This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A decoupled structure preserving scheme for the Poisson-Nernst-Planck Navier-Stokes equations and its error analysis

Ziyao Yu, Jie Shen, Changyou Wang, Qing Cheng
Abstract.

We consider in this paper numerical approximations for the Poisson-Nernst-Planck-Navier-Stokes (PNP-NS) system. We propose a decoupled semi-discrete and fully discrete scheme that enjoys the nice properties of positivity preserving, mass conserving, and unconditionally energy stability. Then, we establish the well-posedness and regularity for the initial and (periodic) boundary value problem of the PNP-NS system under suitable assumptions on the initial data, and carry out a rigorous convergence analysis for the fully discretized scheme. We also present some numerical results to validate the positivity preserving property and the accuracy for our decoupled numerical scheme.

Keywords. Error analysis; PNP-NS system; Unique Solvability; Structure-preserving; Positivity-preserving.

Cheng is supported in parts by NSFC 12301522 and the Fundamental Research Funds for the Central Universities, Shen is supported in parts by NSFC 11971407, and Wang is supported in parts by NSF 2101224. The main contents of this paper are part of Z. Yu’s Ph.D thesis at Purdue University.
Department of Mathematics, West Lafayette, IN 47907, USA (yu583@purdue.edu, wang2482@purdue.edu).
Key Laboratory of Intelligent Computing and Application (Tongji University), Ministry of Education, and Department of Mathematics, Tongji University, Shanghai 200092, P. R. China (qingcheng@tongji.edu.cn).
Eastern Institute of Technology, Ningbo, Zhejiang 315200, P. R. China (jshen@eitech.edu.cn).

1. Introduction

In this paper, we consider a time-dependent system that describes the electrodiffusion of ions in an isothermal, incompressible, and viscous Newtonian fluid. Such a system is called the Poisson-Nernst-Planck-Navier-Stokes (PNP-NS) system gong2021partial ; liu2021positivity ; schmuck2011modeling , which is widely applied in fields such as microfluids which has numerous applications in lab-on-a-chip system; biology including vesicle motion, membrane fluctuations, electroporation; and electrochemistry such as porous electrode charging, desalination dynamics, dendritic growth bazant2010induced . An introduction to some basic physical and mathematical descriptions can be found in rubinstein1990electro .

We consider a solution of a monovalent symmetric strong salt. The Poisson-Nernst-Planck equations and incompressible Navier-Stokes Equations describe the system as

pt+(𝐮)p=D(p+ekBTpΨ),\displaystyle p_{t}+({\bf u}\cdot\nabla)p=D\nabla\cdot(\nabla p+\frac{e}{k_{B}T}p\nabla\Psi),
nt+(𝐮)n=D(nekBTnΨ),\displaystyle n_{t}+({\bf u}\cdot\nabla)n=D\nabla\cdot(\nabla n-\frac{e}{k_{B}T}n\nabla\Psi),
ϵΔΨ=ρe,\displaystyle-\epsilon\Delta\Psi=\rho_{e},
𝐮t+(𝐮)𝐮νvisΔ𝐮+P=Ψρe,\displaystyle{\bf u}_{t}+({\bf u}\cdot\nabla){\bf u}-\nu_{vis}\Delta{\bf u}+\nabla P=-\nabla\Psi\rho_{e},
𝐮=0,\displaystyle\nabla\cdot{\bf u}=0,

where 𝐮{\bf u} and PP denote the velocity field of the fluid and the pressure function, respectively. The variables pp and nn represent the concentration functions of positive and negative ions in the fluid, respectively, and Ψ\Psi is the electric potential. Here ρe=e(pn)\rho_{e}=e(p-n) represents the free charge density for a monovalent symmetric salt (here ionic valence z=±1z=\pm 1), and ee is elementary charge. kBk_{B} is Boltzemann’s constant, TT is temperature and DD is the diffusion coefficient of ions. Moreover, ϵ\epsilon, νvis\nu_{vis} are the dielectric permittivity and viscosity of the fluid. Normalizing the electric potential by introducing ψ\psi: ψ=ekBTΨ.\psi=\frac{e}{k_{B}T}\Psi. The PNP-NS system is therefore given by

(1.1) pt+(𝐮)p=D(p+pψ),\displaystyle p_{t}+({\bf u}\cdot\nabla)p=D\nabla\cdot(\nabla p+p\nabla\psi),
(1.2) nt+(𝐮)n=D(nnψ),\displaystyle n_{t}+({\bf u}\cdot\nabla)n=D\nabla\cdot(\nabla n-n\nabla\psi),
(1.3) εΔψ=pn,\displaystyle-\varepsilon\Delta\psi=p-n,
(1.4) 𝐮t+(𝐮)𝐮νvisΔ𝐮+P=κψ(pn),\displaystyle{\bf u}_{t}+({\bf u}\cdot\nabla){\bf u}-\nu_{vis}\Delta{\bf u}+\nabla P=-\kappa\nabla\psi(p-n),
(1.5) 𝐮=0,\displaystyle\nabla\cdot{\bf u}=0,

with ε=ϵkBTe2\varepsilon=\frac{\epsilon k_{B}T}{e^{2}}, and κ=kBT\kappa=k_{B}T. It is worth to note that ε=2cbulkλD2\varepsilon=2c_{bulk}\lambda_{D}^{2}, where λD\lambda_{D} is the Debye screening length bazant2010induced defined by λD=ϵkBT2cbulke2\lambda_{D}=\sqrt{\frac{\epsilon k_{B}T}{2c_{\text{bulk}}e^{2}}} and cbulkc_{\text{bulk}} is a reference bulk concentration of ions. The system (1.1)-(1.5) is subjected to a set of initial and boundary conditions, which will be specified later.

There has been considerable interest in the mathematical analysis of the PNP-NS system. For example, Schmuck schmuck2009analysis established the global existence of weak solutions in three dimensions under the blocking boundary condition for (p,n)(p,n) and the zero Neumann boundary condition for ψ\psi; Gong-Wang-Zhang gong2021partial established the existence and partial regularity of suitable weak solutions in three dimensions under the zero Neumann boundary condition for pp, nn, and ψ\psi; Constantin-Ignatova constantin2019nernst proved the global existence and stability result in two dimensions, with the blocking and selective boundary conditions for (p,n)(p,n) and the Dirichlet boundary condition for ψ\psi. We emphasize that the solutions of the PNP-NS system are positive (n,p>0n,p>0), mass-conserving, and energy-dissipative.

In recent years, a large effort has been devoted to constructing positivity-preserving schemes for various problems in different areas MR4186541 ; MR4107225 ; MR3880256 ; MR4253790 ; liu2018positivity ; van2019positivity ; shen2016maximum ; zhornitskaya1999positivity ; chen2019positivity . There are also quite a few numerical investigations on the PNP-NS system (1.1)-(1.5). It was shown in flavell2014conservative that it is important for numerical schemes to maintain mass conservation. Prohl-Schmuck proposed in prohl2010convergent a coupled fully implicit first-order scheme with a finite-element method in space for the PNP-NS system and studied its convergence. Additionally, a first-order time-stepping method was proposed in liu2017efficient with spectral method discretization in space. Several structure-preserving numerical methods have been proposed for the PNP equations, for example, cheng2022new2 ; cheng2022new ; flavell2014conservative ; hu2020fully ; huang2021bound ; liu2021positivity ; prohl2009convergent ; shen2021unconditionally ; liu2021efficient ; ding2019positivity . There are also some recent studies reformulate the PNP system into Maxwell-Ampere Nernst-Planck(MANP) system qiao2023structure . However, there appears to be no scheme available in the literature for the PNP-NS system (1.1)-(1.5) that enjoys the properties of unique solvability, mass- and positivity-preserving, and energy stability.

In this paper, we propose a decoupled, mass- and positivity-preserving, and unconditionally energy-stable scheme for the PNP-NS system and carry out a rigorous error analysis. The main contributions of this paper include:

  • We propose a totally decoupled, mass- and positivity-preserving, and unconditionally energy-stable scheme for the PNP-NS system by combining the following techniques:

  • We derive the existence and regularity results of the PNP-NS system (1.1)-(1.5) with periodic boundary conditions under suitable assumptions on the initial data.

  • To carry out an error analysis, it is necessary to have LL^{\infty} bounds for nn and pp, which are not available through energy stability. We use an approach similar to liu2021positivity to derive these bounds by introducing a high-order asymptotic expansion for both the PNP equations and the Navier-Stokes equations.

This paper is organized as follows: In Section 2, we construct a semi-discrete (in time) scheme, followed by a fully discrete scheme with a generic spatial discretization, and prove that it preserves mass and positivity, and is unconditionally energy stable. In Section 3, we establish the well-posedness and regularity of the PNP-NS system under periodic boundary conditions. An error analysis of the fully discretized scheme is carried out in Section 4. Some numerical results are provided in Section 5.

2. A Decoupled Numerical Scheme and Its Properties

Let Ω\Omega be a bounded domain in 2\mathbb{R}^{2}. We consider the time discretization of the PNP-NS system (1.1)-(1.5) subjected to boundary condition either

  • block\mathcal{B}^{block}: the non-slip boundary condition for 𝐮{\bf u}, the homogeneous Neumann boundary condition for (ϕ,lnp+ψ,lnnψ)(\phi,\ln{p}+\psi,\ln{n}-\psi), i.e., all the fluxes vanish on the boundary of Ω\Omega:

    (2.1) 𝐮|Ω=0,ϕν|Ω=(p+pψ)ν|Ω=(nnψ)ν|Ω=0,{\bf u}|_{\partial\Omega}=0,\;\;\nabla\phi\cdot\vec{\nu}\big{|}_{\partial\Omega}=(\nabla p+p\nabla\psi)\cdot\vec{\nu}\big{|}_{\partial\Omega}=(\nabla n-n\nabla\psi)\cdot\vec{\nu}\big{|}_{\partial\Omega}=0,
  • periodic\mathcal{B}^{periodic}: the periodic boundary conditions for all variables,

along with the initial condition:

(2.2) (𝐮,p,n)(x,y,0)=(𝐮in,pin,nin)(x,y),for(x,y)Ω.\displaystyle({\bf u},p,n)(x,y,0)=({\bf u}^{\text{in}},p^{\text{in}},n^{\text{in}})(x,y),\quad\text{for}\ (x,y)\in\Omega.

For either (2.1) or the periodic boundary conditions, one observes that the mass of ions is conserved, i.e.,

Ωp(x,t)𝑑x=Ωp(x,0)𝑑x,Ωn(x,t)𝑑x=Ωn(x,0)𝑑x,t[0,T].\int_{\Omega}p(x,t)\,dx=\int_{\Omega}p(x,0)\,dx,\quad\int_{\Omega}n(x,t)\,dx=\int_{\Omega}n(x,0)\,dx,\quad\forall t\in[0,T].

Another essential property of the PNP-NS system (1.1)-(1.5) is the following energy dissipation law:

(2.3) ddtE(p,n,𝐮)=Ω(νvis|𝐮|2+κDp|μ|2+κDn|ν|2)dx,\frac{d}{dt}E(p,n,{\bf u})=-\int_{\Omega}\left({\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\nu_{vis}}\rvert\nabla{\bf u}\rvert^{2}+{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\kappa D}p\rvert\nabla\mu\rvert^{2}+{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\kappa D}n\rvert\nabla\nu\rvert^{2}\right)dx,

where μ=lnp+ψ\mu=\ln{p}+\psi and ν=lnnψ\nu=\ln{n}-\psi are chemical potentials of the PNP-NS system, and EE is the total energy given by

E(p,n,𝐮)=Ωκ(p(lnp1)+n(lnn1)+ε2|ψ|2)+12|𝐮|2dx.E(p,n,{\bf u})=\int_{\Omega}{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\kappa}\left(p(\ln{p}-1)+n(\ln{n}-1)+\frac{\varepsilon}{2}\rvert\nabla\psi\rvert^{2}\right)+\frac{1}{2}\rvert{\bf u}\rvert^{2}dx.

2.1. Time Discretization

We first consider the time discretization. For simplicity, we set various constants D=ε=κ=νvis=1D=\varepsilon=\kappa=\nu_{vis}=1 for the rest analysis. In order to construct an efficient time discretization scheme, we first rewrite the right-hand side of equation (1.4) as

ψ(pn)=(pμ+nν)+(p+n),-\nabla\psi(p-n)=-(p\nabla\mu+n\nabla\nu)+\nabla(p+n),

and introduce a modified pressure ϕ=Ppn\phi=P-p-n. Then, the PNP-NS system (1.1)-(1.5) can be reformulated as

(2.4) pt+(𝐮)p=(pμ),\displaystyle p_{t}+({\bf u}\cdot\nabla)p=\nabla\cdot(p\nabla\mu),
(2.5) nt+(𝐮)n=(nν),\displaystyle n_{t}+({\bf u}\cdot\nabla)n=\nabla\cdot(n\nabla\nu),
(2.6) Δψ=pn,\displaystyle-\Delta\psi=p-n,
(2.7) 𝐮t+(𝐮)𝐮Δ𝐮+ϕ=(pμ+nν),\displaystyle{\bf u}_{t}+({\bf u}\cdot\nabla){\bf u}-\Delta{\bf u}+\nabla\phi=-(p\nabla\mu+n\nabla\nu),
(2.8) 𝐮=0.\displaystyle\nabla\cdot{\bf u}=0.

Depending on boundary condition choice \mathcal{B}, we define the function space X(),U(),W()X(\mathcal{B}),U(\mathcal{B}),W(\mathcal{B}):

  • X(block)=X(periodic)=H1(Ω)X(\mathcal{B}^{block})=X(\mathcal{B}^{periodic})=H^{1}(\Omega),

  • U(block)=U(periodic)={qL2(Ω):Ωq𝑑x=0}U(\mathcal{B}^{block})=U(\mathcal{B}^{periodic})=\{q\in L^{2}(\Omega):\int_{\Omega}q\,dx=0\},

  • W()={H01(Ω), if =block,H1(Ω), if =periodic.W(\mathcal{B})=\big{\{}\begin{array}[]{l}H^{1}_{0}(\Omega),\text{ if }\mathcal{B}=\mathcal{B}^{block},\\ H^{1}(\Omega),\text{ if }\mathcal{B}=\mathcal{B}^{periodic}.\end{array}

Following some of the ideas in shen2021unconditionally ; liu2021positivity ; shen2015decoupled , we construct a first-order time discretization scheme as follows: under boundary condition \mathcal{B} being either block\mathcal{B}^{block} or periodic\mathcal{B}^{periodic}, for any given (pm,nm,𝐮m,ϕm)(p^{m},n^{m},{\bf u}^{m},\phi^{m}) with Ω(pmnm)𝑑x=0\int_{\Omega}(p^{m}-n^{m})\,dx=0, (pm,nm)>0(p^{m},n^{m})>0 and 𝐮m=0\nabla\cdot{\bf u}^{m}=0 in Ω\Omega, we compute (pm+1,nm+1,𝐮m+1,ϕm+1)(p^{m+1},n^{m+1},{\bf u}^{m+1},\phi^{m+1}) in three steps:

  • Step 1: Solve (pm+1,nm+1)X()×X(){\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}(p^{m+1},n^{m+1})\in X(\mathcal{B})\times X(\mathcal{B})} from

    (2.9) pm+1pmΔt+(pm𝐮m)=(pm(1+2Δtpm)μm+1),\displaystyle\frac{p^{m+1}-p^{m}}{\Delta t}+\nabla\cdot(p^{m}{\bf u}^{m})=\nabla\cdot(p^{m}(1+2\Delta tp^{m})\nabla\mu^{m+1}),
    (2.10) nm+1nmΔt+(nm𝐮m)=(nm(1+2Δtnm)νm+1),\displaystyle\frac{n^{m+1}-n^{m}}{\Delta t}+\nabla\cdot(n^{m}{\bf u}^{m})=\nabla\cdot(n^{m}(1+2\Delta tn^{m})\nabla\nu^{m+1}),
    (2.11) Δψm+1=pm+1nm+1.\displaystyle-\Delta\psi^{m+1}=p^{m+1}-n^{m+1}.

    where

    μm+1=lnpm+1+ψm+1andνm+1=lnnm+1ψm+1.\mu^{m+1}=\ln{p^{m+1}}+\psi^{m+1}\quad{\text{and}}\quad\nu^{m+1}=\ln{n^{m+1}}-\psi^{m+1}.
  • Step 2: Solve 𝐮~m+1W()2{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\tilde{{\bf u}}^{m+1}\in W(\mathcal{B})^{2}} from

    (2.12) 𝐮~m+1𝐮mΔt+(𝐮m)𝐮~m+1Δ𝐮~m+1+ϕm=(pmμm+1+nmνm+1),\frac{\tilde{{\bf u}}^{m+1}-{\bf u}^{m}}{\Delta t}+({\bf u}^{m}\cdot\nabla)\tilde{{\bf u}}^{m+1}-\Delta\tilde{{\bf u}}^{m+1}+\nabla\phi^{m}=-\left(p^{m}\nabla\mu^{m+1}+n^{m}\nabla\nu^{m+1}\right),
  • Step 3: Solve (𝐮m+1,ϕm+1)W()2×U(){\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}({\bf u}^{m+1},\phi^{m+1})\in W(\mathcal{B})^{2}\times U(\mathcal{B})} from

    (2.13) 𝐮m+1𝐮~m+1Δt+(ϕm+1ϕm)=0,\displaystyle\frac{{\bf u}^{m+1}-\tilde{{\bf u}}^{m+1}}{\Delta t}+\nabla(\phi^{m+1}-\phi^{m})=0,
    (2.14) 𝐮m+1=0.\displaystyle\nabla\cdot{\bf u}^{m+1}=0.

The first step involves solving a coupled nonlinear system for (pm+1,nm+1,ψm+1)(p^{m+1},n^{m+1},\psi^{m+1}) which can be formulated as a minimization problem for a convex functional, see shen2021unconditionally and also Theorem 2.2. The second step solves a Poisson-type equation for 𝐮~m+1\tilde{{\bf u}}^{m+1}. And the third step is equivalent to solving

(2.15) Δ(ϕm+1ϕm)=1Δt𝐮~m+1,\displaystyle\Delta(\phi^{m+1}-\phi^{m})=\frac{1}{\Delta t}\nabla\cdot\tilde{{\bf u}}^{m+1},

along with either (ϕm+1ϕm)ν|Ω=0(\phi^{m+1}-\phi^{m})\cdot\vec{\nu}\big{|}_{\partial\Omega}=0 or the periodic boundary condition, and

(2.16) 𝐮m+1=𝐮~m+1Δt(ϕm+1ϕm).\displaystyle{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}{\bf u}^{m+1}}=\tilde{{\bf u}}^{m+1}-\Delta t\nabla(\phi^{m+1}-\phi^{m}).

Thus, the scheme (2.9)-(2.14) can be efficiently implemented.

Remark 1.

In (2.9) (2.10), we discretized the mobility term as pm(1+2Δtpm)p^{m}(1+2\Delta tp^{m}), nm(1+2Δtnm)n^{m}(1+2\Delta tn^{m}), moving the 𝒪(Δt)\mathcal{O}(\Delta t) terms to the left, therefore the first step can be rewritten as:

pm+1pmΔt+(pm𝐮,pm)=(pmμm+1),\displaystyle\frac{p^{m+1}-p^{m}}{\Delta t}+\nabla\cdot(p^{m}{\bf u}^{m}_{*,p})=\nabla\cdot(p^{m}\nabla\mu^{m+1}),
nm+1nmΔt+(nm𝐮,nm)=(nmνm+1),\displaystyle\frac{n^{m+1}-n^{m}}{\Delta t}+\nabla\cdot(n^{m}{\bf u}^{m}_{*,n})=\nabla\cdot(n^{m}\nabla\nu^{m+1}),

where

𝐮,pm=𝐮m2Δtpmμm+1,\displaystyle{\bf u}^{m}_{*,p}={\bf u}^{m}-2\Delta tp^{m}\nabla\mu^{m+1},
𝐮,nm=𝐮m2Δtnmνm+1.\displaystyle{\bf u}^{m}_{*,n}={\bf u}^{m}-2\Delta tn^{m}\nabla\nu^{m+1}.

This is similar to the decoupling technique introduced by shen2015decoupled , where specific additional 𝒪(Δt)\mathcal{O}(\Delta t) terms are introduced such that the decoupled discrete numerical scheme is unconditionally energy stable, see Theorem 2.2 below.

2.2. Fully Discretized Scheme

In this subsection, we shall consider a generic spatial discretization for (2.9)-(2.14). Let ΣN\Sigma_{N} be a set of mesh points or collocation points in Ω¯\bar{\Omega}. Note that ΣN\Sigma_{N} should not include the points on the part of the boundary where a Dirichlet (or essential) boundary condition is prescribed, while it should include the points on the part of the boundary where a Neumann or mixed (or non-essential) boundary condition is prescribed.

We consider a Galerkin-type discretization with finite elements, spectral methods, or finite differences with summation-by-parts in a subspace XNXX_{N}\subset X, and define a discrete inner product, i.e., numerical integration, on ΣN={𝒛}\Sigma_{N}=\{\boldsymbol{z}\} in Ω¯\bar{\Omega}:

(2.17) uN,vNN,ω=𝒛ΣNω𝒛uN(𝒛)vN(𝒛),\langle u_{N},v_{N}\rangle_{N,\omega}=\sum_{\boldsymbol{z}\in\Sigma_{N}}\omega_{\boldsymbol{z}}u_{N}(\boldsymbol{z})v_{N}(\boldsymbol{z}),

where we require that the weights ω𝒛>0\omega_{\boldsymbol{z}}>0. We also denote the induced norm by uN=uN,uNN,ω12\|u_{N}\|=\langle u_{N},u_{N}\rangle_{N,\omega}^{\frac{1}{2}}. For finite element methods, the sum should be understood as K𝒯𝒛Z(K)\sum_{K\subset\mathcal{T}}\sum_{\boldsymbol{z}\in Z(K)}, where 𝒯\mathcal{T} is a given triangulation. We assume that there is a unique function ψ𝒛(𝒙)\psi_{\boldsymbol{z}}(\boldsymbol{x}) satisfying ψ𝒛(𝒛)=δ𝒛𝒛\psi_{\boldsymbol{z}}(\boldsymbol{z}^{\prime})=\delta_{\boldsymbol{z}\boldsymbol{z}^{\prime}} for 𝒛,𝒛ΣN\boldsymbol{z},\boldsymbol{z}^{\prime}\in\Sigma_{N}. Under boundary condition \mathcal{B}, let XNX_{N}, WN{W}_{N}, and UN{U}_{N} be suitable discretization subspaces of X()X(\mathcal{B}), W()W(\mathcal{B}), and U()U(\mathcal{B}), respectively.

To fix the idea and without loss of generality, throughout the rest of the paper, reader can think we are discussing under spectral method discretization framework, and XN,WN,UNX_{N},W_{N},U_{N} are subspaces of PNP_{N}, where

PN:={span{eijxeiky:N2kN21}, if =periodic,span{1,x,y,xy,,xNyN}, if =block.P_{N}:=\big{\{}\begin{array}[]{l}span\{e^{\mathrm{i}jx}e^{\mathrm{i}ky}:-\frac{N}{2}\leq k\leq\frac{N}{2}-1\},\text{ if }\mathcal{B}=\mathcal{B}^{periodic},\\ span\{1,x,y,xy,...,x^{N}y^{N}\},\text{ if }\mathcal{B}=\mathcal{B}^{block}.\end{array}

Under spectral method framework, the quadrature error is very small when NN is large enough, and avoidable in numerical implementation by choosing quadrature points numbers NQN_{Q} bigger than basis numbers NN. For simplicity, throughout the rest of the paper, we ignore the quadrature error, and do not distinguish the continuous inner product uN,vN\langle u_{N},v_{N}\rangle and discrete inner product uN,vNN,ω\langle u_{N},v_{N}\rangle_{N,\omega}.

Then, a fully discretized version of (2.9)-(2.14) for the PNP-NS system (2.4)-(2.8) is as follows:

Given (pNm,nNm,𝐮Nm,ϕNm)XN×XN×WN2×UN(p_{N}^{m},n_{N}^{m},{\bf u}_{N}^{m},\phi_{N}^{m})\in X_{N}\times X_{N}\times{{W}_{N}^{2}}\times{{U}_{N}}, with pNm,nNm>0p_{N}^{m},n_{N}^{m}>0 in Ω\Omega, pNmnNm,1=0\displaystyle\langle p_{N}^{m}-n^{m}_{N},1\rangle=0, and 𝐮Nm=0\nabla\cdot\mathbf{u}_{N}^{m}=0 in Ω\Omega, we proceed as follows:

  • Step 1: Solve (pNm+1,nNm+1)XN×XN(p^{m+1}_{N},n^{m+1}_{N})\in X_{N}\times X_{N} from

    (2.18) pNm+1pNmΔt,vNpNm𝐮Nm,vN+pNm(1+2ΔtpNm)μNm+1,vN=0,vNXN,\displaystyle\langle\frac{p^{m+1}_{N}-p^{m}_{N}}{\Delta t},v_{N}\rangle-\langle p^{m}_{N}{\bf u}^{m}_{N},\nabla v_{N}\rangle+\langle p^{m}_{N}(1+2\Delta tp^{m}_{N})\nabla\mu^{m+1}_{N},\nabla v_{N}\rangle=0,\;\forall v_{N}\in X_{N},\vskip 5.0pt
    (2.19) nNm+1nNmΔt,vNnNm𝐮Nm,vN+nNm(1+2ΔtnNm)νNm+1,vN=0,vNXN,\displaystyle\langle\frac{n^{m+1}_{N}-n^{m}_{N}}{\Delta t},v_{N}\rangle-\langle n^{m}_{N}{\bf u}^{m}_{N},\nabla v_{N}\rangle+\langle n^{m}_{N}(1+2\Delta tn^{m}_{N})\nabla\nu^{m+1}_{N},\nabla v_{N}\rangle=0,\;\forall v_{N}\in X_{N},\vskip 5.0pt
    (2.20) ψNm+1,vN=pNm+1nNm+1,vN,vNXN,\displaystyle\langle\nabla\psi^{m+1}_{N},\nabla v_{N}\rangle=\langle p^{m+1}_{N}-n^{m+1}_{N},v_{N}\rangle,\;\forall v_{N}\in X_{N},\vskip 5.0pt

    where

    (2.21) μNm+1=lnpNm+1+ψNm+1,νNm+1=lnnNm+1ψNm+1.\mu^{m+1}_{N}=\ln{p^{m+1}_{N}}+\psi^{m+1}_{N},\quad\nu^{m+1}_{N}=\ln{n^{m+1}_{N}}-\psi^{m+1}_{N}.
  • Step 2: Solve 𝐮~Nm+1WN2\tilde{{\bf u}}^{m+1}_{N}\in{{W}_{N}^{2}} from

    𝐮~Nm+1𝐮NmΔt,wN+(𝐮Nm)𝐮~Nm+1,wN+𝐮~Nm+1,wN+ϕNm,wN,\displaystyle\langle\frac{\tilde{{\bf u}}^{m+1}_{N}-{\bf u}^{m}_{N}}{\Delta t},{{w_{N}}}\rangle+\langle({\bf u}^{m}_{N}\cdot\nabla)\tilde{{\bf u}}^{m+1}_{N},{{w_{N}}}\rangle+\langle\nabla\tilde{{\bf u}}^{m+1}_{N},\nabla{{w_{N}}}\rangle+\langle\nabla\phi^{m}_{N},w_{N}\rangle,
    (2.22) +pNmμNm+1+nNmνNm+1,wN=0,wNWN2,\displaystyle\qquad+\langle p^{m}_{N}\nabla\mu^{m+1}_{N}+n^{m}_{N}\nabla\nu^{m+1}_{N},{{w_{N}}}\rangle=0,\;\forall w_{N}\in{{W}_{N}^{2}},\vskip 5.0pt
  • Step 3: Solve (𝐮Nm+1,ϕNm+1)WN2×UN({\bf u}^{m+1}_{N},\phi^{m+1}_{N})\in{{W}_{N}^{2}}\times{{U}_{N}} from

    (2.23) 𝐮Nm+1𝐮~Nm+1Δt,vN+(ϕNm+1ϕNm),vN=0,vNXN2,\displaystyle\langle\frac{{\bf u}^{m+1}_{N}-\tilde{{\bf u}}^{m+1}_{N}}{\Delta t},v_{N}\rangle+\langle\nabla(\phi^{m+1}_{N}-\phi^{m}_{N}),v_{N}\rangle=0,\;v_{N}\in X_{N}^{2},
    (2.24) 𝐮Nm+1,qN=0,qNUN.\displaystyle{{\langle{\bf u}^{m+1}_{N},\nabla q_{N}\rangle}}=0,\;q_{N}\in{{U}_{N}}.

We shall show below that the nonlinear system (2.18)-(2.20) in Step 1 can be interpreted as a minimization of a convex functional. In Step 2, we only need to solve a Poisson-type equation for 𝐮~Nm+1\tilde{{\bf u}}^{m+1}_{N}, and Step 3 is a discrete Darcy system which can be reduced to a discrete Poisson equation for ϕNm+1ϕNm\phi^{m+1}_{N}-\phi^{m}_{N}. Hence, the above scheme can be efficiently solved.

2.3. Properties of the Numerical Scheme

We show below that our decoupled numerical scheme (2.18)-(2.24) enjoys four properties: mass conservation, unique solvability, positivity-preserving, and unconditional energy stability.

Before proceeding to the proof, for any discrete positive function (𝐳)>0\mathcal{M}({\bf z})>0 for all 𝐳ΣN{\bf z}\in\Sigma_{N}, we introduce the operator :XNXN\mathcal{L}_{\mathcal{M}}:X_{N}\rightarrow X_{N} defined by

(2.25) fN,vN=fN,vN,fN,vNXN.\langle\mathcal{L}_{\mathcal{M}}f_{N},v_{N}\rangle=\langle\mathcal{M}\nabla f_{N},\nabla v_{N}\rangle,\quad\forall f_{N},v_{N}\in X_{N}.

The operator \mathcal{L}_{\mathcal{M}} is invertible on the space X˙N={fXNf,1=0}\dot{X}_{N}=\big{\{}f\in X_{N}\mid\langle f,1\rangle=0\big{\}}, so we can define the inverse operator 1:XNX˙N\mathcal{L}^{-1}_{\mathcal{M}}:X_{N}\rightarrow\dot{X}_{N} and the induced norm

fN1=fN,1fN,fNXN.\|f_{N}\|_{\mathcal{L}^{-1}_{\mathcal{M}}}=\sqrt{\langle f_{N},\mathcal{L}_{\mathcal{M}}^{-1}f_{N}\rangle},\quad\forall f_{N}\in X_{N}.

If (𝐳)1\mathcal{M}({\bf z})\equiv 1 for all 𝐳ΣN{\bf z}\in\Sigma_{N}, then we have

(fN)=ΔfNandfN1,Ω=fN,(Δ)1fN,fNXN.\mathcal{L}_{\mathcal{M}}(f_{N})=-\Delta f_{N}\quad\text{and}\quad\|f_{N}\|_{-1,\Omega}=\sqrt{\langle f_{N},(-\Delta)^{-1}f_{N}\rangle},\quad\forall f_{N}\in X_{N}.
Lemma 2.1.

Suppose fNXNf_{N}\in X_{N} and M0\mathcal{M}\geq M_{0}, then we have the estimate:

1fNCNM0fN,\|\mathcal{L}^{-1}_{\mathcal{M}}f_{N}\|_{\infty}\leq\frac{C{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}N}}{M_{0}}\|f_{N}\|,

where CC depends only on Ω\Omega.

Proof.

Denote uN=1fNX˙Nu_{N}=\mathcal{L}^{-1}_{\mathcal{M}}f_{N}\in{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\dot{X}_{N}}. From (2.25) and using the Poincaré-Wirtinger inequality, we have

M0uN2uN,uN=fN,uNfNuNCfNuN,M_{0}\|\nabla u_{N}\|^{2}\leq\langle\mathcal{M}\nabla u_{N},\nabla u_{N}\rangle=\langle f_{N},u_{N}\rangle\leq\|f_{N}\|\|u_{N}\|\leq C\|f_{N}\|\|\nabla u_{N}\|,

and applying the Nikolskii’s inequality, we have

uNC(Ω)Nu2C(Ω)NuNCNM0fN,\|u_{N}\|_{\infty}\leq C(\Omega)N\|u\|_{2}\leq C(\Omega)N\|\nabla u_{N}\|\leq\frac{CN}{M_{0}}\|f_{N}\|,

where CC depends only on Ω\Omega. ∎

Theorem 2.2.

Given (pNm,nNm,𝐮Nm,ϕNm)XN×XN×WN2×UN(p^{m}_{N},n^{m}_{N},{\bf u}^{m}_{N},\phi^{m}_{N})\in X_{N}\times X_{N}\times{W}_{N}^{2}\times{U}_{N}, with pNm(𝐳),nNm(𝐳)>0p_{N}^{m}({\bf z}),n_{N}^{m}({\bf z})>0 for all 𝐳ΣN{\bf z}\in\Sigma_{N}, pNmnNm,1=0\displaystyle\langle p_{N}^{m}-n^{m}_{N},1\rangle=0, and 𝐮Nm=0\nabla\cdot\mathbf{u}_{N}^{m}=0 in Ω\Omega, then the scheme (2.18)-(2.24) enjoys the following properties:

  1. (1)

    Mass Conservation:

    pNm+1,1=pNm,1,nNm+1,1=nNm,1.\langle p^{m+1}_{N},1\rangle=\langle p^{m}_{N},1\rangle,\quad\langle n^{m+1}_{N},1\rangle=\langle n^{m}_{N},1\rangle.
  2. (2)

    Unique Solvability: The scheme (2.18)-(2.23) has a unique solution

    (pNm+1,nNm+1,𝐮Nm+1,ϕNm+1)XN×XN×WN2×UN.(p^{m+1}_{N},n^{m+1}_{N},{\bf u}^{m+1}_{N},\phi^{m+1}_{N})\in X_{N}\times X_{N}\times{W}_{N}^{2}\times{U}_{N}.
  3. (3)

    Positivity Preserving: The unique solution (pNm+1,nNm+1,𝐮Nm+1,ϕNm+1)(p^{m+1}_{N},n^{m+1}_{N},{\bf u}^{m+1}_{N},\phi^{m+1}_{N}) satisfies

    pNm+1(𝐳),nNm+1(𝐳)>0,𝐳ΣN.p^{m+1}_{N}({\bf z}),\,n^{m+1}_{N}({\bf z})>0,\quad\forall{\bf z}\in\Sigma_{N}.
  4. (4)

    Unconditional Energy Stability:

    1Δt((E(pNm+1)+E(nNm+1)+12ψNm+12+12𝐮Nm+12+Δt22ϕNm+12)(E(pNm)+E(nNm)+12ψNm2+12𝐮Nm2+Δt22ϕNm2))+𝐮~Nm+12+pNm|μNm+1|2,1+nNm|νNm+1|2,1+12Δt(ψNm+1ψNm)2+12Δt𝐮Nm+1𝐮~Nm+12+12Δt𝐮~Nm+1𝐮Nm2+Δt2(ϕNm+1ϕNm)2𝐮~Nm+12pNm|μNm+1|2,1nNm|νNm+1|2,1.\begin{split}&\quad\frac{1}{\Delta t}\bigg{(}\big{(}E(p^{m+1}_{N})+E(n^{m+1}_{N})+\frac{1}{2}\|\nabla\psi^{m+1}_{N}\|^{2}+\frac{1}{2}\|{\bf u}^{m+1}_{N}\|^{2}+\frac{\Delta t^{2}}{2}\|\nabla\phi^{m+1}_{N}\|^{2}\big{)}\\ &\quad-\big{(}E(p^{m}_{N})+E(n^{m}_{N})+\frac{1}{2}\|\nabla\psi^{m}_{N}\|^{2}+\frac{1}{2}\|{\bf u}^{m}_{N}\|^{2}+\frac{\Delta t^{2}}{2}\|\nabla\phi^{m}_{N}\|^{2}\big{)}\bigg{)}\\ &\quad+\|\nabla\tilde{{\bf u}}^{m+1}_{N}\|^{2}+\langle p^{m}_{N}|\nabla\mu^{m+1}_{N}|^{2},1\rangle+\langle n^{m}_{N}|\nabla\nu^{m+1}_{N}|^{2},1\rangle\\ &\quad+\frac{1}{2\Delta t}\|\nabla(\psi^{m+1}_{N}-\psi^{m}_{N})\|^{2}+\frac{1}{2\Delta t}\|{\bf u}^{m+1}_{N}-\tilde{{\bf u}}^{m+1}_{N}\|^{2}\\ &\quad+\frac{1}{2\Delta t}\|\tilde{{\bf u}}^{m+1}_{N}-{\bf u}^{m}_{N}\|^{2}+\frac{\Delta t}{2}\|\nabla(\phi^{m+1}_{N}-\phi^{m}_{N})\|^{2}\\ &\leq-\|\nabla\tilde{{\bf u}}^{m+1}_{N}\|^{2}-\langle p^{m}_{N}|\nabla\mu^{m+1}_{N}|^{2},1\rangle-\langle n^{m}_{N}|\nabla\nu^{m+1}_{N}|^{2},1\rangle.\end{split}

    where the energy is defined by

    E(vN)=vN(lnvN1),1,E(v_{N})=\langle v_{N}(\ln{v_{N}}-1),1\rangle,

    for any function vNXNv_{N}\in X_{N}.

Proof.
  1. (1)

    Mass Conservation: This follows directly by choosing the test function vN=1v_{N}=1 in the equations (2.18) and (2.19).

