This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A graph discretization of vector Laplace operator

Shu Lia,   Lu Lub,   Jianfeng Wanga,111Corresponding author.
     Email addresses: shuligraph@gmail.com (S. Li), lulugdmath@163.com (L. Lu), jfwang@sdut.edu.cn (J.F.Wang).

aSchool of Mathematics and Statistics, Shandong University of Technology, Zibo 255049, China
bSchool of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha 410083, China
Abstract

In this paper, we study the graph-theoretic analogues of vector Laplacian (or Helmholtz operator) and vector Laplace equation. We determine the graph matrix representation of vector Laplacian and obtain the dimension of solution space of vector Laplace equation on graphs.

AMS classification: 35J05, 05C50
Keywords: Laplace operator; Vector Laplacian; Helmholtz operator; Graph; Hodage Laplacian.

1 Introduction

In Mathematics and Physics, Laplace’s equation is one of the most famous differential equation named after Pierre-Simon de Laplace, who firstly presented and investigated its properties. In general, this is often written as

2f=0,\nabla^{2}f=0,

where 2\nabla^{2} is the Laplace operator (or Laplacian) operating a scalar function ff. With that in mind, the Laplacian is also referred to as scalar Laplacian. In the context of real space 3\mathbb{R}^{3} and rectangular coordinates, then

2f=divgradf=2fx12+2fx22+2fx32,\nabla^{2}f=\operatorname{div}\operatorname{grad}f=\frac{\partial^{2}f}{\partial x_{1}^{2}}+\frac{\partial^{2}f}{\partial x_{2}^{2}}+\frac{\partial^{2}f}{\partial x_{3}^{2}},

where div=\operatorname{div}=\nabla\cdot and grad=\operatorname{grad}=\nabla are respectively the divergence and gradient operators. Recall,

gradf=f=(fx1,fx2,fx3)anddiv𝐅=𝐅=F1x1+F2x2+F3x3,\operatorname{grad}f=\nabla f=(\frac{\partial f}{\partial x_{1}},\frac{\partial f}{\partial x_{2}},\frac{\partial f}{\partial x_{3}})\quad\mbox{and}\quad\operatorname{div}\mathbf{F}=\nabla\cdot\mathbf{F}=\frac{\partial F_{1}}{\partial x_{1}}+\frac{\partial F_{2}}{\partial x_{2}}+\frac{\partial F_{3}}{\partial x_{3}},

where 𝐅\mathbf{F} is a vector field.

In the setting of Graph Theory, the scalar Laplacian 2=divgrad\nabla^{2}=-{\rm div\!~{}grad} gives the celebrated Laplacian matrix of a graph [8, Lemma 5.6, eg.], defined by

L(G)=D(G)A(G)L(G)=D(G)-A(G)

where D(G)=diag(d(v1),d(v2),,d(vn))D(G)={\rm diag}(d(v_{1}),d(v_{2}),\cdots,d(v_{n})) is the degree diagonal matrix with d(v)d(v) being the degree of vertex vv and A(G)=(aij)A(G)=(a_{ij}) is the adjacency matrix of GG in which aij=1a_{ij}=1 if vivjE(G)v_{i}v_{j}\in E(G) and 0 otherwise. Proverbially, the graph Laplacian has been studied extensively in Spectral Graph Theory and has so much influence on many areas. For good survey articles on the graph Laplacian the reader is referred to [10, 11].

We here pay attention to the vector Laplacian. In 3\mathbb{R}^{3}, the curl of a vector field 𝐅\mathbf{F} is defined to be

curl𝐅=×𝐅=(F3x2F2x3,F1x3F3x1,F2x1F1x2).\operatorname{curl}\mathbf{F}=\nabla\times\mathbf{F}=(\frac{\partial F_{3}}{\partial x_{2}}-\frac{\partial F_{2}}{\partial x_{3}},\frac{\partial F_{1}}{\partial x_{3}}-\frac{\partial F_{3}}{\partial x_{1}},\frac{\partial F_{2}}{\partial x_{1}}-\frac{\partial F_{1}}{\partial x_{2}}).

Then the vector Laplace equation is defined as

2𝐅=(2𝐅1,2𝐅2,2𝐅3)=0.\nabla^{2}\mathbf{F}=(\nabla^{2}\mathbf{F}_{1},\nabla^{2}\mathbf{F}_{2},\nabla^{2}\mathbf{F}_{3})=0. (1)

A straightforward calculation shows that

2𝐅=graddiv𝐅curlcurl𝐅,\nabla^{2}\mathbf{F}=\operatorname{grad}\operatorname{div}\mathbf{F}-\operatorname{curl}\operatorname{curl}\mathbf{F}, (2)

which is called vector Laplace operator (or vector Laplacian [12]) or Helmholtz operator [6];.

What is clear from the literature is that the operators involving 2=\nabla^{2}=\nabla\cdot\nabla on a vector function start back in 1911 [3, p133]. However, the difference between the scalar and vector Laplacians was not unrecognized in a long period, which caused that the progress in this direction had been hampered. The meaning of the vector Laplacian was not clear untill 1953, credit to Moon and Spencer [12], who developed a general equation for the vector Laplacian in any orthogonal, curvilinear coordinate system. Remark that the scalar and vector Laplacians are special cases of Hodge Laplacians, named from the Hodge theory on graphs [8], and that the Laplace equation and vector Laplace equation are respectively the special cases of Helmholtz equations

2θk2θ=0,\nabla^{2}\theta-k^{2}\theta=0,

in which θ\theta is a scalar function or a vector field.

For the purpose here, we consider the adjoint operators of grad\operatorname{grad} and curl\operatorname{curl} denoted by grad\operatorname{grad}^{*} and curl\operatorname{curl}^{*} respectively. Due to div=grad\operatorname{div}=-\operatorname{grad}^{*} and curl=curl\operatorname{curl}=\operatorname{curl}^{*} [16, pp. 207], then an equivalent expression of (2) is shown as follows

2𝐅=gradgrad𝐅+curlcurl𝐅.-\nabla^{2}\mathbf{F}=\operatorname{grad}\operatorname{grad}^{*}\mathbf{F}+\operatorname{curl}^{*}\operatorname{curl}\mathbf{F}. (3)

In this paper, we fucus on the graph-theoretic analogues of vector Laplacian and vector Laplace equation. In Section 2 we determine the graph matrix representation, Helmholzian matrix, of vector Laplacian, which put the way for establish a spectral graph theory based on this new matrix. In Section 3 we identify the dimension of solution space of vector Laplace equation on graphs. As a corollary, the number of triangles in a graph is also obtained. In Section 4 we give some remarks and point out some potential applications of the results obtained in this paper.

