This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A multipoint stress-flux mixed finite element method for the Stokes-Biot model

Sergio CaucaoTongtong LiIvan Yotov Departamento de Matemática y Física Aplicadas, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile, email: scaucao@ucsc.cl. Supported in part by ANID-Chile through the project PAI77190084 of the PAI Program: Convocatoria Nacional Subvención a la Instalación en la Academia (convocatoria 2019) and Department of Mathematics, University of PittsburghDepartment of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA, email: tol24@pitt.edu, yotov@math.pitt.edu. Supported in part by NSF grant DMS 1818775
Abstract

In this paper we present and analyze a fully-mixed formulation for the coupled problem arising in the interaction between a free fluid and a flow in a poroelastic medium. The flows are governed by the Stokes and Biot equations, respectively, and the transmission conditions are given by mass conservation, balance of stresses, and the Beavers-Joseph-Saffman law. We apply dual-mixed formulations in both domains, where the symmetry of the Stokes and poroelastic stress tensors is imposed by setting the vorticity and structure rotation tensors as auxiliary unknowns. In turn, since the transmission conditions become essential, they are imposed weakly, which is done by introducing the traces of the fluid velocity, structure velocity, and the poroelastic media pressure on the interface as the associated Lagrange multipliers. The existence and uniqueness of a solution are established for the continuous weak formulation, as well as a semidiscrete continuous-in-time formulation with non-matching grids, together with the corresponding stability bounds. In addition, we develop a new multipoint stress-flux mixed finite element method by involving the vertex quadrature rule, which allows for local elimination of the stresses, rotations, and Darcy fluxes. Well-posedness and error analysis with corresponding rates of convergence for the fully-discrete scheme are complemented by several numerical experiments.

1 Introduction

The interaction of a free fluid with a deformable porous medium, referred to as fluid-poroelastic structure interaction (FPSI), is a challenging multiphysics problem. It has applications to predicting and controlling processes arising in gas and oil extraction from naturally or hydraulically fractured reservoirs, modeling arterial flows, and designing industrial filters, to name a few. For this physical phenomenon, the free fluid region can be modeled by the Stokes (or Navier–Stokes) equations, while the flow through the deformable porous medium is modeled by the Biot system of poroelasticity. In the latter, the volumetric deformation of the elastic porous matrix is complemented with the Darcy equation that describes the average velocity of the fluid in the pores. The two regions are coupled via dynamic and kinematic interface conditions, including balance of forces, continuity of normal velocity, and a no slip or slip with friction tangential velocity condition. The model exhibits features of both coupled Stokes-Darcy flows and fluid-structure interaction (FSI).

To the authors’ knowledge, one of the first works in analyzing the Stokes-Biot coupled problem is [53], where well-posedness for the fully dynamic problem is established by developing an appropriate variational formulation and using semigroup methods. One of the first numerical studies is presented in [12], where monolithic and iterative partitioned methods are developed for the solution of the coupled system. A non-iterative operator splitting scheme with a non-mixed Darcy formulation is developed in [21]. Finite element methods for mixed Darcy formulations, where the continuity of normal flux condition becomes essential, are considered in [20] using Nitsche’s coupling and in [8] using a pressure Lagrange multiplier. More recently, a nonlinear quasi-static Stokes–Biot model for non-Newtonian fluids is studied in [3]. The authors establish well-posedness of the weak formulation in Banach space setting, along with stability and convergence of the finite element approximation. In [25], the fully dynamic coupled Navier-Stokes/Biot system with a pressure-based Darcy formulation is analyzed. Additional works include optimization-based decoupling method [24], a second order in time split scheme [44], various discretization methods [56, 13, 23], dimensionally reduced model for flow through fractures [22], and coupling with transport [4]. All of the above mentioned works are based on displacement formulations for the elasticity equation. In a recent work [47], the first mathematical and numerical study of a stress-displacement mixed elasticity formulation for the Stokes-Biot model is presented.

The goal of the present paper is to develop a new fully mixed formulation of the quasi-static Stokes-Biot model, which is based on dual mixed formulations for all three components - Darcy, elasticity, and Stokes. In particular, we use a velocity-pressure Darcy formulation, a weakly symmetric stress-displacement-rotation elasticity formulation, and a weakly symmetric stress-velocity-vorticity Stokes formulation. This formulation exhibits multiple advantages, including local conservation of mass for the Darcy fluid, local poroelastic and Stokes momentum conservation, and accurate approximations with continuous normal components across element edges or faces for the Darcy velocity, the poroelastic stress, and the free fluid stress. In addition, dual mixed formulations are known for their locking-free properties and robustness with respect to the physical parameters, including the regimes of almost incompressible materials, low poroelastic storativity, and low permeability [45, 60].

Our five-field dual mixed Biot formulation is based on the model developed in [45] and studied further in [7]. It is also considered in [47] for the Stokes-Biot problem. Our analysis also extends to the strongly symmetric mixed four-field Biot formulation developed in [59]. Our three-field dual mixed Stokes formulation is based on the models developed in [35, 34]. In particular, we introduce the stress tensor and subsequently eliminate the pressure unknown, by utilizing the deviatoric stress. In order to impose the symmetry of the Stokes stress and poroelastic stress tensors, the vorticity and structure rotation, respectively, are introduced as additional unknowns. The transmission conditions consisting of mass conservation, conservation of momentum, and the Beavers–Joseph–Saffman slip with friction condition are imposed weakly via the incorporation of additional Lagrange multipliers: the traces of the fluid velocity, structure velocity and the poroelastic media pressure on the interface. The resulting variational system of equations is then ordered so that it shows a twofold saddle point structure. The well-posedness and uniqueness of both the continuous and semidiscrete continuous-in-time formulations are proved by employing some classical results for parabolic problems [52, 54] and monotone operators, and an abstract theory for twofold saddle point problems [33, 1]. In the discrete problem, for the three components of the model we consider suitable stable mixed finite element spaces on non-matching grids across the interface, coupled through either conforming or non-conforming Lagrange multiplier discretizations. We develop stability and error analysis, establishing rates of convergence to the true solution. The estimates we establish are uniform in the limit of the storativity coefficient going to zero.

Another main contribution of this paper is the development of a new mixed finite element method for the Stokes-Biot model that can be reduced to a positive definite cell-centered pressure-velocities-traces system. We recall the multipoint flux mixed finite element (MFMFE) method for Darcy flow developed in [40, 57, 58, 19], where the lowest order Brezzi-Douglas-Marini 𝔹𝔻𝕄1\mathbb{BDM}_{1} velocity spaces [17, 48, 18] and piecewise constant pressure are utilized. An alternative formulation based on a broken Raviart-Thomas velocity space is developed in [43]. The use of the vertex quadrature rule for the velocity bilinear form localizes the interaction between velocity degrees of freedom around mesh vertices and leads to a block-diagonal mass matrix. Consequently, the velocity can be locally eliminated, resulting in a cell-centered pressure system. In turn, the multipoint stress mixed finite element (MSMFE) method for elasticity is developed in [5, 6]. It utilizes stable weakly symmetric elasticity finite element triples with 𝔹𝔻𝕄1\mathbb{BDM}_{1} stress spaces [16, 30, 46, 6, 10, 11]. Similarly to the MFMFE method, an application of the vertex quadrature rule for the stress and rotation bilinear forms allows for local stress and rotation elimination, resulting in a cell-centered displacement system. We also refer the reader to the related finite volume multipoint stress approximation (MPSA) method for elasticity [49, 50, 41]. Recently, combining the MSMFE and MFMFE methods, a multipoint stress-flux mixed finite element (MSFMFE) method for the Biot poroelasticity model is developed in [7]. There, the dual mixed finite element system is reduced to a cell-centered displacement-pressure system. The reduced system is comparable in cost to the finite volume method developed in [51].

In this paper we note for the first time that the MSMFE method for elasticity can be applied to the weakly symmetric stress-velocity-vorticity Stokes formulation from [35, 34] when 𝔹𝔻𝕄1\mathbb{BDM}_{1}-based stable finite element triples are utilized. With the application of the vertex quadrature rule, the fluid stress and vorticity can be locally eliminated, resulting in a positive definite cell-centered velocity system. To the best of our knowledge, this is the first such scheme for Stokes in the literature.

Finally, we combine the MFMFE method for Darcy with the MSMFE methods for elasticity and Stokes to develop a multipoint stress-flux mixed finite element for the Stokes-Biot system. We analyze the stability and convergence of the semidiscrete formulation. We further consider the fully discrete system with backward Euler time discretization and show that the algebraic system on each time step can be reduced to a positive definite cell-centered pressure-velocities-traces system.

The rest of this work is organized as follows. The remainder of this section describes standard notation and functional spaces to be employed throughout the paper. In Section 2 we introduce the model problem and in Section 3 we derive a fully-mixed variational formulation, which is written as a degenerate evolution problem with a twofold saddle point structure. Next, existence, uniqueness and stability of the solution of the weak formulation are obtained in Section 4. The corresponding semidiscrete continuous-in-time approximation is introduced and analyzed in Section 5, where the discrete analogue of the theory used in the continuous case is employed to prove its well-posedness. Error estimates and rates of convergence are also derived there. In Section 6, the multipoint stress-flux mixed finite element method is presented and the corresponding rates of convergence are provided, along with the analysis of the reduced cell-centered system. Finally, numerical experiments illustrating the accuracy of our mixed finite element method and its applications to coupling surface and subsurface flows and flow through poroelastic medium with a cavity are reported in Section 7.

We end this section by introducing some definitions and fixing some notations. Let 𝒪Rn\mathcal{O}\subset\mathrm{R}^{n}, n{2,3}n\in\{2,3\}, denote a domain with Lipschitz boundary. For s0\mathrm{s}\geq 0 and p[1,+]\mathrm{p}\in[1,+\infty], we denote by Lp(𝒪)\mathrm{L}^{\mathrm{p}}(\mathcal{O}) and Ws,p(𝒪)\mathrm{W}^{\mathrm{s},\mathrm{p}}(\mathcal{O}) the usual Lebesgue and Sobolev spaces endowed with the norms Lp(𝒪)\|\cdot\|_{\mathrm{L}^{\mathrm{p}}(\mathcal{O})} and Ws,p(𝒪)\|\cdot\|_{\mathrm{W}^{\mathrm{s},\mathrm{p}}(\mathcal{O})}, respectively. Note that W0,p(𝒪)=Lp(𝒪)\mathrm{W}^{0,\mathrm{p}}(\mathcal{O})=\mathrm{L}^{\mathrm{p}}(\mathcal{O}). If p=2\mathrm{p}=2 we write Hs(𝒪)\mathrm{H}^{\mathrm{s}}(\mathcal{O}) in place of Ws,2(𝒪)\mathrm{W}^{\mathrm{s},2}(\mathcal{O}), and denote the corresponding norm by Hs(𝒪)\|\cdot\|_{\mathrm{H}^{\mathrm{s}}(\mathcal{O})}. Similar notation is used for a section Γ\Gamma of the boundary of 𝒪\mathcal{O}. By 𝐌\mathbf{M} and 𝕄\mathbb{M} we will denote the corresponding vectorial and tensorial counterparts of a generic scalar functional space M\mathrm{M}. The L2(𝒪)\mathrm{L}^{2}(\mathcal{O}) inner product for scalar, vector, or tensor valued functions is denoted by (,)𝒪(\cdot,\cdot)_{\mathcal{O}}. The L2(Γ)\mathrm{L}^{2}(\Gamma) inner product or duality pairing is denoted by ,Γ\left<\cdot,\cdot\right>_{\Gamma}. For any vector field 𝐯=(vi)i=1,n{\mathbf{v}}=(v_{i})_{i=1,n}, we set the gradient and divergence operators, as

𝐯:=(vixj)i,j=1,nanddiv(𝐯):=j=1nvjxj.\nabla{\mathbf{v}}:=\left(\frac{\partial v_{i}}{\partial x_{j}}\right)_{i,j=1,n}{\quad\hbox{and}\quad}\mathrm{div}({\mathbf{v}}):=\sum_{j=1}^{n}\frac{\partial v_{j}}{\partial x_{j}}.

For any tensor fields 𝝉:=(τij)i,j=1,n{\boldsymbol{\tau}}:=(\tau_{ij})_{i,j=1,n} and 𝜻:=(ζij)i,j=1,n{\boldsymbol{\zeta}}:=(\zeta_{ij})_{i,j=1,n}, we let 𝐝𝐢𝐯(𝝉)\mathbf{div}({\boldsymbol{\tau}}) be the divergence operator div\mathrm{div} acting along the rows of 𝝉{\boldsymbol{\tau}}, and define the transpose, the trace, the tensor inner product, and the deviatoric tensor, respectively, as

𝝉t:=(τji)i,j=1,n,tr(𝝉):=i=1nτii,𝝉:𝜻:=i,j=1nτijζij,and𝝉d:=𝝉1ntr(𝝉)𝐈,{\boldsymbol{\tau}}^{\mathrm{t}}:=(\tau_{ji})_{i,j=1,n},\quad\mathrm{tr}({\boldsymbol{\tau}}):=\sum_{i=1}^{n}\tau_{ii},\quad{\boldsymbol{\tau}}:{\boldsymbol{\zeta}}:=\sum_{i,j=1}^{n}\tau_{ij}\zeta_{ij},{\quad\hbox{and}\quad}{\boldsymbol{\tau}}^{\mathrm{d}}:={\boldsymbol{\tau}}-\frac{1}{n}\,\mathrm{tr}({\boldsymbol{\tau}})\,\mathbf{I},

where 𝐈\mathbf{I} is the identity matrix in Rn×n\mathrm{R}^{n\times n}. In addition, we recall the Hilbert space

𝐇(div;𝒪):={𝐯𝐋2(𝒪):div(𝐯)L2(𝒪)},\mathbf{H}(\mathrm{div};\mathcal{O}):=\Big{\{}{\mathbf{v}}\in\mathbf{L}^{2}(\mathcal{O}):\quad\mathrm{div}({\mathbf{v}})\in\mathrm{L}^{2}(\mathcal{O})\Big{\}},

equipped with the norm 𝐯𝐇(div;𝒪)2:=𝐯𝐋2(𝒪)2+div(𝐯)L2(𝒪)2\|{\mathbf{v}}\|^{2}_{\mathbf{H}(\mathrm{div};\mathcal{O})}:=\|{\mathbf{v}}\|^{2}_{\mathbf{L}^{2}(\mathcal{O})}+\|\mathrm{div}({\mathbf{v}})\|^{2}_{\mathrm{L}^{2}(\mathcal{O})}. The space of matrix valued functions whose rows belong to 𝐇(div;𝒪)\mathbf{H}(\mathrm{div};\mathcal{O}) will be denoted by (𝐝𝐢𝐯;𝒪)\mathbb{H}(\mathbf{div};\mathcal{O}) and endowed with the norm 𝝉(𝐝𝐢𝐯;𝒪)2:=𝝉𝕃2(𝒪)2+𝐝𝐢𝐯(𝝉)𝐋2(𝒪)2\|{\boldsymbol{\tau}}\|^{2}_{\mathbb{H}(\mathbf{div};\mathcal{O})}:=\|{\boldsymbol{\tau}}\|^{2}_{\mathbb{L}^{2}(\mathcal{O})}+\|\mathbf{div}({\boldsymbol{\tau}})\|^{2}_{\mathbf{L}^{2}(\mathcal{O})}. Finally, given a separable Banach space V\mathrm{V} endowed with the norm V\|\cdot\|_{\mathrm{V}}, we let Lp(0,T;V)\mathrm{L}^{\mathrm{p}}(0,T;\mathrm{V}) be the space of classes of functions f:(0,T)Vf:(0,T)\to\mathrm{V} that are Bochner measurable and such that fLp(0,T;V)<\|f\|_{\mathrm{L}^{\mathrm{p}}(0,T;\mathrm{V})}<\infty, with

fLp(0,T;V)p:=0Tf(t)Vp𝑑t,fL(0,T;V):=esssupt[0,T]f(t)V.\|f\|^{\mathrm{p}}_{\mathrm{L}^{\mathrm{p}}(0,T;\mathrm{V})}\,:=\,\int^{T}_{0}\|f(t)\|^{\mathrm{p}}_{\mathrm{V}}\,dt,\quad\|f\|_{\mathrm{L}^{\infty}(0,T;\mathrm{V})}\,:=\,\mathop{\mathrm{ess\,sup}}\limits_{t\in[0,T]}\|f(t)\|_{\mathrm{V}}.

2 The model problem

Let ΩRn\Omega\subset\mathrm{R}^{n}, n{2,3}n\in\{2,3\}, be a Lipschitz domain, which is subdivided into two non-overlapping and possibly non-connected regions: fluid region Ωf\Omega_{f} and poroelastic region Ωp\Omega_{p}. Let Γfp=ΩfΩp\Gamma_{fp}=\partial\Omega_{f}\cap\partial\Omega_{p} denote the (nonempty) interface between these regions and let Γf=ΩfΓfp\Gamma_{f}=\partial\Omega_{f}\setminus\Gamma_{fp} and Γp=ΩpΓfp\Gamma_{p}=\partial\Omega_{p}\setminus\Gamma_{fp} denote the external parts on the boundary Ω\partial\Omega. We denote by 𝐧f{\mathbf{n}}_{f} and 𝐧p{\mathbf{n}}_{p} the unit normal vectors that point outward from Ωf\partial\Omega_{f} and Ωp\partial\Omega_{p}, respectively, noting that 𝐧f=𝐧p{\mathbf{n}}_{f}=-{\mathbf{n}}_{p} on Γfp\Gamma_{fp}. Let (𝐮,p)(\mathbf{u}_{\star},p_{\star}) be the velocity-pressure pair in Ω\Omega_{\star} with {f,p}\star\in\{f,p\}, and let 𝜼p{\boldsymbol{\eta}}_{p} be the displacement in Ωp\Omega_{p}. Let μ>0\mu>0 be the fluid viscosity, let 𝐟\mathbf{f}_{\star} be the body force terms, and let qq_{\star} be external source or sink terms.

We assume that the flow in Ωf\Omega_{f} is governed by the Stokes equations, which are written in the following stress-velocity-pressure formulation:

𝝈f=pf𝐈+2μ𝐞(𝐮f),𝐝𝐢𝐯(𝝈f)=𝐟f,div(𝐮f)=qfinΩf×(0,T],𝝈f𝐧f= 0onΓfN×(0,T],𝐮f= 0onΓfD×(0,T],\begin{array}[]{c}\displaystyle{\boldsymbol{\sigma}}_{f}\,=\,-p_{f}\,\mathbf{I}+2\,\mu\,{\mathbf{e}}(\mathbf{u}_{f}),\quad-\,\mathbf{div}({\boldsymbol{\sigma}}_{f})\,=\,\mathbf{f}_{f},\quad\mathrm{div}(\mathbf{u}_{f})\,=\,q_{f}{\quad\hbox{in}\quad}\Omega_{f}\times(0,T],\\[8.61108pt] \displaystyle{\boldsymbol{\sigma}}_{f}{\mathbf{n}}_{f}\,=\,{\mathbf{0}}{\quad\hbox{on}\quad}\Gamma^{\mathrm{N}}_{f}\times(0,T],\quad\mathbf{u}_{f}\,=\,{\mathbf{0}}{\quad\hbox{on}\quad}\Gamma^{\mathrm{D}}_{f}\times(0,T],\end{array} (2.1)

where 𝝈f{\boldsymbol{\sigma}}_{f} is the stress tensor, 𝐞(𝐮f):=12(𝐮f+(𝐮f)t){\mathbf{e}}(\mathbf{u}_{f}):=\dfrac{1}{2}\,\left(\nabla\mathbf{u}_{f}+(\nabla\mathbf{u}_{f})^{\mathrm{t}}\right) stands for the deformation rate tensor, Γf=ΓfNΓfD\Gamma_{f}=\Gamma^{\mathrm{N}}_{f}\cup\Gamma^{\mathrm{D}}_{f}, and T>0T>0 is the final time. Next, we adopt the approach from [34, 1], and include as a new variable the vorticity tensor 𝜸f{\boldsymbol{\gamma}}_{f},

𝜸f:=12(𝐮f(𝐮f)t).{\boldsymbol{\gamma}}_{f}\,:=\,\frac{1}{2}\,\left(\nabla\mathbf{u}_{f}-(\nabla\mathbf{u}_{f})^{\mathrm{t}}\right).

In this way, owing to the fact that tr(𝐞(𝐮f))=div(𝐮f)=qf\mathrm{tr}({\mathbf{e}}(\mathbf{u}_{f}))=\mathrm{div}(\mathbf{u}_{f})=q_{f}, we find that (2.1) can be rewritten, equivalently, as the set of equations with unknowns 𝝈f,𝜸f{\boldsymbol{\sigma}}_{f},{\boldsymbol{\gamma}}_{f} and 𝐮f\mathbf{u}_{f}, given by

12μ𝝈fd=𝐮f𝜸f1nqf𝐈,𝐝𝐢𝐯(𝝈f)=𝐟finΩf×(0,T],𝝈f=𝝈ft,pf=1n(tr(𝝈f)2μqf)inΩf×(0,T],𝝈f𝐧f= 0onΓfN×(0,T],𝐮f= 0onΓfD×(0,T].\begin{array}[]{c}\displaystyle\frac{1}{2\,\mu}\,{\boldsymbol{\sigma}}^{\mathrm{d}}_{f}\,=\,\nabla\mathbf{u}_{f}-{\boldsymbol{\gamma}}_{f}-\frac{1}{n}\,q_{f}\,\mathbf{I},\quad-\,\mathbf{div}({\boldsymbol{\sigma}}_{f})\,=\,\mathbf{f}_{f}{\quad\hbox{in}\quad}\Omega_{f}\times(0,T],\\[8.61108pt] \displaystyle{\boldsymbol{\sigma}}_{f}\,=\,{\boldsymbol{\sigma}}^{\mathrm{t}}_{f},\quad p_{f}\,=\,-\frac{1}{n}\,\left(\mathrm{tr}({\boldsymbol{\sigma}}_{f})-2\,\mu\,q_{f}\right){\quad\hbox{in}\quad}\Omega_{f}\times(0,T],\\[12.91663pt] \displaystyle{\boldsymbol{\sigma}}_{f}{\mathbf{n}}_{f}\,=\,{\mathbf{0}}{\quad\hbox{on}\quad}\Gamma^{\mathrm{N}}_{f}\times(0,T],\quad\mathbf{u}_{f}\,=\,{\mathbf{0}}{\quad\hbox{on}\quad}\Gamma^{\mathrm{D}}_{f}\times(0,T].\end{array} (2.2)

Notice that the fourth equation in (2.2) has allowed us to eliminate the pressure pfp_{f} from the system and provides a formula for its approximation through a post-processing procedure. For simplicity we assume that |ΓfN|>0|\Gamma^{\mathrm{N}}_{f}|>0, which will allow us to control 𝝈f{\boldsymbol{\sigma}}_{f} by 𝝈fd{\boldsymbol{\sigma}}_{f}^{\mathrm{d}}. The case |ΓfN|=0|\Gamma^{\mathrm{N}}_{f}|=0 can be handled as in [34, 35, 36] by introducing an additional variable corresponding to the mean value of tr(𝝈f)\mathrm{tr}({\boldsymbol{\sigma}}_{f}).

In turn, let 𝝈e{\boldsymbol{\sigma}}_{e} and 𝝈p{\boldsymbol{\sigma}}_{p} be the elastic and poroelastic stress tensors, respectively, satisfying

A𝝈e=𝐞(𝜼p)and𝝈p:=𝝈eαppp𝐈inΩp×(0,T],A\,{\boldsymbol{\sigma}}_{e}\,={\mathbf{e}}({\boldsymbol{\eta}}_{p}){\quad\hbox{and}\quad}{\boldsymbol{\sigma}}_{p}\,:=\,{\boldsymbol{\sigma}}_{e}-\alpha_{p}\,p_{p}\,\mathbf{I}{\quad\hbox{in}\quad}\Omega_{p}\times(0,T], (2.3)

where 0<αp10<\alpha_{p}\leq 1 is the Biot–Willis constant, and AA is the symmetric and positive definite compliance tensor, which in the isotropic case has the form, for all tensors 𝝉{\boldsymbol{\tau}},

A(𝝉):=12μp(𝝉λp2μp+nλptr(𝝉)𝐈),withA1(𝝉)=2μp𝝉+λptr(𝝉)𝐈,A({\boldsymbol{\tau}}):=\frac{1}{2\,\mu_{p}}\,\left({\boldsymbol{\tau}}-\frac{\lambda_{p}}{2\,\mu_{p}+n\,\lambda_{p}}\,\mathrm{tr}({\boldsymbol{\tau}})\,\mathbf{I}\right),\quad\mbox{with}\quad A^{-1}({\boldsymbol{\tau}})=2\,\mu_{p}\,{\boldsymbol{\tau}}+\lambda_{p}\,\mathrm{tr}({\boldsymbol{\tau}})\,\mathbf{I}, (2.4)

satisfying

𝝉Rn×n,12μmax+nλmax𝝉:𝝉A(𝝉):𝝉12μmin𝝉:𝝉𝐱Ωp.\forall\,{\boldsymbol{\tau}}\in\mathrm{R}^{n\times n},\quad\frac{1}{2\mu_{\max}+n\,\lambda_{\max}}\,{\boldsymbol{\tau}}:{\boldsymbol{\tau}}\,\leq\,A({\boldsymbol{\tau}}):{\boldsymbol{\tau}}\,\leq\,\frac{1}{2\mu_{\min}}\,{\boldsymbol{\tau}}:{\boldsymbol{\tau}}\quad\forall\,\mathbf{x}\in\Omega_{p}. (2.5)

In this case, 𝝈e:=λpdiv(𝜼p)𝐈+2μp𝐞(𝜼p){\boldsymbol{\sigma}}_{e}\,:=\,\lambda_{p}\,\mathrm{div}({\boldsymbol{\eta}}_{p})\,\mathbf{I}+2\,\mu_{p}\,{\mathbf{e}}({\boldsymbol{\eta}}_{p}), and 0<λminλp(𝐱)λmax0<\lambda_{\min}\leq\lambda_{p}(\mathbf{x})\leq\lambda_{\max} and 0<μminμp(𝐱)μmax0<\mu_{\min}\leq\mu_{p}(\mathbf{x})\leq\mu_{\max} are the Lamé parameters. The poroelasticity region Ωp\Omega_{p} is governed by the quasi-static Biot system [14]:

𝐝𝐢𝐯(𝝈p)=𝐟p,μ𝐊1𝐮p+pp=𝟎,t(s0pp+αpdiv(𝜼p))+div(𝐮p)=qpinΩp×(0,T],𝐮p𝐧p=0onΓpN×(0,T],pp=0onΓpD×(0,T],𝝈p𝐧p=𝟎onΓ~pN×(0,T],𝜼p=𝟎onΓ~pD×(0,T],\begin{array}[]{c}\displaystyle-\,\mathbf{div}({\boldsymbol{\sigma}}_{p})=\mathbf{f}_{p},\quad\mu\,\mathbf{K}^{-1}\mathbf{u}_{p}+\nabla\,p_{p}={\mathbf{0}},\quad\frac{\partial}{\partial t}\left(s_{0}\,p_{p}+\alpha_{p}\,\mathrm{div}({\boldsymbol{\eta}}_{p})\right)+\mathrm{div}(\mathbf{u}_{p})=q_{p}{\quad\hbox{in}\quad}\Omega_{p}\times(0,T],\\[12.91663pt] \displaystyle\mathbf{u}_{p}\cdot{\mathbf{n}}_{p}=0{\quad\hbox{on}\quad}\Gamma^{\mathrm{N}}_{p}\times(0,T],\quad p_{p}=0{\quad\hbox{on}\quad}\Gamma^{\mathrm{D}}_{p}\times(0,T],\\[12.91663pt] \displaystyle{\boldsymbol{\sigma}}_{p}{\mathbf{n}}_{p}={\mathbf{0}}{\quad\hbox{on}\quad}\tilde{\Gamma}_{p}^{\mathrm{N}}\times(0,T],\quad{\boldsymbol{\eta}}_{p}={\mathbf{0}}{\quad\hbox{on}\quad}\tilde{\Gamma}_{p}^{\mathrm{D}}\times(0,T],\end{array} (2.6)

where Γp=ΓpNΓpD=Γ~pNΓ~pD\Gamma_{p}=\Gamma^{\mathrm{N}}_{p}\cup\Gamma^{\mathrm{D}}_{p}=\tilde{\Gamma}^{\mathrm{N}}_{p}\cup\tilde{\Gamma}^{\mathrm{D}}_{p}, s0>0s_{0}>0 is a storativity coefficient and 𝐊(𝐱)\mathbf{K}(\mathbf{x}) is the symmetric and uniformly positive definite rock permeability tensor, satisfying, for some constants 0<kminkmax0<k_{\min}\leq k_{\max},

𝐰Rn,kmin𝐰𝐰(𝐊𝐰)𝐰kmax𝐰𝐰𝐱Ωp.\forall\,{\mathbf{w}}\in\mathrm{R}^{n},\quad k_{\min}\,{\mathbf{w}}\cdot{\mathbf{w}}\,\leq\,(\mathbf{K}{\mathbf{w}})\cdot{\mathbf{w}}\,\leq\,k_{\max}\,{\mathbf{w}}\cdot{\mathbf{w}}\quad\forall\,\mathbf{x}\in\Omega_{p}. (2.7)

To avoid the issue with restricting the mean value of the pressure, we assume that |ΓpD|>0|\Gamma^{\mathrm{D}}_{p}|>0. We also assume that ΓfD\Gamma^{\mathrm{D}}_{f}, ΓpD\Gamma^{\mathrm{D}}_{p}, and Γ~pD\tilde{\Gamma}^{\mathrm{D}}_{p} are not adjacent to the interface Γfp\Gamma_{fp}, i.e., s>0\exists\ s>0 such that dist(ΓfD,Γfp)s\mathrm{dist}\,(\Gamma^{\mathrm{D}}_{f},\Gamma_{fp})\geq s, dist(ΓpD,Γfp)s\mathrm{dist}\,(\Gamma^{\mathrm{D}}_{p},\Gamma_{fp})\geq s, and dist(Γ~pD,Γfp)s\mathrm{dist}\,(\tilde{\Gamma}^{\mathrm{D}}_{p},\Gamma_{fp})\geq s. This assumption is used to simplify the characterization of the normal trace spaces on Γfp\Gamma_{fp}.

Next, we introduce the following transmission conditions on the interface Γfp\Gamma_{fp} [53, 12, 20, 8]:

𝐮f𝐧f+(𝜼pt+𝐮p)𝐧p= 0,𝝈f𝐧f+𝝈p𝐧p= 0onΓfp×(0,T],𝝈f𝐧f+μα𝙱𝙹𝚂j=1n1𝐊j1{(𝐮f𝜼pt)𝐭f,j}𝐭f,j=pp𝐧fonΓfp×(0,T],\begin{array}[]{c}\displaystyle\mathbf{u}_{f}\cdot{\mathbf{n}}_{f}+\left(\frac{\partial\,{\boldsymbol{\eta}}_{p}}{\partial t}+\mathbf{u}_{p}\right)\cdot{\mathbf{n}}_{p}\,=\,0,\quad{\boldsymbol{\sigma}}_{f}{\mathbf{n}}_{f}+{\boldsymbol{\sigma}}_{p}{\mathbf{n}}_{p}\,=\,{\mathbf{0}}{\quad\hbox{on}\quad}\Gamma_{fp}\times(0,T],\\[12.91663pt] \displaystyle{\boldsymbol{\sigma}}_{f}{\mathbf{n}}_{f}+\mu\,\alpha_{\mathtt{BJS}}\sum^{n-1}_{j=1}\,\sqrt{\mathbf{K}^{-1}_{j}}\left\{\left(\mathbf{u}_{f}-\frac{\partial\,{\boldsymbol{\eta}}_{p}}{\partial t}\right)\cdot{\mathbf{t}}_{f,j}\right\}\,{\mathbf{t}}_{f,j}\,=\,-\,p_{p}{\mathbf{n}}_{f}{\quad\hbox{on}\quad}\Gamma_{fp}\times(0,T],\end{array} (2.8)

where 𝐭f,j{\mathbf{t}}_{f,j}, 1jn11\leq j\leq n-1, is an orthogonal system of unit tangent vectors on Γfp\Gamma_{fp}, 𝐊j=(𝐊𝐭f,j)𝐭f,j\mathbf{K}_{j}=(\mathbf{K}\,{\mathbf{t}}_{f,j})\cdot{\mathbf{t}}_{f,j}, and α𝙱𝙹𝚂0\alpha_{\mathtt{BJS}}\geq 0 is an experimentally determined friction coefficient. The first and second equations in (2.8) correspond to mass conservation and conservation of momentum on Γfp\Gamma_{fp}, respectively, whereas the third one can be decomposed into its normal and tangential components, as follows:

(𝝈f𝐧f)𝐧f=pp,(𝝈f𝐧f)𝐭f,j=μα𝙱𝙹𝚂𝐊j1(𝐮f𝜼pt)𝐭f,jonΓfp×(0,T],({\boldsymbol{\sigma}}_{f}{\mathbf{n}}_{f})\cdot{\mathbf{n}}_{f}\,=\,-\,p_{p},\quad({\boldsymbol{\sigma}}_{f}{\mathbf{n}}_{f})\cdot{\mathbf{t}}_{f,j}\,=\,-\,\mu\,\alpha_{\mathtt{BJS}}\,\sqrt{\mathbf{K}^{-1}_{j}}\left(\mathbf{u}_{f}-\frac{\partial\,{\boldsymbol{\eta}}_{p}}{\partial t}\right)\cdot{\mathbf{t}}_{f,j}{\quad\hbox{on}\quad}\Gamma_{fp}\times(0,T],

representing balance of normal stress and the Beaver–Joseph–Saffman (BJS) slip with friction condition, respectively.

