This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A fast compact difference scheme with unequal time-steps for the tempered time-fractional Black-Scholes model

Jinfeng Zhou111School of Mathematics, Southwestern University of Finance and Economics, Chengdu, Sichuan 611130, P.R. China. E-mail: 2207441009@qq.com; guxianming@live.cn, guxm@swufe.edu.cn (corresponding author),  Xian-Ming Gu§,111School of Mathematics, Southwestern University of Finance and Economics, Chengdu, Sichuan 611130, P.R. China. E-mail: 2207441009@qq.com; guxianming@live.cn, guxm@swufe.edu.cn (corresponding author),  Yong-Liang Zhao222School of Mathematical Sciences, Sichuan Normal University, Chengdu, Sichuan 610068, P.R. China. E-mail: ylzhaofde@sina.com,  Hu Li333School of Mathematics, Chengdu Normal University, Chengdu, Sichuan 611130, P.R. China. E-mail: lihu_0826@163.com
Abstract

The Black-Scholes (B-S) equation has been recently extended as a kind of tempered time-fractional B-S equations, which becomes an interesting mathematical model in option pricing. In this study, we provide a fast numerical method to approximate the solution of the tempered time-fractional B-S model. To achieve high-order accuracy in space and overcome the weak initial singularity of exact solution, we combine the compact difference operator with L1-type approximation under nonuniform time steps to yield the numerical scheme. The convergence of the proposed difference scheme is proved to be unconditionally stable. Moreover, the kernel function in the tempered Caputo fractional derivative is approximated by sum-of-exponentials, which leads to a fast unconditionally stable compact difference method that reduces the computational cost. Finally, numerical results demonstrate the effectiveness of the proposed methods.

Keywords: Tempered time-fractional B-S model; nonuniform time steps; exponential transformation; compact difference scheme; weak regularity.

AMS subject classifications: 65M06, 65M50, 26A33, 91G20.

1 Introduction

The Black-Scholes (B-S) model is an important method of option pricing because of its clever combination of option pricing, random fluctuation of underlying asset price and risk-free interest rate [1]. However, the classic B-S model was put forward by Black and Scholes under a series of assumptions [2]. Through observation and research on the stock market, many scholars found that the essential characteristics and state of the capital market are random fluctuations, which are not completely consistent with these assumptions of the traditional B-S option pricing model. The pricing of the model is different from the actual market price. Therefore, in order to extend the application of B-S equation from the ideal state of stock price to a more realistic state, many scholars have done a lot of work, such as B-S model with transaction cost [3], stochastic interest rate model [4], jump-diffusion model [5], etc.

Besides, in order to make Brownian motion reflect more properties such as autocorrelation, long-term memory and incremental correlation, some other scholars began to consider modifying the original partial differential equation (DE) of Brownian motion which leads to new option pricing models which are more suitable for the actual financial market. With the discovery of the fractal structure of DEs in the financial field, more and more attention has been paid to such fractional DEs in this field. In 2000, Wyss [6] first applied the idea of fractal to the financial field and deduced the time-fractional B-S (TFBS) option pricing model. Later, Jumariel [7] use the fractional Taylor formula to deduce and demonstrate the TFBS option pricing formula, Cartea [8] propose to model stock price tick-by-tick data via a non-explosive marked point process where the model equation satisfied by the value of European-style derivatives contains a Caputo fractional derivative in time-to-maturity. Liang et al. [9] proposed a special TFBS equation based on the real market option price analysis in a fractional transfer system. Magdziarz [10] consider a generalization of this model, which is based on a subdiffusive geometric Brownian motion and captures the subdiffusive characteristics of financial markets. There are also other TFBS models available at [11, 12, 3].

With the development of TFBS model, there is a growing concern on its solution which is hard to be solved in the analytical manner [9, 11, 13]. Thus it is necessary to study efficient numerical methods for such models. Krzyz̀anowskia et al. [14] present the weighted finite difference method to solve the subdiffusive B-S model numerically and prove its convergence. In [15], the numerical solution of the TFBS model governing European options is obtained by using the L1 approximation of Caputo fractional derivatives, which can achieve (2α2-\alpha)-order accuracy in time and second-order accuracy in space. Tian et al. [16] proposed three compact finite difference schemes for the TFBS model governing European option pricing where the time fractional derivative is approximated by L1 formula, L2-1σ formula and L1-2 formula, then convergence orders of these three compact difference schemes are fourth-order in space and (2α)(2-\alpha)-, 2-, and (3α)(3-\alpha)-order in time, respectively. Staelen and Hendy [2] studied an implicit numerical scheme with a temporal accuracy of (2α2-\alpha)-order and the spatial accuracy of fourth-order by using the Fourier analysis method. In addition, some other related numerical methods based on different spatial discrezations for the TFBS model can be found in [17, 18, 19, 20, 22, 21, 23, 24, 25].

It is worth noting that the above numerical methods can reach the theoretical convergence order with the assumption that the exact solution of TFBS model is sufficiently smooth in the time variable. But in fact, exact solutions of time-fractional partial DEs always enjoy the weak singularity near the initial time, this fact makes most of the above numerical methods fail to achieve the optimal order convergence [27, 26]. In order to overcome the weakly initial singularity of exact solution, numerical methods with nonuniform time steps introduced in [26, 28, 29] have been considered to solve the model problem; see e.g., [30, 31] for details. In order to overcome the difficulty of initial layer, She et al. [32] present modified L1 time discretization is presented based on a change of variable for solving the TFBS model. However all the above numerical methods need huge storage and computational cost due to the nonlocal time fractional derivative. In order to reduce the computational cost, Song and Lyu [33] use the fast sum-of-exponentials (SOE) approximation of of Caputo fractional derivative [34, 29] to present a fast numerical method for TFBS equations, the fast algorithm keeps the convergence of second-order accuracy in time and fourth-order accuracy in space. Moreover, it reduces the computational complexity significantly. The stability of their proposed schemes is established base on the analysis framework developed in [35].

When we consider the option pricing in such a stagnated market, the tempered TFBS model does better in estimating the fair price than the classic B-S model, Krzyzanowskia and Magdziarza [36] proposed the tempered subdiffusive B-S model assumed that the underlying asset is driven by α\alpha-stable λ\lambda-tempered inverse subordinator [38, 37]. In this paper, we are interested in such a tempered TFBS model governing European options:

{α,λC(S,t)tα,λ+12σ2S22C(S,t)S2+r^SC(S,t)SrC(S,t)=0,(S,t)(0,+)×[0,T),C(S,T)=μ(S),S(0,+),C(0,t)=ϕ(t),C(+,t)=φ(t),t[0,T),\begin{cases}\frac{\partial^{\alpha,\lambda}C(S,t)}{\partial t^{\alpha,\lambda}}+\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}C(S,t)}{\partial S^{2}}+\hat{r}S\frac{\partial C(S,t)}{\partial S}-rC(S,t)=0,&(S,t)\in(0,+\infty)\times[0,T),\\ C(S,T)=\mu(S),&S\in(0,+\infty),\\ C(0,t)=\phi(t),\quad C(+\infty,t)=\varphi(t),&t\in[0,T),\end{cases} (1.1)

where α(0,1)\alpha\in(0,1) and λ0\lambda\geq 0, TT is the expiry time, r^=rD\hat{r}=r-D (r>0r>0 and D0D\geq 0 are the risk-free rate and the dividend yield, respectively) and σ>0\sigma>0 is the volatility of the returns from the holding stock price SS. Here the terminal condition is typically chosen as μ(S)\mu(S) for the payoff of the option. The fractional derivative operator in Eq. (1.1) is a modified right Riemann-Liouville tempered fractional derivative defined as

α,λC(S,t)tα,λ=eλ(Tt)Γ(1α)ttTeλ(ξT)C(S,ξ)C(S,T)(ξt)α𝑑ξ,\frac{\partial^{\alpha,\lambda}C(S,t)}{\partial t^{\alpha,\lambda}}=\frac{e^{-\lambda(T-t)}}{\Gamma(1-\alpha)}\frac{\partial}{\partial t}\int^{T}_{t}\frac{e^{-\lambda(\xi-T)}C(S,\xi)-C(S,T)}{(\xi-t)^{\alpha}}d\xi, (1.2)

where α=1\alpha=1 and λ=0\lambda=0, the model (1.1) collapses to the classical B-S model.

Let τ=Tt\tau=T-t, ex=Se^{x}=S and U(x,τ)=C(S,t)U(x,\tau)=C(S,t), some tedious but simple calculations yield

α,λC(S,t)tα,λ=eλτΓ(1α)τ0τeληC(S,Tη)C(S,T)(τη)α𝑑η=eλτΓ(1α)τ0τeληU(x,η)U(x,0)(τη)α𝑑η=eλτΓ(1α)0τ1(τη)α[eληU(x,η)]η𝑑η𝔻τα,λ0CU(x,τ),\begin{split}-\frac{\partial^{\alpha,\lambda}C(S,t)}{\partial t^{\alpha,\lambda}}&=\frac{e^{-\lambda\tau}}{\Gamma(1-\alpha)}\frac{\partial}{\partial\tau}\int^{\tau}_{0}\frac{e^{\lambda\eta}C(S,T-\eta)-C(S,T)}{(\tau-\eta)^{\alpha}}d\eta\\ &=\frac{e^{-\lambda\tau}}{\Gamma(1-\alpha)}\frac{\partial}{\partial\tau}\int^{\tau}_{0}\frac{e^{\lambda\eta}U(x,\eta)-U(x,0)}{(\tau-\eta)^{\alpha}}d\eta\\ &=\frac{e^{-\lambda\tau}}{\Gamma(1-\alpha)}\int^{\tau}_{0}\frac{1}{(\tau-\eta)^{\alpha}}\cdot\frac{\partial[e^{\lambda\eta}U(x,\eta)]}{\partial\eta}d\eta\\ &\triangleq{}^{C}_{0}\mathbb{D}^{\alpha,\lambda}_{\tau}U(x,\tau),\end{split} (1.3)

where 𝔻τα,λ0C{}^{C}_{0}\mathbb{D}^{\alpha,\lambda}_{\tau} is the tempered Caputo fractional derivative (tCFD) [39, Eq. (3)]. To solve the above model numerically, it always truncates the original infinite xx-domain \in\mathbb{R} to a finite domain ΩΩ=[xl,xr]\Omega\cap\partial\Omega=[x_{l},x_{r}], then the model (1.1) can be eventually rewritten as

{𝔻τα,λ0CU(x,τ)=12σ22U(x,τ)x2+cU(x,τ)xrU(x,τ)+f(x,τ),(x,τ)Ω×(0,T],U(x,0)=ζ(x),xΩ,U(xl,τ)=ϕ(τ),U(xr,τ)=φ(τ),τ(0,T],\begin{cases}{}^{C}_{0}\mathbb{D}^{\alpha,\lambda}_{\tau}U(x,\tau)=\frac{1}{2}\sigma^{2}\frac{\partial^{2}U(x,\tau)}{\partial x^{2}}+c\frac{\partial U(x,\tau)}{\partial x}-rU(x,\tau)+f(x,\tau),&(x,\tau)\in\Omega\times(0,T],\\ U(x,0)=\zeta(x),&x\in\Omega,\\ U(x_{l},\tau)=\phi(\tau),\quad U(x_{r},\tau)=\varphi(\tau),&\tau\in(0,T],\end{cases}\vspace{-2mm} (1.4)

where c=r^12σ2c=\hat{r}-\frac{1}{2}\sigma^{2}, κ(x)=μ(ex)\kappa(x)=\mu(e^{x}) and a source term f(x,τ)f(x,\tau) is just added for the purposes of validation in Section 4 without loss of generality. Meanwhile, the initial condition is chosen as ζ(x)=max(Kex,0)\zeta(x)=\max(K-e^{x},0) (which is only continuous) as suggested by the model (1.1). In addition, the above equation (1.4) can be viewed a special case of the tempered time-fractional advection-diffusion-reaction equations [40].

In fact, the paper [36] presents a finite difference method that has the (2α)(2-\alpha)- and 2-order of accuracy with respects to time and space respectively to the option pricing in the model (1.1). However, such a study seems to be less efficient because it overlooks two numerical difficulties of the tempered TFBS model, i.e., the nonlocal time tCFD and the weakly initial singularity of the exact solution. In order to remedy such numerical difficulties, we first transform the model (1.4) into a tempered time-fractional diffusion-reaction (tTFDR) equation with homogeneous boundary conditions (BCs), which holds the same solution. Then the regularity of exact solution of the transformed tTFDRE equation is investigated by the method of variable separation that is different from the idea we extend introduced in [41]. Moreover, an implicit difference method with the compact difference operator in space and the graded L1 formula in time will be derived for such a transformed tTFDR equation with homogeneous BCs. To reduce the computational cost caused by the nonlocal tCFD, the fast SOE approximation [34, 29] is extended to reconstruct a fast difference method for the transformed tTFDR equation. Meanwhile, the proposed schemes are proved to be unconditional stable and convergent with the (2α)(2-\alpha)- and 4-order of accuracy with respects to time and space, respectively. Finally, we report some numerical experiments to examine the feasibility of the proposed methods.

The rest of the paper is organized as follows. In Section 2, the nonuniform temporal discretization is used to set up a compact difference scheme for the equivalent tTFDR equation. Moreover, the unconditional stability and convergence of min{γα,2α}\min\left\{\gamma\alpha,2-\alpha\right\}-order in time (where the mesh grading index γ1\gamma\geq 1 is chosen by the user) and fourth-order in space of the proposed scheme are displayed by mathematical introductions. In Section 3, we establish a fast compact difference scheme that reduces the computational cost and then state the convergence for solving the equivalent tTFDR equation. Numerical examples are provided in Section 4 to show the theoretical statements. A brief conclusion is followed in Section 5.

2 Construction of the compact difference scheme

In this section. We first establish a direct finite difference scheme for solving the equivalent tTFDR equation. Since it is well-known that the exact solution of Eq. (1.4) always has the weak singularity at the initial time (see Appendix A for details), i.e., the solution will be non-smooth enough near the initial time, then the classical L1 scheme cannot achieve the optimal convergence order of (2α)(2-\alpha). Alternatively, the non-uniform temporal discretization is proved to be a reliable numerical technique for solving the equivalent tTFDR equation.

