This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Buyang Li and Shu Ma 22institutetext: Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong.
22email: buyang.li@polyu.edu.hk and maisie.ma@connect.polyu.hk
This work is partially supported by the Hong Kong Research Grants Council (GRF project No. 15300519) and an internal grant of the university (project code ZZKK).

A high-order exponential integrator for nonlinear parabolic equations with nonsmooth initial data

Buyang Li and Shu Ma
Abstract

A variable stepsize exponential multistep integrator, with contour integral approximation of the operator-valued exponential functions, is proposed for solving semilinear parabolic equations with nonsmooth initial data. By this approach, the exponential kk-step method would have kthk^{\rm th}-order convergence in approximating a mild solution, possibly nonsmooth at the initial time. In consistency with the theoretical analysis, a numerical example shows that the method can achieve high-order convergence in the maximum norm for semilinear parabolic equations with discontinuous initial data.

Key words  nonlinear parabolic equation, nonsmooth initial data, exponential integrator, variable stepsize, high-order accuracy, discontinuous initial data.

1 Introduction

Let AA be the generator of a bounded analytic semigroup on a Banach space XX, with domain D(A)XD(A)\subset X, and consider the abstract semilinear initial-value problem

{u(t)Au(t)=f(t,u(t))fort(0,T],u(0)=u0,\left\{\begin{aligned} u^{\prime}(t)-Au(t)&=f(t,u(t))\quad\mbox{for}\,\,\,t\in(0,T],\\ u(0)&=u_{0},\end{aligned}\right. (1)

where u0Xu_{0}\in X and f:[0,)×XXf:[0,\infty)\times X\rightarrow X is a smooth (locally Lipschitz continuous) function. A function uC([0,T];X)u\in C([0,T];X) is called a mild solution of (1) if it satisfies the integral equation

u(t)=etAu0+0te(ts)Af(s,u(s))ds,t(0,T],u(t)=e^{tA}u_{0}+\int_{0}^{t}e^{(t-s)A}f(s,u(s)){\mathrm{d}}s,\quad\forall\,t\in(0,T], (2)

where etAe^{tA} denotes the semigroup generated by the operator AA.

In the linear case f(t,u)f(t)f(t,u)\equiv f(t), time discretization of (1) by a kthk^{\rm th}-order Runge–Kutta method satisfies the following error estimate:

unu(tn)Cτktnkforu0X,\|u_{n}-u(t_{n})\|\leq C\tau^{k}t_{n}^{-k}\quad\mbox{for}\,\,\,u_{0}\in X, (3)

where τ\tau denotes the stepsize of time discretization; see Lubich-Ostermann-1996 ; Thomee2006 . In particular, for a nonsmooth initial value u0Xu_{0}\in X, the methods have kthk^{\rm th}-order accuracy when tnt_{n} is not close to zero. This result also holds for implicit backward difference formulae (BDF), exponential integrators Hochbruck-Ostermann-2010 ; Koskela-Ostermann-2013 , and fractional-order evolution equations (Jin-Li-Zhou-2017, , Remark 2.6).

However, such high-order convergence as (3) does not hold when the source function f(t,u)f(t,u) is nonlinear with respect to uu. A counter example constructed in Crouzeix-Thomee-1987 shows that a kthk^{\rm th}-order Runge–Kutta method normally has only first-order convergence for a general nonsmooth initial data u0Xu_{0}\in X, i.e.,

C1τtn1unu(tn)C2τtn1foru0X.C_{1}\tau t_{n}^{-1}\leq\|u_{n}-u(t_{n})\|\leq C_{2}\tau t_{n}^{-1}\quad\mbox{for}\,\,\,u_{0}\in X. (4)

Similarly, semi-implicit Runge–Kutta methods also suffer from this barrier of convergence rate Ostermann-Thalhammer-2000 . For nonlinear problems with nonsmooth initial data, existing error estimates for exponential integrators also yield only first-order convergence (see Hochbruck-Ostermann-2005 ; Mukam-Tambue-2018 ; Ostermann-Thalhammer-2000 )

unu(tn)Cτforu0X.\|u_{n}-u(t_{n})\|\leq C\tau\quad\mbox{for}\,\,\,u_{0}\in X. (5)

No method has been proved to have high-order convergence for semilinear parabolic equations with general nonsmooth initial data u0Xu_{0}\in X.

Of course, if the initial value is sufficiently smooth and satisfies certain compatibility conditions, e.g., u0D(Ak)u_{0}\in D(A^{k}), then O(τk)O(\tau^{k}) convergence can be achieved uniformly for tn[0,T]t_{n}\in[0,T] for the nonlinear problem (1). This has been proved for most time discretization methods, including Runge–Kutta methods Crouzeix-Thomee-1987 , implicit A(α)(\alpha)-stable multistep methods Lubich-1990 , implicit–explicit BDF methods Akrivis-2015 ; Akrivis-Lubich-2015 , splitting methods Einkemmer-Ostermann-2015 ; Einkemmer-Ostermann-2016 ; Hansen-Kramer-Ostermann-2012 and several types of exponential integrators Calvo-Palencia-2006 ; Hochbruck-Ostermann-2005 ; Hochbruck-Ostermann-2010 ; Ostermann-Thalhammer-Wright-2006 . Extension to quasi-linear parabolic problems has also been done; see Gonzalez-Thalhammer-2007 ; Gonzalez-Thalhammer-2015 ; Gonzalez-Thalhammer-2016 ; Hochbruck-Ostermann-2011 ; Hochbruck-Ostermann-Schweitzer-2009 ; Lubich-Ostermann-1995 . The error estimates presented in these articles do not apply to nonsmooth initial data.

Due to the presence of the factor tn1t_{n}^{-1}, the first-order convergence of Runge–Kutta methods cannot be improved by using variable stepsizes. However, compared with other time discretization methods, exponential integrators were proved to have an error bound of O(τ)O(\tau) uniformly for tn[0,T]t_{n}\in[0,T] for nonsmooth initial data u0Xu_{0}\in X, without the factor tn1t_{n}^{-1} appearing in the error estimates for other methods (see Hochbruck-Ostermann-2005 ; Mukam-Tambue-2018 ; Ostermann-Thalhammer-2000 ). This uniform convergence motivates us to consider the possibility of constructing high-order exponential integrators with variable stepsizes.

In this paper, we propose a variable stepsize exponential kk-step integrator for (1) with general nonsmooth initial data u0Xu_{0}\in X, by choosing

τn=O((tn/T)βτ),for someβ>11k,\displaystyle\tau_{n}=O((t_{n}/T)^{\beta}\tau),\quad\mbox{for some}\,\,\,\beta>1-\frac{1}{k}, (6)

where τn=tntn1\tau_{n}=t_{n}-t_{n-1} denotes the nthn^{\rm th} stepsize in the partition 0=t0<t1<<tN=T0=t_{0}<t_{1}<\dots<t_{N}=T, and τ\tau the maximal stepsize. For the convenience of implementation, we also integrate in the numerical method (and the error analysis) an algorithm for approximating the exponential integrator by using the contour integral techniques developed in Lopez-Fernandez-2010 ; LFPS-2006 ; Schadle-LF-Lubich-2006 .

The proposed variable stepsize method, with contour integral approximation of the exponential integrator, can achieve kthk^{\rm th}-order accuracy in approximating a mild solution of (1), i.e.,

max1nNunu(tn)Cτk.\displaystyle\max_{1\leq n\leq N}\|u_{n}-u(t_{n})\|\leq C\tau^{k}. (7)

This is the first high-order convergence result in approximating semilinear parabolic equations with nonsmooth initial data (without any regularity in addition to u0Xu_{0}\in X). In view of the result (4) for the Runge–Kutta methods, the convergence result (7) shows the superiority of the variable stepsize exponential integrator for problems with nonsmooth initial data. The approximation of exponential integrator would require O(ln(τ1))O(\ln(\tau^{-1})) parallel solutions of linear equations, and there are N=O(τ1)N=O(\tau^{-1}) time levels by using the stepsize in (6). Therefore, the total computational cost is O(τ1ln(τ1))O(\tau^{-1}\ln(\tau^{-1})) for an accuracy of O(τk)O(\tau^{k}).