2 Vector Laplacian on Graphs

Let G=(V(G),E(G))G=(V(G),E(G)) be an undirected simple graph with vertex set V(G)={v1,v2,,vn}V(G)=\{v_{1},v_{2},\cdots,v_{n}\} and edge set E(G)={e1,e2,,em}E(G)=\{e_{1},e_{2},\cdots,e_{m}\}, where its order is n=|V(G)|n=|V(G)| and its size is m=|E(G)|m=|E(G)|. Let TT be the set of triangles in GG. We define the real valued functions on its vertex set ϕ:VR\phi:V\rightarrow R. Moreover, we request the real valued functions on EE and TT to be alternating. By an alternating function on EE, we mean a function of the form φ:V×V\varphi:V\times V\rightarrow\mathbb{R}, where

φ(i,j)={φ(j,i),if {vi,vj}E;0,otherwise.\varphi(i,j)=\begin{cases}-\varphi(j,i),&\mbox{if $\{v_{i},v_{j}\}\in E$};\\ 0,&\mbox{otherwise}.\end{cases}

An alternating function on TT is one of the form ψ:V×V×V\psi:V\times V\times V\rightarrow\mathbb{R}, where

φ(i,j,k)=ψ(j,k,i)=ψ(k,i,j)={ψ(j,i,k)=ψ(i,k,j)=ψ(k,j,i),if {vi,vj,vk}T;0,otherwise.\varphi(i,j,k)=\psi(j,k,i)=\psi(k,i,j)=\begin{cases}-\psi(j,i,k)=-\psi(i,k,j)=-\psi(k,j,i),&\mbox{if $\{v_{i},v_{j},v_{k}\}\in T$};\\ 0,&\mbox{otherwise}.\end{cases}

From the topological point of view, the functions ϕ,φ\phi,\varphi and ψ\psi are called 0-, 1-, 2-cochains, which are discrete analogues of differential forms on manifolds [17]. Let the Hilbert spaces of 0-, 11- and 22-cochains be respectively L2(V)L^{2}(V), L2(E)L^{2}_{\wedge}(E) and L2(T)L^{2}_{\wedge}(T) with \wedge indicating alternating and with standard L2L^{2}-inner products defined by

ϕ1,ϕ2V=iVϕ1(i)ϕ2(i),φ1,φ2E=ijφ1(i,j)φ2(i,j),ψ1,ψ2T=i<j<kψ1(i,j,k)ψ2(i,j,k).\langle\phi_{1},\phi_{2}\rangle_{V}=\sum_{i\in V}\phi_{1}(i)\phi_{2}(i),\;\langle\varphi_{1},\varphi_{2}\rangle_{E}=\sum_{i\leq j}\varphi_{1}(i,j)\varphi_{2}(i,j),\;\langle\psi_{1},\psi_{2}\rangle_{T}=\sum_{i<j<k}\psi_{1}(i,j,k)\psi_{2}(i,j,k).

We describe the graph-theoretic analogues of grad\operatorname{grad}, curl\operatorname{curl}, and div\operatorname{div} in multivariate calculus [8]. The gradient is the linear operator grad: L2(V)L2(E)L^{2}(V)\rightarrow L_{\wedge}^{2}(E) defined by

(gradϕ)(i,j)=ϕ(j)ϕ(i)(\operatorname{grad}\phi)(i,j)=\phi(j)-\phi(i)

for all {i,j}E\{i,j\}\in E and zero otherwise. The curl is the linear operator curl: L2(E)L2(T)L_{\wedge}^{2}(E)\rightarrow L_{\wedge}^{2}(T) defined by

(curlφ)(i,j,k)=φ(i,j)+φ(j,k)+φ(k,i)(\operatorname{curl}\varphi)(i,j,k)=\varphi(i,j)+\varphi(j,k)+\varphi(k,i)

for all {i,j,k}T\{i,j,k\}\in T and zero otherwise. The divergence is the linear operator div: L2(E)L2(V)L_{\wedge}^{2}(E)\rightarrow L^{2}(V) defined by

(divφ)(i)=j=1nφ(i,j)(\operatorname{div}\varphi)(i)=\sum_{j=1}^{n}\varphi(i,j)

for all iVi\in V. Then the graph-theoretic analogue of the vector Laplacian, called graph Helmholtzian, is defined by Λ=graddiv+curlcurl\Lambda=-\operatorname{grad}\operatorname{div}+\operatorname{curl^{\ast}}\operatorname{curl} [8, pp. 692]. From div=grad\operatorname{div}=-\operatorname{grad^{\ast}} [8, Lemma 5.4] it follows that Λ\Lambda can be expressed as

Λ=gradgrad+curlcurl.\Lambda=\operatorname{grad}\operatorname{grad^{\ast}}+\operatorname{curl^{\ast}}\operatorname{curl}. (4)

Note, Helmholtz Decomposition Theorem for the clique complex of a graph correlates closely with the kernel of graph Helmholtzian Λ\Lambda [6, Theorem 2]. In addition, the graph Helmholtzian is a special case of Hodge Laplacians, a higher-order generalization of the graph Laplacian, due to Lim [8].

Symbol Diagram
uvu\sim v uvu\rightarrow v [Uncaptioned image]
vuv\rightarrow u [Uncaptioned image]
ueu\in e ueu\rightarrow e (u=eu=e^{-}) [Uncaptioned image]
eue\rightarrow u (u=e+u=e^{+}) [Uncaptioned image]
e1e2e_{1}\sim e_{2} e1±e2e_{1}\overset{\pm}{\sim}e_{2} e1+e2e_{1}\overset{+}{\sim}e_{2} [Uncaptioned image]
e1-e2e_{1}\overset{-}{\sim}e_{2} [Uncaptioned image]
e1e2e_{1}\leftrightarrow e_{2} e1e2e_{1}\rightarrow e_{2} [Uncaptioned image]
e2e1e_{2}\rightarrow e_{1} [Uncaptioned image]
e1e2e_{1}\vartriangle e_{2} [Uncaptioned image]
ee\in\vartriangle e+e\in\vartriangle^{+} [Uncaptioned image]
ee\in\vartriangle^{-} [Uncaptioned image]
Table 1: The relations between vertices, edges and triangles.