Finally, the above system of equations is complemented by the initial condition pp(𝐱,0)=pp,0(𝐱)p_{p}(\mathbf{x},0)=p_{p,0}(\mathbf{x}) in Ωp\Omega_{p}. We stress that, similarly to [47], compatible initial data for the rest of the variables can be constructed from pp,0p_{p,0} in a way that all equations in the system (2.2)–(2.8), except for the unsteady conservation of mass equation in the first row of (2.6), hold at t=0t=0. This will be established in Lemma 4.9 below. We will consider a weak formulation with a time-differentiated elasticity equation and compatible initial data (𝝈p,0,pp,0)({\boldsymbol{\sigma}}_{p,0},p_{p,0}).

3 The weak formulation

In this section we proceed analogously to [3, Section 3] (see also [34]) and derive a weak formulation of the coupled problem given by (2.2), (2.3)–(2.6), and (2.8).

3.1 Preliminaries

For the stress tensor, velocity, and vorticity in the Stokes region, we use the Hilbert spaces, respectively,

𝕏f:={𝝉f(𝐝𝐢𝐯;Ωf):𝝉f𝐧f=𝟎 on ΓfN},𝐕f:=𝐋2(Ωf),f:={𝝌f𝕃2(Ωf):𝝌ft=𝝌f},\mathbb{X}_{f}:=\Big{\{}{\boldsymbol{\tau}}_{f}\in\mathbb{H}(\mathbf{div};\Omega_{f}):{\boldsymbol{\tau}}_{f}{\mathbf{n}}_{f}={\mathbf{0}}\ \text{ on }\ \Gamma^{\mathrm{N}}_{f}\Big{\}},\,\,\,\mathbf{V}_{f}:=\mathbf{L}^{2}(\Omega_{f}),\,\,\,\displaystyle\mathbb{Q}_{f}:=\Big{\{}{\boldsymbol{\chi}}_{f}\in\mathbb{L}^{2}(\Omega_{f}):{\boldsymbol{\chi}}^{\mathrm{t}}_{f}=-\,{\boldsymbol{\chi}}_{f}\Big{\}},

endowed with the corresponding norms

𝝉f𝕏f:=𝝉f(𝐝𝐢𝐯;Ωf),𝐯f𝐕f:=𝐯f𝐋2(Ωf),𝝌ff:=𝝌f𝕃2(Ωf).\|{\boldsymbol{\tau}}_{f}\|_{\mathbb{X}_{f}}:=\|{\boldsymbol{\tau}}_{f}\|_{\mathbb{H}(\mathbf{div};\Omega_{f})},\quad\|{\mathbf{v}}_{f}\|_{\mathbf{V}_{f}}:=\|{\mathbf{v}}_{f}\|_{\mathbf{L}^{2}(\Omega_{f})},\quad\|{\boldsymbol{\chi}}_{f}\|_{\mathbb{Q}_{f}}:=\|{\boldsymbol{\chi}}_{f}\|_{\mathbb{L}^{2}(\Omega_{f})}.

For the unknowns in the Biot region we introduce the Hilbert spaces:

𝕏p:={𝝉p(𝐝𝐢𝐯;Ωp):𝝉p𝐧p=𝟎 on Γ~pN},𝐕s:=𝐋2(Ωp),p:={𝝌p𝕃2(Ωp):𝝌pt=𝝌p},𝐕p:={𝐯p𝐇(div;Ωp):𝐯p𝐧p=0 on ΓpN},Wp:=L2(Ωp),\begin{array}[]{c}\displaystyle\mathbb{X}_{p}:=\Big{\{}{\boldsymbol{\tau}}_{p}\in\mathbb{H}(\mathbf{div};\Omega_{p}):{\boldsymbol{\tau}}_{p}{\mathbf{n}}_{p}={\mathbf{0}}\ \text{ on }\ \tilde{\Gamma}^{\mathrm{N}}_{p}\Big{\}},\,\,\,\mathbf{V}_{s}:=\mathbf{L}^{2}(\Omega_{p}),\,\,\,\mathbb{Q}_{p}:=\Big{\{}{\boldsymbol{\chi}}_{p}\in\mathbb{L}^{2}(\Omega_{p}):{\boldsymbol{\chi}}^{\mathrm{t}}_{p}=-\,{\boldsymbol{\chi}}_{p}\Big{\}},\\[8.61108pt] \displaystyle\mathbf{V}_{p}:=\Big{\{}{\mathbf{v}}_{p}\in\mathbf{H}(\mathrm{div};\Omega_{p}):\ {\mathbf{v}}_{p}\cdot{\mathbf{n}}_{p}=0\ \text{ on }\ \Gamma^{\mathrm{N}}_{p}\Big{\}},\quad\mathrm{W}_{p}:=\mathrm{L}^{2}(\Omega_{p}),\end{array}

endowed with the standard norms

𝝉p𝕏p:=𝝉p(𝐝𝐢𝐯;Ωp),𝐯s𝐕s:=𝐯s𝐋2(Ωp),𝝌pp:=𝝌p𝕃2(Ωp),𝐯p𝐕p:=𝐯p𝐇(div;Ωp),wpWp:=wpL2(Ωp).\begin{array}[]{c}\displaystyle\|{\boldsymbol{\tau}}_{p}\|_{\mathbb{X}_{p}}:=\|{\boldsymbol{\tau}}_{p}\|_{\mathbb{H}(\mathbf{div};\Omega_{p})},\quad\|{\mathbf{v}}_{s}\|_{\mathbf{V}_{s}}:=\|{\mathbf{v}}_{s}\|_{\mathbf{L}^{2}(\Omega_{p})},\quad\|{\boldsymbol{\chi}}_{p}\|_{\mathbb{Q}_{p}}:=\|{\boldsymbol{\chi}}_{p}\|_{\mathbb{L}^{2}(\Omega_{p})},\\[8.61108pt] \displaystyle\|{\mathbf{v}}_{p}\|_{\mathbf{V}_{p}}:=\|{\mathbf{v}}_{p}\|_{\mathbf{H}(\mathrm{div};\Omega_{p})},\quad\|w_{p}\|_{\mathrm{W}_{p}}:=\|w_{p}\|_{\mathrm{L}^{2}(\Omega_{p})}.\end{array}

Finally, analogously to [31, 34, 8, 3, 47] we need to introduce the Lagrange multiplier spaces Λp:=(𝐕p𝐧p|Γfp)\Lambda_{p}:=(\mathbf{V}_{p}\cdot{\mathbf{n}}_{p}|_{\Gamma_{fp}})^{\prime}, 𝚲f:=(𝕏f𝐧f|Γfp){\boldsymbol{\Lambda}}_{f}:=(\mathbb{X}_{f}\,{\mathbf{n}}_{f}|_{\Gamma_{fp}})^{\prime}, and 𝚲s:=(𝕏p𝐧p|Γfp){\boldsymbol{\Lambda}}_{s}:=(\mathbb{X}_{p}\,{\mathbf{n}}_{p}|_{\Gamma_{fp}})^{\prime}. According to the normal trace theorem, since 𝐯p𝐕p𝐇(div;Ωp){\mathbf{v}}_{p}\in\mathbf{V}_{p}\subset\mathbf{H}(\mathrm{div};\Omega_{p}), then 𝐯p𝐧pH1/2(Ωp){\mathbf{v}}_{p}\cdot{\mathbf{n}}_{p}\in\mathrm{H}^{-1/2}(\partial\Omega_{p}). It is shown in [31] that, if 𝐯p𝐧p=0{\mathbf{v}}_{p}\cdot{\mathbf{n}}_{p}=0 on ΩpΓfp\partial\,\Omega_{p}\setminus\Gamma_{fp}, then 𝐯p𝐧pH1/2(Γfp){\mathbf{v}}_{p}\cdot{\mathbf{n}}_{p}\in\mathrm{H}^{-1/2}(\Gamma_{fp}). This argument has been modified in [8] for the case 𝐯p𝐧p=0{\mathbf{v}}_{p}\cdot{\mathbf{n}}_{p}=0 on ΓpN\Gamma^{\mathrm{N}}_{p} and dist(ΓpD,Γfp)s>0\mathrm{dist}\,(\Gamma^{\mathrm{D}}_{p},\Gamma_{fp})\geq s>0. In particular, it holds that

𝐯p𝐧p,ξΓfpC𝐯p𝐇(div;Ωp)ξH1/2(Γfp),𝐯p𝐕p,ξH1/2(Γfp).\langle{\mathbf{v}}_{p}\cdot{\mathbf{n}}_{p},\xi\rangle_{\Gamma_{fp}}\leq C\|{\mathbf{v}}_{p}\|_{\mathbf{H}(\mathrm{div};\Omega_{p})}\|\xi\|_{\mathrm{H}^{1/2}(\Gamma_{fp})},\quad\forall\,{\mathbf{v}}_{p}\in\mathbf{V}_{p},\,\xi\in\mathrm{H}^{1/2}(\Gamma_{fp}). (3.1)

Similarly,

𝝉𝐧,𝝍ΓfpC𝝉(div;Ω)𝝍𝐇1/2(Γfp),𝝉𝕏,𝝍𝐇1/2(Γfp),{f,p}.\langle{\boldsymbol{\tau}}_{\star}\,{\mathbf{n}}_{\star},{\boldsymbol{\psi}}\rangle_{\Gamma_{fp}}\leq C\|{\boldsymbol{\tau}}_{\star}\|_{\mathbb{H}(\mathrm{div};\Omega_{\star})}\|{\boldsymbol{\psi}}\|_{\mathbf{H}^{1/2}(\Gamma_{fp})},\quad\forall\,{\boldsymbol{\tau}}_{\star}\in\mathbb{X}_{\star},\,{\boldsymbol{\psi}}\in\mathbf{H}^{1/2}(\Gamma_{fp}),\ \star\in\{f,p\}. (3.2)

Therefore we can take Λp:=H1/2(Γfp)\Lambda_{p}:=\mathrm{H}^{1/2}(\Gamma_{fp}), 𝚲f:=𝐇1/2(Γfp){\boldsymbol{\Lambda}}_{f}:=\mathbf{H}^{1/2}(\Gamma_{fp}), and 𝚲s:=𝐇1/2(Γfp){\boldsymbol{\Lambda}}_{s}:=\mathbf{H}^{1/2}(\Gamma_{fp}), endowed with the norms

ξΛp:=ξH1/2(Γfp),𝝍𝚲f:=𝝍𝐇1/2(Γfp),andϕ𝚲s:=ϕ𝐇1/2(Γfp).\|\xi\|_{\Lambda_{p}}\,:=\,\|\xi\|_{\mathrm{H}^{1/2}(\Gamma_{fp})},\quad\|{\boldsymbol{\psi}}\|_{{\boldsymbol{\Lambda}}_{f}}\,:=\,\|{\boldsymbol{\psi}}\|_{\mathbf{H}^{1/2}(\Gamma_{fp})},{\quad\hbox{and}\quad}\|{\boldsymbol{\phi}}\|_{{\boldsymbol{\Lambda}}_{s}}\,:=\,\|{\boldsymbol{\phi}}\|_{\mathbf{H}^{1/2}(\Gamma_{fp})}. (3.3)

3.2 Lagrange multiplier formulation

We now proceed with the derivation of our Lagrange multiplier variational formulation for the coupling of the Stokes and Biot problems. To this end, and inspired by [3, 35], we begin by introducing the structure velocity 𝐮s:=t𝜼p𝐕s\mathbf{u}_{s}:=\partial_{t}\,{\boldsymbol{\eta}}_{p}\in\mathbf{V}_{s} satisfying 𝐮s=𝟎\mathbf{u}_{s}={\mathbf{0}} on Γ~pD×(0,T]\tilde{\Gamma}_{p}^{\mathrm{D}}\times(0,T] (cf. the last equation in (2.6)), and three Lagrange multipliers modeling the Stokes velocity, structure velocity and Darcy pressure on the interface, respectively,

𝝋:=𝐮f|Γfp𝚲f,𝜽:=𝐮s|Γfp𝚲s,andλ:=pp|ΓfpΛp.{\boldsymbol{\varphi}}\,:=\,\mathbf{u}_{f}|_{\Gamma_{fp}}\in{\boldsymbol{\Lambda}}_{f},\quad{\boldsymbol{\theta}}\,:=\,\mathbf{u}_{s}|_{\Gamma_{fp}}\in{\boldsymbol{\Lambda}}_{s},{\quad\hbox{and}\quad}\lambda\,:=\,p_{p}|_{\Gamma_{fp}}\in\Lambda_{p}.

The reason for introducing these Lagrange multipliers is twofold. First, 𝐮f\mathbf{u}_{f}, 𝐮s\mathbf{u}_{s}, and ppp_{p} are all modeled in the L2\mathrm{L}^{2} space, thus they do not have sufficient regularity for their traces on Γfp\Gamma_{fp} to be well defined. Second, the Lagrange multipliers are utilized to impose weakly the transmission conditions (2.8).

To impose the symmetry condition of 𝝈p{\boldsymbol{\sigma}}_{p} in a weak sense we introduce the rotation operator 𝝆p:=12(𝜼p𝜼pt){\boldsymbol{\rho}}_{p}:=\dfrac{1}{2}(\nabla{\boldsymbol{\eta}}_{p}-\nabla{\boldsymbol{\eta}}^{\mathrm{t}}_{p}). Notice that in the weak formulation we will use its time derivative, that is, the structure rotation velocity

𝜸p:=t𝝆p=12(𝐮s(𝐮s)t)p.{\boldsymbol{\gamma}}_{p}\,:=\,\partial_{t}{\boldsymbol{\rho}}_{p}=\frac{1}{2}\,\left(\nabla\mathbf{u}_{s}-(\nabla\mathbf{u}_{s})^{\mathrm{t}}\right)\in\mathbb{Q}_{p}.

From the definition of the elastic and poroelastic stress tensors 𝝈e,𝝈p{\boldsymbol{\sigma}}_{e},{\boldsymbol{\sigma}}_{p} (cf. (2.3)) and recalling that 𝝈e{\boldsymbol{\sigma}}_{e} is connected to the displacement 𝜼p{\boldsymbol{\eta}}_{p} through the relation A(𝝈e)=𝐞(𝜼p)A({\boldsymbol{\sigma}}_{e})={\mathbf{e}}({\boldsymbol{\eta}}_{p}), we deduce the identities

div(𝜼p)=tr(𝐞(𝜼p))=tr(A𝝈e)=trA(𝝈p+αppp𝐈)\mathrm{div}({\boldsymbol{\eta}}_{p})\,=\,\mathrm{tr}({\mathbf{e}}({\boldsymbol{\eta}}_{p}))\,=\,\mathrm{tr}(A{\boldsymbol{\sigma}}_{e})\,=\,\mathrm{tr}A({\boldsymbol{\sigma}}_{p}+\alpha_{p}\,p_{p}\,\mathbf{I}) (3.4)

and

tA(𝝈p+αppp𝐈)=𝐮s𝜸p.\partial_{t}\,A({\boldsymbol{\sigma}}_{p}+\alpha_{p}\,p_{p}\,\mathbf{I})\,=\,\nabla\,\mathbf{u}_{s}-{\boldsymbol{\gamma}}_{p}\,. (3.5)

Then, similarly to [35, 34, 8, 3], we test the first equation of (2.2), the second equation of (2.6), and (3.5) with arbitrary 𝝉f𝕏f,𝐯p𝐕p{\boldsymbol{\tau}}_{f}\in\mathbb{X}_{f},{\mathbf{v}}_{p}\in\mathbf{V}_{p}, and 𝝉p𝕏p{\boldsymbol{\tau}}_{p}\in\mathbb{X}_{p}, respectively, integrate by parts, utilize the fact that 𝝈fd:𝝉f=𝝈fd:𝝉fd{\boldsymbol{\sigma}}^{\mathrm{d}}_{f}:{\boldsymbol{\tau}}_{f}={\boldsymbol{\sigma}}^{\mathrm{d}}_{f}:{\boldsymbol{\tau}}^{\mathrm{d}}_{f}, test the third equation of (2.6) with wpWpw_{p}\in\mathrm{W}_{p} employing (3.4), impose the remaining equations weakly, and utilize the transmission conditions in (2.8) to obtain the variational problem,

12μ(𝝈fd,𝝉fd)Ωf+(𝐮f,𝐝𝐢𝐯(𝝉f))Ωf+(𝜸f,𝝉f)Ωf𝝉f𝐧f,𝝋Γfp=1n(qf𝐈,𝝉f)Ωf,\displaystyle\displaystyle\frac{1}{2\mu}\,({\boldsymbol{\sigma}}^{\mathrm{d}}_{f},{\boldsymbol{\tau}}^{\mathrm{d}}_{f})_{\Omega_{f}}+(\mathbf{u}_{f},\mathbf{div}({\boldsymbol{\tau}}_{f}))_{\Omega_{f}}+({\boldsymbol{\gamma}}_{f},{\boldsymbol{\tau}}_{f})_{\Omega_{f}}-\left<{\boldsymbol{\tau}}_{f}{\mathbf{n}}_{f},{\boldsymbol{\varphi}}\right>_{\Gamma_{fp}}=\displaystyle-\frac{1}{n}\,(q_{f}\,\mathbf{I},{\boldsymbol{\tau}}_{f})_{\Omega_{f}},
(𝐯f,𝐝𝐢𝐯(𝝈f))Ωf=(𝐟f,𝐯f)Ωf,\displaystyle\displaystyle-\,({\mathbf{v}}_{f},\mathbf{div}({\boldsymbol{\sigma}}_{f}))_{\Omega_{f}}=\displaystyle(\mathbf{f}_{f},{\mathbf{v}}_{f})_{\Omega_{f}},
(𝝈f,𝝌f)Ωf=0,\displaystyle\displaystyle-\,({\boldsymbol{\sigma}}_{f},{\boldsymbol{\chi}}_{f})_{\Omega_{f}}=0,
(tA(𝝈p+αppp𝐈),𝝉p)Ωp+(𝐮s,𝐝𝐢𝐯(𝝉p))Ωp+(𝜸p,𝝉p)Ωp𝝉p𝐧p,𝜽Γfp=0,\displaystyle\displaystyle(\partial_{t}\,A({\boldsymbol{\sigma}}_{p}+\alpha_{p}\,p_{p}\,\mathbf{I}),{\boldsymbol{\tau}}_{p})_{\Omega_{p}}+\,(\mathbf{u}_{s},\mathbf{div}({\boldsymbol{\tau}}_{p}))_{\Omega_{p}}+({\boldsymbol{\gamma}}_{p},{\boldsymbol{\tau}}_{p})_{\Omega_{p}}-\left<{\boldsymbol{\tau}}_{p}{\mathbf{n}}_{p},{\boldsymbol{\theta}}\right>_{\Gamma_{fp}}=0,
(𝐯s,𝐝𝐢𝐯(𝝈p))Ωp=(𝐟p,𝐯s)Ωp,\displaystyle\displaystyle-\,({\mathbf{v}}_{s},\mathbf{div}({\boldsymbol{\sigma}}_{p}))_{\Omega_{p}}=(\mathbf{f}_{p},{\mathbf{v}}_{s})_{\Omega_{p}},
(𝝈p,𝝌p)Ωp=0,\displaystyle\displaystyle-\,({\boldsymbol{\sigma}}_{p},{\boldsymbol{\chi}}_{p})_{\Omega_{p}}=0,
μ(𝐊1𝐮p,𝐯p)Ωp(pp,div(𝐯p))Ωp+𝐯p𝐧p,λΓfp=0,\displaystyle\displaystyle\mu\,(\mathbf{K}^{-1}\mathbf{u}_{p},{\mathbf{v}}_{p})_{\Omega_{p}}-(p_{p},\mathrm{div}({\mathbf{v}}_{p}))_{\Omega_{p}}+\left<{\mathbf{v}}_{p}\cdot{\mathbf{n}}_{p},\lambda\right>_{\Gamma_{fp}}=0, (3.6)
(s0tpp,wp)Ωp+αp(tA(𝝈p+αppp𝐈),wp𝐈)Ωp+(wp,div(𝐮p))Ωp=(qp,wp)Ωp,\displaystyle\displaystyle(s_{0}\,\partial_{t}\,p_{p},w_{p})_{\Omega_{p}}+\alpha_{p}\,(\partial_{t}\,A({\boldsymbol{\sigma}}_{p}+\alpha_{p}\,p_{p}\,\mathbf{I}),w_{p}\,\mathbf{I})_{\Omega_{p}}\displaystyle+\,(w_{p},\mathrm{div}(\mathbf{u}_{p}))_{\Omega_{p}}=(q_{p},w_{p})_{\Omega_{p}},
𝝋𝐧f+(𝜽+𝐮p)𝐧p,ξΓfp=0,\displaystyle\displaystyle-\,\left<{\boldsymbol{\varphi}}\cdot{\mathbf{n}}_{f}+\left({\boldsymbol{\theta}}+\mathbf{u}_{p}\right)\cdot{\mathbf{n}}_{p},\xi\right>_{\Gamma_{fp}}=0,
𝝈f𝐧f,𝝍Γfp+μα𝙱𝙹𝚂j=1n1𝐊j1(𝝋𝜽)𝐭f,j,𝝍𝐭f,jΓfp+𝝍𝐧f,λΓfp=0,\displaystyle\displaystyle\left<{\boldsymbol{\sigma}}_{f}{\mathbf{n}}_{f},{\boldsymbol{\psi}}\right>_{\Gamma_{fp}}+\mu\,\alpha_{\mathtt{BJS}}\,\sum_{j=1}^{n-1}\left<\sqrt{\mathbf{K}_{j}^{-1}}\left({\boldsymbol{\varphi}}-{\boldsymbol{\theta}}\right)\cdot{\mathbf{t}}_{f,j},{\boldsymbol{\psi}}\cdot{\mathbf{t}}_{f,j}\right>_{\Gamma_{fp}}\displaystyle+\,\left<{\boldsymbol{\psi}}\cdot{\mathbf{n}}_{f},\lambda\right>_{\Gamma_{fp}}=0,
𝝈p𝐧p,ϕΓfpμα𝙱𝙹𝚂j=1n1𝐊j1(𝝋𝜽)𝐭f,j,ϕ𝐭f,jΓfp+ϕ𝐧p,λΓfp=0.\displaystyle\displaystyle\left<{\boldsymbol{\sigma}}_{p}{\mathbf{n}}_{p},{\boldsymbol{\phi}}\right>_{\Gamma_{fp}}-\mu\,\alpha_{\mathtt{BJS}}\,\sum_{j=1}^{n-1}\left<\sqrt{\mathbf{K}_{j}^{-1}}\left({\boldsymbol{\varphi}}-{\boldsymbol{\theta}}\right)\cdot{\mathbf{t}}_{f,j},{\boldsymbol{\phi}}\cdot{\mathbf{t}}_{f,j}\right>_{\Gamma_{fp}}\displaystyle+\,\left<{\boldsymbol{\phi}}\cdot{\mathbf{n}}_{p},\lambda\right>_{\Gamma_{fp}}=0.

The last three equations impose weakly the transmission conditions (2.8). In particular, the equation with test function ξ\xi imposes the mass conservation, the equation with 𝝍{\boldsymbol{\psi}} imposes the last equation in (2.8), which is a combination of balance of normal stress and the BJS condition, while the equation with ϕ{\boldsymbol{\phi}} imposes the conservation of momentum. We emphasize that this is a new formulation. To our knowledge, this is the first fully dual-mixed formulation for the Stokes-Biot problem.

Remark 3.1

The time differentiated equation in the fourth row of (3.2) allows us to eliminate the displacement variable 𝛈p{\boldsymbol{\eta}}_{p} and obtain a formulation that uses only 𝐮s\mathbf{u}_{s}. As part of the analysis we will construct suitable initial data such that, by integrating in time the fourth equation of (3.2), we can recover the original equation

(A(𝝈p+αppp𝐈),𝝉p)Ωp+(𝜼p,𝐝𝐢𝐯(𝝉p))Ωp+(𝝆p,𝝉p)Ωp𝝉p𝐧p,𝝎Γfp=0,(A({\boldsymbol{\sigma}}_{p}+\alpha_{p}\,p_{p}\,\mathbf{I}),{\boldsymbol{\tau}}_{p})_{\Omega_{p}}+({\boldsymbol{\eta}}_{p},\mathbf{div}({\boldsymbol{\tau}}_{p}))_{\Omega_{p}}+({\boldsymbol{\rho}}_{p},{\boldsymbol{\tau}}_{p})_{\Omega_{p}}-\left<{\boldsymbol{\tau}}_{p}{\mathbf{n}}_{p},{\boldsymbol{\omega}}\right>_{\Gamma_{fp}}=0, (3.7)

where 𝛚:=𝛈p|Γfp{\boldsymbol{\omega}}:={\boldsymbol{\eta}}_{p}|_{\Gamma_{fp}}.

To simplify the notation, we set the following bilinear forms:

af(𝝈f,𝝉f):=12μ(𝝈fd,𝝉fd)Ωf,ap(𝐮p,𝐯p):=μ(𝐊1𝐮p,𝐯p)Ωp,ae(𝝈p,pp;𝝉p,wp):=(A(𝝈p+αppp𝐈),𝝉p+αpwp𝐈)Ωp,bf(𝝉f,𝐯f):=(𝐝𝐢𝐯(𝝉f),𝐯f)Ωf,bs(𝝉p,𝐯s):=(𝐝𝐢𝐯(𝝉p),𝐯s)Ωp,bp(𝐯p,wp):=(div(𝐯p),wp)Ωp,bΓ(𝐯p,ξ):=𝐯p𝐧p,ξΓfp,bsk,(𝝉,𝝌):=(𝝉,𝝌)Ω,b𝐧(𝝉,𝝍):=𝝉𝐧,𝝍Γfp, with {f,p},\begin{array}[]{c}\displaystyle a_{f}({\boldsymbol{\sigma}}_{f},{\boldsymbol{\tau}}_{f})\,:=\,\frac{1}{2\,\mu}\,({\boldsymbol{\sigma}}^{\mathrm{d}}_{f},{\boldsymbol{\tau}}^{\mathrm{d}}_{f})_{\Omega_{f}},\quad a_{p}(\mathbf{u}_{p},{\mathbf{v}}_{p})\,:=\,\mu\,(\mathbf{K}^{-1}\mathbf{u}_{p},{\mathbf{v}}_{p})_{\Omega_{p}},\\[8.61108pt] a_{e}({\boldsymbol{\sigma}}_{p},p_{p};{\boldsymbol{\tau}}_{p},w_{p})\,:=\,(A({\boldsymbol{\sigma}}_{p}+\alpha_{p}\,p_{p}\,\mathbf{I}),{\boldsymbol{\tau}}_{p}+\alpha_{p}\,w_{p}\,\mathbf{I})_{\Omega_{p}},\\[8.61108pt] \displaystyle b_{f}({\boldsymbol{\tau}}_{f},{\mathbf{v}}_{f})\,:=\,(\mathbf{div}({\boldsymbol{\tau}}_{f}),{\mathbf{v}}_{f})_{\Omega_{f}},\quad b_{s}({\boldsymbol{\tau}}_{p},{\mathbf{v}}_{s})\,:=\,(\mathbf{div}({\boldsymbol{\tau}}_{p}),{\mathbf{v}}_{s})_{\Omega_{p}},\\[8.61108pt] \displaystyle b_{p}({\mathbf{v}}_{p},w_{p})\,:=\,-\,(\mathrm{div}({\mathbf{v}}_{p}),w_{p})_{\Omega_{p}},\quad b_{\Gamma}({\mathbf{v}}_{p},\xi)\,:=\,\left<{\mathbf{v}}_{p}\cdot{\mathbf{n}}_{p},\xi\right>_{\Gamma_{fp}},\\[8.61108pt] \displaystyle b_{\mathrm{sk},\star}({\boldsymbol{\tau}}_{\star},{\boldsymbol{\chi}}_{\star})\,:=\,({\boldsymbol{\tau}}_{\star},{\boldsymbol{\chi}}_{\star})_{\Omega_{\star}},\quad b_{{\mathbf{n}}_{\star}}({\boldsymbol{\tau}}_{\star},{\boldsymbol{\psi}})\,:=\,-\,\left<{\boldsymbol{\tau}}_{\star}{\mathbf{n}}_{\star},{\boldsymbol{\psi}}\right>_{\Gamma_{fp}},\mbox{ with }\star\in\big{\{}f,p\big{\}},\end{array} (3.8)

and

c𝙱𝙹𝚂(𝝋,𝜽;𝝍,ϕ):=μα𝙱𝙹𝚂j=1n1𝐊j1(𝝋𝜽)𝐭f,j,(𝝍ϕ)𝐭f,jΓfp,cΓ(𝝍,ϕ;ξ):=𝝍𝐧f,ξΓfp+ϕ𝐧p,ξΓfp.\begin{array}[]{c}\displaystyle c_{\mathtt{BJS}}({\boldsymbol{\varphi}},{\boldsymbol{\theta}};{\boldsymbol{\psi}},{\boldsymbol{\phi}})\,:=\,\mu\,\alpha_{\mathtt{BJS}}\,\sum^{n-1}_{j=1}\left<\sqrt{\mathbf{K}_{j}^{-1}}({\boldsymbol{\varphi}}-{\boldsymbol{\theta}})\cdot{\mathbf{t}}_{f,j},({\boldsymbol{\psi}}-{\boldsymbol{\phi}})\cdot{\mathbf{t}}_{f,j}\right>_{\Gamma_{fp}},\\[12.91663pt] \displaystyle c_{\Gamma}({\boldsymbol{\psi}},{\boldsymbol{\phi}};\xi)\,:=\,\left<{\boldsymbol{\psi}}\cdot{\mathbf{n}}_{f},\xi\right>_{\Gamma_{fp}}+\left<{\boldsymbol{\phi}}\cdot{\mathbf{n}}_{p},\xi\right>_{\Gamma_{fp}}.\end{array} (3.9)

There are many different ways of ordering the variables in (3.2). For the sake of the subsequent analysis, we proceed as in [34] and [3], and adopt one leading to an evolution problem in a doubly-mixed form. Hence, the variational formulation for the system (3.2) reads: Given

𝐟f:[0,T]𝐕f,𝐟p:[0,T]𝐕s,qf:[0,T]𝕏f,qp:[0,T]Wp,pp,0Wp,𝝈p,0𝕏p,\mathbf{f}_{f}:[0,T]\to\mathbf{V}_{f}^{\prime},\quad\mathbf{f}_{p}:[0,T]\to\mathbf{V}_{s}^{\prime},\quad q_{f}:[0,T]\to\mathbb{X}^{\prime}_{f},\quad q_{p}:[0,T]\to\mathrm{W}_{p}^{\prime},\quad p_{p,0}\in\mathrm{W}_{p},\quad{\boldsymbol{\sigma}}_{p,0}\in\mathbb{X}_{p},

find (𝝈f,𝐮p,𝝈p,pp,𝝋,𝜽,λ,𝐮f,𝐮s,𝜸f,𝜸p):[0,T]𝕏f×𝐕p×𝕏p×Wp×𝚲f×𝚲s×Λp×𝐕f×𝐕s×f×p({\boldsymbol{\sigma}}_{f},\mathbf{u}_{p},{\boldsymbol{\sigma}}_{p},p_{p},{\boldsymbol{\varphi}},{\boldsymbol{\theta}},\lambda,\mathbf{u}_{f},\mathbf{u}_{s},{\boldsymbol{\gamma}}_{f},{\boldsymbol{\gamma}}_{p}):[0,T]\to\mathbb{X}_{f}\times\mathbf{V}_{p}\times\mathbb{X}_{p}\times\mathrm{W}_{p}\times{\boldsymbol{\Lambda}}_{f}\times{\boldsymbol{\Lambda}}_{s}\times\Lambda_{p}\times\mathbf{V}_{f}\times\mathbf{V}_{s}\times\mathbb{Q}_{f}\times\mathbb{Q}_{p}, such that pp(0)=pp,0p_{p}(0)=p_{p,0}, 𝝈p(0)=𝝈p,0{\boldsymbol{\sigma}}_{p}(0)={\boldsymbol{\sigma}}_{p,0} and for a.e. t(0,T)t\in(0,T) :

af(𝝈f,𝝉f)+ap(𝐮p,𝐯p)+ae(t𝝈p,tpp;𝝉p,wp)+(s0tpp,wp)Ωp\displaystyle\displaystyle a_{f}({\boldsymbol{\sigma}}_{f},{\boldsymbol{\tau}}_{f})+a_{p}(\mathbf{u}_{p},{\mathbf{v}}_{p})+a_{e}(\partial_{t}\,{\boldsymbol{\sigma}}_{p},\partial_{t}\,p_{p};{\boldsymbol{\tau}}_{p},w_{p})+(s_{0}\,\partial_{t}\,p_{p},w_{p})_{\Omega_{p}}
+bp(𝐯p,pp)bp(𝐮p,wp)+b𝐧f(𝝉f,𝝋)+b𝐧p(𝝉p,𝜽)+bΓ(𝐯p,λ)\displaystyle\displaystyle\quad+\,\,b_{p}({\mathbf{v}}_{p},p_{p})-b_{p}(\mathbf{u}_{p},w_{p})+b_{{\mathbf{n}}_{f}}({\boldsymbol{\tau}}_{f},{\boldsymbol{\varphi}})+b_{{\mathbf{n}}_{p}}({\boldsymbol{\tau}}_{p},{\boldsymbol{\theta}})+b_{\Gamma}({\mathbf{v}}_{p},\lambda)
+bf(𝝉f,𝐮f)+bs(𝝉p,𝐮s)+bsk,f(𝝉f,𝜸f)+bsk,p(𝝉p,𝜸p)=1n(qf𝐈,𝝉f)Ωf+(qp,wp)Ωp,\displaystyle\displaystyle\quad+\,\,b_{f}({\boldsymbol{\tau}}_{f},\mathbf{u}_{f})+b_{s}({\boldsymbol{\tau}}_{p},\mathbf{u}_{s})+b_{\mathrm{sk},f}({\boldsymbol{\tau}}_{f},{\boldsymbol{\gamma}}_{f})+b_{\mathrm{sk},p}({\boldsymbol{\tau}}_{p},{\boldsymbol{\gamma}}_{p})\,=\,-\,\frac{1}{n}\,(q_{f}\,\mathbf{I},{\boldsymbol{\tau}}_{f})_{\Omega_{f}}+(q_{p},w_{p})_{\Omega_{p}}, (3.10)
b𝐧f(𝝈f,𝝍)b𝐧p(𝝈p,ϕ)bΓ(𝐮p,ξ)+c𝙱𝙹𝚂(𝝋,𝜽;𝝍,ϕ)+cΓ(𝝍,ϕ;λ)cΓ(𝝋,𝜽;ξ)=0,\displaystyle\displaystyle-\,b_{{\mathbf{n}}_{f}}({\boldsymbol{\sigma}}_{f},{\boldsymbol{\psi}})-b_{{\mathbf{n}}_{p}}({\boldsymbol{\sigma}}_{p},{\boldsymbol{\phi}})-b_{\Gamma}(\mathbf{u}_{p},\xi)+c_{\mathtt{BJS}}({\boldsymbol{\varphi}},{\boldsymbol{\theta}};{\boldsymbol{\psi}},{\boldsymbol{\phi}})+c_{\Gamma}({\boldsymbol{\psi}},{\boldsymbol{\phi}};\lambda)-c_{\Gamma}({\boldsymbol{\varphi}},{\boldsymbol{\theta}};\xi)=0,
bf(𝝈f,𝐯f)bs(𝝈p,𝐯s)bsk,f(𝝈f,𝝌f)bsk,p(𝝈p,𝝌p)=(𝐟f,𝐯f)Ωf+(𝐟p,𝐯s)Ωp,\displaystyle\displaystyle-\,b_{f}({\boldsymbol{\sigma}}_{f},{\mathbf{v}}_{f})-b_{s}({\boldsymbol{\sigma}}_{p},{\mathbf{v}}_{s})-b_{\mathrm{sk},f}({\boldsymbol{\sigma}}_{f},{\boldsymbol{\chi}}_{f})-b_{\mathrm{sk},p}({\boldsymbol{\sigma}}_{p},{\boldsymbol{\chi}}_{p})\,=\,(\mathbf{f}_{f},{\mathbf{v}}_{f})_{\Omega_{f}}+(\mathbf{f}_{p},{\mathbf{v}}_{s})_{\Omega_{p}},

𝝉f𝕏f,𝐯p𝐕p,𝝉p𝕏p,wpWp,𝝍𝚲f,ϕ𝚲s,ξΛp,𝐯f𝐕f,𝐯s𝐕s,𝝌ff,𝝌pp\forall\ {\boldsymbol{\tau}}_{f}\in\mathbb{X}_{f},{\mathbf{v}}_{p}\in\mathbf{V}_{p},{\boldsymbol{\tau}}_{p}\in\mathbb{X}_{p},w_{p}\in\mathrm{W}_{p},{\boldsymbol{\psi}}\in{\boldsymbol{\Lambda}}_{f},{\boldsymbol{\phi}}\in{\boldsymbol{\Lambda}}_{s},\xi\in\Lambda_{p},{\mathbf{v}}_{f}\in\mathbf{V}_{f},{\mathbf{v}}_{s}\in\mathbf{V}_{s},{\boldsymbol{\chi}}_{f}\in\mathbb{Q}_{f},{\boldsymbol{\chi}}_{p}\in\mathbb{Q}_{p}.

