,i𝐙}.\left\{a_{i,n}^{\prime}Z_{i,n}^{\prime},\,i\in\mathbf{Z}\,\left|\,\frac{L_{n}}{C_{n}}\leq a,\,\frac{S_{n}-L_{n}}{C_{n}}\leq b\right.\right\}\stackrel{{\scriptstyle D}}{{\to}}\left\{\zeta_{i}^{\ast},\,i\in\mathbf{Z}\right\}.

Lemma 4. If the conditions of Theorem 1 are satisfied, then 𝐏\mathbf{P}^{\ast}-a.s.

Σ1<+,Σ2<+.\Sigma_{1}<+\infty,\qquad\Sigma_{2}<+\infty.

Proof. It is shown in Lemma 2.7 from [4] that, if the conditions of Theorem 1 are satisfied, then the series i=0μi+1eSi\sum\nolimits_{i=0}^{\infty}\mu_{i+1}e^{-S_{i}}\ converges 𝐏+\mathbf{P}^{+}-a.s. Hence, the series i=0μi+1+eSi+\sum\nolimits_{i=0}^{\infty}\mu_{i+1}^{+}e^{-S_{i}^{+}} converges 𝐏\mathbf{P}^{\ast}-a.s. Similarly we can prove that the series i=1μieSi\sum\nolimits_{i=1}^{\infty}\mu_{i}^{-}e^{S_{i}^{-}} converges 𝐏\mathbf{P}^{\ast}-a.s. As result, we obtain that the series i𝐙μi+1eSi\sum\nolimits_{i\in\mathbf{Z}}\mu_{i+1}^{\ast}e^{-S_{i}^{\ast}} converges 𝐏\mathbf{P}^{\ast}-a.s. Thus, Σ1<+\Sigma_{1}<+\infty 𝐏\mathbf{P}^{\ast}-a.s.

Fix i𝐙i\in\mathbf{Z}. If the random environment \mathcal{E}^{\ast} is fixed, the random sequence {ηi;ai,jZi,j,j𝐍i+1}\left\{\eta_{i}^{\ast};\,a_{i,j}^{\ast}Z_{i,j}^{\ast},\,j\in\mathbf{N}_{i+1}\right\} is a martingale. Therefore

𝐄(ai,jZi,j|)=μi+1\mathbf{E}^{\ast}\left(\left.a_{i,j}^{\ast}Z_{i,j}^{\ast}\,\right|\,\mathcal{E}^{\ast}\right)=\mu_{i+1}^{\ast} (48)

for j𝐍i+1j\in\mathbf{N}_{i+1}. By (5), (48) using Fatou’s lemma we obtain that

𝐄(ζi|)lim infj𝐄(ai,jZi,j|)=μi+1\mathbf{E}^{\ast}\left(\left.\zeta_{i}^{\ast}\,\right|\,\mathcal{E}^{\ast}\right)\leq\liminf_{j\rightarrow\infty}\mathbf{E}^{\ast}\left(\left.a_{i,j}^{\ast}Z_{i,j}^{\ast}\,\right|\,\mathcal{E}^{\ast}\right)=\mu_{i+1}^{\ast}

and, consequently,

𝐄(ζieSi|)=eSi𝐄(ζi|)μi+1eSi.\mathbf{E}^{\ast}\left(\left.\zeta_{i}^{\ast}e^{-S_{i}^{\ast}}\,\right|\,\mathcal{E}^{\ast}\right)=e^{-S_{i}^{\ast}}\mathbf{E}^{\ast}\left(\left.\zeta_{i}^{\ast}\,\right|\,\mathcal{E}^{\ast}\right)\leq\mu_{i+1}^{\ast}e^{-S_{i}^{\ast}}. (49)

We have proved that the series i𝐙μi+1eSi\sum\nolimits_{i\in\mathbf{Z}}\mu_{i+1}^{\ast}e^{-S_{i}^{\ast}} converges 𝐏\mathbf{P}^{\ast}-a.s. This fact combined with (49) implies convergence of the series i𝐙𝐄(ζi+1eSi|)\sum\nolimits_{i\in\mathbf{Z}}\mathbf{E}^{\ast}\left(\left.\zeta_{i+1}^{\ast}e^{-S_{i}^{\ast}}\,\right|\,\mathcal{E}^{\ast}\right) 𝐏\mathbf{P}^{\ast}-a.s. Since the random variables ζi+1eSi\zeta_{i+1}^{\ast}e^{-S_{i}^{\ast}} are nonnegative, it follows that the series i𝐙ζieSi\sum\nolimits_{i\in\mathbf{Z}}\zeta_{i}^{\ast}e^{-S_{i}^{\ast}} converges a.s. for any fixed environment \mathcal{E}^{\ast}. Hence, Σ2<+\Sigma_{2}<+\infty 𝐏\mathbf{P}^{\ast}-a.s.

The lemma is proved.

Set

Σ1(1)=i=0μi+1+eSi+=i𝐍0μi+1eSi,\Sigma_{1}^{\left(1\right)}=\sum\limits_{i=0}^{\infty}\mu_{i+1}^{+}e^{-S_{i}^{+}}=\sum\limits_{i\in\mathbf{N}_{0}}\mu_{i+1}^{\ast}e^{-S_{i}^{\ast}},
Σ1(2)=i=1μieSi=i𝐙𝐍0μi+1eSi.\Sigma_{1}^{\left(2\right)}=\sum\limits_{i=1}^{\infty}\mu_{i}^{-}e^{S_{i}^{-}}=\sum\limits_{i\in\mathbf{Z\setminus N}_{0}}\mu_{i+1}^{\ast}e^{-S_{i}^{\ast}}.

Clearly,

Σ1=Σ1(1)+Σ1(2)\Sigma_{1}=\Sigma_{1}^{\left(1\right)}+\Sigma_{1}^{\left(2\right)} (50)

and by virtue of Lemma 4 𝐏\mathbf{P}^{\ast}-a.s.

Σ1(1)<+,Σ1(2)<+.\Sigma_{1}^{\left(1\right)}<+\infty,\qquad\Sigma_{1}^{\left(2\right)}<+\infty. (51)

Lemma 5. If the conditions of Theorem 1 are satisfied, then 𝐏\mathbf{P}^{\ast}-a.s., as nn\rightarrow\infty,

{i=0n1μi+1eSi|Ln0}DΣ1(1),\left\{\left.\sum\limits_{i=0}^{n-1}\mu_{i+1}e^{-S_{i}}\,\right|\,L_{n}\,\geq 0\right\}\stackrel{{\scriptstyle D}}{{\to}}\Sigma_{1}^{\left(1\right)}, (52)
{i=1n1μieSi|Mn<0}DΣ1(2).\left\{\left.\sum\limits_{i=1}^{n-1}\mu_{i}e^{S_{i}}\,\right|\,M_{n}\,<0\right\}\stackrel{{\scriptstyle D}}{{\to}}\Sigma_{1}^{\left(2\right)}. (53)

Proof. Let ff :: 𝐑𝐑\mathbf{R}\rightarrow\mathbf{R} be a bounded and continuous function. By virtue of (3) for fixed k𝐍k\in\mathbf{N}

{f(i=0kμi+1eSi)|Ln0}Df(i=0kμi+1+eSi+)\left\{\left.f\left(\sum\limits_{i=0}^{k}\mu_{i+1}e^{-S_{i}}\,\right)\,\right|\,L_{n}\,\geq 0\right\}\stackrel{{\scriptstyle D}}{{\to}}f\left(\sum\limits_{i=0}^{k}\mu_{i+1}^{+}e^{-S_{i}^{+}}\right)

as nn\rightarrow\infty. Recalling (51) we conclude that

limkf(i=0kμi+1+eSi+)=f(Σ1(1)){\lim_{k\rightarrow\infty}}f\left(\sum\limits_{i=0}^{k}\mu_{i+1}^{+}e^{-S_{i}^{+}}\right)=f\left(\Sigma_{1}^{\left(1\right)}\right)

𝐏\mathbf{P}^{\ast}-a.s. From these two facts, in view of Lemma 2.5 of [4], it follows that

{f(i=0n1μi+1eSi)|Ln0}Df(Σ1(1)).\left\{\left.f\left(\sum\limits_{i=0}^{n-1}\mu_{i+1}e^{-S_{i}}\,\right)\,\right|\,L_{n}\,\geq 0\right\}\stackrel{{\scriptstyle D}}{{\to}}f\left(\Sigma_{1}^{\left(1\right)}\right).