We emphatically derive a graph matrix representation of graph Helmholtzian. Given arbitrary orientations to the edges and triangles of GG, the trail and the head of an oriented edge ee are respectively marked by ee^{-} and e+e^{+}. Set 𝒱(e)={e,e+}\mathcal{V}(e)=\{e^{-},e^{+}\}. If there is a directed edge from uu to vv, then we write uvu\rightarrow v. If two vertices uu and vv are adjacent, then we write uvu\sim v, and uvu\nsim v otherwise. Therefore, uvu\sim v implies either uvu\rightarrow v or vuv\rightarrow u. If a vertex vv satisfies v𝒱(e)v\in\mathcal{V}(e), then we write vev\in e. Furthermore, set vev\rightarrow e if v=ev=e^{-}, and eve\rightarrow v if v=e+v=e^{+}. For two edges e1e_{1} and e2e_{2}, let e1e2e_{1}\sim e_{2} if 𝒱(e1)𝒱(e2)\mathcal{V}(e_{1})\cap\mathcal{V}(e_{2})\neq\emptyset. Put e1e2e_{1}\rightarrow e_{2} if e1+=e2e_{1}^{+}=e_{2}^{-}, e1+e2e_{1}\overset{+}{\sim}e_{2} if e1+=e2+e_{1}^{+}=e_{2}^{+}, and e1-e2e_{1}\overset{-}{\sim}e_{2} if e1=e2e_{1}^{-}=e_{2}^{-}. Denote by e1e2e_{1}\leftrightarrow e_{2} if either e1e2e_{1}\rightarrow e_{2} or e2e1e_{2}\rightarrow e_{1}, and denote by e1±e2e_{1}\overset{\pm}{\sim}e_{2} if either e1+e2e_{1}\overset{+}{\sim}e_{2} or e1-e2e_{1}\overset{-}{\sim}e_{2}. Set e1e2e_{1}\vartriangle e_{2} if e1e_{1} and e2e_{2} are in a same triangle. For an edge ee and a triangle \vartriangle, write ee\in\vartriangle if ee is an edge of \vartriangle. Furthermore, if the orientation of ee is coincident with that of \vartriangle then we write e+e\in\vartriangle^{+}, and ee\in\vartriangle^{-} otherwise. To make the symbols more clear, we collect them in Tab. 1.

For an edge eE(G)e\in E(G), the triangle degree of ee, denoted by G(e),\triangle_{G}(e), is the number of triangles containing ee, that is,

G(e)=|{T(G)e}|.\triangle_{G}(e)=|\{\vartriangle\in T(G)\mid e\in\vartriangle\}|.

The edge-vertex incidence matrix (G)=(bev)m×n\mathcal{B}(G)=(b_{ev})_{m\times n} and triangle-edge incidence matrix 𝒞(G)=(ce)t×m\mathcal{C}(G)=(c_{\vartriangle e})_{t\times m} are severally defined by

bev={1,ve1,ev0,otherwiseandce={1,e1,e+0,otherwise,b_{ev}=\left\{\begin{array}[]{cc}-1,&v\rightarrow e\\ 1,&e\rightarrow v\\ 0,&\textrm{otherwise}\end{array}\right.\;\;\textrm{and}\;\;c_{\vartriangle e}=\left\{\begin{array}[]{cc}-1,&e\in\vartriangle^{-}\\ 1,&e\in\vartriangle^{+}\\ 0,&\textrm{otherwise}\end{array}\right., (5)

whose examples are given in Fig. 1.

Refer to caption
(G)=(110000110001001000110011001010)and𝒞(G)=(010011001101).\mathcal{B}(G)=\left(\begin{array}[]{ccccc}-1&1&0&0&0\\ 0&1&-1&0&0\\ 0&-1&0&0&1\\ 0&0&0&-1&1\\ 0&0&1&-1&0\\ 0&1&0&-1&0\end{array}\right)\textrm{and}\;\;\mathcal{C}(G)=\left(\begin{array}[]{cccccc}0&1&0&0&1&-1\\ 0&0&-1&1&0&-1\end{array}\right).
Figure 1: The matrices (G)\mathcal{B}(G) and 𝒞(G)\mathcal{C}(G) of the presented graph GG.

The lemma below indicates the relations among the operators and matrices mentioned above.

Lemma 2.1.

The operator gradgrad\operatorname{grad}\operatorname{grad^{\ast}} gives the matrix {\mathcal{B}}{\mathcal{B}}^{\top} and the operator curlcurl\operatorname{curl^{\ast}}\operatorname{curl} gives the matrix 𝒞𝒞{\mathcal{C}}^{\top}{\mathcal{C}}.

Proof.

Assign E(G)E(G) and T(G)T(G) arbitrary orientations. For any vV(G)v\in V(G), let δvL2(V)\delta_{v}\in L^{2}_{\wedge}(V) be the function such that δv(x)=1\delta_{v}(x)=1 if x=vx=v and 0 otherwise. For any edge eE(G)e\in E(G), let δeL2(E)\delta_{e}\in L^{2}_{\wedge}(E) denote the function such that

δe(i,j)=δe(j,i)=1\delta_{e}(i,j)=-\delta_{e}(j,i)=1

if e={i,j}e=\{i,j\} and 0 otherwise. For any T(G)\vartriangle\in T(G), set δL2(T)\delta_{\vartriangle}\in L^{2}_{\wedge}(T) to be the function such that

δ(i,j,k)=δ(j,k,i)=δ(k,i,j)=δ(j,i,k)=δ(i,k,j)=δ(k,j,i)=1\delta_{\vartriangle}(i,j,k)=\delta_{\vartriangle}(j,k,i)=\delta_{\vartriangle}(k,i,j)=-\delta_{\vartriangle}(j,i,k)=-\delta_{\vartriangle}(i,k,j)=-\delta_{\vartriangle}(k,j,i)=1

if ={i,j,k}\vartriangle=\{i,j,k\} and 0 otherwise. Clearly, {δvvV(G)}\{\delta_{v}\mid v\in V(G)\}, {δeeE(G)}\{\delta_{e}\mid e\in E(G)\} and {δT(G)}\{\delta_{\vartriangle}\mid\vartriangle\in T(G)\} are orthonormal basis of L2(V)L^{2}_{\wedge}(V), L2(E)L^{2}_{\wedge}(E) and L2(T)L^{2}_{\wedge}(T), respectively. Assume that grad{\rm grad} gives the matrix 𝒳\mathcal{X} and curl{\rm curl} gives the matrix 𝒴{\mathcal{Y}} under these basis. It suffices to show that 𝒳=\mathcal{X}=\mathcal{B} and 𝒴=𝒞\mathcal{Y}={\mathcal{C}} since ff^{\ast} gives the matrix FF^{*} if ff gives the matrix FF.