Now, we group the spaces and test functions as follows:

𝐗:=𝕏f×𝐕p×𝕏p×Wp,𝐘:=𝚲f×𝚲s×Λp,𝐙:=𝐕f×𝐕s×f×p,𝝈¯:=(𝝈f,𝐮p,𝝈p,pp)𝐗,𝝋¯:=(𝝋,𝜽,λ)𝐘,𝐮¯:=(𝐮f,𝐮s,𝜸f,𝜸p)𝐙,𝝉¯:=(𝝉f,𝐯p,𝝉p,wp)𝐗,𝝍¯:=(𝝍,ϕ,ξ)𝐘,𝐯¯:=(𝐯f,𝐯s,𝝌f,𝝌p)𝐙,\begin{array}[]{c}\displaystyle\mathbf{X}\,:=\,\mathbb{X}_{f}\times\mathbf{V}_{p}\times\mathbb{X}_{p}\times\mathrm{W}_{p},\quad\mathbf{Y}\,:=\,{\boldsymbol{\Lambda}}_{f}\times{\boldsymbol{\Lambda}}_{s}\times\Lambda_{p},\quad\mathbf{Z}\,:=\,\mathbf{V}_{f}\times\mathbf{V}_{s}\times\mathbb{Q}_{f}\times\mathbb{Q}_{p},\\[8.61108pt] \displaystyle\underline{{\boldsymbol{\sigma}}}\,:=\,({\boldsymbol{\sigma}}_{f},\mathbf{u}_{p},{\boldsymbol{\sigma}}_{p},p_{p})\in\mathbf{X},\quad\underline{\boldsymbol{\varphi}}\,:=\,({\boldsymbol{\varphi}},{\boldsymbol{\theta}},\lambda)\in\mathbf{Y},\quad\underline{\mathbf{u}}\,:=\,(\mathbf{u}_{f},\mathbf{u}_{s},{\boldsymbol{\gamma}}_{f},{\boldsymbol{\gamma}}_{p})\in\mathbf{Z},\\[4.30554pt] \displaystyle\underline{{\boldsymbol{\tau}}}\,:=\,({\boldsymbol{\tau}}_{f},{\mathbf{v}}_{p},{\boldsymbol{\tau}}_{p},w_{p})\in\mathbf{X},\quad\underline{\boldsymbol{\psi}}\,:=\,({\boldsymbol{\psi}},{\boldsymbol{\phi}},\xi)\in\mathbf{Y},\quad\underline{{\mathbf{v}}}\,:=\,({\mathbf{v}}_{f},{\mathbf{v}}_{s},{\boldsymbol{\chi}}_{f},{\boldsymbol{\chi}}_{p})\in\mathbf{Z},\end{array}

where the spaces 𝐗,𝐘\mathbf{X},\mathbf{Y} and 𝐙\mathbf{Z} are endowed with the norms, respectively,

𝝉¯𝐗:=𝝉f𝕏f+𝐯p𝐕p+𝝉p𝕏p+wpWp,𝝍¯𝐘:=𝝍𝚲f+ϕ𝚲s+ξΛp,𝐯¯𝐙:=𝐯f𝐕f+𝐯s𝐕s+𝝌ff+𝝌pp.\begin{array}[]{l}\|\underline{{\boldsymbol{\tau}}}\|_{\mathbf{X}}\,:=\,\|{\boldsymbol{\tau}}_{f}\|_{\mathbb{X}_{f}}+\|{\mathbf{v}}_{p}\|_{\mathbf{V}_{p}}+\|{\boldsymbol{\tau}}_{p}\|_{\mathbb{X}_{p}}+\|w_{p}\|_{\mathrm{W}_{p}},\quad\|\underline{\boldsymbol{\psi}}\|_{\mathbf{Y}}\,:=\,\|{\boldsymbol{\psi}}\|_{{\boldsymbol{\Lambda}}_{f}}+\|{\boldsymbol{\phi}}\|_{{\boldsymbol{\Lambda}}_{s}}+\|\xi\|_{\Lambda_{p}},\\[8.61108pt] \|\underline{{\mathbf{v}}}\|_{\mathbf{Z}}\,:=\,\|{\mathbf{v}}_{f}\|_{\mathbf{V}_{f}}+\|{\mathbf{v}}_{s}\|_{\mathbf{V}_{s}}+\|{\boldsymbol{\chi}}_{f}\|_{\mathbb{Q}_{f}}+\|{\boldsymbol{\chi}}_{p}\|_{\mathbb{Q}_{p}}.\end{array}

Hence, we can write (3.2) in an operator notation as a degenerate evolution problem in a doubly-mixed form:

t(𝝈¯(t))+𝒜(𝝈¯(t))+1(𝝋¯(t))+(𝐮¯(t))=𝐅(t) in 𝐗,1(𝝈¯(t))+𝒞(𝝋¯(t))=𝟎 in 𝐘,(𝝈¯(t))=𝐆(t) in 𝐙,\begin{array}[]{lllll}\displaystyle\frac{\partial}{\partial t}\,\mathcal{E}(\underline{{\boldsymbol{\sigma}}}(t))+\mathcal{A}(\underline{{\boldsymbol{\sigma}}}(t))+\mathcal{B}^{\prime}_{1}(\underline{\boldsymbol{\varphi}}(t))+\mathcal{B}^{\prime}(\underline{\mathbf{u}}(t))&=&\mathbf{F}(t)&\mbox{ in }&\mathbf{X}^{\prime},\\[6.45831pt] \displaystyle-\,\mathcal{B}_{1}(\underline{{\boldsymbol{\sigma}}}(t))+\mathcal{C}(\underline{\boldsymbol{\varphi}}(t))&=&{\mathbf{0}}&\mbox{ in }&\mathbf{Y}^{\prime},\\[6.45831pt] \displaystyle-\,\mathcal{B}\,(\underline{{\boldsymbol{\sigma}}}(t))&=&\mathbf{G}(t)&\mbox{ in }&\mathbf{Z}^{\prime},\end{array} (3.11)

where, according to (3.8)–(3.9), the operators 𝒜:𝐗𝐗,1:𝐗𝐘,𝒞:𝐘𝐘\mathcal{A}:\mathbf{X}\to\mathbf{X}^{\prime},\mathcal{B}_{1}:\mathbf{X}\to\mathbf{Y}^{\prime},\mathcal{C}:\mathbf{Y}\to\mathbf{Y}^{\prime}, and :𝐗𝐙\mathcal{B}:\mathbf{X}\to\mathbf{Z}^{\prime}, are defined by

𝒜(𝝈¯)(𝝉¯):=af(𝝈f,𝝉f)+ap(𝐮p,𝐯p)+bp(𝐯p,pp)bp(𝐮p,wp),1(𝝉¯)(𝝍¯):=b𝐧f(𝝉f,𝝍)+b𝐧p(𝝉p,ϕ)+bΓ(𝐯p,ξ),𝒞(𝝋¯)(𝝍¯):=c𝙱𝙹𝚂(𝝋,𝜽;𝝍,ϕ)+cΓ(𝝍,ϕ;λ)cΓ(𝝋,𝜽;ξ),\begin{array}[]{l}\mathcal{A}(\underline{{\boldsymbol{\sigma}}})(\underline{{\boldsymbol{\tau}}})\,:=\,a_{f}({\boldsymbol{\sigma}}_{f},{\boldsymbol{\tau}}_{f})+a_{p}(\mathbf{u}_{p},{\mathbf{v}}_{p})+b_{p}({\mathbf{v}}_{p},p_{p})-b_{p}(\mathbf{u}_{p},w_{p}),\\[8.61108pt] \mathcal{B}_{1}(\underline{{\boldsymbol{\tau}}})(\underline{\boldsymbol{\psi}})\,:=\,b_{{\mathbf{n}}_{f}}({\boldsymbol{\tau}}_{f},{\boldsymbol{\psi}})+b_{{\mathbf{n}}_{p}}({\boldsymbol{\tau}}_{p},{\boldsymbol{\phi}})+b_{\Gamma}({\mathbf{v}}_{p},\xi),\\[8.61108pt] \mathcal{C}(\underline{\boldsymbol{\varphi}})(\underline{\boldsymbol{\psi}})\,:=\,c_{\mathtt{BJS}}({\boldsymbol{\varphi}},{\boldsymbol{\theta}};{\boldsymbol{\psi}},{\boldsymbol{\phi}})+c_{\Gamma}({\boldsymbol{\psi}},{\boldsymbol{\phi}};\lambda)-c_{\Gamma}({\boldsymbol{\varphi}},{\boldsymbol{\theta}};\xi),\end{array} (3.12)

and

(𝝉¯)(𝐯¯):=bf(𝝉f,𝐯f)+bs(𝝉p,𝐯s)+bsk,f(𝝉f,𝝌f)+bsk,p(𝝉p,𝝌p),\mathcal{B}(\underline{{\boldsymbol{\tau}}})(\underline{{\mathbf{v}}})\,:=\,b_{f}({\boldsymbol{\tau}}_{f},{\mathbf{v}}_{f})+b_{s}({\boldsymbol{\tau}}_{p},{\mathbf{v}}_{s})+b_{{\mathrm{sk},f}}({\boldsymbol{\tau}}_{f},{\boldsymbol{\chi}}_{f})+b_{{\mathrm{sk},p}}({\boldsymbol{\tau}}_{p},{\boldsymbol{\chi}}_{p}), (3.13)

whereas the operator :𝐗𝐗\mathcal{E}:\mathbf{X}\to\mathbf{X}^{\prime} is given by

(𝝈¯)(𝝉¯):=ae(𝝈p,pp;𝝉p,wp)+(s0pp,wp)Ωp,\mathcal{E}(\underline{{\boldsymbol{\sigma}}})(\underline{{\boldsymbol{\tau}}})\,:=\,a_{e}({\boldsymbol{\sigma}}_{p},p_{p};{\boldsymbol{\tau}}_{p},w_{p})+(s_{0}\,p_{p},w_{p})_{\Omega_{p}}, (3.14)

and the functionals 𝐅𝐗\mathbf{F}\in\mathbf{X}^{\prime}, 𝐆𝐙\mathbf{G}\in\mathbf{Z}^{\prime} are defined as

𝐅(𝝉¯):=1n(qf𝐈,𝝉f)Ωf+(qp,wp)Ωpand𝐆(𝐯¯):=(𝐟f,𝐯f)Ωf+(𝐟p,𝐯s)Ωp.\mathbf{F}(\underline{{\boldsymbol{\tau}}})\,:=\,-\,\frac{1}{n}\,(q_{f}\,\mathbf{I},{\boldsymbol{\tau}}_{f})_{\Omega_{f}}+(q_{p},w_{p})_{\Omega_{p}}{\quad\hbox{and}\quad}\mathbf{G}(\underline{{\mathbf{v}}})\,:=\,(\mathbf{f}_{f},{\mathbf{v}}_{f})_{\Omega_{f}}+(\mathbf{f}_{p},{\mathbf{v}}_{s})_{\Omega_{p}}. (3.15)

4 Well-posedness of the model

In this section we establish the solvability of (3.11) (equivalently (3.2)). To that end we first collect some previous results that will be used in the forthcoming analysis.

4.1 Preliminaries

We begin by recalling the following key result given in [52, Theorem IV.6.1(b)] that will be used to establish the existence of a solution to (3.11).

Theorem 4.1

Let the linear, symmetric and monotone operator 𝒩\mathcal{N} be given for the real vector space EE to its algebraic dual EE^{*}, and let EbE^{\prime}_{b} be the Hilbert space which is the dual of EE with the seminorm

|x|b=(𝒩x(x))1/2xE.|x|_{b}=\big{(}\mathcal{N}\,x(x)\big{)}^{1/2}\quad x\in E.

Let E×Eb\mathcal{M}\subset E\times E^{\prime}_{b} be a relation with domain 𝒟={xE:(x)}\mathcal{D}=\Big{\{}x\in E\,:\,\mathcal{M}(x)\neq\emptyset\Big{\}}.

Assume \mathcal{M} is monotone and Rg(𝒩+)=EbRg(\mathcal{N}+\mathcal{M})=E^{\prime}_{b}. Then, for each u0𝒟u_{0}\in\mathcal{D} and for each fW1,1(0,T;Eb)f\in\mathrm{W}^{1,1}(0,T;E^{\prime}_{b}), there is a solution uu of

ddt(𝒩u(t))+(u(t))f(t)a.e. 0<t<T,\frac{d}{dt}\big{(}\mathcal{N}\,u(t)\big{)}+\mathcal{M}\big{(}u(t)\big{)}\ni f(t)\quad a.e.\ 0<t<T, (4.1)

with

𝒩uW1,(0,T;Eb),u(t)𝒟, for all  0tT,and𝒩u(0)=𝒩u0.\mathcal{N}\,u\in\mathrm{W}^{1,\infty}(0,T;E^{\prime}_{b}),\quad u(t)\in\mathcal{D},\quad\mbox{ for all }\,0\leq t\leq T,{\quad\hbox{and}\quad}\mathcal{N}\,u(0)=\mathcal{N}\,u_{0}.

In addition, in order to show the range condition of Theorem 4.1 in our context, we will require the following theorem whose proof can be derived similarly to [33, Theorem 2.2] (see also [1, Theorem 3.13] for a generalized nonlinear Banach version).

Theorem 4.2

Let X,YX,Y, and ZZ be Hilbert spaces, and let X,Y,ZX^{\prime},Y^{\prime},Z^{\prime} be their respective duals. Let A:XXA:X\to X^{\prime}, S:YYS:Y\to Y^{\prime}, B1:XYB_{1}:X\to Y^{\prime}, and B:XZB:X\to Z^{\prime} be linear bounded operators. We also let B1:YXB^{\prime}_{1}:Y\to X^{\prime} and B:ZXB^{\prime}:Z\to X^{\prime} be the corresponding adjoints. Finally, we let VV be the kernel of BB, that is

V:={𝝉X:B(𝝉)(𝐯)=0𝐯Z}.V\,:=\,\Big{\{}{\boldsymbol{\tau}}\in X:\quad B({\boldsymbol{\tau}})({\mathbf{v}})=0\quad\forall\,{\mathbf{v}}\in Z\Big{\}}.

Assume that

  1. (i)

    A|V:VVA|_{V}:V\to V^{\prime} is elliptic, that is, there exists a constant α>0\alpha>0 such that

    A(𝝉)(𝝉)α𝝉X2𝝉V.A({\boldsymbol{\tau}})({\boldsymbol{\tau}})\,\geq\,\alpha\,\|{\boldsymbol{\tau}}\|^{2}_{X}\quad\forall\,{\boldsymbol{\tau}}\in V.
  2. (ii)

    SS is positive semi-definite on YY, that is,

    S(𝝍)(𝝍) 0𝝍Y.S({\boldsymbol{\psi}})({\boldsymbol{\psi}})\,\geq\,0\quad\forall\,{\boldsymbol{\psi}}\in Y.
  3. (iii)

    B1B_{1} satisfies an inf-sup condition on V×YV\times Y, that is, there exists β1>0\beta_{1}>0 such that

    sup𝟎𝝉VB1(𝝉)(𝝍)𝝉Xβ1𝝍Y𝝍Y.\sup_{{\mathbf{0}}\neq{\boldsymbol{\tau}}\in V}\frac{B_{1}({\boldsymbol{\tau}})({\boldsymbol{\psi}})}{\|{\boldsymbol{\tau}}\|_{X}}\,\geq\,\beta_{1}\,\|{\boldsymbol{\psi}}\|_{Y}\quad\forall\,{\boldsymbol{\psi}}\in Y.
  4. (iv)

    BB satisfies an inf-sup condition on X×ZX\times Z, that is, there exists β>0\beta>0 such that

    sup𝟎𝝉XB(𝝉)(𝐯)𝝉Xβ𝐯Z𝐯Z.\sup_{{\mathbf{0}}\neq{\boldsymbol{\tau}}\in X}\frac{B({\boldsymbol{\tau}})({\mathbf{v}})}{\|{\boldsymbol{\tau}}\|_{X}}\,\geq\,\beta\,\|{\mathbf{v}}\|_{Z}\quad\forall\,{\mathbf{v}}\in Z.

Then, for each (F1,F2,G)X×Y×Z(F_{1},F_{2},G)\in X^{\prime}\times Y^{\prime}\times Z^{\prime} there exists a unique (𝛔,𝛗,𝐮)X×Y×Z({\boldsymbol{\sigma}},{\boldsymbol{\varphi}},\mathbf{u})\in X\times Y\times Z, such that

A(𝝈)(𝝉)+B1(𝝋)(𝝉)+B(𝐮)(𝝉)=F1(𝝉)𝝉X,B1(𝝈)(𝝍)S(𝝋)(𝝍)=F2(𝝍)𝝍Y,B(𝝈)(𝐯)=G(𝐯)𝐯Z.\begin{array}[]{llll}A({\boldsymbol{\sigma}})({\boldsymbol{\tau}})+B^{\prime}_{1}({\boldsymbol{\varphi}})({\boldsymbol{\tau}})+B^{\prime}(\mathbf{u})({\boldsymbol{\tau}})&=&F_{1}({\boldsymbol{\tau}})&\forall\,{\boldsymbol{\tau}}\in X,\\[4.30554pt] B_{1}({\boldsymbol{\sigma}})({\boldsymbol{\psi}})-S({\boldsymbol{\varphi}})({\boldsymbol{\psi}})&=&F_{2}({\boldsymbol{\psi}})&\forall\,{\boldsymbol{\psi}}\in Y,\\[4.30554pt] B({\boldsymbol{\sigma}})({\mathbf{v}})&=&G({\mathbf{v}})&\forall\,{\mathbf{v}}\in Z.\end{array}

Moreover, there exists C>0C>0, depending only on α,β1,β,A,S\alpha,\beta_{1},\beta,\|A\|,\|S\|, and B1\|B_{1}\| such that

(𝝈,𝝋,𝐮)X×Y×ZC{F1X+F2Y+GZ}.\|({\boldsymbol{\sigma}},{\boldsymbol{\varphi}},\mathbf{u})\|_{X\times Y\times Z}\,\leq\,C\,\Big{\{}\|F_{1}\|_{X^{\prime}}+\|F_{2}\|_{Y^{\prime}}+\|G\|_{Z^{\prime}}\Big{\}}.

At this point we recall, for later use, that there exist positive constants c1(Ωf)c_{1}(\Omega_{f}) and c2(Ωf)c_{2}(\Omega_{f}), such that (see, [18, Proposition IV.3.1] and [32, Lemma 2.5], respectively)

c1(Ωf)𝝉f,0𝕃2(Ωf)2𝝉fd𝕃2(Ωf)2+𝐝𝐢𝐯(𝝉f)𝐋2(Ωf)2𝝉f=𝝉f,0+𝐈(𝐝𝐢𝐯;Ωf)c_{1}(\Omega_{f})\,\|{\boldsymbol{\tau}}_{f,0}\|^{2}_{\mathbb{L}^{2}(\Omega_{f})}\,\leq\,\|{\boldsymbol{\tau}}^{\mathrm{d}}_{f}\|^{2}_{\mathbb{L}^{2}(\Omega_{f})}+\|\mathbf{div}({\boldsymbol{\tau}}_{f})\|^{2}_{\mathbf{L}^{2}(\Omega_{f})}\quad\forall\,{\boldsymbol{\tau}}_{f}={\boldsymbol{\tau}}_{f,0}+\ell\,\mathbf{I}\in\mathbb{H}(\mathbf{div};\Omega_{f}) (4.2)

and

c2(Ωf)𝝉f𝕏f2𝝉f,0𝕏f2𝝉f=𝝉f,0+𝐈𝕏f,c_{2}(\Omega_{f})\,\|{\boldsymbol{\tau}}_{f}\|^{2}_{\mathbb{X}_{f}}\,\leq\,\|{\boldsymbol{\tau}}_{f,0}\|^{2}_{\mathbb{X}_{f}}\quad\forall\,{\boldsymbol{\tau}}_{f}={\boldsymbol{\tau}}_{f,0}+\ell\,\mathbf{I}\in\mathbb{X}_{f}, (4.3)

where 𝝉f,00(𝐝𝐢𝐯;Ωf):={𝝉f(𝐝𝐢𝐯;Ωf):(tr(𝝉f),1)Ωf=0}{\boldsymbol{\tau}}_{f,0}\in\mathbb{H}_{0}(\mathbf{div};\Omega_{f}):=\Big{\{}{\boldsymbol{\tau}}_{f}\in\mathbb{H}(\mathbf{div};\Omega_{f}):\quad(\mathrm{tr}({\boldsymbol{\tau}}_{f}),1)_{\Omega_{f}}=0\Big{\}} and R\ell\in\mathrm{R}. We emphasize that (4.3) holds since each 𝝉f𝕏f{\boldsymbol{\tau}}_{f}\in\mathbb{X}_{f} satisfies the boundary condition 𝝉f𝐧f=𝟎\displaystyle{\boldsymbol{\tau}}_{f}{\mathbf{n}}_{f}={\mathbf{0}} on ΓfN\Gamma^{\mathrm{N}}_{f} with |ΓfN|>0|\Gamma^{\mathrm{N}}_{f}|>0.

4.2 The resolvent system

Now, we proceed to analyze the solvability of (3.11) (equivalently (3.2)). First, recalling the definition of the operators 𝒜,1,,𝒞\mathcal{A},\mathcal{B}_{1},\mathcal{B},\mathcal{C}, and \mathcal{E} (cf. (3.12), (3.13) and (3.14)), we note that problem (3.11) can be written in the form of (4.1) with

E=𝐗×𝐘×𝐙,u=(𝝈¯𝝋¯𝐮¯),𝒩=(𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎),=(𝒜11𝒞𝟎𝟎𝟎),f=(𝐅𝟎𝐆).E=\mathbf{X}\times\mathbf{Y}\times\mathbf{Z},\quad u=\left(\begin{array}[]{lll}\underline{{\boldsymbol{\sigma}}}\\ \underline{\boldsymbol{\varphi}}\\ \underline{\mathbf{u}}\end{array}\right),\quad\mathcal{N}=\left(\begin{array}[]{lll}\mathcal{E}&{\mathbf{0}}&{\mathbf{0}}\\ {\mathbf{0}}&{\mathbf{0}}&{\mathbf{0}}\\ {\mathbf{0}}&{\mathbf{0}}&{\mathbf{0}}\end{array}\right),\quad\mathcal{M}=\left(\begin{array}[]{lll}\mathcal{A}&\mathcal{B}^{\prime}_{1}&\mathcal{B}^{\prime}\\ -\mathcal{B}_{1}&\mathcal{C}&{\mathbf{0}}\\ -\mathcal{B}&{\mathbf{0}}&{\mathbf{0}}\end{array}\right),\quad f=\left(\begin{array}[]{lll}\mathbf{F}\\ {\mathbf{0}}\\ \mathbf{G}\end{array}\right). (4.4)

In addition, the norm induced by the operator \mathcal{E} is |𝝉¯|2:=s0wpL2(Ωp)2+A1/2(𝝉p+αpwp𝐈)𝕃2(Ωp)2|\underline{{\boldsymbol{\tau}}}|^{2}_{\mathcal{E}}:=s_{0}\,\|w_{p}\|^{2}_{\mathrm{L}^{2}(\Omega_{p})}+\|A^{1/2}({\boldsymbol{\tau}}_{p}+\alpha_{p}\,w_{p}\,\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}, which is equivalent to 𝝉p𝕃2(Ωp)2+wpL2(Ωp)2\|{\boldsymbol{\tau}}_{p}\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+\|w_{p}\|^{2}_{\mathrm{L}^{2}(\Omega_{p})} since s0>0s_{0}>0. We denote by 𝕏p,2\mathbb{X}_{p,2} and Wp,2\mathrm{W}_{p,2} the closures of the spaces 𝕏p\mathbb{X}_{p} and Wp\mathrm{W}_{p}, respectively, with respect to the norms 𝝉p𝕏p,2:=𝝉p𝕃2(Ωp)\|{\boldsymbol{\tau}}_{p}\|_{\mathbb{X}_{p,2}}:=\|{\boldsymbol{\tau}}_{p}\|_{\mathbb{L}^{2}(\Omega_{p})} and wpWp,2:=wpL2(Ωp)\|w_{p}\|_{\mathrm{W}_{p,2}}:=\|w_{p}\|_{\mathrm{L}^{2}(\Omega_{p})}. Note that 𝕏p,2=𝕃2(Ωp)\mathbb{X}^{\prime}_{p,2}=\mathbb{L}^{2}(\Omega_{p}) and Wp,2=Wp\mathrm{W}^{\prime}_{p,2}=\mathrm{W}^{\prime}_{p}. Next, denoting 𝐗2,0:=𝟎×𝟎×𝕏p,2×Wp,2\mathbf{X}^{\prime}_{2,0}:={\mathbf{0}}\times{\mathbf{0}}\times\mathbb{X}^{\prime}_{p,2}\times\mathrm{W}^{\prime}_{p,2}, 𝐘2,0:=𝟎×𝟎×𝟎\mathbf{Y}^{\prime}_{2,0}:={\mathbf{0}}\times{\mathbf{0}}\times{\mathbf{0}}, and 𝐙2,0:=𝟎×𝟎×𝟎×𝟎\mathbf{Z}^{\prime}_{2,0}:={\mathbf{0}}\times{\mathbf{0}}\times{\mathbf{0}}\times{\mathbf{0}}, the Hilbert space EbE^{\prime}_{b} and domain 𝒟\mathcal{D} in Theorem 4.1 for our context are

Eb:=𝐗2,0×𝐘2,0×𝐙2,0,𝒟:={(𝝈¯,𝝋¯,𝐮¯)𝐗×𝐘×𝐙:(𝝈¯,𝝋¯,𝐮¯)Eb}.E^{\prime}_{b}:=\mathbf{X}^{\prime}_{2,0}\times\mathbf{Y}^{\prime}_{2,0}\times\mathbf{Z}^{\prime}_{2,0},\quad\mathcal{D}:=\Big{\{}(\underline{{\boldsymbol{\sigma}}},\underline{\boldsymbol{\varphi}},\underline{\mathbf{u}})\in\mathbf{X}\times\mathbf{Y}\times\mathbf{Z}:\quad\mathcal{M}(\underline{{\boldsymbol{\sigma}}},\underline{\boldsymbol{\varphi}},\underline{\mathbf{u}})\in E^{\prime}_{b}\Big{\}}\,. (4.5)
Remark 4.1

The above definition of the space EbE^{\prime}_{b} and the corresponding domain 𝒟\mathcal{D} implies that, in order to apply Theorem 4.1 for our problem (3.11), we need to restrict 𝐟f=𝟎,qf=0\mathbf{f}_{f}={\mathbf{0}},q_{f}=0, and 𝐟p=𝟎\mathbf{f}_{p}={\mathbf{0}}. To avoid this restriction we will employ a translation argument [54] to reduce the existence for (3.11) to existence for the following initial-value problem: Given initial data (𝛔¯^0,𝛗¯^0,𝐮¯^0)𝒟(\widehat{\underline{{\boldsymbol{\sigma}}}}_{0},\widehat{\underline{\boldsymbol{\varphi}}}_{0},\widehat{\underline{\mathbf{u}}}_{0})\in\mathcal{D} and source terms (𝐟^p,q^p):[0,T]𝕏p,2×Wp,2(\widehat{\mathbf{f}}_{p},\widehat{q}_{p}):[0,T]\to\mathbb{X}^{\prime}_{p,2}\times\mathrm{W}^{\prime}_{p,2}, find (^𝛔¯,^𝛗¯,^𝐮¯)[0,T]𝐗×𝐘×𝐙(\widehat{}\underline{{\boldsymbol{\sigma}}},\widehat{}\underline{\boldsymbol{\varphi}},\widehat{}\underline{\mathbf{u}})\in[0,T]\to\mathbf{X}\times\mathbf{Y}\times\mathbf{Z} such that (𝛔^p(0),p^p(0))=(𝛔^p,0,p^p,0)(\widehat{\boldsymbol{\sigma}}_{p}(0),\widehat{p}_{p}(0))=(\widehat{{\boldsymbol{\sigma}}}_{p,0},\widehat{p}_{p,0}) and, for a.e. t(0,T)t\in(0,T),

t(^𝝈¯(t))+𝒜(^𝝈¯(t))+1(^𝝋¯(t))+(^𝐮¯(t))=𝐅^(t) in 𝐗2,0,1(^𝝈¯(t))+𝒞(^𝝋¯(t))=𝟎 in 𝐘2,0,(^𝝈¯(t))=𝟎 in 𝐙2,0,\begin{array}[]{lllll}\displaystyle\frac{\partial}{\partial t}\,\mathcal{E}(\widehat{}\underline{{\boldsymbol{\sigma}}}(t))+\mathcal{A}(\widehat{}\underline{{\boldsymbol{\sigma}}}(t))+\mathcal{B}^{\prime}_{1}(\widehat{}\underline{\boldsymbol{\varphi}}(t))+\mathcal{B}^{\prime}(\widehat{}\underline{\mathbf{u}}(t))&=&\widehat{\mathbf{F}}(t)&\mbox{ in }&\mathbf{X}^{\prime}_{2,0},\\[8.61108pt] \displaystyle-\,\mathcal{B}_{1}(\widehat{}\underline{{\boldsymbol{\sigma}}}(t))+\mathcal{C}(\widehat{}\underline{\boldsymbol{\varphi}}(t))&=&{\mathbf{0}}&\mbox{ in }&\mathbf{Y}^{\prime}_{2,0},\\[8.61108pt] \displaystyle-\,\mathcal{B}\,(\widehat{}\underline{{\boldsymbol{\sigma}}}(t))&=&{\mathbf{0}}&\mbox{ in }&\mathbf{Z}^{\prime}_{2,0},\end{array} (4.6)

where 𝐅^=(𝟎,𝟎,𝐟^p,q^p)t\widehat{\mathbf{F}}=({\mathbf{0}},{\mathbf{0}},\widehat{\mathbf{f}}_{p},\widehat{q}_{p})^{\mathrm{t}}.