Thus, relation (52) is true. Relation (53) can be proved by similar arguments.

The lemma is proved.

Remark 4. It is not difficult to verify that if we combine the left-hand sides of relations (3) and (52) (or (4) and (53)), then the respective statements concerning convergence in distribution of the four dimensional tuples of the random elements given LnL_{n} 0\geq 0 (or MnM_{n} <0<0) are still force.

Set for n𝐍n\in\mathbf{N}

μi,n={μτn+i,i𝐍(τn),0,i𝐙𝐍(τn).\mu_{i,n}^{\prime}=\left\{\begin{array}[]{c}\mu_{\tau_{n}+i},\qquad i\in\mathbf{N}_{\left(-\tau_{n}\right)},\\ 0,\qquad i\in\mathbf{Z\setminus N}_{\left(-\tau_{n}\right)}.\end{array}\right.

Let

Σ1(1)(n)=j=0n1τnμj+1,neSj,n,Σ1(2)(n)=j=1τnμj+1,neSj,n.\Sigma_{1}^{\left(1\right)}\left(n\right)=\sum\limits_{j=0}^{n-1-\tau_{n}}\mu_{j+1,n}^{\prime}e^{-S_{j,n}^{\prime}},\qquad\Sigma_{1}^{\left(2\right)}\left(n\right)=\sum\limits_{j=1}^{\tau_{n}}\mu_{-j+1,n}^{\prime}e^{-S_{j,n}^{\prime}}.

Lemma 6. If the conditions of Theorem 1 are satisfied, then 𝐏\mathbf{P}^{\ast}-a.s., as nn\rightarrow\infty,

({(μi,n,Si,n),i𝐍0},Σ1(1)(n))D({(μi,Si),i𝐍0},Σ1(1)),\left(\left\{\left(\mu_{i,n}^{\prime},S_{i,n}^{\prime}\right),\,i\in\mathbf{N}_{0}\right\},\,\Sigma_{1}^{\left(1\right)}\left(n\right)\right)\stackrel{{\scriptstyle D}}{{\to}}\left(\left\{\left(\mu_{i}^{\ast},S_{i}^{\ast}\right),\,i\in\mathbf{N}_{0}\right\},\,\Sigma_{1}^{\left(1\right)}\right), (54)
({(μi,n,Si,n),i𝐍},Σ1(2)(n))D({(μi,Si),i𝐍},Σ1(2)).\left(\left\{\left(\mu_{-i,n}^{\prime},S_{-i,n}^{\prime}\right),i\in\mathbf{N}\right\},\,\Sigma_{1}^{\left(2\right)}\left(n\right)\right)\stackrel{{\scriptstyle D}}{{\to}}\left(\left\{\left(\mu_{-i}^{\ast},S_{-i}^{\ast}\right),\,i\in\mathbf{N}\right\},\,\Sigma_{1}^{\left(2\right)}\right). (55)

Moreover, the left-hand sides of these relations are asymptotically independent. 

Proof. We prove for simplicity only convergence in distribution (for a fixed ii) of the random sequences (μi,n,Si,n,Σ1(1)(n))\left(\mu_{i,n}^{\prime},S_{i,n}^{\prime},\Sigma_{1}^{\left(1\right)}\left(n\right)\right)\ and (μi,n,Si,n,Σ1(2)(n))\left(\mu_{-i,n}^{\prime},S_{-i,n}^{\prime},\Sigma_{1}^{\left(2\right)}\left(n\right)\right), as nn\rightarrow\infty.

Fix i𝐍0i\in\mathbf{N}_{0}. Similarly to relation (7), we can show that, for any bounded and continuous function ff :𝐑3𝐑:\mathbf{R}^{3}\rightarrow\mathbf{R},

𝐄[f(μi,n,Si,n,j=0n1τnμj+1,neSj,n);τn+in]\displaystyle\mathbf{E}\left[f\left(\mu_{i,n}^{\prime},S_{i,n}^{\prime},\sum\limits_{j=0}^{n-1-\tau_{n}}\mu_{j+1,n}^{\prime}e^{-S_{j,n}^{\prime}}\right);\,\tau_{n}+i\leq n\right] (56)
=\displaystyle= k=0ni𝐄(f(μi,Si,j=0n1kμj+1eSj)|Lnk0)𝐏(τn=k)\displaystyle\sum\limits_{k=0}^{n-i}\mathbf{E}\left(\left.f\left(\mu_{i},S_{i},\sum\limits_{j=0}^{n-1-k}\mu_{j+1}e^{-S_{j}}\right)\,\right|\,L_{n-k}\,\geq 0\right)\mathbf{P}\left(\tau_{n}=k\right)

for nin\geq i. Repeating the arguments of Lemma 1 and using Lemma 5 and Remark 4, we can deduce from (56) that

limn𝐄f(μi,n,Si,n,j=0n1τnμj+1,neSj,n)\displaystyle{\lim_{n\rightarrow\infty}}\mathbf{E}f\left(\mu_{i,n}^{\prime},S_{i,n}^{\prime},\sum\limits_{j=0}^{n-1-\tau_{n}}\mu_{j+1,n}^{\prime}e^{-S_{j,n}^{\prime}}\right)
=\displaystyle= 𝐄f(μi+,Si+,j𝐍0μj+1+eSj+)=𝐄f(μi,Si,Σ1(1)).\displaystyle\mathbf{E}^{\ast}f\left(\mu_{i}^{+},S_{i}^{+},\sum\limits_{j\in\mathbf{N}_{0}}\mu_{j+1}^{+}e^{-S_{j}^{+}}\right)=\mathbf{E}^{\ast}f\left(\mu_{i}^{\ast},S_{i}^{\ast},\Sigma_{1}^{\left(1\right)}\right).

Thus, relation (54) is proved.

Now fix i𝐍i\in\mathbf{N}. It is easy to show (see the proof of relation (13)) that for nin\geq i

𝐄[f(μi,n,Si,n,j=1τnμj+1,neSj,n);τni0]\displaystyle\mathbf{E}\left[f\left(\mu_{-i,n}^{\prime},S_{-i,n}^{\prime},\sum\limits_{j=1}^{\tau_{n}}\mu_{-j+1,n}^{\prime}e^{-S_{-j,n}^{\prime}}\right);\,\tau_{n}-i\geq 0\right]
=\displaystyle= k=in𝐄(f(μi+1,Si,j=1kμjeSj)|Mk<0)𝐏(τn=k)\displaystyle\sum\limits_{k=i}^{n}\mathbf{E}\left(\left.f\left(\mu_{i+1},-S_{i},\sum\limits_{j=1}^{k}\mu_{j}e^{S_{j}}\right)\,\right|\,M_{k}\,<0\right)\mathbf{P}\left(\tau_{n}=k\right)

and therefore (see Lemma 5 and Remark 4)

limn𝐄f(μi,n,Si,n,j=1τnμj+1,neSj,n)\displaystyle{\lim_{n\rightarrow\infty}}\mathbf{E}f\left(\mu_{-i,n}^{\prime},S_{-i,n}^{\prime},\sum\limits_{j=1}^{\tau_{n}}\mu_{-j+1,n}^{\prime}e^{-S_{-j,n}^{\prime}}\right)
=\displaystyle= 𝐄f(μi+1,Si,j=1μjeSj)=𝐄f(μi,Si,Σ1(2)).\displaystyle\mathbf{E}^{\ast}f\left(\mu_{i+1}^{-},-S_{i}^{-},\sum\limits_{j=1}^{\infty}\mu_{j}^{-}e^{S_{j}^{-}}\right)=\mathbf{E}^{\ast}f\left(\mu_{-i}^{\ast},S_{-i}^{\ast},\Sigma_{1}^{\left(2\right)}\right).