  2. (2)

    Unique Solvability and Positivity Preserving: The numerical solution {pNm+1,nNm+1}\{p^{m+1}_{N},n^{m+1}_{N}\} of (2.18)-(2.20) is obtained through the minimization of the discrete energy functional:

    J(pN,nN)=12Δt(pNpNmpNm(1+2ΔtpNm)12+nNnNmnNm(1+2ΔtnNm)12)+(pNm𝐮Nm)pN,1+(nNm𝐮Nm)nN,1+pN(lnpN1),1+nN(lnnN1),1+12pNnN1,Ω2,\begin{split}J(p^{*}_{N},n^{*}_{N})&=\frac{1}{2\Delta t}\Big{(}\|p^{*}_{N}-p^{m}_{N}\|_{\mathcal{L}^{-1}_{p^{m}_{N}(1+2\Delta tp^{m}_{N})}}^{2}+\|n^{*}_{N}-n^{m}_{N}\|_{\mathcal{L}^{-1}_{n^{m}_{N}(1+2\Delta tn^{m}_{N})}}^{2}\Big{)}\\ &\quad+\langle\nabla\cdot(p^{m}_{N}\mathbf{u}_{N}^{m})p^{*}_{N},1\rangle+\langle\nabla\cdot(n^{m}_{N}\mathbf{u}_{N}^{m})n^{*}_{N},1\rangle\\ &\quad+\langle p^{*}_{N}(\ln{p^{*}_{N}}-1),1\rangle+\langle n^{*}_{N}(\ln{n^{*}_{N}}-1),1\rangle+\frac{1}{2}\|p^{*}_{N}-n^{*}_{N}\|_{-1,\Omega}^{2},\end{split}

    over the admissible space

    Y^N={(pN,nN)XN20<pN(𝐳),nN(𝐳)<MN,𝐳ΣN,pN,1=nN,1=β0|Ω|},\hat{Y}_{N}=\Big{\{}(p_{N},n_{N})\in X_{N}^{2}\mid 0<p_{N}({\bf z}),\,n_{N}({\bf z})<M_{N},\forall{\bf z}\in\Sigma_{N},\langle p_{N},1\rangle=\langle n_{N},1\rangle=\beta_{0}|\Omega|\Big{\}},

    where

    β0=1|Ω|pNm,1=1|Ω|nNm,1\beta_{0}=\frac{1}{|\Omega|}\langle p_{N}^{m},1\rangle=\frac{1}{|\Omega|}\langle n_{N}^{m},1\rangle

    is the average of pNmp_{N}^{m} (and nNmn_{N}^{m}), and

    MN=β0|Ω|N38π3.M_{N}=\frac{\beta_{0}|\Omega|N^{3}}{8\pi^{3}}.

    Below we show uniqueness, solvability, and positivity for scheme (2.18)-(2.23) by suitable modifications of liu2021positivity and shen2021unconditionally .

    Firstly, we observe that every term in the functional J(pN,nN)J(p_{N},n_{N}) is strictly convex or linear with respect to the variables (pN,nN)(p_{N},n_{N}) over the admissible space Y^N\hat{Y}_{N}. To show the existence of a unique minimizer of J(pN,nN)J(p_{N},n_{N}) over Y^N\hat{Y}_{N}, we proceed as follows. For a sufficiently small 0<δ<β00<\delta<\beta_{0}, whose value is to be determined later, we define

    YN,δ={(pN,nN)Y^NδpN(𝐳),nN(𝐳)MNδ,𝐳ΣN}.Y_{N,\delta}=\Big{\{}(p_{N},n_{N})\in\hat{Y}_{N}\mid\delta\leq p_{N}({\bf z}),\,n_{N}({\bf z})\leq M_{N}-\delta,\quad\forall{\bf z}\in\Sigma_{N}\Big{\}}.

    Since YN,δY_{N,\delta} is a compact subset of Y^N\hat{Y}_{N}, there exists a minimizer (pN,nN)YN,δ(p^{*}_{N},n^{*}_{N})\in Y_{N,\delta} of J(pN,nN)J(p_{N},n_{N}) over YN,δY_{N,\delta}. Next, we need to show that (pN,nN)(p^{*}_{N},n^{*}_{N}) lies in the interior of YN,δY_{N,\delta}, provided δ>0\delta>0 is chosen to be sufficiently small.

    Suppose the contrary that for an arbitrarily small δ\delta, the minimizer of J(pN,nN)J(p_{N},n_{N}) occurs at the boundary of YN,δY_{N,\delta}, i.e., (pN,nN)YN,δ(p^{*}_{N},n^{*}_{N})\in\partial Y_{N,\delta} for all δ>0\delta>0. For simplicity, we only consider the case that there exists a point (x0,y0)ΣN(x_{0},y_{0})\in\Sigma_{N} such that pN(x0,y0)=δp^{*}_{N}(x_{0},y_{0})=\delta (the other case can be handled similarly). Notice that there exists another point (x1,y1)(x0,y0)(x_{1},y_{1})\neq(x_{0},y_{0}) and (x1,y1)ΣN(x_{1},y_{1})\in\Sigma_{N} such that pN(x1,y1)=max𝐱ΣNpN(𝐱)β0p^{*}_{N}(x_{1},y_{1})=\max_{{\bf x}\in\Sigma_{N}}p^{*}_{N}({\bf x})\geq\beta_{0}. Now we can choose the test function ψN\psi_{N} as ψN=ϕ(x0,y0)N(x,y)ϕ(x1,y1)N(x,y)\psi_{N}=\phi^{N}_{(x_{0},y_{0})}(x,y)-\phi^{N}_{(x_{1},y_{1})}(x,y), where ϕ(x0,y0)N(x,y)\phi^{N}_{(x_{0},y_{0})}(x,y) and ϕ(x1,y1)N(x,y)\phi^{N}_{(x_{1},y_{1})}(x,y) are Lagrange polynomials satisfying the following property: for all (x,y)ΣN(x,y)\in\Sigma_{N}

    ϕN(x0,y0)(x,y)=δ(x0,y0)(x,y),ϕN(x1,y1)(x,y)=δ(x1,y1)(x,y),\begin{array}[]{cc}&\phi_{N}^{(x_{0},y_{0})}(x,y)=\delta_{(x_{0},y_{0})}(x,y),\\ &\phi_{N}^{(x_{1},y_{1})}(x,y)=\delta_{(x_{1},y_{1})}(x,y),\end{array}

    where δ(x0,y0)(x,y)\delta_{(x_{0},y_{0})}(x,y) and δ(x1,y1)(x,y)\delta_{(x_{1},y_{1})}(x,y) are the Kronecker delta functions. Since (pN,nN)(p^{*}_{N},n^{*}_{N}) is the minimizer and (pN+sψN,nN)YN,δ(p^{*}_{N}+s\psi_{N},n^{*}_{N})\in Y_{N,\delta} for s0s\geq 0 small, we have

    ddsJ(pN+sψN,nN)|s=0=0.\frac{d}{ds}J(p^{*}_{N}+s\psi_{N},n^{*}_{N})\bigg{|}_{s=0}=0.

    Direct computations imply

    ddsJ(pN+sψN,nN)|s=0\displaystyle\frac{d}{ds}J(p^{*}_{N}+s\psi_{N},n^{*}_{N})\bigg{|}_{s=0} =1ΔtpNm(1+2ΔtpNm)1(pNpNm),ψN+lnpN,ψN\displaystyle=\frac{1}{\Delta t}\langle\mathcal{L}^{-1}_{p_{N}^{m}(1+2\Delta tp_{N}^{m})}(p^{*}_{N}-p^{m}_{N}),\psi_{N}\rangle+\langle\ln p^{*}_{N},\psi_{N}\rangle
    (2.26) +Ω(pNm𝐮Nm)ψN𝑑x+(Δ)1(pNnN),ψN.\displaystyle\quad+\int_{\Omega}\nabla\cdot(p^{m}_{N}\mathbf{u}_{N}^{m})\psi_{N}\,dx+\langle(-\Delta)^{-1}(p^{*}_{N}-n^{*}_{N}),\psi_{N}\rangle.

    Plugging ψN=ϕN(x0,y0)(x,y)ϕN(x1,y1)(x,y)\psi_{N}=\phi_{N}^{(x_{0},y_{0})}(x,y)-\phi_{N}^{(x_{1},y_{1})}(x,y) into (2), we obtain

    ln(pN(x0,y0)pN(x1,y1))\displaystyle-\ln\left(\frac{p^{*}_{N}(x_{0},y_{0})}{p^{*}_{N}(x_{1},y_{1})}\right) =(pNm𝐮Nm)(x0,y0)(pNm𝐮Nm)(x1,y1)\displaystyle=\nabla\cdot(p^{m}_{N}\mathbf{u}_{N}^{m})(x_{0},y_{0})-\nabla\cdot(p^{m}_{N}\mathbf{u}_{N}^{m})(x_{1},y_{1})
    +(Δ)1(pNpNm)(x0,y0)(Δ)1(pNpNm)(x1,y1)\displaystyle\quad+(-\Delta)^{-1}(p^{*}_{N}-p_{N}^{m})(x_{0},y_{0})-(-\Delta)^{-1}(p^{*}_{N}-p_{N}^{m})(x_{1},y_{1})
    (2.27) +1Δt(pNm(1+2ΔtpNm)1(pNpNm)(x0,y0)pNm(1+2ΔtpNm)1(pNpNm)(x1,y1)).\displaystyle\quad+\frac{1}{\Delta t}\Big{(}\mathcal{L}^{-1}_{p_{N}^{m}(1+2\Delta tp_{N}^{m})}(p^{*}_{N}-p^{m}_{N})(x_{0},y_{0})-\mathcal{L}^{-1}_{p_{N}^{m}(1+2\Delta tp_{N}^{m})}(p^{*}_{N}-p^{m}_{N})(x_{1},y_{1})\Big{)}.

    It is readily seen that

    ln(pN(x0,y0)pN(x1,y1))ln(δβ0),{-\ln\left(\frac{p^{*}_{N}(x_{0},y_{0})}{p^{*}_{N}(x_{1},y_{1})}\right)\geq-\ln\left(\frac{\delta}{\beta_{0}}\right),}

    and

    |(pNm𝐮Nm)(x0,y0)(pNm𝐮Nm)(x1,y1)|2(pNm𝐮Nm).\left|\nabla\cdot(p^{m}_{N}\mathbf{u}_{N}^{m})(x_{0},y_{0})-\nabla\cdot(p^{m}_{N}\mathbf{u}_{N}^{m})(x_{1},y_{1})\right|\leq 2\|\nabla\cdot(p^{m}_{N}{\bf u}^{m}_{N})\|_{\infty}.

    Furthermore, using Lemma 2.1, we obtain

    |(Δ)1(pNpNm)(x0,y0)(Δ)1(pNpNm)(x1,y1)|2CNMN,\left|(-\Delta)^{-1}(p^{*}_{N}-p_{N}^{m})(x_{0},y_{0})-(-\Delta)^{-1}(p^{*}_{N}-p_{N}^{m})(x_{1},y_{1})\right|\leq 2C{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}N}M_{N},

    and

    |pNm(1+2ΔtpNm)1(pNpNm)(x0,y0)pNm(1+2ΔtpNm)1(pNpNm)(x1,y1)|2CNMNmin𝐳ΣzpNm(𝐳).\left|\mathcal{L}^{-1}_{p_{N}^{m}(1+2\Delta tp_{N}^{m})}(p^{*}_{N}-p^{m}_{N})(x_{0},y_{0})-\mathcal{L}^{-1}_{p_{N}^{m}(1+2\Delta tp_{N}^{m})}(p^{*}_{N}-p^{m}_{N})(x_{1},y_{1})\right|\leq 2C{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}N}\frac{M_{N}}{{\min_{{\bf z}\in\Sigma_{z}}p^{m}_{N}({\bf z})}}.

    Substituting the inequalities derived above into (2), we obtain

    (2.28) 0ln(δβ0)+2CN(MN+MNΔtmin𝐳ΣzpNm(𝐳))+2(pNm𝐮Nm).0\leq\ln\left(\frac{\delta}{\beta_{0}}\right)+2C{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}N}\left(M_{N}+\frac{M_{N}}{\Delta t\cdot{\min_{{\bf z}\in\Sigma_{z}}p^{m}_{N}({\bf z})}}\right)+2\|\nabla\cdot(p^{m}_{N}{\bf u}^{m}_{N})\|_{\infty}.

    This is impossible for any fixed NN and Δt\Delta t, since we can choose δ>0\delta>0 to be sufficiently small. This implies that the absolute minimum of J(pN,nN)J(p_{N},n_{N}) over YN,δY_{N,\delta} can only occur at an interior point of YN,δY_{N,\delta}, provided δ>0\delta>0 is chosen to be sufficiently small. Since J(pN,nN)J(p_{N},n_{N}) is smooth, we conclude that there exists a solution (pN,nN)Y^N(p^{*}_{N},n^{*}_{N})\in\hat{Y}_{N} such that

    dds|s=0J(pN+sϕN,nN+sψN)=0,(ϕN,ψN)X˙N×X˙N.\frac{d}{ds}\Bigg{|}_{s=0}J(p^{*}_{N}+s\phi_{N},n^{*}_{N}+s\psi_{N})=0,\quad\forall(\phi_{N},\psi_{N})\in\dot{X}_{N}\times\dot{X}_{N}.

    Thus, (pN,nN)(p^{*}_{N},n^{*}_{N}) is a positive solution of the modified discrete PNP-NSE system (2.18)-(2.20). The uniqueness of positive solutions to (2.18)-(2.20) follows from the strict convexity of J(pN,nN)J(p_{N},n_{N}) over Y^N\hat{Y}_{N}. The existence and uniqueness of {𝐮Nm+1,ϕNm+1}\{{\bf u}^{m+1}_{N},\phi^{m+1}_{N}\} can be easily observed from (2.22)-(2.24).

  3. (3)

    Unconditional Energy Stability: We first derive the energy inequality for (2.18)-(2.20). Taking the test function vN=μNm+1v_{N}=\mu^{m+1}_{N} in (2.18) and vN=νNm+1v_{N}=\nu^{m+1}_{N} in (2.19), we have

    pNm+1pNmΔt,lnpNm+1+ψNm+1+pNm|μNm+1|2, 1\displaystyle\left\langle\frac{p^{m+1}_{N}-p^{m}_{N}}{\Delta t},\ \ln{p^{m+1}_{N}}+\psi^{m+1}_{N}\right\rangle+\left\langle p^{m}_{N}\left|\nabla\mu^{m+1}_{N}\right|^{2},\,1\right\rangle
    +nNm+1nNmΔt,lnnNm+1ψNm+1+nNm|νNm+1|2, 1\displaystyle\quad+\left\langle\frac{n^{m+1}_{N}-n^{m}_{N}}{\Delta t},\ \ln{n^{m+1}_{N}}-\psi^{m+1}_{N}\right\rangle+\left\langle n^{m}_{N}\left|\nabla\nu^{m+1}_{N}\right|^{2},\,1\right\rangle
    =pNm𝐮Nm2Δt(pNm)2μNm+1,μNm+1\displaystyle=\left\langle p^{m}_{N}\mathbf{u}^{m}_{N}-2\Delta t\,(p^{m}_{N})^{2}\nabla\mu^{m+1}_{N},\ \nabla\mu^{m+1}_{N}\right\rangle
    (2.29) +nNm𝐮Nm2Δt(nNm)2νNm+1,νNm+1.\displaystyle\quad+\left\langle n^{m}_{N}\mathbf{u}^{m}_{N}-2\Delta t\,(n^{m}_{N})^{2}\nabla\nu^{m+1}_{N},\ \nabla\nu^{m+1}_{N}\right\rangle.

    From the convexity of the function x(lnx1)x(\ln{x}-1) for x>0x>0, we know

    (2.30) pNm+1pNmΔt,lnpNm+11Δt(pNm+1(lnpNm+11),1pNm(lnpNm1),1),\displaystyle\langle\frac{p^{m+1}_{N}-p^{m}_{N}}{\Delta t},\ln{p^{m+1}_{N}}\rangle\geq\frac{1}{\Delta t}\bigg{(}\langle p^{m+1}_{N}(\ln{p^{m+1}_{N}}-1),1\rangle-\langle p^{m}_{N}(\ln{p^{m}_{N}}-1),1\rangle\bigg{)},
    (2.31) nNm+1nNmΔt,lnnNm+11Δt(nNm+1(lnnNm+11),1nNm(lnnNm1),1).\displaystyle\langle\frac{n^{m+1}_{N}-n^{m}_{N}}{\Delta t},\ln{n^{m+1}_{N}}\rangle\geq\frac{1}{\Delta t}\bigg{(}\langle n^{m+1}_{N}(\ln{n^{m+1}_{N}}-1),1\rangle-\langle n^{m}_{N}(\ln{n^{m}_{N}}-1),1\rangle\bigg{)}.

    Applying a(ab)=12(a2b2+(ab)2)a(a-b)=\frac{1}{2}(a^{2}-b^{2}+(a-b)^{2}) and the fact that

    pNmnNm,ψNm+1=ψNm+12,\langle p_{N}^{m}-n_{N}^{m},\psi^{m+1}_{N}\rangle=\|\nabla\psi^{m+1}_{N}\|^{2},

    we have

    (2.32) pNm+1pNmΔtnNm+1nNmΔt,ψNm+1=12Δt(ψNm+12ψNm2+(ψNm+1ψNm)2).\langle\frac{p^{m+1}_{N}-p^{m}_{N}}{\Delta t}-\frac{n^{m+1}_{N}-n^{m}_{N}}{\Delta t},\psi^{m+1}_{N}\rangle=\frac{1}{2\Delta t}(\|\nabla\psi^{m+1}_{N}\|^{2}-\|\nabla\psi^{m}_{N}\|^{2}+\|\nabla(\psi^{m+1}_{N}-\psi^{m}_{N})\|^{2}).

    Combining (2.29), (2.30), (2.31) with (2.32) we obtain

    (2.33) 1Δt((E(pNm+1)+E(nNm+1)+12ψNm+12)(E(pNm)+E(nNm)+12ψNm2))+12Δt(ψNm+1ψNm)2+pNm|μNm+1|2,1+nNm|νNm+1|2,1pNm𝐮Nm2Δt(pNm)2μNm+1,μNm+1+nNm𝐮Nm2Δt(nNm)2νNm+1,νNm+1.\begin{split}&\quad\frac{1}{\Delta t}\bigg{(}\big{(}E(p^{m+1}_{N})+E(n^{m+1}_{N})+\frac{1}{2}\|\nabla\psi^{m+1}_{N}\|^{2}\big{)}-\big{(}E(p^{m}_{N})+E(n^{m}_{N})+\frac{1}{2}\|\nabla\psi^{m}_{N}\|^{2}\big{)}\bigg{)}\\ &\quad+\frac{1}{2\Delta t}\|\nabla(\psi^{m+1}_{N}-\psi^{m}_{N})\|^{2}+\langle p^{m}_{N}\rvert\nabla\mu^{m+1}_{N}\rvert^{2},1\rangle+\langle n^{m}_{N}\rvert\nabla\nu^{m+1}_{N}\rvert^{2},1\rangle\\ &\leq\langle p^{m}_{N}{\bf u}^{m}_{N}-2\Delta t(p^{m}_{N})^{2}\nabla\mu^{m+1}_{N},\nabla\mu^{m+1}_{N}\rangle+\langle n^{m}_{N}{\bf u}^{m}_{N}-2\Delta t(n^{m}_{N})^{2}\nabla\nu^{m+1}_{N},\nabla\nu^{m+1}_{N}\rangle.\end{split}

    Now we derive the energy inequality for (2.22)-(2.24). Taking the test function vN=𝐮~Nm+1v_{N}=\tilde{{\bf u}}^{m+1}_{N} in (2.22), vN=𝐮Nm+1v_{N}={\bf u}^{m+1}_{N} in (2.23), we have

    (2.34) 12Δt(𝐮~Nm+12𝐮Nm2+𝐮~Nm+1𝐮Nm2)+𝐮~Nm+12+ϕNm,𝐮~Nm+1=pNmμNm+1+nNmνNm+1,𝐮~Nm+1.\begin{split}&\quad\frac{1}{2\Delta t}(\|\tilde{{\bf u}}^{m+1}_{N}\|^{2}-\|{\bf u}^{m}_{N}\|^{2}+\|\tilde{{\bf u}}^{m+1}_{N}-{\bf u}^{m}_{N}\|^{2})+\|\nabla\tilde{{\bf u}}^{m+1}_{N}\|^{2}+\langle\nabla\phi^{m}_{N},\tilde{{\bf u}}^{m+1}_{N}\rangle\\ &=-\langle p^{m}_{N}\nabla\mu^{m+1}_{N}+n^{m}_{N}\nabla\nu^{m+1}_{N},\tilde{{\bf u}}^{m+1}_{N}\rangle.\end{split}

    and

    (2.35) 12Δt(𝐮Nm+12𝐮~Nm+12+𝐮Nm+1𝐮~Nm+12)=0,\frac{1}{2\Delta t}(\|{\bf u}^{m+1}_{N}\|^{2}-\|\tilde{{\bf u}}^{m+1}_{N}\|^{2}+\|{\bf u}^{m+1}_{N}-\tilde{{\bf u}}^{m+1}_{N}\|^{2})=0,

    where we have used (2.24) that yields

    (𝐮Nm)𝐮~Nm+1,𝐮~Nm+1=12𝐮Nm,|𝐮~Nm+1|2=0,\langle({\bf u}^{m}_{N}\cdot\nabla)\tilde{{\bf u}}^{m+1}_{N},\tilde{{\bf u}}^{m+1}_{N}\rangle=\frac{1}{2}\langle{\bf u}^{m}_{N},\nabla|\tilde{{\bf u}}^{m+1}_{N}|^{2}\rangle=0,

    and

    (ϕNm+1ϕNm),𝐮Nm+1=0.\langle\nabla(\phi^{m+1}_{N}-\phi^{m}_{N}),{\bf u}^{m+1}_{N}\rangle=0.

    To estimate the term ϕNm,𝐮~Nm+1\langle\nabla\phi^{m}_{N},\tilde{{\bf u}}^{m+1}_{N}\rangle in (2.34), we take the test function vN=ϕNmv_{N}=\nabla\phi^{m}_{N} in (2.23), and obtain

    (2.36) 𝐮~Nm+1,ϕNm=Δt2(ϕNm+12ϕNm2+(ϕNm+1ϕNm)2).\langle\tilde{{\bf u}}^{m+1}_{N},\nabla\phi^{m}_{N}\rangle=\frac{\Delta t}{2}\left(\|\nabla\phi^{m+1}_{N}\|^{2}-\|\nabla\phi^{m}_{N}\|^{2}+\|\nabla(\phi^{m+1}_{N}-\phi^{m}_{N})\|^{2}\right).

    Combining (2.34), (2.35) with (2.36), we have

    (2.37) 12Δt(𝐮Nm+12𝐮Nm2+𝐮~Nm+1𝐮Nm2+𝐮Nm+1𝐮~Nm+12)+Δt2(ϕNm+12ϕNm2+(ϕNm+1ϕNm)2)+𝐮~Nm+12=pNmμNm+1+nNmνNm+1,𝐮~Nm+1.\begin{split}&\quad\frac{1}{2\Delta t}(\|{\bf u}^{m+1}_{N}\|^{2}-\|{\bf u}^{m}_{N}\|^{2}+\|\tilde{{\bf u}}^{m+1}_{N}-{\bf u}^{m}_{N}\|^{2}+\|{\bf u}^{m+1}_{N}-\tilde{{\bf u}}^{m+1}_{N}\|^{2})\\ &\quad+\frac{\Delta t}{2}(\|\nabla\phi^{m+1}_{N}\|^{2}-\|\nabla\phi^{m}_{N}\|^{2}+\|\nabla(\phi^{m+1}_{N}-\phi^{m}_{N})\|^{2})+\|\nabla\tilde{{\bf u}}^{m+1}_{N}\|^{2}\\ &=-\langle p^{m}_{N}\nabla\mu^{m+1}_{N}+n^{m}_{N}\nabla\nu^{m+1}_{N},\tilde{{\bf u}}^{m+1}_{N}\rangle.\end{split}

    Combining (2.33) with (2.37), we have

    (2.38) 1Δt((E(pNm+1)+E(nNm+1)+12ψNm+12+12𝐮Nm+12+Δt22ϕNm+12)(E(pNm)+E(nNm)+12ψNm2+12𝐮Nm2+Δt22ϕNm2))+𝐮~Nm+12+pNm|μNm+1|2,1+nNm|νNm+1|2,1+12Δt(ψNm+1ψNm)2+12Δt𝐮Nm+1𝐮~Nm+12+12Δt𝐮~Nm+1𝐮Nm2+Δt2(ϕNm+1ϕNm)2pNm𝐮Nm2Δt(pNm)2μNm+1,μNm+1pNmμNm+1,𝐮~Nm+1+nNm𝐮Nm2Δt(nNm)2νNm+1,νNm+1nNmνNm+1,𝐮~Nm+1.\begin{split}&\quad\frac{1}{\Delta t}\bigg{(}\big{(}E(p^{m+1}_{N})+E(n^{m+1}_{N})+\frac{1}{2}\|\nabla\psi^{m+1}_{N}\|^{2}+\frac{1}{2}\|{\bf u}^{m+1}_{N}\|^{2}+\frac{\Delta t^{2}}{2}\|\nabla\phi^{m+1}_{N}\|^{2}\big{)}\\ &\quad-\big{(}E(p^{m}_{N})+E(n^{m}_{N})+\frac{1}{2}\|\nabla\psi^{m}_{N}\|^{2}+\frac{1}{2}\|{\bf u}^{m}_{N}\|^{2}+\frac{\Delta t^{2}}{2}\|\nabla\phi^{m}_{N}\|^{2}\big{)}\bigg{)}\\ &\quad+\|\nabla\tilde{{\bf u}}^{m+1}_{N}\|^{2}+\langle p^{m}_{N}\rvert\nabla\mu^{m+1}_{N}\rvert^{2},1\rangle+\langle n^{m}_{N}\rvert\nabla\nu^{m+1}_{N}\rvert^{2},1\rangle\\ &\quad+\frac{1}{2\Delta t}\|\nabla(\psi^{m+1}_{N}-\psi^{m}_{N})\|^{2}+\frac{1}{2\Delta t}\|{\bf u}^{m+1}_{N}-\tilde{{\bf u}}^{m+1}_{N}\|^{2}\\ &\quad+\frac{1}{2\Delta t}\|\tilde{{\bf u}}^{m+1}_{N}-{\bf u}^{m}_{N}\|^{2}+\frac{\Delta t}{2}\|\nabla(\phi^{m+1}_{N}-\phi^{m}_{N})\|^{2}\\ \leq&\quad\langle p^{m}_{N}{\bf u}^{m}_{N}-2\Delta t(p^{m}_{N})^{2}\nabla\mu^{m+1}_{N},\nabla\mu^{m+1}_{N}\rangle-\langle p^{m}_{N}\nabla\mu^{m+1}_{N},\tilde{{\bf u}}^{m+1}_{N}\rangle\\ &\quad+\langle n^{m}_{N}{\bf u}^{m}_{N}-2\Delta t(n^{m}_{N})^{2}\nabla\nu^{m+1}_{N},\nabla\nu^{m+1}_{N}\rangle-\langle n^{m}_{N}\nabla\nu^{m+1}_{N},\tilde{{\bf u}}^{m+1}_{N}\rangle.\end{split}

    Now if we denote

    𝐮,pm=𝐮Nm2ΔtpNmμNm+1,\displaystyle{\bf u}^{m}_{*,p}={\bf u}^{m}_{N}-2\Delta tp^{m}_{N}\nabla\mu^{m+1}_{N},
    𝐮,nm=𝐮Nm2ΔtnNmνNm+1,\displaystyle{\bf u}^{m}_{*,n}={\bf u}^{m}_{N}-2\Delta tn^{m}_{N}\nabla\nu^{m+1}_{N},

    the terms of the right hand side of (2.38) can be rewritten as

    (2.39) pNm𝐮Nm2Δt(pNm)2μNm+1,μNm+1pNmμNm+1,𝐮~Nm+1=𝐮Nm2ΔtpNmμNm+1,pNmμNm+1𝐮~Nm+1,pNmμNm+1=12Δt𝐮,pm𝐮~Nm+1,𝐮Nm𝐮,pm=12Δt(𝐮,pm𝐮Nm,𝐮Nm+𝐮Nm𝐮~Nm+1,𝐮Nm𝐮,pm𝐮~Nm+1,𝐮,pm)=14Δt(𝐮Nm𝐮,pm2𝐮,pm𝐮~Nm+12+𝐮~Nm+1𝐮Nm2),\begin{split}&\quad\langle p^{m}_{N}{\bf u}^{m}_{N}-2\Delta t(p^{m}_{N})^{2}\nabla\mu^{m+1}_{N},\nabla\mu^{m+1}_{N}\rangle-\langle p^{m}_{N}\nabla\mu^{m+1}_{N},\tilde{{\bf u}}^{m+1}_{N}\rangle\\ &=\langle{\bf u}^{m}_{N}-2\Delta tp^{m}_{N}\nabla\mu^{m+1}_{N},p^{m}_{N}\nabla\mu^{m+1}_{N}\rangle-\langle\tilde{{\bf u}}^{m+1}_{N},p^{m}_{N}\nabla\mu^{m+1}_{N}\rangle\\ &=\frac{1}{2\Delta t}\langle{\bf u}^{m}_{*,p}-\tilde{{\bf u}}^{m+1}_{N},{\bf u}^{m}_{N}-{\bf u}^{m}_{*,p}\rangle\\ &=\frac{1}{2\Delta t}(\langle{\bf u}^{m}_{*,p}-{\bf u}^{m}_{N},{\bf u}^{m}_{N}\rangle+\langle{\bf u}^{m}_{N}-\tilde{{\bf u}}^{m+1}_{N},{\bf u}^{m}_{N}\rangle-\langle{\bf u}^{m}_{*,p}-\tilde{{\bf u}}^{m+1}_{N},{\bf u}^{m}_{*,p}\rangle)\\ &=\frac{1}{4\Delta t}\big{(}-\|{\bf u}^{m}_{N}-{\bf u}^{m}_{*,p}\|^{2}-\|{\bf u}^{m}_{*,p}-\tilde{{\bf u}}^{m+1}_{N}\|^{2}+\|\tilde{{\bf u}}^{m+1}_{N}-{\bf u}^{m}_{N}\|^{2}\big{)},\end{split}

    where we have used the following identity in the last step

    (ab)a=12(a2b2+(ab)2).(a-b)a=\frac{1}{2}\big{(}a^{2}-b^{2}+(a-b)^{2}\big{)}.

    Similarly, we have

    (2.40) nNm𝐮Nm2Δt(nNm)2νNm+1,νNm+1nNmνNm+1,𝐮~Nm+1=𝐮Nm2ΔtnNmνNm+1,nNmνNm+1𝐮~Nm+1,nNmνNm+1=12Δt𝐮,nm𝐮~Nm+1,𝐮Nm𝐮,nm=14Δt(𝐮Nm𝐮,nm2𝐮,nm𝐮~Nm+12+𝐮~Nm+1𝐮Nm2).\begin{split}&\quad\langle n^{m}_{N}{\bf u}^{m}_{N}-2\Delta t(n^{m}_{N})^{2}\nabla\nu^{m+1}_{N},\nabla\nu^{m+1}_{N}\rangle-\langle n^{m}_{N}\nabla\nu^{m+1}_{N},\tilde{{\bf u}}^{m+1}_{N}\rangle\\ &=\langle{\bf u}^{m}_{N}-2\Delta tn^{m}_{N}\nabla\nu^{m+1}_{N},n^{m}_{N}\nabla\nu^{m+1}_{N}\rangle-\langle\tilde{{\bf u}}^{m+1}_{N},n^{m}_{N}\nabla\nu^{m+1}_{N}\rangle\\ &=\frac{1}{2\Delta t}\langle{\bf u}^{m}_{*,n}-\tilde{{\bf u}}^{m+1}_{N},{\bf u}^{m}_{N}-{\bf u}^{m}_{*,n}\rangle\\ &=\frac{1}{4\Delta t}\big{(}-\|{\bf u}^{m}_{N}-{\bf u}^{m}_{*,n}\|^{2}-\|{\bf u}^{m}_{*,n}-\tilde{{\bf u}}^{m+1}_{N}\|^{2}+\|\tilde{{\bf u}}^{m+1}_{N}-{\bf u}^{m}_{N}\|^{2}\big{)}.\end{split}

    Now plug (2.39) and (2.40) into (2.38), we have

    1Δt((E(pNm+1)+E(nNm+1)+12ψNm+12+12𝐮Nm+12+Δt22ϕNm+12)(E(pNm)+E(nNm)+12ψNm2+12𝐮Nm2+Δt22ϕNm2))𝐮~Nm+12pNm|μNm+1|2,1nNm|νNm+1|2,112Δt(ψNm+1ψNm)212Δt𝐮Nm+1𝐮~Nm+12Δt2(ϕNm+1ϕNm)214Δt(𝐮~Nm+1𝐮,pm+12+𝐮Nm𝐮,pm+12+𝐮Nm𝐮,nm+12+𝐮~Nm+1𝐮,nm+12)𝐮~Nm+12pNm|μNm+1|2,1nNm|νNm+1|2,1.\begin{split}&\quad\frac{1}{\Delta t}\bigg{(}\big{(}E(p^{m+1}_{N})+E(n^{m+1}_{N})+\frac{1}{2}\|\nabla\psi^{m+1}_{N}\|^{2}+\frac{1}{2}\|{\bf u}^{m+1}_{N}\|^{2}+\frac{\Delta t^{2}}{2}\|\nabla\phi^{m+1}_{N}\|^{2}\big{)}\\ &\quad-\big{(}E(p^{m}_{N})+E(n^{m}_{N})+\frac{1}{2}\|\nabla\psi^{m}_{N}\|^{2}+\frac{1}{2}\|{\bf u}^{m}_{N}\|^{2}+\frac{\Delta t^{2}}{2}\|\nabla\phi^{m}_{N}\|^{2}\big{)}\bigg{)}\\ &\leq-\|\nabla\tilde{{\bf u}}^{m+1}_{N}\|^{2}-\langle p^{m}_{N}\rvert\nabla\mu^{m+1}_{N}\rvert^{2},1\rangle-\langle n^{m}_{N}\rvert\nabla\nu^{m+1}_{N}\rvert^{2},1\rangle\\ &\quad-\frac{1}{2\Delta t}\|\nabla(\psi^{m+1}_{N}-\psi^{m}_{N})\|^{2}-\frac{1}{2\Delta t}\|{\bf u}^{m+1}_{N}-\tilde{{\bf u}}^{m+1}_{N}\|^{2}-\frac{\Delta t}{2}\|\nabla(\phi^{m+1}_{N}-\phi^{m}_{N})\|^{2}\\ &\quad-\frac{1}{4\Delta t}\big{(}\|\tilde{{\bf u}}^{m+1}_{N}-{\bf u}^{m+1}_{*,p}\|^{2}+\|{\bf u}^{m}_{N}-{\bf u}^{m+1}_{*,p}\|^{2}+\|{\bf u}^{m}_{N}-{\bf u}^{m+1}_{*,n}\|^{2}+\|\tilde{{\bf u}}^{m+1}_{N}-{\bf u}^{m+1}_{*,n}\|^{2}\big{)}\\ &\leq-\|\nabla\tilde{{\bf u}}^{m+1}_{N}\|^{2}-\langle p^{m}_{N}\rvert\nabla\mu^{m+1}_{N}\rvert^{2},1\rangle-\langle n^{m}_{N}\rvert\nabla\nu^{m+1}_{N}\rvert^{2},1\rangle.\end{split}

    This yields the energy inequality for (2.18) - (2.23).

3. Well-posedness and Regularity

In this section, we shall establish the well-posedness and regularity of the PNP-NS system. For simplicity, we shall focus on periodic boundary conditions , for which the regularity of the solution can be determined by the regularity of the initial conditions. More precisely, we set Ω=(0,2π)2\Omega=(0,2\pi)^{2} and assume that

(3.1) (p,n,ψ,𝐮)(2π,y)=(p,n,ψ,𝐮)(0,y),y(0,2π);(p,n,ψ,𝐮)(x,2π)=(p,n,ψ,𝐮)(x,0),x(0,2π).\begin{array}[]{cc}&(p,n,\psi,{\bf u})(2\pi,y)=(p,n,\psi,{\bf u})(0,y),\quad y\in(0,2\pi);\\ &(p,n,\psi,{\bf u})(x,2\pi)=(p,n,\psi,{\bf u})(x,0),\quad x\in(0,2\pi).\end{array}
Theorem 3.1.

Let Ω=(0,2π)2\Omega=(0,2\pi)^{2}, and assume the initial conditions (pin,nin)Lr(Ω)W2,q(Ω)(p^{in},n^{in})\in L^{r}(\Omega)\cap W^{2,q}(\Omega), with r=2q>4r=2q>4, are positive and satisfy Ω(pinnin)𝑑x=0\displaystyle\int_{\Omega}(p^{in}-n^{in})\,dx=0, and the velocity 𝐮inW01,r(Ω,2){\bf u}^{in}\in W^{1,r}_{0}(\Omega,\mathbb{R}^{2}) is divergence-free. Then there exists a unique global strong solution of (1.1)–(1.5) with the initial condition (2.2) and the periodic boundary condition (3.1). Moreover, there exists a constant CrC_{r} depending on ε\varepsilon and the initial energy E(pin,nin,𝐮in)E(p^{in},n^{in},{\bf u}^{in}), pinLr\|p^{in}\|_{L^{r}}, ninLr\|n^{in}\|_{L^{r}}, and 𝐮inL2\|{\bf u}^{in}\|_{L^{2}} such that

sup0t<p(t)Lr(Ω)Cr,sup0t<n(t)Lr(Ω)Cr,sup0t<ψ(t)W2,r(Ω)Cr.\sup_{0\leq t<\infty}\|p(t)\|_{L^{r}(\Omega)}\leq C_{r},\quad\sup_{0\leq t<\infty}\|n(t)\|_{L^{r}(\Omega)}\leq C_{r},\quad\sup_{0\leq t<\infty}\|\psi(t)\|_{W^{2,r}(\Omega)}\leq C_{r}.

Furthermore,

sup0t<p(t)L(Ω)+sup0t<p(t)H1(Ω)C,sup0t<n(t)L(Ω)+sup0t<n(t)H1(Ω)C,\sup_{0\leq t<\infty}\|p(t)\|_{L^{\infty}(\Omega)}+\sup_{0\leq t<\infty}\|p(t)\|_{H^{1}(\Omega)}\leq C,\quad\sup_{0\leq t<\infty}\|n(t)\|_{L^{\infty}(\Omega)}+\sup_{0\leq t<\infty}\|n(t)\|_{H^{1}(\Omega)}\leq C,

and the velocity field 𝐮{\bf u} satisfies

𝐮L(0,T;H1(Ω))2+0T𝐮(t)H2(Ω)2𝑑tCT,\|{\bf u}\|_{L^{\infty}(0,T;H^{1}(\Omega))}^{2}+\int_{0}^{T}\|{\bf u}(t)\|_{H^{2}(\Omega)}^{2}\,dt\leq CT,

for any 0<T<0<T<\infty, where CC depends on initial energy, pinLr(Ω)\|p^{in}\|_{L^{r}(\Omega)}, ninLr(Ω)\|n^{in}\|_{L^{r}(\Omega)}, and 𝐮inH1(Ω)\|{\bf u}^{in}\|_{H^{1}(\Omega)}.

Proof.

A similar result for blocking boundary conditions has been obtained by Constantin and Ignatova constantin2019nernst . Their argument remains applicable for periodic boundary conditions, which will be sketched here for completeness. For the full proof, refer to constantin2019nernst .