In order to apply Theorem 4.1 for problem (4.6), we need to: (1) establish the required properties of the operators 𝒩\mathcal{N} and \mathcal{M}, (2) prove the range condition Rg(𝒩+)=EbRg(\mathcal{N}+\mathcal{M})=E^{\prime}_{b}, and (3) construct compatible initial data (𝝈¯^0,𝝋¯^0,𝐮¯^0)𝒟(\widehat{\underline{{\boldsymbol{\sigma}}}}_{0},\widehat{\underline{\boldsymbol{\varphi}}}_{0},\widehat{\underline{\mathbf{u}}}_{0})\in\mathcal{D}. We proceed with a sequence of lemmas establishing these results.

Lemma 4.3

The linear operators 𝒩\mathcal{N} and \mathcal{M} defined in (4.4) are continuous and monotone. In addition, 𝒩\mathcal{N} is symmetric.

Proof. First, from the definition of the operators ,𝒜,1,𝒞\mathcal{E},\mathcal{A},\mathcal{B}_{1},\mathcal{C} and \mathcal{B} (cf. (3.12), (3.13), (3.14)) it is clear that both 𝒩\mathcal{N} and \mathcal{M} (cf. (4.4)) are linear and continuous, using the trace inequalities (3.1)–(3.2) for the continuity of 1\mathcal{B}_{1}. In turn, 𝒩\mathcal{N} is symmetric since \mathcal{E} is. Finally, using (2.7), we have

(𝝉¯)(𝝉¯)=s0wpL2(Ωp)2+A1/2(𝝉p+αpwp𝐈)𝕃2(Ωp)2,𝒜(𝝉¯)(𝝉¯)12μ𝝉fd𝕃2(Ωf)2+μkmax1𝐯p𝐋2(Ωp)2𝝉¯𝐗,\begin{array}[]{l}\displaystyle\mathcal{E}(\underline{{\boldsymbol{\tau}}})(\underline{{\boldsymbol{\tau}}})=s_{0}\|w_{p}\|^{2}_{\mathrm{L}^{2}(\Omega_{p})}+\|A^{1/2}({\boldsymbol{\tau}}_{p}+\alpha_{p}w_{p}\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})},\\[8.61108pt] \displaystyle\mathcal{A}(\underline{{\boldsymbol{\tau}}})(\underline{{\boldsymbol{\tau}}})\geq\frac{1}{2\,\mu}\,\|{\boldsymbol{\tau}}^{\mathrm{d}}_{f}\|^{2}_{\mathbb{L}^{2}(\Omega_{f})}+\mu\,k^{-1}_{\max}\|{\mathbf{v}}_{p}\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}\quad\forall\,\underline{{\boldsymbol{\tau}}}\in\mathbf{X},\end{array} (4.7)

and recalling the definition of the operator 𝒞\mathcal{C} (cf. (3.9), (3.12)), we obtain

𝒞(𝝍¯)(𝝍¯)=μα𝙱𝙹𝚂j=1n1𝐊j1(𝝍ϕ)𝐭f,j,(𝝍ϕ)𝐭f,jΓfpμα𝙱𝙹𝚂kmax|𝝍ϕ|𝙱𝙹𝚂2,\mathcal{C}(\underline{\boldsymbol{\psi}})(\underline{\boldsymbol{\psi}})=\mu\,\alpha_{\mathtt{BJS}}\sum^{n-1}_{j=1}\left<\sqrt{\mathbf{K}_{j}^{-1}}({\boldsymbol{\psi}}-{\boldsymbol{\phi}})\cdot{\mathbf{t}}_{f,j},({\boldsymbol{\psi}}-{\boldsymbol{\phi}})\cdot{\mathbf{t}}_{f,j}\right>_{\Gamma_{fp}}\,\geq\,\frac{\mu\,\alpha_{\mathtt{BJS}}}{\sqrt{k_{\max}}}\,|{\boldsymbol{\psi}}-{\boldsymbol{\phi}}|^{2}_{\mathtt{BJS}}\,, (4.8)

for all 𝝍¯=(𝝍,ϕ,ξ)𝐘\underline{\boldsymbol{\psi}}=({\boldsymbol{\psi}},{\boldsymbol{\phi}},\xi)\in\mathbf{Y}, where |𝝍ϕ|𝙱𝙹𝚂2:=j=1n1(𝝍ϕ)𝐭f,jL2(Γfp)2|{\boldsymbol{\psi}}-{\boldsymbol{\phi}}|_{\mathtt{BJS}}^{2}:=\sum^{n-1}_{j=1}\|({\boldsymbol{\psi}}-{\boldsymbol{\phi}})\cdot{\mathbf{t}}_{f,j}\|^{2}_{\mathrm{L}^{2}(\Gamma_{fp})}. Thus, combining (4.7) and (4.8), and the fact that the operators ,𝒜,𝒞\mathcal{E},\mathcal{A},\mathcal{C} are linear, we deduce the monotonicity of the operators 𝒩\mathcal{N} and \mathcal{M} completing the proof. \square

Next, we establish the range condition Rg(𝒩+)=EbRg(\mathcal{N}+\mathcal{M})=E^{\prime}_{b}, which is done by solving the related resolvent system. In fact, we will show a stronger result by considering a resolvent system where all source terms in 𝐅\mathbf{F} and 𝐆\mathbf{G} may be non-zero. This stronger result will be used in the translation argument for proving existence of the original problem (3.11). More precisely, let

𝐗2:=𝕏f×𝐕p×𝕏p,2×Wp,2𝐗\mathbf{X}_{2}:=\mathbb{X}_{f}\times\mathbf{V}_{p}\times\mathbb{X}_{p,2}\times\mathrm{W}_{p,2}\supset\mathbf{X}

and note that 𝐗2=𝕏f×𝐕p×𝕏p,2×Wp,2𝐗\mathbf{X}^{\prime}_{2}=\mathbb{X}^{\prime}_{f}\times\mathbf{V}^{\prime}_{p}\times\mathbb{X}^{\prime}_{p,2}\times\mathrm{W}^{\prime}_{p,2}\subset\mathbf{X}^{\prime}. We consider the following resolvent system:

(+𝒜)(𝝈¯)+1(𝝋¯)+(𝐮¯)=𝐅^ in 𝐗2,1(𝝈¯)+𝒞(𝝋¯)=𝟎 in 𝐘,(𝝈¯)=𝐆^ in 𝐙,\begin{array}[]{lllll}\displaystyle(\mathcal{E}+\mathcal{A})(\underline{{\boldsymbol{\sigma}}})+\mathcal{B}^{\prime}_{1}(\underline{\boldsymbol{\varphi}})+\mathcal{B}^{\prime}(\underline{\mathbf{u}})&=&\widehat{\mathbf{F}}&\mbox{ in }&\mathbf{X}^{\prime}_{2},\\[4.30554pt] \displaystyle-\,\mathcal{B}_{1}(\underline{{\boldsymbol{\sigma}}})+\mathcal{C}(\underline{\boldsymbol{\varphi}})&=&{\mathbf{0}}&\mbox{ in }&\mathbf{Y}^{\prime},\\[4.30554pt] \displaystyle-\,\mathcal{B}\,(\underline{{\boldsymbol{\sigma}}})&=&\widehat{\mathbf{G}}&\mbox{ in }&\mathbf{Z}^{\prime},\end{array} (4.9)

where 𝐅^𝐗2\widehat{\mathbf{F}}\in\mathbf{X}^{\prime}_{2} and 𝐆^𝐙\widehat{\mathbf{G}}\in\mathbf{Z}^{\prime} are such that

𝐅^(𝝉¯):=(𝐟^𝝈f,𝝉f)Ωf+(𝐟^𝐮p,𝐯p)Ωp+(𝐟^p,𝝉p)Ωp+(q^p,wp)Ωp,𝐆^(𝐯¯):=(𝐟^𝐮f,𝐯f)Ωf+(𝐟^𝐮s,𝐯s)Ωp+(𝐟^𝜸f,𝝌f)Ωf+(𝐟^𝜸p,𝝌p)Ωp.\begin{array}[]{l}\displaystyle\widehat{\mathbf{F}}(\underline{{\boldsymbol{\tau}}}):=(\widehat{\mathbf{f}}_{{\boldsymbol{\sigma}}_{f}},{\boldsymbol{\tau}}_{f})_{\Omega_{f}}+(\widehat{\mathbf{f}}_{\mathbf{u}_{p}},{\mathbf{v}}_{p})_{\Omega_{p}}+(\widehat{\mathbf{f}}_{p},{\boldsymbol{\tau}}_{p})_{\Omega_{p}}+(\widehat{q}_{p},w_{p})_{\Omega_{p}}\,,\\[8.61108pt] \displaystyle\widehat{\mathbf{G}}(\underline{{\mathbf{v}}}):=(\widehat{\mathbf{f}}_{\mathbf{u}_{f}},{\mathbf{v}}_{f})_{\Omega_{f}}+(\widehat{\mathbf{f}}_{\mathbf{u}_{s}},{\mathbf{v}}_{s})_{\Omega_{p}}+(\widehat{\mathbf{f}}_{{\boldsymbol{\gamma}}_{f}},{\boldsymbol{\chi}}_{f})_{\Omega_{f}}+(\widehat{\mathbf{f}}_{{\boldsymbol{\gamma}}_{p}},{\boldsymbol{\chi}}_{p})_{\Omega_{p}}\,.\end{array}

We next focus on proving that the resolvent system (4.9) is well-posed. We start with the following preliminary lemma.

Lemma 4.4

Let (𝛔¯,𝛗¯,𝐮¯)𝐗×𝐘×𝐙(\underline{{\boldsymbol{\sigma}}},\underline{\boldsymbol{\varphi}},\underline{\mathbf{u}})\in\mathbf{X}\times\mathbf{Y}\times\mathbf{Z} be a solution to (4.9). Then, for any positive constant κ\kappa, it satisfies

(+𝒜~)(𝝈¯)+1(𝝋¯)+(𝐮¯)=𝐅~ in 𝐗2,1(𝝈¯)𝒞(𝝋¯)=𝟎 in 𝐘,(𝝈¯)=𝐆^ in 𝐙,\begin{array}[]{llcll}\displaystyle(\mathcal{E}+\widetilde{\mathcal{A}})(\underline{{\boldsymbol{\sigma}}})+\mathcal{B}^{\prime}_{1}(\underline{\boldsymbol{\varphi}})+\mathcal{B}^{\prime}(\underline{\mathbf{u}})&=&\widetilde{\mathbf{F}}&\mbox{ in }&\mathbf{X}^{\prime}_{2},\\[4.30554pt] \displaystyle\mathcal{B}_{1}(\underline{{\boldsymbol{\sigma}}})-\mathcal{C}(\underline{\boldsymbol{\varphi}})&=&{\mathbf{0}}&\mbox{ in }&\mathbf{Y}^{\prime},\\[4.30554pt] \displaystyle\mathcal{B}\,(\underline{{\boldsymbol{\sigma}}})&=&-\,\widehat{\mathbf{G}}&\mbox{ in }&\mathbf{Z}^{\prime},\end{array} (4.10)

where

𝒜~(𝝈¯)(𝝉¯):=𝒜(𝝈¯)(𝝉¯)+κ{(div(𝐮p),div(𝐯p))Ωp+(s0pp+αptr(A(𝝈p+αppp𝐈)),div(𝐯p))Ωp},\widetilde{\mathcal{A}}(\underline{{\boldsymbol{\sigma}}})(\underline{{\boldsymbol{\tau}}})\,:=\,\mathcal{A}(\underline{{\boldsymbol{\sigma}}})(\underline{{\boldsymbol{\tau}}})+\kappa\,\Big{\{}(\mathrm{div}(\mathbf{u}_{p}),\mathrm{div}({\mathbf{v}}_{p}))_{\Omega_{p}}+\big{(}s_{0}\,p_{p}+\alpha_{p}\,\mathrm{tr}\big{(}A({\boldsymbol{\sigma}}_{p}+\alpha_{p}\,p_{p}\,\mathbf{I})\big{)},\mathrm{div}({\mathbf{v}}_{p})\big{)}_{\Omega_{p}}\Big{\}}, (4.11)

and

𝐅~(𝝉¯):=𝐅^(𝝉¯)+κ(q^p,div(𝐯p))Ωp.\widetilde{\mathbf{F}}(\underline{{\boldsymbol{\tau}}}):=\widehat{\mathbf{F}}(\underline{{\boldsymbol{\tau}}})+\kappa\,\big{(}\widehat{q}_{p},\mathrm{div}({\mathbf{v}}_{p})\big{)}_{\Omega_{p}}.

Conversely, if (𝛔¯,𝛗¯,𝐮¯)𝐗×𝐘×𝐙(\underline{{\boldsymbol{\sigma}}},\underline{\boldsymbol{\varphi}},\underline{\mathbf{u}})\in\mathbf{X}\times\mathbf{Y}\times\mathbf{Z} is a solution to (4.10), then it is also a solution to (4.9).

Proof. Let (𝝈¯,𝝋¯,𝐮¯)𝐗×𝐘×𝐙(\underline{{\boldsymbol{\sigma}}},\underline{\boldsymbol{\varphi}},\underline{\mathbf{u}})\in\mathbf{X}\times\mathbf{Y}\times\mathbf{Z} be a solution to (4.9). Using that div𝐕p=Wp\mathrm{div}\,\mathbf{V}_{p}=\mathrm{W}_{p}, we take 𝝉¯=(𝟎,wp)=(𝟎,div(𝐯p))𝐗\underline{{\boldsymbol{\tau}}}=({\mathbf{0}},w_{p})=({\mathbf{0}},\mathrm{div}({\mathbf{v}}_{p}))\in\mathbf{X} in the first row of (4.9), multiply by a positive constant κ\kappa and add that term to (4.9), to obtain (4.10). Conversely, if (𝝈¯,𝝋¯,𝐮¯)𝐗×𝐘×𝐙(\underline{{\boldsymbol{\sigma}}},\underline{\boldsymbol{\varphi}},\underline{\mathbf{u}})\in\mathbf{X}\times\mathbf{Y}\times\mathbf{Z} satisfies (4.10) we employ similar arguments, but now subtracting, to recover (4.9). \square

Problem (4.10) has the same structure as the one in Theorem 4.2. Therefore, in what follows we apply this result to establish the well-posedness of (4.10). To that end, we first observe that the kernel of the operator \mathcal{B}, cf. (3.13), can be written as

𝐕:={𝝉¯𝐗:(𝝉¯)(𝐯¯)=0𝐯𝐙}=𝕏~f×𝐕p×𝕏~p×Wp\mathbf{V}\,:=\,\Big{\{}\underline{{\boldsymbol{\tau}}}\in\mathbf{X}:\quad\mathcal{B}(\underline{{\boldsymbol{\tau}}})(\underline{{\mathbf{v}}})=0\quad\forall\,{\mathbf{v}}\in\mathbf{Z}\Big{\}}\,=\,\widetilde{\mathbb{X}}_{f}\times\mathbf{V}_{p}\times\widetilde{\mathbb{X}}_{p}\times\mathrm{W}_{p} (4.12)

where

𝕏~:={𝝉𝕏:𝝉=𝝉tand𝐝𝐢𝐯(𝝉)=𝟎inΩ},{f,p}.\widetilde{\mathbb{X}}_{\star}:=\Big{\{}{\boldsymbol{\tau}}_{\star}\in\mathbb{X}_{\star}:\quad{\boldsymbol{\tau}}_{\star}={\boldsymbol{\tau}}^{\mathrm{t}}_{\star}{\quad\hbox{and}\quad}\mathbf{div}({\boldsymbol{\tau}}_{\star})={\mathbf{0}}{\quad\hbox{in}\quad}\Omega_{\star}\Big{\}},\quad\star\in\{f,p\}.

We next verify the hypotheses of Theorem 4.2. We begin by noting that the operators 𝒜~,1,𝒞,\widetilde{\mathcal{A}},\mathcal{B}_{1},\mathcal{C},\mathcal{B}, and \mathcal{E} are linear and continuous. Next, we proceed with the ellipticity of the operator +𝒜~\mathcal{E}+\widetilde{\mathcal{A}} on 𝐕\mathbf{V}.

Lemma 4.5

Assume that

κ(0,2min{δ1,δ2αp})withδ1(0,2s0)andδ2(0,4μminnαp(1s02δ1)).\kappa\in\left(0,2\,\min\left\{\delta_{1},\frac{\delta_{2}}{\alpha_{p}}\right\}\right)\quad\mbox{with}\quad\delta_{1}\in\left(0,\frac{2}{s_{0}}\right){\quad\hbox{and}\quad}\delta_{2}\in\left(0,\frac{4\mu_{min}}{n\,\alpha_{p}}\,\left(1-\frac{s_{0}}{2}\,\delta_{1}\right)\right).

Then, the operator +𝒜~\mathcal{E}+\widetilde{\mathcal{A}} is elliptic on 𝐕\mathbf{V}.

Proof. From the definition of 𝒜~\widetilde{\mathcal{A}}, cf. (4.11), and considering 𝝉¯𝐕\underline{{\boldsymbol{\tau}}}\in\mathbf{V} we get

(+𝒜~)(𝝉¯)(𝝉¯)=12μ𝝉fd𝕃2(Ωf)2+μ𝐊1/2𝐯p𝐋2(Ωp)2+s0wpWp2+A1/2(𝝉p+αpwp𝐈)𝕃2(Ωp)2+κdiv(𝐯p)L2(Ωp)2+s0κ(wp,div(𝐯p))Ωp+αpκ(A1/2(𝝉p+αpwp𝐈),A1/2(div(𝐯p)𝐈))Ωp.\begin{array}[]{l}\displaystyle(\mathcal{E}+\widetilde{\mathcal{A}})(\underline{{\boldsymbol{\tau}}})(\underline{{\boldsymbol{\tau}}})\,=\,\frac{1}{2\,\mu}\,\|{\boldsymbol{\tau}}^{\mathrm{d}}_{f}\|^{2}_{\mathbb{L}^{2}(\Omega_{f})}+\mu\|\mathbf{K}^{-1/2}{\mathbf{v}}_{p}\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+s_{0}\,\|w_{p}\|^{2}_{\mathrm{W}_{p}}+\|A^{1/2}({\boldsymbol{\tau}}_{p}+\alpha_{p}\,w_{p}\,\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}\\[8.61108pt] \displaystyle\quad+\,\,\kappa\,\|\mathrm{div}({\mathbf{v}}_{p})\|^{2}_{\mathrm{L}^{2}(\Omega_{p})}+s_{0}\,\kappa\,(w_{p},\mathrm{div}({\mathbf{v}}_{p}))_{\Omega_{p}}+\alpha_{p}\,\kappa\,(A^{1/2}({\boldsymbol{\tau}}_{p}+\alpha_{p}\,w_{p}\,\mathbf{I}),A^{1/2}(\mathrm{div}({\mathbf{v}}_{p})\,\mathbf{I}))_{\Omega_{p}}.\end{array}

Hence, using the Cauchy–Schwarz and Young’s inequalities, (2.7), (2.5), and (4.2)–(4.3), we obtain

(+𝒜~)(𝝉¯)(𝝉¯)Cd2μ𝝉f𝕏f2+μkmax1𝐯p𝐋2(Ωp)2+κ((1s02δ1)nαp4μminδ2)div(𝐯p)L2(Ωp)2+(1αp2δ2κ)A1/2(𝝉p+αpwp𝐈)𝕃2(Ωp)2+s0(1κ2δ1)wpWp2,\begin{array}[]{l}\displaystyle(\mathcal{E}+\widetilde{\mathcal{A}})(\underline{{\boldsymbol{\tau}}})(\underline{{\boldsymbol{\tau}}})\geq\frac{C_{\mathrm{d}}}{2\,\mu}\|{\boldsymbol{\tau}}_{f}\|^{2}_{\mathbb{X}_{f}}+\mu\,k_{\max}^{-1}\|{\mathbf{v}}_{p}\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+\kappa\left(\left(1{-}\frac{s_{0}}{2}\delta_{1}\right)-\frac{n\,\alpha_{p}}{4\mu_{\min}}\delta_{2}\right)\|\mathrm{div}({\mathbf{v}}_{p})\|^{2}_{\mathrm{L}^{2}(\Omega_{p})}\\[8.61108pt] \displaystyle\qquad+\,\left(1-\frac{\alpha_{p}}{2\,\delta_{2}}\,\kappa\right)\|A^{1/2}\,({\boldsymbol{\tau}}_{p}+\alpha_{p}\,w_{p}\,\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+s_{0}\,\left(1-\frac{\kappa}{2\,\delta_{1}}\right)\|w_{p}\|^{2}_{\mathrm{W}_{p}},\end{array}

where Cd:=C1(Ωf)C2(Ωf)C_{\mathrm{d}}:=C_{1}(\Omega_{f})\,C_{2}(\Omega_{f}). Then, using the stipulated hypotheses on δ1,δ2\delta_{1},\delta_{2} and κ\kappa, we can define the positive constants

α1(Ωf):=Cd2μ,α2(Ωp):=min{μkmax1,κ((1s02δ1)nαp4μminδ2)},α3(Ωp):=s02(1κ2δ1),α4(Ωp):=min{(1αp2δ2κ),α3(Ωp)}\begin{array}[]{c}\displaystyle\alpha_{1}(\Omega_{f}):=\frac{C_{\mathrm{d}}}{2\,\mu},\quad\alpha_{2}(\Omega_{p}):=\min\left\{\mu\,k_{\max}^{-1},\kappa\,\left(\left(1-\frac{s_{0}}{2}\,\delta_{1}\right)-\frac{n\,\alpha_{p}}{4\mu_{\min}}\,\delta_{2}\right)\right\},\\[12.91663pt] \displaystyle\alpha_{3}(\Omega_{p}):=\frac{s_{0}}{2}\,\left(1-\frac{\kappa}{2\,\delta_{1}}\right),\quad\alpha_{4}(\Omega_{p}):=\min\left\{\left(1-\frac{\alpha_{p}}{2\,\delta_{2}}\,\kappa\right),\alpha_{3}(\Omega_{p})\right\}\end{array}

which allow us to obtain

(+𝒜~)(𝝉¯)(𝝉¯)α1(Ωf)𝝉f𝕏f2+α2(Ωp)𝐯p𝐕p2+α3(Ωp)wpWp2+α4(Ωp)(A1/2(𝝉p+αpwp𝐈)𝕃2(Ωp)2+wpWp2).\begin{array}[]{l}\displaystyle(\mathcal{E}+\widetilde{\mathcal{A}})(\underline{{\boldsymbol{\tau}}})(\underline{{\boldsymbol{\tau}}})\,\geq\,\alpha_{1}(\Omega_{f})\,\|{\boldsymbol{\tau}}_{f}\|^{2}_{\mathbb{X}_{f}}+\alpha_{2}(\Omega_{p})\,\|{\mathbf{v}}_{p}\|^{2}_{\mathbf{V}_{p}}+\alpha_{3}(\Omega_{p})\,\|w_{p}\|^{2}_{\mathrm{W}_{p}}\\[8.61108pt] \displaystyle\qquad+\,\,\alpha_{4}(\Omega_{p})\,\left(\|A^{1/2}({\boldsymbol{\tau}}_{p}+\alpha_{p}\,w_{p}\,\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+\|w_{p}\|^{2}_{\mathrm{W}_{p}}\right).\end{array} (4.13)

In turn, from (2.5) and using the triangle inequality, we deduce

𝝉p𝕃2(Ωp)2(2μmax+nλmax)(A1/2(𝝉p+αpwp𝐈)𝕃2(Ωp)2+A1/2(αpwp𝐈)𝕃2(Ωp)2)Cp(A1/2(𝝉p+αpwp𝐈)𝕃2(Ωp)2+wpWp2),\begin{array}[]{l}\displaystyle\|{\boldsymbol{\tau}}_{p}\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}\,\leq\,(2\,\mu_{\max}+n\,\lambda_{\max})\,\left(\|A^{1/2}({\boldsymbol{\tau}}_{p}+\alpha_{p}\,w_{p}\,\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+\|A^{1/2}(\alpha_{p}\,w_{p}\,\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}\right)\\[8.61108pt] \displaystyle\qquad\,\leq\,C_{p}\,\left(\|A^{1/2}({\boldsymbol{\tau}}_{p}+\alpha_{p}\,w_{p}\,\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+\|w_{p}\|^{2}_{\mathrm{W}_{p}}\right),\end{array} (4.14)

where Cp:=(2μmax+nλmax)max{1,nαp22μmin}C_{p}:=(2\,\mu_{\max}+n\,\lambda_{\max})\max\Big{\{}1,\frac{n\,\alpha^{2}_{p}}{2\mu_{\min}}\Big{\}}. A combination of (4.13) and (4.14), and the fact that 𝐝𝐢𝐯(𝝉p)=𝟎\mathbf{div}({\boldsymbol{\tau}}_{p})={\mathbf{0}} in Ωp\Omega_{p}, implies

(+𝒜~)(𝝉¯)(𝝉¯)α(Ωf,Ωp)𝝉¯𝐗2𝝉¯𝐕,(\mathcal{E}+\widetilde{\mathcal{A}})(\underline{{\boldsymbol{\tau}}})(\underline{{\boldsymbol{\tau}}})\,\geq\,\alpha(\Omega_{f},\Omega_{p})\,\|\underline{{\boldsymbol{\tau}}}\|^{2}_{\mathbf{X}}\quad\forall\,\underline{{\boldsymbol{\tau}}}\in\mathbf{V},

with α(Ωf,Ωp):=min{α1(Ωf),α2(Ωp),α3(Ωp),α4(Ωp)/Cp}\alpha(\Omega_{f},\Omega_{p}):=\min\big{\{}\alpha_{1}(\Omega_{f}),\alpha_{2}(\Omega_{p}),\alpha_{3}(\Omega_{p}),\alpha_{4}(\Omega_{p})/C_{p}\big{\}}, hence +𝒜~\mathcal{E}+\widetilde{\mathcal{A}} is elliptic on 𝐕\mathbf{V}. \square

Remark 4.2

To maximize the ellipticity constant α(Ωf,Ωp)\alpha(\Omega_{f},\Omega_{p}), we can choose explicitly the parameter κ\kappa by taking the parameters δ1\delta_{1} and δ2\delta_{2} as the middle points of their feasible ranges. More precisely, we can simply take

δ1=1s0,δ2=μminnαp,κ=min{1s0,μminnαp2}.\delta_{1}=\frac{1}{s_{0}},\quad\delta_{2}=\frac{\mu_{min}}{n\,\alpha_{p}},\quad\kappa=\min\left\{\frac{1}{s_{0}},\frac{\mu_{\min}}{n\,\alpha^{2}_{p}}\right\}.

We continue with the verification of the hypotheses of Theorem 4.2.

Lemma 4.6

There exist positive constants β1\beta_{1} and β\beta, such that

sup𝟎𝝉¯𝐕1(𝝉¯)(𝝍¯)𝝉¯𝐗β1𝝍¯𝐘𝝍¯𝐘,\sup_{{\mathbf{0}}\neq\underline{{\boldsymbol{\tau}}}\in\mathbf{V}}\frac{\mathcal{B}_{1}(\underline{{\boldsymbol{\tau}}})(\underline{\boldsymbol{\psi}})}{\|\underline{{\boldsymbol{\tau}}}\|_{\mathbf{X}}}\,\geq\,\beta_{1}\,\|\underline{\boldsymbol{\psi}}\|_{\mathbf{Y}}\quad\forall\,\underline{\boldsymbol{\psi}}\in\mathbf{Y}, (4.15)

and

sup𝟎𝝉¯𝐗(𝝉¯)(𝐯¯)𝝉¯𝐗β𝐯¯𝐙𝐯¯𝐙.\sup_{{\mathbf{0}}\neq\underline{{\boldsymbol{\tau}}}\in\mathbf{X}}\frac{\mathcal{B}(\underline{{\boldsymbol{\tau}}})(\underline{{\mathbf{v}}})}{\|\underline{{\boldsymbol{\tau}}}\|_{\mathbf{X}}}\,\geq\,\beta\,\|\underline{{\mathbf{v}}}\|_{\mathbf{Z}}\quad\forall\,\underline{{\mathbf{v}}}\in\mathbf{Z}. (4.16)

Proof. We begin with the proof of (4.15). Due the diagonal character of operator 1\mathcal{B}_{1}, cf. (3.12), we need to show individual inf-sup conditions for b𝐧fb_{{\mathbf{n}}_{f}}, b𝐧pb_{{\mathbf{n}}_{p}}, and bΓb_{\Gamma}. The inf-sup condition for bΓb_{\Gamma} follows from a slight adaptation of the argument in [29, Lemma 3.2] to account for the presence of Dirichlet boundary ΓpD\Gamma_{p}^{\mathrm{D}}, using that dist(ΓpD,Γfp)s>0\mathrm{dist}\,(\Gamma^{\mathrm{D}}_{p},\Gamma_{fp})\geq s>0. The inf-sup conditions for b𝐧fb_{{\mathbf{n}}_{f}} and b𝐧pb_{{\mathbf{n}}_{p}} follow in a similar way. Since the kernel space 𝐕\mathbf{V} consists of symmetric and divergence-free tensors, the argument in [29, Lemma 3.2] must be modified to account for that. For example, in Ωf\Omega_{f} we solve a problem

𝐝𝐢𝐯(𝐞(𝐯f))=𝟎 in Ωf,𝐞(𝐯f)𝐧f=𝝃 on ΓfpΓfN,𝐯f=𝟎 on ΓfD,\mathbf{div}({\mathbf{e}}({\mathbf{v}}_{f}))={\mathbf{0}}\ \text{ in }\ \Omega_{f},\quad{\mathbf{e}}({\mathbf{v}}_{f})\,{\mathbf{n}}_{f}={\boldsymbol{\xi}}\ \text{ on }\ \Gamma_{fp}\cup\Gamma_{f}^{\mathrm{N}},\quad{\mathbf{v}}_{f}={\mathbf{0}}\ \text{ on }\ \Gamma_{f}^{\mathrm{D}}, (4.17)

for given data 𝝃𝐇1/2(ΓfpΓfN){\boldsymbol{\xi}}\in\mathbf{H}^{-1/2}(\Gamma_{fp}\cup\Gamma_{f}^{\mathrm{N}}) such that 𝝃=𝟎{\boldsymbol{\xi}}={\mathbf{0}} on ΓfN\Gamma_{f}^{\mathrm{N}}. We recall that ΓfN\Gamma_{f}^{\mathrm{N}} is adjacent to Γfp\Gamma_{fp}. Furthermore, |ΓfD|>0|\Gamma_{f}^{\mathrm{D}}|>0, which guarantees the solvability of the problem. We refer to [29, Lemma 3.2] for further details.

Finally, proceeding as above, using the diagonal character of operator \mathcal{B}, cf. (3.13), and employing the theory developed in [32, Section 2.4.3] to our context, we can deduce (4.16). \square

Now, we are in a position to establish that the resolvent system associated to (4.6) is well-posed.

Lemma 4.7

For 𝒩,\mathcal{N},\mathcal{M} and EbE^{\prime}_{b} defined in (4.4)–(4.5), it holds that Rg(𝒩+)=EbRg(\mathcal{N}+\mathcal{M})=E^{\prime}_{b}, that is, given fEbf\in E^{\prime}_{b}, there exists v𝒟v\in\mathcal{D} such that (𝒩+)(v)=f(\mathcal{N}+\mathcal{M})(v)=f.

Proof. Let us consider 𝐅^=(𝟎,𝟎,𝐟^p,q^p)t\widehat{\mathbf{F}}=({\mathbf{0}},{\mathbf{0}},\widehat{\mathbf{f}}_{p},\widehat{q}_{p})^{\mathrm{t}} and 𝐆^=𝟎\widehat{\mathbf{G}}={\mathbf{0}} in (4.9)–(4.10) and κ\kappa as in Lemma 4.5. The well-posedness of (4.10) follows from (4.8), Lemmas 4.5 and 4.6, and a straightforward application of Theorem 4.2 with A=+𝒜~,B1=1,S=𝒞A=\mathcal{E}+\widetilde{\mathcal{A}},B_{1}=\mathcal{B}_{1},S=\mathcal{C}, and B=B=\mathcal{B}. Then, employing Lemma 4.4 we conclude that there exists a unique solution of the resolvent system of (4.6), implying the range condition. \square

We are now ready to establish existence for the auxiliary initial value problem (4.6), assuming compatible initial data.