For rigorous analysis without extra regularity assumptions on the solution, we assume that the nonlinear source function satisfies the following estimates:

f(t,u)f(t,v)Cf,u,vuvforu,vX,(local Lipschitz continuity)\displaystyle\|f(t,u)-f(t,v)\|\leq C_{f,u,v}\|u-v\|\,\,\,\mbox{for}\,\,\,u,v\in X,\quad\mbox{(local Lipschitz continuity)} (8)
ddtf(t,u(t))(smoothness in t and u)\displaystyle\bigg{\|}\frac{{\mathrm{d}}^{\ell}}{{\mathrm{d}}t^{\ell}}f(t,u(t))\bigg{\|}\hskip 137.0pt\mbox{(smoothness in $t$ and $u$)}
Cf,u,j=1m1++mjtm1u(t)tm2u(t)tmju(t),=0,1,,\displaystyle\leq C_{f,u,\ell}\sum_{j=1}^{\ell}\!\!\sum_{\,\,\,\,\,m_{1}+\cdots+m_{j}\leq\ell}\|\partial_{t}^{m_{1}}u(t)\|\,\|\partial_{t}^{m_{2}}u(t)\|\,\cdots\,\|\partial_{t}^{m_{j}}u(t)\|,\quad\ell=0,1,\dots, (9)

where \|\cdot\| denotes the norm of XX, Cf,u,vC_{f,u,v} is a constant depending on ff, u\|u\| and v\|v\|; similarly, Cf,u,C_{f,u,\ell} is a constant depending on ff, u(t)\|u(t)\|, \ell, and the summation above extends over all possible positive integers m1,,mjm_{1},\dots,m_{j} satisfying m1++mjm_{1}+\dots+m_{j}\leq\ell for a given jj.

Assumptions (8)–(9) are naturally satisfied by a general smooth function f:f:{\mathbb{R}}\rightarrow{\mathbb{R}} in a semilinear parabolic partial differential equation (PDE)

{tu(x,t)Δu(x,t)=f(u(x,t))for(x,t)Ω×(0,T],u(x,t)=0for(x,t)Ω×(0,T],u(x,0)=u0(x)forxΩ.\left\{\begin{aligned} \partial_{t}u(x,t)-\Delta u(x,t)&=f(u(x,t))&&\mbox{for}\,\,\,(x,t)\in\Omega\times(0,T],\\ u(x,t)&=0&&\mbox{for}\,\,\,(x,t)\in\partial\Omega\times(0,T],\\ u(x,0)&=u_{0}(x)&&\mbox{for}\,\,\,x\in\Omega.\end{aligned}\right. (10)

In this case, the Dirichlet Laplacian Δ\Delta generates a bounded analytic semigroup on X=C0(Ω¯)X=C_{0}(\overline{\Omega}), the space of continuous functions on Ω¯\overline{\Omega} which equal zero on the boundary Ω\partial\Omega; see Ouhabaz1995 . Furthermore, the smooth function ff naturally extends to a function of uC0(Ω¯)u\in C_{0}(\overline{\Omega}), satisfying

f(u)f(v)C0(Ω¯)Cmax|s|u+v|sf(s)|uvC0(Ω¯)\|f(u)-f(v)\|_{C_{0}(\overline{\Omega})}\leq C\max_{|s|\leq\|u\|+\|v\|}|\partial_{s}f(s)|\,\|u-v\|_{C_{0}(\overline{\Omega})}

and

ddtf(u(x,t))\displaystyle\frac{{\mathrm{d}}}{{\mathrm{d}}t}f(u(x,t)) =uf(u)tu,\displaystyle=\partial_{u}f(u)\partial_{t}u,
d2dt2f(u(x,t))\displaystyle\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}t^{2}}f(u(x,t)) =u2f(u)(tu)2+uf(u)ttu,\displaystyle=\partial_{u}^{2}f(u)(\partial_{t}u)^{2}+\partial_{u}f(u)\partial_{tt}u,
d3dt3f(u(x,t))\displaystyle\frac{{\mathrm{d}}^{3}}{{\mathrm{d}}t^{3}}f(u(x,t)) =u3f(u)(tu)3+3u2f(u)tuttu+uf(u)tttu,\displaystyle=\partial_{u}^{3}f(u)(\partial_{t}u)^{3}+3\partial_{u}^{2}f(u)\partial_{t}u\partial_{tt}u+\partial_{u}f(u)\partial_{ttt}u,
\displaystyle...

Obviously, all these time derivatives of f(u(x,t))f(u(x,t)) satisfy (9). Hence, the semilinear parabolic PDE (10) with a general smooth function f:f:{\mathbb{R}}\rightarrow{\mathbb{R}} is an example of the abstract problem (1) satisfying assumptions (8)–(9).

Assumption (8) is the same as the local Lipschitz continuity assumption used in Calvo-Palencia-2006 and Hochbruck-Ostermann-2005 . In Calvo-Palencia-2006 , authors proved high-order convergence with an addition assumption that the solution is in Ck([0,T],X)C^{k}([0,T],X), which is not satisfied when the initial data is nonsmooth, i.e., u0Xu_{0}\in X instead of D(Ak)D(A^{k}). In Hochbruck-Ostermann-2005 , authors proved high-order convergence of exponential integrators with an additional assumption that tkf(u(t))\partial_{t}^{k}f(u(t)) is uniformly bounded for t[0,T]t\in[0,T], which is also not satisfied when the initial data is nonsmooth. These additional assumptions in Calvo-Palencia-2006 ; Hochbruck-Ostermann-2005 are replaced by (9) in this paper, which is used to prove the weighted estimates

tu(t)Ctfor=1,,k,\|\partial_{t}^{\ell}u(t)\|\leq Ct^{-\ell}\quad\mbox{for}\quad\ell=1,\dots,k,

which allow the solution to be nonsmooth at t=0t=0. These weighted estimates are used to prove high-order convergence of the exponential integrator in this paper.

Both the regularity analysis and the error analysis in this paper can be similarly extended to semilinear parabolic equations with smoothly varying time-dependent operators. However, the extension to quasilinear parabolic equations with nonsmooth initial data is still not obvious.

2 Numerical method

We denote by g^(z):=0eztg(t)dt\widehat{g}(z):=\int_{0}^{\infty}e^{-zt}g(t){\mathrm{d}}t the Laplace transform of a given function gg. Then we let g(t):=f(t,u(t))g(t):=f(t,u(t)) and take the Laplace transform of (2) in time. This yields

u^(z)\displaystyle\hat{u}(z) =(zA)1u0+(zA)1g^(z).\displaystyle=(z-A)^{-1}u_{0}+(z-A)^{-1}\widehat{g}(z). (11)

Since AA generates a bounded analytic semigroup on XX, there exists an angle ϕ(0,π2)\phi\in(0,\frac{\pi}{2}) such that the operator (zA)1(z-A)^{-1} is analytic with respect to zz in the sector

Σπϕ:={z:|arg(z)|<πϕ}.\Sigma_{\pi-\phi}:=\{z\in{\mathbb{C}}:|{\rm arg}(z)|<\pi-\phi\}.

In order to use the established contour integral techniques of Lopez-Fernandez-2010 ; LFPS-2006 , we take inverse Laplace transform of (11) along the contour

Γλ={λ(1sin(α+is)):s}Σπϕ,\Gamma_{\lambda}=\{\lambda(1-\sin(\alpha+{\rm i}s)):s\in{\mathbb{R}}\}\subset\Sigma_{\pi-\phi},

where α=π4ϕ2\alpha=\frac{\pi}{4}-\frac{\phi}{2} and λ\lambda is to be determined. Then we have

u(t)\displaystyle u(t) =12πiΓλetz(zA)1(g^(z)+u0)dz.\displaystyle=\frac{1}{2\pi{\rm i}}\int_{\Gamma_{\lambda}}e^{tz}(z-A)^{-1}(\widehat{g}(z)+u_{0}){\mathrm{d}}z.

Similarly, by considering tn1t_{n-1} as the initial time, the solution at t=tnt=t_{n} can be written as

u(tn)\displaystyle u(t_{n}) =12πiΓλneτnz(zA)1(gn^(z)+u(tn1))dz,\displaystyle=\frac{1}{2\pi{\rm i}}\int_{\Gamma_{\lambda_{n}}}e^{\tau_{n}z}(z-A)^{-1}(\widehat{g_{n}}(z)+u(t_{n-1})){\mathrm{d}}z, (12)

where gn(s)=f(tn1+s,u(tn1+s))g_{n}(s)=f(t_{n-1}+s,u(t_{n-1}+s)).

In (Lopez-Fernandez-2010, , Theorem 1) the authors proved that, by choosing the parameter

λn=2πdK(1θ)τna(θ),\displaystyle\lambda_{n}=\frac{2\pi dK(1-\theta)}{\tau_{n}a(\theta)}, (13)

with

d=α2,θ=11Kanda(θ)=arccosh(1(1θ)sin(α)),\displaystyle d=\frac{\alpha}{2},\quad\theta=1-\frac{1}{K}\quad\mbox{and}\quad a(\theta)={\rm arccosh}\bigg{(}\frac{1}{(1-\theta)\sin(\alpha)}\bigg{)},

there are quadrature nodes and weights on the contour Γλn\Gamma_{\lambda_{n}},

z=λ(1sin(α+ih))andw=λh2πcos(α+ih),=K,,K,withh=a(θ)K,z_{\ell}=\lambda(1-\sin(\alpha+{\rm i}\ell h))\,\,\,\mbox{and}\,\,\,w_{\ell}=\frac{\lambda h}{2\pi}\cos(\alpha+{\rm i}\ell h),\,\,\,\ell=-K,\dots,K,\,\,\,\mbox{with}\,\,\,h=\frac{a(\theta)}{K},

such that (12) can be approximated by a quadrature

u(tn)\displaystyle u(t_{n}) =KKweτnz(zA)1(gn^(z)+u(tn1))\displaystyle\approx\sum_{\ell=-K}^{K}w_{\ell}e^{\tau_{n}z_{\ell}}(z_{\ell}-A)^{-1}(\widehat{g_{n}}(z_{\ell})+u(t_{n-1}))

with an error of O(eK/C)O(e^{-K/C}).