Step 1: Firstly, we have

(3.2) ψL(Ω×[0,T])CE(pin,nin,ψin),\|\psi\|_{L^{\infty}(\Omega\times[0,T])}\leq CE(p^{in},n^{in},\psi^{in}),

which is a direct application of Lemma 1 in constantin2019nernst , following the same proof for periodic boundary conditions.

Step 2: We aim to show p>0p>0 and n>0n>0 in Ω×[0,T]\Omega\times[0,T]. To see this, let F:F:\mathbb{R}\to\mathbb{R} be a nonnegative, C2C^{2}-convex function such that F(t)=0F(t)=0 for t>0t>0, and F(t)>0F(t)>0 for t<0t<0, and

F′′(t)t2CF(t),t.F^{\prime\prime}(t)t^{2}\leq CF(t),\quad\forall t\in\mathbb{R}.

Multiplying (1.1) by F(p)F^{\prime}(p) and integrating over Ω\Omega, using the periodic boundary conditions and integration by parts, we obtain that Ω𝐮F(p)𝑑x=Ω𝐮F(p)𝑑x=0\displaystyle\int_{\Omega}{\bf u}\cdot\nabla F(p)\,dx=-\int_{\Omega}\nabla\cdot{\bf u}\,F(p)\,dx=0, and hence

ddtΩF(p)𝑑x=ΩF′′(p)[|p|2+pψp]𝑑x,\frac{d}{dt}\int_{\Omega}F(p)\,dx=-\int_{\Omega}F^{\prime\prime}(p)\left[|\nabla p|^{2}+p\nabla\psi\cdot\nabla p\right]\,dx,

which, combined with the Cauchy-Schwarz inequality |pψp|12|p|2+12p2|ψ|2|p\nabla\psi\cdot\nabla p|\leq\frac{1}{2}|\nabla p|^{2}+\frac{1}{2}p^{2}|\nabla\psi|^{2}, yields

(3.3) ddtΩF(p)𝑑x12ΩF′′(p)|p|2𝑑x+12ΩF′′(p)p2|ψ|2𝑑x.\frac{d}{dt}\int_{\Omega}F(p)\,dx\leq-\frac{1}{2}\int_{\Omega}F^{\prime\prime}(p)|\nabla p|^{2}\,dx+\frac{1}{2}\int_{\Omega}F^{\prime\prime}(p)p^{2}|\nabla\psi|^{2}\,dx.

From the properties of FF, we have

ddtΩF(p)𝑑xC2ψL(Ω)2ΩF(p)𝑑x.\frac{d}{dt}\int_{\Omega}F(p)\,dx\leq\frac{C}{2}\|\nabla\psi\|_{L^{\infty}(\Omega)}^{2}\int_{\Omega}F(p)\,dx.

By the Gronwall inequality and ΩF(pin)𝑑x=0\displaystyle\int_{\Omega}F(p^{in})\,dx=0, we conclude that ΩF(p)𝑑x=0\displaystyle\int_{\Omega}F(p)\,dx=0, and hence F(p)0F(p)\equiv 0, which yields that p>0p>0 in Ω×[0,T]\Omega\times[0,T]. Similarly, n>0n>0 in Ω×[0,T]\Omega\times[0,T].

Step 3: We aim to estimate the local uniform bound for (p,n)Lt1Lr(Ω)\|(p,n)\|_{L^{1}_{t}L^{r}(\Omega)}. Because of the energy dissipation law (2.3), we have

0TΩp|ln(peψ)|2𝑑x𝑑t=0TΩp|μ|2𝑑x𝑑tE(pin,nin,ψin)Γ.\int_{0}^{T}\int_{\Omega}p|\nabla\ln(pe^{\psi})|^{2}\,dx\,dt=\int_{0}^{T}\int_{\Omega}p|\nabla\mu|^{2}\,dx\,dt\leq E(p^{in},n^{in},\psi^{in})\triangleq\Gamma.

Using (3.2) in Step 1, we know that the auxiliary function

p~peψ\tilde{p}\triangleq pe^{\psi}

satisfies the estimate

0TΩ1p~|p~|2𝑑x𝑑tΓeCΓ.\int_{0}^{T}\int_{\Omega}\frac{1}{\tilde{p}}|\nabla\tilde{p}|^{2}\,dx\,dt\leq\Gamma e^{C\Gamma}.

From the mass conservation property and (3.2), we have

Ωpeψ𝑑xeCΓΩpin𝑑x.\int_{\Omega}pe^{\psi}\,dx\leq e^{C\Gamma}\int_{\Omega}p^{in}\,dx.

Combining the previous two equations, for any t0[0,T]t_{0}\in[0,T] and τ[0,Tt0]\tau\in[0,T-t_{0}], we have

t0t0+τp~H1(Ω)𝑑teCΓ(Γ+τΩpin𝑑x).\int_{t_{0}}^{t_{0}+\tau}\|\sqrt{\tilde{p}}\|_{H^{1}(\Omega)}\,dt\leq e^{C\Gamma}\left(\Gamma+\tau\int_{\Omega}p^{in}\,dx\right).

Thus, from the Sobolev embedding p~Lr(Ω)p~H1(Ω)\|\sqrt{\tilde{p}}\|_{L^{r}(\Omega)}\leq\|\sqrt{\tilde{p}}\|_{H^{1}(\Omega)} for any r[1,)r\in[1,\infty), applying (3.2) again, we have the local uniform estimate for pLr(Ω)\|p\|_{L^{r}(\Omega)}

(3.4) t0t0+τpLr(Ω)𝑑tCreCΓ(Γ+τΩpin𝑑x),\int_{t_{0}}^{t_{0}+\tau}\|p\|_{L^{r}(\Omega)}\,dt\leq C_{r}e^{C\Gamma}\left(\Gamma+\tau\int_{\Omega}p^{in}\,dx\right),

where CrC_{r} depends on rr. Similar estimates hold for nn.

Step 4: Now we can estimate the global bound for (p,n)Lr(Ω)\|(p,n)\|_{L^{r}(\Omega)}. To do this, taking F(p)=1r(r1)prF(p)=\frac{1}{r(r-1)}p^{r} in (3.3), we obtain

1r(r1)ddtΩ|p|r𝑑x12Ω|p|2pr2𝑑x+12ψL(Ω)Ω|p|r𝑑x.\frac{1}{r(r-1)}\frac{d}{dt}\int_{\Omega}|p|^{r}\,dx\leq-\frac{1}{2}\int_{\Omega}|\nabla p|^{2}p^{r-2}\,dx+\frac{1}{2}\|\nabla\psi\|_{L^{\infty}(\Omega)}\int_{\Omega}|p|^{r}\,dx.

Similar estimates hold for nn:

1r(r1)ddtΩ|n|r𝑑x12Ω|n|2nr2𝑑x+12ψL(Ω)Ω|n|r𝑑x.\frac{1}{r(r-1)}\frac{d}{dt}\int_{\Omega}|n|^{r}\,dx\leq-\frac{1}{2}\int_{\Omega}|\nabla n|^{2}n^{r-2}\,dx+\frac{1}{2}\|\nabla\psi\|_{L^{\infty}(\Omega)}\int_{\Omega}|n|^{r}\,dx.

From the regularity of the Poisson equation, we know that

ψL(Ω)CrεpnLr(Ω)Crε(pLr(Ω)+nLr(Ω)).\|\nabla\psi\|_{L^{\infty}(\Omega)}\leq\frac{C_{r}}{\varepsilon}\|p-n\|_{L^{r}(\Omega)}\leq\frac{C_{r}}{\varepsilon}\left(\|p\|_{L^{r}(\Omega)}+\|n\|_{L^{r}(\Omega)}\right).

From here we obtain

(3.5) 1r(r1)ddtAr12Ω(|p|2pr2+|n|2nr2)𝑑x+Cr2εAr1rAr,\frac{1}{r(r-1)}\frac{d}{dt}A_{r}\leq-\frac{1}{2}\int_{\Omega}\left(|\nabla p|^{2}p^{r-2}+|\nabla n|^{2}n^{r-2}\right)\,dx+\frac{C_{r}}{2\varepsilon}A_{r}^{\frac{1}{r}}A_{r},

where Ar=pLr(Ω)r+nLr(Ω)rA_{r}=\|p\|^{r}_{L^{r}(\Omega)}+\|n\|^{r}_{L^{r}(\Omega)}. From (3.4), we have

(3.6) t0t0+τAr1r𝑑tCreCΓ(Γ+τΩpin+nindx)Γ,\int_{t_{0}}^{t_{0}+\tau}A_{r}^{\frac{1}{r}}\,dt\leq C_{r}e^{C\Gamma}\left(\Gamma+\tau\int_{\Omega}p^{in}+n^{in}\,dx\right)\triangleq\Gamma^{*},

Combining this with (3.5), we obtain

(3.7) Ar(t0+τ)Ar(t0)eCrΓ/ε.A_{r}(t_{0}+\tau)\leq A_{r}(t_{0})e^{C_{r}\Gamma^{*}/\varepsilon}.

Now we cover the interval [0,T][0,T] with fixed time step intervals {(tk,tk+τ2)k}\{(t_{k},t_{k}+\frac{\tau}{2})\mid k\in\mathbb{N}\}. From (3.6), for any kk, there exists some t[tkτ2,tk]t^{*}\in[t_{k}-\frac{\tau}{2},t_{k}] such that Ar1r(t)Γτmax(2τΓ,(pinLr(Ω)+ninLr(Ω))1r)A_{r}^{\frac{1}{r}}(t^{*})\leq\Gamma_{\tau}\triangleq\max\left(\frac{2}{\tau}\Gamma^{*},\left(\|p^{in}\|_{L^{r}(\Omega)}+\|n^{in}\|_{L^{r}(\Omega)}\right)^{\frac{1}{r}}\right), which, combining with (3.7) and [tk,tk+τ2][t,t+τ][t_{k},t_{k}+\frac{\tau}{2}]\subset[t^{*},t^{*}+\tau], yields

supt[tk,tk+τ2]Ar(t)Γτ,\sup_{t\in[t_{k},t_{k}+\frac{\tau}{2}]}A_{r}(t)\leq\Gamma_{\tau},

for a slightly different Γτ\Gamma_{\tau}. Notice that the right-hand side only depends on initial energy Γ\Gamma, initial ion mass Ωpin+nindx\int_{\Omega}p^{in}+n^{in}\,dx, ε\varepsilon, and rr; it is independent of time TT. We can extend the estimate to the entire time interval by an induction argument, and from the regularity of the Poisson equation obtain the global bound

(3.8) sup0t<p(t)Lr(Ω),sup0t<n(t)Lr(Ω),sup0t<ψ(t)W2,r(Ω)Cr,\sup_{0\leq t<\infty}\|p(t)\|_{L^{r}(\Omega)},\quad\sup_{0\leq t<\infty}\|n(t)\|_{L^{r}(\Omega)},\quad\sup_{0\leq t<\infty}\|\psi(t)\|_{W^{2,r}(\Omega)}\leq C_{r}^{*},

where CrC_{r}^{*} depends on rr, ε\varepsilon, initial energy, initial ion mass, pinLr(Ω),ninLr(Ω)\|p^{in}\|_{L^{r}(\Omega)},\|n^{in}\|_{L^{r}(\Omega)}. Returning to (3.5), we know that

(3.9) t0t0+τΩ(|p|2pr2+|n|2nr2)𝑑x𝑑tΓτ,\int_{t_{0}}^{t_{0}+\tau}\int_{\Omega}\left(|\nabla p|^{2}p^{r-2}+|\nabla n|^{2}n^{r-2}\right)\,dx\,dt\leq\Gamma_{\tau},

for some Γτ\Gamma_{\tau} depending on Γ\Gamma^{*} and τ\tau.

Step 5: Now we are ready to estimate p,nL(Ω)\|p,n\|_{L^{\infty}(\Omega)}. Multiplying (1.1) by Δp-\Delta p and integrating, we have

12ddtpL2(Ω)2\displaystyle\frac{1}{2}\frac{d}{dt}\|\nabla p\|^{2}_{L^{2}(\Omega)} =ΔpL2(Ω)2Ω(pψ)Δp𝑑xΩ𝐮pΔpdx,\displaystyle=-\|\Delta p\|_{L^{2}(\Omega)}^{2}-\int_{\Omega}\nabla\cdot(p\nabla\psi)\Delta p\,dx-\int_{\Omega}{\bf u}\cdot\nabla p\Delta p\,dx,
ΔpL2(Ω)2+pL4(Ω)(ψL4(Ω)+𝐮L4(Ω))ΔpL2(Ω)\displaystyle\leq-\|\Delta p\|_{L^{2}(\Omega)}^{2}+\|\nabla p\|_{L^{4}(\Omega)}\left(\|\nabla\psi\|_{L^{4}(\Omega)}+\|{\bf u}\|_{L^{4}(\Omega)}\right)\|\Delta p\|_{L^{2}(\Omega)}
(3.10) +pL4(Ω)ΔψL4(Ω)ΔpL2(Ω).\displaystyle\quad+\|p\|_{L^{4}(\Omega)}\|\Delta\psi\|_{L^{4}(\Omega)}\|\Delta p\|_{L^{2}(\Omega)}.

We have a global bound for ψL4(Ω)\|\nabla\psi\|_{L^{4}(\Omega)}, pL4(Ω)\|p\|_{L^{4}(\Omega)}, ΔψL4(Ω)\|\Delta\psi\|_{L^{4}(\Omega)} from (3.8). And from energy law (2.3), we know that maxt[0,T]𝐮(t)L2(Ω)2\max_{t\in[0,T]}\|{\bf u}(t)\|_{L^{2}(\Omega)}^{2} and 0T𝐮L2(Ω)2𝑑t\int_{0}^{T}\|\nabla{\bf u}\|_{L^{2}(\Omega)}^{2}\,dt are bounded by initial energy Γ\Gamma. Hence, we have the uniform bound for 𝐮L4([0,T]×Ω)\|{\bf u}\|_{L^{4}([0,T]\times\Omega)},

0T𝐮L4(Ω)4𝑑t\displaystyle\int_{0}^{T}\|{\bf u}\|_{L^{4}(\Omega)}^{4}\,dt 0TC𝐮L2(Ω)2𝐮L2(Ω)2𝑑t,\displaystyle\leq\int_{0}^{T}C\|{\bf u}\|_{L^{2}(\Omega)}^{2}\|\nabla{\bf u}\|_{L^{2}(\Omega)}^{2}\,dt,
Cmaxt[0,T]𝐮(t)L2(Ω)20T𝐮L2(Ω)2𝑑t,\displaystyle\leq C\max_{t\in[0,T]}\|{\bf u}(t)\|_{L^{2}(\Omega)}^{2}\int_{0}^{T}\|\nabla{\bf u}\|_{L^{2}(\Omega)}^{2}\,dt,
CΓ2.\displaystyle\leq C\Gamma^{2}.

Applying these bounds to (3.10), we have

ddtpL2(Ω)2+ΔpL2(Ω)2ΓpL2(Ω)2.\frac{d}{dt}\|\nabla p\|_{L^{2}(\Omega)}^{2}+\|\Delta p\|_{L^{2}(\Omega)}^{2}\leq\Gamma\|\nabla p\|_{L^{2}(\Omega)}^{2}.

Applying the local uniform bound for pLt2L2(Ω)\|\nabla p\|_{L^{2}_{t}L^{2}(\Omega)} from (3.9) with r=2r=2, we cover the interval [0,T][0,T] with fixed time step intervals {(tk,tk+τ2)k}\{(t_{k},t_{k}+\frac{\tau}{2})\mid k\in\mathbb{N}\}. With a similar argument as in Step 4, we have

sup0tTpL2(Ω)Γτ,\sup_{0\leq t\leq T}\|\nabla p\|_{L^{2}(\Omega)}\leq\Gamma_{\tau},

and for any [t0,t0+τ][0,T][t_{0},t_{0}+\tau]\subset[0,T]

t0t0+τΔpL2(Ω)2𝑑tΓτ.\int_{t_{0}}^{t_{0}+\tau}\|\Delta p\|_{L^{2}(\Omega)}^{2}\,dt\leq\Gamma_{\tau}.

Hence, we have the local uniform bound of pL(Ω)\|p\|_{L^{\infty}(\Omega)}

(3.11) t0t0+τpL(Ω)𝑑tt0t0+τpH2(Ω)𝑑tΓτ.\int_{t_{0}}^{t_{0}+\tau}\|p\|_{L^{\infty}(\Omega)}\,dt\leq\int_{t_{0}}^{t_{0}+\tau}\|p\|_{H^{2}(\Omega)}\,dt\leq\Gamma_{\tau}.

Now, multiplying (1.1) by pr1p^{r-1} and integrating over Ω\Omega, we have

1rddtΩpr𝑑x\displaystyle\frac{1}{r}\frac{d}{dt}\int_{\Omega}p^{r}\,dx =(r1)Ω|p|2pr2𝑑x+Ωpψpr1dx+ΩΔψpr𝑑x,\displaystyle=-(r-1)\int_{\Omega}|\nabla p|^{2}p^{r-2}\,dx+\int_{\Omega}\nabla p\cdot\nabla\psi\,p^{r-1}\,dx+\int_{\Omega}\Delta\psi\,p^{r}\,dx,
r12Ω|p|2pr2𝑑x+12(r1)ψL(Ω)2pLr(Ω)r+ΔψL(Ω)pLr(Ω)r.\displaystyle\leq-\frac{r-1}{2}\int_{\Omega}|\nabla p|^{2}p^{r-2}\,dx+\frac{1}{2(r-1)}\|\nabla\psi\|^{2}_{L^{\infty}(\Omega)}\|p\|^{r}_{L^{r}(\Omega)}+\|\Delta\psi\|_{L^{\infty}(\Omega)}\|p\|^{r}_{L^{r}(\Omega)}.

Therefore, for any tt0t\geq t_{0} we have

p(t)Lr(Ω)p(t0)Lr(Ω)et0t(12(r1)ψL(Ω)2+ΔψL(Ω))𝑑t.\|p(t)\|_{L^{r}(\Omega)}\leq\|p(t_{0})\|_{L^{r}(\Omega)}e^{\int_{t_{0}}^{t}\left(\frac{1}{2(r-1)}\|\nabla\psi\|^{2}_{L^{\infty}(\Omega)}+\|\Delta\psi\|_{L^{\infty}(\Omega)}\right)\,dt}.

Taking the limit as rr\rightarrow\infty, we obtain

p(t)L(Ω)p(t0)L(Ω)et0tΔψL(Ω)𝑑t.\|p(t)\|_{L^{\infty}(\Omega)}\leq\|p(t_{0})\|_{L^{\infty}(\Omega)}e^{\int_{t_{0}}^{t}\|\Delta\psi\|_{L^{\infty}(\Omega)}\,dt}.

Combining pL(Ω)\|p\|_{L^{\infty}(\Omega)} local uniform estimate (3.11) and cover interval [0,T][0,T] with fixed time step intervals {(tk,tk+τ2)k}\{(t_{k},t_{k}+\frac{\tau}{2})\mid k\in\mathbb{N}\}, with a similar induction argument as in Step 4, we have

sup0t<Tp(t)L(Ω)Γτ.\sup_{0\leq t<T}\|p(t)\|_{L^{\infty}(\Omega)}\leq\Gamma_{\tau}.

Since the forcing term in (1.4) is in L2(Ω)L^{2}(\Omega), from the energy inequality (1.1) and on the standard estimates on non-stationary Navier-Stokes equation, we have

𝐮L(0,T;H1(Ω))2+0T𝐮(t)H2(Ω)2𝑑tCT,\|{\bf u}\|_{L^{\infty}(0,T;H^{1}(\Omega))}^{2}+\int_{0}^{T}\|{\bf u}(t)\|_{H^{2}(\Omega)}^{2}\,dt\leq CT,

where CC depends on the initial energy and other constants. This completes the proof. ∎

Corollary 3.1.1.

(Maximum principle) Assuming pinδp,ninδnp^{in}\geq\delta_{p},\ n^{in}\geq\delta_{n} for some δp,δn>0\delta_{p},\delta_{n}>0, then we have pδp,nδnp\geq\delta_{p},n\geq\delta_{n} on Ω×[0,T]\Omega\times[0,T].

Proof.

This proof follows from the positivity proof for (p,n)(p,n) in Theorem 3.1. ∎

Next we derive the higher order regularity for the global strong solutions obtained in Theorem 3.1 when the initial data (pin,nin,𝐮in)(p^{in},n^{in},{\bf u}^{in}) is assumed to have higher regularity.

Theorem 3.2.

Suppose, in addition, that the initial data satisfies (pin,nin,𝐮in)H2m+1(Ω)×H2m+1(Ω)×H2m+1(Ω)(p^{in},n^{in},{\bf u}^{in})\in H^{2m+1}(\Omega)\times H^{2m+1}(\Omega)\times H^{2m+1}(\Omega) for m0m\geq 0. Then the solution (p,n,𝐮)(p,n,{\bf u}) obtained in Theorem 3.1 satisfies

k=0m+1(tkp,tkn,tk𝐮)L2(0,T;H2m+22k(Ω))C(T,pinH2m+1(Ω),ninH2m+1(Ω),𝐮inH2m+1(Ω)).\sum_{k=0}^{m+1}\|(\partial_{t}^{k}p,\partial_{t}^{k}n,\partial_{t}^{k}{\bf u})\|_{L^{2}(0,T;H^{2m+2-2k}(\Omega))}\leq C(T,\|p^{in}\|_{H^{2m+1}(\Omega)},\|n^{in}\|_{H^{2m+1}(\Omega)},\|{\bf u}^{in}\|_{H^{2m+1}(\Omega)}).
Proof.

The proof proceeds by induction on mm. The case m=0m=0 was proved in Theorem 3.1. Assume the theorem holds for some non-negative integer mm, and suppose the initial data satisfies

(pin,nin,𝐮in)H2m+3(Ω)×H2m+3(Ω)×H2m+3(Ω).(p^{in},n^{in},{\bf u}^{in})\in H^{2m+3}(\Omega)\times H^{2m+3}(\Omega)\times H^{2m+3}(\Omega).

We can verify that

(3.12) (tkpin,tknin,tk𝐮in)H2m2k+3(Ω)×H2m2k+3(Ω)×H2m2k+3(Ω),k=1,,m+1.(\partial_{t}^{k}p^{in},\partial_{t}^{k}n^{in},\partial_{t}^{k}{\bf u}^{in})\in H^{2m-2k+3}(\Omega)\times H^{2m-2k+3}(\Omega)\times H^{2m-2k+3}(\Omega),\quad\forall\,k=1,\ldots,m+1.

Now set p~tm+1p\tilde{p}\coloneqq\partial_{t}^{m+1}p, n~tm+1n\tilde{n}\coloneqq\partial_{t}^{m+1}n, 𝐮~tm+1𝐮\tilde{{\bf u}}\coloneqq\partial_{t}^{m+1}{\bf u}, and ψ~tm+1ψ\tilde{\psi}\coloneqq\partial_{t}^{m+1}\psi. Differentiating the system (1.1)–(1.5) with respect to tm+1t^{m+1}, we find that (p~,n~,𝐮~)(\tilde{p},\tilde{n},\tilde{{\bf u}}) satisfies the following system:

(3.13) p~tΔp~\displaystyle\tilde{p}_{t}-\Delta\tilde{p} =(tm+1(pψp𝐮)),\displaystyle=\nabla\cdot\left(\partial_{t}^{m+1}(p\nabla\psi-p{\bf u})\right),
(3.14) n~tΔn~\displaystyle\tilde{n}_{t}-\Delta\tilde{n} =(tm+1(nψn𝐮)),\displaystyle=\nabla\cdot\left(\partial_{t}^{m+1}(-n\nabla\psi-n{\bf u})\right),
(3.15) ϵΔψ~\displaystyle-\epsilon\Delta\tilde{\psi} =p~n~,\displaystyle=\tilde{p}-\tilde{n},
(3.16) 𝐮~tΔ𝐮~\displaystyle\tilde{{\bf u}}_{t}-\Delta\tilde{{\bf u}} =tm+1(P(𝐮)𝐮ψ(pn)),\displaystyle=\partial_{t}^{m+1}\left(-\nabla P-({\bf u}\cdot\nabla){\bf u}-\nabla\psi(p-n)\right),
(3.17) 𝐮~\displaystyle\nabla\cdot\tilde{{\bf u}} =0.\displaystyle=0.

Step 1: Multiply equation (3.13) by p~\tilde{p} and integrate over Ω\Omega. Observing that there are no boundary term contributions due to the periodic boundary condition, we obtain

12ddtp~L2(Ω)2=p~L2(Ω)2+Ωtm+1(pψp𝐮)p~dx,12p~L2(Ω)2+12tm+1(pψp𝐮)L2(Ω)2.\begin{split}\frac{1}{2}\frac{d}{dt}\|\tilde{p}\|_{L^{2}(\Omega)}^{2}&=-\|\nabla\tilde{p}\|_{L^{2}(\Omega)}^{2}+\int_{\Omega}\partial_{t}^{m+1}(p\nabla\psi-p{\bf u})\cdot\nabla\tilde{p}\,dx,\\ &\leq-\frac{1}{2}\|\nabla\tilde{p}\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}\|\partial_{t}^{m+1}(p\nabla\psi-p{\bf u})\|_{L^{2}(\Omega)}^{2}.\end{split}

Applying the induction hypothesis, we have

(3.18) tm+1(pψp𝐮)L2(0,T;L2(Ω))p~L2(0,T;L2(Ω))ψ𝐮L(0,T;L(Ω))+(ψ~L2(0,T;L2(Ω))+𝐮~L2(0,T;L2(Ω)))pL(0,T;L(Ω))+k=1mtkpL(0,T;L2(Ω))tm+1k(ψ𝐮)L2(0,T;L(Ω))C(p~L2(0,T;L2(Ω))2+n~L2(0,T;L2(Ω))2+𝐮~L2(0,T;L2(Ω))2)+k=1mtkpL2(0,T;H1(Ω))tk+1pL2(0,T;H1(Ω))tm+1k(ψ𝐮)L2(0,T;H2(Ω))C.\begin{split}&\quad\|\partial_{t}^{m+1}(p\nabla\psi-p{\bf u})\|_{L^{2}(0,T;L^{2}(\Omega))}\\ &\leq\|\tilde{p}\|_{L^{2}(0,T;L^{2}(\Omega))}\|\nabla\psi-{\bf u}\|_{L^{\infty}(0,T;L^{\infty}(\Omega))}\\ &\quad+\left(\|\nabla\tilde{\psi}\|_{L^{2}(0,T;L^{2}(\Omega))}+\|\tilde{{\bf u}}\|_{L^{2}(0,T;L^{2}(\Omega))}\right)\|p\|_{L^{\infty}(0,T;L^{\infty}(\Omega))}\\ &\quad+\sum_{k=1}^{m}\|\partial_{t}^{k}p\|_{L^{\infty}(0,T;L^{2}(\Omega))}\|\partial_{t}^{m+1-k}(\nabla\psi-{\bf u})\|_{L^{2}(0,T;L^{\infty}(\Omega))}\\ &\leq C\left(\|\tilde{p}\|_{L^{2}(0,T;L^{2}(\Omega))}^{2}+\|\tilde{n}\|_{L^{2}(0,T;L^{2}(\Omega))}^{2}+\|\tilde{{\bf u}}\|_{L^{2}(0,T;L^{2}(\Omega))}^{2}\right)\\ &\quad+\sum_{k=1}^{m}\|\partial_{t}^{k}p\|_{L^{2}(0,T;H^{1}(\Omega))}\|\partial_{t}^{k+1}p\|_{L^{2}(0,T;H^{-1}(\Omega))}\|\partial_{t}^{m+1-k}(\nabla\psi-{\bf u})\|_{L^{2}(0,T;H^{2}(\Omega))}\\ &\leq C.\end{split}

Here CC depends on TT and the initial data and we used the estimate: for any function ff

(3.19) fLtHΩl+1CfLt2HΩl+1tfLt2HΩl.\|f\|_{L^{\infty}_{t}H^{l+1}_{\Omega}}\leq C\|f\|_{L^{2}_{t}H^{l+1}_{\Omega}}\|\partial_{t}f\|_{L^{2}_{t}H^{l}_{\Omega}}.

Therefore, from the initial condition (3.12), we have

(3.20) sup0tTp~(t)L2(Ω)+0Tp~L2(Ω)2𝑑tC.\sup_{0\leq t\leq T}\|\tilde{p}(t)\|_{L^{2}(\Omega)}+\int_{0}^{T}\|\nabla\tilde{p}\|_{L^{2}(\Omega)}^{2}\,dt\leq C.

Similarly, we obtain

(3.21) sup0tTn~(t)L2(Ω)+0Tn~L2(Ω)2𝑑tC.\sup_{0\leq t\leq T}\|\tilde{n}(t)\|_{L^{2}(\Omega)}+\int_{0}^{T}\|\nabla\tilde{n}\|_{L^{2}(\Omega)}^{2}\,dt\leq C.

Multiplying (3.16) by 𝐮~\tilde{{\bf u}} and integrating over Ω\Omega, we have

12ddt𝐮~L2(Ω)2=𝐮~L2(Ω)2Ωtm+1((𝐮)𝐮+ψ(pn))𝐮~dx.\frac{1}{2}\frac{d}{dt}\|\tilde{{\bf u}}\|_{L^{2}(\Omega)}^{2}=-\|\nabla\tilde{{\bf u}}\|_{L^{2}(\Omega)}^{2}-\int_{\Omega}\partial_{t}^{m+1}\left(({\bf u}\cdot\nabla){\bf u}+\nabla\psi(p-n)\right)\cdot\tilde{{\bf u}}\,dx.

Applying the Ladyzhenskaya inequality and the induction hypothesis, we estimate

0TΩtm+1((𝐮)𝐮)𝐮~dxdt=0TΩ(𝐮~)𝐮~𝐮+j=1m(tj𝐮)𝐮~tm+1j𝐮dxdt0T𝐮~L4(Ω)𝐮L4(Ω)𝐮~L2(Ω)𝑑t+j=1mtj𝐮L(Ω)tm+1j𝐮L2(Ω)𝐮~L2(Ω)dt0T𝐮~L2(Ω)1/2𝐮L2(Ω)1/2𝐮L2(Ω)1/2𝐮~L2(Ω)3/2𝑑t+j=1mtj𝐮L2(0,T;H2(Ω))tm+1j𝐮L(0,T;L2(Ω))12𝐮~L2(0,T;L2(Ω))2+C,\begin{split}&\int_{0}^{T}\int_{\Omega}\partial_{t}^{m+1}\left(({\bf u}\cdot\nabla){\bf u}\right)\cdot\tilde{{\bf u}}\,dx\,dt\\ &=-\int_{0}^{T}\int_{\Omega}(\tilde{{\bf u}}\cdot\nabla)\tilde{{\bf u}}\cdot{\bf u}+\sum_{j=1}^{m}(\partial_{t}^{j}{\bf u}\cdot\nabla)\tilde{{\bf u}}\cdot\partial_{t}^{m+1-j}{\bf u}\,dx\,dt\\ &\leq\int_{0}^{T}\|\tilde{{\bf u}}\|_{L^{4}(\Omega)}\|{\bf u}\|_{L^{4}(\Omega)}\|\nabla\tilde{{\bf u}}\|_{L^{2}(\Omega)}\,dt+\sum_{j=1}^{m}\|\partial_{t}^{j}{\bf u}\|_{L^{\infty}(\Omega)}\|\partial_{t}^{m+1-j}{\bf u}\|_{L^{2}(\Omega)}\|\nabla\tilde{{\bf u}}\|_{L^{2}(\Omega)}\,dt\\ &\leq\int_{0}^{T}\|\tilde{{\bf u}}\|_{L^{2}(\Omega)}^{1/2}\|{\bf u}\|_{L^{2}(\Omega)}^{1/2}\|\nabla{\bf u}\|_{L^{2}(\Omega)}^{1/2}\|\nabla\tilde{{\bf u}}\|_{L^{2}(\Omega)}^{3/2}\,dt+\sum_{j=1}^{m}\|\partial_{t}^{j}{\bf u}\|_{L^{2}(0,T;H^{2}(\Omega))}\|\partial_{t}^{m+1-j}{\bf u}\|_{L^{\infty}(0,T;L^{2}(\Omega))}\\ &\leq\frac{1}{2}\|\nabla\tilde{{\bf u}}\|_{L^{2}(0,T;L^{2}(\Omega))}^{2}+C,\end{split}

where CC depends on TT and the initial data. We also have

tm+1(ψ(pn))L2(0,T;L2(Ω))C.\|\partial_{t}^{m+1}\left(\nabla\psi(p-n)\right)\|_{L^{2}(0,T;L^{2}(\Omega))}\leq C.

Combining these estimates, we obtain

(3.22) sup0tT𝐮~(t)L2(Ω)2+0T𝐮~L2(Ω)2𝑑tC.\sup_{0\leq t\leq T}\|\tilde{{\bf u}}(t)\|_{L^{2}(\Omega)}^{2}+\int_{0}^{T}\|\nabla\tilde{{\bf u}}\|_{L^{2}(\Omega)}^{2}\,dt\leq C.

Step 2: Multiply (3.13) by Δp~\Delta\tilde{p} and integrate over Ω\Omega to obtain

12ddtp~L2(Ω)2=Δp~L2(Ω)2+Ω(tm+1(pψp𝐮))Δp~𝑑x12Δp~L2(Ω)2+12(tm+1(pψp𝐮))L2(Ω)2.\begin{split}\frac{1}{2}\frac{d}{dt}\|\nabla\tilde{p}\|_{L^{2}(\Omega)}^{2}&=-\|\Delta\tilde{p}\|_{L^{2}(\Omega)}^{2}+\int_{\Omega}\nabla\cdot\left(\partial_{t}^{m+1}(p\nabla\psi-p{\bf u})\right)\cdot\Delta\tilde{p}\,dx\\ &\leq-\frac{1}{2}\|\Delta\tilde{p}\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}\|\nabla\cdot\left(\partial_{t}^{m+1}(p\nabla\psi-p{\bf u})\right)\|_{L^{2}(\Omega)}^{2}.\end{split}

Using estimates similar to (3.18) and the results (3.20), (3.21), and (3.22), we verify that

(tm+1(pψp𝐮))L2(0,T;L2(Ω))2C.\|\nabla\cdot\left(\partial_{t}^{m+1}(p\nabla\psi-p{\bf u})\right)\|_{L^{2}(0,T;L^{2}(\Omega))}^{2}\leq C.

Combining these inequalities with the initial condition (3.12), we obtain

(3.23) sup0tTp~(t)L2(Ω)2+0TΔp~L2(Ω)2𝑑tC.\sup_{0\leq t\leq T}\|\nabla\tilde{p}(t)\|_{L^{2}(\Omega)}^{2}+\int_{0}^{T}\|\Delta\tilde{p}\|_{L^{2}(\Omega)}^{2}\,dt\leq C.

Analogously, we have

(3.24) sup0tTn~(t)L2(Ω)2+0TΔn~L2(Ω)2𝑑tC.\sup_{0\leq t\leq T}\|\nabla\tilde{n}(t)\|_{L^{2}(\Omega)}^{2}+\int_{0}^{T}\|\Delta\tilde{n}\|_{L^{2}(\Omega)}^{2}\,dt\leq C.

Multiplying (3.16) by Δ𝐮~\Delta\tilde{{\bf u}} and integrating over Ω\Omega, we obtain

12ddt𝐮~L2(Ω)2=Δ𝐮~L2(Ω)2Ωtm+1((𝐮)𝐮+ψ(pn))Δ𝐮~dx12Δ𝐮~L2(Ω)2+tm+1((𝐮)𝐮)L2(Ω)2+tm+1(ψ(pn))L2(Ω)2.\begin{split}\frac{1}{2}\frac{d}{dt}\|\nabla\tilde{{\bf u}}\|_{L^{2}(\Omega)}^{2}&=-\|\Delta\tilde{{\bf u}}\|_{L^{2}(\Omega)}^{2}-\int_{\Omega}\partial_{t}^{m+1}\left(({\bf u}\cdot\nabla){\bf u}+\nabla\psi(p-n)\right)\cdot\Delta\tilde{{\bf u}}\,dx\\ &\leq-\frac{1}{2}\|\Delta\tilde{{\bf u}}\|_{L^{2}(\Omega)}^{2}+\|\partial_{t}^{m+1}\left(({\bf u}\cdot\nabla){\bf u}\right)\|_{L^{2}(\Omega)}^{2}+\|\partial_{t}^{m+1}\left(\nabla\psi(p-n)\right)\|_{L^{2}(\Omega)}^{2}.\end{split}

Applying the Ladyzhenskaya inequality and induction estimates, we have

tm+1((𝐮)𝐮)L2(0,T;L2(Ω))0T𝐮~L4(Ω)2𝐮L4(Ω)2𝑑t+𝐮L2(0,T;L(Ω))𝐮~L(0,T;L2(Ω))+j=1mtj𝐮L2(0,T;H2(Ω))tm+1j𝐮L2(0,T;H2(Ω))tm+2j𝐮L2(0,T;L2(Ω))C.\begin{split}\|\partial_{t}^{m+1}\left(({\bf u}\cdot\nabla){\bf u}\right)\|_{L^{2}(0,T;L^{2}(\Omega))}&\leq\int_{0}^{T}\|\tilde{{\bf u}}\|_{L^{4}(\Omega)}^{2}\|\nabla{\bf u}\|_{L^{4}(\Omega)}^{2}\,dt+\|{\bf u}\|_{L^{2}(0,T;L^{\infty}(\Omega))}\|\nabla\tilde{{\bf u}}\|_{L^{\infty}(0,T;L^{2}(\Omega))}\\ &\quad+\sum_{j=1}^{m}\|\partial_{t}^{j}{\bf u}\|_{L^{2}(0,T;H^{2}(\Omega))}\|\partial_{t}^{m+1-j}{\bf u}\|_{L^{2}(0,T;H^{2}(\Omega))}\|\partial_{t}^{m+2-j}{\bf u}\|_{L^{2}(0,T;L^{2}(\Omega))}\\ &\leq C.\end{split}

Therefore, with the initial condition (3.12), we have

(3.25) sup0tT𝐮~(t)L2(Ω)2+0TΔ𝐮~L2(Ω)2𝑑tC.\sup_{0\leq t\leq T}\|\nabla\tilde{{\bf u}}(t)\|_{L^{2}(\Omega)}^{2}+\int_{0}^{T}\|\Delta\tilde{{\bf u}}\|_{L^{2}(\Omega)}^{2}\,dt\leq C.

Using estimates (3.23), (3.24), and (3.25) in equations (3.13), (3.14), and (3.16), we verify that

tp~L2(0,T;L2(Ω)),tn~L2(0,T;L2(Ω)),t𝐮~L2(0,T;L2(Ω))C.\|\partial_{t}\tilde{p}\|_{L^{2}(0,T;L^{2}(\Omega))},\quad\|\partial_{t}\tilde{n}\|_{L^{2}(0,T;L^{2}(\Omega))},\quad\|\partial_{t}\tilde{{\bf u}}\|_{L^{2}(0,T;L^{2}(\Omega))}\leq C.