This proves (55). The asymptotic independence of the left-hand sides of relations (54) and (55) is obvious.

The lemma is proved.

Remark 5. It is not difficult to verify that statement (54) admits the following generalization: for any a0a\leq 0 and b>0b>0, as nn\rightarrow\infty,

({(μi,n,Si,n),i𝐍0},Σ1(1)(n)|LnCna,SnLnCnb)\displaystyle\left(\left\{\left(\mu_{i,n}^{\prime},S_{i,n}^{\prime}\right),i\in\mathbf{N}_{0}\right\},\,\Sigma_{1}^{\left(1\right)}\left(n\right)\,\left|\,\frac{L_{n}}{C_{n}}\leq a,\,\frac{S_{n}-L_{n}}{C_{n}}\leq b\right.\right)
D({(μi,Si),i𝐍0},Σ1(1)).\displaystyle\stackrel{{\scriptstyle D}}{{\to}}\left(\left\{\left(\mu_{i}^{\ast},S_{i}^{\ast}\right),\,i\in\mathbf{N}_{0}\right\},\,\Sigma_{1}^{\left(1\right)}\right).

Statement (55) allows for a similar generalization.

Lemma 7. If the conditions of Theorem 1 are satisfied, then, as nn\rightarrow\infty,

{bnbτn+ibn,i𝐍0}D{j=iμj+1+exp(Sj+)Σ1,i𝐍0},\left\{\frac{b_{n}-b_{\tau_{n}+i}}{b_{n}},\,i\in\mathbf{N}_{0}\right\}\stackrel{{\scriptstyle D}}{{\to}}\left\{\frac{\sum\nolimits_{j=i}^{\infty}\mu_{j+1}^{+}\exp\left(-S_{j}^{+}\right)}{\Sigma_{1}},\,i\in\mathbf{N}_{0}\right\},
{bτnibn,i𝐍}D{j=i+1μjexp(Sj)Σ1,i𝐍},\left\{\frac{b_{\tau_{n}-i}}{b_{n}},\,i\in\mathbf{N}\right\}\stackrel{{\scriptstyle D}}{{\to}}\left\{\frac{\sum\nolimits_{j=i+1}^{\infty}\mu_{j}^{-}\exp\left(S_{j}^{-}\right)}{\Sigma_{1}},\,i\in\mathbf{N}\right\},
{aτn+ibn,i𝐍0}D{exp(Si+)Σ1,i𝐍0},\left\{\frac{a_{\tau_{n}+i}}{b_{n}},\,i\in\mathbf{N}_{0}\right\}\stackrel{{\scriptstyle D}}{{\to}}\left\{\frac{\exp\left(-S_{i}^{+}\right)}{\Sigma_{1}},\,i\in\mathbf{N}_{0}\right\},
{aτnibn,i𝐍}D{exp(Si)Σ1,i𝐍}.\left\{\frac{a_{\tau_{n}-i}}{b_{n}},\,i\in\mathbf{N}\right\}\stackrel{{\scriptstyle D}}{{\to}}\left\{\frac{\exp\left(S_{i}^{-}\right)}{\Sigma_{1}},\,i\in\mathbf{N}\right\}.

Proof. To simplify the presentation we check the first statement only. Moreover, we prove only convergence of one-dimensional distributions. Fix i𝐍0i\in\mathbf{N}_{0}. Note that for τn+in\tau_{n}+i\leq n

bτn+ibn\displaystyle\frac{b_{\tau_{n}+i}}{b_{n}} =\displaystyle= j=0τn+i1μj+1exp(Sj)j=0n1μj+1exp(Sj)=j=0τn+i1μj+1exp((SjSτn))j=0n1μj+1exp((SjSτn))\displaystyle\frac{\sum\nolimits_{j=0}^{\tau_{n}+i-1}\mu_{j+1}\exp\left(-S_{j}\right)}{\sum\nolimits_{j=0}^{n-1}\mu_{j+1}\exp\left(-S_{j}\right)}=\frac{\sum\nolimits_{j=0}^{\tau_{n}+i-1}\mu_{j+1}\exp\left(-\left(S_{j}-S_{\tau_{n}}\right)\right)}{\sum\nolimits_{j=0}^{n-1}\mu_{j+1}\exp\left(-\left(S_{j}-S_{\tau_{n}}\right)\right)}
=\displaystyle= j=0i1μj+1,nexp(Sj,n)+Σ1(2)(n)Σ1(1)(n)+Σ1(2)(n).\displaystyle\frac{\sum\nolimits_{j=0}^{i-1}\mu_{j+1,n}^{\prime}\exp\left(-S_{j,n}^{\prime}\right)+\Sigma_{1}^{\left(2\right)}\left(n\right)}{\Sigma_{1}^{\left(1\right)}\left(n\right)+\Sigma_{1}^{\left(2\right)}\left(n\right)}.

Since the last expression is a bounded continuous function of the random element mentioned in Lemma 6, it follows that

bτn+ibnDj=0i1μj+1+exp(Sj+)+Σ1(2)Σ1(1)+Σ1(2)\frac{b_{\tau_{n}+i}}{b_{n}}\stackrel{{\scriptstyle D}}{{\to}}\frac{\sum\nolimits_{j=0}^{i-1}\mu_{j+1}^{+}\exp\left(-S_{j}^{+}\right)+\Sigma_{1}^{\left(2\right)}}{\Sigma_{1}^{\left(1\right)}+\Sigma_{1}^{\left(2\right)}}

as nn\rightarrow\infty. Whence, taking into account (50) we obtain the required relation. The remaining three statements may be proved by similar arguments.

The lemma is proved.

Remark 6. We can construct a new random element by combining the left-hand sides of all the relations included in Lemmas 3 and 7. It is not difficult to prove convergence in distribution of the sequence of these random elements to a random element constructed by the right-hand sides of the corresponding relations of Lemmas 3 and 7. Moreover, a random element constructed by the left-hand sides is asymptotically independent, as nn\rightarrow\infty, of the random event

{Cn1Lna,Cn1(SnLn)b}\left\{C_{n}^{-1}L_{n}\leq a,\,C_{n}^{-1}\left(S_{n}-L_{n}\right)\leq b\right\}

for any a0a\leq 0\ and b>0b>0.

3. Proof of the main result

First part. We establish convergence of one-dimensional distributions: if t>0t>0, then, as nn\rightarrow\infty,

antbntZntDΣ2Σ1.\frac{a_{\left\lfloor nt\right\rfloor}}{b_{\left\lfloor nt\right\rfloor}}Z_{\left\lfloor nt\right\rfloor}\stackrel{{\scriptstyle D}}{{\to}}\frac{\Sigma_{2}}{\Sigma_{1}}. (57)

Set for r𝐍r\in\mathbf{N}

Ur(i)=j=τriτr+i1Zj,r,U_{r}^{\left(i\right)}=\sum\limits_{j=\tau_{r}-i}^{\tau_{r}+i-1}Z_{j,r},
Vr(i)=j=0τri1Zj,r+j=τr+ir1Zj,r.V_{r}^{\left(i\right)}=\sum\limits_{j=0}^{\tau_{r}-i-1}Z_{j,r}+\sum\limits_{j=\tau_{r}+i}^{r-1}Z_{j,r}.