Lemma 4.8

For each compatible initial data (𝛔¯^0,𝛗¯^0,𝐮¯^0)𝒟(\widehat{\underline{{\boldsymbol{\sigma}}}}_{0},\widehat{\underline{\boldsymbol{\varphi}}}_{0},\widehat{\underline{\mathbf{u}}}_{0})\in\mathcal{D} and each (𝐟^p,q^p)W1,1(0,T;𝕏p,2)×W1,1(0,T;Wp,2)(\widehat{\mathbf{f}}_{p},\widehat{q}_{p})\in\mathrm{W}^{1,1}(0,T;\mathbb{X}^{\prime}_{p,2})\times\mathrm{W}^{1,1}(0,T;\mathrm{W}^{\prime}_{p,2}), the problem (4.6) has a solution (^𝛔¯,^𝛗¯,^𝐮¯):[0,T]𝐗×𝐘×𝐙(\widehat{}\underline{{\boldsymbol{\sigma}}},\widehat{}\underline{\boldsymbol{\varphi}},\widehat{}\underline{\mathbf{u}}):[0,T]\to\mathbf{X}\times\mathbf{Y}\times\mathbf{Z} such that (𝛔^p,p^p)W1,(0,T;𝕃2(Ωp))×W1,(0,T;Wp)(\widehat{\boldsymbol{\sigma}}_{p},\widehat{p}_{p})\in\mathrm{W}^{1,\infty}(0,T;\mathbb{L}^{2}(\Omega_{p}))\times\mathrm{W}^{1,\infty}(0,T;\mathrm{W}_{p}) and (𝛔^p(0),p^p(0))=(𝛔^p,0,p^p,0)(\widehat{\boldsymbol{\sigma}}_{p}(0),\widehat{p}_{p}(0))=(\widehat{{\boldsymbol{\sigma}}}_{p,0},\widehat{p}_{p,0}).

Proof. The assertion of the lemma follows by applying Theorem 4.1 with E,𝒩,E,\mathcal{N},\mathcal{M} defined in (4.4), using Lemmas 4.3 and 4.7. \square

We will employ Lemma 4.8 to obtain existence of a solution to our problem (3.11). To that end, we first construct compatible initial data (𝝈¯0,𝝋¯0,𝐮¯0)(\underline{{\boldsymbol{\sigma}}}_{0},\underline{\boldsymbol{\varphi}}_{0},\underline{\mathbf{u}}_{0}).

Lemma 4.9

Assume that the initial data pp,0WpHp_{p,0}\in\mathrm{W}_{p}\cap\mathrm{H}, where

H:={wpH1(Ωp):𝐊wp𝐇1(Ωp),𝐊wp𝐧p=0 on ΓpN,wp=0 on ΓpD}.\mathrm{H}\,:=\,\Big{\{}w_{p}\in\mathrm{H}^{1}(\Omega_{p}):\quad\mathbf{K}\,\nabla\,w_{p}\in\mathbf{H}^{1}(\Omega_{p}),\,\,\mathbf{K}\,\nabla\,w_{p}\cdot{\mathbf{n}}_{p}=0\mbox{ on }\Gamma^{\mathrm{N}}_{p},\,\,\ w_{p}=0\mbox{ on }\Gamma^{\mathrm{D}}_{p}\Big{\}}. (4.18)

Then, there exist 𝛔¯0:=(𝛔f,0,𝐮p,0,𝛔p,0,pp,0)𝐗\underline{{\boldsymbol{\sigma}}}_{0}:=({\boldsymbol{\sigma}}_{f,0},\mathbf{u}_{p,0},{\boldsymbol{\sigma}}_{p,0},p_{p,0})\in\mathbf{X}, 𝛗¯0:=(𝛗0,𝛉0,λ0)𝐘\underline{\boldsymbol{\varphi}}_{0}:=({\boldsymbol{\varphi}}_{0},{\boldsymbol{\theta}}_{0},\lambda_{0})\in\mathbf{Y}, and 𝐮¯0:=(𝐮f,0,𝐮s,0,𝛄f,0,𝛄p,0)𝐙\underline{\mathbf{u}}_{0}:=(\mathbf{u}_{f,0},\mathbf{u}_{s,0},{\boldsymbol{\gamma}}_{f,0},\newline {\boldsymbol{\gamma}}_{p,0})\in\mathbf{Z} such that

𝒜(𝝈¯0)+1(𝝋¯0)+(𝐮¯0)=𝐅^0 in 𝐗2,1(𝝈¯0)+𝒞(𝝋¯0)=𝟎 in 𝐘,(𝝈¯0)=𝐆(0) in 𝐙,\begin{array}[]{lllll}\displaystyle\mathcal{A}(\underline{{\boldsymbol{\sigma}}}_{0})+\mathcal{B}^{\prime}_{1}(\underline{\boldsymbol{\varphi}}_{0})+\mathcal{B}^{\prime}(\underline{\mathbf{u}}_{0})&=&\widehat{\mathbf{F}}_{0}&\mbox{ in }&\mathbf{X}^{\prime}_{2},\\[6.45831pt] \displaystyle-\,\mathcal{B}_{1}(\underline{{\boldsymbol{\sigma}}}_{0})+\mathcal{C}(\underline{\boldsymbol{\varphi}}_{0})&=&{\mathbf{0}}&\mbox{ in }&\mathbf{Y}^{\prime},\\[6.45831pt] \displaystyle-\,\mathcal{B}\,(\underline{{\boldsymbol{\sigma}}}_{0})&=&\mathbf{G}(0)&\mbox{ in }&\mathbf{Z}^{\prime},\end{array} (4.19)

where 𝐅^0=(qf(0),𝟎,𝐟^p,0,q^p,0)t𝐗2\widehat{\mathbf{F}}_{0}=(q_{f}(0),{\mathbf{0}},\widehat{\mathbf{f}}_{p,0},\widehat{q}_{p,0})^{\mathrm{t}}\in\mathbf{X}^{\prime}_{2}, with suitable (𝐟^p,0,q^p,0)𝕏p,2×Wp,2(\widehat{\mathbf{f}}_{p,0},\widehat{q}_{p,0})\in\mathbb{X}^{\prime}_{p,2}\times\mathrm{W}^{\prime}_{p,2}.

Proof. Following the approach from [3, Lemma 4.15], the initial data is constructed by solving a sequence of well-defined subproblems. We take the following steps.

1. Define 𝐮p,0:=1μ𝐊pp,0\mathbf{u}_{p,0}:=-\dfrac{1}{\mu}\,\mathbf{K}\nabla p_{p,0}, with pp,0Hp_{p,0}\in\mathrm{H}, cf. (4.18). It follows that 𝐮p,0𝐇(div;Ωp)\mathbf{u}_{p,0}\in\mathbf{H}(\mathrm{div};\Omega_{p}) and

μ𝐊1𝐮p,0=pp,0,div(𝐮p,0)=1μdiv(𝐊pp,0)inΩp,𝐮p,0𝐧p=0onΓpN.\mu\,\mathbf{K}^{-1}\mathbf{u}_{p,0}=-\nabla p_{p,0},\quad\mathrm{div}(\mathbf{u}_{p,0})=-\frac{1}{\mu}\,\mathrm{div}(\mathbf{K}\nabla p_{p,0}){\quad\hbox{in}\quad}\Omega_{p},\quad\mathbf{u}_{p,0}\cdot{\mathbf{n}}_{p}=0{\quad\hbox{on}\quad}\Gamma^{\mathrm{N}}_{p}. (4.20)

Next, defining λ0:=pp,0|ΓfpΛp\lambda_{0}:=p_{p,0}|_{\Gamma_{fp}}\in\Lambda_{p}, (4.20) implies

ap(𝐮p,0,𝐯p)+bp(𝐯p,pp,0)+bΓ(𝐯p,λ0)=0𝐯p𝐕p.a_{p}(\mathbf{u}_{p,0},{\mathbf{v}}_{p})+b_{p}({\mathbf{v}}_{p},p_{p,0})+b_{\Gamma}({\mathbf{v}}_{p},\lambda_{0})=0\quad\forall\,{\mathbf{v}}_{p}\in\mathbf{V}_{p}. (4.21)

2. Define (𝝈f,0,𝝋0,𝐮f,0,𝜸f,0)𝕏f×𝚲f×𝐕f×f({\boldsymbol{\sigma}}_{f,0},{\boldsymbol{\varphi}}_{0},\mathbf{u}_{f,0},{\boldsymbol{\gamma}}_{f,0})\in\mathbb{X}_{f}\times{\boldsymbol{\Lambda}}_{f}\times\mathbf{V}_{f}\times\mathbb{Q}_{f} as the unique solution of the problem

af(𝝈f,0,𝝉f)+b𝐧f(𝝉f,𝝋0)+bf(𝝉f,𝐮f,0)+bsk,f(𝝉f,𝜸f,0)=1n(qf(0)𝐈,𝝉f)Ωf,b𝐧f(𝝈f,0,𝝍)=μα𝙱𝙹𝚂j=1n1𝐊j1𝐮p,0𝐭f,j,𝝍𝐭f,jΓfp𝝍𝐧f,λ0Γfp,bf(𝝈f,0,𝐯f)bsk,f(𝝈f,0,𝝌f)=(𝐟f(0),𝐯f)Ωf\begin{array}[]{l}a_{f}({\boldsymbol{\sigma}}_{f,0},{\boldsymbol{\tau}}_{f})+b_{{\mathbf{n}}_{f}}({\boldsymbol{\tau}}_{f},{\boldsymbol{\varphi}}_{0})+b_{f}({\boldsymbol{\tau}}_{f},\mathbf{u}_{f,0})+b_{{\mathrm{sk},f}}({\boldsymbol{\tau}}_{f},{\boldsymbol{\gamma}}_{f,0})=\displaystyle-\frac{1}{n}\,(q_{f}(0)\,\mathbf{I},{\boldsymbol{\tau}}_{f})_{\Omega_{f}},\\[4.30554pt] \displaystyle-b_{{\mathbf{n}}_{f}}({\boldsymbol{\sigma}}_{f,0},{\boldsymbol{\psi}})=-\mu\,\alpha_{\mathtt{BJS}}\sum^{n-1}_{j=1}\left<\sqrt{\mathbf{K}_{j}^{-1}}\mathbf{u}_{p,0}\cdot{\mathbf{t}}_{f,j},{\boldsymbol{\psi}}\cdot{\mathbf{t}}_{f,j}\right>_{\Gamma_{fp}}-\left<{\boldsymbol{\psi}}\cdot{\mathbf{n}}_{f},\lambda_{0}\right>_{\Gamma_{fp}},\\[8.61108pt] -b_{f}({\boldsymbol{\sigma}}_{f,0},{\mathbf{v}}_{f})-b_{{\mathrm{sk},f}}({\boldsymbol{\sigma}}_{f,0},{\boldsymbol{\chi}}_{f})=(\mathbf{f}_{f}(0),{\mathbf{v}}_{f})_{\Omega_{f}}\end{array} (4.22)

for all (𝝉f,𝝍,𝐯f,𝝌f)𝕏f×𝚲f×𝐕f×f({\boldsymbol{\tau}}_{f},{\boldsymbol{\psi}},{\mathbf{v}}_{f},{\boldsymbol{\chi}}_{f})\in\mathbb{X}_{f}\times{\boldsymbol{\Lambda}}_{f}\times\mathbf{V}_{f}\times\mathbb{Q}_{f}. Note that (4.22) is well-posed, since it corresponds to the weak solution of the Stokes problem in a mixed formulation and its solvability can be shown using classical Babuška-Brezzi theory. Note also that 𝐮p,0\mathbf{u}_{p,0} and λ0\lambda_{0} are data for this problem.

3. Define (𝝈p,0,𝝎0,𝜼p,0,𝝆p,0)𝕏p×𝚲s×𝐕s×p({\boldsymbol{\sigma}}_{p,0},{\boldsymbol{\omega}}_{0},{\boldsymbol{\eta}}_{p,0},{\boldsymbol{\rho}}_{p,0})\in\mathbb{X}_{p}\times{\boldsymbol{\Lambda}}_{s}\times\mathbf{V}_{s}\times\mathbb{Q}_{p}, as the unique solution of the problem

(A(𝝈p,0),𝝉p)Ωp+b𝐧p(𝝉p,𝝎0)+bs(𝝉p,𝜼p,0)+bsk,p(𝝉p,𝝆p,0)=(A(αppp,0𝐈),𝝉p)Ωpb𝐧p(𝝈p,0,ϕ)=μα𝙱𝙹𝚂j=1n1𝐊j1𝐮p,0𝐭f,j,ϕ𝐭f,jΓfpϕ𝐧p,λ0Γfpbs(𝝈p,0,𝐯s)bsk,p(𝝈p,0,𝝌p)=(𝐟p(0),𝐯s)Ωp,\begin{array}[]{l}\displaystyle(A({\boldsymbol{\sigma}}_{p,0}),{\boldsymbol{\tau}}_{p})_{\Omega_{p}}+b_{{\mathbf{n}}_{p}}({\boldsymbol{\tau}}_{p},{\boldsymbol{\omega}}_{0})+b_{s}({\boldsymbol{\tau}}_{p},{\boldsymbol{\eta}}_{p,0})+b_{{\mathrm{sk},p}}({\boldsymbol{\tau}}_{p},{\boldsymbol{\rho}}_{p,0})\,=\,-(A(\alpha_{p}\,p_{p,0}\,\mathbf{I}),{\boldsymbol{\tau}}_{p})_{\Omega_{p}}\\[4.30554pt] \displaystyle-b_{{\mathbf{n}}_{p}}({\boldsymbol{\sigma}}_{p,0},{\boldsymbol{\phi}})\,=\,\mu\,\alpha_{\mathtt{BJS}}\sum^{n-1}_{j=1}\left<\sqrt{\mathbf{K}_{j}^{-1}}\mathbf{u}_{p,0}\cdot{\mathbf{t}}_{f,j},{\boldsymbol{\phi}}\cdot{\mathbf{t}}_{f,j}\right>_{\Gamma_{fp}}-\left<{\boldsymbol{\phi}}\cdot{\mathbf{n}}_{p},\lambda_{0}\right>_{\Gamma_{fp}}\\[8.61108pt] -b_{s}({\boldsymbol{\sigma}}_{p,0},{\mathbf{v}}_{s})-b_{{\mathrm{sk},p}}({\boldsymbol{\sigma}}_{p,0},{\boldsymbol{\chi}}_{p})\,=\,(\mathbf{f}_{p}(0),{\mathbf{v}}_{s})_{\Omega_{p}},\end{array} (4.23)

for all (𝝉p,ϕ,𝐯s,𝝌p)𝕏p×𝚲s×𝐕s×p({\boldsymbol{\tau}}_{p},{\boldsymbol{\phi}},{\mathbf{v}}_{s},{\boldsymbol{\chi}}_{p})\in\mathbb{X}_{p}\times{\boldsymbol{\Lambda}}_{s}\times\mathbf{V}_{s}\times\mathbb{Q}_{p}. Problem (4.23) corresponds to the weak solution of the elasticity problem in a mixed formulation and its solvability can be shown using classical Babuška-Brezzi theory. Note that pp,0,𝐮p,0p_{p,0},\mathbf{u}_{p,0}, and λ0\lambda_{0} are data for this problem. Here 𝜼p,0,𝝆p,0{\boldsymbol{\eta}}_{p,0},{\boldsymbol{\rho}}_{p,0}, and 𝝎0{\boldsymbol{\omega}}_{0} are auxiliary variables that are not part of the constructed initial data. However, they can be used to recover the variables 𝜼p,𝝆p{\boldsymbol{\eta}}_{p},{\boldsymbol{\rho}}_{p}, and 𝝎{\boldsymbol{\omega}} that satisfy the non-differentiated equation (3.7).

4. Define 𝜽0𝚲s{\boldsymbol{\theta}}_{0}\in{\boldsymbol{\Lambda}}_{s} as

𝜽0:=𝝋0𝐮p,0onΓfp,{\boldsymbol{\theta}}_{0}\,:=\,{\boldsymbol{\varphi}}_{0}-\mathbf{u}_{p,0}{\quad\hbox{on}\quad}\Gamma_{fp}, (4.24)

where 𝝋0{\boldsymbol{\varphi}}_{0} and 𝐮p,0\mathbf{u}_{p,0} are data obtained in the previous steps. Note that (4.24) implies that the BJS terms in (4.22) and (4.23) can be rewritten with 𝐮p,0𝐭f,j=(𝝋0𝜽0)𝐭f,j\mathbf{u}_{p,0}\cdot{\mathbf{t}}_{f,j}=({\boldsymbol{\varphi}}_{0}-{\boldsymbol{\theta}}_{0})\cdot{\mathbf{t}}_{f,j} and that the ninth equation in (3.2) holds for the initial data, that is,

𝝋0𝐧f+(𝜽0+𝐮p,0)𝐧p,ξΓfp= 0ξΛp.-\left<{\boldsymbol{\varphi}}_{0}\cdot{\mathbf{n}}_{f}+({\boldsymbol{\theta}}_{0}+\mathbf{u}_{p,0})\cdot{\mathbf{n}}_{p},\xi\right>_{\Gamma_{fp}}\,=\,0\quad\forall\,\xi\in\Lambda_{p}. (4.25)

5. Finally, define (𝝈^p,0,𝐮s,0,𝜸p,0)𝕏p×𝐕s×p(\widehat{\boldsymbol{\sigma}}_{p,0},\mathbf{u}_{s,0},{\boldsymbol{\gamma}}_{p,0})\in\mathbb{X}_{p}\times\mathbf{V}_{s}\times\mathbb{Q}_{p}, as the unique solution of the problem

(A(𝝈^p,0),𝝉p)Ωp+bs(𝝉p,𝐮s,0)+bsk,p(𝝉p,𝜸p,0)=b𝐧p(𝝉p,𝜽0)bs(𝝈^p,0,𝐯s)bsk,p(𝝈^p,0,𝝌p)= 0,\begin{array}[]{l}\displaystyle(A(\widehat{\boldsymbol{\sigma}}_{p,0}),{\boldsymbol{\tau}}_{p})_{\Omega_{p}}+b_{s}({\boldsymbol{\tau}}_{p},\mathbf{u}_{s,0})+b_{{\mathrm{sk},p}}({\boldsymbol{\tau}}_{p},{\boldsymbol{\gamma}}_{p,0})\,=\,-b_{{\mathbf{n}}_{p}}({\boldsymbol{\tau}}_{p},{\boldsymbol{\theta}}_{0})\\[8.61108pt] -b_{s}(\widehat{\boldsymbol{\sigma}}_{p,0},{\mathbf{v}}_{s})-b_{{\mathrm{sk},p}}(\widehat{\boldsymbol{\sigma}}_{p,0},{\boldsymbol{\chi}}_{p})\,=\,0,\end{array} (4.26)

for all (𝝉p,𝐯s,𝝌p)𝕏p×𝐕s×p({\boldsymbol{\tau}}_{p},{\mathbf{v}}_{s},{\boldsymbol{\chi}}_{p})\in\mathbb{X}_{p}\times\mathbf{V}_{s}\times\mathbb{Q}_{p}. Problem (4.26) corresponds to the weak solution of the elasticity problem in Ωp\Omega_{p} with Dirichlet datum 𝜽0{\boldsymbol{\theta}}_{0} on Γfp\Gamma_{fp}.

Combining (4.21), (4.22), the second and third equations in (4.23), (4.25), and the first equation in (4.26), we obtain (𝝈¯0,𝝋¯0,𝐮¯0)𝐗×𝐘×𝐙(\underline{{\boldsymbol{\sigma}}}_{0},\underline{\boldsymbol{\varphi}}_{0},\underline{\mathbf{u}}_{0})\in\mathbf{X}\times\mathbf{Y}\times\mathbf{Z} satisfying (4.19) with

(𝐟^p,0,𝝉p)Ωp=(A(𝝈^p,0),𝝉p)Ωpand(q^p,0,wp)Ωp=bp(𝐮p,0,wp).(\widehat{\mathbf{f}}_{p,0},{\boldsymbol{\tau}}_{p})_{\Omega_{p}}\,=\,-(A(\widehat{\boldsymbol{\sigma}}_{p,0}),{\boldsymbol{\tau}}_{p})_{\Omega_{p}}{\quad\hbox{and}\quad}(\widehat{q}_{p,0},w_{p})_{\Omega_{p}}\,=\,-b_{p}(\mathbf{u}_{p,0},w_{p}). (4.27)

The above equations imply

𝐟^p,0𝕃2(Ωp)+q^p,0L2(Ωp)C(𝝈^p,0𝕃2(Ωp)+div(𝐮p,0)L2(Ωp)),\|\widehat{\mathbf{f}}_{p,0}\|_{\mathbb{L}^{2}(\Omega_{p})}+\|\widehat{q}_{p,0}\|_{\mathrm{L}^{2}(\Omega_{p})}\leq C\,\left(\|\widehat{{\boldsymbol{\sigma}}}_{p,0}\|_{\mathbb{L}^{2}(\Omega_{p})}+\|\mathrm{div}(\mathbf{u}_{p,0})\|_{\mathrm{L}^{2}(\Omega_{p})}\right),

hence (𝐟^p,0,q^p,0)𝕏p,2×Wp,2(\widehat{\mathbf{f}}_{p,0},\widehat{q}_{p,0})\in\mathbb{X}^{\prime}_{p,2}\times\mathrm{W}^{\prime}_{p,2}, completing the proof. \square

4.3 The main result

We are now ready to prove the main result of this section.

Theorem 4.10

For each compatible initial data (𝛔¯0,𝛗¯0,𝐮¯0)(\underline{{\boldsymbol{\sigma}}}_{0},\underline{\boldsymbol{\varphi}}_{0},\underline{\mathbf{u}}_{0}) constructed in Lemma 4.9 and each

𝐟fW1,1(0,T;𝐕f),𝐟pW1,1(0,T;𝐕s),qfW1,1(0,T;𝕏f),qpW1,1(0,T;Wp),\mathbf{f}_{f}\in\mathrm{W}^{1,1}(0,T;\mathbf{V}_{f}^{\prime}),\quad\mathbf{f}_{p}\in\mathrm{W}^{1,1}(0,T;\mathbf{V}_{s}^{\prime}),\quad q_{f}\in\mathrm{W}^{1,1}(0,T;\mathbb{X}^{\prime}_{f}),\quad q_{p}\in\mathrm{W}^{1,1}(0,T;\mathrm{W}^{\prime}_{p}),

there exists a unique solution of (3.11), (𝛔¯,𝛗¯,𝐮¯):[0,T]𝐗×𝐘×𝐙(\underline{{\boldsymbol{\sigma}}},\underline{\boldsymbol{\varphi}},\underline{\mathbf{u}}):[0,T]\to\mathbf{X}\times\mathbf{Y}\times\mathbf{Z}, such that (𝛔p,pp)W1,(0,T;𝕃2(Ωp))×W1,(0,T;Wp)({\boldsymbol{\sigma}}_{p},p_{p})\in\mathrm{W}^{1,\infty}(0,T;\mathbb{L}^{2}(\Omega_{p}))\times\mathrm{W}^{1,\infty}(0,T;\mathrm{W}_{p}) and (𝛔p(0),pp(0))=(𝛔p,0,pp,0)({\boldsymbol{\sigma}}_{p}(0),p_{p}(0))=({\boldsymbol{\sigma}}_{p,0},p_{p,0}).

Proof. For each fixed time t[0,T]t\in[0,T], Lemma 4.7 implies that there exists a solution to the resolvent system (4.9) with 𝐅^=𝐅(t)\widehat{\mathbf{F}}=\mathbf{F}(t) and 𝐆^=𝐆(t)\widehat{\mathbf{G}}=\mathbf{G}(t) defined in (3.15). More precisely, there exist (𝝈¯~(t),𝝋¯~(t),𝐮¯~(t))(\widetilde{\underline{{\boldsymbol{\sigma}}}}(t),\widetilde{\underline{\boldsymbol{\varphi}}}(t),\widetilde{\underline{\mathbf{u}}}(t)) such that

(+𝒜)(𝝈¯~(t))+1(𝝋¯~(t))+(𝐮¯~(t))=𝐅(t) in 𝐗2,1(𝝈¯~(t))+𝒞(𝝋¯~(t))=𝟎 in 𝐘,(𝝈¯~(t))=𝐆(t) in 𝐙.\begin{array}[]{lllll}\displaystyle\big{(}\mathcal{E}+\mathcal{A}\big{)}(\widetilde{\underline{{\boldsymbol{\sigma}}}}(t))+\mathcal{B}^{\prime}_{1}(\widetilde{\underline{\boldsymbol{\varphi}}}(t))+\mathcal{B}^{\prime}(\widetilde{\underline{\mathbf{u}}}(t))&=&\mathbf{F}(t)&\mbox{ in }&\mathbf{X}^{\prime}_{2},\\[6.45831pt] \displaystyle-\,\mathcal{B}_{1}(\widetilde{\underline{{\boldsymbol{\sigma}}}}(t))+\mathcal{C}(\widetilde{\underline{\boldsymbol{\varphi}}}(t))&=&{\mathbf{0}}&\mbox{ in }&\mathbf{Y}^{\prime},\\[6.45831pt] \displaystyle-\,\mathcal{B}\,(\widetilde{\underline{{\boldsymbol{\sigma}}}}(t))&=&\mathbf{G}(t)&\mbox{ in }&\mathbf{Z}^{\prime}.\end{array} (4.28)

We look for a solution to (3.11) in the form 𝝈¯(t)=𝝈¯~(t)+𝝈¯^(t)\underline{{\boldsymbol{\sigma}}}(t)=\widetilde{\underline{{\boldsymbol{\sigma}}}}(t)+\widehat{\underline{{\boldsymbol{\sigma}}}}(t), 𝝋¯(t)=𝝋¯~(t)+𝝋¯^(t)\underline{\boldsymbol{\varphi}}(t)=\widetilde{\underline{\boldsymbol{\varphi}}}(t)+\widehat{\underline{\boldsymbol{\varphi}}}(t), and 𝐮¯(t)=𝐮¯~(t)+𝐮¯^(t)\underline{\mathbf{u}}(t)=\widetilde{\underline{\mathbf{u}}}(t)+\widehat{\underline{\mathbf{u}}}(t). Subtracting (4.28) from (3.11) leads to the reduced evolution problem

t(𝝈¯^(t))+𝒜(𝝈¯^(t))+1(𝝋¯^(t))+(𝐮¯^(t))=(𝝈¯~(t))t(𝝈¯~(t)) in 𝐗2,0,1(𝝈¯^(t))+𝒞(𝝋¯^(t))=𝟎 in 𝐘2,0,(𝝈¯^(t))=𝟎 in 𝐙2,0,\begin{array}[]{lllll}\displaystyle\partial_{t}\mathcal{E}(\widehat{\underline{{\boldsymbol{\sigma}}}}(t))+\mathcal{A}(\widehat{\underline{{\boldsymbol{\sigma}}}}(t))+\mathcal{B}^{\prime}_{1}(\widehat{\underline{\boldsymbol{\varphi}}}(t))+\mathcal{B}^{\prime}(\widehat{\underline{\mathbf{u}}}(t))&=&\mathcal{E}(\widetilde{\underline{{\boldsymbol{\sigma}}}}(t))-\partial_{t}\mathcal{E}(\widetilde{\underline{{\boldsymbol{\sigma}}}}(t))&\mbox{ in }&\mathbf{X}^{\prime}_{2,0},\\[6.45831pt] \displaystyle-\,\mathcal{B}_{1}(\widehat{\underline{{\boldsymbol{\sigma}}}}(t))+\mathcal{C}(\widehat{\underline{\boldsymbol{\varphi}}}(t))&=&{\mathbf{0}}&\mbox{ in }&\mathbf{Y}^{\prime}_{2,0},\\[6.45831pt] \displaystyle-\,\mathcal{B}\,(\widehat{\underline{{\boldsymbol{\sigma}}}}(t))&=&{\mathbf{0}}&\mbox{ in }&\mathbf{Z}^{\prime}_{2,0},\end{array} (4.29)

with initial condition 𝝈¯^(0)=𝝈¯0𝝈¯~(0)\widehat{\underline{{\boldsymbol{\sigma}}}}(0)=\underline{{\boldsymbol{\sigma}}}_{0}-\widetilde{\underline{{\boldsymbol{\sigma}}}}(0), 𝝋¯^(0)=𝝋¯0𝝋¯~(0)\widehat{\underline{\boldsymbol{\varphi}}}(0)=\underline{\boldsymbol{\varphi}}_{0}-\widetilde{\underline{\boldsymbol{\varphi}}}(0), and 𝐮¯^(0)=𝐮¯0𝐮¯~(0)\widehat{\underline{\mathbf{u}}}(0)=\underline{\mathbf{u}}_{0}-\widetilde{\underline{\mathbf{u}}}(0). Subtracting (4.28) at t=0t=0 from (4.19) gives

𝒜(𝝈¯^(0))+1(𝝋¯^(0))+(𝐮¯^(0))=(𝝈¯~(0))+𝐅^0𝐅(0) in 𝐗2,0,1(𝝈¯^(0))+𝒞(𝝋¯^(0))=𝟎 in 𝐘2,0,(𝝈¯^(0))=𝟎 in 𝐙2,0.\begin{array}[]{lllll}\displaystyle\mathcal{A}(\widehat{\underline{{\boldsymbol{\sigma}}}}(0))+\mathcal{B}^{\prime}_{1}(\widehat{\underline{\boldsymbol{\varphi}}}(0))+\mathcal{B}^{\prime}(\widehat{\underline{\mathbf{u}}}(0))&=&\mathcal{E}(\widetilde{\underline{{\boldsymbol{\sigma}}}}(0))+\widehat{\mathbf{F}}_{0}-\mathbf{F}(0)&\mbox{ in }&\mathbf{X}^{\prime}_{2,0},\\[6.45831pt] \displaystyle-\,\mathcal{B}_{1}(\widehat{\underline{{\boldsymbol{\sigma}}}}(0))+\mathcal{C}(\widehat{\underline{\boldsymbol{\varphi}}}(0))&=&{\mathbf{0}}&\mbox{ in }&\mathbf{Y}^{\prime}_{2,0},\\[6.45831pt] \displaystyle-\,\mathcal{B}\,(\widehat{\underline{{\boldsymbol{\sigma}}}}(0))&=&{\mathbf{0}}&\mbox{ in }&\mathbf{Z}^{\prime}_{2,0}.\end{array} (4.30)

We emphasize that in (4.30), 𝐅^0𝐅(0)=(𝟎,𝟎,𝐟^p,0,q^p,0qp(0))t𝐗2,0\widehat{\mathbf{F}}_{0}-\mathbf{F}(0)=({\mathbf{0}},{\mathbf{0}},\widehat{\mathbf{f}}_{p,0},\widehat{q}_{p,0}-q_{p}(0))^{\mathrm{t}}\in\mathbf{X}^{\prime}_{2,0}. Thus, (𝝈¯^(0),𝝋¯^(0),𝐮¯^(0))Eb\mathcal{M}(\widehat{\underline{{\boldsymbol{\sigma}}}}(0),\widehat{\underline{\boldsymbol{\varphi}}}(0),\widehat{\underline{\mathbf{u}}}(0))\in E^{\prime}_{b}, i.e., (𝝈¯^(0),𝝋¯^(0),𝐮¯^(0))𝒟(\widehat{\underline{{\boldsymbol{\sigma}}}}(0),\widehat{\underline{\boldsymbol{\varphi}}}(0),\widehat{\underline{\mathbf{u}}}(0))\in\mathcal{D} (cf. (4.5)). Thus, the reduced evolution problem (4.29) is in the form of (4.6). According to Lemma 4.8, it has a solution, which establishes the existence of a solution to (3.11) with the stated regularity satisfying (𝝈p(0),pp(0))=(𝝈p,0,pp,0)({\boldsymbol{\sigma}}_{p}(0),p_{p}(0))=({\boldsymbol{\sigma}}_{p,0},p_{p,0}).