This completes the proof. ∎

4. Error Analysis

In this section, we will carry out a detailed error analysis for the positivity-preserving scheme (2.18)-(2.24) under the periodic boundary condition (3.1), for which the scheme (2.18)-(2.24) can be made more specific as follows:

We denote the Fourier collocation points as ΣN={(xi=2πiN,yj=2πjN)| 0i,jN1}\Sigma_{N}=\left\{\left(x_{i}=\dfrac{2\pi i}{N},\ y_{j}=\dfrac{2\pi j}{N}\right)\bigg{|}\ 0\leq i,j\leq N-1\right\}. Then the discrete inner product for two functions u,vu,v is defined by

u,v=𝐳ΣNw𝐳u(𝐳)v(𝐳),\langle u,v\rangle=\sum_{\mathbf{z}\in\Sigma_{N}}w_{\mathbf{z}}u(\mathbf{z})v(\mathbf{z}),

where w𝐳=(2πN)2w_{\mathbf{z}}=\left(\dfrac{2\pi}{N}\right)^{2} is the quadrature weight in 2D.

We also introduce the corresponding induced discrete norm by u=u,u12\|u\|=\langle u,u\rangle^{\frac{1}{2}} for any function uu. We define the discrete Fourier space

XN:=span{eikx|xΣN, 0|k|N1},X_{N}:=\text{span}\left\{e^{ikx}\ \bigg{|}\ x\in\Sigma_{N},\ 0\leq|k|\leq N-1\right\},

and set WN=UN=XNW_{N}=U_{N}=X_{N}.

Let (p,n,𝐮)(p,n,\mathbf{u}) be the exact solution of the system (1.1)-(1.5) with initial condition (2.2). Denote (pm,nm,𝐮m,ϕm)(p^{m},n^{m},\mathbf{u}^{m},\phi^{m}) as the L2L^{2}-orthogonal projections of (p,n,𝐮,ϕ)(p,n,\mathbf{u},\phi) at time mΔtm\Delta t onto XN×XN×XN2×XNX_{N}\times X_{N}\times X_{N}^{2}\times X_{N}, i.e.,

pm=ΠNp(mΔt),nm=ΠNn(mΔt),𝐮m=ΠN𝐮(mΔt),ϕm=ΠNϕ(mΔt),\begin{split}&p^{m}=\Pi_{N}p(m\Delta t),\quad n^{m}=\Pi_{N}n(m\Delta t),\\ &\mathbf{u}^{m}=\Pi_{N}\mathbf{u}(m\Delta t),\quad\phi^{m}=\Pi_{N}\phi(m\Delta t),\end{split}

and set

ψm=ΠN[(Δ)1(pmnm)],μm=ΠN[lnpm+ψm],νm=ΠN[lnnmψm].\psi^{m}=\Pi_{N}\left[(-\Delta)^{-1}(p^{m}-n^{m})\right],\quad\mu^{m}=\Pi_{N}\left[\ln{p^{m}}+\psi^{m}\right],\quad\nu^{m}=\Pi_{N}\left[\ln{n^{m}}-\psi^{m}\right].

In order to establish the error analysis for the pressure correction scheme of the Navier-Stokes equations (2.22)-(2.24), we need to introduce an intermediate function RN𝐮m+1XN2R_{N}\mathbf{u}^{m+1}\in X_{N}^{2}, defined by

𝐮m+1RN𝐮m+1Δt,vN+(ϕm+1ϕm),vN=0,vNXN2.\left\langle\dfrac{\mathbf{u}^{m+1}-R_{N}\mathbf{u}^{m+1}}{\Delta t},v_{N}\right\rangle+\left\langle\nabla(\phi^{m+1}-\phi^{m}),v_{N}\right\rangle=0,\quad\forall v_{N}\in X_{N}^{2}.

We define the error functions by

epm=pmpNm,enm=nmnNm,eψm=ψmψNm,e𝐮~m=RN𝐮m𝐮~Nm,e𝐮m=𝐮m𝐮Nm,eϕm=ϕmϕNm.\begin{split}&e_{p}^{m}=p^{m}-p^{m}_{N},\quad e_{n}^{m}=n^{m}-n^{m}_{N},\quad e_{\psi}^{m}=\psi^{m}-\psi^{m}_{N},\\ &e_{\tilde{\mathbf{u}}}^{m}=R_{N}\mathbf{u}^{m}-\tilde{\mathbf{u}}_{N}^{m},\quad e_{\mathbf{u}}^{m}=\mathbf{u}^{m}-\mathbf{u}^{m}_{N},\quad e_{\phi}^{m}=\phi^{m}-\phi^{m}_{N}.\end{split}

The main result of this section is

Theorem 4.1.

Assume the initial data (pin,nin,𝐮in)Hk+7(Ω)×Hk+7(Ω)×Hk+7(Ω)(p^{\text{in}},n^{\text{in}},\mathbf{u}^{\text{in}})\in H^{k+7}(\Omega)\times H^{k+7}(\Omega)\times H^{k+7}(\Omega), for some k2k\geq 2, and pin,ninδ0p^{\text{in}},n^{\text{in}}\geq\delta_{0} for some δ0>0\delta_{0}>0. Then, provided Δt\Delta t and 1N\dfrac{1}{N} are sufficiently small, under the refinement requirement ΔtC1N\Delta t\leq C\dfrac{1}{N}, we have the following error estimate for the scheme (2.18)-(2.24):

epm+enm+e𝐮m+Δteϕm+(Δtl=1m(epl2+enl2+e𝐮~l2))12C(Δt+Nk),\begin{split}&\|e_{p}^{m}\|+\|e_{n}^{m}\|+\|e_{\mathbf{u}}^{m}\|+\Delta t\|\nabla e_{\phi}^{m}\|\\ &\quad+\left(\Delta t\sum_{l=1}^{m}\left(\|\nabla e_{p}^{l}\|^{2}+\|\nabla e_{n}^{l}\|^{2}+\|\nabla e_{\tilde{\mathbf{u}}}^{l}\|^{2}\right)\right)^{\frac{1}{2}}\leq C\left(\Delta t+N^{-k}\right),\end{split}

for all positive integers mm such that mΔtTm\Delta t\leq T, where CC is independent of Δt\Delta t and NN.

To prove this theorem, it is vital to establish a uniform strictly positive lower bound for the numerical solution (pNm+1,nNm+1)(p^{m+1}_{N},n^{m+1}_{N}), analogous to the strictly positive lower bound property of continuous solutions (p,n)(p,n) described in Corollary 3.1.1. Recall that we established upper and lower bounds for (pNm+1,nNm+1)(p^{m+1}_{N},n^{m+1}_{N}) in Theorem 2.2; however, the lower bound implied in (2.28) depends on the norms of previous step solutions, and is insufficient to establish a uniform strictly positive lower bound for (pNm+1,nNm+1)(p^{m+1}_{N},n^{m+1}_{N}) for arbitrary mm. To overcome this difficulty, we use an approach similar to liu2021positivity . In Section 4.1, by assuming sufficient regularity of the PNP-NS system solution, we establish the procedure of building supplementary fields with high-order local truncation errors through Lemma 4.2. With Lemma 4.3, we perform a rough error analysis that gives the minimum order required of the error terms to establish the lower bound for the numerical solution (pNm+1,nNm+1)(p^{m+1}_{N},n^{m+1}_{N}). In Section 4.3, with Theorem 4.4, we conduct a refined error analysis, recover the assumption in Lemma 4.3, and prove the error estimates for the supplementary fields built in Lemma 4.2. Thus, Theorem 4.1 is a direct combination of Theorem 3.2 and Theorem 4.4; the proof will be presented in Section 4.3.

4.1. A rough error analysis

Assume that the solution of PNP-NS system is smooth enough. Then applying Tylor expansion to the system, one obtains

pm+1pmΔt,vNpm𝐮m,vN+pm(1+2Δtpm)μm+1,vN=τpm+1(vN),vNXN,\displaystyle\langle\frac{p^{m+1}-p^{m}}{\Delta t},v_{N}\rangle-\langle p^{m}{\bf u}^{m},\nabla v_{N}\rangle+\langle p^{m}(1+2\Delta tp^{m})\nabla\mu^{m+1},\nabla v_{N}\rangle=\tau_{p}^{m+1}(v_{N}),\forall v_{N}\in X_{N},
nm+1nmΔt,vNnm𝐮m,vN+nm(1+2Δtnm)νm+1,vN=τnm+1(vN),vNXN,\displaystyle\langle\frac{n^{m+1}-n^{m}}{\Delta t},v_{N}\rangle-\langle n^{m}{\bf u}^{m},\nabla v_{N}\rangle+\langle n^{m}(1+2\Delta tn^{m})\nabla\nu^{m+1},\nabla v_{N}\rangle=\tau_{n}^{m+1}(v_{N}),\forall v_{N}\in X_{N},
ψm+1,vNpm+1nm+1,vN=0,vNXN,\displaystyle\langle\nabla\psi^{m+1},\nabla v_{N}\rangle-\langle p^{m+1}-n^{m+1},v_{N}\rangle=0,\quad\forall v_{N}\in X_{N},
RN𝐮m+1𝐮mΔt,vN+(𝐮m)RN𝐮m+1,vN+RN𝐮m+1,vN+ϕm,vN\displaystyle\langle\frac{R_{N}{\bf u}^{m+1}-{\bf u}^{m}}{\Delta t},v_{N}\rangle+\langle({\bf u}^{m}\cdot\nabla)R_{N}{\bf u}^{m+1},v_{N}\rangle+\langle\nabla R_{N}{\bf u}^{m+1},\nabla v_{N}\rangle+\langle\nabla\phi^{m},v_{N}\rangle
+pmμm+1+nmνm+1,vN=τ𝐮m+1(vN),vNXN2,\displaystyle\qquad+\langle p^{m}\nabla\mu^{m+1}+n^{m}\nabla\nu^{m+1},v_{N}\rangle=\tau^{m+1}_{{\bf u}}(v_{N}),\quad\forall v_{N}\in X_{N}^{2},
𝐮m+1RN𝐮m+1Δt,vN+(ϕm+1ϕm),vN=0,vNXN2,\displaystyle\langle\frac{{\bf u}^{m+1}-R_{N}{\bf u}^{m+1}}{\Delta t},v_{N}\rangle+\langle\nabla(\phi^{m+1}-\phi^{m}),v_{N}\rangle=0,\quad\forall v_{N}\in{X_{N}^{2}},
𝐮m+1,vN=0,vNXN,\displaystyle\langle{\bf u}^{m+1},\nabla v_{N}\rangle=0,\quad\forall v_{N}\in X_{N},

we have the following local truncation error (see more computation details in Appendix (A.1) - (A.3)):

|τpm+1(vN)|,|τnm+1(vN)|,|τ𝐮m+1(vN)|Ck(Δt+Nk)vNH1,\left\lvert\tau_{p}^{m+1}(v_{N})\right\rvert,\left\lvert\tau_{n}^{m+1}(v_{N})\right\rvert,\left\lvert\tau_{{\bf u}}^{m+1}(v_{N})\right\rvert\leq C_{k}(\Delta t+N^{-k})\|v_{N}\|_{H^{1}},

where CkC_{k} depends only on regularity of (p,n,ψ,𝐮,ϕ)(p,n,\psi,{\bf u},\phi).

High-Order Consistent analysis. As stated above, we only have a first-order truncation error in time for nm+1n^{m+1} and pm+1p^{m+1}, which is insufficient to establish a priori strictly positive lower bound for the numerical solution (pNm+1,nNm+1)(p^{m+1}_{N},n^{m+1}_{N}). Using the technique similar to liu2021positivity , we will construct the supplementary fields (p˘,n˘,𝐮˘,ϕ˘,μ˘,ν˘,ψ˘)(\breve{p},\breve{n},\breve{{\bf u}},\breve{\phi},\breve{\mu},\breve{\nu},\breve{\psi}), providing sufficient regularity for the solution (p,n,𝐮,ϕ)(p,n,{\bf u},\phi), a higher order 𝒪(Δt3+Nk)\mathcal{O}(\Delta t^{3}+N^{-k}) consistency local truncation error will be established.

Lemma 4.2.

Let (p,n,𝐮)(p,n,{\bf u}) be the solution of the PNP-NS system (1.1)-(1.5) satisfying the following properties:

  1. (1)

    The ionic concentrations are strictly positive

    p,nδ0>0,p,n\geq\delta_{0}>0,
  2. (2)

    The solution satisfies

    (t4p,t4n,t4𝐮)L(0,T;L2(Ω)),(t3p,t3n,t3𝐮)L(0,T;Hk+1(Ω)),(k2),\begin{array}[]{ll}(\partial_{t}^{4}p,\partial_{t}^{4}n,\partial_{t}^{4}{\bf u})\in L^{\infty}(0,T;L^{2}(\Omega)),(\partial_{t}^{3}p,\partial_{t}^{3}n,\partial_{t}^{3}{\bf u})\in L^{\infty}(0,T;H^{k+1}(\Omega)),\ (k\geq 2),\end{array}

we can construct correction functions (pΔt,i,nΔt,i,𝐮Δt,i,ϕΔt,i)(i=1,2)(p_{\Delta t,i},n_{\Delta t,i},{\bf u}_{\Delta t,i},\phi_{\Delta t,i})(i=1,2) depending only on (p,n,𝐮,ϕ)(p,n,{\bf u},\phi), such that the supplementary fields (p˘,n˘,𝐮˘,ϕ˘,μ˘,ν˘,ψ˘)(\breve{p},\breve{n},\breve{{\bf u}},\breve{\phi},\breve{\mu},\breve{\nu},\breve{\psi}), defined by

(4.1) p˘=p+ΔtpΔt,1+Δt2pΔt,2,n˘=n+ΔtnΔt,1+Δt2nΔt,2,𝐮˘=𝐮+Δt𝐮Δt,1+Δt2𝐮Δt,2,ϕ˘=ϕ+ΔtϕΔt,1+Δt2ϕΔt,2,ψ˘=(Δ)1(p˘n˘),μ˘=lnp˘+ψ˘,ν˘=lnn˘ψ˘,\begin{array}[]{l}\breve{p}=p+\Delta tp_{\Delta t,1}+\Delta t^{2}p_{\Delta t,2},\ \breve{n}=n+\Delta tn_{\Delta t,1}+\Delta t^{2}n_{\Delta t,2},\\ \breve{{\bf u}}={\bf u}+\Delta t{\bf u}_{\Delta t,1}+\Delta t^{2}{\bf u}_{\Delta t,2},\ \breve{\phi}=\phi+\Delta t\phi_{\Delta t,1}+\Delta t^{2}\phi_{\Delta t,2},\\ {\breve{\psi}=(-\Delta)^{-1}(\breve{p}-\breve{n}),}\\ {\breve{\mu}=\ln{\breve{p}}+\breve{\psi},\ \breve{\nu}=\ln{\breve{n}}-\breve{\psi},}\end{array}

has higher order consistency truncation error as defined in (4.5)-(4.9)

|τ˘pm+1(vN)|,|τ˘nm+1(vN)|,|τ˘𝐮m+1(vN)|C((Δt)3+Nk)vNH1.\rvert\breve{\tau}^{m+1}_{p}(v_{N})\rvert,\rvert\breve{\tau}^{m+1}_{n}(v_{N})\rvert,\rvert\breve{\tau}^{m+1}_{{\bf u}}(v_{N})\rvert\leq C((\Delta t)^{3}+N^{-k})\|v_{N}\|_{H^{1}}.

Moreover, with Δt,1N\Delta t,\frac{1}{N} chosen small enough, we have

  1. (1)

    The supplementary functions are strictly positive:

    (4.2) p˘,n˘δ0>0,\breve{p},\breve{n}\geq\delta_{0}^{*}>0,
  2. (2)

    The supplementary functions satisfy

    (4.3) (p˘,n˘,𝐮˘)L(0,T,W1,).(\breve{p},\breve{n},\breve{{\bf u}})\in L^{\infty}(0,T,W^{1,\infty}).

The detail of constructing (p˘,n˘,𝐮˘,ϕ˘,μ˘,ν˘,ψ˘)(\breve{p},\breve{n},\breve{{\bf u}},\breve{\phi},\breve{\mu},\breve{\nu},\breve{\psi}) in Lemma 4.2 will be given in the Appendix.

Now we start to make an error analysis for the scheme (2.18)-(2.24) by analyzing its truncation error for supplementary fields (p˘,n˘,𝐮˘,ϕ˘,μ˘,ν˘,ψ˘)(\breve{p},\breve{n},\breve{{\bf u}},\breve{\phi},\breve{\mu},\breve{\nu},\breve{\psi}) Denote the error functions by

(4.4) e˘pm=p˘mpNm,e˘nm=n˘mnNm,e˘μm=μ˘mμNm,e˘νm=ν˘mνNm,e˘ψm=ψ˘mψNm,e˘RN𝐮m=RN𝐮˘m𝐮~Nm,e˘𝐮m=𝐮˘m𝐮Nm,e˘ϕm=ϕ˘mϕNm.\begin{array}[]{l}\breve{e}_{p}^{m}=\breve{p}^{m}-p^{m}_{N},\ \breve{e}_{n}^{m}=\breve{n}^{m}-n^{m}_{N},\ \breve{e}_{\mu}^{m}=\breve{\mu}^{m}-\mu^{m}_{N},\ \breve{e}_{\nu}^{m}=\breve{\nu}^{m}-\nu^{m}_{N},\\ \breve{e}_{\psi}^{m}=\breve{\psi}^{m}-\psi^{m}_{N},\ \breve{e}_{R_{N}{\bf u}}^{m}=R_{N}\breve{{\bf u}}^{m}-\tilde{{\bf u}}_{N}^{m},\ \breve{e}_{{\bf u}}^{m}=\breve{{\bf u}}^{m}-{\bf u}^{m}_{N},\ \breve{e}_{\phi}^{m}=\breve{\phi}^{m}-\phi^{m}_{N}.\end{array}

Denote by (p˘m,n˘m,𝐮˘m,ϕ˘m)(\breve{p}^{m},\breve{n}^{m},\breve{{\bf u}}^{m},\breve{\phi}^{m}) the L2L^{2}-orthogonal projection of (p˘,n˘,𝐮˘,ϕ˘)(\breve{p},\breve{n},\breve{{\bf u}},\breve{\phi}) at time mΔtm\Delta t onto XN×XN×XN2×XNX_{N}\times X_{N}\times X_{N}^{2}\times X_{N}. We have the expression for the consistency truncation error (τ˘p,τ˘n,τ˘𝐮)(\breve{\tau}_{p},\breve{\tau}_{n},\breve{\tau}_{{\bf u}}) for the modified functions:

(4.5) p˘m+1p˘mΔt,vNp˘m𝐮˘m,vN+p˘m(1+2Δtp˘m)μ˘m+1,vN=τ˘pm+1(vN),\displaystyle\langle\frac{\breve{p}^{m+1}-\breve{p}^{m}}{\Delta t},v_{N}\rangle-\langle\breve{p}^{m}\breve{{\bf u}}^{m},\nabla v_{N}\rangle+\langle\breve{p}^{m}(1+2\Delta t\breve{p}^{m})\nabla\breve{\mu}^{m+1},\nabla v_{N}\rangle=\breve{\tau}^{m+1}_{p}(v_{N}),
(4.6) n˘m+1n˘mΔt,vNn˘m𝐮˘m,vN+n˘m(1+2Δtn˘m)ν˘m+1,vN=τ˘nm+1(vN),\displaystyle\langle\frac{\breve{n}^{m+1}-\breve{n}^{m}}{\Delta t},v_{N}\rangle-\langle\breve{n}^{m}\breve{{\bf u}}^{m},\nabla v_{N}\rangle+\langle\breve{n}^{m}(1+2\Delta t\breve{n}^{m})\nabla\breve{\nu}^{m+1},\nabla v_{N}\rangle=\breve{\tau}^{m+1}_{n}(v_{N}),
(4.7) ψ˘m+1,vN=p˘m+1n˘m+1,vN,\displaystyle\langle\nabla\breve{\psi}^{m+1},\nabla v_{N}\rangle=\langle\breve{p}^{m+1}-\breve{n}^{m+1},v_{N}\rangle,
RN𝐮˘m+1𝐮˘mΔt,vN+(𝐮˘m)RN𝐮˘m+1,vN+RN𝐮˘m+1,vN+ϕ˘m,vN\displaystyle\langle\frac{R_{N}\breve{{\bf u}}^{m+1}-\breve{{\bf u}}^{m}}{\Delta t},v_{N}\rangle+\langle(\breve{{\bf u}}^{m}\cdot\nabla)R_{N}\breve{{\bf u}}^{m+1},v_{N}\rangle+\langle\nabla R_{N}\breve{{\bf u}}^{m+1},\nabla v_{N}\rangle+\langle\nabla\breve{\phi}^{m},v_{N}\rangle
(4.8) +p˘mμ˘m+1+n˘mν˘m+1,vN=τ˘𝐮m+1(vN),\displaystyle\quad+\langle\breve{p}^{m}\nabla\breve{\mu}^{m+1}+\breve{n}^{m}\nabla\breve{\nu}^{m+1},v_{N}\rangle=\breve{\tau}^{m+1}_{{\bf u}}(v_{N}),
(4.9) 𝐮˘m+1RN𝐮˘m+1Δt,vN+(ϕ˘m+1ϕ˘m),vN=0,\displaystyle\langle\frac{\breve{{\bf u}}^{m+1}-R_{N}\breve{{\bf u}}^{m+1}}{\Delta t},v_{N}\rangle+\langle\nabla(\breve{\phi}^{m+1}-\breve{\phi}^{m}),v_{N}\rangle=0,

where

μ˘m+1=ΠN(lnp˘m+1+ψ˘m+1);ν˘m+1=ΠN(lnn˘m+1ψ˘m+1).\breve{\mu}^{m+1}=\Pi_{N}(\ln{\breve{p}^{m+1}}+\breve{\psi}^{m+1});\ \breve{\nu}^{m+1}=\Pi_{N}(\ln{\breve{n}^{m+1}}-\breve{\psi}^{m+1}).

Subtracting (2.18)-(2.23) from (4.5)-(4.9), we have

e˘pm+1e˘pmΔt,vNp˘m𝐮˘mpNm𝐮Nm,vN\displaystyle\langle\frac{\breve{e}_{p}^{m+1}-\breve{e}_{p}^{m}}{\Delta t},v_{N}\rangle-\langle\breve{p}^{m}\breve{{\bf u}}^{m}-p^{m}_{N}{\bf u}^{m}_{N},\nabla v_{N}\rangle
(4.10) =p˘m(1+2Δtp˘m)μ˘m+1pNm(1+2ΔtpNm)μNm+1,vN+τ˘pm+1(vN),\displaystyle\qquad=-\langle\breve{p}^{m}(1+2\Delta t\breve{p}^{m})\nabla\breve{\mu}^{m+1}-p^{m}_{N}(1+2\Delta tp^{m}_{N})\nabla\mu^{m+1}_{N},\nabla v_{N}\rangle+\breve{\tau}^{m+1}_{p}(v_{N})\vskip 8.00003pt,
e˘nm+1e˘nmΔt,vNn˘m𝐮˘mnNm𝐮Nm,vN\displaystyle\langle\frac{\breve{e}_{n}^{m+1}-\breve{e}_{n}^{m}}{\Delta t},v_{N}\rangle-\langle\breve{n}^{m}\breve{{\bf u}}^{m}-n^{m}_{N}{\bf u}^{m}_{N},\nabla v_{N}\rangle
(4.11) =n˘m(1+2Δtn˘m)ν˘m+1nNm(1+2ΔtnNm)νNm+1,vN+τ˘nm+1(vN),\displaystyle\qquad=-\langle\breve{n}^{m}(1+2\Delta t\breve{n}^{m})\nabla\breve{\nu}^{m+1}-n^{m}_{N}(1+2\Delta tn^{m}_{N})\nabla\nu^{m+1}_{N},\nabla v_{N}\rangle+\breve{\tau}^{m+1}_{n}(v_{N})\vskip 8.00003pt,
(4.12) e˘ψm+1,vN=e˘pm+1e˘nm+1,vN,\displaystyle\langle\nabla\breve{e}_{\psi}^{m+1},\nabla v_{N}\rangle=\langle\breve{e}_{p}^{m+1}-\breve{e}_{n}^{m+1},v_{N}\rangle,
e˘RN𝐮m+1e˘𝐮mΔt,vN+(𝐮˘m)RN𝐮˘m+1(𝐮Nm)𝐮~Nm+1,vN+e˘RN𝐮m+1,vN+e˘ϕm,vN\displaystyle\langle\frac{\breve{e}_{R_{N}{\bf u}}^{m+1}-\breve{e}_{{\bf u}}^{m}}{\Delta t},v_{N}\rangle+\langle(\breve{{\bf u}}^{m}\cdot\nabla)R_{N}\breve{{\bf u}}^{m+1}-({\bf u}^{m}_{N}\cdot\nabla)\tilde{{\bf u}}^{m+1}_{N},v_{N}\rangle+\langle\nabla\breve{e}_{R_{N}{\bf u}}^{m+1},\nabla v_{N}\rangle+\langle\nabla\breve{e}_{\phi}^{m},v_{N}\rangle
(4.13) =p˘mμ˘m+1+n˘mν˘m+1,vN+pNmμNm+1+nNmνNm+1,vN+τ˘𝐮m+1(vN),\displaystyle\qquad=-\langle\breve{p}^{m}\nabla\breve{\mu}^{m+1}+\breve{n}^{m}\nabla\breve{\nu}^{m+1},v_{N}\rangle+\langle p^{m}_{N}\nabla\mu^{m+1}_{N}+n^{m}_{N}\nabla\nu^{m+1}_{N},v_{N}\rangle+\breve{\tau}^{m+1}_{{\bf u}}(v_{N}),
(4.14) e˘𝐮m+1e˘RN𝐮m+1Δt,vN+(e˘ϕm+1e˘ϕm),vN=0,\displaystyle\langle\frac{\breve{e}_{{\bf u}}^{m+1}-\breve{e}_{R_{N}{\bf u}}^{m+1}}{\Delta t},v_{N}\rangle+\langle\nabla(\breve{e}_{\phi}^{m+1}-\breve{e}_{\phi}^{m}),v_{N}\rangle=0,
(4.15) e˘𝐮m+1,vN=0.\displaystyle\langle\breve{e}_{{\bf u}}^{m+1},\nabla v_{N}\rangle=0.

To simplify the presentation, we rewrite the third term in (4.10) as

p˘m(1+2Δtp˘m)μ˘m+1pNm(1+2ΔtpNm)μNm+1,vN=p˘m(1+2Δtp˘m)μ˘m+1pNm(1+2ΔtpNm)μ˘m+1,vNpNm(1+2ΔtpNm)μ˘m+1pNm(1+2ΔtpNm)μ˘Nm+1,vN=e˘pm(1+2Δt(p˘m+pNm))μ˘m+1,vNpNm(1+2ΔtpNm)e˘μm+1,vN.\begin{split}&\quad-\langle\breve{p}^{m}(1+2\Delta t\breve{p}^{m})\nabla\breve{\mu}^{m+1}-p^{m}_{N}(1+2\Delta tp^{m}_{N})\nabla\mu^{m+1}_{N},\nabla v_{N}\rangle\\ &=-\langle\breve{p}^{m}(1+2\Delta t\breve{p}^{m})\nabla\breve{\mu}^{m+1}-p^{m}_{N}(1+2\Delta tp^{m}_{N})\nabla\breve{\mu}^{m+1},\nabla v_{N}\rangle\\ &\quad-\langle p^{m}_{N}(1+2\Delta tp^{m}_{N})\nabla\breve{\mu}^{m+1}-p^{m}_{N}(1+2\Delta tp^{m}_{N})\nabla\breve{\mu}^{m+1}_{N},\nabla v_{N}\rangle\\ &=-\langle\breve{e}_{p}^{m}(1+2\Delta t(\breve{p}^{m}+p^{m}_{N}))\nabla\breve{\mu}^{m+1},\nabla v_{N}\rangle-\langle p^{m}_{N}(1+2\Delta tp^{m}_{N})\nabla\breve{e}_{\mu}^{m+1},\nabla v_{N}\rangle.\end{split}

Rewrite the second term of (4.10) into

p˘m𝐮˘mpNm𝐮Nm,vN=p˘m𝐮˘mpNm𝐮˘m,vNpNm𝐮˘mpNm𝐮Nm,vN=e˘pm𝐮˘m,vNpNme˘𝐮m,vN.\begin{split}&\quad-\langle\breve{p}^{m}\breve{{\bf u}}^{m}-p^{m}_{N}{\bf u}^{m}_{N},\nabla v_{N}\rangle\\ &=-\langle\breve{p}^{m}\breve{{\bf u}}^{m}-p^{m}_{N}\breve{{\bf u}}^{m},\nabla v_{N}\rangle-\langle p^{m}_{N}\breve{{\bf u}}^{m}-p^{m}_{N}{\bf u}^{m}_{N},\nabla v_{N}\rangle\\ &=-\langle\breve{e}_{p}^{m}\breve{{\bf u}}^{m},\nabla v_{N}\rangle-\langle p^{m}_{N}\breve{e}_{{\bf u}}^{m},\nabla v_{N}\rangle.\end{split}

Similarly, for the third and second term of (4.11), we have

n˘m(1+2Δtn˘m)ν˘m+1nNm(1+2ΔtnNm)νNm+1,vN=e˘nm(1+2Δt(n˘m+nNm))ν˘m+1,vNnNm(1+2ΔtnNm)e˘νm+1,vN,\begin{split}&\quad-\langle\breve{n}^{m}(1+2\Delta t\breve{n}^{m})\nabla\breve{\nu}^{m+1}-n^{m}_{N}(1+2\Delta tn^{m}_{N})\nabla\nu^{m+1}_{N},\nabla v_{N}\rangle\\ &=-\langle\breve{e}_{n}^{m}(1+2\Delta t(\breve{n}^{m}+n^{m}_{N}))\nabla\breve{\nu}^{m+1},\nabla v_{N}\rangle-\langle n^{m}_{N}(1+2\Delta tn^{m}_{N})\nabla\breve{e}_{\nu}^{m+1},\nabla v_{N}\rangle,\end{split}

and

n˘m𝐮˘mnNm𝐮Nm,vN=e˘nm𝐮˘m,vNnNme˘𝐮m,vN.\begin{split}&\quad-\langle\breve{n}^{m}\breve{{\bf u}}^{m}-n^{m}_{N}{\bf u}^{m}_{N},\nabla v_{N}\rangle\\ &=-\langle\breve{e}_{n}^{m}\breve{{\bf u}}^{m},\nabla v_{N}\rangle-\langle n^{m}_{N}\breve{e}_{{\bf u}}^{m},\nabla v_{N}\rangle.\end{split}

For the Navier-Stokes equation, in (4.13), we have

(𝐮˘m)RN𝐮˘m+1(𝐮Nm)𝐮~Nm+1,vN=(𝐮˘m)RN𝐮˘m+1(𝐮Nm)RN𝐮˘m+1,vN+(𝐮Nm)RN𝐮˘m+1(𝐮Nm)𝐮~Nm+1,vN=(e˘𝐮n)RN𝐮˘m+1,vN+(𝐮Nm)e˘RN𝐮m+1,vN,\begin{split}&\quad\langle(\breve{{\bf u}}^{m}\cdot\nabla)R_{N}\breve{{\bf u}}^{m+1}-({\bf u}^{m}_{N}\cdot\nabla)\tilde{{\bf u}}^{m+1}_{N},v_{N}\rangle\\ &=\langle(\breve{{\bf u}}^{m}\cdot\nabla)R_{N}\breve{{\bf u}}^{m+1}-({\bf u}^{m}_{N}\cdot\nabla)R_{N}\breve{{\bf u}}^{m+1},v_{N}\rangle\\ &\quad+\langle({\bf u}^{m}_{N}\cdot\nabla)R_{N}\breve{{\bf u}}^{m+1}-({\bf u}^{m}_{N}\cdot\nabla)\tilde{{\bf u}}^{m+1}_{N},v_{N}\rangle\\ &=\langle(\breve{e}_{{\bf u}}^{n}\cdot\nabla)R_{N}\breve{{\bf u}}^{m+1},v_{N}\rangle+\langle({\bf u}^{m}_{N}\cdot\nabla)\breve{e}_{R_{N}{\bf u}}^{m+1},v_{N}\rangle,\end{split}

and

p˘mμ˘m+1+n˘mν˘m+1,vN+pNmμNm+1+nNmνNm+1,vN=p˘mμ˘m+1+n˘mν˘m+1,vN+pNmμ˘m+1+nNmν˘m+1,vNpNmμ˘m+1+nNmν˘m+1,vN+pNmμNm+1+nNmνNm+1,vN=e˘pmμ˘m+1+e˘nmν˘m+1,vNpNme˘μm+1+nNme˘νm+1,vN.\begin{split}&\quad-\langle\breve{p}^{m}\nabla\breve{\mu}^{m+1}+\breve{n}^{m}\nabla\breve{\nu}^{m+1},v_{N}\rangle+\langle p^{m}_{N}\nabla\mu^{m+1}_{N}+n^{m}_{N}\nabla\nu^{m+1}_{N},v_{N}\rangle\\ &=-\langle\breve{p}^{m}\nabla\breve{\mu}^{m+1}+\breve{n}^{m}\nabla\breve{\nu}^{m+1},v_{N}\rangle+\langle p^{m}_{N}\nabla\breve{\mu}^{m+1}+n^{m}_{N}\nabla\breve{\nu}^{m+1},v_{N}\rangle\\ &\quad-\langle p^{m}_{N}\nabla\breve{\mu}^{m+1}+n^{m}_{N}\nabla\breve{\nu}^{m+1},v_{N}\rangle+\langle p^{m}_{N}\nabla\mu^{m+1}_{N}+n^{m}_{N}\nabla\nu^{m+1}_{N},v_{N}\rangle\\ &=-\langle\breve{e}_{p}^{m}\nabla\breve{\mu}^{m+1}+\breve{e}_{n}^{m}\nabla\breve{\nu}^{m+1},v_{N}\rangle-\langle p^{m}_{N}\nabla\breve{e}_{\mu}^{m+1}+n^{m}_{N}\nabla\breve{e}_{\nu}^{m+1},v_{N}\rangle.\end{split}

Collecting all previous equations, the error equations (4.16)-(4.21) could be rewritten as

e˘pm+1e˘pmΔt,vN\displaystyle\left\langle\frac{\breve{e}_{p}^{m+1}-\breve{e}_{p}^{m}}{\Delta t},v_{N}\right\rangle e˘pm𝐮˘m,vNpNme˘𝐮m,vN\displaystyle-\left\langle\breve{e}_{p}^{m}\breve{{\bf u}}^{m},\nabla v_{N}\right\rangle-\left\langle p^{m}_{N}\breve{e}_{{\bf u}}^{m},\nabla v_{N}\right\rangle
=e˘pm(1+2Δt(p˘m+pNm))μ˘m+1,vN\displaystyle=-\left\langle\breve{e}_{p}^{m}\left(1+2\Delta t(\breve{p}^{m}+p^{m}_{N})\right)\nabla\breve{\mu}^{m+1},\nabla v_{N}\right\rangle
(4.16) pNm(1+2ΔtpNm)e˘μm+1,vN+τ˘pm+1(vN),\displaystyle\quad-\left\langle p^{m}_{N}\left(1+2\Delta t\,p^{m}_{N}\right)\nabla\breve{e}_{\mu}^{m+1},\nabla v_{N}\right\rangle+\breve{\tau}^{m+1}_{p}(v_{N}),
e˘nm+1e˘nmΔt,vN\displaystyle\left\langle\frac{\breve{e}_{n}^{m+1}-\breve{e}_{n}^{m}}{\Delta t},v_{N}\right\rangle e˘nm𝐮˘m,vNnNme˘𝐮m,vN\displaystyle-\left\langle\breve{e}_{n}^{m}\breve{{\bf u}}^{m},\nabla v_{N}\right\rangle-\left\langle n^{m}_{N}\breve{e}_{{\bf u}}^{m},\nabla v_{N}\right\rangle
=e˘nm(1+2Δt(n˘m+nNm))ν˘m+1,vN\displaystyle=-\left\langle\breve{e}_{n}^{m}\left(1+2\Delta t(\breve{n}^{m}+n^{m}_{N})\right)\nabla\breve{\nu}^{m+1},\nabla v_{N}\right\rangle
(4.17) nNm(1+2ΔtnNm)e˘νm+1,vN+τ˘nm+1(vN),\displaystyle\quad-\left\langle n^{m}_{N}\left(1+2\Delta t\,n^{m}_{N}\right)\nabla\breve{e}_{\nu}^{m+1},\nabla v_{N}\right\rangle+\breve{\tau}^{m+1}_{n}(v_{N}),
(4.18) e˘ψm+1,vN\displaystyle\left\langle\nabla\breve{e}_{\psi}^{m+1},\nabla v_{N}\right\rangle =e˘pm+1e˘nm+1,vN,\displaystyle=\left\langle\breve{e}_{p}^{m+1}-\breve{e}_{n}^{m+1},v_{N}\right\rangle,
e˘RN𝐮m+1e˘𝐮mΔt,vN\displaystyle\left\langle\frac{\breve{e}_{R_{N}{\bf u}}^{m+1}-\breve{e}_{{\bf u}}^{m}}{\Delta t},v_{N}\right\rangle +(e˘𝐮m)RN𝐮˘m+1,vN+(𝐮Nm)e˘RN𝐮m+1,vN\displaystyle+\left\langle(\breve{e}_{{\bf u}}^{m}\cdot\nabla)R_{N}\breve{{\bf u}}^{m+1},v_{N}\right\rangle+\left\langle({\bf u}^{m}_{N}\cdot\nabla)\breve{e}_{R_{N}{\bf u}}^{m+1},v_{N}\right\rangle
+e˘RN𝐮m+1,vN+e˘ϕm,vN\displaystyle+\left\langle\nabla\breve{e}_{R_{N}{\bf u}}^{m+1},\nabla v_{N}\right\rangle+\left\langle\nabla\breve{e}_{\phi}^{m},v_{N}\right\rangle
=e˘pmμ˘m+1+e˘nmν˘m+1,vN\displaystyle=-\left\langle\breve{e}_{p}^{m}\nabla\breve{\mu}^{m+1}+\breve{e}_{n}^{m}\nabla\breve{\nu}^{m+1},v_{N}\right\rangle
(4.19) pNme˘μm+1+nNme˘νm+1,vN+τ˘𝐮m+1(vN),\displaystyle\quad-\left\langle p^{m}_{N}\nabla\breve{e}_{\mu}^{m+1}+n^{m}_{N}\nabla\breve{e}_{\nu}^{m+1},v_{N}\right\rangle+\breve{\tau}^{m+1}_{{\bf u}}(v_{N}),
(4.20) e˘𝐮m+1e˘RN𝐮m+1Δt,vN\displaystyle\left\langle\frac{\breve{e}_{{\bf u}}^{m+1}-\breve{e}_{R_{N}{\bf u}}^{m+1}}{\Delta t},v_{N}\right\rangle +(e˘ϕm+1e˘ϕm),vN=0,\displaystyle+\left\langle\nabla(\breve{e}_{\phi}^{m+1}-\breve{e}_{\phi}^{m}),v_{N}\right\rangle=0,
(4.21) e˘𝐮m+1,vN\displaystyle\left\langle\breve{e}_{{\bf u}}^{m+1},\nabla v_{N}\right\rangle =0.\displaystyle=0.