It is clear that for i𝐍i\in\mathbf{N}

Znt=j=0nt1Zj,nt=Unt(i)+Vnt(i).Z_{\left\lfloor nt\right\rfloor}=\sum\limits_{j=0}^{\left\lfloor nt\right\rfloor-1}Z_{j,\left\lfloor nt\right\rfloor}=U_{\left\lfloor nt\right\rfloor}^{\left(i\right)}+V_{\left\lfloor nt\right\rfloor}^{\left(i\right)}. (58)

Note that

𝐄(aj,ntZj,nt|Q1,nt)=μj+1,\mathbf{E}\left(\left.a_{j,\left\lfloor nt\right\rfloor}Z_{j,\left\lfloor nt\right\rfloor}\,\right|\,Q_{1,\left\lfloor nt\right\rfloor}\right)=\mu_{j+1}, (59)

if 11\leq j<ntj<\left\lfloor nt\right\rfloor. Observing that ant=ajaj,nta_{\left\lfloor nt\right\rfloor}=a_{j}a_{j,\left\lfloor nt\right\rfloor} for 11\leq j<ntj<\left\lfloor nt\right\rfloor we obtain by (59) that

𝐄(antbntVnt(i))\displaystyle\mathbf{E}\left(\frac{a_{\left\lfloor nt\right\rfloor}}{b_{\left\lfloor nt\right\rfloor}}V_{\left\lfloor nt\right\rfloor}^{\left(i\right)}\right) (60)
=\displaystyle= 𝐄bnt1(j=0τnti1ajaj,ntZj,nt+j=τnt+int1ajaj,ntZj,nt)\displaystyle\mathbf{E}b_{\left\lfloor nt\right\rfloor}^{-1}\left(\sum\limits_{j=0}^{\tau_{\left\lfloor nt\right\rfloor}-i-1}a_{j}a_{j,\left\lfloor nt\right\rfloor}Z_{j,\left\lfloor nt\right\rfloor}+\sum\limits_{j=\tau_{\left\lfloor nt\right\rfloor}+i}^{\left\lfloor nt\right\rfloor-1}a_{j}a_{j,\left\lfloor nt\right\rfloor}Z_{j,\left\lfloor nt\right\rfloor}\right)
=\displaystyle= 𝐄bnt1(j=0τnti1μj+1aj+j=τnt+int1μj+1aj)\displaystyle\mathbf{E}b_{\left\lfloor nt\right\rfloor}^{-1}\left(\sum\limits_{j=0}^{\tau_{\left\lfloor nt\right\rfloor}-i-1}\mu_{j+1}a_{j}+\sum\limits_{j=\tau_{\left\lfloor nt\right\rfloor}+i}^{\left\lfloor nt\right\rfloor-1}\mu_{j+1}a_{j}\right)
=\displaystyle= 𝐄bτnti+(bntbτnt+i)bnt.\displaystyle\mathbf{E}\frac{b_{\tau_{\left\lfloor nt\right\rfloor}-i}+\left(b_{\left\lfloor nt\right\rfloor}-b_{\tau_{\left\lfloor nt\right\rfloor}+i}\right)}{b_{\left\lfloor nt\right\rfloor}}.

Applying Lemma 7 to the right-hand side of (60), we conclude that

limn𝐄(antbntVnt(i))=j=iμj+1+exp(Sj+)+j=i+1μjexp(Sj)Σ1\lim_{n\rightarrow\infty}\mathbf{E}\left(\frac{a_{\left\lfloor nt\right\rfloor}}{b_{\left\lfloor nt\right\rfloor}}V_{\left\lfloor nt\right\rfloor}^{\left(i\right)}\right)=\frac{\sum\nolimits_{j=i}^{\infty}\mu_{j+1}^{+}\exp\left(-S_{j}^{+}\right)+\sum\nolimits_{j=i+1}^{\infty}\mu_{j}^{-}\exp\left(S_{j}^{-}\right)}{\Sigma_{1}}

and, therefore (see Lemma 4),

limilimn𝐄(antbntVnt(i))=0.\lim_{i\rightarrow\infty}\lim_{n\rightarrow\infty}\mathbf{E}\left(\frac{a_{\left\lfloor nt\right\rfloor}}{b_{\left\lfloor nt\right\rfloor}}V_{\left\lfloor nt\right\rfloor}^{\left(i\right)}\right)=0. (61)

By Markov inequality for any ε>0\varepsilon>0

𝐏(antbntVnt(i)ε)ε1𝐄(antbntVnt(i)).\mathbf{P}\left(\frac{a_{\left\lfloor nt\right\rfloor}}{b_{\left\lfloor nt\right\rfloor}}V_{\left\lfloor nt\right\rfloor}^{\left(i\right)}\geq\varepsilon\right)\leq\varepsilon^{-1}\mathbf{E}\left(\frac{a_{\left\lfloor nt\right\rfloor}}{b_{\left\lfloor nt\right\rfloor}}V_{\left\lfloor nt\right\rfloor}^{\left(i\right)}\right).

Hence, taking into account (61) we obtain that

limilimn𝐏(antbntVnt(i)ε)=0.\lim_{i\rightarrow\infty}\lim_{n\rightarrow\infty}\mathbf{P}\left(\frac{a_{\left\lfloor nt\right\rfloor}}{b_{\left\lfloor nt\right\rfloor}}V_{\left\lfloor nt\right\rfloor}^{\left(i\right)}\geq\varepsilon\right)=0. (62)

Observe that we may assume in the sequel that iτnt<ntii\leq\tau_{\left\lfloor nt\right\rfloor}<\left\lfloor nt\right\rfloor-i (see the proof of Lemma 1). Note that

Unt(i)=j=ii1Zτnt+j,nt=j=ii1Zj,ntU_{\left\lfloor nt\right\rfloor}^{\left(i\right)}=\sum\limits_{j=-i}^{i-1}Z_{\tau_{\left\lfloor nt\right\rfloor}+j,\left\lfloor nt\right\rfloor}=\sum\limits_{j=-i}^{i-1}Z_{j,\left\lfloor nt\right\rfloor}^{\prime}

and, therefore,

antbntUnt(i)=j=ii1aτnt+jbntaj,ntZj,nt.\frac{a_{\left\lfloor nt\right\rfloor}}{b_{\left\lfloor nt\right\rfloor}}U_{\left\lfloor nt\right\rfloor}^{\left(i\right)}=\sum\limits_{j=-i}^{i-1}\frac{a_{\tau_{\left\lfloor nt\right\rfloor}+j}}{b_{\left\lfloor nt\right\rfloor}}a_{j,\left\lfloor nt\right\rfloor}^{\prime}Z_{j,\left\lfloor nt\right\rfloor}^{\prime}. (63)

Applying Lemmas 3, 7 and Remark 6 to relation (63), we obtain that, as nn\rightarrow\infty,

antbntUnt(i)D1Σ1j=ii1ζjeSj.\frac{a_{\left\lfloor nt\right\rfloor}}{b_{\left\lfloor nt\right\rfloor}}U_{\left\lfloor nt\right\rfloor}^{\left(i\right)}\stackrel{{\scriptstyle D}}{{\to}}\frac{1}{\Sigma_{1}}\sum\limits_{j=-i}^{i-1}\zeta_{j}^{\ast}e^{-S_{j}^{\ast}}. (64)

Hence, for all but a countable set of x0x\geq 0

limn𝐏(antbntUnt(i)x)=𝐏(1Σ1j=ii1ζjeSjx).\lim_{n\rightarrow\infty}\mathbf{P}\left(\frac{a_{\left\lfloor nt\right\rfloor}}{b_{\left\lfloor nt\right\rfloor}}U_{\left\lfloor nt\right\rfloor}^{\left(i\right)}\leq x\right)=\mathbf{P}\left(\frac{1}{\Sigma_{1}}\sum\limits_{j=-i}^{i-1}\zeta_{j}^{\ast}e^{-S_{j}^{\ast}}\leq x\right). (65)

In view of Lemma 4

limi𝐏(1Σ1j=ii1ζieSix)=𝐏(Σ2Σ1x).\lim_{i\rightarrow\infty}\mathbf{P}\left(\frac{1}{\Sigma_{1}}\sum\limits_{j=-i}^{i-1}\zeta_{i}^{\ast}e^{-S_{i}^{\ast}}\leq x\right)=\mathbf{P}\left(\frac{\Sigma_{2}}{\Sigma_{1}}\leq x\right). (66)

We obtain by (65) and (66) that

limilimn𝐏(antbntUnt(i)x)=𝐏(Σ2Σ1x).\lim_{i\rightarrow\infty}\lim_{n\rightarrow\infty}\mathbf{P}\left(\frac{a_{\left\lfloor nt\right\rfloor}}{b_{\left\lfloor nt\right\rfloor}}U_{\left\lfloor nt\right\rfloor}^{\left(i\right)}\leq x\right)=\mathbf{P}\left(\frac{\Sigma_{2}}{\Sigma_{1}}\leq x\right). (67)

It follows from (58), (62) and (67) that for all but a countable set of x0x\geq 0

limn𝐏(antbntZntx)=𝐏(Σ2Σ1x).\lim_{n\rightarrow\infty}\mathbf{P}\left(\frac{a_{\left\lfloor nt\right\rfloor}}{b_{\left\lfloor nt\right\rfloor}}Z_{\left\lfloor nt\right\rfloor}\leq x\right)=\mathbf{P}\left(\frac{\Sigma_{2}}{\Sigma_{1}}\leq x\right).