Therefore, if u(τ)=(un)n=0Nu^{(\tau)}=(u_{n})_{n=0}^{N} denotes the numerical approximation of (u(tn))n=1N(u(t_{n}))_{n=1}^{N}, then we approximate the source function f(t,u(t))f(t,u(t)) by an extrapolation polynomial of degree k1k-1:

fn(t;u(τ))=j=1kLj(t)f(tnj,unj)for t(tn1,tn],f_{n}(t;u^{(\tau)})=\sum_{j=1}^{k}L_{j}(t)f(t_{n-j},u_{n-j})\quad\mbox{for $t\in(t_{n-1},t_{n}]$},

where Lj(t)L_{j}(t) is the unique polynomial of degree k1k-1 such that

Lj(tni)=δij,i=1,,k.L_{j}(t_{n-i})=\delta_{ij},\quad i=1,\dots,k.

For nk+1n\geq k+1 and given numerical solutions unju_{n-j}, j=1,,kj=1,\dots,k, we denote

gn(s;u(τ))=fn(tn1+s;u(τ)),Lj,n(s)=Lj(tn1+s),g_{n}(s;u^{(\tau)})=f_{n}(t_{n-1}+s;u^{(\tau)}),\quad L_{j,n}(s)=L_{j}(t_{n-1}+s),

and compute

un\displaystyle u_{n} ==KKweτnz(zA)1(gn^(z;u(τ))+un1)\displaystyle=\sum_{\ell=-K}^{K}w_{\ell}e^{\tau_{n}z_{\ell}}(z_{\ell}-A)^{-1}(\widehat{g_{n}}(z_{\ell};u^{(\tau)})+u_{n-1})
==KKweτnz(zA)1(j=1kLj,n^(z)f(tnj,unj)+un1).\displaystyle=\sum_{\ell=-K}^{K}w_{\ell}e^{\tau_{n}z_{\ell}}(z_{\ell}-A)^{-1}\Big{(}\sum_{j=1}^{k}\widehat{L_{j,n}}(z_{\ell})f(t_{n-j},u_{n-j})+u_{n-1}\Big{)}. (14)

The numerical solution at the starting kk steps can be computed by using the exponential Euler method

un\displaystyle u_{n} ==KKweτnz(zA)1(z1f(tn1,un1)+un1),n=1,,k.\displaystyle=\sum_{\ell=-K}^{K}w_{\ell}e^{\tau_{n}z_{\ell}}(z_{\ell}-A)^{-1}\big{(}z_{\ell}^{-1}f(t_{n-1},u_{n-1})+u_{n-1}\big{)},\quad n=1,\dots,k. (15)

Since the stepsize choice in (6) implies τn=O(τ11β)=O(τk)\tau_{n}=O(\tau^{\frac{1}{1-\beta}})=O(\tau^{k}) for the starting kk steps, the exponential Euler scheme (2) can keep the errors of numerical solutions within O(τk)O(\tau^{k}) at the starting kk steps.

The main result of this paper is the following theorem.

Theorem 2.1

Let u0Xu_{0}\in X and assume that the nonlinear problem (1) has a mild solution uC([0,T];X)u\in C([0,T];X). Then there exist constants τ0\tau_{0} and c0c_{0} such that for ττ0\tau\leq\tau_{0} and K32c0ln(τ1)K\geq\frac{3}{2}c_{0}\ln(\tau^{-1}), the solutions unu_{n}, n=1,,Nn=1,\dots,N, given by (2)-(15) with stepsize choice from (6), satisfies the following error estimate:

max1nNunu(tn)Cτk+Cτ1eK/c0.\displaystyle\max_{1\leq n\leq N}\|u_{n}-u(t_{n})\|\leq C\tau^{k}+C\tau^{-1}e^{-K/c_{0}}. (16)
Remark 1

For K(k+1)c0ln(τ1)K\geq(k+1)c_{0}\ln(\tau^{-1}) there holds τ1eK/c0τk\tau^{-1}e^{-K/c_{0}}\leq\tau^{k}. Therefore, O(ln(1/τ))O(\ln(1/\tau)) quadrature nodes are needed to have an error of O(τk)O(\tau^{k}).

Remark 2

Instead of choosing different λn\lambda_{n} at different time steps, one can also divide the time interval [tk+1,T][t_{k+1},T] into O(log(τ1))O(\log(\tau^{-1})) parts [Λj1T,ΛjT][\Lambda^{-j-1}T,\Lambda^{-j}T], j=0,,J=O(log(τ1))j=0,\dots,J=O(\log(\tau^{-1})), with

λn=2πdK(1θ)ΛβτKja(θ)being constant for tn[Λj1T,ΛjT],\displaystyle\lambda_{n}=\frac{2\pi dK(1-\theta)}{\Lambda^{\beta}\tau_{K_{j}}a(\theta)}\quad\mbox{being constant for $t_{n}\in[\Lambda^{-j-1}T,\Lambda^{-j}T]$}, (17)

and

d=α2,θ=11Kanda(θ)=arccosh(Λ(1θ)sin(α)),\displaystyle d=\frac{\alpha}{2},\quad\theta=1-\frac{1}{K}\quad\mbox{and}\quad a(\theta)={\rm arccosh}\bigg{(}\frac{\Lambda}{(1-\theta)\sin(\alpha)}\bigg{)},

where τKj\tau_{K_{j}} denotes the minimal stepsize for tn[Λj1T,ΛjT]t_{n}\in[\Lambda^{-j-1}T,\Lambda^{-j}T]. This was used in many articles; see Lopez-Fernandez-2010 ; LF-Lubich-Schadle-2008 ; LFPS-2006 ; Schadle-LF-Lubich-2006 . By this method, at most O(log(τ1))O(\log(\tau^{-1})) different contours are needed to have an error of O(τk)O(\tau^{k}).

3 Proof of Theorem 2.1

The proof consists of two parts. In section 3.1, we prove the regularity of the solution uu. By using the regularity result, we estimate errors of numerical solutions in section 3.2.

3.1 Regularity of solution

It is well known that the solution of a linear parabolic equation has higher regularity at positive time and satisfies the estimate tu(t)Ct\|\partial_{t}^{\ell}u(t)\|\leq Ct^{-\ell}, =0,1,\ell=0,1,\dots, for a nonsmooth initial data u0Xu_{0}\in X. In this subsection, we prove that this is also true for the nonlinear problem (1) if the source function ff is smooth with respect to tt and uu in the sense of (9). Since we have not found such a result in the literature for semilinear parabolic equations, we present the proof in the following lemma.

Lemma 1

If uC([0,T];X)u\in C([0,T];X) is a mild solution of (1), then uCk((0,T];X)u\in C^{k}((0,T];X) and

tu(t)Ct,=0,1,,k.\|\partial_{t}^{\ell}u(t)\|\leq Ct^{-\ell},\quad\ell=0,1,\dots,k.
Proof

If uC([0,T];X)u\in C([0,T];X) then the constant Cf,u,C_{f,u,\ell} in (9) is bounded for 1k1\leq\ell\leq k. We simply denote this constant by CC. By mathematical induction, we assume that for m=0,,1m=0,\dots,\ell-1,

tmu(t)Ctm,t(0,T].\|\partial_{t}^{m}u(t)\|\leq Ct^{-m},\quad t\in(0,T]. (18)

Then (9) implies

dmdtmf(t,u(t))Ctm,t(0,T],form=0,,1.\bigg{\|}\frac{{\mathrm{d}}^{m}}{{\mathrm{d}}t^{m}}f(t,u(t))\bigg{\|}\leq Ct^{-m},\quad t\in(0,T],\quad\mbox{for}\,\,\,m=0,\dots,\ell-1. (19)

In the following, we prove that (18) also holds for m=m=\ell.