To finish the error analysis, we will need Lemma 4.3 below.

Lemma 4.3.

Under the same assumption and procedure as in Lemma 4.2, we build supplementary fields (p˘,n˘,𝐮˘,ϕ˘)(\breve{p},\breve{n},\breve{{\bf u}},\breve{\phi}), for the numerical error defined in (4.4), assume that for 2<α<32<β<k2<\alpha<3\text{, }2<\beta<k the error estimate holds for the mm-th step, i.e.

(4.22) e˘pm2\displaystyle\|\breve{e}_{p}^{m}\|_{2} Δtα+(1N)β,\displaystyle\leq\Delta t^{{\alpha}}+(\frac{1}{N})^{\beta},
(4.23) e˘nm2\displaystyle\|\breve{e}_{n}^{m}\|_{2} Δtα+(1N)β,\displaystyle\leq\Delta t^{{\alpha}}+(\frac{1}{N})^{\beta},
(4.24) e˘𝐮m2\displaystyle\|\breve{e}_{{\bf u}}^{m}\|_{2} Δtα+(1N)β,\displaystyle\leq\Delta t^{{\alpha}}+(\frac{1}{N})^{\beta},

under the linear refinement requirement ΔtC1N\Delta t\leq C\frac{1}{N}, we have the following LL^{\infty}-estimate for the (m+1)(m+1)-th step, i.e.

e˘pm+1C(Δtα2+(1N)β2),\displaystyle\|\breve{e}_{p}^{m+1}\|_{\infty}\leq C\Big{(}\Delta t^{{\alpha-2}}+(\frac{1}{N})^{{\beta-2}}\Big{)},
e˘nm+1C(Δtα2+(1N)β2),\displaystyle\|\breve{e}_{n}^{m+1}\|_{\infty}\leq C\Big{(}\Delta t^{{\alpha-2}}+(\frac{1}{N})^{{\beta-2}}\Big{)},

where CC is independent of Δt,N\Delta t,N, and

Proof.

First, from Lemma 4.2, we can construct (p˘,n˘,𝐮˘)(\breve{p},\breve{n},\breve{{\bf u}}) that satisfies (4.2) (4.3). To obtain the bound of pNm,nNm,pNm,nNmp^{m}_{N},n^{m}_{N},\|\nabla p^{m}_{N}\|_{\infty},\|\nabla n^{m}_{N}\|_{\infty}, given the aa prioripriori estimate (4.22), a direct application of inverse inequalities implies

e˘pmCNe˘pm2C(Δtα1+(1N)β1),\displaystyle\|\breve{e}_{p}^{m}\|_{\infty}\leq CN\|\breve{e}_{p}^{m}\|_{2}\leq C\Big{(}\Delta t^{{\alpha-1}}+(\frac{1}{N})^{{\beta-1}}\Big{)},
e˘pmCNe˘pmC(Δtα2+(1N)β2),\displaystyle\|\nabla\breve{e}_{p}^{m}\|_{\infty}\leq CN\|\breve{e}_{p}^{m}\|_{\infty}\leq C\Big{(}\Delta t^{{\alpha-2}}+(\frac{1}{N})^{{\beta-2}}\Big{)},

where we used ΔtC1N\Delta t\leq C\frac{1}{N}. Similarly, we have

e˘nmC(Δtα1+(1N)β1),\displaystyle\|\breve{e}_{n}^{m}\|_{\infty}\leq C\Big{(}\Delta t^{{\alpha-1}}+(\frac{1}{N})^{{\beta-1}}\Big{)},
e˘nmC(Δtα2+(1N)β2).\displaystyle\|\nabla\breve{e}_{n}^{m}\|_{\infty}\leq C\Big{(}\Delta t^{{\alpha-2}}+(\frac{1}{N})^{{\beta-2}}\Big{)}.

Provided Δt,1N\Delta t,\frac{1}{N} are sufficiently small, we have

(4.25) {e˘pm,e˘nmδ02,e˘pm,e˘nmδ02.\left\{\begin{aligned} &\|\breve{e}_{p}^{m}\|_{\infty},\ \|\breve{e}_{n}^{m}\|_{\infty}\leq\dfrac{\delta_{0}^{*}}{2},\\ &\|\nabla\breve{e}_{p}^{m}\|_{\infty},\ \|\nabla\breve{e}_{n}^{m}\|_{\infty}\leq\dfrac{\delta_{0}^{*}}{2}.\end{aligned}\right.

where δ0>0\delta_{0}^{*}>0 is a small constant.

Combining (4.25) with the regularity of (p˘,n˘)(\breve{p},\breve{n}) as in (4.3), we obtain bounds for pNm,nNm,pNm,nNmp^{m}_{N},n^{m}_{N},\nabla p^{m}_{N},\nabla n^{m}_{N}:

(4.26) δ02minp˘me˘pmpNmp˘m+e˘pmM+δ02,\displaystyle\frac{\delta_{0}^{*}}{2}\leq\min\breve{p}^{m}-\|\breve{e}_{p}^{m}\|_{\infty}\leq p^{m}_{N}\leq\|\breve{p}^{m}\|_{\infty}+\|\breve{e}_{p}^{m}\|_{\infty}\leq M+\frac{\delta_{0}^{*}}{2},
(4.27) δ02minn˘me˘nmnNmn˘m+e˘nmM+δ02,\displaystyle\frac{\delta_{0}^{*}}{2}\leq\min\breve{n}^{m}-\|\breve{e}_{n}^{m}\|_{\infty}\leq n^{m}_{N}\leq\|\breve{n}^{m}\|_{\infty}+\|\breve{e}_{n}^{m}\|_{\infty}\leq M+\frac{\delta_{0}^{*}}{2},
(4.28) pNmp˘m+e˘pmM+δ02,\displaystyle\|\nabla p^{m}_{N}\|_{\infty}\leq\|\nabla\breve{p}^{m}\|_{\infty}+\|\nabla\breve{e}_{p}^{m}\|_{\infty}\leq M+\frac{\delta_{0}^{*}}{2},
(4.29) nNmn˘m+e˘nmM+δ02.\displaystyle\|\nabla n^{m}_{N}\|_{\infty}\leq\|\nabla\breve{n}^{m}\|_{\infty}+\|\nabla\breve{e}_{n}^{m}\|_{\infty}\leq M+\frac{\delta_{0}^{*}}{2}.

Taking vN=e˘μm+1v_{N}=\breve{e}_{\mu}^{m+1} in (4.16), using the equality e˘μm+1=lnp˘m+1lnpNm+1+e˘ψm+1\breve{e}_{\mu}^{m+1}=\ln\breve{p}^{m+1}-\ln p^{m+1}_{N}+\breve{e}_{\psi}^{m+1}, we obtain the left hand side of (4.16):

(4.30) LHSp=1Δte˘pm+1,lnp˘m+1lnpNm+1+1Δte˘pm+1,e˘ψm+11Δte˘pm,e˘μm+1e˘pm𝐮˘m+pNme˘𝐮m,e˘μm+1,\begin{split}LHS_{p}&=\frac{1}{\Delta t}\langle\breve{e}_{p}^{m+1},\ln{\breve{p}^{m+1}}-\ln{p^{m+1}_{N}}\rangle+\frac{1}{\Delta t}\langle\breve{e}_{p}^{m+1},\breve{e}_{\psi}^{m+1}\rangle\\ &\quad-\frac{1}{\Delta t}\langle\breve{e}_{p}^{m},\breve{e}_{\mu}^{m+1}\rangle-\langle\breve{e}_{p}^{m}\breve{{\bf u}}^{m}+p^{m}_{N}\breve{e}_{{\bf u}}^{m},\nabla\breve{e}_{\mu}^{m+1}\rangle,\end{split}

and the right hand side of (4.16):

(4.31) RHSp=e˘pm(1+2Δt(p˘m+pNm))μ˘m+1,e˘μn+1ΩpNm(1+2ΔtpNm)|e˘μm+1|2dx+τ˘m+1p(e˘μm+1).\begin{split}RHS_{p}&=-\langle\breve{e}_{p}^{m}\left(1+2\Delta t(\breve{p}^{m}+p^{m}_{N})\right)\nabla\breve{\mu}^{m+1},\nabla\breve{e}_{\mu}^{n+1}\rangle\\ &\quad-\int_{\Omega}p^{m}_{N}(1+2\Delta tp^{m}_{N})\rvert\nabla\breve{e}_{\mu}^{m+1}\rvert^{2}dx+\breve{\tau}^{m+1}_{p}(\breve{e}_{\mu}^{m+1}).\end{split}

Similarly taking vN=e˘νm+1v_{N}=\breve{e}_{\nu}^{m+1} in (4.17), we obtain

(4.32) LHSn=1Δte˘nm+1,lnn˘m+1lnnNm+11Δte˘nm+1,e˘ψm+11Δte˘nm,e˘νm+1e˘nm𝐮˘m+nNme˘𝐮m,e˘νm+1,\begin{split}LHS_{n}&=\frac{1}{\Delta t}\langle\breve{e}_{n}^{m+1},\ln{\breve{n}^{m+1}}-\ln{n^{m+1}_{N}}\rangle-\frac{1}{\Delta t}\langle\breve{e}_{n}^{m+1},\breve{e}_{\psi}^{m+1}\rangle\\ &\quad-\frac{1}{\Delta t}\langle\breve{e}_{n}^{m},\breve{e}_{\nu}^{m+1}\rangle-\langle\breve{e}_{n}^{m}\breve{{\bf u}}^{m}+n^{m}_{N}\breve{e}_{{\bf u}}^{m},\nabla\breve{e}_{\nu}^{m+1}\rangle,\end{split}

and

(4.33) RHSn=e˘nm(1+2Δt(n˘m+nNm))ν˘m+1,e˘νn+1ΩnNm(1+2ΔtnNm)|e˘νm+1|2dx+τ˘m+1n(e˘νm+1).\begin{split}RHS_{n}&=-\langle\breve{e}_{n}^{m}\left(1+2\Delta t(\breve{n}^{m}+n^{m}_{N})\right)\nabla\breve{\nu}^{m+1},\nabla\breve{e}_{\nu}^{n+1}\rangle\\ &\quad-\int_{\Omega}n^{m}_{N}(1+2\Delta tn^{m}_{N})\rvert\nabla\breve{e}_{\nu}^{m+1}\rvert^{2}dx+\breve{\tau}^{m+1}_{n}(\breve{e}_{\nu}^{m+1}).\end{split}

From the monotonicity of lnx\ln{x} for x>0x>0, we obtain that

(4.34) e˘pm+1,lnp˘m+1lnpNm+1=p˘m+1pNm+1,lnp˘m+1lnpNm+10,\displaystyle\langle\breve{e}_{p}^{m+1},\ln{\breve{p}^{m+1}}-\ln{p^{m+1}_{N}}\rangle=\langle\breve{p}^{m+1}-p^{m+1}_{N},\ln{\breve{p}^{m+1}}-\ln{p^{m+1}_{N}}\rangle\geq 0,
(4.35) e˘nm+1,lnn˘m+1lnnNm+1=n˘m+1nNm+1,lnn˘m+1lnnNm+10.\displaystyle\langle\breve{e}_{n}^{m+1},\ln{\breve{n}^{m+1}}-\ln{n^{m+1}_{N}}\rangle=\langle\breve{n}^{m+1}-n^{m+1}_{N},\ln{\breve{n}^{m+1}}-\ln{n^{m+1}_{N}}\rangle\geq 0.

From (4.18), we have

(4.36) e˘pm+1e˘nm+1,e˘ψm+1=e˘ψm+120.\langle\breve{e}_{p}^{m+1}-\breve{e}_{n}^{m+1},\breve{e}_{\psi}^{m+1}\rangle=\|\nabla\breve{e}_{\psi}^{m+1}\|^{2}\geq 0.

Combining (4.30), (4.32), (4.34), (4.35) with (4.36), we have

(4.37) LHSp+LHSn1Δt(e˘pm,e˘μm+1+e˘nm,e˘νm+1)e˘pm𝐮˘m+pNme˘𝐮m,e˘μm+1e˘nm𝐮˘m+nNme˘𝐮m,e˘νm+1.\begin{split}&LHS_{p}+LHS_{n}\\ &\geq-\frac{1}{\Delta t}(\langle\breve{e}_{p}^{m},\breve{e}_{\mu}^{m+1}\rangle+\langle\breve{e}_{n}^{m},\breve{e}_{\nu}^{m+1}\rangle)-\langle\breve{e}_{p}^{m}\breve{{\bf u}}^{m}+p^{m}_{N}\breve{e}_{{\bf u}}^{m},\nabla\breve{e}_{\mu}^{m+1}\rangle-\langle\breve{e}_{n}^{m}\breve{{\bf u}}^{m}+n^{m}_{N}\breve{e}_{{\bf u}}^{m},\nabla\breve{e}_{\nu}^{m+1}\rangle.\end{split}

Summing up (4.31) and (4.33) and using (4.37), we have

(4.38) ΩpNm(1+2ΔtpNm)|e˘μm+1|2+nNm(1+2ΔtnNm)|e˘νm+1|2dxe˘pm(1+2Δt(p˘m+pNm))μ˘m+1,e˘μm+1e˘nm(1+2Δt(n˘m+nNm))ν˘m+1,e˘νm+1+1Δt(e˘pm,e˘μm+1+e˘nm,e˘νm+1)+e˘pm𝐮˘m+pNme˘𝐮m,e˘μm+1+e˘nm𝐮˘m+nNme˘𝐮m,e˘νm+1+τ˘pm+1(e˘μm+1)+τ˘nm+1(e˘νm+1).\begin{split}&\quad\int_{\Omega}p^{m}_{N}(1+2\Delta tp^{m}_{N})\rvert\nabla\breve{e}_{\mu}^{m+1}\rvert^{2}+n^{m}_{N}(1+2\Delta tn^{m}_{N})\rvert\nabla\breve{e}_{\nu}^{m+1}\rvert^{2}dx\\ &\leq-\langle\breve{e}_{p}^{m}\left(1+2\Delta t(\breve{p}^{m}+p^{m}_{N})\right)\nabla\breve{\mu}^{m+1},\nabla\breve{e}_{\mu}^{m+1}\rangle-\langle\breve{e}_{n}^{m}\left(1+2\Delta t(\breve{n}^{m}+n^{m}_{N})\right)\nabla\breve{\nu}^{m+1},\nabla\breve{e}_{\nu}^{m+1}\rangle\\ &\quad+\frac{1}{\Delta t}(\langle\breve{e}_{p}^{m},\breve{e}_{\mu}^{m+1}\rangle+\langle\breve{e}_{n}^{m},\breve{e}_{\nu}^{m+1}\rangle)+\langle\breve{e}_{p}^{m}\breve{{\bf u}}^{m}+p^{m}_{N}\breve{e}_{{\bf u}}^{m},\nabla\breve{e}_{\mu}^{m+1}\rangle+\langle\breve{e}_{n}^{m}\breve{{\bf u}}^{m}+n^{m}_{N}\breve{e}_{{\bf u}}^{m},\nabla\breve{e}_{\nu}^{m+1}\rangle\\ &\quad+\breve{\tau}^{m+1}_{p}(\breve{e}_{\mu}^{m+1})+\breve{\tau}^{m+1}_{n}(\breve{e}_{\nu}^{m+1}).\end{split}

Using the LL^{\infty} bound of pNm,nNmp^{m}_{N},n^{m}_{N} in (4.26) and (4.27), we have

(4.39) ΩpNm(1+2ΔtpNm)|e˘μm+1|2+nNm(1+2ΔtnNm)|e˘νm+1|2dxδ02(e˘μm+12+e˘νm+12).\int_{\Omega}p^{m}_{N}(1+2\Delta tp^{m}_{N})\rvert\nabla\breve{e}_{\mu}^{m+1}\rvert^{2}+n^{m}_{N}(1+2\Delta tn^{m}_{N})\rvert\nabla\breve{e}_{\nu}^{m+1}\rvert^{2}dx\geq\frac{\delta_{0}^{*}}{2}(\|\nabla\breve{e}_{\mu}^{m+1}\|^{2}+\|\nabla\breve{e}_{\nu}^{m+1}\|^{2}).

Applying Hölder and Young’s inequalities, for the second term in (4.38), we have

(4.40) e˘pm(1+2Δt(p˘m+pNm))μ˘m+1,e˘μm+11+2Δt(p˘m+pNm)e˘pmμ˘m+1e˘μm+1(4M+δ0+1)e˘pmμ˘m+1e˘μm+1δ0218e˘μm+12+4C~δ0e˘pm2,\begin{split}&\quad-\langle\breve{e}_{p}^{m}\left(1+2\Delta t(\breve{p}^{m}+p^{m}_{N})\right)\nabla\breve{\mu}^{m+1},\nabla\breve{e}_{\mu}^{m+1}\rangle\\ &\leq\|1+2\Delta t(\breve{p}^{m}+p^{m}_{N})\|_{\infty}\|\breve{e}_{p}^{m}\|\|\nabla\breve{\mu}^{m+1}\|_{\infty}\|\nabla\breve{e}_{\mu}^{m+1}\|\\ &\leq(4M+\delta_{0}^{*}+1)\|\breve{e}_{p}^{m}\|\|\nabla\breve{\mu}^{m+1}\|_{\infty}\|\nabla\breve{e}_{\mu}^{m+1}\|\\ &\leq\frac{\delta_{0}^{*}}{2}\frac{1}{8}\|\nabla\breve{e}_{\mu}^{m+1}\|^{2}+\frac{4\tilde{C}}{\delta_{0}^{*}}\|\breve{e}_{p}^{m}\|^{2},\end{split}

and for the third term in (4.38),

(4.41) e˘nm(1+2Δt(n˘m+nNm))ν˘m,e˘νn+11+2Δt(n˘m+nNm)e˘nmν˘m+1e˘νm+1(4M+δ0+1)e˘nmν˘m+1e˘νm+1δ0218e˘νm+12+4C~δ0e˘nm2,\begin{split}&\quad-\langle\breve{e}_{n}^{m}\left(1+2\Delta t(\breve{n}^{m}+n^{m}_{N})\right)\nabla\breve{\nu}^{m},\nabla\breve{e}_{\nu}^{n+1}\rangle\\ &\leq\|1+2\Delta t(\breve{n}^{m}+n^{m}_{N})\|_{\infty}\|\breve{e}_{n}^{m}\|\|\nabla\breve{\nu}^{m+1}\|_{\infty}\|\nabla\breve{e}_{\nu}^{m+1}\|\\ &\leq(4M+\delta_{0}^{*}+1)\|\breve{e}_{n}^{m}\|\|\nabla\breve{\nu}^{m+1}\|_{\infty}\|\nabla\breve{e}_{\nu}^{m+1}\|\\ &\leq\frac{\delta_{0}^{*}}{2}\frac{1}{8}\|\nabla\breve{e}_{\nu}^{m+1}\|^{2}+\frac{4\tilde{C}}{\delta_{0}^{*}}\|\breve{e}_{n}^{m}\|^{2},\end{split}

where C~(4M+δ0+1)2(μ˘m+12+ν˘m+12)\tilde{C}\geq(4M+\delta_{0}^{*}+1)^{2}(\|\nabla\breve{\mu}^{m+1}\|_{\infty}^{2}+\|\nabla\breve{\nu}^{m+1}\|_{\infty}^{2}). Note that by (4.3), μ˘LtWx1,\|\breve{\mu}\|_{L^{\infty}_{t}W^{1,\infty}_{x}} and ν˘LtWx1,\|\breve{\nu}\|_{L^{\infty}_{t}W^{1,\infty}_{x}} are bounded.

Using Hölder and Young’s inequalities, we derive

(4.42) 1Δt(e˘pm,e˘μm+1+e˘nm,e˘νm+1)δ0218(e˘μm+12+e˘νm+12)+4δ01Δt2(e˘pmH12+e˘nmH12)δ0218(e˘μm+12+e˘νm+12)+4δ0CΔt2(e˘pm2+e˘nm2).\begin{split}&\quad\frac{1}{\Delta t}(\langle\breve{e}_{p}^{m},\breve{e}_{\mu}^{m+1}\rangle+\langle\breve{e}_{n}^{m},\breve{e}_{\nu}^{m+1}\rangle)\\ &\leq\frac{\delta_{0}^{*}}{2}\frac{1}{8}(\|\nabla\breve{e}_{\mu}^{m+1}\|^{2}+\|\nabla\breve{e}_{\nu}^{m+1}\|^{2})+\frac{4}{\delta_{0}^{*}}\frac{1}{\Delta t^{2}}(\|\breve{e}_{p}^{m}\|^{2}_{H^{-1}}+\|\breve{e}_{n}^{m}\|^{2}_{H^{-1}})\\ &\leq\frac{\delta_{0}^{*}}{2}\frac{1}{8}(\|\nabla\breve{e}_{\mu}^{m+1}\|^{2}+\|\nabla\breve{e}_{\nu}^{m+1}\|^{2})+\frac{4}{\delta_{0}^{*}}\frac{C}{\Delta t^{2}}(\|\breve{e}_{p}^{m}\|^{2}+\|\breve{e}_{n}^{m}\|^{2}).\end{split}

Using the bound of pNm\|p^{m}_{N}\|_{\infty} from (4.26), and the bound of 𝐮˘m\|\breve{{\bf u}}^{m}\|_{\infty} from (4.3), we obtain

(4.43) e˘pm𝐮˘m,e˘μm+1+pNme˘𝐮m,e˘μm+1e˘μm+1(𝐮˘me˘pm+pNme˘𝐮m)δ0218e˘μm+12+4Cδ0(e˘pm2+e˘𝐮m2).\begin{split}&\quad\langle\breve{e}_{p}^{m}\breve{{\bf u}}^{m},\nabla\breve{e}_{\mu}^{m+1}\rangle+\langle p^{m}_{N}\breve{e}_{{\bf u}}^{m},\nabla\breve{e}_{\mu}^{m+1}\rangle\\ &\leq\|\nabla\breve{e}_{\mu}^{m+1}\|(\|\breve{{\bf u}}^{m}\|_{\infty}\|\breve{e}_{p}^{m}\|+\|p^{m}_{N}\|_{\infty}\|\breve{e}_{{\bf u}}^{m}\|)\\ &\leq\frac{\delta_{0}^{*}}{2}\frac{1}{8}\|\nabla\breve{e}_{\mu}^{m+1}\|^{2}+\frac{4C}{\delta_{0}^{*}}(\|\breve{e}_{p}^{m}\|^{2}+\|\breve{e}_{{\bf u}}^{m}\|^{2}).\end{split}

Similarly, we obtain

(4.44) e˘nm𝐮˘m,e˘νm+1+nNme˘𝐮m,e˘νm+1e˘νm+1(𝐮˘me˘nm+nNme˘𝐮m)δ0218e˘νm+12+4Cδ0(e˘nm2+e˘𝐮m2).\begin{split}&\quad\langle\breve{e}_{n}^{m}\breve{{\bf u}}^{m},\nabla\breve{e}_{\nu}^{m+1}\rangle+\langle n^{m}_{N}\breve{e}_{{\bf u}}^{m},\nabla\breve{e}_{\nu}^{m+1}\rangle\\ &\leq\|\nabla\breve{e}_{\nu}^{m+1}\|(\|\breve{{\bf u}}^{m}\|_{\infty}\|\breve{e}_{n}^{m}\|+\|n^{m}_{N}\|_{\infty}\|\breve{e}_{{\bf u}}^{m}\|)\\ &\leq\frac{\delta_{0}^{*}}{2}\frac{1}{8}\|\nabla\breve{e}_{\nu}^{m+1}\|^{2}+\frac{4C}{\delta_{0}^{*}}(\|\breve{e}_{n}^{m}\|^{2}+\|\breve{e}_{{\bf u}}^{m}\|^{2}).\end{split}

From Lemma 4.2, we have

(4.45) τ˘pm+1,e˘μm+1+τ˘nm+1,e˘νm+1C(Δt3+Nk)(e˘μm+1H1+e˘νm+1H1)δ0218(e˘μm+12+e˘νm+12)+4δ0(C(Δt3+Nk))2,\begin{split}\langle\breve{\tau}^{m+1}_{p},\breve{e}_{\mu}^{m+1}\rangle+\langle\breve{\tau}^{m+1}_{n},\breve{e}_{\nu}^{m+1}\rangle&\leq C(\Delta t^{3}+N^{-k})(\|\breve{e}_{\mu}^{m+1}\|_{H^{1}}+\|\breve{e}_{\nu}^{m+1}\|_{H^{1}})\\ &\leq\frac{\delta_{0}^{*}}{2}\frac{1}{8}(\|\nabla\breve{e}_{\mu}^{m+1}\|^{2}+\|\nabla\breve{e}_{\nu}^{m+1}\|^{2})+\frac{4}{\delta_{0}^{*}}(C(\Delta t^{3}+N^{-k}))^{2},\end{split}

where the positive constant CC in (4.45) is independent of Δt\Delta t and NN.

Plugging (4.39)-(4.45) into (4.38), we have

(4.46) δ04(e˘μm+12+e˘νm+12)4C~δ0(e˘pm2+e˘nm2)+4δ0CΔt2(e˘pm2+e˘nm2)+4Cδ0(e˘pm2+e˘nm2+2e˘𝐮m2)+4δ0(C(Δt3+Nk))2.\begin{split}&\quad\frac{\delta_{0}^{*}}{4}(\|\nabla\breve{e}_{\mu}^{m+1}\|^{2}+\|\nabla\breve{e}_{\nu}^{m+1}\|^{2})\\ &\leq\frac{4\tilde{C}}{\delta_{0}^{*}}(\|\breve{e}_{p}^{m}\|^{2}+\|\breve{e}_{n}^{m}\|^{2})+\frac{4}{\delta_{0}^{*}}\frac{C}{\Delta t^{2}}(\|\breve{e}_{p}^{m}\|^{2}+\|\breve{e}_{n}^{m}\|^{2})\\ &+\frac{4C}{\delta_{0}^{*}}(\|\breve{e}_{p}^{m}\|^{2}+\|\breve{e}_{n}^{m}\|^{2}+2\|\breve{e}_{{\bf u}}^{m}\|^{2})+\frac{4}{\delta_{0}^{*}}(C(\Delta t^{3}+N^{-k}))^{2}.\end{split}

Combing (LABEL:lem:result) with assumption (4.22), (4.23), (4.24), we derive

(4.47) e˘μm+1,e˘νm+1C^Δtα+(1N)βΔt,\|\nabla\breve{e}_{\mu}^{m+1}\|,\|\nabla\breve{e}_{\nu}^{m+1}\|\leq\hat{C}\frac{\Delta t^{{\alpha}}+(\frac{1}{N})^{{\beta}}}{\Delta t},

where C^\hat{C} depends only on δ0,p˘m+1,n˘m+1,ψ˘m+1,𝐮˘m+1\delta_{0}^{*},\breve{p}^{m+1},\breve{n}^{m+1},\breve{\psi}^{m+1},\breve{{\bf u}}^{m+1}, independent of Δt,1N\Delta t,\frac{1}{N}.

Now taking the test function vN=e˘pm+1e˘pmv_{N}=\breve{e}_{p}^{m+1}-\breve{e}_{p}^{m} in (4.16), we have

(4.48) 1Δte˘pm+1e˘pm2𝐮˘me˘pm+pNme˘𝐮m(e˘pm+1e˘pm)+e˘pm(1+2Δt(p˘m+pNm))μ˘m+1+pNm(1+2ΔtpNm)e˘μm+1(e˘pm+1e˘pm)+C(Δt3+Nk)(e˘pm+1e˘pm)(𝐮˘me˘pm+pNme˘𝐮m+(1+2Δt(p˘m+pNm))μ˘m+1e˘pm+pNm(1+2ΔtpNm)e˘μm+1+C(Δt3+Nk))(e˘pm+1e˘pm)N(𝐮˘me˘pm+pNme˘𝐮m+(1+2Δt(p˘m+pNm))μ˘m+1e˘pm+pNm(1+2ΔtpNm)e˘μm+1+C(Δt3+Nk))e˘pm+1e˘pm,\begin{split}&\quad\frac{1}{\Delta t}\|\breve{e}_{p}^{m+1}-\breve{e}_{p}^{m}\|^{2}\\ \leq&\quad\|\breve{{\bf u}}^{m}\breve{e}_{p}^{m}+p^{m}_{N}\breve{e}_{{\bf u}}^{m}\|\|\nabla(\breve{e}_{p}^{m+1}-\breve{e}_{p}^{m})\|\\ &+\|\breve{e}_{p}^{m}(1+2\Delta t(\breve{p}^{m}+p^{m}_{N}))\nabla\breve{\mu}^{m+1}+p^{m}_{N}(1+2\Delta tp^{m}_{N})\nabla\breve{e}_{\mu}^{m+1}\|\|\nabla(\breve{e}_{p}^{m+1}-\breve{e}_{p}^{m})\|\\ &+C(\Delta t^{3}+N^{-k})\|\nabla(\breve{e}_{p}^{m+1}-\breve{e}_{p}^{m})\|\\ \leq&\quad\bigg{(}\|\breve{{\bf u}}^{m}\|_{\infty}\|\breve{e}_{p}^{m}\|+\|p^{m}_{N}\|_{\infty}\|\breve{e}_{{\bf u}}^{m}\|+\|(1+2\Delta t(\breve{p}^{m}+p^{m}_{N}))\nabla\breve{\mu}^{m+1}\|_{\infty}\|\breve{e}_{p}^{m}\|\\ &+\|p^{m}_{N}(1+2\Delta tp^{m}_{N})\|_{\infty}\|\nabla\breve{e}_{\mu}^{m+1}\|+C(\Delta t^{3}+N^{-k})\bigg{)}\|\nabla(\breve{e}_{p}^{m+1}-\breve{e}_{p}^{m})\|\\ \lesssim&\quad N\bigg{(}\|\breve{{\bf u}}^{m}\|_{\infty}\|\breve{e}_{p}^{m}\|+\|p^{m}_{N}\|_{\infty}\|\breve{e}_{{\bf u}}^{m}\|+\|(1+2\Delta t(\breve{p}^{m}+p^{m}_{N}))\nabla\breve{\mu}^{m+1}\|_{\infty}\|\breve{e}_{p}^{m}\|\\ &+\|p^{m}_{N}(1+2\Delta tp^{m}_{N})\|_{\infty}\|\nabla\breve{e}_{\mu}^{m+1}\|+C(\Delta t^{3}+N^{-k})\bigg{)}\|\breve{e}_{p}^{m+1}-\breve{e}_{p}^{m}\|,\end{split}

where we have used the inverse inequality

(e˘pm+1e˘pm)Ne˘pm+1e˘pm.\|\nabla(\breve{e}_{p}^{m+1}-\breve{e}_{p}^{m})\|\lesssim N\|\breve{e}_{p}^{m+1}-\breve{e}_{p}^{m}\|.

Combining (4.26), (4.47) with (4.48), we have

(4.49) e˘pm+1e˘pmCNΔt(e˘pm+e˘𝐮m+e˘μm+1+Δt3+Nk)CNΔtΔtα+NβΔtC(Δtα1+Nβ+1),\begin{split}\|\breve{e}_{p}^{m+1}-\breve{e}_{p}^{m}\|&\leq CN\Delta t(\|\breve{e}_{p}^{m}\|+\|\breve{e}_{{\bf u}}^{m}\|+\|\nabla\breve{e}_{\mu}^{m+1}\|+\Delta t^{3}+N^{-k})\\ &\leq CN\Delta t\frac{\Delta t^{{\alpha}}+N^{{-\beta}}}{\Delta t}\\ &\leq C(\Delta t^{{\alpha-1}}+N^{{-\beta+1}}),\end{split}

where we have used ΔtC1N\Delta t\leq C\frac{1}{N} in (4.49).

Finally, using the triangle inequality and the inverse inequality, we have

e˘pm+1e˘pm+e˘pm+1e˘pmC(Δtα1+Nβ+1),\displaystyle\|\breve{e}_{p}^{m+1}\|\leq\|\breve{e}_{p}^{m}\|+\|\breve{e}_{p}^{m+1}-\breve{e}_{p}^{m}\|\leq C(\Delta t^{\alpha-1}+N^{-\beta+1}),
e˘pm+1Ne˘pm+1C(Δtα2+Nβ+2).\displaystyle\|\breve{e}_{p}^{m+1}\|_{\infty}\leq N\|\breve{e}_{p}^{m+1}\|\leq C(\Delta t^{{\alpha-2}}+N^{{-\beta+2}}).

Similarly, we can derive the bound for e˘nm+1\breve{e}_{n}^{m+1}:

e˘nm+1C(Δtα1+Nβ+1),\displaystyle\|\breve{e}_{n}^{m+1}\|\leq C(\Delta t^{\alpha-1}+N^{-\beta+1}),
e˘nm+1C(Δtα2+Nβ+2).\displaystyle\|\breve{e}_{n}^{m+1}\|_{\infty}\leq C(\Delta t^{\alpha-2}+N^{{-\beta+2}}).

This completes the proof of the lemma. ∎

4.2. A refined error analysis

Firstly, for error terms as defined in (4.4), we provide following equations

(4.50) (lnp˘m+1lnpNm+1)=1pNm+1(e˘pm+1e˘pm+1lnp˘m+1),\displaystyle\nabla(\ln{\breve{p}^{m+1}}-\ln{p^{m+1}_{N}})=\frac{1}{p^{m+1}_{N}}(\nabla\breve{e}_{p}^{m+1}-\breve{e}_{p}^{m+1}\nabla\ln{\breve{p}^{m+1}}),
(4.51) (lnn˘m+1lnnNm+1)=1nNm+1(e˘nm+1e˘nm+1lnn˘m+1).\displaystyle\nabla(\ln{\breve{n}^{m+1}}-\ln{n^{m+1}_{N}})=\frac{1}{n^{m+1}_{N}}(\nabla\breve{e}_{n}^{m+1}-\breve{e}_{n}^{m+1}\nabla\ln{\breve{n}^{m+1}}).

Equation (4.50) could be derived as

(lnp˘m+1lnpNm+1)=(p˘m+1p˘m+1pNm+1pNm+1)=(pNm+1pNm+1p˘m+1p˘m+1pNm+1pNm+1)=1pNm+1(p˘m+1e˘pm+1p˘m+1p˘m+1pNm+1)=1pNm+1(e˘pm+1e˘pm+1lnp˘m+1).\begin{split}&\quad\nabla(\ln{\breve{p}^{m+1}}-\ln{p^{m+1}_{N}})\\ &=(\frac{\nabla\breve{p}^{m+1}}{\breve{p}^{m+1}}-\frac{\nabla p^{m+1}_{N}}{p^{m+1}_{N}})\\ &=(\frac{p^{m+1}_{N}}{p^{m+1}_{N}}\frac{\nabla\breve{p}^{m+1}}{\breve{p}^{m+1}}-\frac{\nabla p^{m+1}_{N}}{p^{m+1}_{N}})\\ &=\frac{1}{p^{m+1}_{N}}(\frac{\breve{p}^{m+1}-\breve{e}_{p}^{m+1}}{\breve{p}^{m+1}}\nabla\breve{p}^{m+1}-\nabla p^{m+1}_{N})\\ &=\frac{1}{p^{m+1}_{N}}(\nabla\breve{e}_{p}^{m+1}-\breve{e}_{p}^{m+1}\nabla\ln{\breve{p}^{m+1}}).\end{split}

And equation (4.51) could be established similarly.

Now we proceed to a refined error analysis. The main result is

Theorem 4.4.

Under the same assumption and procedure as in Lemma 4.2, we can build supplementary fields (p˘,n˘,𝐮˘,ϕ˘)(\breve{p},\breve{n},\breve{{\bf u}},\breve{\phi}), provided Δt\Delta t and 1N\frac{1}{N} sufficiently small and under the linear refinement requirement Δt1N\Delta t\leq\frac{1}{N}, for the numerical error between numerical solution from scheme (2.18)-(2.23) and supplementary fields (p˘,n˘,𝐮˘,ϕ˘)(\breve{p},\breve{n},\breve{{\bf u}},\breve{\phi}), as defined in (4.4), we have

e˘pm+e˘nm+e˘𝐮m+Δte˘ϕm+Cδ0,M1(Δtl=1m(e˘pl2+e˘nl2+e˘RN𝐮l2))12Cδ0,M2(Δt3+Nk),\begin{split}&\quad\|\breve{e}_{p}^{m}\|+\|\breve{e}_{n}^{m}\|+\|\breve{e}_{{\bf u}}^{m}\|+\Delta t\|\nabla\breve{e}_{\phi}^{m}\|\\ &\quad+C_{\delta_{0}^{*},M}^{1}(\Delta t\sum_{l=1}^{m}(\|\nabla\breve{e}_{p}^{l}\|^{2}+\|\nabla\breve{e}_{n}^{l}\|^{2}+\|\nabla\breve{e}_{R_{N}{\bf u}}^{l}\|^{2}))^{\frac{1}{2}}\\ &\leq C_{\delta_{0}^{*},M}^{2}(\Delta t^{3}+N^{-k}),\end{split}

for all positive integer mm, such that mΔtTm\Delta t\leq T, where Cδ0,M1,Cδ0,M2C_{\delta_{0}^{*},M}^{1},C_{\delta_{0}^{*},M}^{2} are positive constants that are independent of the choice of Δt,N\Delta t,N.

Proof.

The proof of Theorem 4.4 is divided into two steps:

  • Step 1: Assume that the rough estimate (4.22)-(4.24) is true for all the mmm\leq m^{*}, where mΔtTm^{*}\Delta t\leq T, we will obtain an error estimate for the (m+1)(m+1)-th time step as (4.79);

  • Step 2: Recover the rough estimate (4.22)-(4.24) for the (m+1)(m^{*}+1)-th time step.

Step 1: A refined error analysis with a prior assumption.