Note that the (e,v)(e,v)-th entry of 𝒳\mathcal{X} is

𝒳e,v=gradδv,δeE=ij(gradδv)(i,j)δe(i,j)=δv(e+)δv(e),\mathcal{X}_{e,v}=\langle\operatorname{grad}\delta_{v},\delta_{e}\rangle_{E}=\sum_{i\leq j}(\operatorname{grad}\delta_{v})(i,j)\delta_{e}(i,j)=\delta_{v}(e^{+})-\delta_{v}(e^{-}),

which yields that 𝒳e,v=1\mathcal{X}_{e,v}=1 if v=e+v=e^{+}, 1-1 if v=ev=e^{-} and 0 otherwise, and therefore 𝒳=\mathcal{X}=\mathcal{B}.

Similarly, the (,e)(\vartriangle,e)-th entry of 𝒴\mathcal{Y} is

𝒴,e=curlδe,δT=x<y<z(curlδe)(x,y,z)δ(x,y,z)=δe(i,j)+δe(j,k)+δe(k,i),\mathcal{Y}_{\vartriangle,e}=\langle{\rm curl}~{}\delta_{e},\delta_{\vartriangle}\rangle_{T}=\sum_{x<y<z}({\rm curl}~{}\delta_{e})(x,y,z)\delta_{\vartriangle}(x,y,z)=\delta_{e}(i,j)+\delta_{e}(j,k)+\delta_{e}(k,i),

where =(i,j,k)\vartriangle=(i,j,k). Hence, if e+e\in\vartriangle^{+} then e{(i,j),(j,k),(k,i)}e\in\{(i,j),(j,k),(k,i)\} and thus 𝒴,e=1\mathcal{Y}_{\vartriangle,e}=1; if ee\in\vartriangle^{-} then e{(j,i),(k,j),(i,k)}e\in\{(j,i),(k,j),(i,k)\} and thus 𝒴,e=1\mathcal{Y}_{\vartriangle,e}=-1; if ee\not\in\vartriangle then 𝒴,e=0\mathcal{Y}_{\vartriangle,e}=0. Thereby, 𝒴=𝒞\mathcal{Y}=\mathcal{C}. ∎

Theorem 2.2.

Let GG be a graph with orientations on its edge set EE and triangle set TT. The graph Helmholtzian gives the square matrix (G)=(hee)\mathcal{H}(G)=(h_{ee^{\prime}}) indexed by the edge set of GG with

hee={(e)+2,if e=e;1,if ee and e△̸e;1,if e±e and e△̸e;0,otherwise.h_{ee^{\prime}}=\begin{cases}\triangle(e)+2,&\mbox{if $e^{\prime}=e$};\\ -1,&\mbox{if $e\leftrightarrow e^{\prime}$ and $e\not\vartriangle e^{\prime}$};\\ 1,&\mbox{if $e^{\prime}\overset{\pm}{\sim}e$ and $e\not\vartriangle e^{\prime}$};\\ 0,&\mbox{otherwise}.\end{cases}
Proof.

From Lemma 2.1, by (4) the vector Laplacian (G)\mathcal{H}(G) gives the graph matrix

(G)=(G)(G)+𝒞(G)𝒞(G).\mathcal{H}(G)={\mathcal{B}}(G){\mathcal{B}}(G)^{\top}+{\mathcal{C}}(G)^{\top}{\mathcal{C}}(G). (6)

By immediate calculations, the (e,e)(e,e^{\prime})-th entry of (G)\mathcal{H}(G) is given as

e,e=()e,e+(𝒞𝒞)e,e=vV(G)e,vv,e+T(G)(𝒞)e,𝒞,e=vV(G)e,ve,v+T(G)𝒞,e𝒞,e=v𝒱(e)𝒱(e)e,ve,v+e,e𝒞,e𝒞,e.\begin{array}[]{lll}\mathcal{H}_{e,e^{\prime}}&=&(\mathcal{B}\mathcal{B}^{\top})_{e,e^{\prime}}+(\mathcal{C}^{\top}\mathcal{C})_{e,e^{\prime}}\\[5.69054pt] &=&\sum_{v\in V(G)}\mathcal{B}_{e,v}\mathcal{B}^{\top}_{v,e^{\prime}}+\sum_{\vartriangle\in T(G)}(\mathcal{C}^{\top})_{e,\vartriangle}\mathcal{C}_{\vartriangle,e^{\prime}}\\[5.69054pt] &=&\sum_{v\in V(G)}\mathcal{B}_{e,v}\mathcal{B}_{e^{\prime},v}+\sum_{\vartriangle\in T(G)}\mathcal{C}_{\vartriangle,e}\mathcal{C}_{\vartriangle,e^{\prime}}\\[5.69054pt] &=&\sum_{v\in\mathcal{V}(e)\cap\mathcal{V}(e^{\prime})}\mathcal{B}_{e,v}\mathcal{B}_{e^{\prime},v}+\sum_{e,e^{\prime}\in\vartriangle}\mathcal{C}_{\vartriangle,e}\mathcal{C}_{\vartriangle,e^{\prime}}.\end{array}