2.1 The equivalent reformulation of tTFDR equations

In order to simplify the derivation of the high-order spatial discrezation for the model (1.4), we first denote v(x,τ):=k(x)[U(x,τ)z(x,τ)]v(x,\tau):=k(x)[U(x,\tau)-z(x,\tau)], where

z(x,τ):=φ(τ)ϕ(τ)xrxl(xxl)+ϕ(τ)andk(x)=exp(c(xxl)σ2),z(x,\tau):=\frac{\varphi(\tau)-\phi(\tau)}{x_{r}-x_{l}}(x-x_{l})+\phi(\tau)\quad{\rm and}\quad k(x)=\exp\Big{(}\frac{c(x-x_{l})}{\sigma^{2}}\Big{)}, (2.1)

then it is not hard to note that the problem (2.2) is equivalent to the next equations with homogeneous BCs:

{𝔻τα,λ0Cv(x,τ)=12σ22v(x,τ)x2qv(x,τ)+g(x,τ),(x,τ)Ω×(0,T],v(x,0)=σ(x),xΩ,v(x,τ)=0,(x,τ)Ω×(0,T],\begin{cases}{}^{C}_{0}\mathbb{D}^{\alpha,\lambda}_{\tau}v(x,\tau)=\frac{1}{2}\sigma^{2}\frac{\partial^{2}v(x,\tau)}{\partial x^{2}}-qv(x,\tau)+g(x,\tau),&(x,\tau)\in\Omega\times(0,T],\\ v(x,0)=\sigma(x),&x\in\Omega,\\ v(x,\tau)=0,&(x,\tau)\in\partial\Omega\times(0,T],\end{cases}\vspace{-1.5mm} (2.2)

where q=c22σ2+r>0q=\frac{c^{2}}{2\sigma^{2}}+r>0, σ(x)=k(x)[ζ(x)z(x,0)]\sigma(x)=k(x)[\zeta(x)-z(x,0)] and g(x,τ)=k(x)[f(x,τ)+czx(x,τ)rz(x,τ)𝔻τα,λ0Cz(x,τ)]g(x,\tau)=k(x)[f(x,\tau)+cz_{x}(x,\tau)-rz(x,\tau)-{}^{C}_{0}\mathbb{D}^{\alpha,\lambda}_{\tau}z(x,\tau)]111Due to two known functions ϕ(τ)\phi(\tau) and φ(τ)\varphi(\tau), it is easy to compute the term 𝔻τα,λ0Cz(x,τ){}^{C}_{0}\mathbb{D}^{\alpha,\lambda}_{\tau}z(x,\tau) in the analytical (or numerical) manner. and it is clear that U(x,τ)U(x,\tau) is a solution of (1.4) if and only if v(x,τ)v(x,\tau) is a solution of (2.2); refer to [42, 16, 33] for details. Therefore, in the following, our proposed finite difference methods for the problem (1.4) are based on the equivalent form (2.2).

2.2 Discretization in time on non-uniform steps

For nonuniform time levels τn=T(nM)γ\tau_{n}=T\left(\frac{n}{M}\right)^{\gamma}, the nn-th time step size is set as Δτn:=τnτn1\Delta\tau_{n}:=\tau_{n}-\tau_{n-1} with n=0,1,Mn=0,1\ldots,M, the spatial grid nodes xi=xl+ih,i=0,1,,Nx_{i}=x_{l}+ih,i=0,1,\cdots,N, where h=(xrxl)/Nh=(x_{r}-x_{l})/N are space grid size and M,N+M,N\in\mathbb{N}^{+} respectively. Since the grid function {vi|0iN}\{v_{i}|0\leq i\leq N\}, then we define the following difference operators:

δxvi1/2=vivi1h,δx2vi=vi+12vi+vi1h2,xvi={(1+h212δx2)vi,1iN1,vi,i=0,N,\delta_{x}v_{i-1/2}=\frac{v_{i}-v_{i-1}}{h},~{}~{}\delta^{2}_{x}v_{i}=\frac{v_{i+1}-2v_{i}+v_{i-1}}{h^{2}},~{}~{}\mathcal{H}_{x}v_{i}=\begin{cases}\left(1+\frac{h^{2}}{12}\delta^{2}_{x}\right)v_{i},&1\leq i\leq N-1,\\ v_{i},&i=0,~{}N,\end{cases}\vspace{-2mm}

Let Π1,nu\Pi_{1,n}u denote the linear interpolation of a function u(τ)u(\tau) with respect to the nodes τn1\tau_{n-1} and τn\tau_{n}, then it is easy to find that

(Π1,nu)(τ)=u(τn)u(τn1)Δτn:=τunΔτn,(\Pi_{1,n}u)^{\prime}(\tau)=\frac{u(\tau_{n})-u(\tau_{n-1})}{\Delta\tau_{n}}:=\frac{\nabla_{\tau}u^{n}}{\Delta\tau_{n}},

At this stage, we recall u(τn)=eλτnv(τn)u(\tau_{n})=e^{\lambda\tau_{n}}v(\tau_{n}) and extend the L1 formula on graded meshes [26] for tCFD at the time point τn\tau_{n}:

𝔻τα,λ0Cv(τn)=eλτnΓ(1α)k=1nτk1τk(τkη)α(Π1,ku)(η)𝑑η+n=eλτnΓ(1α)k=1nak(n,α)(ukuk1)+n(:=eλτn𝒟ταu(τn))=1Γ(1α)[an(n,α)v(τn)k=1n1(ak+1(n,α)ak(n,α))eλ(τkτn)v(τk)a1(n,α)eλ(τ0τn)v(τ0)]+n:=𝒟τα,λv(τn)+n,\begin{split}{}^{C}_{0}\mathbb{D}^{\alpha,\lambda}_{\tau}v(\tau_{n})&=\frac{e^{-\lambda\tau_{n}}}{\Gamma(1-\alpha)}\sum^{n}_{k=1}\int^{\tau_{k}}_{\tau_{k-1}}(\tau_{k}-\eta)^{-\alpha}(\Pi_{1,k}u)^{\prime}(\eta)d\eta+\mathcal{R}^{n}\\ &=\frac{e^{-\lambda\tau_{n}}}{\Gamma(1-\alpha)}\sum^{n}_{k=1}a_{k}^{(n,\alpha)}(u^{k}-u^{k-1})+\mathcal{R}^{n}\left(:=e^{-\lambda\tau_{n}}\cdot\mathcal{D}^{\alpha}_{\tau}u(\tau_{n})\right)\\ &=\frac{1}{\Gamma(1-\alpha)}\Bigg{[}a^{(n,\alpha)}_{n}v(\tau_{n})-\sum^{n-1}_{k=1}(a^{(n,\alpha)}_{k+1}-a_{k}^{(n,\alpha)})e^{\lambda(\tau_{k}-\tau_{n})}v(\tau_{k})~{}-\\ &\quad~{}a_{1}^{(n,\alpha)}e^{\lambda(\tau_{0}-\tau_{n})}v(\tau_{0})\Bigg{]}+\mathcal{R}^{n}\\ &:=\mathcal{D}^{\alpha,\lambda}_{\tau}v(\tau_{n})+\mathcal{R}^{n},\end{split} (2.3)

where n:=𝔻τα,λ0Cv(τ)τ=τn𝒟τα,λv(τn)\mathcal{R}^{n}:={}^{C}_{0}\mathbb{D}^{\alpha,\lambda}_{\tau}v(\tau)\mid_{\tau=\tau_{n}}-\mathcal{D}^{\alpha,\lambda}_{\tau}v(\tau_{n}) is the truncation error and

ak(n,α)=1Δτkτk1τkds(τns)α=(τnτk1)1α(τnτk)1α(1α)Δτk,k=1,2,,n.\begin{split}a_{k}^{(n,\alpha)}&=\frac{1}{\Delta\tau_{k}}\int_{\tau_{k-1}}^{\tau_{k}}\frac{\mathrm{d}s}{(\tau_{n}-s)^{\alpha}}\\ &=\frac{(\tau_{n}-\tau_{k-1})^{1-\alpha}-(\tau_{n}-\tau_{k})^{1-\alpha}}{(1-\alpha)\Delta\tau_{k}},\quad k=1,2,\cdots,n.\end{split} (2.4)

Here the above formula (2.3) is named after the nonuniform tempered L1 formula. Obviously, if λ0\lambda\equiv 0, the approximate formula (2.3) reduces to the nonuniform L1 formula for approximating the Caputo fractional derivative [29].

Remark 2.1.

Although the exact integration is used to evaluate the coefficients ak(n,α)a^{(n,\alpha)}_{k} in Eq. (2.4), when the fractional order α\alpha is small and the grading index γ\gamma is large, then (τnτk)1α(\tau_{n}-\tau_{k})^{1-\alpha} is very close to (τnτk1)1α(\tau_{n}-\tau_{k-1})^{1-\alpha} and thus the round-off error of this subtraction in Eq. (2.4) will be remarkable in the numerical implementation and even it cannot yield some acceptable numerical results222See some related experimental results in our arXiv preprint https://arxiv.org/abs/2303.10592v2.. In order to overcome such an issue, we first introduce some notations and follow the idea in [43, Section 4] to derive a computational stable implementation:

dk(τ)=ττk,κk(τ)=ln(dk(τ)dk1(τ))=𝚕𝚘𝚐𝟷𝚙(Δτkττk1).d_{k}(\tau)=\tau-\tau_{k},\quad\kappa_{k}(\tau)=\ln\Bigg{(}\frac{d_{k}(\tau)}{d_{k-1}(\tau)}\Bigg{)}={\tt log1p}\Bigg{(}-\frac{\Delta\tau_{k}}{\tau-\tau_{k-1}}\Bigg{)}. (2.5)

Now, according to Eq. (2.4), we have an(n,α)=1(1α)(Δτn)αa^{(n,\alpha)}_{n}=\frac{1}{(1-\alpha)(\Delta\tau_{n})^{\alpha}} and

ak(n,α)=[dk1(τn)]1α(1α)Δτk[(dk(τn)dk1(τn))1α1]=[dk1(τn)]1α(1α)Δτk𝚎𝚡𝚙𝚖𝟷((1α)κk(τn)),k=1,2,,n1,\begin{split}a^{(n,\alpha)}_{k}&=\frac{-[d_{k-1}(\tau_{n})]^{1-\alpha}}{(1-\alpha)\Delta\tau_{k}}\Bigg{[}\Bigg{(}\frac{d_{k}(\tau_{n})}{d_{k-1}(\tau_{n})}\Bigg{)}^{1-\alpha}-1\Bigg{]}\\ &=\frac{-[d_{k-1}(\tau_{n})]^{1-\alpha}}{(1-\alpha)\Delta\tau_{k}}{\tt expm1}((1-\alpha)\kappa_{k}(\tau_{n})),\quad k=1,2,\cdots,n-1,\\ \end{split} (2.6)

where “expm1” and “log1p” are two built-in functions in MATLAB. After such a new formula for ak(n,α)a^{(n,\alpha)}_{k} is utilized in the nonuniform tempered L1 formula (2.3), we observed stable performance of the above reformulation in all our experiments.

In what follows, CC and cjc_{j} are constants, which depend on the problem but not on the mesh parameters. Moreover, we can give the following properties of the coefficients ak(α,n)a^{(\alpha,n)}_{k}:

Lemma 2.1.

([29]) For α(0,1)\alpha\in(0,1) and {ak(n,α)|1nM}\{a_{k}^{(n,\alpha)}|1\leqslant n\leqslant M\}~{} defined in  Eq. (2.4), it holds

0<a1(n,α)<a2(n,α)<<an(n,α),n=1,2,,M,\displaystyle 0<a_{1}^{(n,\alpha)}<a_{2}^{(n,\alpha)}<\cdots<a_{n}^{(n,\alpha)},~{}~{}n=1,2,\cdots,M, (2.7)
a1(1,α)>a1(2,α)>>a1(N,α)Tα.\displaystyle a_{1}^{(1,\alpha)}>a_{1}^{(2,\alpha)}>\cdots>a_{1}^{(N,\alpha)}\geq T^{-\alpha}. (2.8)

There exists a constant c1c_{1} such that an(n,α)an1(n,α)c1Mαa_{n}^{(n,\alpha)}-a_{n-1}^{(n,\alpha)}\geq c_{1}M^{\alpha} with n=2,3,,Mn=2,3,\cdots,M.

The error of such an approximation (2.3) can be evaluated.

Lemma 2.2.

Suppose |v′′(τ)|c0τα2,0<τT.|v^{\prime\prime}(\tau)|\leqslant c_{0}\tau^{\alpha-2},~{}0<\tau\leqslant T. Then there exists a constant CC such that

|n|=|𝔻τα,λ0Cv(τn)𝒟τα,λv(τn)|Cnmin{γ(1+α),2α},n=1,2,,M.\left|\mathcal{R}^{n}\right|=\left|{}_{0}^{C}\mathbb{D}^{\alpha,\lambda}_{\tau}v(\tau_{n})-\mathcal{D}^{\alpha,\lambda}_{\tau}v(\tau_{n})\right|\leq Cn^{-\min{\{\gamma(1+\alpha),2-\alpha\}}},\quad n=1,2,\ldots,M. (2.9)
Proof.

We still recall u(τ)=eλτv(τ)u(\tau)=e^{\lambda\tau}v(\tau). If |v′′(τ)|<c0τα2|v^{\prime\prime}(\tau)|<c_{0}\tau^{\alpha-2}, then it is not hard to verify that |u′′(τ)|<c~0τα2|u^{\prime\prime}(\tau)|<\tilde{c}_{0}\tau^{\alpha-2}. Moreover,

|𝔻τα,λ0Cv(τn)𝒟τα,λv(τn)|=|[eλτ𝔻τα0Cu(τ)]|τ=τneλτn𝒟ταu(τn)||eλτn||𝔻τα0Cu(τn)𝒟ταu(τn)||𝔻τα0Cu(τn)𝒟ταu(τn)|,\vspace{-2mm}\begin{split}\left|{}_{0}^{C}\mathbb{D}^{\alpha,\lambda}_{\tau}v(\tau_{n})-\mathcal{D}^{\alpha,\lambda}_{\tau}v(\tau_{n})\right|&=\Bigg{|}\Big{[}e^{-\lambda\tau}\cdot{}_{0}^{C}\mathbb{D}^{\alpha}_{\tau}u(\tau)\Big{]}\Big{|}_{\tau=\tau_{n}}-e^{-\lambda\tau_{n}}\cdot\mathcal{D}^{\alpha}_{\tau}u(\tau_{n})\Bigg{|}\\ &\leq\left|e^{-\lambda\tau_{n}}\right|\cdot\Big{|}{}^{C}_{0}\mathbb{D}^{\alpha}_{\tau}u(\tau_{n})-\mathcal{D}^{\alpha}_{\tau}u(\tau_{n})\Big{|}\\ &\leq\Big{|}{}^{C}_{0}\mathbb{D}^{\alpha}_{\tau}u(\tau_{n})-\mathcal{D}^{\alpha}_{\tau}u(\tau_{n})\Big{|},\end{split} (2.10)

where 𝔻τα0Cu(τ){}^{C}_{0}\mathbb{D}^{\alpha}_{\tau}u(\tau) is the α\alpha-order Caputo derivative of a function u(τ)u(\tau), cf. [29, Eq. (1.4)].