First, from the choice of initial data:

pN0=ΠNp(,0)=p˘0,nN0=ΠNn(,0)=n˘0,ψN0=ΠNψ(,0)=ψ˘0,\displaystyle p^{0}_{N}=\Pi_{N}p(\cdot,0)=\breve{p}^{0},\quad n^{0}_{N}=\Pi_{N}n(\cdot,0)=\breve{n}^{0},\quad\psi^{0}_{N}=\Pi_{N}\psi(\cdot,0)=\breve{\psi}^{0},
𝐮N0=ΠN𝐮(,0)=𝐮˘0,ϕN0=ΠNϕ(,0)=ϕ˘0,\displaystyle{\bf u}^{0}_{N}=\Pi_{N}{\bf u}(\cdot,0)=\breve{{\bf u}}^{0},\quad\phi^{0}_{N}=\Pi_{N}\phi(\cdot,0)=\breve{\phi}^{0},

we have

e˘p0=e˘n0=e˘ψ0=e˘𝐮0=e˘ϕ0=0.\breve{e}_{p}^{0}=\breve{e}_{n}^{0}=\breve{e}_{\psi}^{0}=\breve{e}_{{\bf u}}^{0}=\breve{e}_{\phi}^{0}=0.

Assume (4.22)-(4.24) hold for the mm-th time step with α=114,β=k14\alpha=\frac{11}{4},\ \beta=k-\frac{1}{4}. Then by Lemma 4.3, we have

e˘pm+1C(Δt34+(1N)k94)δ02,\displaystyle\|\breve{e}_{p}^{m+1}\|_{\infty}\leq C(\Delta t^{\frac{3}{4}}+(\frac{1}{N})^{k-\frac{9}{4}})\leq\frac{\delta_{0}^{*}}{2},
e˘nm+1C(Δt34+(1N)k94)δ02,\displaystyle\|\breve{e}_{n}^{m+1}\|_{\infty}\leq C(\Delta t^{\frac{3}{4}}+(\frac{1}{N})^{k-\frac{9}{4}})\leq\frac{\delta_{0}^{*}}{2},

where δ0>0\delta_{0}^{*}>0 is sufficiently small. Since p˘,n˘\breve{p},\breve{n} are also bounded, we obtain

(4.52) δ02minp˘m+1e˘pm+1pNm+1p˘m+1+e˘pm+1M+δ02,\displaystyle\frac{\delta_{0}^{*}}{2}\leq\min\breve{p}^{m+1}-\|\breve{e}_{p}^{m+1}\|_{\infty}\leq p^{m+1}_{N}\leq\|\breve{p}^{m+1}\|_{\infty}+\|\breve{e}_{p}^{m+1}\|_{\infty}\leq M+\frac{\delta_{0}^{*}}{2},
(4.53) δ02minp˘m+1e˘pm+1nNm+1n˘m+1+e˘nm+1M+δ02.\displaystyle\frac{\delta_{0}^{*}}{2}\leq\min\breve{p}^{m+1}-\|\breve{e}_{p}^{m+1}\|_{\infty}\leq n^{m+1}_{N}\leq\|\breve{n}^{m+1}\|_{\infty}+\|\breve{e}_{n}^{m+1}\|_{\infty}\leq M+\frac{\delta_{0}^{*}}{2}.

Now we proceed to the proof, which is divided into two steps.

(i) Estimate of (4.16)-(4.18):

Taking the test function vN=e˘pm+1v_{N}=\breve{e}_{p}^{m+1} in (4.16), we obtain

(4.54) 12Δt(e˘pm+12e˘pm2+e˘pm+1e˘pm2)=e˘pm𝐮˘m,e˘pm+1+pNme˘𝐮m,e˘pm+1e˘pm(1+2Δt(p˘m+pNm))μ˘m+1,e˘pm+1pNm(1+2ΔtpNm)e˘μm+1,e˘pm+1+τ˘pm+1,e˘pm+1.\begin{split}&\quad\frac{1}{2\Delta t}(\|\breve{e}_{p}^{m+1}\|^{2}-\|\breve{e}_{p}^{m}\|^{2}+\|\breve{e}_{p}^{m+1}-\breve{e}_{p}^{m}\|^{2})\\ &=\langle\breve{e}_{p}^{m}\breve{{\bf u}}^{m},\nabla\breve{e}_{p}^{m+1}\rangle+\langle p^{m}_{N}\breve{e}_{{\bf u}}^{m},\nabla\breve{e}_{p}^{m+1}\rangle\\ &\quad-\langle\breve{e}_{p}^{m}(1+2\Delta t(\breve{p}^{m}+p^{m}_{N}))\nabla\breve{\mu}^{m+1},\nabla\breve{e}_{p}^{m+1}\rangle\\ &\quad-\langle p^{m}_{N}(1+2\Delta tp^{m}_{N})\nabla\breve{e}_{\mu}^{m+1},\nabla\breve{e}_{p}^{m+1}\rangle\\ &\quad+\langle\breve{\tau}^{m+1}_{p},\breve{e}_{p}^{m+1}\rangle.\end{split}

Using e˘μm+1=lnp˘m+1lnpNm+1+e˘ψm+1\breve{e}_{\mu}^{m+1}=\ln{\breve{p}^{m+1}}-\ln{p^{m+1}_{N}}+\breve{e}_{\psi}^{m+1} and (4.50) we have

(4.55) pNm(1+2ΔtpNm)e˘μm+1,e˘pm+1=pNm(1+2ΔtpNm)(lnp˘m+1lnpNm+1),e˘pm+1pNm(1+2ΔtpNm)e˘ψm+1,e˘pm+1=pNm(1+2ΔtpNm)pNm+1e˘pm+1,e˘pm+1pNm(1+2ΔtpNm)pNm+1e˘pm+1lnp˘m+1,e˘pm+1pNm(1+2ΔtpNm)e˘ψm+1,e˘pm+1.\begin{split}&\quad-\langle p^{m}_{N}(1+2\Delta tp^{m}_{N})\nabla\breve{e}_{\mu}^{m+1},\nabla\breve{e}_{p}^{m+1}\rangle\\ &=-\langle p^{m}_{N}(1+2\Delta tp^{m}_{N})\nabla(\ln{\breve{p}^{m+1}}-\ln{p^{m+1}_{N}}),\nabla\breve{e}_{p}^{m+1}\rangle-\langle p^{m}_{N}(1+2\Delta tp^{m}_{N})\nabla\breve{e}_{\psi}^{m+1},\nabla\breve{e}_{p}^{m+1}\rangle\\ &=-\langle\frac{p^{m}_{N}(1+2\Delta tp^{m}_{N})}{p^{m+1}_{N}}\nabla\breve{e}_{p}^{m+1},\nabla\breve{e}_{p}^{m+1}\rangle-\langle\frac{p^{m}_{N}(1+2\Delta tp^{m}_{N})}{p^{m+1}_{N}}\breve{e}_{p}^{m+1}\nabla\ln{\breve{p}^{m+1}},\nabla\breve{e}_{p}^{m+1}\rangle\\ &\quad-\langle p^{m}_{N}(1+2\Delta tp^{m}_{N})\nabla\breve{e}_{\psi}^{m+1},\nabla\breve{e}_{p}^{m+1}\rangle.\end{split}

Using the bounds of pNmp^{m}_{N} and pNm+1p^{m+1}_{N} given in (4.26), (4.52), we have

(4.56) pNm(1+2ΔtpNm)pNm+1e˘pm+1,e˘pm+1δ02M+δ0e˘pm+12.-\langle\frac{p^{m}_{N}(1+2\Delta tp^{m}_{N})}{p^{m+1}_{N}}\nabla\breve{e}_{p}^{m+1},\nabla\breve{e}_{p}^{m+1}\rangle\leq-\frac{\delta_{0}^{*}}{2M+\delta_{0}^{*}}\|\nabla\breve{e}_{p}^{m+1}\|^{2}.

For the last two terms in (4.54), and the right hand side terms in (4.55), applying Hölder and Young’s inequalities and the properties in (4.52), (4.26), we have

(4.57) e˘pm𝐮˘m,e˘pm+1+pNme˘𝐮m,e˘pm+1𝐮˘me˘pme˘pm+1+pNme˘𝐮me˘pm+118δ02M+δ0e˘pm+12+4M+2δ0δ0(𝐮˘m2e˘pm2+pNm2e˘𝐮m2)18δ02M+δ0e˘pm+122+CM,δ0(e˘pm22+e˘𝐮m22),\begin{split}&\quad\langle\breve{e}_{p}^{m}\breve{{\bf u}}^{m},\nabla\breve{e}_{p}^{m+1}\rangle+\langle p^{m}_{N}\breve{e}_{{\bf u}}^{m},\nabla\breve{e}_{p}^{m+1}\rangle\\ &\leq\|\breve{{\bf u}}^{m}\|_{\infty}\|\breve{e}_{p}^{m}\|\|\nabla\breve{e}_{p}^{m+1}\|+\|p^{m}_{N}\|_{\infty}\|\breve{e}_{{\bf u}}^{m}\|\|\nabla\breve{e}_{p}^{m+1}\|\\ &\leq\frac{1}{8}\frac{\delta_{0}^{*}}{2M+\delta_{0}^{*}}\|\nabla\breve{e}_{p}^{m+1}\|^{2}+\frac{4M+2\delta_{0}^{*}}{\delta_{0}^{*}}\big{(}\|\breve{{\bf u}}^{m}\|_{\infty}^{2}\|\breve{e}_{p}^{m}\|^{2}+\|p^{m}_{N}\|_{\infty}^{2}\|\breve{e}_{{\bf u}}^{m}\|^{2}\big{)}\\ &\leq\frac{1}{8}\frac{\delta_{0}^{*}}{2M+\delta_{0}^{*}}\|\nabla\breve{e}_{p}^{m+1}\|^{2}_{2}+C_{M,\delta_{0}^{*}}(\|\breve{e}_{p}^{m}\|^{2}_{2}+\|\breve{e}_{{\bf u}}^{m}\|^{2}_{2}),\end{split}
(4.58) e˘pm(1+2Δt(p˘m+pNm))μ˘m+1,e˘pm+11+2Δt(p˘m+pNm)μ˘m+1e˘pme˘pm+118δ02M+δ0e˘pm+12+CM,δ0e˘pm2,\begin{split}&\quad\langle\breve{e}_{p}^{m}(1+2\Delta t(\breve{p}^{m}+p^{m}_{N}))\nabla\breve{\mu}^{m+1},\nabla\breve{e}_{p}^{m+1}\rangle\\ &\leq\|1+2\Delta t(\breve{p}^{m}+p^{m}_{N})\|_{\infty}\|\nabla\breve{\mu}^{m+1}\|_{\infty}\|\breve{e}_{p}^{m}\|\|\nabla\breve{e}_{p}^{m+1}\|\\ &\leq\frac{1}{8}\frac{\delta_{0}^{*}}{2M+\delta_{0}^{*}}\|\nabla\breve{e}_{p}^{m+1}\|^{2}+C_{M,\delta_{0}^{*}}\|\breve{e}_{p}^{m}\|^{2},\end{split}
(4.59) pNm(1+2ΔtpNm)pNm+1e˘pm+1lnp˘m+1,e˘pm+1pNm(1+2ΔtpNm)pNm+1p˘m+1p˘m+1e˘pm+1e˘pm+118δ02M+δ0e˘pm+12+CM,δ0e˘pm+12,\begin{split}&\quad\langle\frac{p^{m}_{N}(1+2\Delta tp^{m}_{N})}{p^{m+1}_{N}}\breve{e}_{p}^{m+1}{\nabla\ln{\breve{p}^{m+1}}},\nabla\breve{e}_{p}^{m+1}\rangle\\ &\leq\|\frac{p^{m}_{N}(1+2\Delta tp^{m}_{N})}{p^{m+1}_{N}}\|_{\infty}\|\frac{\nabla\breve{p}^{m+1}}{\breve{p}^{m+1}}\|_{\infty}\|\breve{e}_{p}^{m+1}\|\|\nabla\breve{e}_{p}^{m+1}\|\\ &\leq\frac{1}{8}\frac{\delta_{0}^{*}}{2M+\delta_{0}^{*}}\|\nabla\breve{e}_{p}^{m+1}\|^{2}+C_{M,\delta_{0}^{*}}\|\breve{e}_{p}^{m+1}\|^{2},\end{split}

and

(4.60) pNm(1+2ΔtpNm)e˘ψm+1,e˘pm+1pNm(1+2ΔtpNm)e˘ψm+1e˘pm+1116δ02M+δ0e˘pm+12+CM,δ0e˘ψm+12116δ02M+δ0e˘pm+12+CM,δ0(e˘pm+12+e˘nm+12),\begin{split}&\quad\langle p^{m}_{N}(1+2\Delta tp^{m}_{N})\nabla\breve{e}_{\psi}^{m+1},\nabla\breve{e}_{p}^{m+1}\rangle\\ &\leq\|p^{m}_{N}(1+2\Delta tp^{m}_{N})\|_{\infty}\|\nabla\breve{e}_{\psi}^{m+1}\|\|\nabla\breve{e}_{p}^{m+1}\|\\ &\leq\frac{1}{16}\frac{\delta_{0}^{*}}{2M+\delta_{0}^{*}}\|\nabla\breve{e}_{p}^{m+1}\|^{2}+C_{M,\delta_{0}^{*}}\|\nabla\breve{e}_{\psi}^{m+1}\|^{2}\\ &\leq\frac{1}{16}\frac{\delta_{0}^{*}}{2M+\delta_{0}^{*}}\|\nabla\breve{e}_{p}^{m+1}\|^{2}+C_{M,\delta_{0}^{*}}(\|\breve{e}_{p}^{m+1}\|^{2}+\|\breve{e}_{n}^{m+1}\|^{2}),\end{split}

where we have used the elliptic estimate from (4.18) to get

e˘ψm+12C(e˘pm+12+e˘nm+12).{\|\nabla\breve{e}_{\psi}^{m+1}\|^{2}}\leq C(\|\breve{e}_{p}^{m+1}\|^{2}+\|\breve{e}_{n}^{m+1}\|^{2}).

From Lemma 4.2, we have

(4.61) τ˘pm+1(e˘pm+1)C(Δt3+Nk)e˘pm+1H1116δ02M+δ0e˘pm+12+CM,δ0(Δt3+Nk)2.\begin{split}\breve{\tau}^{m+1}_{p}(\breve{e}_{p}^{m+1})&\leq C(\Delta t^{3}+N^{-k})\|\breve{e}_{p}^{m+1}\|_{H^{1}}\\ &\leq\frac{1}{16}\frac{\delta_{0}^{*}}{2M+\delta_{0}^{*}}\|\nabla\breve{e}_{p}^{m+1}\|^{2}+C_{M,\delta_{0}^{*}}(\Delta t^{3}+N^{-k})^{2}.\end{split}

Plugging (4.55), (4.56), (4.57), (4.58), (4.59), (4.60), (4.61) into (4.54), we obtain

(4.62) 12Δt(e˘pm+12e˘pm2+e˘pm+1e˘pm2)+12δ02M+δ0e˘pm+12CM,δ0(e˘pm2+e˘𝐮m2+e˘pm+12+e˘nm+12+(Δt3+Nk)2).\begin{split}&\quad\frac{1}{2\Delta t}(\|\breve{e}_{p}^{m+1}\|^{2}-\|\breve{e}_{p}^{m}\|^{2}+\|\breve{e}_{p}^{m+1}-\breve{e}_{p}^{m}\|^{2})+\frac{1}{2}\frac{\delta_{0}^{*}}{2M+\delta_{0}^{*}}\|\nabla\breve{e}_{p}^{m+1}\|^{2}\\ &\leq C_{M,\delta_{0}^{*}}\big{(}\|\breve{e}_{p}^{m}\|^{2}+\|\breve{e}_{{\bf u}}^{m}\|^{2}+\|\breve{e}_{p}^{m+1}\|^{2}+\|\breve{e}_{n}^{m+1}\|^{2}+(\Delta t^{3}+N^{-k})^{2}\big{)}.\end{split}

Similarly, taking vN=e˘nm+1v_{N}=\breve{e}_{n}^{m+1} in (4.17), we obtain

(4.63) 12Δt(e˘nm+12e˘nm2+e˘nm+1e˘nm2)+12δ02M+δ0e˘nm+12CM,δ0(e˘nm2+e˘𝐮m2+e˘pm+12+e˘nm+12+(Δt3+Nk)2).\begin{split}&\quad\frac{1}{2\Delta t}(\|\breve{e}_{n}^{m+1}\|^{2}-\|\breve{e}_{n}^{m}\|^{2}+\|\breve{e}_{n}^{m+1}-\breve{e}_{n}^{m}\|^{2})+\frac{1}{2}\frac{\delta_{0}^{*}}{2M+\delta_{0}^{*}}\|\nabla\breve{e}_{n}^{m+1}\|^{2}\\ &\leq C_{M,\delta_{0}^{*}}\big{(}\|\breve{e}_{n}^{m}\|^{2}+\|\breve{e}_{{\bf u}}^{m}\|^{2}+\|\breve{e}_{p}^{m+1}\|^{2}+\|\breve{e}_{n}^{m+1}\|^{2}+(\Delta t^{3}+N^{-k})^{2}\big{)}.\end{split}

(ii) Estimate of (4.19)-(4.21).

Taking vN=e˘RN𝐮m+1v_{N}=\breve{e}_{R_{N}{\bf u}}^{m+1} in (4.19) yields

(4.64) 12Δt(e˘RN𝐮m+12e˘𝐮m2+e˘RN𝐮m+1e˘𝐮m2)+(e˘𝐮m)RN𝐮˘m+1,e˘RN𝐮m+1+e˘RN𝐮m+12+e˘ϕm,e˘RN𝐮m+1=e˘pmμ˘m+1+e˘nmν˘m+1,e˘RN𝐮m+1pNme˘μm+1+nNme˘νm+1,e˘RN𝐮m+1+τ˘um+1,e˘RN𝐮m+1,\begin{split}&\quad\frac{1}{2\Delta t}(\|\breve{e}_{R_{N}{\bf u}}^{m+1}\|^{2}-\|\breve{e}_{{\bf u}}^{m}\|^{2}+\|\breve{e}_{R_{N}{\bf u}}^{m+1}-\breve{e}_{{\bf u}}^{m}\|^{2})\\ &\quad+\langle(\breve{e}_{{\bf u}}^{m}\cdot\nabla)R_{N}\breve{{\bf u}}^{m+1},\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle+\|\nabla\breve{e}_{R_{N}{\bf u}}^{m+1}\|^{2}+\langle\nabla\breve{e}_{\phi}^{m},\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle\\ &=-\langle\breve{e}_{p}^{m}\nabla\breve{\mu}^{m+1}+\breve{e}_{n}^{m}\nabla\breve{\nu}^{m+1},\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle-\langle p^{m}_{N}\nabla\breve{e}_{\mu}^{m+1}+n^{m}_{N}\nabla\breve{e}_{\nu}^{m+1},\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle\\ &\quad+\langle\breve{\tau}^{m+1}_{u},\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle,\end{split}

where we have used (2.24) to obtain

(𝐮Nm)e˘RN𝐮m+1,e˘RN𝐮m+1=0.\langle({\bf u}^{m}_{N}\cdot\nabla)\breve{e}_{R_{N}{\bf u}}^{m+1},\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle=0.

Taking the test function vN=12(e˘𝐮m+1+e˘RN𝐮m+1)v_{N}=\frac{1}{2}(\breve{e}_{{\bf u}}^{m+1}+\breve{e}_{R_{N}{\bf u}}^{m+1}) in (4.20), we obtain

(4.65) 12Δt(e˘𝐮m+12e˘RN𝐮m+12)+12(e˘ϕm+1e˘ϕm),e˘RN𝐮m+1=0.\frac{1}{2\Delta t}(\|\breve{e}_{{\bf u}}^{m+1}\|^{2}-\|\breve{e}_{R_{N}{\bf u}}^{m+1}\|^{2})+\frac{1}{2}\langle\nabla(\breve{e}_{\phi}^{m+1}-\breve{e}_{\phi}^{m}),\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle=0.

Summing (4.64) with (4.65), we have

(4.66) 12Δt(e˘𝐮m+12e˘𝐮m2+e˘RN𝐮m+1e˘𝐮m2)+(e˘𝐮m)RN𝐮˘m+1,e˘RN𝐮m+1+e˘RN𝐮m+12+12(e˘ϕm+1+e˘ϕm),e˘RN𝐮m+1=e˘pmμ˘m+1+e˘nmν˘m+1,e˘RN𝐮m+1pNme˘μm+1+nNme˘νm+1,e˘RN𝐮m+1+τ˘um+1,e˘RN𝐮m+1.\begin{split}&\quad\frac{1}{2\Delta t}(\|\breve{e}_{{\bf u}}^{m+1}\|^{2}-\|\breve{e}_{{\bf u}}^{m}\|^{2}+\|\breve{e}_{R_{N}{\bf u}}^{m+1}-\breve{e}_{{\bf u}}^{m}\|^{2})\\ &\quad+\langle(\breve{e}_{{\bf u}}^{m}\cdot\nabla)R_{N}\breve{{\bf u}}^{m+1},\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle+\|\nabla\breve{e}_{R_{N}{\bf u}}^{m+1}\|^{2}+\frac{1}{2}\langle\nabla(\breve{e}_{\phi}^{m+1}+\breve{e}_{\phi}^{m}),\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle\\ &=-\langle\breve{e}_{p}^{m}\nabla\breve{\mu}^{m+1}+\breve{e}_{n}^{m}\nabla\breve{\nu}^{m+1},\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle-\langle p^{m}_{N}\nabla\breve{e}_{\mu}^{m+1}+n^{m}_{N}\nabla\breve{e}_{\nu}^{m+1},\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle\\ &\quad+\langle\breve{\tau}^{m+1}_{u},\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle.\end{split}

For the second term in (4.66), we have

(4.67) |(e˘𝐮m)RN𝐮˘m+1,e˘RN𝐮m+1|=(e˘𝐮m)e˘RN𝐮m+1,RN𝐮˘m+1e˘𝐮me˘RN𝐮m+1RN𝐮˘m+114e˘RN𝐮m+12+RN𝐮˘m+12e˘𝐮m2.\begin{split}&\quad\rvert\langle(\breve{e}_{{\bf u}}^{m}\cdot\nabla)R_{N}\breve{{\bf u}}^{m+1},\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle\rvert\\ &=-\langle(\breve{e}_{{\bf u}}^{m}\cdot\nabla)\breve{e}_{R_{N}{\bf u}}^{m+1},R_{N}\breve{{\bf u}}^{m+1}\rangle\\ &\leq\|\breve{e}_{{\bf u}}^{m}\|\|\nabla\breve{e}_{R_{N}{\bf u}}^{m+1}\|\|R_{N}\breve{{\bf u}}^{m+1}\|_{\infty}\\ &\leq\frac{1}{4}\|\nabla\breve{e}_{R_{N}{\bf u}}^{m+1}\|^{2}+\|R_{N}\breve{{\bf u}}^{m+1}\|_{\infty}^{2}\|\breve{e}_{{\bf u}}^{m}\|^{2}.\end{split}

Taking the test function vN=(e˘ϕm+1+e˘ϕm)v_{N}=\nabla(\breve{e}_{\phi}^{m+1}+\breve{e}_{\phi}^{m}) in (4.20), we obtain

(4.68) (e˘ϕm+1+e˘ϕm),e˘RN𝐮m+1=Δt(e˘ϕm+12e˘ϕm2).\begin{split}\langle\nabla(\breve{e}_{\phi}^{m+1}+\breve{e}_{\phi}^{m}),\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle=\Delta t(\|\nabla\breve{e}_{\phi}^{m+1}\|^{2}-\|\nabla\breve{e}_{\phi}^{m}\|^{2}).\end{split}

For the first and second term on the right hand side of (4.66), we have

(4.69) |e˘pmμ˘m+1+e˘nmν˘m+1,e˘RN𝐮m+1|(μ˘m+1e˘pm+ν˘m+1e˘nm)e˘RN𝐮m+1e˘RN𝐮m+12+14(μ˘m+12e˘pm2+ν˘m+12e˘nm2),\begin{split}&\quad\rvert\langle\breve{e}_{p}^{m}\nabla\breve{\mu}^{m+1}+\breve{e}_{n}^{m}\nabla\breve{\nu}^{m+1},\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle\rvert\\ &\leq(\|\nabla\breve{\mu}^{m+1}\|_{\infty}\|\breve{e}_{p}^{m}\|+\|\nabla\breve{\nu}^{m+1}\|_{\infty}\|\breve{e}_{n}^{m}\|)\|\breve{e}_{R_{N}{\bf u}}^{m+1}\|\\ &\leq\|\breve{e}_{R_{N}{\bf u}}^{m+1}\|^{2}+\frac{1}{4}(\|\nabla\breve{\mu}^{m+1}\|^{2}_{\infty}\|\breve{e}_{p}^{m}\|^{2}+\|\nabla\breve{\nu}^{m+1}\|^{2}_{\infty}\|\breve{e}_{n}^{m}\|^{2}),\end{split}

and

(4.70) pNme˘μm+1+nNme˘νm+1,e˘RN𝐮m+1=pNm(lnp˘m+1lnpNm+1+e˘ψm+1),e˘RN𝐮m+1+nNm(lnn˘m+1lnnNm+1e˘ψm+1),e˘RN𝐮m+1=pNm(lnp˘m+1lnpNm+1),e˘RN𝐮m+1+nNm(lnn˘m+1lnnNm+1),e˘RN𝐮m+1+(pNmnNm)e˘ψm+1,e˘RN𝐮m+1.\begin{split}&\quad\langle p^{m}_{N}\nabla\breve{e}_{\mu}^{m+1}+n^{m}_{N}\nabla\breve{e}_{\nu}^{m+1},\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle\\ &=\langle p^{m}_{N}\nabla(\ln{\breve{p}^{m+1}}-\ln{p^{m+1}_{N}}+\breve{e}_{\psi}^{m+1}),\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle+\langle n^{m}_{N}\nabla(\ln{\breve{n}^{m+1}}-\ln{n^{m+1}_{N}}-\breve{e}_{\psi}^{m+1}),\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle\\ &=\langle p^{m}_{N}\nabla(\ln{\breve{p}^{m+1}}-\ln{p^{m+1}_{N}}),\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle+\langle n^{m}_{N}\nabla(\ln{\breve{n}^{m+1}}-\ln{n^{m+1}_{N}}),\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle\\ &\quad+\langle(p^{m}_{N}-n^{m}_{N})\nabla\breve{e}_{\psi}^{m+1},\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle.\end{split}

Consider the first two terms on right-hand side of (LABEL:err:eq:1) and apply (4.50) (4.51), we have

(4.71) |pNm(lnp˘m+1lnpNm+1),e˘RN𝐮m+1|=pNmpNm+1e˘pm+1,e˘RN𝐮m+1pNmpNm+1e˘pm+1lnp˘m+1,e˘RN𝐮m+1pNmpNm+1e˘pm+1e˘RN𝐮m+1+pNmpNm+1lnp˘m+1e˘pm+1e˘RN𝐮m+118δ02M+δ0(e˘pm+12+e˘pm+12)+Cδ0,Me˘RN𝐮m+12,\begin{split}&\quad\rvert\langle p^{m}_{N}\nabla(\ln{\breve{p}^{m+1}}-\ln{p^{m+1}_{N}}),\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle\rvert\\ &=\langle\frac{p^{m}_{N}}{p^{m+1}_{N}}\nabla\breve{e}_{p}^{m+1},\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle-\langle\frac{p^{m}_{N}}{p^{m+1}_{N}}\breve{e}_{p}^{m+1}\nabla\ln{\breve{p}^{m+1}},\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle\\ &\leq\|\frac{p^{m}_{N}}{p^{m+1}_{N}}\|_{\infty}\|\nabla\breve{e}_{p}^{m+1}\|\|\breve{e}_{R_{N}{\bf u}}^{m+1}\|+\|\frac{p^{m}_{N}}{p^{m+1}_{N}}\|_{\infty}\|\nabla\ln{\breve{p}^{m+1}}\|_{\infty}\|\breve{e}_{p}^{m+1}\|\|\breve{e}_{R_{N}{\bf u}}^{m+1}\|\\ &\leq\frac{1}{8}\frac{\delta_{0}^{*}}{2M+\delta_{0}^{*}}(\|\nabla\breve{e}_{p}^{m+1}\|^{2}+\|\breve{e}_{p}^{m+1}\|^{2})+C_{\delta_{0}^{*},M}\|\breve{e}_{R_{N}{\bf u}}^{m+1}\|^{2},\end{split}

and

(4.72) |nNm(lnn˘m+1lnnNm+1),e˘RN𝐮m+1|18δ02M+δ0(e˘nm+12+e˘nm+12)+Cδ0,Me˘RN𝐮m+12.\rvert\langle n^{m}_{N}\nabla(\ln{\breve{n}^{m+1}}-\ln{n^{m+1}_{N}}),\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle\rvert\leq\frac{1}{8}\frac{\delta_{0}^{*}}{2M+\delta_{0}^{*}}(\|\nabla\breve{e}_{n}^{m+1}\|^{2}+\|\breve{e}_{n}^{m+1}\|^{2})+C_{\delta_{0}^{*},M}\|\breve{e}_{R_{N}{\bf u}}^{m+1}\|^{2}.

Using the estimate (4.2), for the final term in (LABEL:err:eq:1), we obtain

(4.73) |(pNmnNm)e˘ψm+1,e˘RN𝐮m+1|(pNm+nNm)e˘ψm+1e˘RN𝐮m+1C(pNm+nNm)(e˘pm+1+e˘nm+1)e˘RN𝐮m+1e˘pm+12+e˘nm+12+Cδ0,Me˘RN𝐮m+12.\begin{split}&\quad\left\lvert\langle(p^{m}_{N}-n^{m}_{N})\nabla\breve{e}_{\psi}^{m+1},\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle\right\rvert\\ &\leq(\|p^{m}_{N}\|_{\infty}+\|n^{m}_{N}\|_{\infty})\|\nabla\breve{e}_{\psi}^{m+1}\|\|\breve{e}_{R_{N}{\bf u}}^{m+1}\|\\ &\leq C(\|p^{m}_{N}\|_{\infty}+\|n^{m}_{N}\|_{\infty})(\|\breve{e}_{p}^{m+1}\|+\|\breve{e}_{n}^{m+1}\|)\|\breve{e}_{R_{N}{\bf u}}^{m+1}\|\\ &\leq\|\breve{e}_{p}^{m+1}\|^{2}+\|\breve{e}_{n}^{m+1}\|^{2}+C_{\delta_{0}^{*},M}\|\breve{e}_{R_{N}{\bf u}}^{m+1}\|^{2}.\end{split}

Combining all these estimates (LABEL:err:eq:1)-(LABEL:err:eq:1_3), we have

(4.74) |pNme˘μm+1+nNme˘νm+1,e˘RN𝐮m+1|14δ02M+δ0(e˘pm+12+e˘nm+12)+Cδ0,M(e˘pm+122+e˘nm+122+e˘RN𝐮m+122).\begin{split}&\quad\rvert\langle p^{m}_{N}\nabla\breve{e}_{\mu}^{m+1}+n^{m}_{N}\nabla\breve{e}_{\nu}^{m+1},\breve{e}_{R_{N}{\bf u}}^{m+1}\rangle\rvert\\ &\leq\frac{1}{4}\frac{\delta_{0}^{*}}{2M+\delta_{0}^{*}}(\|\nabla\breve{e}_{p}^{m+1}\|^{2}+\|\nabla\breve{e}_{n}^{m+1}\|^{2})+C_{\delta_{0}^{*},M}(\|\breve{e}_{p}^{m+1}\|^{2}_{2}+\|\breve{e}_{n}^{m+1}\|^{2}_{2}+\|\breve{e}_{R_{N}{\bf u}}^{m+1}\|^{2}_{2}).\end{split}

From Lemma 4.2, we have

(4.75) τ˘um+1,e˘𝐮m+1C(Δt3+Nk)e˘RN𝐮m+1H114e˘RN𝐮m+122+C(Δt3+Nk)2.\begin{split}\langle\breve{\tau}_{u}^{m+1},\breve{e}_{{\bf u}}^{m+1}\rangle&\leq C(\Delta t^{3}+N^{-k})\|\breve{e}_{R_{N}{\bf u}}^{m+1}\|_{H^{1}}\\ &\leq\frac{1}{4}\|\nabla\breve{e}_{R_{N}{\bf u}}^{m+1}\|^{2}_{2}+C(\Delta t^{3}+N^{-k})^{2}.\end{split}

Plugging (4.67), (4.68), (4.69), (4.74), (4.75) into (4.66), we obtain

(4.76) 12Δt(e˘𝐮m+12e˘𝐮m2+e˘RN𝐮m+1e˘𝐮m2+Δt2e˘ϕm+12Δt2e˘ϕm2)+12e˘RN𝐮m+1214δ02M+δ0(e˘pm+12+e˘nm+12)Cδ0,M(e˘pm2+e˘nm2+e˘pm+12+e˘nm+12+e˘𝐮m2)+Cδ0,Me˘RN𝐮m+12+C(Δt3+Nk)2.\begin{split}&\quad\frac{1}{2\Delta t}(\|\breve{e}_{{\bf u}}^{m+1}\|^{2}-\|\breve{e}_{{\bf u}}^{m}\|^{2}+\|\breve{e}_{R_{N}{\bf u}}^{m+1}-\breve{e}_{{\bf u}}^{m}\|^{2}+\Delta t^{2}\|\nabla\breve{e}_{\phi}^{m+1}\|^{2}-\Delta t^{2}\|\nabla\breve{e}_{\phi}^{m}\|^{2})\\ &\quad+\frac{1}{2}\|\nabla\breve{e}_{R_{N}{\bf u}}^{m+1}\|^{2}-\frac{1}{4}\frac{\delta_{0}^{*}}{2M+\delta_{0}^{*}}(\|\nabla\breve{e}_{p}^{m+1}\|^{2}+\|\nabla\breve{e}_{n}^{m+1}\|^{2})\\ &\leq C_{\delta_{0}^{*},M}(\|\breve{e}_{p}^{m}\|^{2}+\|\breve{e}_{n}^{m}\|^{2}+\|\breve{e}_{p}^{m+1}\|^{2}+\|\breve{e}_{n}^{m+1}\|^{2}+\|\breve{e}_{{\bf u}}^{m}\|^{2})\\ &\quad+C_{\delta_{0}^{*},M}\|\breve{e}_{R_{N}{\bf u}}^{m+1}\|^{2}+C(\Delta t^{3}+N^{-k})^{2}.\end{split}

Now taking the test function vN=(e˘ϕm+1e˘ϕm)v_{N}=\nabla(\breve{e}_{\phi}^{m+1}-\breve{e}_{\phi}^{m}) in (4.20), and combining (4.65), we have

(4.77) e˘RN𝐮m+12=e˘𝐮m+12+Δt2(e˘ϕm+1e˘ϕm)2.\|\breve{e}_{R_{N}{\bf u}}^{m+1}\|^{2}=\|\breve{e}_{{\bf u}}^{m+1}\|^{2}+\Delta t^{2}\|\nabla(\breve{e}_{\phi}^{m+1}-\breve{e}_{\phi}^{m})\|^{2}.

Plugging (4.77) into (4.76), we obtain

(4.78) 12Δt(e˘𝐮m+12e˘𝐮m2+e˘RN𝐮m+1e˘𝐮m2+Δt2e˘ϕm+12Δt2e˘ϕm2)+12e˘RN𝐮m+1214δ02M+δ0(e˘pm+12+e˘nm+12)Cδ0,M(e˘pm2+e˘nm2+e˘pm+12+e˘nm+12+e˘𝐮m2+e˘𝐮m+12+Δt2e˘ϕm+12+Δt2e˘ϕm2)+C(Δt3+Nk)2.\begin{split}&\quad\frac{1}{2\Delta t}(\|\breve{e}_{{\bf u}}^{m+1}\|^{2}-\|\breve{e}_{{\bf u}}^{m}\|^{2}+\|\breve{e}_{R_{N}{\bf u}}^{m+1}-\breve{e}_{{\bf u}}^{m}\|^{2}+\Delta t^{2}\|\nabla\breve{e}_{\phi}^{m+1}\|^{2}-\Delta t^{2}\|\nabla\breve{e}_{\phi}^{m}\|^{2})\\ &\quad+\frac{1}{2}\|\nabla\breve{e}_{R_{N}{\bf u}}^{m+1}\|^{2}-\frac{1}{4}\frac{\delta_{0}^{*}}{2M+\delta_{0}^{*}}(\|\nabla\breve{e}_{p}^{m+1}\|^{2}+\|\nabla\breve{e}_{n}^{m+1}\|^{2})\\ &\leq C_{\delta_{0}^{*},M}\big{(}\|\breve{e}_{p}^{m}\|^{2}+\|\breve{e}_{n}^{m}\|^{2}+\|\breve{e}_{p}^{m+1}\|^{2}+\|\breve{e}_{n}^{m+1}\|^{2}+\|\breve{e}_{{\bf u}}^{m}\|^{2}\\ &\quad+\|\breve{e}_{{\bf u}}^{m+1}\|^{2}+\Delta t^{2}\|\nabla\breve{e}_{\phi}^{m+1}\|^{2}+\Delta t^{2}\|\nabla\breve{e}_{\phi}^{m}\|^{2}\big{)}+C(\Delta t^{3}+N^{-k})^{2}.\end{split}

Step 2: Recovery of the induction assumption (4.22)-(4.24) for the (m+1)(m^{*}+1)-step.