Multiplying (2) by tt^{\ell} yields

tu(t)\displaystyle t^{\ell}u(t) =tetAu0+0t(ts+s)e(ts)Af(s,u(s))ds\displaystyle=t^{\ell}e^{tA}u_{0}+\int_{0}^{t}(t-s+s)^{\ell}e^{(t-s)A}f(s,u(s)){\mathrm{d}}s
=tetAu0+j=0(j)0t(ts)je(ts)Asjf(s,u(s))ds\displaystyle=t^{\ell}e^{tA}u_{0}+\sum_{j=0}^{\ell}\left(\begin{subarray}{c}\displaystyle\ell\\ \displaystyle j\end{subarray}\right)\int_{0}^{t}(t-s)^{j}e^{(t-s)A}s^{\ell-j}f(s,u(s)){\mathrm{d}}s
=:tetAu0+j=0(j)w,j(t),\displaystyle=:t^{\ell}e^{tA}u_{0}+\sum_{j=0}^{\ell}\left(\begin{subarray}{c}\displaystyle\ell\\ \displaystyle j\end{subarray}\right)w_{\ell,j}(t), (20)

with

w,j(t)=0tgj(t,s)dsandgj(t,s)=(ts)je(ts)Asjf(s,u(s)).\displaystyle w_{\ell,j}(t)=\int_{0}^{t}g_{j}(t,s){\mathrm{d}}s\quad\mbox{and}\quad g_{j}(t,s)=(t-s)^{j}e^{(t-s)A}s^{\ell-j}f(s,u(s)). (21)

Note that

tjw,j(t)=tj0tgj(t,s)𝑑s\displaystyle\partial_{t}^{j}w_{\ell,j}(t)=\partial_{t}^{j}\int_{0}^{t}g_{j}(t,s)\,ds =tj1t0tgj(t,s)𝑑s\displaystyle=\partial_{t}^{j-1}\partial_{t}\int_{0}^{t}g_{j}(t,s)\,ds
=tj10ttgj(t,s)ds+tj1[gj(t,s)|s=t]\displaystyle=\partial_{t}^{j-1}\int_{0}^{t}\partial_{t}g_{j}(t,s)\,ds+\partial_{t}^{j-1}\bigl{[}g_{j}(t,s)|_{s=t}\bigr{]}
=tj20tt2gj(t,s)+tj2[tgj(t,s)|s=t]+tj1[gj(t,s)|s=t]\displaystyle=\partial_{t}^{j-2}\int_{0}^{t}\partial_{t}^{2}g_{j}(t,s)+\partial_{t}^{j-2}[\partial_{t}g_{j}(t,s)|_{s=t}]+\partial_{t}^{j-1}[g_{j}(t,s)|_{s=t}]
=\displaystyle=\cdots
=0ttjgj(t,s)ds+m=1jtjm[tm1gj(t,s)|s=t].\displaystyle=\int_{0}^{t}\partial_{t}^{j}g_{j}(t,s)\,ds+\sum_{m=1}^{j}\partial_{t}^{j-m}[\partial_{t}^{m-1}g_{j}(t,s)|_{s=t}]. (22)

From the expression of gjg_{j} in (21) we know that tm1gj(t,s)|s=t0\partial_{t}^{m-1}g_{j}(t,s)|_{s=t}\equiv 0 for m=1,,jm=1,\dots,j. As a result, we have

tjw,j(t)\displaystyle\partial_{t}^{j}w_{\ell,j}(t) =0ttjgj(t,s)ds.\displaystyle=\int_{0}^{t}\partial_{t}^{j}g_{j}(t,s)\,ds.
=0ttj[(ts)je(ts)A]sjf(s,u(s))ds\displaystyle=\int_{0}^{t}\partial_{t}^{j}[(t-s)^{j}e^{(t-s)A}]s^{\ell-j}f(s,u(s)){\mathrm{d}}s
=0tsj[sjesA](ts)jf(ts,u(ts))ds(change of variable)\displaystyle=\int_{0}^{t}\partial_{s}^{j}\bigl{[}s^{j}e^{sA}\bigr{]}(t-s)^{\ell-j}f(t-s,u(t-s))\,{\mathrm{d}}s\quad\mbox{(change of variable)}
=:0thj(t,s)ds.\displaystyle=:\int_{0}^{t}h_{\ell-j}(t,s)\,{\mathrm{d}}s.

Since the function hj(t,s)=sj[sjesA](ts)jf(ts,u(ts))h_{\ell-j}(t,s)=\partial_{s}^{j}\bigl{[}s^{j}e^{sA}\bigr{]}(t-s)^{\ell-j}f(t-s,u(t-s)) contains a factor (ts)j(t-s)^{\ell-j}, by a similar argument as (3.1) we have

tjtjw,j(t)=tj0thj(t,s)𝑑s=0ttjhj(t,s)ds,\displaystyle\partial_{t}^{\ell-j}\partial_{t}^{j}w_{\ell,j}(t)=\partial_{t}^{\ell-j}\int_{0}^{t}h_{\ell-j}(t,s)\,ds=\int_{0}^{t}\partial_{t}^{\ell-j}h_{\ell-j}(t,s)\,ds,

which implies that

tw,j(t)=0tsj(sjesA)djdtj[(ts)jf(ts,u(ts))]ds,for  0j.\displaystyle\partial_{t}^{\ell}w_{\ell,j}(t)=\int_{0}^{t}\partial_{s}^{j}(s^{j}e^{sA})\frac{{\mathrm{d}}^{\ell-j}}{{\mathrm{d}}t^{\ell-j}}[(t-s)^{\ell-j}f(t-s,u(t-s))]{\mathrm{d}}s,\quad\mbox{for}\,\,0\leq j\leq\ell.

As a result, we have

tw,j(t)\displaystyle\|\partial_{t}^{\ell}w_{\ell,j}(t)\| 0tCsj(sjesA)XXdjdtj[(ts)jf(ts,u(ts))]ds\displaystyle\leq\int_{0}^{t}C\|\partial_{s}^{j}(s^{j}e^{sA})\|_{X\rightarrow X}\bigg{\|}\frac{{\mathrm{d}}^{\ell-j}}{{\mathrm{d}}t^{\ell-j}}[(t-s)^{\ell-j}f(t-s,u(t-s))]\bigg{\|}{\mathrm{d}}s
0tCdjdtj[(ts)jf(ts,u(ts))]ds,\displaystyle\leq\int_{0}^{t}C\bigg{\|}\frac{{\mathrm{d}}^{\ell-j}}{{\mathrm{d}}t^{\ell-j}}[(t-s)^{\ell-j}f(t-s,u(t-s))]\bigg{\|}{\mathrm{d}}s, (23)

where we have used sj(sjesA)XXC,\|\partial_{s}^{j}(s^{j}e^{sA})\|_{X\rightarrow X}\leq C, which is a consequence of the analytic semigroup estimate

smesAXXCsm,m=0,1,\|\partial_{s}^{m}e^{sA}\|_{X\rightarrow X}\leq Cs^{-m},\quad m=0,1,\dots

If 1j1\leq j\leq\ell then substituting (19) into (3.1) yields

tw,j(t)C,1j.\displaystyle\|\partial_{t}^{\ell}w_{\ell,j}(t)\|\leq C,\quad 1\leq j\leq\ell. (24)

If j=0j=0 then substituting (9) and (19) into (3.1) yields

tw,0(t)\displaystyle\|\partial_{t}^{\ell}w_{\ell,0}(t)\| 0tCddt[(ts)f(ts,u(ts))]ds\displaystyle\leq\int_{0}^{t}C\bigg{\|}\frac{{\mathrm{d}}^{\ell}}{{\mathrm{d}}t^{\ell}}[(t-s)^{\ell}f(t-s,u(t-s))]\bigg{\|}{\mathrm{d}}s
0tCj=1[(ts)jdjdtjf(ts,u(ts))]ds\displaystyle\leq\int_{0}^{t}C\sum_{j=1}^{\ell}\bigg{\|}[(t-s)^{\ell-j}\frac{{\mathrm{d}}^{\ell-j}}{{\mathrm{d}}t^{\ell-j}}f(t-s,u(t-s))]\bigg{\|}{\mathrm{d}}s
+0tC[(ts)ddtf(ts,u(ts))]ds(product rule)\displaystyle\quad+\int_{0}^{t}C\bigg{\|}[(t-s)^{\ell}\frac{{\mathrm{d}}^{\ell}}{{\mathrm{d}}t^{\ell}}f(t-s,u(t-s))]\bigg{\|}{\mathrm{d}}s\qquad\mbox{(product rule)}
C+0tC[(ts)ddtf(ts,u(ts))]ds\displaystyle\leq C+\int_{0}^{t}C\bigg{\|}[(t-s)^{\ell}\frac{{\mathrm{d}}^{\ell}}{{\mathrm{d}}t^{\ell}}f(t-s,u(t-s))]\bigg{\|}{\mathrm{d}}s (25)

where we have used (19) in estimating (ts)jdjdtjf(ts,u(ts))(t-s)^{\ell-j}\frac{{\mathrm{d}}^{\ell-j}}{{\mathrm{d}}t^{\ell-j}}f(t-s,u(t-s)) for j1j\geq 1. By considering the cases j2j\geq 2 and j=1j=1 in (9), separately, we have

ddtf(ts,u(ts))\displaystyle\bigg{\|}\frac{{\mathrm{d}}^{\ell}}{{\mathrm{d}}t^{\ell}}f(t-s,u(t-s))\bigg{\|}
Cj=2m1++mjtm1u(ts)tm2u(ts)tmju(ts)+Ctu(ts)\displaystyle\leq C\sum_{j=2}^{\ell}\!\!\sum_{\,\,\,\,\,m_{1}+\cdots+m_{j}\leq\ell}\|\partial_{t}^{m_{1}}u(t-s)\|\,\|\partial_{t}^{m_{2}}u(t-s)\|\,\cdots\,\|\partial_{t}^{m_{j}}u(t-s)\|+C\|\partial_{t}^{\ell}u(t-s)\|
C(ts)+Ctu(ts).\displaystyle\leq C(t-s)^{-\ell}+C\|\partial_{t}^{\ell}u(t-s)\|.