This proves (57).

Remark 7. It is not difficult to verify that relation (64) admits the following generalization: for any a0a\leq 0 and b>0b>0, as nn\rightarrow\infty,

{antbntUnt(i)|LntCna,SntLntCnb}D1Σ1j=ii+1ζjeSj.\left\{\left.\frac{a_{\left\lfloor nt\right\rfloor}}{b_{\left\lfloor nt\right\rfloor}}U_{\left\lfloor nt\right\rfloor}^{\left(i\right)}\,\right|\,\frac{L_{\left\lfloor nt\right\rfloor}}{C_{n}}\leq a,\,\frac{S_{\left\lfloor nt\right\rfloor}-L_{\left\lfloor nt\right\rfloor}}{C_{n}}\leq b\right\}\stackrel{{\scriptstyle D}}{{\to}}\frac{1}{\Sigma_{1}}\sum\limits_{j=-i}^{i+1}\zeta_{j}^{\ast}e^{-S_{j}^{\ast}}.

Second part. Now we establish convergence of two-dimensional distributions. Select 0<t1<t20<t_{1}<t_{2}, fix an ε>0\varepsilon>0 and introduce the following random events:

An,ε={Lnt1>Lnt1,nt2+εCn},A_{n,\varepsilon}=\left\{L_{\left\lfloor nt_{1}\right\rfloor}>L_{\left\lfloor nt_{1}\right\rfloor,\left\lfloor nt_{2}\right\rfloor}+\varepsilon C_{n}\right\},
Bn,ε={Lnt1<Lnt1,nt2εCn},B_{n,\varepsilon}=\left\{L_{\left\lfloor nt_{1}\right\rfloor}<L_{\left\lfloor nt_{1}\right\rfloor,\left\lfloor nt_{2}\right\rfloor}-\varepsilon C_{n}\right\},
Dn,ε={|Lnt1Lnt1,nt2|εCn}.D_{n,\varepsilon}=\left\{\left|L_{\left\lfloor nt_{1}\right\rfloor}-L_{\left\lfloor nt_{1}\right\rfloor,\left\lfloor nt_{2}\right\rfloor}\right|\leq\varepsilon C_{n}\right\}.

We show that, as nn\rightarrow\infty,

{ant1bnt1Znt1,ant2bnt2Znt2|An,ε}D(γ1,γ2),\left\{\left.\frac{a_{\left\lfloor nt_{1}\right\rfloor}}{b_{\left\lfloor nt_{1}\right\rfloor}}Z_{\left\lfloor nt_{1}\right\rfloor},\frac{a_{\left\lfloor nt_{2}\right\rfloor}}{b_{\left\lfloor nt_{2}\right\rfloor}}Z_{\left\lfloor nt_{2}\right\rfloor}\,\right|\,A_{n,\varepsilon}\right\}\stackrel{{\scriptstyle D}}{{\to}}\left(\gamma_{1},\gamma_{2}\right), (68)
{ant1bnt1Znt1,ant2bnt2Znt2|Bn,ε}D(γ1,γ1),\left\{\left.\frac{a_{\left\lfloor nt_{1}\right\rfloor}}{b_{\left\lfloor nt_{1}\right\rfloor}}Z_{\left\lfloor nt_{1}\right\rfloor},\frac{a_{\left\lfloor nt_{2}\right\rfloor}}{b_{\left\lfloor nt_{2}\right\rfloor}}Z_{\left\lfloor nt_{2}\right\rfloor}\,\right|\,B_{n,\varepsilon}\right\}\stackrel{{\scriptstyle D}}{{\to}}\left(\gamma_{1},\gamma_{1}\right), (69)

where γ1,γ2\gamma_{1},\gamma_{2} are independent random variables and γ1=Dγ2=DΣ2/Σ1\gamma_{1}\stackrel{{\scriptstyle D}}{{=}}\gamma_{2}\stackrel{{\scriptstyle D}}{{=}}\Sigma_{2}/\Sigma_{1}.

First we establish (68). To this aim we prove that, for any fixed i𝐍i\in\mathbf{N} and for all but a countable set of (x1,x2)\left(x_{1},x_{2}\right) with x1,x20x_{1},x_{2}\geq 0,

limn𝐏(ant1bnt1Unt1(i)x1,bnt2ant2Unt2(i)x2|An,ε)\displaystyle\lim_{n\rightarrow\infty}\mathbf{P}\left(\left.\frac{a_{\left\lfloor nt_{1}\right\rfloor}}{b_{\left\lfloor nt_{1}\right\rfloor}}U_{\left\lfloor nt_{1}\right\rfloor}^{\left(i\right)}\leq x_{1},\,\frac{b_{\left\lfloor nt_{2}\right\rfloor}}{a_{\left\lfloor nt_{2}\right\rfloor}}U_{\left\lfloor nt_{2}\right\rfloor}^{\left(i\right)}\leq x_{2}\,\right|\,A_{n,\varepsilon}\right) (70)
=\displaystyle= 𝐏(1Σ1j=ii+1ζjeSjx1)𝐏(1Σ1j=ii+1ζjeSjx2).\displaystyle\mathbf{P}\left(\frac{1}{\Sigma_{1}}\sum\limits_{j=-i}^{i+1}\zeta_{j}^{\ast}e^{-S_{j}^{\ast}}\leq x_{1}\right)\mathbf{P}\left(\frac{1}{\Sigma_{1}}\sum\limits_{j=-i}^{i+1}\zeta_{j}^{\ast}e^{-S_{j}^{\ast}}\leq x_{2}\right).

Provided the random event An,εA_{n,\varepsilon} occurred, it follows that, as nn\rightarrow\infty,

bnt2ant2bnt2bnt1ant2=b~nt2nt1a~nt2nt1,\frac{b_{\left\lfloor nt_{2}\right\rfloor}}{a_{\left\lfloor nt_{2}\right\rfloor}}\sim\frac{b_{\left\lfloor nt_{2}\right\rfloor}-b_{\left\lfloor nt_{1}\right\rfloor}}{a_{\left\lfloor nt_{2}\right\rfloor}}=\frac{\widetilde{b}_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}}{\widetilde{a}_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}},

where the values a~nt2nt1\widetilde{a}_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}\ and b~nt2nt1\widetilde{b}_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor} are constructed by the random environment Q~i:=Qnt1+i\widetilde{Q}_{i}:=Q_{\left\lfloor nt_{1}\right\rfloor+i}, i=1,,nt2nt1i=1,\ldots,\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor, just as the values ant2nt1a_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor} and bnt2nt1b_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor} are constructed by the random environment Q1,nt2nt1Q_{1,\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}.