A summation of (4.62) (4.63) (4.78) leads to

(4.79) 12Δt(e˘pm+12+e˘nm+12+e˘𝐮m+12+Δt2e˘ϕm+12e˘pm2e˘nm2e˘𝐮m2Δt2e˘ϕm2+e˘pm+1e˘pm2+e˘nm+1e˘nm2+e˘RN𝐮m+1e˘𝐮m2)+14δ02M+δ0(e˘pm+12+e˘nm+12)+12e˘RN𝐮m+12Cδ0,M(e˘pm2+e˘pm+12+e˘nm2+e˘nm+12+e˘𝐮m2+e˘𝐮m+12+Δt2e˘ϕm+12+Δt2e˘ϕm2)+Cδ0,M(Δt3+Nk)2.\begin{split}&\quad\frac{1}{2\Delta t}\big{(}\|\breve{e}_{p}^{m+1}\|^{2}+\|\breve{e}_{n}^{m+1}\|^{2}+\|\breve{e}_{{\bf u}}^{m+1}\|^{2}+\Delta t^{2}\|\nabla\breve{e}_{\phi}^{m+1}\|^{2}\\ &\qquad-\|\breve{e}_{p}^{m}\|^{2}-\|\breve{e}_{n}^{m}\|^{2}-\|\breve{e}_{{\bf u}}^{m}\|^{2}-\Delta t^{2}\|\breve{e}_{\phi}^{m}\|^{2}\\ &\qquad+\|\breve{e}_{p}^{m+1}-\breve{e}_{p}^{m}\|^{2}+\|\breve{e}_{n}^{m+1}-\breve{e}_{n}^{m}\|^{2}+\|\breve{e}_{R_{N}{\bf u}}^{m+1}-\breve{e}_{{\bf u}}^{m}\|^{2}\big{)}\\ &\quad+\frac{1}{4}\frac{\delta_{0}^{*}}{2M+\delta_{0}^{*}}(\|\nabla\breve{e}_{p}^{m+1}\|^{2}+\|\nabla\breve{e}_{n}^{m+1}\|^{2})+\frac{1}{2}\|\nabla\breve{e}_{R_{N}{\bf u}}^{m+1}\|^{2}\\ &\leq C_{\delta_{0}^{*},M}\big{(}\|\breve{e}_{p}^{m}\|^{2}+\|\breve{e}_{p}^{m+1}\|^{2}+\|\breve{e}_{n}^{m}\|^{2}+\|\breve{e}_{n}^{m+1}\|^{2}+\|\breve{e}_{{\bf u}}^{m}\|^{2}\\ &\quad+\|\breve{e}_{{\bf u}}^{m+1}\|^{2}+\Delta t^{2}\|\nabla\breve{e}_{\phi}^{m+1}\|^{2}+\Delta t^{2}\|\nabla\breve{e}_{\phi}^{m}\|^{2}\big{)}+C_{\delta_{0}^{*},M}(\Delta t^{3}+N^{-k})^{2}.\end{split}

Note that from the induction assumption in Step 1, the above inequality holds for all mmm\leq m^{*}, where mΔtTm^{*}\Delta t\leq T. An application of discrete Gronwall’s inequality implies

e˘pm+1+e˘nm+1+e˘𝐮m+1+Δte˘ϕm+1+Cδ0,M1(Δtl=1m+1(e˘pl2+e˘nl2+e˘RN𝐮l2))12Cδ0,M2(Δt3+Nk),\begin{split}&\quad\|\breve{e}_{p}^{m^{*}+1}\|+\|\breve{e}_{n}^{m^{*}+1}\|+\|\breve{e}_{{\bf u}}^{m^{*}+1}\|+\Delta t\|\nabla\breve{e}_{\phi}^{m^{*}+1}\|\\ &\quad+C_{\delta_{0}^{*},M}^{1}(\Delta t\sum_{l=1}^{m^{*}+1}(\|\nabla\breve{e}_{p}^{l}\|^{2}+\|\nabla\breve{e}_{n}^{l}\|^{2}+\|\nabla\breve{e}_{R_{N}{\bf u}}^{l}\|^{2}))^{\frac{1}{2}}\\ &\leq C_{\delta_{0}^{*},M}^{2}(\Delta t^{3}+N^{-k}),\end{split}

where Cδ0,M1,Cδ0,M2C_{\delta_{0}^{*},M}^{1},C_{\delta_{0}^{*},M}^{2} are positive constants, independent of Δt,N\Delta t,N. Then we obtain higher order error estimate for p˘,n˘,ψ˘,𝐮˘\breve{p},\breve{n},\breve{\psi},\breve{{\bf u}} and are able to recover our induction assumption (4.22)-(4.24) with α=114,β=k14\alpha=\frac{11}{4},\ \beta=k-\frac{1}{4} and Δt,1N\Delta t,\frac{1}{N} chosen small enough. This completes the proof of Theorem 4.4. ∎

4.3. Proof of Theorem 4.1

Now we are ready to prove our main result Theorem 4.1 , which is a direct combination of Theorem 3.2 and Theorem 4.1.

Proof.

Given pin,ninδ0p^{in},n^{in}\geq\delta_{0} for some δ0>0\delta_{0}>0, from Corollary 3.1.1, we have solution p,nδ0p,n\geq\delta_{0} in Ω×[0,T]\Omega\times[0,T].

Also from Theorem 3.2 and (3.19), we have

t4pLL2(Ω×[0,T])2t4pL2H1(Ω×[0,T])t5pL2H1(Ω×[0,T])C(T,pinH8(Ω)),\displaystyle\|\partial_{t}^{4}p\|_{L^{\infty}L^{2}(\Omega\times[0,T])}^{2}\lesssim\|\partial_{t}^{4}p\|_{L^{2}H^{1}(\Omega\times[0,T])}\|\partial_{t}^{5}p\|_{L^{2}H^{-1}(\Omega\times[0,T])}\leq C(T,\|p^{in}\|_{H^{8}(\Omega)}),
t3pLHk+1(Ω×[0,T])2t3pL2Hk+2(Ω×[0,T])t4pL2Hk(Ω×[0,T])C(T,pinHk+7(Ω)).\displaystyle\|\partial_{t}^{3}p\|_{L^{\infty}H^{k+1}(\Omega\times[0,T])}^{2}\lesssim\|\partial_{t}^{3}p\|_{L^{2}H^{k+2}(\Omega\times[0,T])}\|\partial_{t}^{4}p\|_{L^{2}H^{k}(\Omega\times[0,T])}\leq C(T,\|p^{in}\|_{H^{k+7}(\Omega)}).

Similar results hold for (n,𝐮)(n,{\bf u}). Then given (pin,nin,𝐮in)Hk+7(Ω)×Hk+7(Ω)×Hk+7(Ω)(p^{in},n^{in},{\bf u}^{in})\in H^{k+7}(\Omega)\times H^{k+7}(\Omega)\times H^{k+7}(\Omega) with k2k\geq 2, we have

(t4p,t4n,t4𝐮)L(0,T,L2(Ω)),(t3p,t3n,t3𝐮)L(0,T,Hk+1(Ω)),(k2).(\partial_{t}^{4}p,\partial_{t}^{4}n,\partial_{t}^{4}{\bf u})\in L^{\infty}(0,T,L^{2}(\Omega)),(\partial_{t}^{3}p,\partial_{t}^{3}n,\partial_{t}^{3}{\bf u})\in L^{\infty}(0,T,H^{k+1}(\Omega)),\ (k\geq 2).

Hence assumptions in Lemma A.1 are satisfied, and Theorem 4.4 follows.

From the error term definition (4) (4.4), we have

(4.80) epm=e˘pmΔtpΔt,1mΔt2pΔt,2m,enm=e˘nmΔtnΔt,1mΔt2nΔt,2m,e𝐮m=e˘𝐮mΔt𝐮Δt,1mΔt2𝐮Δt,2m.\begin{split}&e_{p}^{m}=\breve{e}_{p}^{m}-\Delta tp_{\Delta t,1}^{m}-\Delta t^{2}p_{\Delta t,2}^{m},\\ &e_{n}^{m}=\breve{e}_{n}^{m}-\Delta tn_{\Delta t,1}^{m}-\Delta t^{2}n_{\Delta t,2}^{m},\\ &e_{{\bf u}}^{m}=\breve{e}_{{\bf u}}^{m}-\Delta t{\bf u}_{\Delta t,1}^{m}-\Delta t^{2}{\bf u}_{\Delta t,2}^{m}.\end{split}

From the construction process in the appendix, the modification functions (pΔt,i,nΔt,i,𝐮Δt,i)(i=1,2)(p_{\Delta t,i},n_{\Delta t,i},{\bf u}_{\Delta t,i})(i=1,2) have sufficient regularity. Combining Theorem 4.4 with (4.80), Theorem 4.1 is proved. ∎

Remark 2.

As shown in Theorem 4.1, the numerical scheme (2.18) - (2.24) is a first-order temporal accurate scheme. There are some recent studies liu2023second which extends the PNP scheme to a 2nd order one using Crank-Nicolson type of scheme which preserves positivity, energy stability and unique solvability. However, it is challenging to extend the current method to a second-order temporal accurate scheme that still preserve those nice properties, and at the same time keeping the PNP system and NS system solving process decoupled. The major challenges are:

  • The numerical technique relaxing the conviction term in (2.18) (2.19) by adding 𝒪(Δt)\mathcal{O}(\Delta t) term, which decouples the PNP and NS system, is not extendable to 2nd order scheme.

  • To design a unconditionally energy stable Crank-Nicolson type numerical scheme for Navier-Stokes scheme is non-travil shen1996error , and it would take further difficulties to decouple the two systems and preserve the energy law at the same time.

5. Numerical Examples

In this section, we present numerical experiments to validate the stability, positivity, and accuracy of our numerical schemes. We consider periodic boundary conditions and implement the Fourier spectral method in Ω=[0,2π]2\Omega=[0,2\pi]^{2}.

5.1. Accuracy Test

To verify the accuracy and convergence rate of our numerical scheme, we introduce an artificial exact solution by adding external forces to the PNP-NS system, formulated as

pt+(𝐮)p=(p+pψ)+fp,\displaystyle p_{t}+(\mathbf{u}\cdot\nabla)p=\nabla\cdot(\nabla p+p\nabla\psi)+f_{p},
nt+(𝐮)n=(nnψ)+fn,\displaystyle n_{t}+(\mathbf{u}\cdot\nabla)n=\nabla\cdot(\nabla n-n\nabla\psi)+f_{n},
εΔψ=pn,\displaystyle-\varepsilon\Delta\psi=p-n,
𝐮t+(𝐮)𝐮Δ𝐮+P=ψ(pn)+f𝐮,\displaystyle\mathbf{u}_{t}+(\mathbf{u}\cdot\nabla)\mathbf{u}-\Delta\mathbf{u}+\nabla P=-\nabla\psi(p-n)+f_{\mathbf{u}},
𝐮=0,\displaystyle\nabla\cdot\mathbf{u}=0,

where we set ε=1\varepsilon=1 and the source terms fpf_{p}, fnf_{n}, and f𝐮f_{\mathbf{u}} are determined from the exact solutions

{p(x,y,t)=1.1+cos(x)cos(y)sin(t),n(x,y,t)=1.1cos(x)cos(y)cos(t),𝐮(x,y,t)=(sin2(x)sin(2y)sin(t)sin(2x)sin2(y)cos(t)),P(x,y,t)=cos(x)cos(y)sin(t),\left\{\begin{aligned} p(x,y,t)&=1.1+\cos(x)\cos(y)\sin(t),\\ n(x,y,t)&=1.1-\cos(x)\cos(y)\cos(t),\\ \mathbf{u}(x,y,t)&=\begin{pmatrix}\sin^{2}(x)\sin(2y)\sin(t)\\ -\sin(2x)\sin^{2}(y)\cos(t)\end{pmatrix},\\ {\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}P(x,y,t)}&=\cos(x)\cos(y)\sin(t),\end{aligned}\right.

defined in the domain Ω×[0,T]=[0,2π]2×[0,T]\Omega\times[0,T]=[0,2\pi]^{2}\times[0,T]. We use N=64N=64 Fourier modes with different time steps Δt\Delta t. Using scheme (2.18)–(2.24), we compute the L2L^{2} errors between the numerical solutions and the exact solutions. The results are shown in Table 1, where first-order convergence rates are observed for the different variables.

Table 1. L2L^{2} errors and convergence orders for the numerical solutions of pp, ψ\psi, 𝐮\mathbf{u}, and ψ\psi
Δt\Delta t L2L^{2} error in pp Order L2L^{2} error in ψ\psi Order L2L^{2} error in 𝐮\mathbf{u} Order L2L^{2} error in ψ\psi Order
1×1021\times 10^{-2} 1.01×1021.01\times 10^{-2} 4.24×1034.24\times 10^{-3} 6.33×1046.33\times 10^{-4} 1.21×1021.21\times 10^{-2}
12×102\frac{1}{2}\times 10^{-2} 5.11×1035.11\times 10^{-3} 0.98 2.15×1032.15\times 10^{-3} 0.98 3.17×1043.17\times 10^{-4} 1.00 6.13×1036.13\times 10^{-3} 0.99
14×102\frac{1}{4}\times 10^{-2} 2.57×1032.57\times 10^{-3} 0.99 1.08×1031.08\times 10^{-3} 0.99 1.59×1041.59\times 10^{-4} 1.00 3.08×1033.08\times 10^{-3} 0.99
18×102\frac{1}{8}\times 10^{-2} 1.29×1031.29\times 10^{-3} 1.00 5.45×1045.45\times 10^{-4} 0.99 7.93×1057.93\times 10^{-5} 1.00 1.54×1031.54\times 10^{-3} 1.00
116×102\frac{1}{16}\times 10^{-2} 6.46×1046.46\times 10^{-4} 1.00 2.73×1042.73\times 10^{-4} 1.00 3.97×1053.97\times 10^{-5} 1.00 7.73×1047.73\times 10^{-4} 1.00
132×102\frac{1}{32}\times 10^{-2} 3.23×1043.23\times 10^{-4} 1.00 1.37×1041.37\times 10^{-4} 1.00 1.98×1051.98\times 10^{-5} 1.00 3.87×1043.87\times 10^{-4} 1.00

5.2. Property Test

We also perform numerical simulations to test the mass-conserving and positivity-preserving properties of our scheme. The positivity-preserving scheme is applied to solve the following PNP-NS system:

pt+(𝐮)p=(p+pψ),\displaystyle p_{t}+(\mathbf{u}\cdot\nabla)p=\nabla\cdot(\nabla p+p\nabla\psi),
nt(𝐮)n=(nnψ),\displaystyle n_{t}-(\mathbf{u}\cdot\nabla)n=\nabla\cdot(\nabla n-n\nabla\psi),
(5.1) εΔψ=pn,\displaystyle-\varepsilon\Delta\psi=p-n,
𝐮t+(𝐮)𝐮+PΔ𝐮=κψ(pn),\displaystyle\mathbf{u}_{t}+(\mathbf{u}\cdot\nabla)\mathbf{u}+\nabla P-\Delta\mathbf{u}=-\kappa\nabla\psi(p-n),
𝐮=0.\displaystyle\nabla\cdot\mathbf{u}=0.

We set the parameters in (5.2) to be ε=1\varepsilon=1 and κ=10000\kappa=10000, with the initial data given by

{p(x,y,0)=1+106tanh(2((x0.8π)2+(y0.8π)2(0.2π)2)),n(x,y,0)=1+106tanh(2((x1.2π)2+(y1.2π)2(0.2π)2)),𝐮(x,y,0)=(00).\left\{\begin{aligned} p(x,y,0)&=1+10^{-6}-\tanh\left(2\big{(}(x-0.8\pi)^{2}+(y-0.8\pi)^{2}-(0.2\pi)^{2}\big{)}\right),\\ n(x,y,0)&=1+10^{-6}-\tanh\left(2\big{(}(x-1.2\pi)^{2}+(y-1.2\pi)^{2}-(0.2\pi)^{2}\big{)}\right),\\ \mathbf{u}(x,y,0)&=\begin{pmatrix}0\\ 0\end{pmatrix}.\end{aligned}\right.

The initial condition indicates that the positive and negative ions accumulate in two regions centered at (0.8π,0.8π)(0.8\pi,0.8\pi) and (1.2π,1.2π)(1.2\pi,1.2\pi), respectively.

With time step Δt=104\Delta t=10^{-4}, in Figure 1, we plot the profiles of pnp-n and the velocity field 𝐮\mathbf{u} at times T=0.005T=0.005, 0.0250.025, 0.050.05, 0.0750.075, 0.10.1, and 11. We observe that the positive and negative ions move toward each other and drag the fluid along with them. Later, the outflowing fluid between them prevents the ions from approaching each other further and carries the ions toward the corners. At the end of the computation, the fluid becomes almost electro-neutral.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1. Snapshots of pnp-n and velocity field 𝐮\mathbf{u} at times T=0.005T=0.005, 0.0250.025, 0.050.05, 0.0750.075, 0.10.1, and 11.

We also examine the energy dissipation of the system in Figure 2(left), where the system energy is shown to be dissipative as we have proved. We plot the mass change for positive and negative ions in Figure 2(middle), showing that the mass of ions is preserved within machine precision. We also plot the minimum and maximum of (p,n)(p,n) in Figure 2(right), demonstrating that the ionic concentrations remain positive throughout the simulation.

Refer to caption
Refer to caption
Refer to caption
Figure 2. Left: Total energy of the PNP-NS system. Middle: Change of mass for (p,n)(p,n). Right: Lower and upper bounds of (p,n)(p,n).

6. Concluding Remarks

In this paper, we mainly consider numerical approximations for the PNP-NS system. Firstly, we give the results of unique solvability and regularity for the solution of PNP-NS system with suitable assumptions on initial conditions. To efficiently solve this coupled system, we propose a decoupled, mass-conserving, positivity-preserving and energy stable scheme which can also be unique solvable. Furthermore, we also carry out a rigorous error analysis for the fully discretized scheme, and derive optimal convergence results. The error analysis mainly depends on the LL^{\infty} bounds for the numerical solutions nn and pp, which are obtained by using a high-order asymptotic expansion for the PNP-NS system combing with a mathematical induction technique. We also present some numerical examples to validate the accuracy and stability of our decoupled scheme.

Appendix A Appendix

A.1. High order correction

Lemma A.1.

Let (p,n,𝐮)(p,n,{\bf u}) be the solution of the PNP-NS system (1.1)-(1.5) which satisfies the following properties:

  1. (1)

    The ionic concentrations are strictly positive

    p,nδ0>0,p,n\geq\delta_{0}>0,
  2. (2)

    The solution satisfies

    (t4p,t4n,t4𝐮)L(0,T;L2(Ω)),(t3p,t3n,t3𝐮)L(0,T;Hk+1(Ω))(k2),\begin{array}[]{ll}&(\partial_{t}^{4}p,\partial_{t}^{4}n,\partial_{t}^{4}{\bf u})\in L^{\infty}(0,T;L^{2}(\Omega)),(\partial_{t}^{3}p,\partial_{t}^{3}n,\partial_{t}^{3}{\bf u})\in L^{\infty}(0,T;H^{k+1}(\Omega))\ (k\geq 2),\end{array}

then we can construct correction functions (pΔt,i,nΔt,i,𝐮Δt,i,ϕΔt,i)(i=1,2)(p_{\Delta t,i},n_{\Delta t,i},{\bf u}_{\Delta t,i},\phi_{\Delta t,i})(i=1,2) depending only on (p,n,𝐮,ψ)(p,n,{\bf u},\psi) such that the supplementary fields (p˘,n˘,𝐮˘,ϕ˘,μ˘,ν˘,ψ˘)(\breve{p},\breve{n},\breve{{\bf u}},\breve{\phi},\breve{\mu},\breve{\nu},\breve{\psi}) (defined by (4.1)) has higher order consistency truncation error(as defined in (4.5)-(4.9)):

|τ˘pm+1(vN)|,|τ˘nm+1(vN)|,|τ˘𝐮m+1(vN)|C(Δt3+Nk)vNH1.\rvert\breve{\tau}^{m+1}_{p}(v_{N})\rvert,\rvert\breve{\tau}^{m+1}_{n}(v_{N})\rvert,\rvert\breve{\tau}^{m+1}_{{\bf u}}(v_{N})\rvert\leq C(\Delta t^{3}+N^{-k})\|v_{N}\|_{H^{1}}.

Moreover, with Δt,1N\Delta t,\frac{1}{N} chosen small enough, we have

  1. (1)

    The supplementary functions are strictly positive

    p˘,n˘δ0>0,\breve{p},\breve{n}\geq\delta_{0}^{*}>0,
  2. (2)

    The supplementary functions satisfy

    (p˘,n˘,𝐮˘)L(0,T,W1,).(\breve{p},\breve{n},\breve{{\bf u}})\in L^{\infty}(0,T,W^{1,\infty}).
Proof.

Let (pm,nm,𝐮m,ϕm)(p^{m},n^{m},{\bf u}^{m},\phi^{m}) be the L2L^{2}-orthogonal projection of continuous solution (p,n,𝐮,ϕ)(mΔt)(p,n,{\bf u},\phi)(m\Delta t) onto XN×XN×XN2×XNX_{N}\times X_{N}\times X_{N}^{2}\times X_{N}, as defined in (4). From Taylor expansion, the local truncation error may be written into two parts, time discretization error and spatial discretization error, we have

pm+1pmΔt,vNpm𝐮m,vN+pm(1+2Δtpm)μm+1,vN\displaystyle\langle\frac{p^{m+1}-p^{m}}{\Delta t},v_{N}\rangle-\langle p^{m}{\bf u}^{m},\nabla v_{N}\rangle+\langle p^{m}(1+2\Delta tp^{m})\nabla\mu^{m+1},\nabla v_{N}\rangle
(A.1) =Δtfp,1m+1+Δt2fp,2m+1+𝒪(Δt3)+gpm+1,vN,\displaystyle\qquad=-\langle\Delta tf^{m+1}_{p,1}+\Delta t^{2}f^{m+1}_{p,2}+\mathcal{O}(\Delta t^{3})+g^{m+1}_{p},v_{N}\rangle,
nm+1nmΔt,vNnm𝐮m,vN+nm(1+2Δtnm)νm+1,vN\displaystyle\langle\frac{n^{m+1}-n^{m}}{\Delta t},v_{N}\rangle-\langle n^{m}{\bf u}^{m},\nabla v_{N}\rangle+\langle n^{m}(1+2\Delta tn^{m})\nabla\nu^{m+1},\nabla v_{N}\rangle
(A.2) =Δtfn,1m+1+Δt2fn,2m+1+𝒪(Δt3)+gnm+1,vN,\displaystyle\qquad=-\langle\Delta tf^{m+1}_{n,1}+\Delta t^{2}f^{m+1}_{n,2}+\mathcal{O}(\Delta t^{3})+g^{m+1}_{n},v_{N}\rangle,
RN𝐮m+1𝐮mΔt,vN+(𝐮m)RN𝐮m+1,vN+RN𝐮m+1,vN+ϕm,vN\displaystyle\langle\frac{R_{N}{\bf u}^{m+1}-{\bf u}^{m}}{\Delta t},v_{N}\rangle+\langle({\bf u}^{m}\cdot\nabla)R_{N}{\bf u}^{m+1},v_{N}\rangle+\langle\nabla R_{N}{\bf u}^{m+1},\nabla v_{N}\rangle+\langle\nabla\phi^{m},v_{N}\rangle
(A.3) +pmμm+1+nmνm+1,vN=Δtf𝐮,1m+1+Δt2f𝐮,2m+1+𝒪(Δt3)+g𝐮m+1,vN,\displaystyle\quad+\langle p^{m}\nabla\mu^{m+1}+n^{m}\nabla\nu^{m+1},v_{N}\rangle=-\langle\Delta tf^{m+1}_{{\bf u},1}+\Delta t^{2}f^{m+1}_{{\bf u},2}+\mathcal{O}(\Delta t^{3})+g^{m+1}_{{\bf u}},v_{N}\rangle,

where (fp,im+1,fn,im+1,f𝐮,im+1)i=1,2(f_{p,i}^{m+1},f_{n,i}^{m+1},f_{{\bf u},i}^{m+1})_{i=1,2} are the temporal part of truncation error and (gpm+1,gnm+1,g𝐮m+1)(g_{p}^{m+1},g_{n}^{m+1},g_{{\bf u}}^{m+1}) are the spatial part of the truncation error. From Taylor expansion, we can compute

fp,1\displaystyle f_{p,1} =122t2p+(t(p𝐮))((tp2p2)(lnp+ψ)),\displaystyle=\frac{1}{2}\frac{\partial^{2}}{\partial t^{2}}p+\nabla\cdot(\partial_{t}(p{\bf u}))-\nabla\cdot((\partial_{t}p-2p^{2})\nabla(\ln{p}+\psi)),
fn,1\displaystyle f_{n,1} =122t2n+(t(n𝐮))((tn2n2)(lnnψ)),\displaystyle=\frac{1}{2}\frac{\partial^{2}}{\partial t^{2}}n+\nabla\cdot(\partial_{t}(n{\bf u}))-\nabla\cdot((\partial_{t}n-2n^{2})\nabla(\ln{n}-\psi)),
f𝐮,1\displaystyle f_{{\bf u},1} =122t2𝐮+t𝐮𝐮+tp(lnp+ψ)+tn(lnnψ);\displaystyle=\frac{1}{2}\frac{\partial^{2}}{\partial t^{2}}{\bf u}+\partial_{t}{\bf u}\cdot\nabla{\bf u}+\partial_{t}p\nabla(\ln{p}+\psi)+\partial_{t}n\nabla(\ln{n}-\psi);
fp,2\displaystyle f_{p,2} =163t3p12(2t2(p𝐮))+((122t2p4ptp)(lnp+ψ))\displaystyle=-\frac{1}{6}\frac{\partial^{3}}{\partial t^{3}}p-\frac{1}{2}\nabla\cdot(\frac{\partial^{2}}{\partial t^{2}}(p{\bf u}))+\nabla\cdot\big{(}(\frac{1}{2}\frac{\partial^{2}}{\partial t^{2}}p-4p\partial_{t}p)\nabla(\ln{p}+\psi)\big{)}
fn,2\displaystyle f_{n,2} =163t3n12(2t2(n𝐮))+((122t2n4ntn)(lnnψ))\displaystyle=-\frac{1}{6}\frac{\partial^{3}}{\partial t^{3}}n-\frac{1}{2}\nabla\cdot(\frac{\partial^{2}}{\partial t^{2}}(n{\bf u}))+\nabla\cdot\big{(}(\frac{1}{2}\frac{\partial^{2}}{\partial t^{2}}n-4n\partial_{t}n)\nabla(\ln{n}-\psi)\big{)}
f𝐮,2\displaystyle f_{{\bf u},2} =163t3𝐮122t2𝐮𝐮(𝐮)tϕΔ(tϕ)\displaystyle=-\frac{1}{6}\frac{\partial^{3}}{\partial t^{3}}{\bf u}-\frac{1}{2}\frac{\partial^{2}}{\partial t^{2}}{\bf u}\cdot\nabla{\bf u}-({\bf u}\cdot\nabla)\nabla\partial_{t}\phi-\Delta(\nabla\partial_{t}\phi)
122t2p(lnp+ψ)122t2n(lnnψ)\displaystyle\quad-\frac{1}{2}\frac{\partial^{2}}{\partial t^{2}}p\nabla(\ln{p}+\psi)-\frac{1}{2}\frac{\partial^{2}}{\partial t^{2}}n\nabla(\ln{n}-\psi)

and

gpm+1,vN\displaystyle\langle g_{p}^{m+1},v_{N}\rangle Nk(ptHk+p𝐮Hk+p(lnp+ψ)Hk)((m+1)Δt)vNH1,\displaystyle\lesssim N^{-k}(\|p_{t}\|_{H^{k}}+\|p{\bf u}\|_{H^{k}}+\|p\nabla(\ln{p}+\psi)\|_{H^{k}})\big{(}(m+1)\Delta t\big{)}\|v_{N}\|_{H^{1}},
gnm+1,vN\displaystyle\langle g_{n}^{m+1},v_{N}\rangle Nk(ntHk+n𝐮Hk+n(lnnψ)Hk)((m+1)Δt)vNH1,\displaystyle\lesssim N^{-k}(\|n_{t}\|_{H^{k}}+\|n{\bf u}\|_{H^{k}}+\|n\nabla(\ln{n}-\psi)\|_{H^{k}})\big{(}(m+1)\Delta t\big{)}\|v_{N}\|_{H^{1}},
g𝐮m+1,vN\displaystyle\langle g_{{\bf u}}^{m+1},v_{N}\rangle Nk(𝐮tHk+(𝐮)𝐮Hk+𝐮Hk+ψHk\displaystyle\lesssim N^{-k}\big{(}\|{\bf u}_{t}\|_{H^{k}}+\|({\bf u}\cdot\nabla){\bf u}\|_{H^{k}}+\|\nabla{\bf u}\|_{H^{k}}+\|\nabla\psi\|_{H^{k}}
+p(lnp+ψ)+n(lnnψHk)((m+1)Δt)vNH1.\displaystyle\quad\quad\quad+\|p\nabla(\ln{p}+\psi)+n\nabla(\ln{n}-\psi\|_{H^{k}}\big{)}\big{(}(m+1)\Delta t\big{)}\|v_{N}\|_{H^{1}}.

Applying the regularity assumption (2), we have

(A.4) t2fp,1L(0,T;L2(Ω)),tfp,1L(0,T;Hk+1(Ω)),t2fn,1L(0,T;L2(Ω)),tfn,1L(0,T;Hk+1(Ω)),t2f𝐮,1L(0,T;L2(Ω)),tf𝐮,1L(0,T;Hk+1(Ω)),\begin{split}&\partial_{t}^{2}f_{p,1}\in L^{\infty}(0,T;L^{2}(\Omega)),\ \partial_{t}f_{p,1}\in L^{\infty}(0,T;H^{k+1}(\Omega)),\\ &\partial_{t}^{2}f_{n,1}\in L^{\infty}(0,T;L^{2}(\Omega)),\ \partial_{t}f_{n,1}\in L^{\infty}(0,T;H^{k+1}(\Omega)),\\ &\partial_{t}^{2}f_{{\bf u},1}\in L^{\infty}(0,T;L^{2}(\Omega)),\ \partial_{t}f_{{\bf u},1}\in L^{\infty}(0,T;H^{k+1}(\Omega)),\end{split}
gp,1m+1,vN,gn,1m+1,vN,g𝐮,1m+1,vNNkvNH1.\langle g^{m+1}_{p,1},v_{N}\rangle,\langle g^{m+1}_{n,1},v_{N}\rangle,\langle g^{m+1}_{{\bf u},1},v_{N}\rangle\lesssim N^{-k}\|v_{N}\|_{H^{1}}.

With those (fp,1,fn,1,f𝐮,1)(f_{p,1},f_{n,1},f_{{\bf u},1}), we construct and solve the leading order temporal correction function (pΔt,1,nΔt,1,𝐮Δt,1,ϕΔt,1)(p_{\Delta t,1},n_{\Delta t,1},{\bf u}_{\Delta t,1},\phi_{\Delta t,1}) from the following equation:

tpΔt,1\displaystyle\partial_{t}p_{\Delta t,1} =(p(pΔt,1p+ψΔt,1)+pΔt,1(lnp+ψ))\displaystyle=\nabla\cdot(p\nabla(\frac{p_{\Delta t,1}}{p}+\psi_{\Delta t,1})+p_{\Delta t,1}\nabla(\ln{p}+\psi))
(A.5) (pΔt,1𝐮+p𝐮Δt,1)fp,1,\displaystyle\quad-\nabla\cdot(p_{\Delta t,1}{\bf u}+p{\bf u}_{\Delta t,1})-f_{p,1},
tnΔt,1\displaystyle\partial_{t}n_{\Delta t,1} =(n(nΔt,1nψΔt,1)+nΔt,1(lnnψ))\displaystyle=\nabla\cdot(n\nabla(\frac{n_{\Delta t,1}}{n}-\psi_{\Delta t,1})+n_{\Delta t,1}\nabla(\ln{n}-\psi))
(A.6) (nΔt,1𝐮+n𝐮Δt,1)fn,1,\displaystyle\quad-\nabla\cdot(n_{\Delta t,1}{\bf u}+n{\bf u}_{\Delta t,1})-f_{n,1},
(A.7) ΔψΔt,1\displaystyle-\Delta\psi_{\Delta t,1} =pΔt,1nΔt,1,\displaystyle=p_{\Delta t,1}-n_{\Delta t,1},
t𝐮Δt,1\displaystyle\partial_{t}{\bf u}_{\Delta t,1} =Δ𝐮Δt,1ϕΔt,1(𝐮)𝐮Δt,1(𝐮Δt,1)𝐮\displaystyle=\Delta{\bf u}_{\Delta t,1}-\nabla\phi_{\Delta t,1}-({\bf u}\cdot\nabla){\bf u}_{\Delta t,1}-({\bf u}_{\Delta t,1}\cdot\nabla){\bf u}
p(pΔt,1p+ψΔt,1)pΔt,1(lnp+ψ)\displaystyle\qquad-p\nabla(\frac{p_{\Delta t,1}}{p}+\psi_{\Delta t,1})-p_{\Delta t,1}\nabla(\ln{p}+\psi)
(A.8) n(nΔt,1nψΔt,1)nΔt,1(lnnψ)f𝐮,1,\displaystyle\qquad-n\nabla(\frac{n_{\Delta t,1}}{n}-\psi_{\Delta t,1})-n_{\Delta t,1}\nabla(\ln{n}-\psi)-f_{{\bf u},1},
(A.9) 𝐮Δt,1\displaystyle\nabla\cdot{\bf u}_{\Delta t,1} =0,\displaystyle=0,

subject to the periodic boundary condition and zero initial condition. The PDE system (A.5)-(A.9) is very similar to the PNP-NS system (1.1)-(1.5), and the existence of solution could be established similarly. Moreover, given the regularity of (p,n,𝐮,ϕ)(p,n,{\bf u},\phi) and (fp,1,fn,1,f𝐮,1)(f_{p,1},f_{n,1},f_{{\bf u},1}) in (A.4), the solution satisfies

(A.10) (t3pΔt,1,t3nΔt,1,t3𝐮Δt,1)L(0,T,L2(Ω)),(t2pΔt,1,t2nΔt,1,t2𝐮Δt,1)L(0,T,Hk+1(Ω)).(\partial_{t}^{3}p_{\Delta t,1},\partial_{t}^{3}n_{\Delta t,1},\partial_{t}^{3}{\bf u}_{\Delta t,1})\in L^{\infty}(0,T,L^{2}(\Omega)),\ (\partial_{t}^{2}p_{\Delta t,1},\partial_{t}^{2}n_{\Delta t,1},\partial_{t}^{2}{\bf u}_{\Delta t,1})\in L^{\infty}(0,T,H^{k+1}(\Omega)).