Substituting the inequality above into (3.1), we obtain

tw,0(t)\displaystyle\|\partial_{t}^{\ell}w_{\ell,0}(t)\| C+0tC(ts)tu(ts)ds=C+0tCssu(s)ds.\displaystyle\leq C+\int_{0}^{t}C\|(t-s)^{\ell}\partial_{t}^{\ell}u(t-s)\|{\mathrm{d}}s=C+\int_{0}^{t}C\|s^{\ell}\partial_{s}^{\ell}u(s)\|{\mathrm{d}}s. (26)

Then substituting (24) and (26) into (3.1) yields

t(tu(t))\displaystyle\|\partial_{t}^{\ell}(t^{\ell}u(t))\| t(tetA)u0+j=0(j)tw,j(t)\displaystyle\leq\|\partial_{t}^{\ell}(t^{\ell}e^{tA})u_{0}\|+\sum_{j=0}^{\ell}\left(\begin{subarray}{c}\displaystyle\ell\\ \displaystyle j\end{subarray}\right)\|\partial_{t}^{\ell}w_{\ell,j}(t)\|
C+0tCstu(s)ds.\displaystyle\leq C+\int_{0}^{t}C\|s^{\ell}\partial_{t}^{\ell}u(s)\|{\mathrm{d}}s. (27)

By using the product rule we can derive that

ttu(t)t(tu(t))+Cj=1tjtju(t)t(tu(t))+C,\|t^{\ell}\partial_{t}^{\ell}u(t)\|\leq\|\partial_{t}^{\ell}(t^{\ell}u(t))\|+C\sum_{j=1}^{\ell}\|t^{\ell-j}\partial_{t}^{\ell-j}u(t)\|\leq\|\partial_{t}^{\ell}(t^{\ell}u(t))\|+C,

where we have used the induction assumption (18) in the last inequality. The above inequality and (3.1) imply

ttu(t)\displaystyle\|t^{\ell}\partial_{t}^{\ell}u(t)\| C+0tCstu(s)ds.\displaystyle\leq C+\int_{0}^{t}C\|s^{\ell}\partial_{t}^{\ell}u(s)\|{\mathrm{d}}s. (28)

By using Gronwall’s inequality, we derive

ttu(t)\displaystyle\|t^{\ell}\partial_{t}^{\ell}u(t)\| C,t(0,T].\displaystyle\leq C,\quad\forall\,t\in(0,T]. (29)

This proves (18) for m=m=\ell, and therefore the mathematical induction is closed.

3.2 Error estimate

We shall introduce a function v(t)v(t) which is intermediate between u(tn)u(t_{n}) and unu_{n}, and denote

en:=u(tn)un,η(t):=u(t)v(t),andξn:=v(tn)un,\displaystyle e_{n}:=u(t_{n})-u_{n},\quad\eta(t):=u(t)-v(t),\quad\mbox{and}\quad\xi_{n}:=v(t_{n})-u_{n}, (30)

which imply the error decomposition

en=η(tn)+ξn.e_{n}=\eta(t_{n})+\xi_{n}.

Then we shall estimate η(tn)\eta(t_{n}) and ξn\xi_{n} separately.

To this end, we define v(tk)=ukv(t_{k})=u_{k} and consider nk+1n\geq k+1: for given v(tn1)v(t_{n-1}) we define v(t)v(t) for t(tn1,tn]t\in(t_{n-1},t_{n}] by

v(t)\displaystyle v(t) =12πiΓλne(ttn1)z(zA)1(g^n(z;u(τ))+v(tn1))dz.\displaystyle=\frac{1}{2\pi{\rm i}}\int_{\Gamma_{\lambda_{n}}}e^{(t-t_{n-1})z}(z-A)^{-1}(\widehat{g}_{n}(z;u^{(\tau)})+v(t_{n-1})){\mathrm{d}}z. (31)

Comparing (31) with (12), we see that v(t)v(t) is actually the solution of the initial-value problem

{v(t)Av(t)=f(τ)(t;u(τ))fort(tk,T],v(tk)=uk,\left\{\begin{aligned} v^{\prime}(t)-Av(t)&=f^{(\tau)}(t;u^{(\tau)})\quad\mbox{for}\,\,\,t\in(t_{k},T],\\ v(t_{k})&=u_{k},\end{aligned}\right. (32)

where

f(τ)(t;u(τ))=fn(t;u(τ)),fort(tn1,tn],n=k+1,k+2,f^{(\tau)}(t;u^{(\tau)})=f_{n}(t;u^{(\tau)}),\quad\mbox{for}\,\,\,t\in(t_{n-1},t_{n}],\quad n=k+1,k+2,\dots

To estimate η(tn)\eta(t_{n}), we consider the difference between (1) and (32). By using the notation in (30), we see that η(t)\eta(t) satisfies the following equation:

{η(t)Aη(t)=f(t,u(t))f(τ)(t,u(τ))fort(tk,T],η(tk)=ek.\left\{\begin{aligned} \eta^{\prime}(t)-A\eta(t)&=f(t,u(t))-f^{(\tau)}(t,u^{(\tau)})\quad\mbox{for}\,\,\,t\in(t_{k},T],\\ \eta(t_{k})&=e_{k}.\end{aligned}\right. (33)

where

f(t,u(t))f(τ)(t,u(τ))\displaystyle\|f(t,u(t))-f^{(\tau)}(t,u^{(\tau)})\|
=f(t,u(t))f(τ)(t;u(tn)n=0N)+f(τ)(t;u(tn)n=0N)f(τ)(t,u(τ))\displaystyle=\|f(t,u(t))-f^{(\tau)}(t;u(t_{n})_{n=0}^{N})+f^{(\tau)}(t;u(t_{n})_{n=0}^{N})-f^{(\tau)}(t,u^{(\tau)})\|
Cτnkmaxt[tnk,tn]dkdtkf(t,u(t))+Cn,u(τ)max1jkenj(use (8)-(9) here)\displaystyle\leq C\tau_{n}^{k}\max_{t\in[t_{n-k},t_{n}]}\big{\|}\mbox{$\frac{{\mathrm{d}}^{k}}{{\mathrm{d}}t^{k}}$}f(t,u(t))\big{\|}+C_{n,u^{(\tau)}}\max_{1\leq j\leq k}\|e_{n-j}\|\quad\mbox{(use \eqref{Lipschitz}-\eqref{df} here)}
Cτnktnkk+Cn,u(τ)max1jkenj\displaystyle\leq C\tau_{n}^{k}t_{n-k}^{-k}+C_{n,u^{(\tau)}}\max_{1\leq j\leq k}\|e_{n-j}\|
Cτnktnk+Cn,u(τ)max1jkenj,fort(tn1,tn],nk+1.\displaystyle\leq C\tau_{n}^{k}t_{n}^{-k}+C_{n,u^{(\tau)}}\max_{1\leq j\leq k}\|e_{n-j}\|,\quad\mbox{for}\,\,\,t\in(t_{n-1},t_{n}],\,\,\,n\geq k+1.

where Cn,u(τ)C_{n,u^{(\tau)}} is a constant depending on unj\|u_{n-j}\| for j=1,,kj=1,\dots,k.

By using mathematical induction, we assume that

uju(tj)=ej1for   1jm1,\displaystyle\|u_{j}-u(t_{j})\|=\|e_{j}\|\leq 1\quad\mbox{for}\,\,\,1\leq j\leq m-1, (34)

then Cn,u(τ)C_{n,u^{(\tau)}} is bounded for k+1nmk+1\leq n\leq m, and therefore

f(t,u(t))f(τ)(t,u(τ))\displaystyle\|f(t,u(t))-f^{(\tau)}(t,u^{(\tau)})\|
Cτnktnk+Cmax1jkenj,fort(tn1,tn],k+1nm.\displaystyle\leq C\tau_{n}^{k}t_{n}^{-k}+C\max_{1\leq j\leq k}\|e_{n-j}\|,\,\,\,\mbox{for}\,\,\,t\in(t_{n-1},t_{n}],\,\,\,k+1\leq n\leq m.