Further, given An,εA_{n,\varepsilon}, the inequality τnt2>τnt1\tau_{\left\lfloor nt_{2}\right\rfloor}>\tau_{\left\lfloor nt_{1}\right\rfloor} is true (we may assume that nt2i>τnt2>τnt1+i\left\lfloor nt_{2}\right\rfloor-i>\tau_{\left\lfloor nt_{2}\right\rfloor}>\tau_{\left\lfloor nt_{1}\right\rfloor}+i). Thus, if the random environment {Qn,n𝐍}\left\{Q_{n},\,n\in\mathbf{N}\right\} is fixed, the distribution of the random variable Unt1(i)U_{\left\lfloor nt_{1}\right\rfloor}^{\left(i\right)} is completely determined by the random environment Q1,nt1Q_{1,\left\lfloor nt_{1}\right\rfloor} and the distribution of the random variable Unt2(i)U_{\left\lfloor nt_{2}\right\rfloor}^{\left(i\right)} is completely determined by the random environment Qnt1+1,nt2Q_{\left\lfloor nt_{1}\right\rfloor+1,\left\lfloor nt_{2}\right\rfloor}. Moreover, Unt2(i)=U~nt2nt1(i)U_{\left\lfloor nt_{2}\right\rfloor}^{\left(i\right)}=\widetilde{U}_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}^{\left(i\right)}, where U~nt2nt1(i)\widetilde{U}_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}^{\left(i\right)} has the same meaning for the environment Q~i\widetilde{Q}_{i}, i=1,,nt2nt1i=1,\ldots,\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor, as Unt2nt1(i)U_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}^{\left(i\right)} has for the environment Q1,nt2nt1Q_{1,\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}.

Summarizing the arguments above, we see that to prove (70) it is sufficient to show that

limn𝐏(ant1bnt1Unt1(i)x1,a~nt2nt1b~nt2nt1U~nt2nt1(i)x2|An,ε)\displaystyle\lim_{n\rightarrow\infty}\mathbf{P}\left(\left.\frac{a_{\left\lfloor nt_{1}\right\rfloor}}{b_{\left\lfloor nt_{1}\right\rfloor}}U_{\left\lfloor nt_{1}\right\rfloor}^{\left(i\right)}\leq x_{1},\,\frac{\widetilde{a}_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}}{\widetilde{b}_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}}\widetilde{U}_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}^{\left(i\right)}\leq x_{2}\,\right|\,A_{n,\varepsilon}\right) (71)
=\displaystyle= 𝐏(1Σ1j=ii+1ζjeSjx1)𝐏(1Σ1j=ii+1ζjeSjx2).\displaystyle\mathbf{P}\left(\frac{1}{\Sigma_{1}}\sum\limits_{j=-i}^{i+1}\zeta_{j}^{\ast}e^{-S_{j}^{\ast}}\leq x_{1}\right)\mathbf{P}\left(\frac{1}{\Sigma_{1}}\sum\limits_{j=-i}^{i+1}\zeta_{j}^{\ast}e^{-S_{j}^{\ast}}\leq x_{2}\right).

Note that

𝐏(ant1bnt1Unt1(i)x1,a~nt2nt1b~nt2nt1U~nt2nt1(i)x2,An,ε)\displaystyle\mathbf{P}\left(\frac{a_{\left\lfloor nt_{1}\right\rfloor}}{b_{\left\lfloor nt_{1}\right\rfloor}}U_{\left\lfloor nt_{1}\right\rfloor}^{\left(i\right)}\leq x_{1},\,\frac{\widetilde{a}_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}}{\widetilde{b}_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}}\widetilde{U}_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}^{\left(i\right)}\leq x_{2},\,A_{n,\varepsilon}\right)
=\displaystyle= 00+𝐏(ant1bnt1Unt1(i)x1,Lnt1Cnda,Snt1Lnt1Cndb)\displaystyle\int\limits_{-\infty}^{0}\int\limits_{0}^{+\infty}\mathbf{P}\left(\frac{a_{\left\lfloor nt_{1}\right\rfloor}}{b_{\left\lfloor nt_{1}\right\rfloor}}U_{\left\lfloor nt_{1}\right\rfloor}^{\left(i\right)}\leq x_{1},\,\frac{L_{\left\lfloor nt_{1}\right\rfloor}}{C_{n}}\in da,\,\frac{S_{\left\lfloor nt_{1}\right\rfloor}-L_{\left\lfloor nt_{1}\right\rfloor}}{C_{n}}\in db\right)
×𝐏(ant2nt1bnt2nt1Unt2nt1(i)x2,Lnt2nt1Cn<baε).\displaystyle\times\mathbf{P}\left(\frac{a_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}}{b_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}}U_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}^{\left(i\right)}\leq x_{2},\,\frac{L_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}}{C_{n}}<b-a-\varepsilon\right).

Hence, taking into account Remark 7 we deduce that, as nn\rightarrow\infty,

𝐏(ant1bnt1Unt1(i)x1,a~nt2nt1b~nt2nt1Unt2(i)x2,An,ε)\displaystyle\mathbf{P}\left(\frac{a_{\left\lfloor nt_{1}\right\rfloor}}{b_{\left\lfloor nt_{1}\right\rfloor}}U_{\left\lfloor nt_{1}\right\rfloor}^{\left(i\right)}\leq x_{1},\,\frac{\widetilde{a}_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}}{\widetilde{b}_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}}U_{\left\lfloor nt_{2}\right\rfloor}^{\left(i\right)}\leq x_{2},\,A_{n,\varepsilon}\right)
\displaystyle\sim 𝐏(1Σ1j=ii+1ζjeSjx1)𝐏(1Σ1j=ii+1ζjeSjx2)\displaystyle\mathbf{P}\left(\frac{1}{\Sigma_{1}}\sum\limits_{j=-i}^{i+1}\zeta_{j}^{\ast}e^{-S_{j}^{\ast}}\leq x_{1}\right)\mathbf{P}\left(\frac{1}{\Sigma_{1}}\sum\limits_{j=-i}^{i+1}\zeta_{j}^{\ast}e^{-S_{j}^{\ast}}\leq x_{2}\right)
×00+𝐏(Lnt1Cnda,Snt1Lnt1Cndb)\displaystyle\times\int\limits_{-\infty}^{0}\int\limits_{0}^{+\infty}\mathbf{P}\left(\frac{L_{\left\lfloor nt_{1}\right\rfloor}}{C_{n}}\in da,\,\frac{S_{\left\lfloor nt_{1}\right\rfloor}-L_{\left\lfloor nt_{1}\right\rfloor}}{C_{n}}\in db\right)
×𝐏(Lnt2nt1Cn<baε).\displaystyle\times\mathbf{P}\left(\frac{L_{\left\lfloor nt_{2}\right\rfloor-\left\lfloor nt_{1}\right\rfloor}}{C_{n}}<b-a-\varepsilon\right).

Since the last integral is equal to 𝐏(An,ε)\mathbf{P}\left(A_{n,\varepsilon}\right), we obtain (71) and, as result, the required relation (70).

It follows from (70) that (see (67))

limilimn𝐏(ant1bnt1Unt1(i)x1,bnt2antkUnt2(i)x2|An,ε)\displaystyle\lim_{i\rightarrow\infty}\lim_{n\rightarrow\infty}\mathbf{P}\left(\left.\frac{a_{\left\lfloor nt_{1}\right\rfloor}}{b_{\left\lfloor nt_{1}\right\rfloor}}U_{\left\lfloor nt_{1}\right\rfloor}^{\left(i\right)}\leq x_{1},\,\frac{b_{\left\lfloor nt_{2}\right\rfloor}}{a_{\left\lfloor nt_{k}\right\rfloor}}U_{\left\lfloor nt_{2}\right\rfloor}^{\left(i\right)}\leq x_{2}\,\right|\,A_{n,\varepsilon}\right) (72)
=\displaystyle= 𝐏(Σ2Σ1x1)𝐏(Σ2Σ1x2).\displaystyle\mathbf{P}\left(\frac{\Sigma_{2}}{\Sigma_{1}}\leq x_{1}\right)\mathbf{P}\left(\frac{\Sigma_{2}}{\Sigma_{1}}\leq x_{2}\right).