If e=ee=e^{\prime}, then

v𝒱(e)𝒱(e)e,ve,v=v𝒱(e)e,v2=2ande,e𝒞,e𝒞,e=e𝒞,e2=(e),\sum_{v\in\mathcal{V}(e)\cap\mathcal{V}(e^{\prime})}\mathcal{B}_{e,v}\mathcal{B}_{e^{\prime},v}=\sum_{v\in\mathcal{V}(e)}\mathcal{B}_{e,v}^{2}=2\;\;\mbox{and}\;\sum_{e,e^{\prime}\in\vartriangle}\mathcal{C}_{\vartriangle,e}\mathcal{C}_{\vartriangle,e^{\prime}}=\sum_{e\in\vartriangle}\mathcal{C}_{\vartriangle,e}^{2}=\triangle(e),

which results in e,e=(e)+2\mathcal{H}_{e,e^{\prime}}=\triangle(e)+2. If e≁ee\not\sim e^{\prime}, then

v𝒱(e)𝒱(e)e,ve,v=0ande,e𝒞,e𝒞,e=0,\sum_{v\in\mathcal{V}(e)\cap\mathcal{V}(e^{\prime})}\mathcal{B}_{e,v}\mathcal{B}_{e^{\prime},v}=0\;\;\mbox{and}\;\sum_{e,e^{\prime}\in\vartriangle}\mathcal{C}_{\vartriangle,e}\mathcal{C}_{\vartriangle,e^{\prime}}=0,

which shows e,e=0\mathcal{H}_{e,e^{\prime}}=0. It remains to consider the case eee\sim e^{\prime}. If eee\vartriangle e^{\prime} and eee\leftrightarrow e^{\prime}, say e,e0e,e^{\prime}\in\vartriangle_{0} and eee\rightarrow e^{\prime}, then

v𝒱(e)𝒱(e)e,ve,v=e,e+e,e=1ande,e𝒞,e𝒞,e=𝒞0,e𝒞0,e=1\sum_{v\in\mathcal{V}(e)\cap\mathcal{V}(e^{\prime})}\mathcal{B}_{e,v}\mathcal{B}_{e^{\prime},v}=\mathcal{B}_{e,e^{+}}\mathcal{B}_{e^{\prime},{e^{\prime}}^{-}}=-1\;\;\mbox{and}\;\sum_{e,e^{\prime}\in\vartriangle}\mathcal{C}_{\vartriangle,e}\mathcal{C}_{\vartriangle,e^{\prime}}=\mathcal{C}_{\vartriangle_{0},e}\mathcal{C}_{\vartriangle_{0},e^{\prime}}=1

indicating e,e=0\mathcal{H}_{e,e^{\prime}}=0. If eee\vartriangle e^{\prime} and e±ee\overset{\pm}{\sim}e^{\prime}, say e,e1e,e^{\prime}\in\vartriangle_{1} and e+ee\overset{+}{\sim}e^{\prime}, then

v𝒱(e)𝒱(e)e,ve,v=e,e+e,e+=1ande,e𝒞,e𝒞,e=𝒞1,e𝒞1,e=1,\sum_{v\in\mathcal{V}(e)\cap\mathcal{V}(e^{\prime})}\mathcal{B}_{e,v}\mathcal{B}_{e^{\prime},v}=\mathcal{B}_{e,e^{+}}\mathcal{B}_{e^{\prime},{e^{\prime}}^{+}}=1\;\;\mbox{and}\sum_{e,e^{\prime}\in\vartriangle}\mathcal{C}_{\vartriangle,e}\mathcal{C}_{\vartriangle,e^{\prime}}=\mathcal{C}_{\vartriangle_{1},e}\mathcal{C}_{\vartriangle_{1},e^{\prime}}=-1,

which yields e,e=0\mathcal{H}_{e,e^{\prime}}=0. If e△̸ee\not\vartriangle e^{\prime} and eee\leftrightarrow e^{\prime}, say eee\rightarrow e^{\prime}, then

v𝒱(e)𝒱(e)e,ve,v=e,e+e,e=1ande,e𝒞,e𝒞,e=0,\sum_{v\in\mathcal{V}(e)\cap\mathcal{V}(e^{\prime})}\mathcal{B}_{e,v}\mathcal{B}_{e^{\prime},v}=\mathcal{B}_{e,e^{+}}\mathcal{B}_{e^{\prime},{e^{\prime}}^{-}}=-1\;\;\mbox{and}\sum_{e,e^{\prime}\in\vartriangle}\mathcal{C}_{\vartriangle,e}\mathcal{C}_{\vartriangle,e^{\prime}}=0,

which arrives at e,e=1\mathcal{H}_{e,e^{\prime}}=-1. If e△̸ee\not\vartriangle e^{\prime} and e±ee\overset{\pm}{\sim}e^{\prime}, say e+ee\overset{+}{\sim}e^{\prime}, then

v𝒱(e)𝒱(e)e,ve,v=e,e+e,e+=1ande,e𝒞,e𝒞,e=0\sum_{v\in\mathcal{V}(e)\cap\mathcal{V}(e^{\prime})}\mathcal{B}_{e,v}\mathcal{B}_{e^{\prime},v}=\mathcal{B}_{e,e^{+}}\mathcal{B}_{e^{\prime},{e^{\prime}}^{+}}=1\;\;\mbox{and}\;\sum_{e,e^{\prime}\in\vartriangle}\mathcal{C}_{\vartriangle,e}\mathcal{C}_{\vartriangle,e^{\prime}}=0

implying e,e=1\mathcal{H}_{e,e^{\prime}}=1.

The proof is completed. ∎

Example 1.

In Theorem 2.2, we determine the graph matrix representation of graph Helmholtzian. For the graph GG in Fig. 1, by Theorem 2.2 one can verify that

(G)=(211001131000113000000310000130100004),\mathcal{H}(G)=\left(\begin{array}[]{cccccc}2&1&-1&0&0&1\\ 1&3&-1&0&0&0\\ -1&-1&3&0&0&0\\ 0&0&0&3&1&0\\ 0&0&0&1&3&0\\ 1&0&0&0&0&4\end{array}\right),

which is just (G)(G)+𝒞(G)𝒞(G)\mathcal{B}(G)\mathcal{B}(G)^{\top}+\mathcal{C}(G)^{\top}\mathcal{C}(G). ∎

3 Vector Laplace Equation on Graphs

Clearly, the graph-theoretic analogue of vector Laplace equation (2) is

(G)𝐱=𝟎.\mathcal{H}(G){\bf x}={\bf 0}. (7)

Hereafter, we determine the dimension dim𝒱0\dim{\mathcal{V}_{0}} of solution space 𝒱0\mathcal{V}_{0} of (7). Since (G)\mathcal{H}(G) is diagonalizable, then dim𝒱0\dim{\mathcal{V}_{0}} is equal to the algebraic multiplicity of eigenvalues 0, which is said to be nullity of a graph GG. Denoted by ηM(G)\eta_{M}(G) the nullity of a graph GG with respect to a graph matrix M(G)M(G). For the adjacency matrix A(G)A(G), Collatz and Sinogowitz [4] first posed the problem of characterizing all graphs with ηA(G)>0\eta_{A}(G)>0. This question has strong chemical background, because η(G)=0\eta(G)=0 is a necessary condition for a so-called conjugated molecule to be chemically stable, where GG is the graph representing the carbon-atom skeleton of this molecule. For the Laplacian matrix L(G)L(G), it is well-known that the nullity of a graph is exactly the number of its connected components.