Furthermore, with the help of the estimate in [29, Lemma 2.1 and Eq. (2.3)], it gives

|𝔻τα0Cu(τn)𝒟ταu(τn)|Cnmin{γ(1+α),2α},n=1,2,,N,\Big{|}{}^{C}_{0}\mathbb{D}^{\alpha}_{\tau}u(\tau_{n})-\mathcal{D}^{\alpha}_{\tau}u(\tau_{n})\Big{|}\leq Cn^{-\min\{\gamma(1+\alpha),2-\alpha\}},\quad n=1,2,\ldots,N, (2.11)

and insert it into the inequality (2.10) to obtain the desired error estimate (2.9). ∎

Next, we consider Eq. (2.2) at the point (x,τ)=(xi,τn)(x,\tau)=(x_{i},\tau_{n}), then it follows that

𝔻τα,λ0Cv(xi,τn)=12σ22v(xi,τn)x2qv(xi,τn)+g(xi,τn),{}^{C}_{0}\mathbb{D}^{\alpha,\lambda}_{\tau}v(x_{i},\tau_{n})=\frac{1}{2}\sigma^{2}\frac{\partial^{2}v(x_{i},\tau_{n})}{\partial x^{2}}-qv(x_{i},\tau_{n})+g(x_{i},\tau_{n}), (2.12)

Let VV be a grid function defined by Vin:=v(xi,tn)V^{n}_{i}:=v(x_{i},t_{n}) with 0iN,0nM0\leq i\leq N,~{}0\leq n\leq M. Using this notation and recalling relations (2.3)-(2.4) along with Lemma 2.9, we can write Eq. (2.2) at the grid points (xi,tn)(x_{i},t_{n}) as follows

{x(𝒟τα,λVin)=12σ2δx2VinqxVin+xgin+in,1iN1,1nM,Vi0=σ(xi),1iN1,V0n=VNn=0,0nM,\begin{cases}\mathcal{H}_{x}\Big{(}\mathcal{D}^{\alpha,\lambda}_{\tau}V^{n}_{i}\Big{)}=\frac{1}{2}\sigma^{2}\delta^{2}_{x}V^{n}_{i}-q\mathcal{H}_{x}V^{n}_{i}+\mathcal{H}_{x}g^{n}_{i}+\mathcal{R}^{n}_{i},&1\leq i\leq N-1,~{}1\leq n\leq M,\\ V^{0}_{i}=\sigma(x_{i}),&1\leq i\leq N-1,\\ V^{n}_{0}=V^{n}_{N}=0,&0\leq n\leq M,\end{cases} (2.13)

where the terms {in}\{\mathcal{R}^{n}_{i}\} are small and satisfy the inequality

|in|c2(nmin{γ(1+α),2α}+h4),1iN1,1nM.\left|\mathcal{R}^{n}_{i}\right|\leq c_{2}\big{(}n^{-\min\{\gamma(1+\alpha),2-\alpha\}}+h^{4}\big{)},\quad 1\leq i\leq N-1,~{}1\leq n\leq M.

Now, we omit the small error items and arrive at the following difference schemes

{x(𝒟τα,λvin)=12σ2δx2vinqxvin+xgin,1iN1,1nM,vi0=σ(xi),1iN1,v0n=vNn=0,0nM,\begin{cases}\mathcal{H}_{x}\Big{(}\mathcal{D}^{\alpha,\lambda}_{\tau}v^{n}_{i}\Big{)}=\frac{1}{2}\sigma^{2}\delta^{2}_{x}v^{n}_{i}-q\mathcal{H}_{x}v^{n}_{i}+\mathcal{H}_{x}g^{n}_{i},&1\leq i\leq N-1,~{}1\leq n\leq M,\\ v^{0}_{i}=\sigma(x_{i}),&1\leq i\leq N-1,\\ v^{n}_{0}=v^{n}_{N}=0,&0\leq n\leq M,\end{cases} (2.14)

which is called the direct scheme (DS).

2.3 Stability and convergence of the compact difference scheme

In this subsection, we present the stability and convergence analysis of the direct difference scheme (2.14).

Theorem 2.3.

Suppose {vin| 0iN,0nM}\{v_{i}^{n}\,|\,0\leqslant i\leqslant N,~{}0\leq n\leq M\} is the solution of the difference scheme (2.14). Then, it holds

vkv0+Γ(1α)max1mkgma1(m,α),k=1,2,,M,\displaystyle\|v^{k}\|_{\infty}\leqslant\|v^{0}\|_{\infty}+\Gamma(1-\alpha)\max\limits_{1\leq m\leq k}\frac{\|g^{m}\|_{\infty}}{a_{1}^{(m,\alpha)}},\quad k=1,2,\cdots,M, (2.15)

where gm=max1iN1|gim|\|g^{m}\|_{\infty}=\max\limits_{1\leq i\leq N-1}|g_{i}^{m}|.

Proof.

Let i0(1i0N1)i_{0}~{}(1\leq i_{0}\leq N-1) be an index such that |vi0n|=vn.|v_{i_{0}}^{n}|=\|v^{n}\|_{\infty}. Rewriting the first equality of Eq. (2.14) in the form

[1Γ(1α)an(n,α)+q]xvin+σ2h2vin=σ22h2(vi1n+vi+1n)+1Γ(1α)[k=1n1eλ(τnτk)(ak+1(n,α)ak(n,α))xvik+eλ(τnτ0)a1(n,α)xvi0]+xgin,1iN1,1nM,\begin{split}\Bigg{[}\frac{1}{\Gamma(1-\alpha)}a_{n}^{(n,\alpha)}+q\Bigg{]}\mathcal{H}_{x}v_{i}^{n}+\frac{\sigma^{2}}{h^{2}}v_{i}^{n}&=\frac{\sigma^{2}}{2h^{2}}(v_{i-1}^{n}+v_{i+1}^{n})+\frac{1}{\Gamma(1-\alpha)}\Bigg{[}\sum_{k=1}^{n-1}e^{-\lambda(\tau_{n}-\tau_{k})}\cdot\\ &~{}~{}~{}~{}(a_{k+1}^{(n,\alpha)}-a_{k}^{(n,\alpha)})\mathcal{H}_{x}v_{i}^{k}+e^{-\lambda(\tau_{n}-\tau_{0})}a_{1}^{(n,\alpha)}\mathcal{H}_{x}v_{i}^{0}\Bigg{]}\\ &~{}~{}~{}+\mathcal{H}_{x}g_{i}^{n},\quad 1\leqslant i\leqslant N-1,\quad 1\leqslant n\leqslant M,\end{split} (2.16)

we set i=i0i=i_{0} in Eq. (2.16) and take the absolute value on the both sides of the equation obtained so that

[1Γ(1α)an(n,α)+q]vn+σ2h2vnσ2h2vn+1Γ(1α)[k=1n1(ak+1(n,α)ak(n,α))vk+a1(n,α)v0]+gn,1nM\begin{split}\Big{[}\frac{1}{\Gamma(1-\alpha)}a_{n}^{(n,\alpha)}+q\Big{]}\|v^{n}\|_{\infty}+\frac{\sigma^{2}}{h^{2}}\|v^{n}\|_{\infty}&\leqslant\frac{\sigma^{2}}{h^{2}}\|v^{n}\|_{\infty}+\frac{1}{\Gamma(1-\alpha)}\Big{[}\sum_{k=1}^{n-1}(a_{k+1}^{(n,\alpha)}-a_{k}^{(n,\alpha)})\|v^{k}\|_{\infty}\\ &~{}~{}~{}+a_{1}^{(n,\alpha)}\|v^{0}\|_{\infty}\Big{]}+\|g^{n}\|_{\infty},\quad 1\leqslant n\leqslant M\end{split}

with the help of vn=xvn\|v^{n}\|_{\infty}=\|\mathcal{H}_{x}v^{n}\|_{\infty}. This inequality can be rearranged and written as follows,

an(n,α)vnk=1n1(ak+1(n,α)ak(n,α))vk+a1(n,α)(v0+Γ(1α)a1(n,α)gn),1nM.\begin{split}a_{n}^{(n,\alpha)}\|v^{n}\|_{\infty}&\leqslant\sum_{k=1}^{n-1}(a_{k+1}^{(n,\alpha)}-a_{k}^{(n,\alpha)})\|v^{k}\|_{\infty}+a_{1}^{(n,\alpha)}\Big{(}\|v^{0}\|_{\infty}\\ &~{}~{}~{}+\frac{\Gamma(1-\alpha)}{a_{1}^{(n,\alpha)}}\|g^{n}\|_{\infty}\Big{)},\quad 1\leqslant n\leqslant M.\end{split} (2.17)

Next, we apply mathematical induction to prove (3.16) is valid. In fact, setting n=1n=1 in (2.17) and noticing a1(1,α)>0,a_{1}^{(1,\alpha)}>0, we obtain

v1v0+Γ(1α)a1(1,α)g1.\|v^{1}\|_{\infty}\leqslant\|v^{0}\|_{\infty}+\frac{\Gamma(1-\alpha)}{a_{1}^{(1,\alpha)}}\|g^{1}\|_{\infty}.

Thus (3.16) is valid for k=1.k=1. Assume that the inequality (3.16) holds for 1kn11\leqslant k\leqslant n-1, i.e.,

vkv0+Γ(1α)max1mkgma1(m,α),k=1,2,,n1.\displaystyle\|v^{k}\|_{\infty}\leqslant\|v^{0}\|_{\infty}+\Gamma(1-\alpha)\max_{1\leq m\leq k}\frac{\|g^{m}\|_{\infty}}{a_{1}^{(m,\alpha)}},\quad k=1,2,\cdots,n-1.

Then, from (2.17), we have

an(n,α)vn\displaystyle a_{n}^{(n,\alpha)}\|v^{n}\|_{\infty} k=1n1(ak+1(n,α)ak(n,α))(v0+Γ(1α)max1mkgma1(m,α))+a1(n,α)[v0\displaystyle\leqslant\sum_{k=1}^{n-1}(a_{k+1}^{(n,\alpha)}-a_{k}^{(n,\alpha)})\big{(}\|v^{0}\|_{\infty}+\Gamma(1-\alpha)\max_{1\leqslant m\leqslant k}\frac{\|g^{m}\|_{\infty}}{a_{1}^{(m,\alpha)}}\big{)}+a_{1}^{(n,\alpha)}\big{[}\|v^{0}\|_{\infty}
+Γ(1α)gna1(n,α)]\displaystyle+\Gamma(1-\alpha)\frac{\|g^{n}\|_{\infty}}{a_{1}^{(n,\alpha)}}\big{]}
[k=1n1(ak+1(n,α)ak(n,α))+a1(n,α)](v0+Γ(1α)max1mngma1(m,α))\displaystyle\leqslant\big{[}\sum_{k=1}^{n-1}(a_{k+1}^{(n,\alpha)}-a_{k}^{(n,\alpha)})+a_{1}^{(n,\alpha)}\big{]}\big{(}\|v^{0}\|_{\infty}+\Gamma(1-\alpha)\max_{1\leq m\leq n}\frac{\|g^{m}\|_{\infty}}{a_{1}^{(m,\alpha)}}\big{)}
an(n,α)[v0+Γ(1α)max1mngma1(m,α)].\displaystyle\leqslant a_{n}^{(n,\alpha)}[\|v^{0}\|_{\infty}+\Gamma(1-\alpha)\max_{1\leq m\leq n}\frac{\|g^{m}\|_{\infty}}{a_{1}^{(m,\alpha)}}]. (2.18)

Noticing an(n,α)0,a_{n}^{(n,\alpha)}\neq 0, we obtain

vnv0+Γ(1α)max1mngma1(m,α).\displaystyle\|v^{n}\|_{\infty}\leqslant\|v^{0}\|_{\infty}+\Gamma(1-\alpha)\max_{1\leq m\leq n}\frac{\|g^{m}\|_{\infty}}{a_{1}^{(m,\alpha)}}. (2.19)

Therefore (3.16) is valid for k=nk=n. This completes the proof.∎

This theorem shows that the direct difference scheme (2.14) is stable to the initial value σ\sigma and the right-hand side term gg. Now, we can present the following convergence analysis of this difference scheme.

Theorem 2.4.

Suppose {Vin| 0iN,0nM}\{V_{i}^{n}\,|\,0\leq i\leq N,~{}0\leq n\leq M\} is the solution of the problem (2.2) and {vin| 0iN,0nM}\{v_{i}^{n}\,|\,0\leq i\leq N,~{}0\leq n\leq M\} is the solution of the difference scheme (2.14). Let

ein=Vinvin,0iN,0nM.e_{i}^{n}=V_{i}^{n}-v_{i}^{n},\quad 0\leqslant i\leqslant N,~{}0\leqslant n\leqslant M.

then

enΓ(1α)c2(Mmin{γα,2α}+h4),1nM.\|e^{n}\|_{\infty}\leqslant\Gamma(1-\alpha)c_{2}\Big{(}M^{-\min\{\gamma\alpha,2-\alpha\}}+h^{4}\Big{)},\quad 1\leq n\leq M.\vspace{-4mm}
Proof.

Subtracting Eq. (2.13) from the corresponding Eq. (2.14) leads to the following error equations:

{x(𝒟τα,λein)=12σ2δx2einqxein+in,1iN1,1nM,ei0=0,1iN1,e0n=eNn=0,0nM.\begin{cases}\mathcal{H}_{x}\left(\mathcal{D}^{\alpha,\lambda}_{\tau}e^{n}_{i}\right)=\frac{1}{2}\sigma^{2}\delta^{2}_{x}e^{n}_{i}-q\mathcal{H}_{x}e^{n}_{i}+\mathcal{R}^{n}_{i},&1\leq i\leq N-1,~{}1\leq n\leq M,\\ e^{0}_{i}=0,&1\leq i\leq N-1,\\ e^{n}_{0}=e^{n}_{N}=0,&0\leq n\leq M.\end{cases} (2.20)

Applying Theorem 2.3 to the above error equations yields

enΓ(1α)max1mnma1(m,α),n=1,2,,M.\|e^{n}\|_{\infty}\leq\Gamma(1-\alpha)\max_{1\leq m\leq n}\frac{\|\mathcal{R}^{m}\|_{\infty}}{a_{1}^{(m,\alpha)}},\quad n=1,2,\ldots,M.

In addition, we further have

enΓ(1α)c2max1mn1a1(m,α)(mmin{γ(1+α),2α}+h4)Γ(1α)c2max1mnτmα(mmin{γ(1+α),2α}+h4)Γ(1α)c2[(TMγ)αmax1mnmγαmin{γ(1+α),2α}+τnαh4].\begin{split}\|e^{n}\|_{\infty}&\leq\Gamma(1-\alpha)c_{2}\max_{1\leq m\leq n}\frac{1}{a_{1}^{(m,\alpha)}}\left(m^{-\min\{\gamma(1+\alpha),2-\alpha\}}+h^{4}\right)\\ &\leq\Gamma(1-\alpha)c_{2}\max_{1\leq m\leq n}\tau^{\alpha}_{m}\left(m^{-\min\{\gamma(1+\alpha),2-\alpha\}}+h^{4}\right)\\ &\leq\Gamma(1-\alpha)c_{2}\left[\left(\frac{T}{M^{\gamma}}\right)^{\alpha}\max_{1\leq m\leq n}m^{\gamma\alpha-\min\{\gamma(1+\alpha),2-\alpha\}}+\tau^{\alpha}_{n}h^{4}\right].\end{split}

Then the rest of this proof can be similarly achieved via the proof of [29, Theorem 4.2]. ∎

3 Fast implementation of the compact difference scheme

For each time level of the scheme (2.14), it needs to solve a tri-diagonal linear system which can be solved by double-sweep method with computational cost 𝒪(NM+NM2)\mathcal{O}(NM+NM^{2}), so it is meaningful to reduce the computational complexity; refer to [44, 31]. However, there are few fast numerical methods for tempered time-fractional DEs [46, 45]. Fortunately, we find that the fast SOE approximation of the Caputo fractional derivative can be extended to approximate the tCFD. In this section, we first introduce the SOE approximation of the tCFD, then we can reconstruct a fast and stable difference method utilized the scheme (2.14) and the proposed fast SOE approximation.