Applying now the same arguments which we have used in First part of the proof to establish (57) from (67), we obtain (68) from (72).

We now prove (69). To this aim we check that, for any fixed i𝐍i\in\mathbf{N} and for all but a countable set of (x1,x2)\left(x_{1},x_{2}\right) with x1,x20x_{1},x_{2}\geq 0,

limn𝐏(ant1bnt1Unt1(i)x1,bnt2antkUnt2(i)x2|Bn,ε)\displaystyle\lim_{n\rightarrow\infty}\mathbf{P}\left(\left.\frac{a_{\left\lfloor nt_{1}\right\rfloor}}{b_{\left\lfloor nt_{1}\right\rfloor}}U_{\left\lfloor nt_{1}\right\rfloor}^{\left(i\right)}\leq x_{1},\,\frac{b_{\left\lfloor nt_{2}\right\rfloor}}{a_{\left\lfloor nt_{k}\right\rfloor}}U_{\left\lfloor nt_{2}\right\rfloor}^{\left(i\right)}\leq x_{2}\,\right|\,B_{n,\varepsilon}\right) (73)
=\displaystyle= 𝐏(1Σ1j=ii+1ζjeSjmin(x1,x2)).\displaystyle\mathbf{P}\left(\frac{1}{\Sigma_{1}}\sum\limits_{j=-i}^{i+1}\zeta_{j}^{\ast}e^{-S_{j}^{\ast}}\leq\min\left(x_{1},x_{2}\right)\right).

Set

Zi,n(m)=Zτn+i,m,Z_{i,n}^{\prime}\left(m\right)=Z_{\tau_{n}+i,m},
Un(i)(m)=j=ii+1Zj,n(m).U_{n}^{\left(i\right)}\left(m\right)=\sum\limits_{j=-i}^{i+1}Z_{j,n}^{\prime}\left(m\right).

Given that the random event Bn,εB_{n,\varepsilon} occurred, τnt2=τnt1\tau_{\left\lfloor nt_{2}\right\rfloor}=\tau_{\left\lfloor nt_{1}\right\rfloor} and

bnt2ant2bnt1ant2\frac{b_{\left\lfloor nt_{2}\right\rfloor}}{a_{\left\lfloor nt_{2}\right\rfloor}}\sim\frac{b_{\left\lfloor nt_{1}\right\rfloor}}{a_{\left\lfloor nt_{2}\right\rfloor}}

as nn\rightarrow\infty. Therefore

Unt1(i)=j=ii+1Zi,nt1(nt1)=Unt1(i)(nt1),U_{\left\lfloor nt_{1}\right\rfloor}^{\left(i\right)}=\sum\limits_{j=-i}^{i+1}Z_{i,\left\lfloor nt_{1}\right\rfloor}^{\prime}\left(\left\lfloor nt_{1}\right\rfloor\right)=U_{\left\lfloor nt_{1}\right\rfloor}^{\left(i\right)}\left(\left\lfloor nt_{1}\right\rfloor\right),
Unt2(i)=j=ii+1Zi,nt1(nt2)=Unt1(i)(nt2).\qquad U_{\left\lfloor nt_{2}\right\rfloor}^{\left(i\right)}=\sum\limits_{j=-i}^{i+1}Z_{i,\left\lfloor nt_{1}\right\rfloor}^{\prime}\left(\left\lfloor nt_{2}\right\rfloor\right)=U_{\left\lfloor nt_{1}\right\rfloor}^{\left(i\right)}\left(\left\lfloor nt_{2}\right\rfloor\right).

Thus, to prove (73) it is sufficient to show that

limn𝐏(ant1bnt1Unt1(i)(nt1)x1,ant2bnt1Unt1(i)(nt2)x2|Bn,ε)\displaystyle\lim_{n\rightarrow\infty}\mathbf{P}\left(\left.\frac{a_{\left\lfloor nt_{1}\right\rfloor}}{b_{\left\lfloor nt_{1}\right\rfloor}}U_{\left\lfloor nt_{1}\right\rfloor}^{\left(i\right)}\left(\left\lfloor nt_{1}\right\rfloor\right)\leq x_{1},\,\frac{a_{\left\lfloor nt_{2}\right\rfloor}}{b_{\left\lfloor nt_{1}\right\rfloor}}U_{\left\lfloor nt_{1}\right\rfloor}^{\left(i\right)}\left(\left\lfloor nt_{2}\right\rfloor\right)\leq x_{2}\,\right|\,B_{n,\varepsilon}\right) (74)
=\displaystyle= 𝐏(1Σ1j=ii+1ζjeSjmin(x1,x2)).\displaystyle\mathbf{P}\left(\frac{1}{\Sigma_{1}}\sum\limits_{j=-i}^{i+1}\zeta_{j}^{\ast}e^{-S_{j}^{\ast}}\leq\min\left(x_{1},x_{2}\right)\right).

Applying the arguments similar to those used to establish relation (19), we can show that

{ai,mZi,n(m),i𝐙}D{ζi,i𝐙},\left\{a_{i,m}^{\prime}Z_{i,n}^{\prime}\left(m\right),\,i\in\mathbf{Z}\right\}\stackrel{{\scriptstyle D}}{{\to}}\left\{\zeta_{i}^{\ast},\,i\in\mathbf{Z}\right\},

as mnm\geq n\rightarrow\infty. Moreover,

{(ai,nZi,n(n),ai,mZi,n(m)),i𝐙}D{(ζi,ζi),i𝐙}\left\{\left(a_{i,n}^{\prime}Z_{i,n}^{\prime}\left(n\right),a_{i,m}^{\prime}Z_{i,n}^{\prime}\left(m\right)\right),\,i\in\mathbf{Z}\right\}\stackrel{{\scriptstyle D}}{{\to}}\left\{\left(\zeta_{i}^{\ast},\zeta_{i}^{\ast}\right),\,i\in\mathbf{Z}\right\} (75)

and the left-hand side of this relation is asymptotically independent from the random event {Cn1Lna,Cn1(SnLn)b}\left\{C_{n}^{-1}L_{n}\leq a,\,C_{n}^{-1}\left(S_{n}-L_{n}\right)\leq b\right\} for any a0a\leq 0\ and b>0b>0. It follows from (75) that (see the proof of (64))

(anbnUn(i)(n),ambnUn(i)(m))D1Σ1(j=ii+1ζjeSj,j=ii+1ζjeSj),\left(\frac{a_{n}}{b_{n}}U_{n}^{\left(i\right)}\left(n\right),\frac{a_{m}}{b_{n}}U_{n}^{\left(i\right)}\left(m\right)\right)\stackrel{{\scriptstyle D}}{{\to}}\frac{1}{\Sigma_{1}}\left(\sum\limits_{j=-i}^{i+1}\zeta_{j}^{\ast}e^{-S_{j}^{\ast}},\sum\limits_{j=-i}^{i+1}\zeta_{j}^{\ast}e^{-S_{j}^{\ast}}\right), (76)

as mnm\geq n\rightarrow\infty. From (76) we obtain the desired relation (74) and, as result, (73). Now statement (69) follows from (73) in a standard way.