We next show that the solution of (3.11) is unique. Since the problem is linear, it is sufficient to prove that the problem with zero data has only the zero solution. Taking 𝐅=𝐆=𝟎\mathbf{F}=\mathbf{G}={\mathbf{0}} in (3.11) and testing it with the solution (𝝈¯,𝝋¯,𝐮¯)(\underline{{\boldsymbol{\sigma}}},\underline{\boldsymbol{\varphi}},\underline{\mathbf{u}}) yields

12t(A1/2(𝝈p+αppp𝐈)𝕃2(Ωp)2+s0ppWp2)+12μ𝝈fd𝕃2(Ωf)2+ap(𝐮p,𝐮p)+𝒞(𝝋¯)(𝝋¯)= 0,\begin{array}[]{l}\displaystyle\frac{1}{2}\,\partial_{t}\,\left(\|A^{1/2}\,({\boldsymbol{\sigma}}_{p}+\alpha_{p}\,p_{p}\,\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+s_{0}\,\|p_{p}\|^{2}_{\mathrm{W}_{p}}\right)+\frac{1}{2\,\mu}\,\|{\boldsymbol{\sigma}}^{\mathrm{d}}_{f}\|^{2}_{\mathbb{L}^{2}(\Omega_{f})}+a_{p}(\mathbf{u}_{p},\mathbf{u}_{p})+\mathcal{C}(\underline{\boldsymbol{\varphi}})(\underline{\boldsymbol{\varphi}})\,=\,0,\end{array}

which together with (4.14), (2.7) to bound apa_{p} (cf. (3.8)), the semi-definite positive property of 𝒞\mathcal{C} (cf. (4.8)), integrating in time from 0 to t(0,T]t\in(0,T], and using that the initial data is zero, implies

𝝈p𝕃2(Ωp)2+ppWp2+0t(𝝈fd𝕃2(Ωf)2+𝐮p𝐋2(Ωp)2)𝑑s0.\|{\boldsymbol{\sigma}}_{p}\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+\|p_{p}\|^{2}_{\mathrm{W}_{p}}+\int^{t}_{0}\left(\|{\boldsymbol{\sigma}}^{\mathrm{d}}_{f}\|^{2}_{\mathbb{L}^{2}(\Omega_{f})}+\|\mathbf{u}_{p}\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}\right)\,ds\leq 0. (4.31)

It follows from (4.31) that 𝝈fd(t)=𝟎,𝐮p(t)=𝟎,𝝈p(t)=𝟎{\boldsymbol{\sigma}}^{\mathrm{d}}_{f}(t)={\mathbf{0}},\mathbf{u}_{p}(t)={\mathbf{0}},{\boldsymbol{\sigma}}_{p}(t)={\mathbf{0}}, and pp(t)=0p_{p}(t)=0 for all t(0,T]t\in(0,T].

Now, taking 𝝉¯𝐕\underline{{\boldsymbol{\tau}}}\in\mathbf{V} (cf. (4.12)) in the first equation of (3.11) and employing the inf-sup condition of 1\mathcal{B}_{1} (cf. (4.15)), with 𝝍¯=𝝋¯=(𝝋,𝜽,λ)𝐘\underline{\boldsymbol{\psi}}=\underline{\boldsymbol{\varphi}}=({\boldsymbol{\varphi}},{\boldsymbol{\theta}},\lambda)\in\mathbf{Y}, yields

β~𝝋¯𝐘sup𝟎𝝉¯𝐕1(𝝉¯)(𝝋¯)𝝉¯𝐗=sup𝟎𝝉¯𝐕(t+𝒜)(𝝈¯)(𝝉¯)𝝉¯𝐗=0.\widetilde{\beta}\,\|\underline{\boldsymbol{\varphi}}\|_{\mathbf{Y}}\,\leq\,\sup_{{\mathbf{0}}\neq\underline{{\boldsymbol{\tau}}}\in\mathbf{V}}\frac{\mathcal{B}_{1}(\underline{{\boldsymbol{\tau}}})(\underline{\boldsymbol{\varphi}})}{\|\underline{{\boldsymbol{\tau}}}\|_{\mathbf{X}}}=-\,\sup_{{\mathbf{0}}\neq\underline{{\boldsymbol{\tau}}}\in\mathbf{V}}\frac{(\partial_{t}\,\mathcal{E}+\mathcal{A})(\underline{{\boldsymbol{\sigma}}})(\underline{{\boldsymbol{\tau}}})}{\|\underline{{\boldsymbol{\tau}}}\|_{\mathbf{X}}}=0.

Thus, 𝝋(t)=𝟎,𝜽(t)=𝟎{\boldsymbol{\varphi}}(t)={\mathbf{0}},{\boldsymbol{\theta}}(t)={\mathbf{0}}, and λ(t)=0\lambda(t)=0 for all t(0,T]t\in(0,T]. In turn, from the inf-sup condition of \mathcal{B} (cf. (4.16)), with 𝐯¯=𝐮¯=(𝐮f,𝐮s,𝜸f,𝜸p)𝐙\underline{{\mathbf{v}}}=\underline{\mathbf{u}}=(\mathbf{u}_{f},\mathbf{u}_{s},{\boldsymbol{\gamma}}_{f},{\boldsymbol{\gamma}}_{p})\in\mathbf{Z}, we get

β𝐮¯𝐙sup𝟎𝝉¯𝐗(𝝉¯)(𝐮¯)𝝉¯𝐗=sup𝟎𝝉¯𝐗(t+𝒜)(𝝈¯)(𝝉¯)+1(𝝉¯)(𝝋¯)𝝉¯𝐗= 0.\beta\,\|\underline{\mathbf{u}}\|_{\mathbf{Z}}\leq\sup_{{\mathbf{0}}\neq\underline{{\boldsymbol{\tau}}}\in\mathbf{X}}\frac{\mathcal{B}(\underline{{\boldsymbol{\tau}}})(\underline{\mathbf{u}})}{\|\underline{{\boldsymbol{\tau}}}\|_{\mathbf{X}}}=-\sup_{{\mathbf{0}}\neq\underline{{\boldsymbol{\tau}}}\in\mathbf{X}}\frac{(\partial_{t}\,\mathcal{E}+\mathcal{A})(\underline{{\boldsymbol{\sigma}}})(\underline{{\boldsymbol{\tau}}})+\mathcal{B}_{1}(\underline{{\boldsymbol{\tau}}})(\underline{\boldsymbol{\varphi}})}{\|\underline{{\boldsymbol{\tau}}}\|_{\mathbf{X}}}\,=\,0.

Therefore, 𝐮f(t)=𝟎,𝐮s(t)=𝟎,𝜸f(t)=𝟎\mathbf{u}_{f}(t)={\mathbf{0}},\mathbf{u}_{s}(t)={\mathbf{0}},{\boldsymbol{\gamma}}_{f}(t)={\mathbf{0}}, and 𝜸p(t)=𝟎{\boldsymbol{\gamma}}_{p}(t)={\mathbf{0}} for all t(0,T]t\in(0,T]. Finally, from the third row in (3.2), we have the identity

bf(𝝈f,𝐯f)=0𝐯f𝐕f.b_{f}({\boldsymbol{\sigma}}_{f},{\mathbf{v}}_{f})=0\quad\forall\,{\mathbf{v}}_{f}\in\mathbf{V}_{f}.

Taking 𝐯f=𝐝𝐢𝐯(𝝈f)𝐕f{\mathbf{v}}_{f}=\mathbf{div}({\boldsymbol{\sigma}}_{f})\in\mathbf{V}_{f}, we deduce that 𝐝𝐢𝐯(𝝈f(t))=𝟎\mathbf{div}({\boldsymbol{\sigma}}_{f}(t))={\mathbf{0}} for all t(0,T]t\in(0,T], which combined with the fact that 𝝈fd(t)=𝟎{\boldsymbol{\sigma}}^{\mathrm{d}}_{f}(t)={\mathbf{0}} for all t(0,T]t\in(0,T], and estimates (4.2)–(4.3) yields 𝝈f(t)=𝟎{\boldsymbol{\sigma}}_{f}(t)={\mathbf{0}} for all t(0,T]t\in(0,T]. Then, (3.11) has a unique solution. \square

Corollary 4.11

The solution of (3.11) satisfies 𝛔f(0)=𝛔f,0,𝐮f(0)=𝐮f,0,𝛄f(0)=𝛄f,0,𝐮p(0)=𝐮p,0,𝛗(0)=𝛗0{\boldsymbol{\sigma}}_{f}(0)={\boldsymbol{\sigma}}_{f,0},\mathbf{u}_{f}(0)=\mathbf{u}_{f,0},{\boldsymbol{\gamma}}_{f}(0)={\boldsymbol{\gamma}}_{f,0},\mathbf{u}_{p}(0)=\mathbf{u}_{p,0},{\boldsymbol{\varphi}}(0)={\boldsymbol{\varphi}}_{0}, λ(0)=λ0\lambda(0)=\lambda_{0}, and 𝛉(0)=𝛉0{\boldsymbol{\theta}}(0)={\boldsymbol{\theta}}_{0}.

Proof. Let 𝝈¯f:=𝝈f(0)𝝈f,0\overline{{\boldsymbol{\sigma}}}_{f}:={\boldsymbol{\sigma}}_{f}(0)-{\boldsymbol{\sigma}}_{f,0}, with a similar definition and notation for the rest of the variables. Since Theorem 4.1 implies that (u)L(0,T;Eb)\mathcal{M}(u)\in\mathrm{L}^{\infty}(0,T;E^{\prime}_{b}), we can take t0t\to 0 in all equations without time derivatives in (4.29), and therefore also in (3.11). Using that the initial data (𝝈¯0,𝝋¯0,𝐮¯0)(\underline{{\boldsymbol{\sigma}}}_{0},\underline{\boldsymbol{\varphi}}_{0},\underline{\mathbf{u}}_{0}) satisfies the same equations at t=0t=0 (cf. (4.19)), and that 𝝈¯p=𝟎\overline{{\boldsymbol{\sigma}}}_{p}={\mathbf{0}} and p¯p=0\overline{p}_{p}=0, we obtain

12μ(𝝈¯fd,𝝉fd)Ωf+(𝐮¯f,𝐝𝐢𝐯(𝝉f))Ωf+(𝜸¯f,𝝉f)Ωf𝝉f𝐧f,𝝋¯Γfp=0,\displaystyle\displaystyle\frac{1}{2\mu}\,(\overline{{\boldsymbol{\sigma}}}^{\mathrm{d}}_{f},{\boldsymbol{\tau}}^{\mathrm{d}}_{f})_{\Omega_{f}}+(\overline{\mathbf{u}}_{f},\mathbf{div}({\boldsymbol{\tau}}_{f}))_{\Omega_{f}}+(\overline{{\boldsymbol{\gamma}}}_{f},{\boldsymbol{\tau}}_{f})_{\Omega_{f}}-\left<{\boldsymbol{\tau}}_{f}{\mathbf{n}}_{f},\overline{{\boldsymbol{\varphi}}}\right>_{\Gamma_{fp}}=0,
μ(𝐊1𝐮¯p,𝐯p)Ωp+𝐯p𝐧p,λ¯Γfp=0,\displaystyle\displaystyle\mu\,(\mathbf{K}^{-1}\overline{\mathbf{u}}_{p},{\mathbf{v}}_{p})_{\Omega_{p}}+\left<{\mathbf{v}}_{p}\cdot{\mathbf{n}}_{p},\overline{\lambda}\right>_{\Gamma_{fp}}=0,
(𝐯f,𝐝𝐢𝐯(𝝈¯f))Ωf=0,\displaystyle\displaystyle-\,({\mathbf{v}}_{f},\mathbf{div}(\overline{{\boldsymbol{\sigma}}}_{f}))_{\Omega_{f}}=0,
(𝝈¯f,𝝌f)Ωf=0,\displaystyle\displaystyle-\,(\overline{{\boldsymbol{\sigma}}}_{f},{\boldsymbol{\chi}}_{f})_{\Omega_{f}}=0,
𝝋¯𝐧f+(𝜽¯+𝐮¯p)𝐧p,ξΓfp=0,\displaystyle\displaystyle-\,\left<\overline{{\boldsymbol{\varphi}}}\cdot{\mathbf{n}}_{f}+\left(\overline{{\boldsymbol{\theta}}}+\overline{\mathbf{u}}_{p}\right)\cdot{\mathbf{n}}_{p},\xi\right>_{\Gamma_{fp}}=0, (4.32)
𝝈¯f𝐧f,𝝍Γfp+μα𝙱𝙹𝚂j=1n1𝐊j1(𝝋¯𝜽¯)𝐭f,j,𝝍𝐭f,jΓfp+𝝍𝐧f,λ¯Γfp=0,\displaystyle\displaystyle\left<\overline{{\boldsymbol{\sigma}}}_{f}{\mathbf{n}}_{f},{\boldsymbol{\psi}}\right>_{\Gamma_{fp}}+\mu\,\alpha_{\mathtt{BJS}}\,\sum_{j=1}^{n-1}\left<\sqrt{\mathbf{K}_{j}^{-1}}\left(\overline{{\boldsymbol{\varphi}}}-\overline{{\boldsymbol{\theta}}}\right)\cdot{\mathbf{t}}_{f,j},{\boldsymbol{\psi}}\cdot{\mathbf{t}}_{f,j}\right>_{\Gamma_{fp}}+\,\left<{\boldsymbol{\psi}}\cdot{\mathbf{n}}_{f},\overline{\lambda}\right>_{\Gamma_{fp}}=0,
μα𝙱𝙹𝚂j=1n1𝐊j1(𝝋¯𝜽¯)𝐭f,j,ϕ𝐭f,jΓfp+ϕ𝐧p,λ¯Γfp=0.\displaystyle\displaystyle-\mu\,\alpha_{\mathtt{BJS}}\,\sum_{j=1}^{n-1}\left<\sqrt{\mathbf{K}_{j}^{-1}}\left(\overline{{\boldsymbol{\varphi}}}-\overline{{\boldsymbol{\theta}}}\right)\cdot{\mathbf{t}}_{f,j},{\boldsymbol{\phi}}\cdot{\mathbf{t}}_{f,j}\right>_{\Gamma_{fp}}+\,\left<{\boldsymbol{\phi}}\cdot{\mathbf{n}}_{p},\overline{\lambda}\right>_{\Gamma_{fp}}=0.

Taking (𝝉f,𝐯p,𝐯f,𝝌f,ξ,𝝍,ϕ)=(𝝈¯f,𝐮¯p,𝐮¯f,𝜸¯f,λ¯,𝝋¯,𝜽¯)({\boldsymbol{\tau}}_{f},{\mathbf{v}}_{p},{\mathbf{v}}_{f},{\boldsymbol{\chi}}_{f},\xi,{\boldsymbol{\psi}},{\boldsymbol{\phi}})=(\overline{{\boldsymbol{\sigma}}}_{f},\overline{\mathbf{u}}_{p},\overline{\mathbf{u}}_{f},\overline{{\boldsymbol{\gamma}}}_{f},\overline{\lambda},\overline{{\boldsymbol{\varphi}}},\overline{{\boldsymbol{\theta}}}) and combining the equations results in

𝝈¯fd𝕃2(Ωf)2+𝐮¯p𝐋2(Ωp)2+|𝝋¯𝜽¯|𝙱𝙹𝚂20,\|\overline{{\boldsymbol{\sigma}}}^{\mathrm{d}}_{f}\|^{2}_{\mathbb{L}^{2}(\Omega_{f})}+\|\overline{\mathbf{u}}_{p}\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+|\overline{{\boldsymbol{\varphi}}}-\overline{{\boldsymbol{\theta}}}|^{2}_{\mathtt{BJS}}\leq 0\,, (4.33)

implying 𝝈¯fd=𝟎,𝐮¯p=𝟎\overline{{\boldsymbol{\sigma}}}^{\mathrm{d}}_{f}={\mathbf{0}},\overline{\mathbf{u}}_{p}={\mathbf{0}}, and (𝝋¯𝜽¯)𝐭f,j=0(\overline{{\boldsymbol{\varphi}}}-\overline{{\boldsymbol{\theta}}})\cdot{\mathbf{t}}_{f,j}=0. The inf-sup conditions (4.15)–(4.16), together with (4.3), imply that 𝐮¯f=𝟎,𝜸¯f=0,𝝋¯=𝟎\overline{\mathbf{u}}_{f}={\mathbf{0}},\overline{{\boldsymbol{\gamma}}}_{f}=0,\overline{{\boldsymbol{\varphi}}}={\mathbf{0}}, and λ¯=0\overline{\lambda}=0. Then (4.33) yields 𝜽¯𝐭f,j=0\overline{{\boldsymbol{\theta}}}\cdot{\mathbf{t}}_{f,j}=0. In turn, the fifth equation in (4.3) implies that 𝜽¯𝐧p,ξΓfp=0\left<\overline{{\boldsymbol{\theta}}}\cdot{\mathbf{n}}_{p},\xi\right>_{\Gamma_{fp}}=0 for all ξH1/2(Γfp)\xi\in\mathrm{H}^{1/2}(\Gamma_{fp}). Note that 𝐧p{\mathbf{n}}_{p} may be discontinuous on Γfp\Gamma_{fp}, thus 𝜽¯𝐧pL2(Γfp)\overline{{\boldsymbol{\theta}}}\cdot{\mathbf{n}}_{p}\in\mathrm{L}^{2}(\Gamma_{fp}). Since H1/2(Γfp)\mathrm{H}^{1/2}(\Gamma_{fp}) is dense in L2(Γfp)\mathrm{L}^{2}(\Gamma_{fp}), then 𝜽¯𝐧p=0\overline{{\boldsymbol{\theta}}}\cdot{\mathbf{n}}_{p}=0, and we conclude that 𝜽¯=𝟎\overline{{\boldsymbol{\theta}}}={\mathbf{0}}. In addition, taking 𝐯f=𝐝𝐢𝐯(𝝈¯f)𝐕f{\mathbf{v}}_{f}=\mathbf{div}(\overline{{\boldsymbol{\sigma}}}_{f})\in\mathbf{V}_{f} in the third equation of (4.3) we deduce that 𝐝𝐢𝐯(𝝈¯f)=𝟎\mathbf{div}(\overline{{\boldsymbol{\sigma}}}_{f})={\mathbf{0}}, which, combined with (4.2)–(4.3), yields 𝝈¯f=𝟎\overline{{\boldsymbol{\sigma}}}_{f}={\mathbf{0}}, completing the proof. \square

Remark 4.3

As we noted in Remark 3.1, the fourth equation in (3.2) can be used to recover the non-differentiated equation (3.7). In particular, recalling the initial data construction (4.23), let

t[0,T],𝜼p(t)=𝜼p,0+0t𝐮s(s)𝑑s,𝝆p(t)=𝝆p,0+0t𝜸p(s)𝑑s,𝝎(t)=𝝎0+0t𝜽(s)𝑑s.\forall\,t\in[0,T],\quad{\boldsymbol{\eta}}_{p}(t)={\boldsymbol{\eta}}_{p,0}+\int^{t}_{0}\mathbf{u}_{s}(s)\,ds,\quad{\boldsymbol{\rho}}_{p}(t)={\boldsymbol{\rho}}_{p,0}+\int^{t}_{0}{\boldsymbol{\gamma}}_{p}(s)\,ds,\quad{\boldsymbol{\omega}}(t)={\boldsymbol{\omega}}_{0}+\int^{t}_{0}{\boldsymbol{\theta}}(s)\,ds.

Then (3.7) follows from integrating the fourth equation in (3.2) from 0 to t(0,T]t\in(0,T] and using the first equation in (4.23).

We end this section with a stability bound for the solution of (3.11). We will use the inf-sup condition

ppWp+λΛpcsup𝟎𝐯p𝐕pbp(𝐯p,pp)+bΓ(𝐯p,λ)𝐯p𝐕p,\|p_{p}\|_{\mathrm{W}_{p}}+\|\lambda\|_{\Lambda_{p}}\,\leq\,c\,\sup_{{\mathbf{0}}\neq{\mathbf{v}}_{p}\in\mathbf{V}_{p}}\frac{b_{p}({\mathbf{v}}_{p},p_{p})+b_{\Gamma}({\mathbf{v}}_{p},\lambda)}{\|{\mathbf{v}}_{p}\|_{\mathbf{V}_{p}}}, (4.34)

which follows from a slight adaptation of [36, Lemma 3.3].

Theorem 4.12

For the solution of (3.11), assuming sufficient regularity of the data, there exists a positive constant CC independent of s0s_{0} such that

𝝈fL(0,T;𝕏f)+𝝈fL2(0,T;𝕏f)+𝐮pL(0,T;𝐋2(Ωp))+𝐮pL2(0,T;𝐕p)+|𝝋𝜽|L(0,T;𝙱𝙹𝚂)\displaystyle\displaystyle\|{\boldsymbol{\sigma}}_{f}\|_{\mathrm{L}^{\infty}(0,T;\mathbb{X}_{f})}+\|{\boldsymbol{\sigma}}_{f}\|_{\mathrm{L}^{2}(0,T;\mathbb{X}_{f})}+\|\mathbf{u}_{p}\|_{\mathrm{L}^{\infty}(0,T;\mathbf{L}^{2}(\Omega_{p}))}+\|\mathbf{u}_{p}\|_{\mathrm{L}^{2}(0,T;\mathbf{V}_{p})}+|{\boldsymbol{\varphi}}-{\boldsymbol{\theta}}|_{\mathrm{L}^{\infty}(0,T;\mathtt{BJS})}
+|𝝋𝜽|L2(0,T;𝙱𝙹𝚂)+λL(0,T;Λp)+𝝋¯L2(0,T;𝐘)+𝐮¯L2(0,T;𝐙)+A1/2(𝝈p)L(0,T;𝕃2(Ωp))\displaystyle\displaystyle\quad+|{\boldsymbol{\varphi}}-{\boldsymbol{\theta}}|_{\mathrm{L}^{2}(0,T;\mathtt{BJS})}+\|\lambda\|_{\mathrm{L}^{\infty}(0,T;\Lambda_{p})}+\|\underline{\boldsymbol{\varphi}}\|_{\mathrm{L}^{2}(0,T;\mathbf{Y})}+\|\underline{\mathbf{u}}\|_{\mathrm{L}^{2}(0,T;\mathbf{Z})}+\|A^{1/2}({\boldsymbol{\sigma}}_{p})\|_{\mathrm{L}^{\infty}(0,T;\mathbb{L}^{2}(\Omega_{p}))}
+𝐝𝐢𝐯(𝝈p)L(0,T;𝐋2(Ωp))+𝐝𝐢𝐯(𝝈p)L2(0,T;𝐋2(Ωp))+ppL(0,T;Wp)+ppL2(0,T;Wp)\displaystyle\displaystyle\quad+\|\mathbf{div}({\boldsymbol{\sigma}}_{p})\|_{\mathrm{L}^{\infty}(0,T;\mathbf{L}^{2}(\Omega_{p}))}+\|\mathbf{div}({\boldsymbol{\sigma}}_{p})\|_{\mathrm{L}^{2}(0,T;\mathbf{L}^{2}(\Omega_{p}))}+\|p_{p}\|_{\mathrm{L}^{\infty}(0,T;\mathrm{W}_{p})}+\|p_{p}\|_{\mathrm{L}^{2}(0,T;\mathrm{W}_{p})}
+tA1/2(𝝈p+αppp𝐈)L2(0,T;𝕃2(Ωp))+s0tppL2(0,T;Wp)\displaystyle\displaystyle\quad+\|\partial_{t}\,A^{1/2}({\boldsymbol{\sigma}}_{p}+\alpha_{p}p_{p}\mathbf{I})\|_{\mathrm{L}^{2}(0,T;\mathbb{L}^{2}(\Omega_{p}))}+\sqrt{s_{0}}\|\partial_{t}\,p_{p}\|_{\mathrm{L}^{2}(0,T;\mathrm{W}_{p})} (4.35)
C(𝐟fH1(0,T;𝐕f)+𝐟pH1(0,T;𝐕s)+qfH1(0,T;𝕏f)+qpH1(0,T;Wp)\displaystyle\displaystyle\leq C\,\Big{(}\|\mathbf{f}_{f}\|_{\mathrm{H}^{1}(0,T;\mathbf{V}^{\prime}_{f})}+\|\mathbf{f}_{p}\|_{\mathrm{H}^{1}(0,T;\mathbf{V}^{\prime}_{s})}+\|q_{f}\|_{\mathrm{H}^{1}(0,T;\mathbb{X}^{\prime}_{f})}+\|q_{p}\|_{\mathrm{H}^{1}(0,T;\mathrm{W}^{\prime}_{p})}
+(1+s0)pp,0Wp+𝐊pp,0H1(Ωp)).\displaystyle\displaystyle\quad\qquad+(1+\sqrt{s_{0}})\|p_{p,0}\|_{\mathrm{W}_{p}}+\|\mathbf{K}\nabla p_{p,0}\|_{\mathrm{H}^{1}(\Omega_{p})}\Big{)}.

Proof. We begin by choosing (𝝉¯,𝝍¯,𝐯¯)=(𝝈¯,𝝋¯,𝐮¯)(\underline{{\boldsymbol{\tau}}},\underline{\boldsymbol{\psi}},\underline{{\mathbf{v}}})=(\underline{{\boldsymbol{\sigma}}},\underline{\boldsymbol{\varphi}},\underline{\mathbf{u}}) in (3.2) to get

12t(A1/2(𝝈p+αppp𝐈)𝕃2(Ωp)2+s0ppWp2)+12μ𝝈fd𝕃2(Ωf)2+ap(𝐮p,𝐮p)+c𝙱𝙹𝚂(𝝋,𝜽;𝝋,𝜽)\displaystyle\displaystyle\frac{1}{2}\,\partial_{t}\,\Big{(}\|A^{1/2}({\boldsymbol{\sigma}}_{p}+\alpha_{p}\,p_{p}\,\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+s_{0}\,\|p_{p}\|^{2}_{\mathrm{W}_{p}}\Big{)}+\frac{1}{2\,\mu}\,\|{\boldsymbol{\sigma}}^{\mathrm{d}}_{f}\|^{2}_{\mathbb{L}^{2}(\Omega_{f})}+a_{p}(\mathbf{u}_{p},\mathbf{u}_{p})+c_{\mathtt{BJS}}({\boldsymbol{\varphi}},{\boldsymbol{\theta}};{\boldsymbol{\varphi}},{\boldsymbol{\theta}})
=1n(qf𝐈,𝝈f)Ωf+(qp,pp)Ωp+(𝐟f,𝐮f)Ωf+(𝐟p,𝐮s)Ωp.\displaystyle\displaystyle\quad\,=\,-\frac{1}{n}\,(q_{f}\,\mathbf{I},{\boldsymbol{\sigma}}_{f})_{\Omega_{f}}+(q_{p},p_{p})_{\Omega_{p}}+(\mathbf{f}_{f},\mathbf{u}_{f})_{\Omega_{f}}+(\mathbf{f}_{p},\mathbf{u}_{s})_{\Omega_{p}}. (4.36)

Next, we integrate (4.3) from 0 to t(0,T]t\in(0,T], use the coercivity bounds (4.7)–(4.8), and apply the Cauchy–Schwarz and Young’s inequalities, to find

A1/2(𝝈p+αppp𝐈)(t)𝕃2(Ωp)2+s0pp(t)Wp2+0t(𝝈fd𝕃2(Ωf)2+𝐮p𝐋2(Ωp)2+|𝝋𝜽|𝙱𝙹𝚂2)𝑑s\displaystyle\displaystyle\|A^{1/2}({\boldsymbol{\sigma}}_{p}+\alpha_{p}\,p_{p}\,\mathbf{I})(t)\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+s_{0}\|p_{p}(t)\|^{2}_{\mathrm{W}_{p}}+\int^{t}_{0}\Big{(}\|{\boldsymbol{\sigma}}_{f}^{\mathrm{d}}\|^{2}_{\mathbb{L}^{2}(\Omega_{f})}+\|\mathbf{u}_{p}\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+|{\boldsymbol{\varphi}}-{\boldsymbol{\theta}}|^{2}_{\mathtt{BJS}}\Big{)}\,ds
C(0t(𝐟f𝐕f2+𝐟p𝐕s2+qf𝕏f2+qpWp2)ds+A1/2(𝝈p(0)+αppp(0)𝐈)𝕃2(Ωp)2\displaystyle\displaystyle\quad\leq\,C\,\Bigg{(}\int^{t}_{0}\Big{(}\|\mathbf{f}_{f}\|^{2}_{\mathbf{V}^{\prime}_{f}}+\|\mathbf{f}_{p}\|^{2}_{\mathbf{V}^{\prime}_{s}}+\|q_{f}\|^{2}_{\mathbb{X}^{\prime}_{f}}+\|q_{p}\|^{2}_{\mathrm{W}^{\prime}_{p}}\Big{)}\,ds+\|A^{1/2}({\boldsymbol{\sigma}}_{p}(0)+\alpha_{p}\,p_{p}(0)\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})} (4.37)
+s0pp(0)Wp2)+δt0(𝝈f𝕏f2+ppWp2+𝐮f𝐕f2+𝐮s𝐕s2)ds,\displaystyle\displaystyle\qquad\,+\,s_{0}\,\|p_{p}(0)\|^{2}_{\mathrm{W}_{p}}\Bigg{)}\,+\,\delta\int^{t}_{0}\Big{(}\|{\boldsymbol{\sigma}}_{f}\|^{2}_{\mathbb{X}_{f}}+\|p_{p}\|^{2}_{\mathrm{W}_{p}}+\|\mathbf{u}_{f}\|^{2}_{\mathbf{V}_{f}}+\|\mathbf{u}_{s}\|^{2}_{\mathbf{V}_{s}}\Big{)}\,ds,

where δ>0\delta>0 will be suitably chosen. In addition, (4.34) and the first equation in (3.2), yields

ppWp+λΛpcsup𝟎𝐯p𝐕pbp(𝐯p,pp)+bΓ(𝐯p,λ)𝐯p𝐕p=csup𝟎𝐯p𝐕pap(𝐮p,𝐯p)𝐯p𝐕pC𝐮p𝐋2(Ωp).\|p_{p}\|_{\mathrm{W}_{p}}+\|\lambda\|_{\Lambda_{p}}\,\leq\,c\,\sup_{{\mathbf{0}}\neq{\mathbf{v}}_{p}\in\mathbf{V}_{p}}\frac{b_{p}({\mathbf{v}}_{p},p_{p})+b_{\Gamma}({\mathbf{v}}_{p},\lambda)}{\|{\mathbf{v}}_{p}\|_{\mathbf{V}_{p}}}\,=\,-c\,\sup_{{\mathbf{0}}\neq{\mathbf{v}}_{p}\in\mathbf{V}_{p}}\frac{a_{p}(\mathbf{u}_{p},{\mathbf{v}}_{p})}{\|{\mathbf{v}}_{p}\|_{\mathbf{V}_{p}}}\,\leq\,C\,\|\mathbf{u}_{p}\|_{\mathbf{L}^{2}(\Omega_{p})}. (4.38)

Taking 𝝉¯𝐕\underline{{\boldsymbol{\tau}}}\in\mathbf{V} (cf. (4.12)) in the first equation of (3.11), using the continuity of the operators \mathcal{E} and 𝒜\mathcal{A} in Lemma 4.3, and the inf-sup condition of 1\mathcal{B}_{1} for 𝝋¯𝐘\underline{\boldsymbol{\varphi}}\in\mathbf{Y} (cf. (4.15)), we deduce

β1𝝋¯𝐘sup𝟎𝝉¯𝐕1(𝝉¯)(𝝋¯)𝝉¯𝐗=sup𝟎𝝉¯𝐕(t+𝒜)(𝝈¯)(𝝉¯)𝐅(𝝉¯)𝝉¯𝐗C(𝝈f𝕏f+𝐮p𝐕p+tA1/2(𝝈p+αppp𝐈)𝕃2(Ωp)+s0tppWp+qf𝕏f+qpWp).\begin{array}[]{l}\displaystyle\beta_{1}\,\|\underline{\boldsymbol{\varphi}}\|_{\mathbf{Y}}\,\leq\,\sup_{{\mathbf{0}}\neq\underline{{\boldsymbol{\tau}}}\in\mathbf{V}}\,\frac{\mathcal{B}_{1}(\underline{{\boldsymbol{\tau}}})(\underline{\boldsymbol{\varphi}})}{\|\underline{{\boldsymbol{\tau}}}\|_{\mathbf{X}}}\,=\,-\,\sup_{{\mathbf{0}}\neq\underline{{\boldsymbol{\tau}}}\in\mathbf{V}}\,\frac{(\partial_{t}\,\mathcal{E}+\mathcal{A})(\underline{{\boldsymbol{\sigma}}})(\underline{{\boldsymbol{\tau}}})-\mathbf{F}(\underline{{\boldsymbol{\tau}}})}{\|\underline{{\boldsymbol{\tau}}}\|_{\mathbf{X}}}\\[12.91663pt] \displaystyle\leq C\left(\|{\boldsymbol{\sigma}}_{f}\|_{\mathbb{X}_{f}}+\|\mathbf{u}_{p}\|_{\mathbf{V}_{p}}+\|\partial_{t}\,A^{1/2}({\boldsymbol{\sigma}}_{p}+\alpha_{p}p_{p}\mathbf{I})\|_{\mathbb{L}^{2}(\Omega_{p})}+\sqrt{s_{0}}\|\partial_{t}\,p_{p}\|_{\mathrm{W}_{p}}+\|q_{f}\|_{\mathbb{X}^{\prime}_{f}}+\|q_{p}\|_{\mathrm{W}^{\prime}_{p}}\right).\end{array} (4.39)

In turn, from the first equation in (3.11), applying the inf-sup condition of \mathcal{B} (cf. (4.16)) for 𝐮¯=(𝐮f,𝐮s,𝜸f,𝜸p)𝐙\underline{\mathbf{u}}=(\mathbf{u}_{f},\mathbf{u}_{s},{\boldsymbol{\gamma}}_{f},{\boldsymbol{\gamma}}_{p})\in\mathbf{Z}, and (4.39), we obtain