3.1 The construction of fast compact difference scheme

Lemma 3.1.

([34]) For the given α(0,1)\alpha\in(0,1) and tolerance error ϵ,\epsilon, cut-off time restriction  δ\delta  and final time TT, there are one positive integer Mexp,M_{exp}, positive points {sj|j=1,2,,Mexp}\{s_{j}\,|\,j=1,2,\cdots,M_{exp}\} and corresponding positive weights {wj|j=1,2,,Mexp}\{w_{j}\,|\,j=1,2,\cdots,M_{exp}\} such that

|ταj=1Mexpwjesjτ|ϵ,τ[δ,T],\displaystyle\Big{|}\tau^{-\alpha}-\sum_{j=1}^{M_{exp}}w_{j}e^{-s_{j}\tau}\Big{|}\leqslant\epsilon,\quad\forall\tau\in[\delta,T], (3.1)

where

Mexp=𝒪((log1ϵ)(loglog1ϵ+logTδ)+(log1δ)(loglog1ϵ+log1δ)).\displaystyle M_{exp}=\mathcal{O}\Big{(}\big{(}\mathrm{log}\frac{1}{\epsilon}\big{)}\big{(}\mathrm{loglog}\frac{1}{\epsilon}+\mathrm{log}\frac{T}{\delta}\big{)}+\big{(}\mathrm{log}\frac{1}{\delta}\big{)}\big{(}\mathrm{loglog}\frac{1}{\epsilon}+\mathrm{log}\frac{1}{\delta}\big{)}\Big{)}. (3.2)

Next, we use Lemma 3.1 to derive a fast algorithm for computing the tCFD on graded meshes. Let δ=(1M)γT\delta=(\frac{1}{M})^{\gamma}T and recall u(τ)=eλτv(τ)u(\tau)=e^{\lambda\tau}v(\tau). Using the linear interpolation, we have

𝔻τα,λ0Cv(τn)=eλτnΓ(1α)[0τn1u(s)(τns)αds+τn1τnu(s)(τns)αds]eλτnΓ(1α)[0τn1u(s)j=1Mexpwjesj(τns)ds+τn1τn(Π1,nu)(s)(τns)αds]=eλτnΓ(1α)[j=1MexpwjFjn+an(n,α)(u(τn)u(τn1))](:=eλτn𝒟ταFu(τn))=eλτnΓ(1α)[j=1MexpwjFjn+an(n,α)(eλτnv(τn)eλτn1v(τn1))]:=𝒟τα,λFf(τn),\begin{split}{}^{C}_{0}\mathbb{D}^{\alpha,\lambda}_{\tau}v(\tau_{n})&=\frac{e^{-\lambda\tau_{n}}}{\Gamma(1-\alpha)}\Bigg{[}\int_{0}^{\tau_{n-1}}\frac{u^{\prime}(s)}{(\tau_{n}-s)^{\alpha}}\mathrm{d}s+\int_{\tau_{n-1}}^{\tau_{n}}\frac{u^{\prime}(s)}{(\tau_{n}-s)^{\alpha}}\mathrm{d}s\Bigg{]}\\ &\approx\frac{e^{-\lambda\tau_{n}}}{\Gamma(1-\alpha)}\Bigg{[}\int_{0}^{\tau_{n-1}}u^{\prime}(s)\sum_{j=1}^{M_{exp}}w_{j}e^{-s_{j}(\tau_{n}-s)}ds+\int_{\tau_{n-1}}^{\tau_{n}}\frac{(\Pi_{1,n}u)^{\prime}(s)}{(\tau_{n}-s)^{\alpha}}\mathrm{d}s\Bigg{]}\\ &=\frac{e^{-\lambda\tau_{n}}}{\Gamma(1-\alpha)}\Bigg{[}\sum_{j=1}^{M_{exp}}w_{j}F_{j}^{n}+a_{n}^{(n,\alpha)}(u(\tau_{n})-u(\tau_{n-1}))\Bigg{]}\left(:=e^{-\lambda\tau_{n}}\cdot{}^{F}\mathcal{D}^{\alpha}_{\tau}u(\tau_{n})\right)\\ &=\frac{e^{-\lambda\tau_{n}}}{\Gamma(1-\alpha)}\Bigg{[}\sum^{M_{exp}}_{j=1}w_{j}F^{n}_{j}+a^{(n,\alpha)}_{n}(e^{\lambda\tau_{n}}v(\tau_{n})-e^{\lambda\tau_{n-1}}v(\tau_{n-1}))\Bigg{]}\\ &:={}^{F}\mathcal{D}^{\alpha,\lambda}_{\tau}f(\tau_{n}),\end{split} (3.3)

where Fjn=0τn1u(s)esj(τns)ds=0τn1[eλsv(s)]esj(τns)dsF_{j}^{n}=\int^{\tau_{n-1}}_{0}u^{\prime}(s)e^{-s_{j}(\tau_{n}-s)}{\rm d}s=\int_{0}^{\tau_{n-1}}[e^{\lambda s}v(s)]^{\prime}e^{-s_{j}(\tau_{n}-s)}\mathrm{d}s and it can be evaluated by using a recursive algorithm, i.e.,

Fjn=0τn2u(s)esj(τns)ds+τn2τn1u(s)esj(τns)dsesjΔτn0τn2u(s)esj(τn1s)ds+τn2τn1(Π1,n1u)(s)esj(τns)ds=esjΔτnFjn1+Bjn[eλτn1v(τn1)eλτn2v(τn2)],n=2,3,,\begin{split}F_{j}^{n}&=\int_{0}^{\tau_{n-2}}u^{\prime}(s)e^{-s_{j}(\tau_{n}-s)}\mathrm{d}s+\int_{\tau_{n-2}}^{\tau_{n-1}}u^{\prime}(s)e^{-s_{j}(\tau_{n}-s)}\mathrm{d}s\\ &\approx e^{-s_{j}\Delta\tau_{n}}\int_{0}^{\tau_{n-2}}u^{\prime}(s)e^{-s_{j}(\tau_{n-1}-s)}\mathrm{d}s+\int_{\tau_{n-2}}^{\tau_{n-1}}(\Pi_{1,{n-1}}u)^{\prime}(s)e^{-s_{j}(\tau_{n}-s)}\mathrm{d}s\\ &=e^{-s_{j}\Delta\tau_{n}}F_{j}^{n-1}+B_{j}^{n}\big{[}e^{\lambda\tau_{n-1}}v(\tau_{n-1})-e^{\lambda\tau_{n-2}}v(\tau_{n-2})\big{]},\quad n=2,3,\cdots,\end{split}

where

Fj1=0,Bjn=1Δτn1τn2τn1esj(τns)ds,1jMexp.\displaystyle F_{j}^{1}=0,\quad B_{j}^{n}=\frac{1}{\Delta\tau_{n-1}}\int_{\tau_{n-2}}^{\tau_{n-1}}e^{-s_{j}(\tau_{n}-s)}\mathrm{d}s,\quad 1\leqslant j\leqslant M_{\rm{exp}}. (3.4)

According to Eqs. (3.3)-(3.4), a two-step recursive formula approximating the tCFD is given as follows

Dτα,λFv(τn)=eλτnΓ(1α){j=1MexpwjFjn+an(n,α)[eλτnv(τn)eλτn1v(τn1)]},n1,\displaystyle{}^{F}D^{\alpha,\lambda}_{\tau}v(\tau_{n})=\frac{e^{-\lambda\tau_{n}}}{\Gamma(1-\alpha)}\Bigg{\{}\sum_{j=1}^{M_{\rm{exp}}}w_{j}F_{j}^{n}+a_{n}^{(n,\alpha)}\big{[}e^{\lambda\tau_{n}}v(\tau_{n})-e^{\lambda\tau_{n-1}}v(\tau_{n-1})\big{]}\Bigg{\}},\quad n\geq 1, (3.5)
Fj1=0,Fjn=esjΔτnFjn1+Bjn[eλτn1v(τn1)eλτn2v(τn2)],n2.\displaystyle F_{j}^{1}=0,\quad F_{j}^{n}=e^{-s_{j}\Delta\tau_{n}}F_{j}^{n-1}+B_{j}^{n}\left[e^{\lambda\tau_{n-1}}v(\tau_{n-1})-e^{\lambda\tau_{n-2}}v(\tau_{n-2})\right],\quad n\geq 2. (3.6)

It is not hard to follow the idea in [29] for rewriting Eq. (3.5) as follows,

𝒟τα,λFv(τn)\displaystyle{}^{F}\mathcal{D}^{\alpha,\lambda}_{\tau}v(\tau_{n}) =eλτnΓ(1α)[k=1n1τk1τk(Π1,ku)(s)j=1Mexpwjesj(τns)ds+τn1τn(Π1,nu)(s)(τns)αds]\displaystyle=\frac{e^{-\lambda\tau_{n}}}{\Gamma(1-\alpha)}\Bigg{[}\sum_{k=1}^{n-1}\int_{\tau_{k-1}}^{\tau_{k}}(\Pi_{1,k}u)^{\prime}(s)\sum_{j=1}^{M_{exp}}w_{j}e^{-s_{j}(\tau_{n}-s)}ds+\int_{\tau_{n-1}}^{\tau_{n}}\frac{(\Pi_{1,n}u)^{\prime}(s)}{(\tau_{n}-s)^{\alpha}}\mathrm{d}s\Bigg{]}
=1Γ(1α){k=1n1bk(n,α)[eλ(τnτk)v(τk)eλ(τnτk1)v(τk1)]\displaystyle=\frac{1}{\Gamma(1-\alpha)}\Bigg{\{}\sum_{k=1}^{n-1}b_{k}^{(n,\alpha)}\big{[}e^{-\lambda(\tau_{n}-\tau_{k})}v(\tau_{k})-e^{\lambda(\tau_{n}-\tau_{k-1})}v(\tau_{k-1})\big{]}
+an(n,α)[v(τn)eλ(τnτn1)v(τn1)]}\displaystyle\quad~{}+a_{n}^{(n,\alpha)}\big{[}v(\tau_{n})-e^{-\lambda(\tau_{n}-\tau_{n-1})}v(\tau_{n-1})\big{]}\Bigg{\}}
=1Γ(1α)[bn(n,α)v(τn)k=1n1(bk+1(n,α)bk(n,α))eλ(τkτn)v(τk)\displaystyle=\frac{1}{\Gamma(1-\alpha)}\Bigg{[}b_{n}^{(n,\alpha)}v(\tau_{n})-\sum_{k=1}^{n-1}(b_{k+1}^{(n,\alpha)}-b_{k}^{(n,\alpha)})e^{\lambda(\tau_{k}-\tau_{n})}v(\tau_{k})
b1(n,α)eλ(τ0τn)v(τ0)],1nM,\displaystyle\quad~{}-b_{1}^{(n,\alpha)}e^{\lambda(\tau_{0}-\tau_{n})}v(\tau_{0})\Bigg{]},\quad 1\leqslant n\leqslant M, (3.7)

where

bk(n,α)={j=1Mexpwj1Δτkτk1τkesj(τns)ds,k=1,2,,n1,an(n,α),k=nb_{k}^{(n,\alpha)}=\begin{cases}\sum_{j=1}^{M_{exp}}w_{j}\frac{1}{\Delta\tau_{k}}\int_{\tau_{k-1}}^{\tau_{k}}e^{-s_{j}(\tau_{n}-s)}\mathrm{d}s,&k=1,2,\cdots,n-1,\\ a_{n}^{(n,\alpha)},&k=n\end{cases} (3.8)

and it enjoys the following monotonicity:

Lemma 3.2.

([29]) For any α(0,1),\alpha\in(0,1), the sequence {bk(n,α),n=1,2,,M}\{b_{k}^{(n,\alpha)},n=1,2,\cdots,M\} defined in (3.8) satisfies

0<b1(n,α)<bk(n,α)<<bn1(n,α).0<b_{1}^{(n,\alpha)}<b_{k}^{(n,\alpha)}<\cdots<b_{n-1}^{(n,\alpha)}.\\

If ϵc1Mα,\epsilon\leqslant c_{1}M^{\alpha}, then

bn1(n,α)bn(n,α).b_{n-1}^{(n,\alpha)}\leq b_{n}^{(n,\alpha)}.\\

Moreover, we can prove the following error estimate,

Lemma 3.3.

For any  α(0,1)\alpha\in(0,1) and  |v(τ)|c0τα1,|v′′(τ)|c0τα2,|v^{\prime}(\tau)|\leqslant c_{0}\tau^{\alpha-1},|v^{\prime\prime}(\tau)|\leqslant c_{0}\tau^{\alpha-2}, we have

𝔻τα,λ0Cv(τn)=𝒟τα,λFv(τn)+𝒪(nmin{γ(1+α),2α}+ϵ),n=1,2,,M.{}_{0}^{C}\mathbb{D}^{\alpha,\lambda}_{\tau}v(\tau_{n})={}^{F}\mathcal{D}^{\alpha,\lambda}_{\tau}v(\tau_{n})+\mathcal{O}\big{(}n^{-\min\{\gamma(1+\alpha),2-\alpha\}}+\epsilon\big{)},\quad n=1,2,\cdots,M.
Proof.