Then we have

η(tn)\displaystyle\|\eta(t_{n})\| =e(tntk)Aek+tktne(tns)A(f(s,u(s))f(τ)(s;u(τ)))ds\displaystyle=\bigg{\|}e^{(t_{n}-t_{k})A}e_{k}+\int_{t_{k}}^{t_{n}}e^{(t_{n}-s)A}(f(s,u(s))-f^{(\tau)}(s;u^{(\tau)})){\mathrm{d}}s\bigg{\|}
Cek+Ctktnf(s,u(s))f(τ)(s;u(τ))ds\displaystyle\leq C\|e_{k}\|+C\int_{t_{k}}^{t_{n}}\|f(s,u(s))-f^{(\tau)}(s;u^{(\tau)})\|{\mathrm{d}}s
Cek+Cj=k+1nτjτjktjk+Cj=1nτej\displaystyle\leq C\|e_{k}\|+C\sum_{j=k+1}^{n}\tau_{j}\tau_{j}^{k}t_{j}^{-k}+C\sum_{j=1}^{n}\tau\|e_{j}\|
Cmax0jkej+Cj=k+1nτej+Cτk,\displaystyle\leq C\max_{0\leq j\leq k}\|e_{j}\|+C\sum_{j=k+1}^{n}\tau\|e_{j}\|+C\tau^{k}, (35)

where we have used the following estimate in the last inequality:

j=k+1nτjτjktjkCτkj=k+1nτjtjk(β1)Cτktktntk(β1)dtCτk,ifk(β1)+1>0.\sum_{j=k+1}^{n}\tau_{j}\tau_{j}^{k}t_{j}^{-k}\leq C\tau^{k}\sum_{j=k+1}^{n}\tau_{j}t_{j}^{k(\beta-1)}\leq C\tau^{k}\int_{t_{k}}^{t_{n}}t^{k(\beta-1)}{\mathrm{d}}t\leq C\tau^{k},\quad\mbox{if}\,\,\,k(\beta-1)+1>0.

This justifies the choice of β\beta in (6).

To estimate ξn=v(tn)un\xi_{n}=v(t_{n})-u_{n}, we note that

v(tn)\displaystyle v(t_{n}) =12πiΓλneτnz(zA)1(g^n(z;u(τ))+v(tn1))dz\displaystyle=\frac{1}{2\pi{\rm i}}\int_{\Gamma_{\lambda_{n}}}e^{\tau_{n}z}(z-A)^{-1}(\widehat{g}_{n}(z;u^{(\tau)})+v(t_{n-1})){\mathrm{d}}z
=12πiΓλneτnz(zA)1(g^n(z;u(τ))+un1)dz+eτnAξn1\displaystyle=\frac{1}{2\pi{\rm i}}\int_{\Gamma_{\lambda_{n}}}e^{\tau_{n}z}(z-A)^{-1}(\widehat{g}_{n}(z;u^{(\tau)})+u_{n-1}){\mathrm{d}}z+e^{\tau_{n}A}\xi_{n-1}
=un+eτnAξn1\displaystyle=u_{n}+e^{\tau_{n}A}\xi_{n-1}
+12πiΓλneτnz(zA)1(g^n(z;u(τ))+un1)dz\displaystyle\quad+\frac{1}{2\pi{\rm i}}\int_{\Gamma_{\lambda_{n}}}e^{\tau_{n}z}(z-A)^{-1}(\widehat{g}_{n}(z;u^{(\tau)})+u_{n-1}){\mathrm{d}}z
=KKweτnz(zA)1(g^n(z;u(τ))+un1),\displaystyle\quad-\sum_{\ell=-K}^{K}w_{\ell}e^{\tau_{n}z_{\ell}}(z_{\ell}-A)^{-1}(\widehat{g}_{n}(z_{\ell};u^{(\tau)})+u_{n-1}), (36)

where we have used the identity 12πiΓλneτnz(zA)1ξn1dz=eτnAξn1\frac{1}{2\pi{\rm i}}\int_{\Gamma_{\lambda_{n}}}e^{\tau_{n}z}(z-A)^{-1}\xi_{n-1}{\mathrm{d}}z=e^{\tau_{n}A}\xi_{n-1}. Since

gn^(z;u(τ))=j=1kLj,n^(z)f(tnj,unj)\widehat{g_{n}}(z;u^{(\tau)})=\sum_{j=1}^{k}\widehat{L_{j,n}}(z_{\ell})f(t_{n-j},u_{n-j})

and the polynomial Lj,n(z){L_{j,n}}(z) satisfies |Lj,n^(z)|C|z|ν|\widehat{L_{j,n}}(z)|\leq C|z|^{-\nu} for some ν0\nu\geq 0, it follows that

(zA)1(g^n(z;u(τ))+un1)C|z|1(|z|νj=1kf(tnj,unj)+un1).\|(z-A)^{-1}(\widehat{g}_{n}(z;u^{(\tau)})+u_{n-1})\|\leq C|z|^{-1}\Big{(}|z|^{-\nu}\sum_{j=1}^{k}\|f(t_{n-j},u_{n-j})\|+\|u_{n-1}\|\Big{)}.

For a function satisfying the estimate above, in (LFPS-2006, , Theorem 1) (also see Lopez-Fernandez-2010 ) the authors proved that

12πiΓλneτnz(zA)1(g^n(z;u(τ))+un1)dz\displaystyle\bigg{\|}\frac{1}{2\pi{\rm i}}\int_{\Gamma_{\lambda_{n}}}e^{\tau_{n}z}(z-A)^{-1}(\widehat{g}_{n}(z;u^{(\tau)})+u_{n-1}){\mathrm{d}}z
=KKweτnz(zA)1(g^n(z;u(τ))+un1)\displaystyle\quad-\sum_{\ell=-K}^{K}w_{\ell}e^{\tau_{n}z_{\ell}}(z_{\ell}-A)^{-1}(\widehat{g}_{n}(z_{\ell};u^{(\tau)})+u_{n-1})\bigg{\|}
CeK/c0(j=1kf(tnj,unj)+un1)\displaystyle\leq Ce^{-K/c_{0}}\Big{(}\sum_{j=1}^{k}\|f(t_{n-j},u_{n-j})\|+\|u_{n-1}\|\Big{)}

for some constant c0c_{0}. By choosing eK/c0=τk+1e^{-K/c_{0}}=\tau^{k+1}, which requires m=O(ln(τ1))m=O(\ln(\tau^{-1})), substituting the inequality above into (3.2) yields

ξneτnAξn1CeK/c0(j=1kf(tnj,unj)+un1).\displaystyle\|\xi_{n}-e^{\tau_{n}A}\xi_{n-1}\|\leq Ce^{-K/c_{0}}\Big{(}\sum_{j=1}^{k}\|f(t_{n-j},u_{n-j})\|+\|u_{n-1}\|\Big{)}.

If (34) holds then f(tnj,unj)C\|f(t_{n-j},u_{n-j})\|\leq C for j=1,,kj=1,\dots,k and k+1nmk+1\leq n\leq m, and therefore

ξneτnAξn1CeK/c0for k+1nm.\displaystyle\|\xi_{n}-e^{\tau_{n}A}\xi_{n-1}\|\leq Ce^{-K/c_{0}}\quad\mbox{for $k+1\leq n\leq m$}.

Therefore, qn:=ξneτnAξn1q_{n}:=\xi_{n}-e^{\tau_{n}A}\xi_{n-1} satisfies qnCeK/c0\|q_{n}\|\leq Ce^{-K/c_{0}} and

ξn\displaystyle\xi_{n} =qn+eτnAξn1\displaystyle=q_{n}+e^{\tau_{n}A}\xi_{n-1}
=qn+eτnAqn1+e(τn+τn1)Aξn2\displaystyle=q_{n}+e^{\tau_{n}A}q_{n-1}+e^{(\tau_{n}+\tau_{n-1})A}\xi_{n-2}
=qn+eτnAqn1+e(τn+τn1)Aqn2+e(τn+τn1+τn2)Aξn2\displaystyle=q_{n}+e^{\tau_{n}A}q_{n-1}+e^{(\tau_{n}+\tau_{n-1})A}q_{n-2}+e^{(\tau_{n}+\tau_{n-1}+\tau_{n-2})A}\xi_{n-2}
=\displaystyle=\dots
=j=0nk1e(tntnj)Aqnj,\displaystyle=\sum_{j=0}^{n-k-1}e^{(t_{n}-t_{n-j})A}q_{n-j},

where the last equality holds because ξk=0\xi_{k}=0. From the equation above we derive, for k+1nmk+1\leq n\leq m,

ξnj=0nk1e(tntnj)Aqnjj=0nk1Cqnjj=0nk1CeK/c0Cτ1eK/c0.\displaystyle\|\xi_{n}\|\leq\sum_{j=0}^{n-k-1}\|e^{(t_{n}-t_{n-j})A}q_{n-j}\|\leq\sum_{j=0}^{n-k-1}C\|q_{n-j}\|\leq\sum_{j=0}^{n-k-1}Ce^{-K/c_{0}}\leq C\tau^{-1}e^{-K/c_{0}}. (37)

Combining (3.2) and (37) and using the decomposition en=η(tn)+ξne_{n}=\eta(t_{n})+\xi_{n}, we have

en\displaystyle\|e_{n}\| η(tn)+ξn\displaystyle\leq\|\eta(t_{n})\|+\|\xi_{n}\|
Cmax0jkej+Cj=k+1nτej+Cτk+Cτ1eK/c0,for k+1nm.\displaystyle\leq C\max_{0\leq j\leq k}\|e_{j}\|+C\sum_{j=k+1}^{n}\tau\|e_{j}\|+C\tau^{k}+C\tau^{-1}e^{-K/c_{0}},\quad\mbox{for $k+1\leq n\leq m$}.