β𝐮¯𝐙sup𝟎𝝉¯𝐗(𝝉¯)(𝐮¯)𝝉¯𝐗=sup𝟎𝝉¯𝐗(t+𝒜)(𝝈¯)(𝝉¯)+1(𝝉¯)(𝝋¯)𝐅(𝝉¯)𝝉¯𝐗C(𝝈f𝕏f+𝐮p𝐕p+tA1/2(𝝈p+αppp𝐈)𝕃2(Ωp)+s0tppWp+qf𝕏f+qpWp).\begin{array}[]{l}\displaystyle\beta\,\|\underline{\mathbf{u}}\|_{\mathbf{Z}}\,\leq\,\sup_{{\mathbf{0}}\neq\underline{{\boldsymbol{\tau}}}\in\mathbf{X}}\frac{\mathcal{B}(\underline{{\boldsymbol{\tau}}})(\underline{\mathbf{u}})}{\|\underline{{\boldsymbol{\tau}}}\|_{\mathbf{X}}}\,=\,-\,\sup_{{\mathbf{0}}\neq\underline{{\boldsymbol{\tau}}}\in\mathbf{X}}\frac{(\partial_{t}\,\mathcal{E}+\mathcal{A})(\underline{{\boldsymbol{\sigma}}})(\underline{{\boldsymbol{\tau}}})+\mathcal{B}_{1}(\underline{{\boldsymbol{\tau}}})(\underline{\boldsymbol{\varphi}})-\mathbf{F}(\underline{{\boldsymbol{\tau}}})}{\|\underline{{\boldsymbol{\tau}}}\|_{\mathbf{X}}}\\[12.91663pt] \displaystyle\leq C\left(\|{\boldsymbol{\sigma}}_{f}\|_{\mathbb{X}_{f}}+\|\mathbf{u}_{p}\|_{\mathbf{V}_{p}}+\|\partial_{t}\,A^{1/2}({\boldsymbol{\sigma}}_{p}+\alpha_{p}p_{p}\mathbf{I})\|_{\mathbb{L}^{2}(\Omega_{p})}+\sqrt{s_{0}}\|\partial_{t}\,p_{p}\|_{\mathrm{W}_{p}}+\|q_{f}\|_{\mathbb{X}^{\prime}_{f}}+\|q_{p}\|_{\mathrm{W}^{\prime}_{p}}\right).\end{array} (4.40)

In addition, taking wp=div(𝐮p)w_{p}=\mathrm{div}(\mathbf{u}_{p}), 𝐯f=𝐝𝐢𝐯(𝝈f){\mathbf{v}}_{f}=\mathbf{div}({\boldsymbol{\sigma}}_{f}), and 𝐯s=𝐝𝐢𝐯(𝝈p){\mathbf{v}}_{s}=\mathbf{div}({\boldsymbol{\sigma}}_{p}) in the first and third equations of (3.2), we get

𝐝𝐢𝐯(𝝈f)𝐋2(Ωf)𝐟f𝐕f,𝐝𝐢𝐯(𝝈p)𝐋2(Ωp)𝐟p𝐕s,div(𝐮p)L2(Ωp)C(tA1/2(𝝈p+αppp𝐈)𝕃2(Ωp)+s0tppWp+qpWp).\begin{array}[]{c}\displaystyle\|\mathbf{div}({\boldsymbol{\sigma}}_{f})\|_{\mathbf{L}^{2}(\Omega_{f})}\,\leq\,\|\mathbf{f}_{f}\|_{\mathbf{V}^{\prime}_{f}},\quad\|\mathbf{div}({\boldsymbol{\sigma}}_{p})\|_{\mathbf{L}^{2}(\Omega_{p})}\,\leq\,\|\mathbf{f}_{p}\|_{\mathbf{V}^{\prime}_{s}}\,,\\[8.61108pt] \displaystyle\|\mathrm{div}(\mathbf{u}_{p})\|_{\mathrm{L}^{2}(\Omega_{p})}\,\leq\,C\left(\|\partial_{t}\,A^{1/2}({\boldsymbol{\sigma}}_{p}+\alpha_{p}p_{p}\mathbf{I})\|_{\mathbb{L}^{2}(\Omega_{p})}+\sqrt{s_{0}}\|\partial_{t}\,p_{p}\|_{\mathrm{W}_{p}}+\|q_{p}\|_{\mathrm{W}^{\prime}_{p}}\right).\end{array} (4.41)

Then, combining (4.3)–(4.41), using (4.2)–(4.3), and choosing δ\delta small enough, we obtain

A1/2(𝝈p+αppp𝐈)(t)𝕃2(Ωp)2+s0pp(t)Wp2+0t(𝝈f𝕏f2+𝐮p𝐕p2+𝐝𝐢𝐯(𝝈p)𝐋2(Ωp)2+ppWp2+|𝝋𝜽|𝙱𝙹𝚂2+𝝋¯𝐘2+𝐮¯𝐙2)𝑑sC(0t(𝐟f𝐕f2+𝐟p𝐕s2+qf𝕏f2+qpWp2)ds+A1/2(𝝈p(0)+αppp(0)𝐈)𝕃2(Ωp)2+s0pp(0)Wp2+0t(tA1/2(𝝈p+αppp𝐈)𝕃2(Ωp)2+s0tppWp2)ds).\begin{array}[]{l}\displaystyle\|A^{1/2}({\boldsymbol{\sigma}}_{p}+\alpha_{p}p_{p}\mathbf{I})(t)\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+s_{0}\|p_{p}(t)\|^{2}_{\mathrm{W}_{p}}\\[12.91663pt] \displaystyle\quad+\,\int^{t}_{0}\Big{(}\|{\boldsymbol{\sigma}}_{f}\|^{2}_{\mathbb{X}_{f}}+\|\mathbf{u}_{p}\|^{2}_{\mathbf{V}_{p}}+\|\mathbf{div}({\boldsymbol{\sigma}}_{p})\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+\|p_{p}\|^{2}_{\mathrm{W}_{p}}+|{\boldsymbol{\varphi}}-{\boldsymbol{\theta}}|^{2}_{\mathtt{BJS}}+\|\underline{\boldsymbol{\varphi}}\|^{2}_{\mathbf{Y}}+\|\underline{\mathbf{u}}\|^{2}_{\mathbf{Z}}\Big{)}\,ds\\[12.91663pt] \displaystyle\leq\,C\,\Bigg{(}\int^{t}_{0}\Big{(}\|\mathbf{f}_{f}\|^{2}_{\mathbf{V}^{\prime}_{f}}+\|\mathbf{f}_{p}\|^{2}_{\mathbf{V}^{\prime}_{s}}+\|q_{f}\|^{2}_{\mathbb{X}^{\prime}_{f}}+\|q_{p}\|^{2}_{\mathrm{W}^{\prime}_{p}}\Big{)}\,ds+\|A^{1/2}({\boldsymbol{\sigma}}_{p}(0)+\alpha_{p}\,p_{p}(0)\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}\\[12.91663pt] \displaystyle\quad\,+\,s_{0}\,\|p_{p}(0)\|^{2}_{\mathrm{W}_{p}}\,+\,\int^{t}_{0}\Big{(}\|\partial_{t}\,A^{1/2}({\boldsymbol{\sigma}}_{p}+\alpha_{p}p_{p}\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+s_{0}\|\partial_{t}\,p_{p}\|^{2}_{\mathrm{W}_{p}}\Big{)}\,ds\Bigg{)}.\end{array} (4.42)

Finally, in order to bound the last two terms in (4.42), we test (3.2) with 𝝉¯=(t𝝈f,𝐮p,t𝝈p,tpp)𝐗\underline{{\boldsymbol{\tau}}}=(\partial_{t}\,{\boldsymbol{\sigma}}_{f},\mathbf{u}_{p},\partial_{t}\,{\boldsymbol{\sigma}}_{p},\partial_{t}\,p_{p})\linebreak\in\mathbf{X}, 𝝍¯=(𝝋,𝜽,tλ)𝐘\underline{\boldsymbol{\psi}}=({\boldsymbol{\varphi}},{\boldsymbol{\theta}},\partial_{t}\,\lambda)\in\mathbf{Y}, 𝐯¯=(𝐮f,𝐮s,𝜸f,𝜸p)𝐙\underline{{\mathbf{v}}}=(\mathbf{u}_{f},\mathbf{u}_{s},{\boldsymbol{\gamma}}_{f},{\boldsymbol{\gamma}}_{p})\in\mathbf{Z} and differentiate in time the rows in (3.2) associated to 𝐯p,𝝍,ϕ,𝐯f,𝐯s,𝝌f{\mathbf{v}}_{p},{\boldsymbol{\psi}},{\boldsymbol{\phi}},{\mathbf{v}}_{f},{\mathbf{v}}_{s},{\boldsymbol{\chi}}_{f} and 𝝌p{\boldsymbol{\chi}}_{p}, to deduce

12t(12μ𝝈fd𝕃2(Ωf)2+ap(𝐮p,𝐮p)+c𝙱𝙹𝚂(𝝋,𝜽;𝝋,𝜽))+tA1/2(𝝈p+αppp𝐈)𝕃2(Ωp)2+s0tppWp2=1n(qf𝐈,t𝝈f)Ωf+(qp,tpp)Ωp+(t𝐟f,𝐮f)Ωf+(t𝐟p,𝐮s)Ωp,\begin{array}[]{l}\displaystyle\frac{1}{2}\,\partial_{t}\,\Big{(}\frac{1}{2\,\mu}\,\|{\boldsymbol{\sigma}}^{\mathrm{d}}_{f}\|^{2}_{\mathbb{L}^{2}(\Omega_{f})}+a_{p}(\mathbf{u}_{p},\mathbf{u}_{p})+c_{\mathtt{BJS}}({\boldsymbol{\varphi}},{\boldsymbol{\theta}};{\boldsymbol{\varphi}},{\boldsymbol{\theta}})\Big{)}+\|\partial_{t}\,A^{1/2}({\boldsymbol{\sigma}}_{p}+\alpha_{p}\,p_{p}\,\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+s_{0}\,\|\partial_{t}\,p_{p}\|^{2}_{\mathrm{W}_{p}}\\[8.61108pt] \displaystyle\quad\,=\,\frac{1}{n}\,(q_{f}\,\mathbf{I},\partial_{t}\,{\boldsymbol{\sigma}}_{f})_{\Omega_{f}}+(q_{p},\partial_{t}\,p_{p})_{\Omega_{p}}+(\partial_{t}\,\mathbf{f}_{f},\mathbf{u}_{f})_{\Omega_{f}}+(\partial_{t}\,\mathbf{f}_{p},\mathbf{u}_{s})_{\Omega_{p}},\end{array}

which together with the identities

0t(qf𝐈,t𝝈f)Ωf=(qf𝐈,𝝈f)Ωf|0t0t(tqf𝐈,𝝈f)Ωf,0t(qp,tpp)Ωp=(qp,pp)Ωp|0t0t(tqp,pp)Ωp,\begin{array}[]{c}\displaystyle\int^{t}_{0}(q_{f}\,\mathbf{I},\partial_{t}\,{\boldsymbol{\sigma}}_{f})_{\Omega_{f}}=(q_{f}\,\mathbf{I},{\boldsymbol{\sigma}}_{f})_{\Omega_{f}}\Big{|}^{t}_{0}-\int^{t}_{0}(\partial_{t}\,q_{f}\,\mathbf{I},{\boldsymbol{\sigma}}_{f})_{\Omega_{f}},\\[8.61108pt] \displaystyle\int^{t}_{0}(q_{p},\partial_{t}\,p_{p})_{\Omega_{p}}=(q_{p},p_{p})_{\Omega_{p}}\Big{|}^{t}_{0}-\int^{t}_{0}(\partial_{t}\,q_{p},p_{p})_{\Omega_{p}},\end{array}

and the positive semi-definite property of 𝒞\mathcal{C} (cf. (4.8)), yields

𝝈fd(t)𝕃2(Ωf)2+𝐮p(t)𝐋2(Ωp)2+|𝝋(t)𝜽(t)|𝙱𝙹𝚂2+0t(tA1/2(𝝈p+αppp𝐈)𝕃2(Ωp)2+s0tppWp2)𝑑s\displaystyle\displaystyle\|{\boldsymbol{\sigma}}^{\mathrm{d}}_{f}(t)\|^{2}_{\mathbb{L}^{2}(\Omega_{f})}+\|\mathbf{u}_{p}(t)\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+|{\boldsymbol{\varphi}}(t)-{\boldsymbol{\theta}}(t)|^{2}_{\mathtt{BJS}}+\int^{t}_{0}\Big{(}\|\partial_{t}A^{1/2}({\boldsymbol{\sigma}}_{p}+\alpha_{p}p_{p}\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+s_{0}\|\partial_{t}p_{p}\|^{2}_{\mathrm{W}_{p}}\Big{)}\,ds
C(0t(t𝐟f𝐕f2+t𝐟p𝐕s2+tqfL2(Ωf)2+tqpWp2)ds+qf(t)𝕏f2+qp(t)Wp2\displaystyle\displaystyle\leq\,C\,\Bigg{(}\int^{t}_{0}\Big{(}\|\partial_{t}\,\mathbf{f}_{f}\|^{2}_{\mathbf{V}^{\prime}_{f}}+\|\partial_{t}\,\mathbf{f}_{p}\|^{2}_{\mathbf{V}^{\prime}_{s}}+\|\partial_{t}\,q_{f}\|^{2}_{\mathrm{L}^{2}(\Omega_{f})}+\|\partial_{t}\,q_{p}\|^{2}_{\mathrm{W}^{\prime}_{p}}\Big{)}\,ds+\|q_{f}(t)\|^{2}_{\mathbb{X}^{\prime}_{f}}+\|q_{p}(t)\|^{2}_{\mathrm{W}^{\prime}_{p}}
+qf(0)𝕏f2+qp(0)Wp2+𝝈f(0)𝕏f2+𝐮p(0)𝐋2(Ωp)2+pp(0)Wp2+|𝝋(0)𝜽(0)|𝙱𝙹𝚂2)\displaystyle\displaystyle\quad\,+\,\,\|q_{f}(0)\|^{2}_{\mathbb{X}^{\prime}_{f}}+\|q_{p}(0)\|^{2}_{\mathrm{W}^{\prime}_{p}}+\|{\boldsymbol{\sigma}}_{f}(0)\|^{2}_{\mathbb{X}_{f}}+\|\mathbf{u}_{p}(0)\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+\|p_{p}(0)\|^{2}_{\mathrm{W}_{p}}+|{\boldsymbol{\varphi}}(0)-{\boldsymbol{\theta}}(0)|^{2}_{\mathtt{BJS}}\Bigg{)} (4.43)
+δ1(𝝈f(t)𝕏f2+pp(t)Wp2)+δ20t(𝝈f𝕃2(Ωf)2+ppWp2+𝐮f𝐕f2+𝐮s𝐕s2)𝑑s.\displaystyle\displaystyle\quad\,+\,\,\delta_{1}\,\Big{(}\|{\boldsymbol{\sigma}}_{f}(t)\|^{2}_{\mathbb{X}_{f}}+\|p_{p}(t)\|^{2}_{\mathrm{W}_{p}}\Big{)}+\delta_{2}\,\int^{t}_{0}\Big{(}\|{\boldsymbol{\sigma}}_{f}\|^{2}_{\mathbb{L}^{2}(\Omega_{f})}+\|p_{p}\|^{2}_{\mathrm{W}_{p}}+\|\mathbf{u}_{f}\|^{2}_{\mathbf{V}_{f}}+\|\mathbf{u}_{s}\|^{2}_{\mathbf{V}_{s}}\Big{)}\,ds.

Using (4.38) and the first two inequalities in (4.41), and choosing δ1\delta_{1} small enough, we derive from (4.3) and (4.2)–(4.3) that

𝝈f(t)𝕏f2+𝐮p(t)𝐋2(Ωp)2+𝐝𝐢𝐯(𝝈p(t))𝐋2(Ωp)2+|𝝋(t)𝜽(t)|𝙱𝙹𝚂2+pp(t)Wp2+λ(t)Λp2\displaystyle\displaystyle\|{\boldsymbol{\sigma}}_{f}(t)\|^{2}_{\mathbb{X}_{f}}+\|\mathbf{u}_{p}(t)\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+\|\mathbf{div}({\boldsymbol{\sigma}}_{p}(t))\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+|{\boldsymbol{\varphi}}(t)-{\boldsymbol{\theta}}(t)|^{2}_{\mathtt{BJS}}+\|p_{p}(t)\|^{2}_{\mathrm{W}_{p}}+\|\lambda(t)\|^{2}_{\Lambda_{p}}
+0t(tA1/2(𝝈p+αppp𝐈)𝕃2(Ωp)2+s0tppWp2)𝑑s\displaystyle\,\displaystyle\ +\,\int^{t}_{0}\Big{(}\|\partial_{t}\,A^{1/2}({\boldsymbol{\sigma}}_{p}+\alpha_{p}p_{p}\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+s_{0}\|\partial_{t}\,p_{p}\|^{2}_{\mathrm{W}_{p}}\Big{)}\,ds
C(0t(t𝐟f𝐕f2+t𝐟p𝐕s2+tqfL2(Ωf)2+tqpWp2)ds+𝐟f(t)𝐕f2+𝐟p(t)𝐕s2\displaystyle\displaystyle\leq\,C\,\Bigg{(}\int^{t}_{0}\Big{(}\|\partial_{t}\,\mathbf{f}_{f}\|^{2}_{\mathbf{V}^{\prime}_{f}}+\|\partial_{t}\,\mathbf{f}_{p}\|^{2}_{\mathbf{V}^{\prime}_{s}}+\|\partial_{t}\,q_{f}\|^{2}_{\mathrm{L}^{2}(\Omega_{f})}+\|\partial_{t}q_{p}\|^{2}_{\mathrm{W}^{\prime}_{p}}\Big{)}\,ds+\|\mathbf{f}_{f}(t)\|^{2}_{\mathbf{V}^{\prime}_{f}}+\|\mathbf{f}_{p}(t)\|^{2}_{\mathbf{V}^{\prime}_{s}} (4.44)
+qf(t)𝕏f2+qp(t)Wp2+qf(0)𝕏f2+qp(0)Wp2+𝝈f(0)𝕏f2+𝐮p(0)𝐋2(Ωp)2+pp(0)Wp2\displaystyle\displaystyle\quad+\,\|q_{f}(t)\|^{2}_{\mathbb{X}^{\prime}_{f}}+\|q_{p}(t)\|^{2}_{\mathrm{W}^{\prime}_{p}}+\|q_{f}(0)\|^{2}_{\mathbb{X}^{\prime}_{f}}+\|q_{p}(0)\|^{2}_{\mathrm{W}^{\prime}_{p}}+\|{\boldsymbol{\sigma}}_{f}(0)\|^{2}_{\mathbb{X}_{f}}+\|\mathbf{u}_{p}(0)\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+\|p_{p}(0)\|^{2}_{\mathrm{W}_{p}}
+|𝝋(0)𝜽(0)|𝙱𝙹𝚂2)+δ2t0(𝝈f𝕏f2+ppWp2+𝐮f𝐕f2+𝐮s𝐕s2)ds.\displaystyle\displaystyle\quad+\,|{\boldsymbol{\varphi}}(0)-{\boldsymbol{\theta}}(0)|^{2}_{\mathtt{BJS}}\Bigg{)}+\delta_{2}\int^{t}_{0}\Big{(}\|{\boldsymbol{\sigma}}_{f}\|^{2}_{\mathbb{X}_{f}}+\|p_{p}\|^{2}_{\mathrm{W}_{p}}+\|\mathbf{u}_{f}\|^{2}_{\mathbf{V}_{f}}+\|\mathbf{u}_{s}\|^{2}_{\mathbf{V}_{s}}\Big{)}\,ds.

We next bound the initial data terms in (4.42) and (4.3). Recalling from Corollary 4.11 that (𝝈¯(0),𝝋(0),𝜽(0))=(𝝈¯0,𝝋0,𝜽0)(\underline{{\boldsymbol{\sigma}}}(0),{\boldsymbol{\varphi}}(0),{\boldsymbol{\theta}}(0))=(\underline{{\boldsymbol{\sigma}}}_{0},{\boldsymbol{\varphi}}_{0},{\boldsymbol{\theta}}_{0}), using the stability of the continuous initial data problems (4.20)–(4.23) and the steady-state version of the arguments leading to (4.42), we obtain

𝝈f(0)𝕏f2+𝐮p(0)𝐋2(Ωp)2+A1/2(𝝈p(0))𝕃2(Ωp)2+pp(0)Wp2+|𝝋(0)𝜽(0)|𝙱𝙹𝚂2C(pp,0Wp2+𝐊pp,0H1(Ωp)2+𝐟f(0)𝐕f2+𝐟p(0)𝐕s2+qf(0)𝕏f2),\begin{array}[]{l}\displaystyle\|{\boldsymbol{\sigma}}_{f}(0)\|^{2}_{\mathbb{X}_{f}}+\|\mathbf{u}_{p}(0)\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+\|A^{1/2}({\boldsymbol{\sigma}}_{p}(0))\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+\|p_{p}(0)\|^{2}_{\mathrm{W}_{p}}+|{\boldsymbol{\varphi}}(0)-{\boldsymbol{\theta}}(0)|^{2}_{\mathtt{BJS}}\\[8.61108pt] \quad\leq\,C\,\left(\|p_{p,0}\|^{2}_{\mathrm{W}_{p}}+\|\mathbf{K}\nabla p_{p,0}\|^{2}_{\mathrm{H}^{1}(\Omega_{p})}+\|\mathbf{f}_{f}(0)\|^{2}_{\mathbf{V}_{f}^{\prime}}+\|\mathbf{f}_{p}(0)\|^{2}_{\mathbf{V}_{s}^{\prime}}+\|q_{f}(0)\|^{2}_{\mathbb{X}_{f}^{\prime}}\right),\end{array} (4.45)

Therefore, combining (4.42) with (4.3) and (4.45), choosing δ2\delta_{2} small enough, and using the estimate (cf. (4.14)):

A1/2(𝝈p(t))𝕃2(Ωp)C(A1/2(𝝈p+αppp𝐈)(t)𝕃2(Ωp)+pp(t)Wp),\|A^{1/2}({\boldsymbol{\sigma}}_{p}(t))\|_{\mathbb{L}^{2}(\Omega_{p})}\leq C\,\left(\|A^{1/2}({\boldsymbol{\sigma}}_{p}+\alpha_{p}\,p_{p}\,\mathbf{I})(t)\|_{\mathbb{L}^{2}(\Omega_{p})}+\|p_{p}(t)\|_{\mathrm{W}_{p}}\right), (4.46)

and the Sobolev embedding of H1(0,T)\mathrm{H}^{1}(0,T) into L(0,T)\mathrm{L}^{\infty}(0,T), we conclude (4.12). \square

5 Semidiscrete continuous-in-time approximation

In this section we introduce and analyze the semidiscrete continuous-in-time approximation of (3.11). We analyze its solvability by employing the strategy developed in Section 4. In addition, we derive error estimates with rates of convergence.

Let 𝒯hf\mathcal{T}_{h}^{f} and 𝒯hp\mathcal{T}_{h}^{p} be shape-regular and quasi-uniform affine finite element partitions of Ωf\Omega_{f} and Ωp\Omega_{p}, respectively. The two partitions may be non-matching along the interface Γfp\Gamma_{fp}. For the discretization, we consider the following conforming finite element spaces:

𝕏fh×𝐕fh×fh𝕏f×𝐕f×f,𝕏ph×𝐕sh×ph𝕏p×𝐕s×p,𝐕ph×Wph𝐕p×Wp.\mathbb{X}_{fh}\times\mathbf{V}_{fh}\times\mathbb{Q}_{fh}\subset\mathbb{X}_{f}\times\mathbf{V}_{f}\times\mathbb{Q}_{f},\quad\mathbb{X}_{ph}\times\mathbf{V}_{sh}\times\mathbb{Q}_{ph}\subset\mathbb{X}_{p}\times\mathbf{V}_{s}\times\mathbb{Q}_{p},\quad\mathbf{V}_{ph}\times\mathrm{W}_{ph}\subset\mathbf{V}_{p}\times\mathrm{W}_{p}.

We take (𝕏fh,𝐕fh,fh)(\mathbb{X}_{fh},\mathbf{V}_{fh},\mathbb{Q}_{fh}) and (𝕏ph,𝐕sh,ph)(\mathbb{X}_{ph},\mathbf{V}_{sh},\mathbb{Q}_{ph}) to be any stable finite element spaces for mixed elasticity with weakly imposed stress symmetry, such as the Amara–Thomas [2], PEERS [9], Stenberg [55], Arnold–Falk–Winther [10, 11], or Cockburn–Gopalakrishnan–Guzman [27] families of spaces. We choose (𝐕ph,Wph)(\mathbf{V}_{ph},\mathrm{W}_{ph}) to be any stable mixed finite element Darcy spaces, such as the Raviart–Thomas or Brezzi-Douglas-Marini spaces [18]. For the Lagrange multipliers (𝚲fh,𝚲sh,Λph)({\boldsymbol{\Lambda}}_{fh},{\boldsymbol{\Lambda}}_{sh},\Lambda_{ph}) we consider the following two options of discrete spaces.

  • (S1)

    Conforming spaces:

    𝚲fh𝚲f,𝚲sh𝚲s,ΛphΛp,{\boldsymbol{\Lambda}}_{fh}\subset{\boldsymbol{\Lambda}}_{f},\quad{\boldsymbol{\Lambda}}_{sh}\subset{\boldsymbol{\Lambda}}_{s},\quad\Lambda_{ph}\subset\Lambda_{p}\,, (5.1)

    equipped with H1/2\mathrm{H}^{1/2}-norms as in (3.3). If the normal traces of the spaces 𝕏fh\mathbb{X}_{fh}, 𝕏ph\mathbb{X}_{ph}, or 𝐕ph\mathbf{V}_{ph} contain piecewise polynomials in Pk\mathrm{P}_{k} on simplices or Qk\mathrm{Q}_{k} on cubes with k1k\geq 1, where Pk\mathrm{P}_{k} denotes polynomials of total degree kk and Qk\mathrm{Q}_{k} stands for polynomials of degree kk in each variable, we take the Lagrange multiplier spaces to be continuous piecewise polynomials in Pk\mathrm{P}_{k} or Qk\mathrm{Q}_{k} on the traces of the corresponding subdomain grids. In the case of k=0k=0, we take the Lagrange multiplier spaces to be continuous piecewise polynomials in P1\mathrm{P}_{1} or Q1\mathrm{Q}_{1} on grids obtained by coarsening by two the traces of the subdomain grids.

  • (S2)

    Non-conforming spaces:

    𝚲fh:=𝕏fh𝐧f|Γfp,𝚲sh:=𝕏ph𝐧p|Γfp,Λph:=𝐕ph𝐧p|Γfp,{\boldsymbol{\Lambda}}_{fh}:=\mathbb{X}_{fh}{\mathbf{n}}_{f}|_{\Gamma_{fp}},\quad{\boldsymbol{\Lambda}}_{sh}:=\mathbb{X}_{ph}{\mathbf{n}}_{p}|_{\Gamma_{fp}},\quad\Lambda_{ph}:=\mathbf{V}_{ph}\cdot{\mathbf{n}}_{p}|_{\Gamma_{fp}}\,, (5.2)

    which consist of discontinuous piecewise polynomials and are equipped with L2\mathrm{L}^{2}-norms.

It is also possible to mix conforming and non-conforming choices, but we will focus on (S1) and (S2) for simplicity of the presentation.

Remark 5.1

We note that, since H1/2(Γfp)\mathrm{H}^{1/2}(\Gamma_{fp}) is dense in L2(Γfp)\mathrm{L}^{2}(\Gamma_{fp}), the last three equations in the continuous weak formulation (3.2) hold for test functions in L2(Γfp)\mathrm{L}^{2}(\Gamma_{fp}), assuming that the solution is smooth enough. In particular, these equations hold for ξhΛph\xi_{h}\in\Lambda_{ph}, 𝛙h𝚲fh{\boldsymbol{\psi}}_{h}\in{\boldsymbol{\Lambda}}_{fh}, and ϕh𝚲sh{\boldsymbol{\phi}}_{h}\in{\boldsymbol{\Lambda}}_{sh} in both the conforming case (S1) and the non-conforming case (S2).

Now, we group the spaces similarly to the continuous case:

𝐗h:=𝕏fh×𝐕ph×𝕏ph×Wph,𝐘h:=𝚲fh×𝚲sh×Λph,𝐙h:=𝐕fh×𝐕sh×fh×ph,𝝈¯h:=(𝝈fh,𝐮ph,𝝈ph,pph)𝐗h,𝝋¯h:=(𝝋h,𝜽h,λh)𝐘h,𝐮¯h:=(𝐮fh,𝐮sh,𝜸fh,𝜸ph)𝐙h,𝝉¯h:=(𝝉fh,𝐯ph,𝝉ph,wph)𝐗h,𝝍¯h:=(𝝍h,ϕh,ξh)𝐘h,𝐯¯h:=(𝐯fh,𝐯sh,𝝌fh,𝝌ph)𝐙h.\begin{array}[]{c}\displaystyle\mathbf{X}_{h}:=\mathbb{X}_{fh}\times\mathbf{V}_{ph}\times\mathbb{X}_{ph}\times\mathrm{W}_{ph},\quad\mathbf{Y}_{h}:={\boldsymbol{\Lambda}}_{fh}\times{\boldsymbol{\Lambda}}_{sh}\times\Lambda_{ph},\quad\mathbf{Z}_{h}:=\mathbf{V}_{fh}\times\mathbf{V}_{sh}\times\mathbb{Q}_{fh}\times\mathbb{Q}_{ph},\\[8.61108pt] \displaystyle\underline{{\boldsymbol{\sigma}}}_{h}:=({\boldsymbol{\sigma}}_{fh},\mathbf{u}_{ph},{\boldsymbol{\sigma}}_{ph},p_{ph})\in\mathbf{X}_{h},\quad\underline{\boldsymbol{\varphi}}_{h}:=({\boldsymbol{\varphi}}_{h},{\boldsymbol{\theta}}_{h},\lambda_{h})\in\mathbf{Y}_{h},\quad\underline{\mathbf{u}}_{h}:=(\mathbf{u}_{fh},\mathbf{u}_{sh},{\boldsymbol{\gamma}}_{fh},{\boldsymbol{\gamma}}_{ph})\in\mathbf{Z}_{h},\\[4.30554pt] \displaystyle\underline{{\boldsymbol{\tau}}}_{h}:=({\boldsymbol{\tau}}_{fh},{\mathbf{v}}_{ph},{\boldsymbol{\tau}}_{ph},w_{ph})\in\mathbf{X}_{h},\quad\underline{\boldsymbol{\psi}}_{h}:=({\boldsymbol{\psi}}_{h},{\boldsymbol{\phi}}_{h},\xi_{h})\in\mathbf{Y}_{h},\quad\underline{{\mathbf{v}}}_{h}:=({\mathbf{v}}_{fh},{\mathbf{v}}_{sh},{\boldsymbol{\chi}}_{fh},{\boldsymbol{\chi}}_{ph})\in\mathbf{Z}_{h}.\end{array}

The spaces 𝐗h\mathbf{X}_{h} and 𝐙h\mathbf{Z}_{h} are endowed with the same norms as their continuous counterparts. For 𝐘h\mathbf{Y}_{h} we consider the norm 𝝍¯h𝐘h:=𝝍h𝚲fh+ϕh𝚲sh+ξhΛph\|\underline{\boldsymbol{\psi}}_{h}\|_{\mathbf{Y}_{h}}:=\|{\boldsymbol{\psi}}_{h}\|_{{\boldsymbol{\Lambda}}_{fh}}+\|{\boldsymbol{\phi}}_{h}\|_{{\boldsymbol{\Lambda}}_{sh}}+\|\xi_{h}\|_{\Lambda_{ph}}, where

ξhΛph:={ξhΛp for conforming subspaces (𝐒𝟏) (cf. (3.3)),ξhL2(Γfp) for non-conforming subspaces (𝐒𝟐).\|\xi_{h}\|_{\Lambda_{ph}}:=\left\{\begin{array}[]{l}\|\xi_{h}\|_{\Lambda_{p}}\mbox{ for conforming subspaces }{\bf(\mathbf{S}1)}\mbox{ (cf. \eqref{eq:norms-H-half})}\,,\\[6.45831pt] \|\xi_{h}\|_{\mathrm{L}^{2}(\Gamma_{fp})}\mbox{ for non-conforming subspaces }{\bf(\mathbf{S}2)}\,.\end{array}\right. (5.3)

Analogous notation is used for 𝝍h𝚲fh\|{\boldsymbol{\psi}}_{h}\|_{{\boldsymbol{\Lambda}}_{fh}} and ϕh𝚲sh\|{\boldsymbol{\phi}}_{h}\|_{{\boldsymbol{\Lambda}}_{sh}}.