Again, we recall u(τ)=eλτv(τ)u(\tau)=e^{\lambda\tau}v(\tau). From the above conditions, it is not hard to verify that |u(τ)|c~0τα1,|u′′(τ)|c~0τα2|u^{\prime}(\tau)|\leq\tilde{c}_{0}\tau^{\alpha-1},|u^{\prime\prime}(\tau)|\leq\tilde{c}_{0}\tau^{\alpha-2}. By using the relations (2.10) and (3.3), we follow the conclusion of [29, Lemma 2.5] to obtain the error estimate

𝔻τα,λ0Cv(τn)=eλτn𝔻τα0Cu(τn)=eλτn[𝒟ταFu(τn)+𝒪(nmin{γ(1+α),2α}+ϵ)]=eλτn𝒟ταFu(τn)+eλτn𝒪(nmin{γ(1+α),2α}+ϵ)=𝒟τα,λFv(τn)+𝒪(nmin{γ(1+α),2α}+ϵ),\begin{split}{}^{C}_{0}\mathbb{D}^{\alpha,\lambda}_{\tau}v(\tau_{n})&=e^{-\lambda\tau_{n}}\cdot{}^{C}_{0}\mathbb{D}^{\alpha}_{\tau}u(\tau_{n})=e^{-\lambda\tau_{n}}\Big{[}{}^{F}\mathcal{D}^{\alpha}_{\tau}u(\tau_{n})+\mathcal{O}\big{(}n^{-\min\{\gamma(1+\alpha),2-\alpha\}}+\epsilon\big{)}\Big{]}\\ &=e^{-\lambda\tau_{n}}\cdot{}^{F}\mathcal{D}^{\alpha}_{\tau}u(\tau_{n})+e^{-\lambda\tau_{n}}\cdot\mathcal{O}\big{(}n^{-\min\{\gamma(1+\alpha),2-\alpha\}}+\epsilon\big{)}\\ &={}^{F}\mathcal{D}^{\alpha,\lambda}_{\tau}v(\tau_{n})+\mathcal{O}\big{(}n^{-\min\{\gamma(1+\alpha),2-\alpha\}}+\epsilon\big{)},\end{split} (3.9)

which completes the proof. ∎

Applying the relations (3.5)-(3.6) along with Lemma 3.3 to Eq. (2.12), we can obtain the numerical approximation for the model (2.2) as follows,

{x(𝒟τα,λVin)=12σ2δx2VinqxVin+xgin+^in,1iN1,1nM,Fj,in=esjΔτnFj,in1+Bjn(Vin1Vin2),1jMexp,1iN1,2nM,Fj,i1=0,j=1,2,,Mexp,1iN1,Vi0=σ(xi),1iN1,V0n=VNn=0,0nM,\begin{cases}\mathcal{H}_{x}\Big{(}\mathcal{D}^{\alpha,\lambda}_{\tau}V^{n}_{i}\Big{)}=\frac{1}{2}\sigma^{2}\delta^{2}_{x}V^{n}_{i}-q\mathcal{H}_{x}V^{n}_{i}+\mathcal{H}_{x}g^{n}_{i}+\widehat{\mathcal{R}}^{n}_{i},~{}1\leq i\leq N-1,~{}1\leq n\leq M,\\ \!F_{j,i}^{n}\!=\!e^{-s_{j}\Delta\tau_{n}}\!F_{j,i}^{n-1}\!+\!B_{j}^{n}(V_{i}^{n-1}\!-\!V_{i}^{n-2}),~{}1\!\leq\!j\!\leq\!\!M\!_{\rm{exp}},~{}1\!\leq\!i\!\leq\!\!N-1,~{}2\leq n\!\leq\!\!M,\\ F_{j,i}^{1}=0,\quad j=1,2,\cdots,M_{\rm{exp}},\quad 1\leq i\leq N-1,\\ V^{0}_{i}=\sigma(x_{i}),\quad 1\leq i\leq N-1,\\ V^{n}_{0}=V^{n}_{N}=0,\quad 0\leq n\leq M,\end{cases} (3.10)

where {^in}\{\widehat{\mathcal{R}}^{n}_{i}\} are small and satisfy the following inequality

|^in|c3(nmin{γ(1+α),2α}+h4+ϵ)|\widehat{\mathcal{R}}^{n}_{i}|\leq c_{3}\big{(}n^{-\min\{\gamma(1+\alpha),2-\alpha\}}+h^{4}+\epsilon\big{)} (3.11)

according to Lemma 3.3.

Now, we omit the small error items and arrive at the following fast difference scheme (FS)

{x(𝒟τα,λvin)=12σ2δx2vinqxvin+xgin, 1iN1,1nM,fj,in=esjΔτnfj,in1+Bjn(vin1vin2),1jMexp,1iN1,2nM,fj,i1=0,j=1,2,,Mexp,1iN1,vi0=σ(xi),1iN1,v0n=vNn=0,0nM,\begin{cases}\mathcal{H}_{x}\left(\mathcal{D}^{\alpha,\lambda}_{\tau}v^{n}_{i}\right)=\frac{1}{2}\sigma^{2}\delta^{2}_{x}v^{n}_{i}-q\mathcal{H}_{x}v^{n}_{i}+\mathcal{H}_{x}g^{n}_{i},\;1\leq i\leq N-1,~{}~{}1\leq n\leq M,\\ \!f_{j,i}^{n}=\!e^{-s_{j}\Delta\tau_{n}}\!f_{j,i}^{n-1}+\!B_{j}^{n}(v_{i}^{n-1}-\!v_{i}^{n-2}),~{}1\leq\!j\leq M_{exp},~{}1\leq\!i\leq\!N-1,~{}2\leq\!n\leq M,\\ f_{j,i}^{1}=0,\quad j=1,2,\cdots,M_{exp},\quad 1\leq i\leq N-1,\\ v^{0}_{i}=\sigma(x_{i}),\quad 1\leq i\leq N-1,\\ v^{n}_{0}=v^{n}_{N}=0,\quad 0\leq n\leq M,\end{cases} (3.12)

which utilizes the representation (3.7) to equivalently rewrite the last difference scheme as

1Γ(1α)[bn(n,α)xvink=1n1(bk+1(n,α)bk(n,α))eλ(τkτn)xvikb1(n,α)eλ(τ0τn)xvi0]\displaystyle\frac{1}{\Gamma(1-\alpha)}\Big{[}b_{n}^{(n,\alpha)}\mathcal{H}_{x}v^{n}_{i}-\sum_{k=1}^{n-1}(b_{k+1}^{(n,\alpha)}-b_{k}^{(n,\alpha)})e^{\lambda(\tau_{k}-\tau_{n})}\mathcal{H}_{x}v^{k}_{i}-b_{1}^{(n,\alpha)}e^{\lambda(\tau_{0}-\tau_{n})}\mathcal{H}_{x}v^{0}_{i}\Big{]}
=12σ2δx2vinqxvin+xgin,1iN1,1nM,\displaystyle=\frac{1}{2}\sigma^{2}\delta^{2}_{x}v^{n}_{i}-q\mathcal{H}_{x}v^{n}_{i}+\mathcal{H}_{x}g^{n}_{i},\quad 1\leq i\leq N-1,~{}~{}1\leq n\leq M, (3.13)
vi0=σ(xi),1iN1,\displaystyle v^{0}_{i}=\sigma(x_{i}),\quad 1\leq i\leq N-1, (3.14)
v0n=vNn=0,0nM.\displaystyle v^{n}_{0}=v^{n}_{N}=0,\quad 0\leq n\leq M. (3.15)

The fast scheme (3.12), at each time level, needs to solve a tri-diagonal linear system that can be solved by the double-sweep method with computational cost 𝒪(NM+NMMexp)\mathcal{O}(NM+NMM_{exp}). Note that, generally, Mexp<120M_{exp}<120 [29, 45] and MM is large, thus the scheme (3.12) requires lower computational cost than the scheme (2.14).

3.2 Convergence of the fast compact difference scheme

In this subsection, we discuss the stability and convergence of the fast compact difference scheme for the problem (2.2).

Theorem 3.4.

Suppose {vin| 0iN,0nM}\{v_{i}^{n}\,|\,0\leqslant i\leqslant N,~{}0\leq n\leq M\} is the solution of the difference scheme (3.13)–(3.15) and and ϵc1Mα\epsilon\leq c_{1}M^{\alpha}. Then, it holds

vkv0+Γ(1α)max1mkgmb1(m,α),k=1,2,,M.\displaystyle\|v^{k}\|_{\infty}\leqslant\|v^{0}\|_{\infty}+\Gamma(1-\alpha)\max\limits_{1\leq m\leq k}\frac{\|g^{m}\|_{\infty}}{b_{1}^{(m,\alpha)}},\quad k=1,2,\cdots,M. (3.16)
Proof.

Let 1i0N11\leq\exists i_{0}\leq N-1 be an index such that |vi0n|=v|v^{n}_{i_{0}}|=\|v\|_{\infty}. Rewriting the Eq. (3.13) in the form

[1Γ(1α)bn(n,α)+q]xvin+σ2h2vin=σ22h2(vi1n+vi+1n)+1Γ(1α)[k=1n1eλ(τnτk)(bk+1(n,α)bk(n,α))xvik+eλ(τnτ0)b1(n,α)xvi0]+xgin,1iN1,1nM,\begin{split}\Bigg{[}\frac{1}{\Gamma(1-\alpha)}b_{n}^{(n,\alpha)}+q\Bigg{]}\mathcal{H}_{x}v_{i}^{n}+\frac{\sigma^{2}}{h^{2}}v_{i}^{n}&=\frac{\sigma^{2}}{2h^{2}}(v_{i-1}^{n}+v_{i+1}^{n})+\frac{1}{\Gamma(1-\alpha)}\Bigg{[}\sum_{k=1}^{n-1}e^{-\lambda(\tau_{n}-\tau_{k})}\cdot\\ &~{}~{}~{}~{}(b_{k+1}^{(n,\alpha)}-b_{k}^{(n,\alpha)})\mathcal{H}_{x}v_{i}^{k}+e^{-\lambda(\tau_{n}-\tau_{0})}b_{1}^{(n,\alpha)}\mathcal{H}_{x}v_{i}^{0}\Bigg{]}\\ &~{}~{}~{}+\mathcal{H}_{x}g_{i}^{n},\quad 1\leqslant i\leqslant N-1,\quad 1\leqslant n\leqslant M,\end{split} (3.17)

where we set i=i0i=i_{0} in (3.17) and take the absolute value on the both sides of the above equation such that

[1Γ(1α)bn(n,α)+q]vn+σ2h2vnσ2h2vn+1Γ(1α)[k=1n1(bk+1(n,α)bk(n,α))vk+b1(n,α)v0]+gn,1nM.\begin{split}\Big{[}\frac{1}{\Gamma(1-\alpha)}b_{n}^{(n,\alpha)}+q\Big{]}\|v^{n}\|_{\infty}+\frac{\sigma^{2}}{h^{2}}\|v^{n}\|_{\infty}&\leqslant\frac{\sigma^{2}}{h^{2}}\|v^{n}\|_{\infty}+\frac{1}{\Gamma(1-\alpha)}\Bigg{[}\sum_{k=1}^{n-1}(b_{k+1}^{(n,\alpha)}-b_{k}^{(n,\alpha)})\|v^{k}\|_{\infty}\\ &~{}~{}~{}+b_{1}^{(n,\alpha)}\|v^{0}\|_{\infty}\Bigg{]}+\|g^{n}\|_{\infty},\quad 1\leqslant n\leqslant M.\end{split}\vspace{-4mm}

Next, combining the proofs of Theorem 2.3 and [29, Theorem 4.1] can easily give the rest of this proof of the above theorem, so we omit the similar details here. ∎

Similarly, according to the above theorem, it concludes that the fast difference scheme (3.12) is stable to the initial value σ\sigma and the right-hand side term gg. Now, the convergence of the fast difference scheme can be given as follow:

Theorem 3.5.

Suppose {Vin| 0iN,0nM}\{V_{i}^{n}\,|\,0\leq i\leq N,~{}0\leq n\leq M\} is the solution of the problem (2.2) and {vin| 0iN,0nM}\{v_{i}^{n}\,|\,0\leq i\leq N,~{}0\leq n\leq M\} is the solution of the difference scheme (3.12). Let

ein=Vinvin,0iN,0nM.e_{i}^{n}=V_{i}^{n}-v_{i}^{n},\quad 0\leqslant i\leqslant N,~{}0\leqslant n\leqslant M.

If ϵmin{c1Mα,12Tα},\epsilon\leq\min\{c_{1}M^{\alpha},\frac{1}{2}T^{-\alpha}\}, then

en2Γ(1α)c3Tα(Mmin{γα,2α}+h4+ϵ),1nM.\|e^{n}\|_{\infty}\leqslant 2\Gamma(1-\alpha)c_{3}T^{\alpha}\Big{(}M^{-\min\{\gamma\alpha,2-\alpha\}}+h^{4}+\epsilon\Big{)},\quad 1\leq n\leq M.\vspace{-4mm}
Proof.

The proof of this theorem is similar with those of Theorem 2.4 and [29, Theorem 4.2], so here we omit the details. ∎

Remark 3.1.

It is worth noting that if α1\alpha\rightarrow 1^{-}, the upper bounds of error estimates in Theorem 2.4 and Theorem 3.5 will blow up and are indeed α\alpha-nonrobust, although we do not observe this phenomenon in our experiments. To remedy this drawback, the so-called discrete comparison principle (equivalent to the discrete maximum principle) for the L1 discretisation of the Caputo derivative and the central difference discretisation of the spatial derivative in time-fractional PDEs can be extended to yield a kind of new error estimates which are α\alpha-robust; refer to [47, 48, 49, 51, 50] for a discussion. Considering the length of this paper and the need of reformulating some conclusions, we shall not pursue that here and the corresponding results will be reported in the future work.

4 Numerical experiments

In this section, the first two examples exhibiting an exact solution are presented to demonstrate the accuracy of the solution and the order of convergence of our proposed numerical schemes given in Sections 23. Furthermore, we use the proposed schemes to price several different European options governed by a tempered TFBS model, which is one of the most interesting models in the financial market. All experiments were performed on a Windows 7 (64 bit) PC-11th Gen Inter(R) i7-11700K @3.60GHz, 32 GB of RAM using MATLAB R2021a.

Although the grading index γ\gamma can be selected as γ=(2α)/α\gamma=(2-\alpha)/\alpha to get the temporal convergence of “optimal” order (2α)(2-\alpha) for our proposed schemes, it should make the graded meshes very twisted near the initial time and maybe causes some round-off errors in the practical implementations especially when α\alpha is small and γ\gamma is also large (e.g, α=0.1\alpha=0.1 and γ=19\gamma=19). For convenience, we just select γ\gamma (not very large) such that 1<min{γα,2α}2α1<\min\{\gamma\alpha,2-\alpha\}\leq 2-\alpha in our experiments. To evaluate the accuracy and efficiency of our proposed schemes, we consider the maximum norm error e(M,N):=max0kMVkvke_{\infty}(M,N):=\max\limits_{0\leq k\leq M}\|V^{k}-v^{k}\|_{\infty} and convergence orders

Orderh(N)=log2(e(N/2,M(N/2))e(N,M(N))),OrderΔτ(M)=log2(e(N(M/2),M/2)e(N(M),M)).{Order}_{h}(N)=\log_{2}\left(\frac{e_{\infty}(N/2,M(N/2))}{e_{\infty}(N,M(N))}\right),\quad{Order}_{\Delta\tau}(M)=\log_{2}\left(\frac{e_{\infty}(N(M/2),M/2)}{e_{\infty}(N(M),M)}\right).