By using Gronwall’s inequality, we obtain

en\displaystyle\|e_{n}\| Cmax0jkej+Cτk+Cτ1eK/c0,for k+1nm.\displaystyle\leq C\max_{0\leq j\leq k}\|e_{j}\|+C\tau^{k}+C\tau^{-1}e^{-K/c_{0}},\quad\mbox{for $k+1\leq n\leq m$}. (38)

If the starting steps are approximated sufficiently accurate, i.e.,

max0jkej12\displaystyle\max_{0\leq j\leq k}\|e_{j}\|\leq\frac{1}{2} (39)

then there exists a positive constant τ1\tau_{1} such that for m32c0ln(1/τ)m\geq\frac{3}{2}c_{0}\,\ln(1/\tau) (thus eK/c0τ32e^{-K/c_{0}}\leq\tau^{\frac{3}{2}}) and ττ1\tau\leq\tau_{1} there holds

em\displaystyle\|e_{m}\| 1.\displaystyle\leq 1. (40)

This completes the mathematical induction from (34) to (40), provided that (39) holds. Then (38) holds for m=Nm=N.

Since the starting kk steps are computed by the exponential Euler method, which is the special case k=1k=1 of the analysis above. Therefore, the analysis above also implies

max0jkejCτk+CeK/c0.\displaystyle\max_{0\leq j\leq k}\|e_{j}\|\leq C\tau^{k}+Ce^{-K/c_{0}}. (41)

This verifies (39) for sufficiently small stepsize τ\tau and sufficiently large mm, say ττ2\tau\leq\tau_{2} and mm2m\geq m_{2}. Then substituting (41) into (38) yields

maxk+1nNen\displaystyle\max_{k+1\leq n\leq N}\|e_{n}\| Cτk+Cτ1eK/c0.\displaystyle\leq C\tau^{k}+C\tau^{-1}e^{-K/c_{0}}. (42)

This completes the proof of Theorem 2.1 under the stepsize condition ττ0=min(τ1,τ2)\tau\leq\tau_{0}=\min(\tau_{1},\tau_{2}) and K32c0ln(1/τ)K\geq\frac{3}{2}c_{0}\ln(1/\tau).

4 Numerical example

In this section, we present a numerical example to support our theoretical analysis and illustrate the convergence of the proposed time stepping method. Since the proposed numerical method is only for time discretization, which is independent of the spatial regularity of solution, we shall present a one-dimensional example with sufficiently accurate spatial discretization in order to observe the error and order of convergence of the time discretization method.

We consider the nonlinear parabolic equation

{tu(x,t)xxu(x,t)=u(x,t)u3(x,t)for(x,t)Ω×(0,T],u(x,t)=0for(x,t)Ω×(0,T],u(x,0)=u0(x)forxΩ,\left\{\begin{aligned} \partial_{t}u(x,t)-\partial_{xx}u(x,t)&=u(x,t)-u^{3}(x,t)&&\mbox{for}\,\,\,(x,t)\in\Omega\times(0,T],\\ u(x,t)&=0&&\mbox{for}\,\,\,(x,t)\in\partial\Omega\times(0,T],\\ u(x,0)&=u_{0}(x)&&\mbox{for}\,\,\,x\in\Omega,\end{aligned}\right. (43)

in a domain Ω×(0,T)\Omega\times(0,T) , with a discontinuous initial condition

u0(x)={0x(0,0.5]1x(0.5,1).\displaystyle u_{0}(x)=\left\{\begin{aligned} &0&&x\in(0,0.5]\\ &1&&x\in(0.5,1).\end{aligned}\right. (44)

The function f(u)=uu3f(u)=u-u^{3} is a smooth function of uu and therefore satisfying the assumptions (8)–(9), as mentioned in the example of semilinear parabolic equation (10).

The problem (43) has a unique solution

uC([0,T];Lp(Ω))C((0,T];C0(Ω¯)),withuC([0,T];L(Ω)).u\in C([0,T];L^{p}(\Omega))\cap C((0,T];C_{0}(\overline{\Omega})),\quad\mbox{with}\quad u\notin C([0,T];L^{\infty}(\Omega)).

Therefore, X=L(Ω)X=L^{\infty}(\Omega) does not fit the abstract problem directly. Nevertheless, the smoothing property of the heat semigroup guarantees that u(,t)C0(Ω¯)u(\cdot,t)\in C_{0}(\overline{\Omega}) for arbitrarily small t>0t>0 and therefore X=C0(Ω¯)X=C_{0}(\overline{\Omega}) would fit the abstract problem if we replace the initial time t=0t=0 by an infinitesimal positive time. Therefore, Theorem 2.1 implies that the numerical solution given by (2)-(15) has an error bound of

unu(tn)C0(Ω¯)Cτk\|u_{n}-u(t_{n})\|_{C_{0}(\overline{\Omega})}\leq C\tau^{k}

for sufficiently large K=O(ln(1/τ))K=O(\ln(1/\tau)).

We solve (43) by the method (2)-(15) with β=34\beta=\frac{3}{4} for k=2k=2 and k=3k=3, respectively, using α=π4\alpha=\frac{\pi}{4} and K=10log(1/τ)K=10\,\log(1/\tau) quadrature nodes, and investigate the time discretization errors of the proposed time stepping method for several different TT. The spatial discretization is done by using the standard finite difference method with a sufficiently small mesh size 2102^{-10} so that further decreasing spatial mesh size has negligible influence in observing the order of convergence in time. The errors of numerical solutions between two consecutive stepszies are presented in Tables 2 and 2, where the orders of convergence are computed by the formula

order of convergence=log(uN(τ)uN(τ/2)C0(Ω¯)uN(τ/2)uN(τ/4)C0(Ω¯))/log(2)\mbox{order of convergence}=\log\Bigg{(}\frac{\|u_{N}^{(\tau)}-u_{N}^{(\tau/2)}\|_{C_{0}(\overline{\Omega})}}{\|u_{N}^{(\tau/2)}-u_{N}^{(\tau/4)}\|_{C_{0}(\overline{\Omega})}}\Bigg{)}/\log(2)

based on the finest three meshes. The orders of convergence observed in these numerical tests are O(τk)O(\tau^{k}), which is consistent with the theoretical result proved in Theorem 2.1.

Table 1: Numerical results of uN(τ)uN(τ/2)C0(Ω¯)\|u_{N}^{(\tau)}-u_{N}^{(\tau/2)}\|_{C_{0}(\overline{\Omega})} for k=2k=2.
T=1/2T=1/2 T=1/4T=1/4 T=1/8T=1/8 T=1/16T=1/16
τ=\tau=1/64 ​2.934×106\times 10^{-6} ​3.935×106\times 10^{-6} ​1.286×106\times 10^{-6} ​​1.864×106\times 10^{-6}
τ=\tau=1/128 ​7.410×107\times 10^{-7} ​9.351×107\times 10^{-7} ​3.053×107\times 10^{-7} ​​7.297×107\times 10^{-7}
τ=\tau=1/256 ​1.779×107\times 10^{-7} ​2.269×107\times 10^{-7} ​7.735×108\times 10^{-8} ​​1.838×107\times 10^{-7}
 Order of convergence O(τ2.1)O(\tau^{2.1}) O(τ2.0)O(\tau^{2.0}) O(τ2.0)O(\tau^{2.0}) O(τ2.0)O(\tau^{2.0})
Table 2: Numerical results of uN(τ)uN(τ/2)C0(Ω¯)\|u_{N}^{(\tau)}-u_{N}^{(\tau/2)}\|_{C_{0}(\overline{\Omega})} for k=3k=3.
T=1/2T=1/2 T=1/4T=1/4 T=1/8T=1/8 T=1/16T=1/16
τ=\tau=1/64 ​​2.082×107\times 10^{-7} ​​5.807×108\times 10^{-8} ​​2.945×107\times 10^{-7} ​​3.425×107\times 10^{-7}
τ=\tau=1/128 ​​2.614×108\times 10^{-8} ​​7.756×109\times 10^{-9} ​​3.188×108\times 10^{-8} ​​4.129×108\times 10^{-8}
τ=\tau=1/256 ​​2.928×109\times 10^{-9} 9.988×1010\times 10^{-10} ​​3.982×109\times 10^{-9} ​​5.064×109\times 10^{-9}
 Order of convergence O(τ3.1)O(\tau^{3.1}) O(τ3.0)O(\tau^{3.0}) O(τ3.0)O(\tau^{3.0}) O(τ3.0)O(\tau^{3.0})