The discretization of the above system implies that

fp,1m+1,vN\displaystyle\langle-f^{m+1}_{p,1},v_{N}\rangle =pΔt,1m+1pΔt,1mΔt,vNpΔt,1m𝐮m+pm𝐮Δt,1m,vN\displaystyle=\langle\frac{p^{m+1}_{\Delta t,1}-p^{m}_{\Delta t,1}}{\Delta t},v_{N}\rangle-\langle p^{m}_{\Delta t,1}{\bf u}^{m}+p^{m}{\bf u}^{m}_{\Delta t,1},\nabla v_{N}\rangle
+pm(1+2Δtpm)(pΔt,1m+1pm+1+ψΔt,1m+1)\displaystyle\quad+\langle p^{m}(1+2\Delta tp^{m})\nabla(\frac{p^{m+1}_{\Delta t,1}}{p^{m+1}}+\psi^{m+1}_{\Delta t,1})
+pΔt,1m(1+2Δtpm)(lnpm+1+ψm+1),vN\displaystyle\quad\quad+p^{m}_{\Delta t,1}(1+2\Delta tp^{m})\nabla(\ln{p^{m+1}+\psi^{m+1}}),\nabla v_{N}\rangle
(A.11) ΔtfpΔt,1,1m+1+gpΔt,1m+1+𝒪(Δt2),vN,\displaystyle\quad-\langle\Delta tf_{p_{\Delta t,1},1}^{m+1}+g_{p_{\Delta t,1}}^{m+1}+\mathcal{O}(\Delta t^{2}),v_{N}\rangle,
fn,1m+1,vN\displaystyle\langle-f^{m+1}_{n,1},v_{N}\rangle =nΔt,1m+1nΔt,1mΔt,vNnΔt,1m𝐮m+nm𝐮Δt,1m,vN\displaystyle=\langle\frac{n^{m+1}_{\Delta t,1}-n^{m}_{\Delta t,1}}{\Delta t},v_{N}\rangle-\langle n^{m}_{\Delta t,1}{\bf u}^{m}+n^{m}{\bf u}^{m}_{\Delta t,1},\nabla v_{N}\rangle
+nm(1+2Δtnm)(nΔt,1m+1nm+1ψΔt,1m+1)\displaystyle\quad+\langle n^{m}(1+2\Delta tn^{m})\nabla(\frac{n^{m+1}_{\Delta t,1}}{n^{m+1}}-\psi^{m+1}_{\Delta t,1})
+nΔt,1m(1+2Δtnm)(lnnm+1ψm+1),vN\displaystyle\quad\quad+n^{m}_{\Delta t,1}(1+2\Delta tn^{m})\nabla(\ln{n^{m+1}-\psi^{m+1}}),\nabla v_{N}\rangle
(A.12) ΔtfnΔt,1,1m+1+gnΔt,1m+1+𝒪(Δt2),vN,\displaystyle\quad-\langle\Delta tf_{n_{\Delta t,1},1}^{m+1}+g_{n_{\Delta t,1}}^{m+1}+\mathcal{O}(\Delta t^{2}),v_{N}\rangle,
f𝐮,1m+1,vN\displaystyle\langle-f^{m+1}_{{\bf u},1},v_{N}\rangle =RN𝐮Δt,1m+1𝐮Δt,1mΔt,vN+RN𝐮Δt,1m+1,vN+ϕΔt,1m,vN\displaystyle=\langle\frac{R_{N}{\bf u}^{m+1}_{\Delta t,1}-{\bf u}^{m}_{\Delta t,1}}{\Delta t},v_{N}\rangle+\langle\nabla R_{N}{\bf u}^{m+1}_{\Delta t,1},\nabla v_{N}\rangle+\langle\nabla\phi^{m}_{\Delta t,1},v_{N}\rangle
+(𝐮m)RN𝐮Δt,1m+1+(𝐮Δt,1m)RN𝐮m+1,vN\displaystyle\quad+\langle({\bf u}^{m}\cdot\nabla)R_{N}{\bf u}^{m+1}_{\Delta t,1}+({\bf u}^{m}_{\Delta t,1}\cdot\nabla)R_{N}{\bf u}^{m+1},v_{N}\rangle
+pm(pΔt,1m+1pm+1+ψΔt,1m+1)+pΔt,1m(lnpm+1+ψm+1),vN\displaystyle\quad+\langle p^{m}\nabla(\frac{p^{m+1}_{\Delta t,1}}{p^{m+1}}+\psi^{m+1}_{\Delta t,1})+p^{m}_{\Delta t,1}\nabla(\ln{p^{m+1}}+\psi^{m+1}),v_{N}\rangle
+nm(nΔt,1m+1nm+1ψΔt,1m+1)+nΔt,1m(lnnm+1ψm+1),vN\displaystyle\quad+\langle n^{m}\nabla(\frac{n^{m+1}_{\Delta t,1}}{n^{m+1}}-\psi^{m+1}_{\Delta t,1})+n^{m}_{\Delta t,1}\nabla(\ln{n^{m+1}}-\psi^{m+1}),v_{N}\rangle
(A.13) Δtf𝐮Δt,1,1m+1+g𝐮Δt,1m+1+𝒪(Δt2),vN,\displaystyle\quad-\langle\Delta tf_{{\bf u}_{\Delta t,1},1}^{m+1}+g_{{\bf u}_{\Delta t,1}}^{m+1}+\mathcal{O}(\Delta t^{2}),v_{N}\rangle,
(A.14) ψΔt,1m,vN\displaystyle\langle\nabla\psi^{m}_{\Delta t,1},\nabla v_{N} =pΔt,1mnΔt,1m,vN,\displaystyle\rangle=\langle p^{m}_{\Delta t,1}-n^{m}_{\Delta t,1},v_{N}\rangle,
(A.15) 𝐮Δt,1m,vN\displaystyle\langle{\bf u}^{m}_{\Delta t,1},\nabla v_{N} =0.\displaystyle\rangle=0.

where (fpΔt,1,1,fnΔt,1,1,f𝐮Δt,1,1)(f_{p_{\Delta t,1},1},f_{n_{\Delta t,1},1},f_{{\bf u}_{\Delta t,1},1}) and (gpΔt,1,gnΔt,1,g𝐮Δt,1)(g_{p_{\Delta t,1}},g_{n_{\Delta t,1}},g_{{\bf u}_{\Delta t,1}}) are the temporal part and spatial part of the truncation error, from Taylor expansion, we have

fpΔt,1,1\displaystyle f_{p_{\Delta t,1},1} =122t2pΔt,1+(t(pΔt,1𝐮+p𝐮Δt,1))((tp2p2)(pΔt,1p+ψΔt,1))\displaystyle=\frac{1}{2}\frac{\partial^{2}}{\partial t^{2}}p_{\Delta t,1}+\nabla\cdot\big{(}\partial_{t}(p_{\Delta t,1}{\bf u}+p{\bf u}_{\Delta t,1})\big{)}-\nabla\cdot\big{(}(\partial_{t}p-2p^{2})\nabla(\frac{p_{\Delta t,1}}{p}+\psi_{\Delta t,1})\big{)}
((tp4pΔt,1p)(lnp+ψ))\displaystyle\quad-\nabla\cdot\big{(}(\partial_{t}p-4p_{\Delta t,1}p)\nabla(\ln{p}+\psi)\big{)}
fnΔt,1,1\displaystyle f_{n_{\Delta t,1},1} =122t2nΔt,1+(t(nΔt,1𝐮+n𝐮Δt,1))((tn2n2)(nΔt,1nψΔt,1))\displaystyle=\frac{1}{2}\frac{\partial^{2}}{\partial t^{2}}n_{\Delta t,1}+\nabla\cdot\big{(}\partial_{t}(n_{\Delta t,1}{\bf u}+n{\bf u}_{\Delta t,1})\big{)}-\nabla\cdot\big{(}(\partial_{t}n-2n^{2})\nabla(\frac{n_{\Delta t,1}}{n}-\psi_{\Delta t,1})\big{)}
((tn4nΔt,1n)(lnnψ))\displaystyle\quad-\nabla\cdot\big{(}(\partial_{t}n-4n_{\Delta t,1}n)\nabla(\ln{n}-\psi)\big{)}
f𝐮Δt,1,1\displaystyle f_{{\bf u}_{\Delta t,1},1} =122t2𝐮Δt,1+(t𝐮)𝐮Δt,1+(t𝐮Δt,1)𝐮\displaystyle=\frac{1}{2}\frac{\partial^{2}}{\partial t^{2}}{\bf u}_{\Delta t,1}+(\partial_{t}{\bf u}\cdot\nabla){\bf u}_{\Delta t,1}+(\partial_{t}{\bf u}_{\Delta t,1}\cdot\nabla){\bf u}
+tp(pΔt,1p+ψΔt,1)+tpΔt,1(lnp+ψ)\displaystyle\quad+\partial_{t}p\nabla(\frac{p_{\Delta t,1}}{p}+\psi_{\Delta t,1})+\partial_{t}p_{\Delta t,1}\nabla(\ln{p+\psi})
+tn(nΔt,1nψΔt,1)+tnΔt,1(lnnψ)\displaystyle\quad+\partial_{t}n\nabla(\frac{n_{\Delta t,1}}{n}-\psi_{\Delta t,1})+\partial_{t}n_{\Delta t,1}\nabla(\ln{n-\psi})

and

gp,Δt,1m+1,vNNk(tpΔt,1LtHk+pΔt,1LtHk+1+pψΔt,1LtHk+pΔt,1pLtHk+fp,1LtHk)vNH1,gn,Δt,1m+1,vNNk(tnΔt,1LtHk+nΔt,1LtHk+1+nψΔt,1LtHk+pΔt,1pLtHk+fp,1LtHk)vNH1,g𝐮,Δt,1m+1,vNNk(t𝐮Δt,1LtHk+𝐮Δt,1LtHk+ψΔt,1LtHk+(𝐮Δt,1)𝐮LtHk+(𝐮)𝐮Δt,1LtHk+pψΔt,1Hk+pΔt,1ψΔt,1LtHk+nψΔt,1LtHk+nΔt,1ψΔt,1LtHk+f𝐮,1LtHk)vNH1.\begin{array}[]{ll}\langle g_{p,\Delta t,1}^{m+1},v_{N}\rangle&\lesssim N^{-k}\big{(}\|\partial_{t}p_{\Delta t,1}\|_{L^{\infty}_{t}H^{k}}+\|p_{\Delta t,1}\|_{L^{\infty}_{t}H^{k+1}}+\|p\nabla\psi_{\Delta t,1}\|_{L^{\infty}_{t}H^{k}}\vskip 3.00003pt\\ &\quad+\|p_{\Delta t,1}\nabla p\|_{L^{\infty}_{t}H^{k}}+\|f_{p,1}\|_{L^{\infty}_{t}H^{k}}\big{)}\|v_{N}\|_{H^{1}}\vskip 5.0pt,\\ \langle g_{n,\Delta t,1}^{m+1},v_{N}\rangle&\lesssim N^{-k}\big{(}\|\partial_{t}n_{\Delta t,1}\|_{L^{\infty}_{t}H^{k}}+\|n_{\Delta t,1}\|_{L^{\infty}_{t}H^{k+1}}+\|n\nabla\psi_{\Delta t,1}\|_{L^{\infty}_{t}H^{k}}\vskip 3.00003pt\\ &\quad+\|p_{\Delta t,1}\nabla p\|_{L^{\infty}_{t}H^{k}}+\|f_{p,1}\|_{L^{\infty}_{t}H^{k}}\big{)}\|v_{N}\|_{H^{1}}\vskip 5.0pt,\\ \langle g_{{\bf u},\Delta t,1}^{m+1},v_{N}\rangle&\lesssim N^{-k}\big{(}\|\partial_{t}{\bf u}_{\Delta t,1}\|_{L^{\infty}_{t}H^{k}}+\|\nabla{\bf u}_{\Delta t,1}\|_{L^{\infty}_{t}H^{k}}+\|\nabla\psi_{\Delta t,1}\|_{L^{\infty}_{t}H^{k}}\vskip 3.00003pt\\ &\quad+\|({\bf u}_{\Delta t,1}\cdot\nabla){\bf u}\|_{L^{\infty}_{t}H^{k}}+\|({\bf u}\cdot\nabla){\bf u}_{\Delta t,1}\|_{L^{\infty}_{t}H^{k}}+\|p\nabla\psi_{\Delta t,1}\|_{H^{k}}+\|p_{\Delta t,1}\nabla\psi_{\Delta t,1}\|_{L^{\infty}_{t}H^{k}}\vskip 3.00003pt\\ &\quad+\|n\nabla\psi_{\Delta t,1}\|_{L^{\infty}_{t}H^{k}}+\|n_{\Delta t,1}\nabla\psi_{\Delta t,1}\|_{L^{\infty}_{t}H^{k}}+\|f_{{\bf u},1}\|_{L^{\infty}_{t}H^{k}}\big{)}\|v_{N}\|_{H^{1}}.\end{array}

From the regularity result in (A.4) and (A.10), we have

gp,2m+1,vN,gn,2m+1,vN,g𝐮,2m+1,vNNkvNH1.\langle g^{m+1}_{p,2},v_{N}\rangle,\langle g^{m+1}_{n,2},v_{N}\rangle,\langle g^{m+1}_{{\bf u},2},v_{N}\rangle\lesssim N^{-k}\|v_{N}\|_{H^{1}}.

Combining (A.1)-(A.3) and (A.11)-(A.13) leads to the second order temporal local truncation error for p˘1=ΠN(p+ΔtpΔt,1),n˘1=ΠN(n+ΔtnΔt,1),𝐮˘1=ΠN(𝐮+Δt𝐮Δt,1),ϕ˘1=ΠN(ϕ+ΔtϕΔt,1)\breve{p}_{1}=\Pi_{N}(p+\Delta tp_{\Delta t,1}),\ \breve{n}_{1}=\Pi_{N}(n+\Delta tn_{\Delta t,1}),\ \breve{{\bf u}}_{1}=\Pi_{N}({\bf u}+\Delta t{\bf u}_{\Delta t,1}),\ \breve{\phi}_{1}=\Pi_{N}(\phi+\Delta t\phi_{\Delta t,1}):

p˘1m+1p˘1mΔt,vNp˘1m𝐮˘1m,vN+p˘1m(1+2Δtp˘1m)μ˘1m+1,vN\displaystyle\langle\frac{\breve{p}_{1}^{m+1}-\breve{p}_{1}^{m}}{\Delta t},v_{N}\rangle-\langle\breve{p}_{1}^{m}\breve{{\bf u}}_{1}^{m},\nabla v_{N}\rangle+\langle\breve{p}_{1}^{m}(1+2\Delta t\breve{p}_{1}^{m})\nabla\breve{\mu}_{1}^{m+1},\nabla v_{N}\rangle
(A.16) =Δt2fp˘1,2m+1+𝒪(Δt3)+𝒪(Nk),vN,\displaystyle\qquad=-\langle\Delta t^{2}f^{m+1}_{\breve{p}_{1},2}+\mathcal{O}(\Delta t^{3})+\mathcal{O}(N^{-k}),v_{N}\rangle,
n˘1m+1n˘1mΔt,vNn˘1m𝐮˘1m,vN+n˘1m(1+2Δtn˘1m)ν˘1m+1,vN\displaystyle\langle\frac{\breve{n}_{1}^{m+1}-\breve{n}_{1}^{m}}{\Delta t},v_{N}\rangle-\langle\breve{n}_{1}^{m}\breve{{\bf u}}_{1}^{m},\nabla v_{N}\rangle+\langle\breve{n}_{1}^{m}(1+2\Delta t\breve{n}_{1}^{m})\nabla\breve{\nu}_{1}^{m+1},\nabla v_{N}\rangle
(A.17) =Δt2fn˘1,2m+1+𝒪(Δt3)+𝒪(Nk),vN,\displaystyle\qquad=-\langle\Delta t^{2}f^{m+1}_{\breve{n}_{1},2}+\mathcal{O}(\Delta t^{3})+\mathcal{O}(N^{-k}),v_{N}\rangle,
RN𝐮˘1m+1𝐮˘1mΔt,vN+(𝐮˘1m)RN𝐮˘1m+1,vN+RN𝐮˘1m+1,vN+ϕ˘1m,vN\displaystyle\langle\frac{R_{N}\breve{{\bf u}}_{1}^{m+1}-\breve{{\bf u}}_{1}^{m}}{\Delta t},v_{N}\rangle+\langle(\breve{{\bf u}}_{1}^{m}\cdot\nabla)R_{N}\breve{{\bf u}}_{1}^{m+1},v_{N}\rangle+\langle\nabla R_{N}\breve{{\bf u}}_{1}^{m+1},\nabla v_{N}\rangle+\langle\nabla\breve{\phi}_{1}^{m},v_{N}\rangle
(A.18) +p˘1mμ˘1m+1+n˘1mν˘1m+1,vN=Δt2f𝐮˘1,2m+1+𝒪(Δt3)+𝒪(Nk),vN,\displaystyle+\langle\breve{p}_{1}^{m}\nabla\breve{\mu}_{1}^{m+1}+\breve{n}_{1}^{m}\nabla\breve{\nu}_{1}^{m+1},v_{N}\rangle=-\langle\Delta t^{2}f^{m+1}_{\breve{{\bf u}}_{1},2}+\mathcal{O}(\Delta t^{3})+\mathcal{O}(N^{-k}),v_{N}\rangle,

where

ψ˘1=ΠN[(Δ)1(p˘1n˘1)],\displaystyle\breve{\psi}_{1}=\Pi_{N}[(-\Delta)^{-1}(\breve{p}_{1}-\breve{n}_{1})],
μ˘1=ΠN(lnp˘1+ψ˘1),ν˘1=ΠN(lnn˘1ψ˘1),\displaystyle\breve{\mu}_{1}=\Pi_{N}(\ln{\breve{p}_{1}}+\breve{\psi}_{1}),\ \breve{\nu}_{1}=\Pi_{N}(\ln{\breve{n}_{1}}-\breve{\psi}_{1}),

and

fp˘1,2\displaystyle f_{\breve{p}_{1},2} =fp,2+fpΔt,1,1+(pΔt,1𝐮Δt,1)(2ppΔt,1(lnp+ψ))\displaystyle=f_{p,2}+f_{p_{\Delta t,1},1}+\nabla\cdot(p_{\Delta t,1}{\bf u}_{\Delta t,1})-\nabla\cdot(2pp_{\Delta t,1}\nabla(\ln{p}+\psi))
(p(pΔt,1p)2)+(pΔt,1(pΔt,1p+ψ)),\displaystyle\quad-\nabla\cdot(p\nabla(\frac{p_{\Delta t,1}}{p})^{2})+\nabla\cdot(p_{\Delta t,1}\nabla(\frac{p_{\Delta t,1}}{p}+\psi)),
fn˘1,2\displaystyle f_{\breve{n}_{1},2} =fn,2+fnΔt,1,1+(nΔt,1𝐮Δt,1)(2nnΔt,1(lnnψ))\displaystyle=f_{n,2}+f_{n_{\Delta t,1},1}+\nabla\cdot(n_{\Delta t,1}{\bf u}_{\Delta t,1})-\nabla\cdot(2nn_{\Delta t,1}\nabla(\ln{n}-\psi))
(n(nΔt,1n)2)(nΔt,1(nΔt,1nψ)),\displaystyle\quad-\nabla\cdot(n\nabla(\frac{n_{\Delta t,1}}{n})^{2})-\nabla\cdot(n_{\Delta t,1}\nabla(\frac{n_{\Delta t,1}}{n}-\psi)),
f𝐮˘1,2\displaystyle f_{\breve{{\bf u}}_{1},2} =f𝐮,2+f𝐮Δt,1,1+(𝐮Δt,1)𝐮Δt,1\displaystyle=f_{{\bf u},2}+f_{{\bf u}_{\Delta t,1},1}+({\bf u}_{\Delta t,1}\cdot\nabla){\bf u}_{\Delta t,1}
+pΔt,1(pΔt,1p+ψΔt,1)p((pΔt,1p)2)\displaystyle\quad+p_{\Delta t,1}\nabla(\frac{p_{\Delta t,1}}{p}+\psi_{\Delta t,1})-p\nabla((\frac{p_{\Delta t,1}}{p})^{2})
+nΔt,1(nΔt,1nψΔt,1)n((nΔt,1n)2).\displaystyle\quad+n_{\Delta t,1}\nabla(\frac{n_{\Delta t,1}}{n}-\psi_{\Delta t,1})-n\nabla((\frac{n_{\Delta t,1}}{n})^{2}).

Since (pΔt,1,nΔt,1)(p_{\Delta t,1},n_{\Delta t,1}) are bounded, we may choose Δt,1N\Delta t,\frac{1}{N} so small that p˘1,n˘1>δ02>0\breve{p}_{1},\breve{n}_{1}>\frac{\delta_{0}}{2}>0. And (fp˘1,2m+1,fn˘1,2m+1,f𝐮˘1,2m+1)(f_{\breve{p}_{1},2}^{m+1},f_{\breve{n}_{1},2}^{m+1},f_{\breve{{\bf u}}_{1},2}^{m+1}) are the temporal projection of functions (fp˘1,2,fn˘1,2,f𝐮˘1,2)(f_{\breve{p}_{1},2},f_{\breve{n}_{1},2},f_{\breve{{\bf u}}_{1},2}) onto XN×XN×XN2X_{N}\times X_{N}\times X_{N}^{2}. From (2) (A.10) we have

(tfp˘1,2,tfn˘1,2,tf𝐮˘1,2)L(0,T;L2(Ω)),(fp˘1,2,fn˘1,2,f𝐮˘1,2)L(0,T;Hk+1(Ω)).(\partial_{t}f_{\breve{p}_{1},2},\partial_{t}f_{\breve{n}_{1},2},\partial_{t}f_{\breve{{\bf u}}_{1},2})\in L^{\infty}(0,T;L^{2}(\Omega)),\ (f_{\breve{p}_{1},2},f_{\breve{n}_{1},2},f_{\breve{{\bf u}}_{1},2})\in L^{\infty}(0,T;H^{k+1}(\Omega)).

Similarly, the next order temporal correction function (pΔt,2,nΔt,2,𝐮Δt,2,ϕΔt,2)(p_{\Delta t,2},n_{\Delta t,2},{\bf u}_{\Delta t,2},\phi_{\Delta t,2}) is given by the following system:

tpΔt,2=(p˘1(pΔt,2p˘1+ψΔt,2)+pΔt,2(lnp˘1+ψ˘1))\displaystyle\partial_{t}p_{\Delta t,2}=\nabla\cdot(\breve{p}_{1}\nabla(\frac{p_{\Delta t,2}}{\breve{p}_{1}}+\psi_{\Delta t,2})+p_{\Delta t,2}\nabla(\ln{\breve{p}_{1}}+\breve{\psi}_{1}))
(A.19) (pΔt,2𝐮˘1+p˘1𝐮Δt,2)fp˘1,2,\displaystyle\qquad-\nabla\cdot(p_{\Delta t,2}\breve{{\bf u}}_{1}+\breve{p}_{1}{\bf u}_{\Delta t,2})-f_{\breve{p}_{1},2},
tnΔt,2=(n˘1(nΔt,2n˘1ψΔt,2)+nΔt,2(lnn˘1ψ˘1))\displaystyle\partial_{t}n_{\Delta t,2}=\nabla\cdot(\breve{n}_{1}\nabla(\frac{n_{\Delta t,2}}{\breve{n}_{1}}-\psi_{\Delta t,2})+n_{\Delta t,2}\nabla(\ln{\breve{n}_{1}}-\breve{\psi}_{1}))
(A.20) (nΔt,2𝐮˘1+n˘1𝐮Δt,2)fn˘1,2,\displaystyle\qquad-\nabla\cdot(n_{\Delta t,2}\breve{{\bf u}}_{1}+\breve{n}_{1}{\bf u}_{\Delta t,2})-f_{\breve{n}_{1},2},
(A.21) ΔψΔt,2=pΔt,2nΔt,2,\displaystyle-\Delta\psi_{\Delta t,2}=p_{\Delta t,2}-n_{\Delta t,2},
t𝐮Δt,2=Δ𝐮Δt,2ϕΔt,2(𝐮˘1)𝐮Δt,2(𝐮Δt,2)𝐮˘1\displaystyle\partial_{t}{\bf u}_{\Delta t,2}=\Delta{\bf u}_{\Delta t,2}-\nabla\phi_{\Delta t,2}-(\breve{{\bf u}}_{1}\cdot\nabla){\bf u}_{\Delta t,2}-({\bf u}_{\Delta t,2}\cdot\nabla)\breve{{\bf u}}_{1}
p˘1(pΔt,2p˘1+ψΔt,2)pΔt,2(lnp˘1+ψ˘1)\displaystyle\qquad-\breve{p}_{1}\nabla(\frac{p_{\Delta t,2}}{\breve{p}_{1}}+\psi_{\Delta t,2})-p_{\Delta t,2}\nabla(\ln{\breve{p}_{1}}+\breve{\psi}_{1})
(A.22) n˘1(nΔt,2n˘1ψΔt,2)nΔt,2(lnn˘1ψ˘1)f𝐮˘1,2,\displaystyle\qquad-\breve{n}_{1}\nabla(\frac{n_{\Delta t,2}}{\breve{n}_{1}}-\psi_{\Delta t,2})-n_{\Delta t,2}\nabla(\ln{\breve{n}_{1}}-\breve{\psi}_{1})-f_{\breve{{\bf u}}_{1},2},
(A.23) 𝐮˘Δt,2=0.\displaystyle\nabla\cdot\breve{{\bf u}}_{\Delta t,2}=0.

subject to the periodic boundary condition and zero initial condition. Then we have

(t2pΔt,2,t2nΔt,2,t2𝐮Δt,2)L(0,T,L2(Ω)),(tpΔt,2,tnΔt,2,t𝐮Δt,2)L(0,T,Hk+1(Ω)).(\partial_{t}^{2}p_{\Delta t,2},\partial_{t}^{2}n_{\Delta t,2},\partial_{t}^{2}{\bf u}_{\Delta t,2})\in L^{\infty}(0,T,L^{2}(\Omega)),\ (\partial_{t}p_{\Delta t,2},\partial_{t}n_{\Delta t,2},\partial_{t}{\bf u}_{\Delta t,2})\in L^{\infty}(0,T,H^{k+1}(\Omega)).

The discretization of the above system implies that

fp˘1,2m+1,vN\displaystyle\langle-f^{m+1}_{\breve{p}_{1},2},v_{N}\rangle =pΔt,2m+1pΔt,2mΔt,vNpΔt,2m𝐮˘1m+p˘1m𝐮Δt,2m,vN\displaystyle=\langle\frac{p^{m+1}_{\Delta t,2}-p^{m}_{\Delta t,2}}{\Delta t},v_{N}\rangle-\langle p^{m}_{\Delta t,2}\breve{{\bf u}}_{1}^{m}+\breve{p}_{1}^{m}{\bf u}^{m}_{\Delta t,2},\nabla v_{N}\rangle
+p˘1m(1+2Δtp˘1m)(pΔt,2m+1p˘1m+1+ψΔt,2m+1)\displaystyle\quad+\langle\breve{p}^{m}_{1}(1+2\Delta t\breve{p}^{m}_{1})\nabla(\frac{p^{m+1}_{\Delta t,2}}{\breve{p}^{m+1}_{1}}+\psi^{m+1}_{\Delta t,2})
+pΔt,2m(1+4Δtp˘1m)(lnp˘1m+1+ψ˘1m+1),vN\displaystyle\quad+p^{m}_{\Delta t,2}(1+4\Delta t\breve{p}^{m}_{1})\nabla(\ln{\breve{p}^{m+1}_{1}+\breve{\psi}^{m+1}_{1}}),\nabla v_{N}\rangle
(A.24) +𝒪(Δt)+𝒪(Nk),\displaystyle\quad+\mathcal{O}(\Delta t)+\mathcal{O}(N^{-k}),
fn˘1,2m+1,vN\displaystyle\langle-f^{m+1}_{\breve{n}_{1},2},v_{N}\rangle =nΔt,2m+1nΔt,2mΔt,vNnΔt,2m𝐮˘1m+n˘1m𝐮Δt,2m,vN\displaystyle=\langle\frac{n^{m+1}_{\Delta t,2}-n^{m}_{\Delta t,2}}{\Delta t},v_{N}\rangle-\langle n^{m}_{\Delta t,2}\breve{{\bf u}}_{1}^{m}+\breve{n}^{m}_{1}{\bf u}^{m}_{\Delta t,2},\nabla v_{N}\rangle
+n˘1m(1+2Δtn˘1m)(nΔt,2m+1n˘1m+1ψΔt,2m+1)\displaystyle\quad+\langle\breve{n}^{m}_{1}(1+2\Delta t\breve{n}^{m}_{1})\nabla(\frac{n^{m+1}_{\Delta t,2}}{\breve{n}^{m+1}_{1}}-\psi^{m+1}_{\Delta t,2})
+nΔt,2m(1+4Δtn˘1m)(lnn˘1m+1ψ˘1m+1),vN\displaystyle\quad+n^{m}_{\Delta t,2}(1+4\Delta t\breve{n}_{1}^{m})\nabla(\ln{\breve{n}_{1}^{m+1}-\breve{\psi}_{1}^{m+1}}),\nabla v_{N}\rangle
(A.25) +𝒪(Δt)+𝒪(Nk),\displaystyle\quad+\mathcal{O}(\Delta t)+\mathcal{O}(N^{-k}),
f𝐮˘1,2m+1,vN\displaystyle\langle-f^{m+1}_{\breve{{\bf u}}_{1},2},v_{N}\rangle =RN𝐮Δt,2m+1𝐮Δt,2mΔt,vN+RN𝐮Δt,2m+1,vN+ϕΔt,2m,vN\displaystyle=\langle\frac{R_{N}{\bf u}^{m+1}_{\Delta t,2}-{\bf u}^{m}_{\Delta t,2}}{\Delta t},v_{N}\rangle+\langle\nabla R_{N}{\bf u}^{m+1}_{\Delta t,2},\nabla v_{N}\rangle+\langle\nabla\phi^{m}_{\Delta t,2},v_{N}\rangle
+(𝐮˘1m)RN𝐮Δt,2m+1+(𝐮Δt,2m)RN𝐮˘1m+1,vN\displaystyle\quad+\langle(\breve{{\bf u}}^{m}_{1}\cdot\nabla)R_{N}{\bf u}^{m+1}_{\Delta t,2}+({\bf u}^{m}_{\Delta t,2}\cdot\nabla)R_{N}\breve{{\bf u}}_{1}^{m+1},v_{N}\rangle
+p˘1m(pΔt,2m+1p˘1m+1+ψΔt,2m+1)+pΔt,2m(lnp˘1m+1+ψ˘1m+1),vN\displaystyle\quad+\langle\breve{p}_{1}^{m}\nabla(\frac{p^{m+1}_{\Delta t,2}}{\breve{p}_{1}^{m+1}}+\psi^{m+1}_{\Delta t,2})+p^{m}_{\Delta t,2}\nabla(\ln{\breve{p}_{1}^{m+1}}+\breve{\psi}_{1}^{m+1}),v_{N}\rangle
+n˘1m(nΔt,2m+1n˘1m+1ψΔt,2m+1)+nΔt,2m(lnn˘1m+1ψ˘1m+1),vN\displaystyle\quad+\langle\breve{n}_{1}^{m}\nabla(\frac{n^{m+1}_{\Delta t,2}}{\breve{n}_{1}^{m+1}}-\psi^{m+1}_{\Delta t,2})+n^{m}_{\Delta t,2}\nabla(\ln{\breve{n}_{1}^{m+1}}-\breve{\psi}_{1}^{m+1}),v_{N}\rangle
(A.26) +𝒪(Δt)+𝒪(Nk),\displaystyle\quad+\mathcal{O}(\Delta t)+\mathcal{O}(N^{-k}),
(A.27) ψΔt,2m,vN\displaystyle\langle\nabla\psi^{m}_{\Delta t,2},\nabla v_{N} =pΔt,2mnΔt,2m,vN,\displaystyle\rangle=\langle p^{m}_{\Delta t,2}-n^{m}_{\Delta t,2},v_{N}\rangle,
(A.28) 𝐮Δt,2m,vN\displaystyle\langle{\bf u}^{m}_{\Delta t,2},\nabla v_{N} =0.\displaystyle\rangle=0.

Finally, a combination of (A.16)-(A.18) and (A.24)-(A.26) yields the third order temporal truncation error for (p˘,n˘,𝐮˘,ϕ˘)(\breve{p},\breve{n},\breve{{\bf u}},\breve{\phi}):

p˘m+1p˘mΔt,vNp˘m𝐮˘m,vN+p˘m(1+2Δtp˘m)μ˘m+1,vN=τpm+1(vN),\displaystyle\langle\frac{\breve{p}^{m+1}-\breve{p}^{m}}{\Delta t},v_{N}\rangle-\langle\breve{p}^{m}\breve{{\bf u}}^{m},\nabla v_{N}\rangle+\langle\breve{p}^{m}(1+2\Delta t\breve{p}^{m})\nabla\breve{\mu}^{m+1},\nabla v_{N}\rangle=\tau^{m+1}_{p}(v_{N}),
n˘m+1n˘mΔt,vNn˘m𝐮˘m,vN+n˘m(1+2Δtnm)ν˘m+1,vN=τnm+1(vN),\displaystyle\langle\frac{\breve{n}^{m+1}-\breve{n}^{m}}{\Delta t},v_{N}\rangle-\langle\breve{n}^{m}\breve{{\bf u}}^{m},\nabla v_{N}\rangle+\langle\breve{n}^{m}(1+2\Delta tn^{m})\nabla\breve{\nu}^{m+1},\nabla v_{N}\rangle=\tau^{m+1}_{n}(v_{N}),
RN𝐮˘m+1𝐮˘mΔt,vN+(𝐮˘m)RN𝐮˘m+1,vN+RN𝐮˘m+1,vN+ϕ˘m,vN\displaystyle\langle\frac{R_{N}\breve{{\bf u}}^{m+1}-\breve{{\bf u}}^{m}}{\Delta t},v_{N}\rangle+\langle(\breve{{\bf u}}^{m}\cdot\nabla)R_{N}\breve{{\bf u}}^{m+1},v_{N}\rangle+\langle\nabla R_{N}\breve{{\bf u}}^{m+1},\nabla v_{N}\rangle+\langle\nabla\breve{\phi}^{m},v_{N}\rangle
+p˘mμ˘m+1+n˘mν˘m+1,vN=τ𝐮m+1(vN),\displaystyle\quad+\langle\breve{p}^{m}\nabla\breve{\mu}^{m+1}+\breve{n}^{m}\nabla\breve{\nu}^{m+1},v_{N}\rangle=\tau^{m+1}_{{\bf u}}(v_{N}),

where

τ˘pm+1(vN),τ˘nm+1(vN),τ˘𝐮m+1(vN)C(Δt3+Nk)vNH1.\breve{\tau}^{m+1}_{p}(v_{N}),\breve{\tau}^{m+1}_{n}(v_{N}),\breve{\tau}^{m+1}_{{\bf u}}(v_{N})\leq C(\Delta t^{3}+N^{-k})\|v_{N}\|_{H^{1}}.

Since (pΔt,2,nΔt,2)(p_{\Delta t,2},n_{\Delta t,2}) are bounded, we may find Δt,1N\Delta t,\frac{1}{N} so small that p˘,n˘>δ0δ04>0\breve{p},\breve{n}>\delta_{0}^{*}\triangleq\frac{\delta_{0}}{4}>0. Moreover, given the regularity of (pΔt,i,nΔt,i,𝐮Δt,i)(i=1,2)(p_{\Delta t,i},n_{\Delta t,i},{\bf u}_{\Delta t,i})(i=1,2), we have

(p˘,n˘,𝐮˘)L(0,T,W1,(Ω)).(\breve{p},\breve{n},\breve{{\bf u}})\in L^{\infty}(0,T,W^{1,\infty}(\Omega)).

Remark 3.

Since we set the initial data of our modified solution to be the same as the initial data of the exact solution, i.e. (p˘,n˘,𝐮˘,ϕ˘)(,t=0)=(ΠNp,ΠNn,ΠN𝐮,ΠNϕ)(,t=0)(\breve{p},\breve{n},\breve{{\bf u}},\breve{\phi})(\cdot,t=0)=(\Pi_{N}p,\Pi_{N}n,\Pi_{N}{\bf u},\Pi_{N}\phi)(\cdot,t=0), we will assume trivial initial data

(A.29) (pΔt,i,nΔt,i,𝐮Δt,i,ϕΔt,i)(,t=0)=𝟎,(p_{\Delta t,i},n_{\Delta t,i},{\bf u}_{\Delta t,i},\phi_{\Delta t,i})(\cdot,t=0)={\bf 0},

for i=1,2i=1,2 in (A.5)-(A.9) and (A.19)-(A.23).

References

  • [1] Martin Z Bazant and Todd M Squires. Induced-charge electrokinetic phenomena. Current Opinion in Colloid & Interface Science, 15(3):203–213, 2010.
  • [2] Wenbin Chen, Cheng Wang, Xiaoming Wang, and Steven M Wise. Positivity-preserving, energy stable numerical schemes for the cahn-hilliard equation with logarithmic potential. Journal of Computational Physics: X, 3:100031, 2019.
  • [3] Qing Cheng and Jie Shen. A new lagrange multiplier approach for constructing structure preserving schemes, I. positivity preserving. Computer Methods in Applied Mechanics and Engineering, 391:114585, 2022.
  • [4] Qing Cheng and Jie Shen. A new lagrange multiplier approach for constructing structure preserving schemes, II. bound preserving. SIAM Journal on Numerical Analysis, 60(3):970–998, 2022.
  • [5] Peter Constantin and Mihaela Ignatova. On the Nernst–Planck–Navier–Stokes system. Archive for Rational Mechanics and Analysis, 232(3):1379–1428, 2019.
  • [6] Jie Ding, Zhongming Wang, and Shenggao Zhou. Positivity preserving finite difference methods for poisson–nernst–planck equations with steric interactions: Application to slit-shaped nanopore conductance. Journal of Computational Physics, 397:108864, 2019.
  • [7] Qiang Du, Lili Ju, Xiao Li, and Zhonghua Qiao. Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes. SIAM Review, 63(2):317–359, 2021.
  • [8] Allen Flavell, Michael Machen, Bob Eisenberg, Julienne Kabre, Chun Liu, and Xiaofan Li. A conservative finite difference scheme for Poisson–Nernst–Planck equations. Journal of Computational Electronics, 13(1):235–249, 2014.
  • [9] Huajun Gong, Changyou Wang, and Xiaotao Zhang. Partial regularity of suitable weak solutions of the Navier–Stokes–Planck–Nernst–Poisson equation. SIAM Journal on Mathematical Analysis, 53(3):3306–3337, 2021.
  • [10] Jean-Luc Guermond, Peter Minev, and Jie Shen. An overview of projection methods for incompressible flows. Computer Methods in Applied Mechanics and Engineering, 195(44-47):6011–6045, 2006.
  • [11] Jean-Luc Guermond and Luigi Quartapelle. On stability and convergence of projection methods based on pressure poisson equation. International Journal for Numerical Methods in Fluids, 26(9):1039–1053, 1998.
  • [12] Jean-Luc Guermond and Luigi Quartapelle. On the approximation of the unsteady Navier–Stokes equations by finite element projection methods. Numerische mathematik, 80(2):207–238, 1998.
  • [13] Jingwei Hu and Xiaodong Huang. A fully discrete positivity-preserving and energy-dissipative finite difference scheme for Poisson–Nernst–Planck equations. Numerische Mathematik, 145(1):77–115, 2020.
  • [14] Fukeng Huang and Jie Shen. Bound/positivity preserving and energy stable SAV schemes for dissipative systems: Applications to Keller-Segel and Poisson-Nernst-Planck equations. SIAM Journal on Scientific Computing, 43(3), 2021.
  • [15] Buyang Li, Jiang Yang, and Zhi Zhou. Arbitrarily high-order exponential cut-off methods for preserving maximum principle of parabolic equations. SIAM Journal on Scientific Computing, 42(6):A3957–A3978, 2020.
  • [16] Hao Li, Shusen Xie, and Xiangxiong Zhang. A high order accurate bound-preserving compact finite difference scheme for scalar convection diffusion equations. SIAM Journal on Numerical Analysis, 56(6):3308–3345, 2018.
  • [17] Hao Li and Xiangxiong Zhang. On the monotonicity and discrete maximum principle of the finite difference implementation of C0C^{0}-Q2Q^{2} finite element method. Numerische Mathematik, 145(2):437–472, 2020.
  • [18] Chun Liu, Cheng Wang, Steven Wise, Xingye Yue, and Shenggao Zhou. A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system. Mathematics of Computation, 90(331):2071–2106, 2021.
  • [19] Chun Liu, Cheng Wang, Steven M Wise, Xingye Yue, and Shenggao Zhou. A second order accurate, positivity preserving numerical method for the poisson–nernst–planck system and its convergence analysis. Journal of scientific computing, 97(1):23, 2023.
  • [20] Hailiang Liu and Wumaier Maimaitiyiming. Efficient, positive, and energy stable schemes for multi-d Poisson–Nernst–Planck systems. Journal of Scientific Computing, 87(3):1–36, 2021.
  • [21] Jian-Guo Liu, Li Wang, and Zhennan Zhou. Positivity-preserving and asymptotic preserving method for 2d keller-segal equations. Mathematics of Computation, 87(311):1165–1189, 2018.
  • [22] Xiaoling Liu and Chuanju Xu. Efficient time-stepping/spectral methods for the Navier-Stokes-Nernst-Planck-Poisson equations. Communications in Computational Physics, 21(5):1408–1428, 2017.
  • [23] Andreas Prohl and Markus Schmuck. Convergent discretizations for the Nernst–Planck–Poisson system. Numerische Mathematik, 111(4):591–630, 2009.
  • [24] Andreas Prohl and Markus Schmuck. Convergent finite element discretizations of the Navier-Stokes-Nernst-Planck-Poisson system. ESAIM: Mathematical Modelling and Numerical Analysis, 44(3):531–571, 2010.
  • [25] Zhonghua Qiao, Zhenli Xu, Qian Yin, and Shenggao Zhou. Structure-preserving numerical method for maxwell-ampère nernst-planck model. Journal of Computational Physics, 475:111845, 2023.
  • [26] Isaak Rubinstein. Electro-diffusion of ions. SIAM, 1990.
  • [27] Markus Schmuck. Analysis of the Navier–Stokes–Nernst–Planck–Poisson system. Mathematical Models and Methods in Applied Sciences, 19(06):993–1014, 2009.
  • [28] Markus Schmuck. Modeling and deriving porous media Stokes-Poisson-Nernst-Planck equations by a multi-scale approach. Communications in Mathematical Sciences, 9(3):685–710, 2011.
  • [29] Jie Shen. On error estimates of the projection methods for the navier-stokes equations: second-order schemes. Mathematics of computation, 65(215):1039–1065, 1996.
  • [30] Jie Shen, Tao Tang, and Jiang Yang. On the maximum principle preserving schemes for the generalized allen–cahn equation. Communications in Mathematical Sciences, 14(6):1517–1534, 2016.
  • [31] Jie Shen and Jie Xu. Unconditionally positivity preserving and energy dissipative schemes for Poisson–Nernst–Planck equations. Numerische Mathematik, 148(3):671–697, 2021.
  • [32] Jie Shen and Xiaofeng Yang. Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM Journal on Numerical Analysis, 53(1):279–296, 2015.
  • [33] Jaap JW van der Vegt, Yinhua Xia, and Yan Xu. Positivity preserving limiters for time-implicit higher order accurate discontinuous galerkin discretizations. SIAM Journal on scientific computing, 41(3):A2037–A2063, 2019.
  • [34] Liya Zhornitskaya and Andrea L Bertozzi. Positivity-preserving numerical schemes for lubrication-type equations. SIAM Journal on Numerical Analysis, 37(2):523–555, 1999.