Example 1. Consider the following tempered TFBS model with homogeneous BCs:

{𝔻τα,λ0CU(x,τ)=σ222U(x,τ)x2+cU(x,τ)xrU(x,τ)+f(x,τ),(x,τ)(0,1)×(0,1],U(x,0)=5sin(πx),x[0,1],U(0,τ)=U(1,τ)=0,τ(0,1],\begin{cases}{}^{C}_{0}\mathbb{D}^{\alpha,\lambda}_{\tau}U(x,\tau)=\frac{\sigma^{2}}{2}\frac{\partial^{2}U(x,\tau)}{\partial x^{2}}+c\frac{\partial U(x,\tau)}{\partial x}-rU(x,\tau)+f(x,\tau),&(x,\tau)\in(0,1)\times(0,1],\\ U(x,0)=5\sin(\pi x),&x\in[0,1],\\ U(0,\tau)=U(1,\tau)=0,&\tau\in(0,1],\end{cases} (4.1)

where the source term

f(x,τ)\displaystyle f(x,\tau) =5eλτ[Γ(1+α)sin(πx)+σ22π2sin(πx)(τα+1)cπcos(πx)(τα+1)\displaystyle=5e^{-\lambda\tau}\Big{[}\Gamma(1+\alpha)\sin(\pi x)+\frac{\sigma^{2}}{2}\pi^{2}\sin(\pi x)(\tau^{\alpha}+1)-c\pi\cos(\pi x)(\tau^{\alpha}+1)
+rsin(πx)(τα+1)]\displaystyle\quad+r\sin(\pi x)(\tau^{\alpha}+1)\Big{]}

is chosen so that the exact solution of the model (4.1) is U(x,τ)=5eλτ(τα+1)sin(πx)U(x,\tau)=5e^{-\lambda\tau}(\tau^{\alpha}+1)\sin(\pi x). Here the parameter values are r=0.05,D=0r=0.05,D=0 and σ=0.25\sigma=0.25.

At present, Tables 12 show numerical results of the fast and direct schemes for Example 1 with different α\alpha and the grading parameter γ\gamma. It is seen that the errors and rates of these two methods are the same as those in Table 12; hence, the SOE approximation for accelerating the tempered L1 formula on graded meshes does not lose the accuracy with fitted tolerance ϵ=1012\epsilon=10^{-12}, which is used throughout this section. Moreover, it is clear that the proposed numerical methods are convergent with min{γα,2α}\min\{\gamma\alpha,2-\alpha\}-order and fourth-order accuracy in time and space, respectively, which agree well with the theoretical statements. In addition, as seen from the CPU times of fast and direct schemes applied to Example 1 in these tables. Obviously, the fast difference scheme saves much computational cost compared with the direct difference scheme in terms of the elapsed CPU time.

Moreover, we plot Fig. 1 to show the exact solution and numerical solutions produced by two difference schemes for Example 1. As seen from Fig. 1, the exact solution of Example 1 indeed changes dramatically near the initial time (i.e., a weak singularity near τ=0\tau=0), and numerical solutions produced by two proposed schemes can capture such a phenomena/feature well. In summary, our proposed schemes can be viewed as two robust and reliable tools for Example 1, especially the FS will be preferable because it can save much computational cost.

Table 1: Spatial convergence order of two proposed compact difference methods for Example 1 with M(N)=N4/min{γα,2α}M(N)=\lceil N^{4/\min\{\gamma\alpha,2-\alpha\}}\rceil and λ=1\lambda=1.
DS (2.14) FS (3.12)
(α,γ)(\alpha,\gamma) NN e(M,N)e_{\infty}(M,N) Orderh{Order}_{h} Time e(M,N)e_{\infty}(M,N) Orderh{Order}_{h} Time
(0.3, 4) 4 4.0427e-3 0.006 4.0427e-3 0.029
8 2.5550e-4 3.9839 0.418 2.5550e-4 3.9839 0.362
16 1.5994e-5 3.9977 33.752 1.5994e-5 3.9977 4.543
32 9.9971e-7 3.9999 3358.44 9.9971e-7 3.9999 56.177
(0.5, 3) 6 1.8649e-3 0.007 1.8649e-3 0.028
12 1.2337e-4 3.9180 0.199 1.2337e-4 3.9180 0.207
24 7.9150e-6 3.9623 7.105 7.9150e-6 3.9623 1.581
48 5.0149e-7 3.9803 291.118 5.0149e-7 3.9803 12.115
(0.8, 2) 4 3.0372e-3 0.006 3.0372e-3 0.021
8 2.0027e-4 3.9206 0.417 2.0027e-4 3.9206 0.214
16 1.2626e-5 3.9875 33.627 1.2626e-5 3.9875 2.572
32 7.9200e-7 3.9948 3352.67 7.9200e-7 3.9948 31.116
Table 2: Temporal convergence order of two proposed compact difference methods for Example 1 with N(M)=Mmin{γα,2α}/4N(M)=\lceil M^{\min\{\gamma\alpha,2-\alpha\}/4}\rceil and λ=1\lambda=1.
DS (2.14) FS (3.12)
(α,γ)(\alpha,\gamma) MM e2(M,N)e_{2}(M,N) OrderΔτ{Order}_{\Delta\tau} Time e(M,N)e_{\infty}(M,N) OrderΔτ{Order}_{\Delta\tau} Time\mathrm{Time}
(0.3, 4) 800 3.4397e-4 0.265 3.4397e-4 0.275
1600 1.4977e-4 1.1995 0.950 1.4977e-4 1.1995 0.587
3200 6.5200e-5 1.1998 3.485 6.5200e-5 1.1998 1.251
6400 2.8382e-5 1.1999 13.250 2.8382e-5 1.9999 2.680
(0.5, 3) 640 1.5773e-4 0.138 1.5773e-4 0.173
1280 5.6136e-5 1.4905 0.542 5.6136e-5 1.4905 0.363
2560 2.0073e-5 1.4837 2.076 2.0073e-5 1.4837 0.794
5120 7.1614e-6 1.4869 8.112 7.1614e-6 1.4869 1.693
(0.8, 2) 640 3.4921e-4 0.173 3.4921e-4 0.127
1280 1.5606e-4 1.1620 0.626 1.5606e-4 1.1620 0.278
2560 6.8165e-5 1.1950 2.277 6.8165e-5 1.1950 0.564
5120 2.9334e-5 1.2164 8.578 2.9334e-5 1.2164 1.198
Refer to caption
Refer to caption
Refer to caption
Fig. 1: Exact and numerical solutions of Example 1 at α=0.5\alpha=0.5 with (α,λ)=(0.5,1)(\alpha,\lambda)=(0.5,1), N=24N=24 and M(N)=N4/min{γα,2α}M(N)=\lceil N^{4/\min\{\gamma\alpha,2-\alpha\}}\rceil. Left: exact solution; Middle: DS (2.14); Right: FS (3.12).

Example 2. The second example reads the following tempered TFBS model with nonhomogeneous BCs.

{𝔻τα,λ0CU(x,τ)=σ222U(x,τ)x2+cU(x,τ)xrU(x,τ)+f(x,τ),(x,τ)(0,1)×(0,1],U(x,0)=x4+x3+x2+1,x[0,1],U(0,τ)=eλτ(τα+1),U(1,τ)=4eλτ(τα+1),τ(0,1],\begin{cases}{}^{C}_{0}\mathbb{D}^{\alpha,\lambda}_{\tau}U(x,\tau)=\frac{\sigma^{2}}{2}\frac{\partial^{2}U(x,\tau)}{\partial x^{2}}+c\frac{\partial U(x,\tau)}{\partial x}-rU(x,\tau)+f(x,\tau),&(x,\tau)\in(0,1)\times(0,1],\\ U(x,0)=x^{4}+x^{3}+x^{2}+1,&x\in[0,1],\\ U(0,\tau)=e^{-\lambda\tau}(\tau^{\alpha}+1),\quad U(1,\tau)=4e^{-\lambda\tau}(\tau^{\alpha}+1),&\tau\in(0,1],\end{cases} (4.2)

where the source term is defined as

f(x,τ)=eλτ[Γ(1+α)(x4+x3+x2+1)σ22(12x2+6x+2)(τα+1)c(4x3+3x2+2x)(τα+1)+r(x4+x3+x2+1)(τα+1)]\begin{split}f(x,\tau)&=e^{-\lambda\tau}\Big{[}\Gamma(1+\alpha)(x^{4}+x^{3}+x^{2}+1)-\frac{\sigma^{2}}{2}(12x^{2}+6x+2)(\tau^{\alpha}+1)-c(4x^{3}\\ &\quad~{}+3x^{2}+2x)(\tau^{\alpha}+1)+r(x^{4}+x^{3}+x^{2}+1)(\tau^{\alpha}+1)\Big{]}\end{split}

such that the exact solution of model (4.2) reads U(x,τ)=eλτ(τα+1)(x4+x3+x2+1)U(x,\tau)=e^{-\lambda\tau}(\tau^{\alpha}+1)(x^{4}+x^{3}+x^{2}+1). Moreover, the parameter values are r=0.03,D=0.01r=0.03,D=0.01 and σ=0.45\sigma=0.45.

To solve Example 2, we rewrite it into the equivalent form of (2.2) in order to apply the proposed schemes (2.14) and (3.12). By choosing the appropriate graded time steps, numerical results of Example 2 are listed in Tables 34, which demonstrate that the proposed methods work very well with the temporal min{γα,2α}\min\{\gamma\alpha,2-\alpha\}-order and spatial fourth-order convergence accuracies for the tempered time-fractional TFBS model with nonhomogeneous BCs. Compared to the direct difference scheme, the fast difference scheme based on the SOE approximation of the graded L1 formula does not lose the accuracy with fitted tolerance ϵ\epsilon and it also can save much computational cost in terms of the elapsed CPU time, especially when the number of time steps is increasingly large.

Table 3: Spatial convergence order of two proposed compact difference schemes for Example 2 with M(N)=N4/min{γα,2α}M(N)=\lceil N^{4/\min\{\gamma\alpha,2-\alpha\}}\rceil and λ=1\lambda=1.
DS (2.14) FS (3.12)
(α,γ)(\alpha,\gamma) NN e(M,N)e_{\infty}(M,N) Orderh{Order}_{h} Time\mathrm{Time} e(M,N)e_{\infty}(M,N) Orderh{Order}_{h} Time\mathrm{Time}
(0.3, 4) 4 8.5897e-4 0.007 8.5897e-4 0.028
8 5.5574e-5 3.9501 0.414 5.5574e-5 3.9501 0.358
16 3.4962e-6 3.9920 33.678 3.4962e-6 3.9920 4.516
32 2.1896e-7 3.9970 3352.30 2.1896e-7 3.9970 55.893
(0.5, 3) 6 3.9132e-4 0.006 3.9132e-4 0.027
12 2.6851e-5 3.8653 0.197 2.6851e-5 3.8653 0.201
24 1.7280e-6 3.9578 7.134 1.7280e-6 3.9578 1.557
48 1.0966e-7 3.9780 285.720 1.0966e-7 3.9780 11.961
(0.8, 2) 4 6.5572e-4 0.007 6.5572e-4 0.019
8 4.3348e-5 3.9190 0.418 4.3348e-5 3.9190 0.209
16 2.7691e-6 3.9685 33.538 2.7691e-6 3.9685 2.552
32 1.7325e-7 3.9985 3362.85 1.7325e-7 3.9985 30.974
Table 4: Temporal convergence order of two proposed compact difference schemes for Example 2 with N(M)=Mmin{γα,2α}/4N(M)=\lceil M^{\min\{\gamma\alpha,2-\alpha\}/4}\rceil and λ=1\lambda=1.
DS (2.14) FS (3.12)
(α,γ)(\alpha,\gamma) MM e(M,N)e_{\infty}(M,N) OrderΔτOrder_{\Delta\tau} Time\mathrm{Time} e(M,N)e_{\infty}(M,N) OrderΔτ{Order}_{\Delta\tau} Time\mathrm{Time}
(0.3, 4) 800 7.4809e-5 0.262 7.4809e-5 0.274
1600 3.2779e-5 1.1904 0.943 3.2779e-5 1.1904 0.593
3200 1.4284e-5 1.1984 3.441 1.4284e-5 1.1984 1.260
6400 6.2129e-6 1.2011 13.112 6.2129e-6 1.2011 2.694
(0.5, 3) 640 3.4280e-5 0.138 3.4280e-5 0.169
1280 1.2276e-5 1.4815 0.554 1.2276e-5 1.4815 0.365
2560 4.3921e-6 1.4829 2.065 4.3921e-6 1.4829 0.782
5120 1.5645e-6 1.4892 8.058 1.5645e-6 1.4892 1.659
(0.8, 2) 640 7.7152e-5 0.170 7.7152e-5 0.126
1280 3.3781e-5 1.1915 0.623 3.3781e-5 1.1915 0.267
2560 1.4712e-5 1.1992 2.263 1.4712e-5 1.1992 0.569
5120 6.3887e-6 1.2034 8.499 6.3887e-6 1.2034 1.194

Example 3. We then consider the tempered TFBS model describing a double barrier knock-out option under a truncated domain Ω^Ω^=[Sl,Sr]\widehat{\Omega}\cup\partial\widehat{\Omega}=[S_{l},S_{r}], which is modified from [2].

{α,λC(S,t)tα,λ+12σ2S22C(S,t)S2+r^SC(S,t)SrC(S,t)=0,(S,t)Ω^×[0,T),C(S,T)=max(SK,0),SΩ^,C(S,t)=0,(S,t)Ω^×[0,T),\begin{cases}\frac{\partial^{\alpha,\lambda}C(S,t)}{\partial t^{\alpha,\lambda}}+\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}C(S,t)}{\partial S^{2}}+\hat{r}S\frac{\partial C(S,t)}{\partial S}-rC(S,t)=0,&(S,t)\in\widehat{\Omega}\times[0,T),\\ C(S,T)=\max(S-K,0),&S\in\widehat{\Omega},\\ C(S,t)=0,&(S,t)\in\partial\widehat{\Omega}\times[0,T),\end{cases} (4.3)

Here, the model parameters are set as r=0.03r=0.03, K=10K=10, σ=0.45\sigma=0.45, T=1T=1 (year), D=0.01D=0.01, and (Sl,Sr)=(2,15)(S_{l},S_{r})=(2,15).

Fig. 2 displays the double barrier option price of Example 3 solved by the proposed numerical scheme (3.12) for different choices (α,λ)(\alpha,\lambda) and fixed N=32N=32, where the grading parameter γ\gamma and M(N)M(N) time steps are chosen as Examples 1–2. It is observed that the characteristics of Figure 2 are consistent with [11, Fig. 3]. Moreover, we can find from Figure 2 that the double barrier option price will be influenced by the fractional order α\alpha and tempered index λ\lambda. Compared with the classical BS and TFBS models [33, Figure 2], the tempered TFBS model does not overprice the double barrier knock-out option when the underlying is close to the lower barrier. From a certain underlying value and onwards (close to the strike price SS), the tempered TFBS model also does not underprice the price of options. It can be noticed that the smaller α\alpha and λ\lambda are, the larger pricing bias becomes. This suggests that the tempered TFBS model may capture the (memory) characteristics of the significant movements more accurately.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Fig. 2: Double barrier option prices of Example 3 at the different orders α\alpha and tempered indices λ\lambda.