For comparison with the exponential integrator, we also present in Table 3 the numerical results for the Crank–Nicolson method, 2-stage Gauss Runge–Kutta method and 2-stage Radau Runge–Kutta method for (43), with uniform stepsize τ=T/N\tau=T/N. The numerical results in Table 3 show that the standard Crank–Nicolson method and Gauss Runge–Kutta method cannot yield any convergence rates. Indeed, these two methods do not satisfy the condition |r()|<1|r(\infty)|<1 in (Crouzeix-Thomee-1987, , Theorem 1) when proving (10). This shows the necessary of this condition in solving problems with nonsmooth initial data. The numerical results in Table 3 also show that the 2-stage Radau Runge–Kutta method has roughly first-order convergence, instead of the optimal third-order convergence, for nonsmooth initial data.

Table 3: Numerical results of uN(τ)uN(τ/2)C0(Ω¯)\|u_{N}^{(\tau)}-u_{N}^{(\tau/2)}\|_{C_{0}(\overline{\Omega})} at T=1/2T=1/2 (with h=214h=2^{-14}).
τ=\tau=1/256 τ=\tau=1/512 τ=\tau=1/1024 Order of convergence
Crank–Nicolson ​1.465×101\times 10^{-1} ​1.466×101\times 10^{-1} ​1.466×101\times 10^{-1} O(τ0.0)O(\tau^{0.0})
Gauss Runge–Kutta (2 stages) ​2.930×101\times 10^{-1} ​2.930×101\times 10^{-1} ​2.933×101\times 10^{-1} O(τ0.0)O(\tau^{0.0})
Radau Runge–Kutta (2 stages) ​2.215×108\times 10^{-8} ​1.085×108\times 10^{-8} ​4.022×109\times 10^{-9} O(τ1.2)O(\tau^{1.2})

5 Conclusion

We have proved that a variable stepsize exponential multistep integrator, with contour integral approximation of the operator-valued exponential functions, can produce high-order accurate numerical solutions for a semilinear parabolic equation with nonsmooth initial data (with no differentiability at all). The numerical example also supports this theoretical result. Both the regularity analysis and the error analysis in this paper can be similarly extended to semilinear parabolic equations with time-dependent coefficients. However, the extension to quasilinear parabolic equations with nonsmooth initial data is not trivial.

The proposed method in this paper is essentially the multistep ETD with variable stepsize and contour integral approximation to the exponential operator. We have proved the first high-order convergence result in approximating semilinear parabolic equations with nonsmooth initial data (without any regularity in addition to u0Xu_{0}\in X). For smooth initial data the exponential time differencing Runge–Kutta (ETD–RK) method would have the same complexity as the proposed multistep exponential integrator in this paper, both requiring to solve the equation for O(τ1)O(\tau^{-1}) time levels to achieve the accuracy of O(τk)O(\tau^{k}). However, since high-order accuracy of ETD–RK method has not been proved for nonsmooth initial data, the computational complexity of ETD–RK to achieve the accuracy of O(τk)O(\tau^{k}) is still unknown in this case. We believe the techniques of this paper may also be adapted to ETD–RK to yield high-order convergence for nonsmooth initial data.

References

  • [1] G. Akrivis. Stability of implicit-explicit backward difference formulas for nonlinear parabolic equations. SIAM J. Numer. Anal., 53:464–484, 2015.
  • [2] G. Akrivis and C. Lubich. Fully implicit, linearly implicit and implicit–explicit backward difference formulae for quasi-linear parabolic equations. Numer. Math., 131:713–735, 2015.
  • [3] M. P. Calvo and C. Palencia. A class of explicit multistep exponential integrators for semilinear problems. Numer. Math., 102:367–381, 2006.
  • [4] M. Crouzeix and V. Thomée. On the discretization in time of semilinear parabolic equations with nonsmooth initial data. Math. Comp., 49:359–377, 1987.
  • [5] L. Einkemmer and A. Ostermann. Overcoming order reduction in diffusion-reaction splitting. Part 1: Dirichlet boundary conditions. SIAM J. Sci. Comput., 37:A1577–A1592, 2015.
  • [6] L. Einkemmer and A. Ostermann. Overcoming order reduction in diffusion-reaction splitting. Part 2: Oblique boundary conditions. SIAM J. Sci. Comput., 38:A3741–A3757, 2016.
  • [7] C. González and M. Thalhammer. A second-order Magnus-type integrator for quasi-linear parabolic problems. Math. Comp., 76:205–231, 2007.
  • [8] C. González and M. Thalhammer. Higher-order exponential integrators for quasi-linear parabolic problems. Part I: stability. SIAM J. Numer. Anal., 53:701–719, 2015.
  • [9] C. González and M. Thalhammer. Higher-order exponential integrators for quasi-linear parabolic problems. Part II: convergence. SIAM J. Numer. Anal., 54:2868–2888, 2016.
  • [10] E. Hansen, F. Kramer, and A. Ostermann. A second-order positivity preserving scheme for semilinear parabolic problems. Applied Numer. Math., 62:1428–1435, 2012.
  • [11] M. Hochbruck and A. Ostermann. Explicit exponential Runge–Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal., 43:1069–1090, 2005.
  • [12] M. Hochbruck and A. Ostermann. Exponential integrators. Acta Numerica, 19:209–286, 2010.
  • [13] M. Hochbruck and A. Ostermann. Exponential multistep methods of Adams-type. BIT Numer. Math., 51:889–908, 2011.
  • [14] M. Hochbruck, A. Ostermann, and J. Schweitzer. Exponential Rosenbrock-Type Methods. SIAM Journal on Numerical Analysis, 47:786–803, 2009.
  • [15] B. Jin, B. Li, and Z. Zhou. Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput., 39:A3129–A3152, 2017.
  • [16] A. Koskela and A. Ostermann. Exponential taylor methods: Analysis and implementation. Comput. Math. Appl., 65(3):487–499, 2013.
  • [17] M. López-Fernández. A quadrature based method for evaluating exponential-type functions for exponential methods. BIT Numer. Math., 50:631–655, 2010.
  • [18] M. López-Fernández, C. Lubich, and A. Schädle. Adaptive, fast, and oblivious convolution in evolution equations with memory. SIAM J. Sci. Comput., 30:1015–1037, 2008.
  • [19] M. López-Fernández, C. Palencia, and A. Schädle. A spectral order method for inverting sectorial Laplace transforms. SIAM J. Numer. Anal., 44:1332–1350, 2006.
  • [20] C. Lubich. On the convergence of multistep methods for nonlinear stiff differential equations. Numer. Math., 58:839–853, 1990.
  • [21] C. Lubich and A. Ostermann. Runge-Kutta approximation of quasi-linear parabolic equations. Math. Comp., 64:601–627, 1995.
  • [22] C. Lubich and A. Ostermann. Runge-Kutta time discretization of reaction-diffusion and Navier-Stokes equations: nonsmooth-data error estimates and applications to long-time behaviour. Applied Numer. Math., 22:279–292, 1996.
  • [23] J. D. Mukam and A. Tambue. A note on exponential Rosenbrock–Euler method for the finite element discretization of a semilinear parabolic partial differential equation. Comput. Math. Appl., 76(7):1719–1738, 2018.
  • [24] A. Ostermann and M. Thalhammer. Non-smooth data error estimates for linearly implicit Runge–Kutta methods. IMA J. Numer. Anal., 20:167–184, 2000.
  • [25] A. Ostermann, M. Thalhammer, and W. Wright. A class of explicit exponential general linear methods. BIT Numer. Math., 46:409–431, 2006.
  • [26] E.-M. Ouhabaz. Gaussian estimates and holomorphy of semigroups. Proc. Am. Math. Soc., 123:1465–1474, 1995.
  • [27] A. Schädle, M. López-Fernández, and C. Lubich. Fast and oblivious convolution quadrature. SIAM J. Sci. Comput., 28:421–438, 2006.
  • [28] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, New York, second edition, 2006.