We next determine η(G)\eta_{\mathcal{H}}(G) involving the order, the size and the number of triangles of GG.

Lemma 3.1.

Let GG be a graph with size m(G)m(G). Then

η(G)=m(G)rank((G)𝒞(G)),\eta_{\mathcal{H}}(G)=m(G)-{\rm rank}\left(\begin{array}[]{c}\mathcal{B}(G)^{\top}\\ \mathcal{C}(G)\end{array}\right),

where (G)\mathcal{B}(G) and 𝒞(G)\mathcal{C}(G) are defined in (5).

Proof.

Given an arbitrary orientation to E(G)E(G) and T(G)T(G), by (6) we get that

(G)𝐱=((G)(G)+𝒞(G)𝒞(G))𝐱=𝟎\mathcal{H}(G){\rm\bf x}=(\mathcal{B}(G)\mathcal{B}(G)^{\top}+\mathcal{C}(G)^{\top}\mathcal{C}(G)){\rm\bf x}=\mathbf{0}

if and only if 𝒞(G)𝐱=𝟎\mathcal{C}(G){\rm\bf x}=\mathbf{0} and (G)𝐱=𝟎\mathcal{B}(G)^{\top}{\rm\bf x}=\mathbf{0}, which is equivalent to

(B(G)𝒞(G))𝐱=𝟎.\left(\begin{array}[]{c}B(G)^{\top}\\ \mathcal{C}(G)\end{array}\right){\rm\bf x}=\mathbf{0}.

Thereby, η(G)=m(G)rank((G)𝒞(G))\eta_{\mathcal{H}}(G)=m(G)-{\rm rank}\left(\begin{array}[]{c}\mathcal{B}(G)^{\top}\\ \mathcal{C}(G)\end{array}\right). ∎

Note that rank((G))=rank((G)){\rm rank}(\mathcal{B}^{\top}(G))={\rm rank}(\mathcal{B}(G)) and rank(𝒞(G))=tG(){\rm rank}(\mathcal{C}(G))=t_{G}(\triangle), the number of triangles in GG. Thus we get the following result immediately.

Corollary 3.2.

Let GG be a graph with arbitrary orientations on E(G)E(G) and T(G)T(G). Then

η(G)=m(G)tG()rank((G)).\eta_{\mathcal{H}}(G)=m(G)-t_{G}(\triangle)-{\rm rank}(\mathcal{B}(G)).
Lemma 3.3.

If GG has a pendent vertex vv and G=GvG^{\prime}=G-v, then η(G)=η(G)\eta_{\mathcal{H}}(G)=\eta_{\mathcal{H}}(G^{\prime}).

Proof.

Given arbitrary orientations to E(G)E(G) and T(G)T(G), we get m(G)=m(G)1m(G^{\prime})=m(G)-1, rank((G))=rank((G))1{\rm rank}(\mathcal{B}(G^{\prime}))={\rm rank}(\mathcal{B}(G))-1 and tG()=tG()t_{G^{\prime}}(\triangle)=t_{G}(\triangle). Hence, the result follows from Corollary 3.2. ∎

For a vertex vv of a graph GG, let NG(v)N_{G}(v) denote the set of the neighbours of vv. If e=uve=uv such that NG(u)NG(v)=N_{G}(u)\cap N_{G}(v)=\emptyset, the contraction of ee is the replacement of uu and vv with a single vertex whose incident edges are the edges other than ee that are incident to uu or vv, and the resulting graph is denoted by G/eG/e.

Lemma 3.4.

Let GG be a graph with edge e=uve=uv such that N(u)N(v)=N(u)\cap N(v)=\emptyset. If G=G/eG^{\prime}=G/e, then

η(G)=η(G)+G(e).\eta_{\mathcal{H}}(G)=\eta_{\mathcal{H}}(G^{\prime})+\triangle_{G^{\prime}}(e).
Proof.

Give orientations to E(G)E(G) and T(G)T(G) such that uu and vv are respectively the tail and the head of any edge incident to it. Clearly, m(G)=m(G)1m(G^{\prime})=m(G)-1 and tG()=tG()G(e)t_{G^{\prime}}(\triangle)=t_{G}(\triangle)-\triangle_{G}(e). It suffices to show that rank((G))=rank((G))+1{\rm rank}(\mathcal{B}(G))={\rm rank}(\mathcal{B}(G^{\prime}))+1 by Corollary 3.2. For any vertex zz, let Ez={ez𝒱(e)}E_{z}=\{e\mid z\in\mathcal{V}(e)\}. Denote by E1=E(G)(EuEv)E_{1}=E(G)\setminus(E_{u}\cup E_{v}), E2=Eu{e}E_{2}=E_{u}\setminus\{e\}, E3=Ev{e}E_{3}=E_{v}\setminus\{e\}, and uu^{\prime} the vertex in GG^{\prime} that replaces uu and vv in GG. Then

(G)=E1E2E3{e}uvV{u,v}(𝟎𝟏𝟎1𝟎𝟎𝟏1B1B2B3𝟎)and(G)=E1E2E3uV{u}(𝟎𝟏𝟏B1B2B3).\mathcal{B}(G)^{\top}=\!\!\!\!\!\!\!\begin{array}[]{cc}&\begin{array}[]{cccc}E_{1}&E_{2}&E_{3}&\{e\}\end{array}\\ \begin{array}[]{c}u\\ v\\ V\setminus\{u,v\}\end{array}&\left(\begin{array}[]{cccc}\mathbf{0}&-\mathbf{1}^{\top}&\mathbf{0}&-1\\ \mathbf{0}&\mathbf{0}&\mathbf{1}^{\top}&1\\ B_{1}&B_{2}&B_{3}&\mathbf{0}\end{array}\right)\end{array}\;\;{\mbox{and}}\;\;\mathcal{B}(G^{\prime})^{\top}=\!\!\!\!\!\!\begin{array}[]{cc}&\begin{array}[]{ccc}E_{1}&E_{2}&E_{3}\end{array}\\ \begin{array}[]{c}u^{\prime}\\ V^{\prime}\setminus\{u^{\prime}\}\end{array}&\left(\begin{array}[]{ccc}\mathbf{0}&-\mathbf{1}^{\top}&\mathbf{1}\\ B_{1}&B_{2}&B_{3}\end{array}\right)\end{array}.