Example 4. Consider the following tempered TFBS model governing the European put options

{α,λC(S,t)tα,λ+12σ2S22C(S,t)S2+r^SC(S,t)SrC(S,t)=0,(S,t)(0,+)×[0,T),C(S,T)=max(KS,0),S(0,+),C(0,t)=ϕ(t),limS+C(S,t)=0,t[0,T),\begin{cases}\frac{\partial^{\alpha,\lambda}C(S,t)}{\partial t^{\alpha,\lambda}}+\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}C(S,t)}{\partial S^{2}}+\hat{r}S\frac{\partial C(S,t)}{\partial S}-rC(S,t)=0,&(S,t)\in(0,+\infty)\times[0,T),\\ C(S,T)=\max(K-S,0),&S\in(0,+\infty),\\ C(0,t)=\phi(t),\quad\lim\limits_{S\rightarrow+\infty}C(S,t)=0,&t\in[0,T),\end{cases} (4.4)

where the parameters are set as r=0.05r=0.05, K=50K=50, σ=0.25\sigma=0.25, D=0D=0, T=1(year)T=1~{}{\rm(year)} and ϕ(t)=Ker(Tt)\phi(t)=Ke^{-r(T-t)}. In this example, we need to compute the Mittage-Lefflier (M-L) function E1,2α(z)E_{1,2-\alpha}(z) (zz\in\mathbb{R}) (numerically)333Evaluation of the M-L function with 2 parameters: https://www.mathworks.com/matlabcentral/fileexchange/48154-the-mittag-leffler-function. when we transform this model to the equation like Eq. (2.2).

We now apply the proposed fast numerical scheme (3.12) which is better than the scheme (2.14) to solve Example 3 for different values of (α,λ)(\alpha,\lambda) and fixed N=32N=32. The curves of the put option price are plotted in Fig. 3, where the grading parameter γ\gamma and M(N)M(N) time steps are chosen as the same as Examples 1–2. As can be seen from them, the order of fractional derivative α\alpha and the (large) tempered index λ\lambda have an effect on the prices of European put options where the underlying assets display characteristic periods in which they remain motionless [36].

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Fig. 3: The put option prices simulated via Example 4 at the different fractional orders α\alpha and tempered indices λ\lambda. (the domain is truncated as [Sl,Sr]=[0.1,100][0,+][S_{l},S_{r}]=[0.1,100]\subset[0,+\infty])

5 Conclusions

In this study, we proposed the direct and fast compact difference schemes with unequal time-steps for the tempered TFBS model. The numerical methods are constructed by the compact difference operator and the (fast) tempered L1 formula with nonuniform time steps for spatial and temporal derivatives, respectively. The unconditional stability and convergence of min{γα,2α}\min\left\{\gamma\alpha,2-\alpha\right\}-order in time and fourth-order in space are rigorously proved by mathematical induction. Numerical examples are included and the corresponding results indicated that the proposed numerical method works very precise and fast.

In addition, since the financial payoff function of the option at the strike price is often non-smooth, the compact difference method maybe cannot reach the convergence of the fourth-order accuracy in space. Such a numerical deficiency can be remedied by using the piecewise uniform mesh [30] and/or local mesh refinement [52] and it should not affect the effectiveness of our (fast) temporal discretization. This will be our future research direction.

Appendix A Appendix

For clarity, the regularity of the solution vv of Eq. (2.2) is discussed in this appendix. It helps us to find that vv is smooth away from τ=0\tau=0 but it has in general a certain singular behaviour at τ=0\tau=0.

Motivated by [26, 51], we use the separation of variables to construct a classical solution v(x,τ)v(x,\tau) of (2.2) in the form of an infinite series. Let {(μi,ψi):i=1,2,}\{(\mu_{i},\psi_{i}):i=1,2,\ldots\} be the eigenvalues and eigenfunctions for the Sturm-Liouville two-point boundary value problem

ψi:=σ22ψi′′+qψi=μiψion(xl,xr),ψi(xl)=ψi(xr)0,\mathcal{L}\psi_{i}:=-\frac{\sigma^{2}}{2}\psi^{\prime\prime}_{i}+q\psi_{i}=\mu_{i}\psi_{i}~{}~{}{\rm on}~{}(x_{l},x_{r}),\quad\psi_{i}(x_{l})=\psi_{i}(x_{r})\equiv 0, (A.1)

where the eigenfunctions are normalised by requiring ψi2=1\|\psi_{i}\|_{2}=1 for all ii. It is well known that μi>0\mu_{i}>0 for all ii. A standard separation of variables technique construct an infinite series solution to Eq. (2.2) with the form

v(x,τ)=i=1vi(τ)ψi(x).v(x,\tau)=\sum^{\infty}_{i=1}v_{i}(\tau)\psi_{i}(x).

For clarity, we denote vi(τ)=v(,τ),ψi(x)v_{i}(\tau)=\langle v(\cdot,\tau),\psi_{i}(x)\rangle, σ~i=σ(),ψi()\widetilde{\sigma}_{i}=\langle\sigma(\cdot),\psi_{i}(\cdot)\rangle, gi(τ)=v(,τ),ψi()g_{i}(\tau)=\langle v(\cdot,\tau),\psi_{i}(\cdot)\rangle, Q=Ω×(0,T]Q=\Omega\times(0,T], Q¯=Ω¯×(0,T]\bar{Q}=\bar{\Omega}\times(0,T] and Ω¯=ΩΩ\bar{\Omega}=\partial\Omega\cup\Omega. Then we have

𝔻τα,λ0Cvi(τ)=μivi(τ)+gi(τ).{}^{C}_{0}\mathbb{D}^{\alpha,\lambda}_{\tau}v_{i}(\tau)=-\mu_{i}v_{i}(\tau)+g_{i}(\tau).

With the help of Laplace transform, one obtains

(s+λ)αv^i(s)(s+λ)α1σ~i=μiv^i(s)+g^i(s),(s+\lambda)^{\alpha}\hat{v}_{i}(s)-(s+\lambda)^{\alpha-1}\widetilde{\sigma}_{i}=-\mu_{i}\hat{v}_{i}(s)+\hat{g}_{i}(s),

or equivalently [53, (62)]

v^i(s)=(s+λ)α1σ~i+g^i(s)(s+λ)α+μi.\hat{v}_{i}(s)=\frac{(s+\lambda)^{\alpha-1}\widetilde{\sigma}_{i}+\hat{g}_{i}(s)}{(s+\lambda)^{\alpha}+\mu_{i}}. (A.2)

Hence, using the inverse Laplace transform and two-parameter M-L function [54] defined by

Eα,β(z):=k=0zkΓ(αz+β),e(α)>0,e(β)>0,z,E_{\alpha,\beta}(z):=\sum^{\infty}_{k=0}\frac{z^{k}}{\Gamma(\alpha z+\beta)},\quad\Re e(\alpha)>0,~{}\Re e(\beta)>0,~{}z\in\mathbb{C},

we can obtain the following form

v(x,τ)=i=1[σ~iGi(τ)+Fi(τ)]ψi(x)v(x,\tau)=\sum^{\infty}_{i=1}\left[\widetilde{\sigma}_{i}G_{i}(\tau)+F_{i}(\tau)\right]\psi_{i}(x) (A.3)

–see [51, (2.8)]–where Gi(τ)=eλτEα,1(μiτα)G_{i}(\tau)=e^{-\lambda\tau}E_{\alpha,1}(-\mu_{i}\tau^{\alpha}) and Fi(τ)=0τeλssα1Eα,α(μisα)gi(τs)𝑑sF_{i}(\tau)=\int^{\tau}_{0}e^{-\lambda s}s^{\alpha-1}E_{\alpha,\alpha}(-\mu_{i}s^{\alpha})g_{i}(\tau-s)ds.

With the help of sectorial operator [27], for each ν\nu\in\mathbb{R} the fractional power ν\mathcal{L}^{\nu} of the operator \mathcal{L} is defined with the domain

H(ν):={gL2(Ω):i=1μi2ν|g,ψi|2},H(\mathcal{L}^{\nu}):=\Big{\{}g\in L_{2}(\Omega):\sum^{\infty}_{i=1}\mu^{2\nu}_{i}|\langle g,\psi_{i}\rangle|^{2}\Big{\}},

and the norm

gν=(i=1μi2ν|g,ψi|2)1/2.\|g\|_{\mathcal{L}^{\nu}}=\Bigg{(}\sum^{\infty}_{i=1}\mu^{2\nu}_{i}|\langle g,\psi_{i}\rangle|^{2}\Bigg{)}^{1/2}.
Theorem A.1.

Let vv be the solution of Eq. (2.2). Then for ϵ>0\forall\epsilon>0, there exists the constant CC independent of τ\tau such that the following conclusions are available:

  • i)

    if σH(1+ϵ2),g(,τ)H(1+ϵ2)\sigma\in H\left(\mathcal{L}^{\frac{1+\epsilon}{2}}\right),g(\cdot,\tau)\in H\left(\mathcal{L}^{\frac{1+\epsilon}{2}}\right) for τ[0,T]\forall\tau\in[0,T], then |v(x,τ)|C|v(x,\tau)|\leq C for (x,τ)Q¯(x,\tau)\in\bar{Q};

  • ii)

    if σH(3+ϵ2),g(,τ)H(1+ϵ2)\sigma\in H\left(\mathcal{L}^{\frac{3+\epsilon}{2}}\right),g(\cdot,\tau)\in H\left(\mathcal{L}^{\frac{1+\epsilon}{2}}\right) for τ[0,T]\forall\tau\in[0,T], then gtau(,τ)1+ϵ2Cτρ\|g_{tau}(\cdot,\tau)\|_{\mathcal{L}^{\frac{1+\epsilon}{2}}}\leq C\tau^{-\rho} (ρ<1)\rho<1) for τ(0,T]\forall\tau\in(0,T], then |vτ(x,τ)τα1|v_{\tau}(x,\tau)\leq\tau^{\alpha-1} for (x,τ)Q\forall(x,\tau)\in Q.

Proof: i) With the help of Eq. (A.3), the triangle inequality yields that

|v(x,τ)|=i=1|σ~iGi(τ)+Fi(τ)||ψi(x)|i=1[|σ~ieλτEα,1(μiτα)|+|0τeλssα1Eα,α(μisα)gi(τs)ds|]|ψi(x)|,\begin{split}|v(x,\tau)|&=\sum^{\infty}_{i=1}|\widetilde{\sigma}_{i}G_{i}(\tau)+F_{i}(\tau)|\cdot|\psi_{i}(x)|\\ &\leq\sum^{\infty}_{i=1}\Big{[}|\widetilde{\sigma}_{i}e^{-\lambda\tau}E_{\alpha,1}(-\mu_{i}\tau^{\alpha})|~{}+\\ &\quad~{}\left|\int^{\tau}_{0}e^{-\lambda s}s^{\alpha-1}E_{\alpha,\alpha}(-\mu_{i}s^{\alpha})g_{i}(\tau-s)ds\right|\Big{]}\cdot|\psi_{i}(x)|,\end{split} (A.4)

since σH(1+ϵ2)\sigma\in H(\mathcal{L}^{\frac{1+\epsilon}{2}}), g(,τ)H(1+ϵ2)g(\cdot,\tau)\in H(\mathcal{L}^{\frac{1+\epsilon}{2}}), we have σL1+ϵ2C\|\sigma\|_{L^{\frac{1+\epsilon}{2}}}\leq C and g(,τ)1+ϵ2C\|g(\cdot,\tau)\|_{\mathcal{L}^{\frac{1+\epsilon}{2}}}\leq C. In conclusion, we have μii\mu_{i}\approx i and |ψi(x)|C|\psi_{i}(x)|\leq C.

Consider the term in (A.4). Using the Cauchy-Schwarz inequality and [51, Lemma 2.4], we have

i=1|σ~ieλτEα,1(μiτα)|Ci=1|σ~i||Eα,1(μiτα)|C(i=11μi1+ϵ)1/2(i=1μi1+ϵ|σ~i|2)1/2Cσ1+ϵ2.\begin{split}\sum^{\infty}_{i=1}|\widetilde{\sigma}_{i}e^{-\lambda\tau}E_{\alpha,1}(-\mu_{i}\tau^{\alpha})|&\leq C\sum^{\infty}_{i=1}|\widetilde{\sigma}_{i}|\cdot|E_{\alpha,1}(-\mu_{i}\tau^{\alpha})|\\ &\leq C\Bigg{(}\sum^{\infty}_{i=1}\frac{1}{\mu^{1+\epsilon}_{i}}\Bigg{)}^{1/2}\Bigg{(}\sum^{\infty}_{i=1}\mu^{1+\epsilon}_{i}|\widetilde{\sigma}_{i}|^{2}\Bigg{)}^{1/2}\\ &\leq C\|\sigma\|_{\mathcal{L}^{\frac{1+\epsilon}{2}}}.\end{split}

Similarly, we can obtain

i=1|0τeλssα1Eα,α(μisα)gi(τs)𝑑s|\displaystyle\sum^{\infty}_{i=1}\left|\int^{\tau}_{0}e^{-\lambda s}s^{\alpha-1}E_{\alpha,\alpha}(-\mu_{i}s^{\alpha})g_{i}(\tau-s)ds\right| C0τ|sα1i=1Eα,α(μisα)gi(τs)|𝑑s\displaystyle\leq C\int^{\tau}_{0}\left|s^{\alpha-1}\sum^{\infty}_{i=1}E_{\alpha,\alpha}(-\mu_{i}s^{\alpha})g_{i}(\tau-s)\right|ds
C0τsα1(i=11μi1+ϵ(Eα,α(μisα))2)1/2\displaystyle\leq C\int^{\tau}_{0}s^{\alpha-1}\Bigg{(}\sum^{\infty}_{i=1}\frac{1}{\mu^{1+\epsilon}_{i}}(E_{\alpha,\alpha}(-\mu_{i}s^{\alpha}))^{2}\Bigg{)}^{1/2}
(i=1μi1+ϵgi2(τs))1/2ds\displaystyle\quad~{}\cdot\Bigg{(}\sum^{\infty}_{i=1}\mu^{1+\epsilon}_{i}g^{2}_{i}(\tau-s)\Bigg{)}^{1/2}ds
C.\displaystyle\leq C.