Finally, according to the Skorokhod functional limit theorem (see (1))

limε0limn𝐏(An,ε)=𝐏(L(t1)>L(t1,t2))=𝐏(L(t1)>L(t2)),\lim_{\varepsilon\rightarrow 0}\lim_{n\rightarrow\infty}\mathbf{P}\left(A_{n,\varepsilon}\right)=\mathbf{P}\left(L\left(t_{1}\right)>L\left(t_{1},t_{2}\right)\right)=\mathbf{P}\left(L\left(t_{1}\right)>L\left(t_{2}\right)\right), (77)
limε0limn𝐏(Bn,ε)=𝐏(L(t1)<L(t1,t2))=𝐏(L(t1)=L(t2)),\lim_{\varepsilon\rightarrow 0}\lim_{n\rightarrow\infty}\mathbf{P}\left(B_{n,\varepsilon}\right)=\mathbf{P}\left(L\left(t_{1}\right)<L\left(t_{1},t_{2}\right)\right)=\mathbf{P}\left(L\left(t_{1}\right)=L\left(t_{2}\right)\right), (78)

where L(t1,t2)=inft[t1,t2]W(t)L\left(t_{1},t_{2}\right)=\inf_{t\in\left[t_{1},t_{2}\right]}W\left(t\right), and

limε0limn𝐏(Dn,ε)=0.\lim_{\varepsilon\rightarrow 0}\lim_{n\rightarrow\infty}\mathbf{P}\left(D_{n,\varepsilon}\right)=0. (79)

By the total probability formula

𝐏(ant1bnt1Znt1x1,ant2bnt2Znt2x2)\displaystyle\mathbf{P}\left(\frac{a_{\left\lfloor nt_{1}\right\rfloor}}{b_{\left\lfloor nt_{1}\right\rfloor}}Z_{\left\lfloor nt_{1}\right\rfloor}\leq x_{1},\,\frac{a_{\left\lfloor nt_{2}\right\rfloor}}{b_{\left\lfloor nt_{2}\right\rfloor}}Z_{\left\lfloor nt_{2}\right\rfloor}\leq x_{2}\right) (80)
=\displaystyle= 𝐏(ant1bnt1Znt1x1,ant2bnt2Znt2x2|An,ε)𝐏(An,ε)\displaystyle\mathbf{P}\left(\left.\frac{a_{\left\lfloor nt_{1}\right\rfloor}}{b_{\left\lfloor nt_{1}\right\rfloor}}Z_{\left\lfloor nt_{1}\right\rfloor}\leq x_{1},\,\frac{a_{\left\lfloor nt_{2}\right\rfloor}}{b_{\left\lfloor nt_{2}\right\rfloor}}Z_{\left\lfloor nt_{2}\right\rfloor}\leq x_{2}\,\right|\,A_{n,\varepsilon}\right)\mathbf{P}\left(A_{n,\varepsilon}\right)
+𝐏(ant1bnt1Znt1x1,ant2bnt2Znt2x2|Bn,ε)𝐏(Bn,ε)\displaystyle+\mathbf{P}\left(\left.\frac{a_{\left\lfloor nt_{1}\right\rfloor}}{b_{\left\lfloor nt_{1}\right\rfloor}}Z_{\left\lfloor nt_{1}\right\rfloor}\leq x_{1},\,\frac{a_{\left\lfloor nt_{2}\right\rfloor}}{b_{\left\lfloor nt_{2}\right\rfloor}}Z_{\left\lfloor nt_{2}\right\rfloor}\leq x_{2}\,\right|\,B_{n,\varepsilon}\right)\mathbf{P}\left(B_{n,\varepsilon}\right)
+𝐏(ant1bnt1Znt1x1,ant2bnt2Znt2x2|Dn,ε)𝐏(Dn,ε).\displaystyle+\mathbf{P}\left(\left.\frac{a_{\left\lfloor nt_{1}\right\rfloor}}{b_{\left\lfloor nt_{1}\right\rfloor}}Z_{\left\lfloor nt_{1}\right\rfloor}\leq x_{1},\,\frac{a_{\left\lfloor nt_{2}\right\rfloor}}{b_{\left\lfloor nt_{2}\right\rfloor}}Z_{\left\lfloor nt_{2}\right\rfloor}\leq x_{2}\,\right|\,D_{n,\varepsilon}\right)\mathbf{P}\left(D_{n,\varepsilon}\right).

Combining (68), (69) and (77)-(80) we deduce that

limn𝐏(ant1bnt1Znt1x1,ant2bnt2Znt2x2)\displaystyle\lim_{n\rightarrow\infty}\mathbf{P}\left(\frac{a_{\left\lfloor nt_{1}\right\rfloor}}{b_{\left\lfloor nt_{1}\right\rfloor}}Z_{\left\lfloor nt_{1}\right\rfloor}\leq x_{1},\,\frac{a_{\left\lfloor nt_{2}\right\rfloor}}{b_{\left\lfloor nt_{2}\right\rfloor}}Z_{\left\lfloor nt_{2}\right\rfloor}\leq x_{2}\right)
=\displaystyle= 𝐏(γ1x1,γ2x2)𝐏(L(t1)>L(t2))\displaystyle\mathbf{P}\left(\gamma_{1}\leq x_{1},\,\gamma_{2}\leq x_{2}\right)\mathbf{P}\left(L\left(t_{1}\right)>L\left(t_{2}\right)\right)
+𝐏(γ1x1,γ1x2)𝐏(L(t1)=L(t2)),\displaystyle+\mathbf{P}\left(\gamma_{1}\leq x_{1},\,\gamma_{1}\leq x_{2}\right)\mathbf{P}\left(L\left(t_{1}\right)=L\left(t_{2}\right)\right),

This gives the desired convergence of two-dimensional distributions.

Third part. The proof of convergence of multidimensional distributions (for dimensions exceeding two) is carried out by induction using the reasonings of Second part of the proof.

References

  • [1] K. Athreya, P. Ney, Branching processes, Springer-Verlag, Berlin-Heidelberg-New-York, 1972.
  • [2] E. Dyakonova, L. Doudou, V. Vatutin, M. Zhang, Branching processes in a random environment with immigration stopped at zero (in print).
  • [3] O. Kallenberg, Foundations of modern probability. 2nd Edition, Springer-Verlag, Berlin-Heidelberg-New-York, 2002.
  • [4] V. Afanasyev, J. Geiger, G. Kersting, V. Vatutin, A limit theorem for a critical branching process in random environment, Ann. Probab. 33 (2) (2005) 645–673. doi:10.1214/009117904000000928.
  • [5] G. Kersting, V. Vatutin, Discrete time branching processes in random environment, John Viley and Sons, Inc., London, 2017.
  • [6] H. Kesten, M. Kozlov, F. Spitzer, A limit law for random walk in a random environment, Compositio mathematica 30 (1975) 145–168.
  • [7] E. Key, Limiting distributions and regeneration times for multitype branching processes with immigration in a random environment, Ann. Probab. 15 (1) (1987) 344–353.
  • [8] A. Roitershtein, A note on multitype branching processes with immigration in a random environment, Ann. Probab. 35 (4) (2007) 1573–1592. doi:10.1214/009117906000001015.
  • [9] E. Bauernschubert, Recurrence and transience of critical branching processes in random environment with immigration and an application to excited random walks, Adv. in Appl. Probab. 46 (3) (2014) 683–703. doi:10.1239/aap/1409319555.
  • [10] V. Afanasyev, About time of reaching a high level by a random walk in a random environment, Theory Probab. Appl. 57 (4) (2013) 547–567. doi:10.1137/S0040585X97986175.
  • [11] V. Afanasyev, Conditional limit theorem for maximum of random walk in a random environment, Theory Probab. Appl. 58 (4) (2014) 525–545. doi:10.1137/S0040585X97986746.
  • [12] V. Afanasyev, On the time of attaining a high level by a transient random walk in a random environment, Theory Probab. Appl. 61 (2) (2017) 178–207. doi:10.1137/S0040585X97T988101.
  • [13] V. Afanasyev, On the non-recurrent random walk in a random environment, Discrete Math. Appl. 28 (3) (2018) 139–156. doi:10.1515/dma-2018-0014.
  • [14] D. Li, V. Vatutin, M. Zhang, Subcritical branching processes in random environment with immigration stopped at zero, J. Theor. Probability (2020) 1–23doi:10.1007/s10959-020-00991-5.
  • [15] N. Bingham, C. Goldie, J.L.Teugels, Regular variation, Cambridge Univ. Press, Cambridge, 1987.
  • [16] V. Afanasyev, A limit theorem for a critical branching process in random environment, Diskretnaya Matematika 5 (1) (1993) 45–58.
  • [17] A. Shiryaev, Probability-1, Springer, New York, 2018.