If the uu^{\prime}-th row of B(G)B(G^{\prime})^{\top} could be represented by the other rows, then so could the summation of the uu-th row and the vv-th row of B(G)B(G)^{\top}, and thus

rank((G))=rank(B1B2B3)andrank((G))=rank(B1B2B3)+1.{\rm rank}(\mathcal{B}(G^{\prime}))={\rm rank}(B_{1}\;B_{2}\;B_{3})\;\;{\mbox{and}}\;\;{\rm rank}(\mathcal{B}(G))={\rm rank}(B_{1}\;B_{2}\;B_{3})+1.

Hence, rank((G))=rank((G))+1{\rm rank}(\mathcal{B}(G))={\rm rank}(\mathcal{B}(G^{\prime}))+1. If the uu^{\prime}-th row cannot be represented by the other rows, then

rank((G))=rank(B1B2B3)+1andrank((G))=rank(B1B2B3)+2,{\rm rank}(\mathcal{B}(G^{\prime}))={\rm rank}(B_{1}\;B_{2}\;B_{3})+1\;\;{\mbox{and}}\;\;{\rm rank}(\mathcal{B}(G))={\rm rank}(B_{1}\;B_{2}\;B_{3})+2,

and we still have rank((G))=rank((G))+1{\rm rank}(\mathcal{B}(G))={\rm rank}(\mathcal{B}(G^{\prime}))+1. ∎

The following result follows from the above lemma.

Corollary 3.5.

Let GG be a graph with a cut-edge ee. Then η(G)=η(G/e)\eta_{\mathcal{H}}(G)=\eta_{\mathcal{H}}(G/e).

The next result follows from the fact that each edge of a tree is a cut-egde and using Corollary 3.5 repeatedly.

Corollary 3.6.

Let 𝒯\mathcal{T} be a tree. Then, η(𝒯)=0\eta_{\mathcal{H}}(\mathcal{T})=0 and so (𝒯)\mathcal{H}(\mathcal{T}) is an invertible matrix.

Our main result in this subsection is shown as follows.

Theorem 3.7.

Let GG be a graph with ω(G)\omega(G) components. Then

η(G)=m(G)n(G)tG()+ω(G).\eta_{\mathcal{H}}(G)=m(G)-n(G)-t_{G}(\triangle)+\omega(G).
Proof.

For 1iω(G)1\leq i\leq\omega(G), we consider each component GiG_{i} of GG by induction on tGi()t_{G_{i}}(\triangle). If tGi()=0t_{G_{i}}(\triangle)=0, then rank((Gi))=rank((Gi))=rank(L(Gi))=ni1{\rm rank}(\mathcal{B}(G_{i}))={\rm rank}(\mathcal{B}(G_{i})^{\top})={\rm rank}(L(G_{i}))=n_{i}-1, because GiG_{i} is connected. Therefore, η(Gi)=m(Gi)n(Gi)+1\eta_{\mathcal{H}}(G_{i})=m(G_{i})-n(G_{i})+1. Assume that the statement is true for tGi()tt_{G_{i}}(\triangle)\leq t. Assume that tGi()=t+1t_{G_{i}}(\triangle)=t+1. Taking an edge ee belonging to some triangle, let G~i\tilde{G}_{i} be the graph obtained from GiG_{i} by replacing ee with an directed path eue+e^{-}\rightarrow u\rightarrow e^{+}. Clearly, Gi=Gi~/{e,u}G_{i}=\tilde{G_{i}}/\{e^{-},u\} and NGi~(e)NGi~(u)=N_{\tilde{G_{i}}}(e^{-})\cap N_{\tilde{G_{i}}}(u)=\emptyset. Along with Lemma 3.4 we get

η(G~i)=η(Gi)+Gi(e).\eta_{\mathcal{H}}(\tilde{G}_{i})=\eta_{\mathcal{H}}(G_{i})+\triangle_{G_{i}}(e). (8)

By inductive assumption,

η(G~i)=m(G~i)n(G~i)t(G~i)+1.\eta_{\mathcal{H}}(\tilde{G}_{i})=m(\tilde{G}_{i})-n(\tilde{G}_{i})-t(\tilde{G}_{i})+1. (9)

Substituting m(G~i)=m(Gi)+1m(\tilde{G}_{i})=m(G_{i})+1, n(G~i)=n(Gi)+1n(\tilde{G}_{i})=n(G_{i})+1 and tG~i()=tGi()Gi(e)t_{\tilde{G}_{i}}(\triangle)=t_{G_{i}}(\triangle)-\triangle_{G_{i}}(e) into (9), by (8) we arrive at

(m(Gi)+1)(n(Gi)+1)(tGi()Gi(e))+1=η(G~i)=η(Gi)+ΔGi(e)(m(G_{i})+1)-(n(G_{i})+1)-(t_{G_{i}}(\triangle)-\triangle_{G_{i}}(e))+1=\eta_{\mathcal{H}}(\tilde{G}_{i})=\eta_{\mathcal{H}}(G_{i})+\Delta_{G_{i}}(e)

resulting in η(Gi)=m(Gi)n(Gi)tGi()+1\eta_{\mathcal{H}}(G_{i})=m(G_{i})-n(G_{i})-t_{G_{i}}(\triangle)+1. In consequence,

η(G)=i=1ω(G)η(Gi)=i=1ω(G)[m(Gi)n(Gi)tGi()+1]=m(G)n(G)tG()+ω(G).\eta_{\mathcal{H}}(G)=\sum_{i=1}^{\omega(G)}\eta_{\mathcal{H}}(G_{i})=\sum_{i=1}^{\omega(G)}[m(G_{i})-n(G_{i})-t_{G_{i}}(\triangle)+1]=m(G)-n(G)-t_{G}(\triangle)+\omega(G).

This completes the proof. ∎

The following results instantly follows from the above theorem.

Proposition 3.8.