Hence the series (A.4) is absolutely and uniformly convergence on Q¯\bar{Q}, and

|v(x,τ)|C,for(x,τ)Q¯.|v(x,\tau)|\leq C,~{}{\rm for~{}}\forall(x,\tau)\in\bar{Q}. (A.5)

ii) Differentiating Eq. (A.3) term by term with respect to τ\tau for (x,τ)Q(x,\tau)\in Q yields

vτ(x,τ)=i=1[σ~ieλτμiτα1Eα,α(μiτα)+eλττα1Eα,α(μiτα)gi(0)+0τeλssα1Eα,α(μisα)gi(τs)ds]ψi(x),\begin{split}v_{\tau}(x,\tau)&=\sum^{\infty}_{i=1}\Big{[}-\widetilde{\sigma}_{i}e^{-\lambda\tau}\mu_{i}\tau^{\alpha-1}E_{\alpha,\alpha}(-\mu_{i}\tau^{\alpha})+e^{-\lambda\tau}\tau^{\alpha-1}E_{\alpha,\alpha}(-\mu_{i}\tau^{\alpha})g_{i}(0)~{}+\\ &\quad~{}\int^{\tau}_{0}e^{-\lambda s}s^{\alpha-1}E_{\alpha,\alpha}(-\mu_{i}s^{\alpha})g^{\prime}_{i}(\tau-s)ds\Big{]}\psi_{i}(x),\end{split} (A.6)

where we use the fact dEα,1(λτα)dτ=λτα1Eα,α(λτα)\frac{dE_{\alpha,1}(-\lambda\tau^{\alpha})}{d\tau}=-\lambda\tau^{\alpha-1}E_{\alpha,\alpha}(-\lambda\tau^{\alpha}) to differentiate Eα,1()E_{\alpha,1}(\cdot). Based on the proof of i), it is not hard to check that

|vτ(x,τ)|Cτα1,for(x,τ)Q.|v_{\tau}(x,\tau)|\leq C\tau^{\alpha-1},~{}{\rm for~{}}(x,\tau)\in Q. (A.7)

Moreover, one can show that 𝔻τα,λ0Cv{}^{C}_{0}\mathbb{D}^{\alpha,\lambda}_{\tau}v exists and vv is the solution of Eq. (2.2), the maximum principle guarantees the uniqueness of solution, which completes the proof. \Box

At this stage, we can estimate other derivatives 2vτ2\frac{\partial^{2}v}{\partial\tau^{2}} and pvxp\frac{\partial^{p}v}{\partial x^{p}} (p=1,2,3,4p=1,2,3,4) on the domain QQ. At present, we summarize all the above activity in the following conclusion.

Theorem A.2.

Assume that σ,g(,τ)H(5+ϵ2)\sigma,g(\cdot,\tau)\in H(\mathcal{L}^{\frac{5+\epsilon}{2}}), gτ(,τ)g_{\tau}(\cdot,\tau) and gττ(,τ)g_{\tau\tau}(\cdot,\tau) are in H(5+ϵ2)H(\mathcal{L}^{\frac{5+\epsilon}{2}}) for each τ(0,T]\tau\in(0,T] with

g(,τ)5+ϵ2+gτ(,τ)1+ϵ2+τρgττ(,τ)1+ϵ2C1\|g(\cdot,\tau)\|_{\mathcal{L}^{\frac{5+\epsilon}{2}}}+\|g_{\tau}(\cdot,\tau)\|_{\mathcal{L}^{\frac{1+\epsilon}{2}}}+\tau^{\rho}\|g_{\tau\tau}(\cdot,\tau)\|_{\mathcal{L}^{\frac{1+\epsilon}{2}}}\leq C_{1}

for τ(0,T],ϵ>0\forall\tau\in(0,T],\forall\epsilon>0 and the constant ρ<1\rho<1, where C1C_{1} is a constant independent of τ\tau. Then there exists a constant CC such that

{|pv(x,τ)xp|C,forp=0,1,2,3,4,|v(x,τ)τ|C(1+τα),for=0,1,2\begin{cases}\left|\frac{\partial^{p}v(x,\tau)}{\partial x^{p}}\right|\leq C,&{\rm for}~{}p=0,1,2,3,4,\\ \left|\frac{\partial^{\ell}v(x,\tau)}{\partial\tau^{\ell}}\right|\leq C(1+\tau^{\alpha-\ell}),&{\rm for}~{}\ell=0,1,2\end{cases} (A.8)

for (x,τ)Ω¯×(0,T]\forall(x,\tau)\in\bar{\Omega}\times(0,T].

In short, we shall assume that the solution vv of (2.2) satisfies the bounds (A.8). Thus in general, the solution vv of (2.2) will have a weak singularity along τ=0\tau=0. Its presence leads to significant practical and theoretical difficulties in designing and analysing numerical methods for (2.2). That is just why we consider the non-uniform temporal discretization in this paper.

Acknowledgment

The authors would like to thank anonymous reviewers, Dr. Can Li and Dr. Jinye Shen whose insightful comments and careful proof-checks helped to improve the current paper. This work was supported by the Applied Basic Research Program of Sichuan Province (2020YJ0007) and the Sichuan Science and Technology Program (2022ZYD0006). X.-M. Gu also thanks Prof. Dongling Wang for helpful discussions during his visiting to Xiangtan University.

References

  • [1] B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer Berlin, Heidelberg (2003).
  • [2] R. H. D. Staelen, A. S. Hendy, Numerically pricing double barrier options in a time-fractional Black-Scholes model, Comput. Math. Appl., 74(6) (2017): 1166-1175.
  • [3] L. Meng, M. Wang, Comparison of Black-Scholes formula with fractional Black-Scholes formula in the foreign exchange option market with changing volatility, Asia Pac. Financ. Mark., 17(2) (2010): 99-111.
  • [4] P. Nicolas, An Elementary Introduction to Stochastic Interest Rate Modeling (2nd ed.), Advanced Series on Statistical Science and Applied Probability, Vol. 16, World Scientific Publishing, Singapore (2012).
  • [5] S. G. Kou, A jump-diffusion model for option pricing, Manage. Sci., 48(8) (2002): 1086-1101.
  • [6] W. Wyss, The fractional Black-Scholes equation, Fract. Cal. Appl. Anal., 3(1) (2000): 51-61.
  • [7] G. Jumarie, Stock exchange fract ional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black Scholes equations, Insur. Math. Econ., 42(1) (2008): 271-287.
  • [8] Á. Cartea, Derivatives pricing with marked point processes using tick-by-tick data, Quant. Finance, 13(1) (2013): 111-123.
  • [9] J.-R. Liang, J. Wang, W.-J. Zhang, W.-Y. Qiu, F.-Y. Ren, The solutions to a bi-fractional Black-Scholes-Merton differential equation, Int. J. Pure Appl. Math., 58(1) (2010): 99-112.
  • [10] M. Magdziarz, Black-Scholes formula in subdiffusive regime, J. Stat. Phys., 136(3) (2009): 553-564.
  • [11] W. Chen, X. Xu, S.-P. Zhu, Analytically pricing double barrier options based on a time-fractional Black-Scholes equation, Comput. Math. Appl., 69(12) (2015): 1407-1419.
  • [12] A. Farhadi, M. Salehi, G. H. Erjaee, A new version of Black-Scholes equation presented by time-fractional derivative, Iran. J. Sci. Technol. Trans. A: Sci., 42(4) (2018): 2159-2166.
  • [13] S. E. Fadugba, Homotopy analysis method and its applications in the valuation of European call options with time-fractional Black-Scholes equation, Chaos Solit. Fractals, 141 (2022): 110351. DOI: 10.1016/j.chaos.2020.110351.
  • [14] G. Krzyżanowski, M. Magdziarz, Ł. Płociniczak, A weighted finite difference method for subdiffusive Black-Scholes model, Comput. Math. Appl., 80(5) (2020): 653-670.
  • [15] H. Zhang, F. Liu, I. Turner, Q. Yang, Numerical solution of the time fractional Black-Scholes model governing European options, Comput. Math. Appl., 71(9) (2016): 1772-1783.
  • [16] Z. Tian, S. Zhai, Z. Weng, Compact finite difference schemes of the time fractional Black-Scholes model, J. Appl. Anal. Comput., 10(3) (2020): 904-919.
  • [17] Y. M. Dimitrov, L.G. Vulkov, Three-point compact finite difference scheme on non-uniform meshes for the time-fractional Black-Scholes equation, AIP Conf. Proc., 1690(1) (2015): 040022. DOI: 10.1063/1.4936729.
  • [18] K. Kazmi, A second order numerical method for the time-fractional Black-Scholes European option pricing model, J. Comput. Appl. Math., 418 (2022): 114647.
  • [19] P. Roul, A high accuracy numerical method and its convergence for time-fractional Black-Scholes equation governing European options, Appl. Numer. Math., 151 (2020): 472-493.
  • [20] N. Abdi, H. Aminikhah, A. H. Refahi Sheikhani, High-order compact finite difference schemes for the time-fractional Black-Scholes model governing European options, Chaos Solit. Fractals, 162 (2022): 112423. DOI: 10.1016/j.chaos.2022.112423.
  • [21] M. N. Koleva, L. G. Vulkov, Numerical solution of time-fractional Black-Scholes equation, Comput. Appl. Math., 36 (2017): 1699-1715.
  • [22] M. Sarboland, A. Aminataei, On the numerical solution of time fractional Black-Scholes equation, Int. J. Comput. Math., 99(9) (2022): 1736-1753.
  • [23] X. An, F. Liu, M. Zheng, V. V. Anh, I. W. Turner, A space-time spectral method for time-fractional Black-Scholes equation, Appl. Numer. Math., 165 (2021): 152-166.
  • [24] T. Akram, M. Abbas, K. M. Abualnaja, A. Iqbal, A. Majeed, An efficient numerical technique based on the extended cubic B-spline functions for solving time fractional Black-Scholes model, Eng. Comput., 38 (2022): 1705-1716.
  • [25] M. Rezaei, A. R. Yazdanian, A. Ashrafi, S. M. Mahmoudi, Numerical pricing based on fractional Black-Scholes equation with time-dependent parameters under the CEV model: Double barrier options, Comput. Math. Appl., 90 (2021): 104-111.
  • [26] M. Stynes, E. O’Riordan, J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55(2) (2017): 1057-1079.
  • [27] K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382(1) (201): 426-447.
  • [28] H.-L. Liao, D. Li, J. Zhang, Sharp error estimate of the nonuniform L1L1 formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal., 56(2) (2018): 1112-1133.
  • [29] J.-Y. Shen, Z.-Z. Sun, R. Du, Fast finite difference schemes for the time-fractional diffusion equation with a weak singularity at the initial time, East Asia J. Appl. Math., 8(4) (2018): 834-858.
  • [30] Z. Cen, J. Huang, A. Xu, A. Le, Numerical approximation of a time-fractional Black-Scholes equation, Comput. Math. Appl., 75(8) (2018): 2874-2887.
  • [31] M. N. Koleva, L. G. Vulkov, Fast positivity preserving numerical method for time-fractional regime-switching option pricing problem, in Advanced Computing in Industrial Mathematics. BGSIAM 2020 (I. Georgiev, H. Kostadinov, E. Lilkova, eds.), Studies in Computational Intelligence, Vol. 1076. Springer, Cham (2023): 88-99. DOI: 10.1007/978-3-031-20951-2_9.
  • [32] M. She, L. Li, R. Tang, D. Li, A novel numerical scheme for a time fractional Black-Scholes equation, J. Appl. Math. Comput., 66(1-2) (2021): 853-870.
  • [33] K. Song, P. Lyu, A high-order and fast scheme with variable time steps for the time-fractional Black-Scholes equation, Math. Methods Appl. Sci., 46(2) (2023): 1990-2011.
  • [34] S. Jiang, J. Zhang, Q. Zhang, Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21(3) (2017): 650-678.
  • [35] H.-L. Liao, W. McLean, J. Zhang, A discrete Gronwall inequality with applications to numerical schemes for subdiffusion problems, SIAM J. Numer. Anal., 57(1) (2019): 218-237.
  • [36] G. Krzyżanowski, M. Magdziarz, A tempered subdiffusive Black-Scholes model, arXiv preprint, arXiv:2103.13679, 22 May 2022, 27 pages.
  • [37] M. M. Meerschaert, A. Sikorskii, Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics, Vol. 43, Walter de Gruyter, Berlin/Boston (2012).
  • [38] Á. Cartea, D. del-Castillo-Negrete, Fluid limit of the continuous-time random walk with general Lèvy jump distribution functions, Phys. Rev. E., 76(4) (2017): 041105.
  • [39] L. Zhao, C. Li, F. Zhao, Efficient diference schemes for the Caputo-tempered fractional difusion equations based on polynomial interpolation, Commun. Appl. Math. Comput., 3(1) (2021): 1-40. DOI: 10.1007/s42967-020-00067-5.
  • [40] M. M. Meerschaert, Y. Zhang, B. Baeumer, Tempered anomalous diffusion in heterogeneous systems, Geophys. Res. Lett., 35(17) (2008): L17403. DOI: 10.1029/2008GL034899.
  • [41] M. L. Morgado, L. F. Morgado, Modeling transient currents in time-of-flight experiments with tempered time-fractional diffusion equations, Progr. Fract. Differ. Appl., 6(1) (2020): 43-53. DOI: 10.18576/pfda/060105.
  • [42] J. L. Gracia, E. O’Riordan, M. Stynes, Convergence in positive time for a finite difference method applied to a fractional convection-diffusion problem, Comput. Methods Appl. Math., 18(1) (2018): 33-42.
  • [43] S. Franz, N. Kopteva, Pointwise-in-time a posteriori error control for higher-order discretizations of time-fractional parabolic equations, J. Comput. Appl. Math., 427 (2023): 115122. DOI: 10.1016/j.cam.2023.115122.
  • [44] X. Yang, L. Wu, S. Sun, X. Zhang, A universal difference method for time-space fractional Black-Scholes equation, Adv. Differ. Equ., 2016(1) (2016): 71. DOI: 10.1186/s13662-016-0792-8.
  • [45] X.-M. Gu, T.-Z. Huang, Y.-L. Zhao, P. Lyu, B. Carpentieri, A fast implicit difference scheme for solving the generalized time-space fractional diffusion equations with variable coefficients, Numer. Methods Partial Differ. Equ., 37(2) (2021): 1136-1162.
  • [46] L. Guo, F. Zeng, I. W. Turner, K. Burrage, G. E. Karniadakis, Efficient multistep methods for tempered fractional calculus: algorithms and simulations, SIAM J. Sci. Comput., 41(4) (2019): A2510-A2535.
  • [47] H.-L. Liao, P. Lyu, S. Vong, Y. Zhao, Stability of fully discrete schemes with interpolation-type fractional formulas for distributed-order subdiffusion equations, Numer. Algor., 75(4) (2017): 845-878.
  • [48] H. Chen, M. Stynes, A discrete comparison principle for the time-fractional diffusion equation, Comput. Math. Appl., 80 (2020): 917-922.
  • [49] B. Ji, H.-L. Liao, L. Zhang, Simple maximum principle preserving time-stepping methods for time-fractional Allen-Cahn equation, Adv. Comput. Math., 46(2) (2020): 37. DOI: 10.1007/s10444-020-09782-2.
  • [50] M. Stynes, A survey of the L1 scheme in the discretisation of time-fractional problems, Numer. Math. Theor. Meth. Appl., 15(4) (2022): 1173-1192.
  • [51] C. Wang, W. Deng, X. Tang, A sharp α\alpha-robust L1 scheme on graded meshes for two-dimensional time tempered fractional Fokker-Planck equation, arXiv preprint, arXiv:2205.15837v1, May 31, 2022, 25 pages.
  • [52] S. T. Lee, H.-W. Sun, Fourth order compact scheme with local mesh refinement for option pricing in jump-diffusion model, Numer. Methods Partial Differ. Equ., 28(2) (2012): 1079-1098.
  • [53] C. Li, W. Deng, L. Zhao, Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations, Discrete Contin. Dyn. Syst. Ser. B, 24(4) (2015): 1989-2015.
  • [54] M. Ishteva, Properties and Applications of the Caputo Fractional Operator. Master thesis, Department of Mathematics, University of Karlsruhe, Karlsruhe (2005).