Under the conditions of Theorem 3.7,

  • (i)

    dimker(Λ)=dim𝒱0=m(G)n(G)tG()+ω(G)\dim\ker(\Lambda)=\dim\mathcal{V}_{0}=m(G)-n(G)-t_{G}(\triangle)+\omega(G);

  • (ii)

    tG()=m(G)n(G)η(G)+ω(G)t_{G}(\triangle)=m(G)-n(G)-\eta_{\mathcal{H}}(G)+\omega(G).

4 Further remarks

In the article we have regarded a graph as a discrete analogue of vector Laplacian and vector Laplace equation. In Theorem 2.2, we give the graph matrix representation (G)\mathcal{H}(G) of vector Laplacian, which is called Helmholtzian matrix of a graph GG. Historically, it is the first one that is indexed by the edge set of a graph, compared with all the other graph matrices indexed by the vertex set of a graph. On the other hand, the graph Helmholtzian has been applied in the statistical ranking [6] and the random walks on simplicial complexes [15]. Just as the roles of the graph (normalized) Laplacian in studying the structural and dynamical properties of ordinary networks [1, 2], we look forward to the applications of graph Helmholtzian in the simplicial network, due to the Helmholtz operator is a special case of Hodge Laplacians based upon the clique complex of a graph. Henceforward, a spectral theory based on graph Helmholtzian is expected [9].

In Proposition 3.8(i), we get the dimension of solution space of a discrete analogue of PDE: vector Laplacian, which possesses natural counterparts on graphs. Moreover, the ker(Λ)\ker(\Lambda) is involved in the Helmholtz Decomposition Theorem, a special case of Hodge decomposition holding in general for any simplicial complex of any dimension [6, Theorem 2]:

Helmholtz Decomposition Theorem[6, Theorem 2]. Let GG be a graph and KGK_{G} be its clique complex. The space of edge flows on GG, i.e. C1(KG,)=L2(E)C^{1}(K_{G},\mathbb{R})=L^{2}_{\wedge}(E), admits an orthogonal decomposition

C1(KG,)=im(grad)ker(Λ)im(curl).C^{1}(K_{G},\mathbb{R})={\rm im}(\operatorname{grad})\oplus\ker(\Lambda)\oplus{\rm im}(\operatorname{curl}^{*}).

See [8, Section 6.3] for more applications of the Hodge Laplacian and Hodge decomposition on graphs to other fields.

In the end, the number of triangles in a graph/network is a main metric to extract insights for an extensive range of graph applications, see [5, 13, 14, 18, eg.] for more details. Hence, the significance of triangle counting is posed by the GraphChallenge competition [7], which is now known in Proposition 3.8(ii).

Acknowledgments

Jianfeng Wang expresses his sincere thanks to Prof. Lek-Heng Lim for his kind suggestion. Jianfeng Wang is supported by National Natural Science Foundation of China (No. 12371353) and Special Fund for Taishan Scholars Project. Lu Lu is supported by National Natural Science Foundation of China (No. 11671344).

References

  • [1] F. Chung, Spectral Graph Theory, The American Mathematical Society, 1997.
  • [2] F. Chung and L.Y. Lu, Complex Graphs and Networks, The American Mathematical Society, 2006.
  • [3] J.G. Coffin, Vector Analysis: An Introduction to Vector-methods and Their Various Applications to Physics and Mathematics, J. Wiley & Sons, 1911.
  • [4] L. Collatz and U. Sinogowitz, Spektren endlicher grafen, Abh. Math. Semin. Univ. Hamb., 21 (1957), 63–77.
  • [5] M.A. Hasan and V. Dave, Triangle Counting in Large Networks: A Review, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(2):e1226, 2018.
  • [6] X. Jiang, L.-H. Lim, Y. Yao and Y. Ye, Statistical ranking and combinatorial Hodge theory, Math. Program., 127 (2011) 203–244.
  • [7] J. Kepner, Graph Challenge, https://graphchallenge.mit.edu. Accessed: 2020, April 08.
  • [8] L.-H. Lim, Hodge Laplacians on Graphs, SIAM Rev. 62 (3) (2020) 685–715.
  • [9] L. Lu, Y.T. Shi, J.F. Wang, Y. Wang, An introduction to graphs spectra of Hodge 1-Laplacians, submitted.
  • [10] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra Appl. 197–198 (1994) 143–176.
  • [11] B. Mohar, The Laplacian spectrum of graphs, Graph Theory Combin. Appl. 2 (1991) 871–898.
  • [12] P. Moon, D. E. Spencer, The meaning of the vector Laplacian, Journal of the Franklin Institute 256 (6) (1953) 551-558.
  • [13] S. Pandey, Z. Wang, S. Zhong, C. Tian, B. Zheng, X. Li, L. Li, A. Hoisie, C. Ding and D. Li et al, TRUST: Triangle Counting Reloaded on GPUs, IEEE Trans. Par. Dis. Sys., 32 (2021), 2646–2660.
  • [14] M. Rezvani, W. Liang, C. Liu and J.X. Yu, Efficient Detection of Overlapping Communities Using Asymmetric Triangle Cuts, IEEE Trans. Know. Data Engin., 30 (2018), 2093–2105.
  • [15] M.T. Schaub, A.R. Benson, P. Horn, G. Lippner and A. Jadbabaie, Random Walks on Simplicial Complexes and the Normalized Hodge 1-Laplacian, SIAM Rev., 62 (2020), pp. 353–391.
  • [16] G. Strang, Introduction to Applied Mathematics. Wellesley-Cambridge Press, 1986.
  • [17] F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Grad. Texts in Math. 94, Springer-Verlag, New York, 1983.
  • [18] H. Zhang, Y. Zhu, L. Qin, H. Cheng and J.X. Yu, Efficient triangle listing for billion-scale graphs, 2016 IEEE Inter. Conf. Big Data, pp. 813–822.

PS: In their longer manuscript [9], the last two authors of this paper,Yongtang Shi and Yi Wang have considered the spectral properties of graph Helmholtzian, including the irreducibility, the interlacing theorem, the graphs with few Helmholtzian eigenvalues, the coefficients of Helmholtzian polynomial, the relations between Helmholtzian and Laplacian spectra, the Helmholtzian spectral radii and their limit points, the least Helmholtzian eigenvalue, the product graphs and the Helmholtzian integral graphs. On the other hand, Jianfeng Wang and his student Zhen Chen have determined the Helmholtzian eigenvalues of threshold graphs recently.