The continuity of all operators in the discrete case follows from their continuity in the continuous case (cf. Lemma 4.3), with the exception of 1\mathcal{B}_{1} (cf. (3.12)) in the case of non-conforming Lagrange multipliers (𝐒𝟐){\bf(\mathbf{S}2)}. In this case it follows for each fixed hh from the discrete trace-inverse inequality for piecewise polynomial functions, φL2(Γ)Ch1/2φL2(𝒪)\|\varphi\|_{\mathrm{L}^{2}(\Gamma)}\leq Ch^{-1/2}\|\varphi\|_{\mathrm{L}^{2}(\mathcal{O})}, where Γ𝒪\Gamma\subset\partial\mathcal{O}. In particular,

b𝐧f(𝝉f,𝝍)C𝝉f𝕃2(Γfp)𝝍𝐋2(Γfp)Ch1/2𝝉f𝕃2(Ωf)𝝍𝐋2(Γfp),b_{{\mathbf{n}}_{f}}({\boldsymbol{\tau}}_{f},{\boldsymbol{\psi}})\leq C\|{\boldsymbol{\tau}}_{f}\|_{\mathbb{L}^{2}(\Gamma_{fp})}\|{\boldsymbol{\psi}}\|_{\mathbf{L}^{2}(\Gamma_{fp})}\leq Ch^{-1/2}\|{\boldsymbol{\tau}}_{f}\|_{\mathbb{L}^{2}(\Omega_{f})}\|{\boldsymbol{\psi}}\|_{\mathbf{L}^{2}(\Gamma_{fp})}, (5.4)

with similar bounds for b𝐧p(𝝉p,ϕ)b_{{\mathbf{n}}_{p}}({\boldsymbol{\tau}}_{p},{\boldsymbol{\phi}}) and bΓ(𝐯p,ξ)b_{\Gamma}({\mathbf{v}}_{p},\xi).

We next discuss the discrete inf-sup conditions that are satisfied by the finite element spaces. Let

𝐗~h:={𝝉¯h𝐗h:𝝉fh𝐧f=𝟎and𝝉ph𝐧p=𝟎onΓfp}.\widetilde{\mathbf{X}}_{h}:=\Big{\{}\underline{{\boldsymbol{\tau}}}_{h}\in\mathbf{X}_{h}:\quad{\boldsymbol{\tau}}_{fh}{\mathbf{n}}_{f}={\mathbf{0}}{\quad\hbox{and}\quad}{\boldsymbol{\tau}}_{ph}{\mathbf{n}}_{p}={\mathbf{0}}{\quad\hbox{on}\quad}\Gamma_{fp}\Big{\}}. (5.5)

In addition, define the discrete kernel of the operator \mathcal{B} as

𝐕h:={𝝉¯h𝐗h:(𝝉¯h)(𝐯¯h)=0𝐯h𝐙h}=𝕏~fh×𝐕ph×𝕏~ph×Wph,\mathbf{V}_{h}:=\Big{\{}\underline{{\boldsymbol{\tau}}}_{h}\in\mathbf{X}_{h}:\quad\mathcal{B}(\underline{{\boldsymbol{\tau}}}_{h})(\underline{{\mathbf{v}}}_{h})=0\quad\forall\,{\mathbf{v}}_{h}\in\mathbf{Z}_{h}\Big{\}}=\widetilde{\mathbb{X}}_{fh}\times\mathbf{V}_{ph}\times\widetilde{\mathbb{X}}_{ph}\times\mathrm{W}_{ph}, (5.6)

where

𝕏~h:={𝝉h𝕏h:(𝝉h,𝝃h)Ω=0𝝃hhand𝐝𝐢𝐯(𝝉h)=𝟎inΩ},{f,p}.\widetilde{\mathbb{X}}_{\star h}:=\Big{\{}{\boldsymbol{\tau}}_{\star h}\in\mathbb{X}_{\star h}:\,({\boldsymbol{\tau}}_{\star h},{\boldsymbol{\xi}}_{\star h})_{\Omega_{\star}}=0\ \ \forall\,{\boldsymbol{\xi}}_{\star h}\in\mathbb{Q}_{\star h}{\quad\hbox{and}\quad}\mathbf{div}({\boldsymbol{\tau}}_{\star h})={\mathbf{0}}{\quad\hbox{in}\quad}\Omega_{\star}\Big{\}},\quad\star\in\{f,p\}.

In the above, 𝐝𝐢𝐯(𝝉h)=𝟎\mathbf{div}({\boldsymbol{\tau}}_{\star h})={\mathbf{0}} follows from 𝐝𝐢𝐯(𝕏fh)=𝐕fh\mathbf{div}(\mathbb{X}_{fh})=\mathbf{V}_{fh} and 𝐝𝐢𝐯(𝕏ph)=𝐕sh\mathbf{div}(\mathbb{X}_{ph})=\mathbf{V}_{sh}, which is true for all stable elasticity spaces.

Lemma 5.1

There exist positive constants β~\widetilde{\beta} and β~1\widetilde{\beta}_{1} such that

sup𝟎𝝉¯h𝐗~h(𝝉¯h)(𝐯¯h)𝝉¯h𝐗β~𝐯¯h𝐙𝐯¯h𝐙h,\sup_{{\mathbf{0}}\neq\underline{{\boldsymbol{\tau}}}_{h}\in\widetilde{\mathbf{X}}_{h}}\frac{\mathcal{B}(\underline{{\boldsymbol{\tau}}}_{h})(\underline{{\mathbf{v}}}_{h})}{\|\underline{{\boldsymbol{\tau}}}_{h}\|_{\mathbf{X}}}\,\geq\,\widetilde{\beta}\,\|\underline{{\mathbf{v}}}_{h}\|_{\mathbf{Z}}\quad\forall\,\underline{{\mathbf{v}}}_{h}\in\mathbf{Z}_{h}, (5.7)
sup𝟎𝝉¯h𝐕h1(𝝉¯h)(𝝍¯h)𝝉¯h𝐗β~1𝝍¯h𝐘h𝝍¯h𝐘h.\sup_{{\mathbf{0}}\neq\underline{{\boldsymbol{\tau}}}_{h}\in\mathbf{V}_{h}}\frac{\mathcal{B}_{1}(\underline{{\boldsymbol{\tau}}}_{h})(\underline{\boldsymbol{\psi}}_{h})}{\|\underline{{\boldsymbol{\tau}}}_{h}\|_{\mathbf{X}}}\,\geq\,\widetilde{\beta}_{1}\,\|\underline{\boldsymbol{\psi}}_{h}\|_{\mathbf{Y}_{h}}\quad\forall\,\underline{\boldsymbol{\psi}}_{h}\in\mathbf{Y}_{h}. (5.8)

Proof. We begin with the proof of (5.7). We recall that the space 𝐗h\mathbf{X}_{h} consists of stresses and velocities with zero normal traces on the Neumann boundaries, while the space 𝐗~h\widetilde{\mathbf{X}}_{h} involves further restriction on Γfp\Gamma_{fp}. The inf-sup condition (5.7) without restricting the normal stress or velocity on the subdomain boundary follows from the stability of the elasticity and Darcy finite element spaces. The restricted inf-sup condition (5.7) can be shown using the argument in [5, Theorem 4.2].

We continue with the proof of (5.8). Similarly to the continuous case, due the diagonal character of operator 1\mathcal{B}_{1} (cf. (3.12)), we need to show individual inf-sup conditions for b𝐧fb_{{\mathbf{n}}_{f}}, b𝐧pb_{{\mathbf{n}}_{p}}, and bΓb_{\Gamma}. We first focus on bΓb_{\Gamma}. For the conforming case (S1) (cf. (5.1)), the proof of (5.8) can be derived from a slight adaptation of [29, Lemma 4.4] (see also [34, Section 5.3] for the case k=0k=0), whereas from [3, Section 5.1] we obtain the proof for the non-conforming version (S2) (cf. (5.2)). We next consider the inf-sup condition (5.8) for b𝐧fb_{{\mathbf{n}}_{f}}, with argument for b𝐧pb_{{\mathbf{n}}_{p}} being similar. The proof utilizes a suitable interpolant of 𝝉f:=𝐞(𝐯f){\boldsymbol{\tau}}_{f}:={\mathbf{e}}({\mathbf{v}}_{f}), the solution to the auxiliary problem (4.17). Due to the stability of the spaces (𝕏fh,𝐕fh,fh)(\mathbb{X}_{fh},\mathbf{V}_{fh},\mathbb{Q}_{fh}) (cf. (5.7)), there exists an interpolant Π~hf:1(Ωf)𝕏fh\tilde{\Pi}_{h}^{f}:\mathbb{H}^{1}(\Omega_{f})\to\mathbb{X}_{fh} satisfying

bf(Π~hf𝝉f𝝉f,𝐯fh)=0𝐯fh𝐕fh,bsk,f(Π~hf𝝉f𝝉f,𝝌fh)=0𝝌fhfh,(Π~hf𝝉f𝝉f)𝐧f,𝝉fh𝐧fΓfpΓfN=0𝝉fh𝕏fh.\begin{array}[]{c}b_{f}(\tilde{\Pi}_{h}^{f}{\boldsymbol{\tau}}_{f}-{\boldsymbol{\tau}}_{f},{\mathbf{v}}_{fh})=0\quad\forall\,{\mathbf{v}}_{fh}\in\mathbf{V}_{fh},\quad b_{\mathrm{sk},f}(\tilde{\Pi}_{h}^{f}{\boldsymbol{\tau}}_{f}-{\boldsymbol{\tau}}_{f},{\boldsymbol{\chi}}_{fh})=0\quad\forall\,{\boldsymbol{\chi}}_{fh}\in\mathbb{Q}_{fh},\\[4.30554pt] \langle(\tilde{\Pi}_{h}^{f}{\boldsymbol{\tau}}_{f}-{\boldsymbol{\tau}}_{f}){\mathbf{n}}_{f},{\boldsymbol{\tau}}_{fh}{\mathbf{n}}_{f}\rangle_{\Gamma_{fp}\cup\Gamma_{f}^{N}}=0\quad\forall\,{\boldsymbol{\tau}}_{fh}\in\mathbb{X}_{fh}.\end{array} (5.9)

The interpolant Π~hf𝝉f\tilde{\Pi}_{h}^{f}{\boldsymbol{\tau}}_{f} is defined as the elliptic projection of 𝝉f{\boldsymbol{\tau}}_{f} satisfying Neumann boundary condition on ΓfpΓfN\Gamma_{fp}\cup\Gamma_{f}^{N} [42, (3.11)–(3.15)]. Due to (5.9), it holds that Π~hf𝝉f𝕏~fh\tilde{\Pi}_{h}^{f}{\boldsymbol{\tau}}_{f}\in\widetilde{\mathbb{X}}_{fh}. With this interpolant, the proof of (5.8) for bΓb_{\Gamma} discussed above can be easily modified for b𝐧fb_{{\mathbf{n}}_{f}}, see [29, Lemma 4.4] and [34, Section 5.3] for (S1) and [3, Section 5.1] for (S2). \square

Remark 5.2

The stability analysis requires only a discrete inf-sup condition for \mathcal{B} in 𝐗h×𝐙h\mathbf{X}_{h}\times\mathbf{Z}_{h}. The more restrictive inf-sup condition (5.7) is used in the error analysis in order to simplify the proof.

Finally, we will utilize the following inf-sup condition: there exists a constant c>0c>0 such that

pphWp+λhΛphcsup𝟎𝐯ph𝐕phbp(𝐯ph,pph)+bΓ(𝐯ph,λh)𝐯ph𝐕p,\|p_{ph}\|_{\mathrm{W}_{p}}+\|\lambda_{h}\|_{\Lambda_{ph}}\,\leq\,c\,\sup_{{\mathbf{0}}\neq{\mathbf{v}}_{ph}\in\mathbf{V}_{ph}}\frac{b_{p}({\mathbf{v}}_{ph},p_{ph})+b_{\Gamma}({\mathbf{v}}_{ph},\lambda_{h})}{\|{\mathbf{v}}_{ph}\|_{\mathbf{V}_{p}}}, (5.10)

whose proof for the conforming case (5.1) follows from a slight adaptation of [36, Lemma 5.1], whereas the non-conforming case (5.2) can be found in [3, Section 5.1].

The semidiscrete continuous-in-time approximation to (3.11) reads: find (𝝈¯h,𝝋¯h,𝐮¯h):[0,T]𝐗h×𝐘h×𝐙h(\underline{{\boldsymbol{\sigma}}}_{h},\underline{\boldsymbol{\varphi}}_{h},\underline{\mathbf{u}}_{h}):[0,T]\to\mathbf{X}_{h}\times\mathbf{Y}_{h}\times\mathbf{Z}_{h} such that for all (𝝉¯h,𝝍¯h,𝐯¯h)𝐗h×𝐘h×𝐙h(\underline{{\boldsymbol{\tau}}}_{h},\underline{\boldsymbol{\psi}}_{h},\underline{{\mathbf{v}}}_{h})\in\mathbf{X}_{h}\times\mathbf{Y}_{h}\times\mathbf{Z}_{h}, and for a.e. t(0,T)t\in(0,T),

t(𝝈¯h)(𝝉¯h)+𝒜(𝝈¯h)(𝝉¯h)+1(𝝉¯h)(𝝋¯h)+(𝝉¯h)(𝐮¯h)=𝐅(𝝉¯h),1(𝝈¯h)(𝝍¯h)+𝒞(𝝋¯h)(𝝍¯h)=0,(𝝈¯h)(𝐯¯h)=𝐆(𝐯¯h).\begin{array}[]{lll}\displaystyle\frac{\partial}{\partial t}\,\mathcal{E}(\underline{{\boldsymbol{\sigma}}}_{h})(\underline{{\boldsymbol{\tau}}}_{h})+\mathcal{A}(\underline{{\boldsymbol{\sigma}}}_{h})(\underline{{\boldsymbol{\tau}}}_{h})+\mathcal{B}_{1}(\underline{{\boldsymbol{\tau}}}_{h})(\underline{\boldsymbol{\varphi}}_{h})+\mathcal{B}(\underline{{\boldsymbol{\tau}}}_{h})(\underline{\mathbf{u}}_{h})&=&\mathbf{F}(\underline{{\boldsymbol{\tau}}}_{h}),\\[8.61108pt] \displaystyle-\,\mathcal{B}_{1}(\underline{{\boldsymbol{\sigma}}}_{h})(\underline{\boldsymbol{\psi}}_{h})+\mathcal{C}(\underline{\boldsymbol{\varphi}}_{h})(\underline{\boldsymbol{\psi}}_{h})&=&0,\\[8.61108pt] \displaystyle-\,\mathcal{B}\,(\underline{{\boldsymbol{\sigma}}}_{h})(\underline{{\mathbf{v}}}_{h})&=&\mathbf{G}(\underline{{\mathbf{v}}}_{h}).\end{array} (5.11)

We next discuss the choice of compatible discrete initial data (𝝈¯h,0,𝝋¯h,0,𝐮¯h,0)(\underline{{\boldsymbol{\sigma}}}_{h,0},\underline{\boldsymbol{\varphi}}_{h,0},\underline{\mathbf{u}}_{h,0}), whose construction is based on a modification of the step-by-step procedure for the continuous initial data.

1. Define 𝜽h,0:=Ph𝚲s(𝜽0){\boldsymbol{\theta}}_{h,0}:=P^{{\boldsymbol{\Lambda}}_{s}}_{h}({\boldsymbol{\theta}}_{0}), where Ph𝚲s:𝚲s𝚲shP^{{\boldsymbol{\Lambda}}_{s}}_{h}:{\boldsymbol{\Lambda}}_{s}\to{\boldsymbol{\Lambda}}_{sh} is the classical L2\mathrm{L}^{2}-projection operator, satisfying, for all ϕ𝐋2(Γfp){\boldsymbol{\phi}}\in\mathbf{L}^{2}(\Gamma_{fp}),

ϕPh𝚲s(ϕ),ϕhΓfp=0ϕh𝚲sh.\left<{\boldsymbol{\phi}}-P^{{\boldsymbol{\Lambda}}_{s}}_{h}({\boldsymbol{\phi}}),{\boldsymbol{\phi}}_{h}\right>_{\Gamma_{fp}}=0\quad\forall\,{\boldsymbol{\phi}}_{h}\in{\boldsymbol{\Lambda}}_{sh}\,.

2. Define (𝝈fh,0,𝝋h,0,𝐮fh,0,𝜸fh,0)𝕏fh×𝚲fh×𝐕fh×fh({\boldsymbol{\sigma}}_{fh,0},{\boldsymbol{\varphi}}_{h,0},\mathbf{u}_{fh,0},{\boldsymbol{\gamma}}_{fh,0})\in\mathbb{X}_{fh}\times{\boldsymbol{\Lambda}}_{fh}\times\mathbf{V}_{fh}\times\mathbb{Q}_{fh} and (𝐮ph,0,pph,0,λh,0)𝐕ph×Wph×Λph(\mathbf{u}_{ph,0},p_{ph,0},\lambda_{h,0})\in\mathbf{V}_{ph}\times\mathrm{W}_{ph}\times\Lambda_{ph} by solving a coupled Stokes-Darcy problem:

af(𝝈fh,0,𝝉fh)+b𝐧f(𝝉fh,𝝋h,0)+bf(𝝉fh,𝐮fh,0)+bsk,f(𝝉fh,𝜸fh,0)\displaystyle a_{f}({\boldsymbol{\sigma}}_{fh,0},{\boldsymbol{\tau}}_{fh})+b_{{\mathbf{n}}_{f}}({\boldsymbol{\tau}}_{fh},{\boldsymbol{\varphi}}_{h,0})+b_{f}({\boldsymbol{\tau}}_{fh},\mathbf{u}_{fh,0})+b_{{\mathrm{sk},f}}({\boldsymbol{\tau}}_{fh},{\boldsymbol{\gamma}}_{fh,0})
=af(𝝈f,0,𝝉fh)+b𝐧f(𝝉fh,𝝋0)+bf(𝝉fh,𝐮f,0)+bsk,f(𝝉fh,𝜸f,0)=1n(qf(0)𝐈,𝝉fh)Ωf,\displaystyle\displaystyle\quad=\,a_{f}({\boldsymbol{\sigma}}_{f,0},{\boldsymbol{\tau}}_{fh})+b_{{\mathbf{n}}_{f}}({\boldsymbol{\tau}}_{fh},{\boldsymbol{\varphi}}_{0})+b_{f}({\boldsymbol{\tau}}_{fh},\mathbf{u}_{f,0})+b_{{\mathrm{sk},f}}({\boldsymbol{\tau}}_{fh},{\boldsymbol{\gamma}}_{f,0})=\displaystyle-\frac{1}{n}\,(q_{f}(0)\,\mathbf{I},{\boldsymbol{\tau}}_{fh})_{\Omega_{f}},
b𝐧f(𝝈fh,0,𝝍h)+μα𝙱𝙹𝚂j=1n1𝐊j1(𝝋h,0𝜽h,0)𝐭f,j,𝝍h𝐭f,jΓfp+𝝍h𝐧f,λh,0Γfp\displaystyle\displaystyle-b_{{\mathbf{n}}_{f}}({\boldsymbol{\sigma}}_{fh,0},{\boldsymbol{\psi}}_{h})+\mu\,\alpha_{\mathtt{BJS}}\sum^{n-1}_{j=1}\left<\sqrt{\mathbf{K}_{j}^{-1}}({\boldsymbol{\varphi}}_{h,0}-{\boldsymbol{\theta}}_{h,0})\cdot{\mathbf{t}}_{f,j},{\boldsymbol{\psi}}_{h}\cdot{\mathbf{t}}_{f,j}\right>_{\Gamma_{fp}}+\left<{\boldsymbol{\psi}}_{h}\cdot{\mathbf{n}}_{f},\lambda_{h,0}\right>_{\Gamma_{fp}}
=b𝐧f(𝝈f,0,𝝍h)+μα𝙱𝙹𝚂j=1n1𝐊j1(𝝋0𝜽0)𝐭f,j,𝝍h𝐭f,jΓfp+𝝍h𝐧f,λ0Γfp=0,\displaystyle\displaystyle\quad=\,-b_{{\mathbf{n}}_{f}}({\boldsymbol{\sigma}}_{f,0},{\boldsymbol{\psi}}_{h})+\mu\,\alpha_{\mathtt{BJS}}\sum^{n-1}_{j=1}\left<\sqrt{\mathbf{K}_{j}^{-1}}({\boldsymbol{\varphi}}_{0}-{\boldsymbol{\theta}}_{0})\cdot{\mathbf{t}}_{f,j},{\boldsymbol{\psi}}_{h}\cdot{\mathbf{t}}_{f,j}\right>_{\Gamma_{fp}}+\left<{\boldsymbol{\psi}}_{h}\cdot{\mathbf{n}}_{f},\lambda_{0}\right>_{\Gamma_{fp}}=0,
bf(𝝈fh,0,𝐯fh)bsk,f(𝝈fh,0,𝝌fh)=bf(𝝈f,0,𝐯fh)bsk,f(𝝈f,0,𝝌fh)=(𝐟f(0),𝐯fh)Ωf,\displaystyle-b_{f}({\boldsymbol{\sigma}}_{fh,0},{\mathbf{v}}_{fh})-b_{{\mathrm{sk},f}}({\boldsymbol{\sigma}}_{fh,0},{\boldsymbol{\chi}}_{fh})=-b_{f}({\boldsymbol{\sigma}}_{f,0},{\mathbf{v}}_{fh})-b_{{\mathrm{sk},f}}({\boldsymbol{\sigma}}_{f,0},{\boldsymbol{\chi}}_{fh})=(\mathbf{f}_{f}(0),{\mathbf{v}}_{fh})_{\Omega_{f}}, (5.12)
ap(𝐮ph,0,𝐯ph)+bp(𝐯ph,pph,0)+bΓ(𝐯ph,λh,0)=ap(𝐮p,0,𝐯ph)+bp(𝐯ph,pp,0)+bΓ(𝐯ph,λ0)=0,\displaystyle\displaystyle a_{p}(\mathbf{u}_{ph,0},{\mathbf{v}}_{ph})+b_{p}({\mathbf{v}}_{ph},p_{ph,0})+b_{\Gamma}({\mathbf{v}}_{ph},\lambda_{h,0})=a_{p}(\mathbf{u}_{p,0},{\mathbf{v}}_{ph})+b_{p}({\mathbf{v}}_{ph},p_{p,0})+b_{\Gamma}({\mathbf{v}}_{ph},\lambda_{0})=0\,,
bp(𝐮ph,0,wph)=bp(𝐮p,0,wph)=μ1(div(𝐊pp,0),wph)Ωp,\displaystyle\displaystyle-b_{p}(\mathbf{u}_{ph,0},w_{ph})=-b_{p}(\mathbf{u}_{p,0},w_{ph})=-\mu^{-1}(\mathrm{div}(\mathbf{K}\nabla p_{p,0}),w_{ph})_{\Omega_{p}},
𝝋h,0𝐧f+(𝜽h,0+𝐮ph,0)𝐧p,ξhΓfp=𝝋0𝐧f+(𝜽0+𝐮p,0)𝐧p,ξhΓfp=0,\displaystyle\displaystyle-\left<{\boldsymbol{\varphi}}_{h,0}\cdot{\mathbf{n}}_{f}+({\boldsymbol{\theta}}_{h,0}+\mathbf{u}_{ph,0})\cdot{\mathbf{n}}_{p},\xi_{h}\right>_{\Gamma_{fp}}=-\left<{\boldsymbol{\varphi}}_{0}\cdot{\mathbf{n}}_{f}+({\boldsymbol{\theta}}_{0}+\mathbf{u}_{p,0})\cdot{\mathbf{n}}_{p},\xi_{h}\right>_{\Gamma_{fp}}=0,

for all (𝝉fh,𝝍h,𝐯fh,𝝌fh)𝕏fh×𝚲fh×𝐕fh×fh({\boldsymbol{\tau}}_{fh},{\boldsymbol{\psi}}_{h},{\mathbf{v}}_{fh},{\boldsymbol{\chi}}_{fh})\in\mathbb{X}_{fh}\times{\boldsymbol{\Lambda}}_{fh}\times\mathbf{V}_{fh}\times\mathbb{Q}_{fh} and (𝐯ph,wph,ξh)𝐕ph×Wph×Λph({\mathbf{v}}_{ph},w_{ph},\xi_{h})\in\mathbf{V}_{ph}\times\mathrm{W}_{ph}\times\Lambda_{ph}. Note that (5) is well-posed as a direct application of Theorem 4.2. Note also that 𝜽h,0{\boldsymbol{\theta}}_{h,0} is data for this problem.

3. Define (𝝈ph,0,𝝎h,0,𝜼ph,0,𝝆ph,0)𝕏ph×𝚲sh×𝐕sh×ph({\boldsymbol{\sigma}}_{ph,0},{\boldsymbol{\omega}}_{h,0},{\boldsymbol{\eta}}_{ph,0},{\boldsymbol{\rho}}_{ph,0})\in\mathbb{X}_{ph}\times{\boldsymbol{\Lambda}}_{sh}\times\mathbf{V}_{sh}\times\mathbb{Q}_{ph}, as the unique solution of the problem

(A(𝝈ph,0),𝝉ph)Ωp+b𝐧p(𝝉ph,𝝎h,0)+bs(𝝉ph,𝜼ph,0)+bsk,p(𝝉ph,𝝆ph,0)+(A(αppph,0𝐈),𝝉ph)Ωp\displaystyle\displaystyle(A({\boldsymbol{\sigma}}_{ph,0}),{\boldsymbol{\tau}}_{ph})_{\Omega_{p}}+b_{{\mathbf{n}}_{p}}({\boldsymbol{\tau}}_{ph},{\boldsymbol{\omega}}_{h,0})+b_{s}({\boldsymbol{\tau}}_{ph},{\boldsymbol{\eta}}_{ph,0})+b_{{\mathrm{sk},p}}({\boldsymbol{\tau}}_{ph},{\boldsymbol{\rho}}_{ph,0})+(A(\alpha_{p}\,p_{ph,0}\,\mathbf{I}),{\boldsymbol{\tau}}_{ph})_{\Omega_{p}}
=(A(𝝈p,0),𝝉ph)Ωp+b𝐧p(𝝉ph,𝝎0)+bs(𝝉ph,𝜼p,0)+bsk,p(𝝉ph,𝝆p,0)+(A(αppp,0𝐈),𝝉ph)Ωp=0,\displaystyle\displaystyle\quad=\,(A({\boldsymbol{\sigma}}_{p,0}),{\boldsymbol{\tau}}_{ph})_{\Omega_{p}}+b_{{\mathbf{n}}_{p}}({\boldsymbol{\tau}}_{ph},{\boldsymbol{\omega}}_{0})+b_{s}({\boldsymbol{\tau}}_{ph},{\boldsymbol{\eta}}_{p,0})+b_{{\mathrm{sk},p}}({\boldsymbol{\tau}}_{ph},{\boldsymbol{\rho}}_{p,0})+(A(\alpha_{p}\,p_{p,0}\,\mathbf{I}),{\boldsymbol{\tau}}_{ph})_{\Omega_{p}}=0,
b𝐧p(𝝈ph,0,ϕh)+μα𝙱𝙹𝚂j=1n1𝐊j1(𝝋h,0𝜽h,0)𝐭f,j,ϕh𝐭f,jΓfp+ϕh𝐧p,λh,0Γfp\displaystyle\displaystyle-b_{{\mathbf{n}}_{p}}({\boldsymbol{\sigma}}_{ph,0},{\boldsymbol{\phi}}_{h})+\mu\,\alpha_{\mathtt{BJS}}\sum^{n-1}_{j=1}\left<\sqrt{\mathbf{K}_{j}^{-1}}({\boldsymbol{\varphi}}_{h,0}-{\boldsymbol{\theta}}_{h,0})\cdot{\mathbf{t}}_{f,j},{\boldsymbol{\phi}}_{h}\cdot{\mathbf{t}}_{f,j}\right>_{\Gamma_{fp}}+\left<{\boldsymbol{\phi}}_{h}\cdot{\mathbf{n}}_{p},\lambda_{h,0}\right>_{\Gamma_{fp}} (5.13)
=b𝐧p(𝝈p,0,ϕh)+μα𝙱𝙹𝚂j=1n1𝐊j1(𝝋0𝜽0)𝐭f,j,ϕh𝐭f,jΓfp+ϕh𝐧p,λ0Γfp=0,\displaystyle\displaystyle\quad=-b_{{\mathbf{n}}_{p}}({\boldsymbol{\sigma}}_{p,0},{\boldsymbol{\phi}}_{h})+\mu\,\alpha_{\mathtt{BJS}}\sum^{n-1}_{j=1}\left<\sqrt{\mathbf{K}_{j}^{-1}}({\boldsymbol{\varphi}}_{0}-{\boldsymbol{\theta}}_{0})\cdot{\mathbf{t}}_{f,j},{\boldsymbol{\phi}}_{h}\cdot{\mathbf{t}}_{f,j}\right>_{\Gamma_{fp}}+\left<{\boldsymbol{\phi}}_{h}\cdot{\mathbf{n}}_{p},\lambda_{0}\right>_{\Gamma_{fp}}=0,
bs(𝝈ph,0,𝐯sh)bsk,p(𝝈ph,0,𝝌ph)=bs(𝝈p,0,𝐯sh)bsk,p(𝝈p,0,𝝌ph)=(𝐟p(0),𝐯sh)Ωp,\displaystyle\displaystyle-b_{s}({\boldsymbol{\sigma}}_{ph,0},{\mathbf{v}}_{sh})-b_{{\mathrm{sk},p}}({\boldsymbol{\sigma}}_{ph,0},{\boldsymbol{\chi}}_{ph})=-b_{s}({\boldsymbol{\sigma}}_{p,0},{\mathbf{v}}_{sh})-b_{{\mathrm{sk},p}}({\boldsymbol{\sigma}}_{p,0},{\boldsymbol{\chi}}_{ph})=(\mathbf{f}_{p}(0),{\mathbf{v}}_{sh})_{\Omega_{p}},

for all (𝝉ph,ϕh,𝐯sh,𝝌ph)𝕏ph×𝚲sh×𝐕sh×ph({\boldsymbol{\tau}}_{ph},{\boldsymbol{\phi}}_{h},{\mathbf{v}}_{sh},{\boldsymbol{\chi}}_{ph})\in\mathbb{X}_{ph}\times{\boldsymbol{\Lambda}}_{sh}\times\mathbf{V}_{sh}\times\mathbb{Q}_{ph}. Note that the well-posedness of (5) follows from the classical Babuška-Brezzi theory. Note also that pph,0,𝝋h,0,𝜽h,0p_{ph,0},{\boldsymbol{\varphi}}_{h,0},{\boldsymbol{\theta}}_{h,0}, and λh,0\lambda_{h,0} are data for this problem.

4. Finally, define (𝝈^ph,0,𝐮sh,0,𝜸ph,0)𝕏ph×𝐕sh×ph(\widehat{\boldsymbol{\sigma}}_{ph,0},\mathbf{u}_{sh,0},{\boldsymbol{\gamma}}_{ph,0})\in\mathbb{X}_{ph}\times\mathbf{V}_{sh}\times\mathbb{Q}_{ph}, as the unique solution of the problem

(A(𝝈^ph,0),𝝉ph)Ωp+bs(𝝉ph,𝐮sh,0)+bsk,p(𝝉ph,𝜸ph,0)=b𝐧p(𝝉ph,𝜽h,0),bs(𝝈^ph,0,𝐯sh)bsk,p(𝝈^ph,0,𝝌ph)= 0,\begin{array}[]{l}\displaystyle(A(\widehat{\boldsymbol{\sigma}}_{ph,0}),{\boldsymbol{\tau}}_{ph})_{\Omega_{p}}+b_{s}({\boldsymbol{\tau}}_{ph},\mathbf{u}_{sh,0})+b_{{\mathrm{sk},p}}({\boldsymbol{\tau}}_{ph},{\boldsymbol{\gamma}}_{ph,0})\,=\,-b_{{\mathbf{n}}_{p}}({\boldsymbol{\tau}}_{ph},{\boldsymbol{\theta}}_{h,0})\,,\\[8.61108pt] -b_{s}(\widehat{\boldsymbol{\sigma}}_{ph,0},{\mathbf{v}}_{sh})-b_{{\mathrm{sk},p}}(\widehat{\boldsymbol{\sigma}}_{ph,0},{\boldsymbol{\chi}}_{ph})\,=\,0\,,\end{array} (5.14)

for all (𝝉ph,𝐯sh,𝝌ph)𝕏ph×𝐕sh×ph({\boldsymbol{\tau}}_{ph},{\mathbf{v}}_{sh},{\boldsymbol{\chi}}_{ph})\in\mathbb{X}_{ph}\times\mathbf{V}_{sh}\times\mathbb{Q}_{ph}. Problem (5.14) is well-posed as a direct application of the classical Babuška-Brezzi theory. Note that 𝜽h,0{\boldsymbol{\theta}}_{h,0} is data for this problem.

We then define 𝝈¯h,0=(𝝈fh,0,𝐮ph,0,𝝈ph,0,pph,0)𝐗h,𝝋¯h,0=(𝝋h,0,𝜽h,0,λh,0)𝐘h\underline{{\boldsymbol{\sigma}}}_{h,0}=({\boldsymbol{\sigma}}_{fh,0},\mathbf{u}_{ph,0},{\boldsymbol{\sigma}}_{ph,0},p_{ph,0})\in\mathbf{X}_{h},\underline{\boldsymbol{\varphi}}_{h,0}=({\boldsymbol{\varphi}}_{h,0},{\boldsymbol{\theta}}_{h,0},\lambda_{h,0})\in\mathbf{Y}_{h}, and 𝐮¯h,0=(𝐮fh,0,𝐮sh,0,𝜸fh,0,𝜸ph,0)𝐙h\underline{\mathbf{u}}_{h,0}=(\mathbf{u}_{fh,0},\mathbf{u}_{sh,0},{\boldsymbol{\gamma}}_{fh,0},{\boldsymbol{\gamma}}_{ph,0})\in\mathbf{Z}_{h}. This construction guarantees that the discrete initial data is compatible in the sense of Lemma 4.9:

𝒜(𝝈¯h,0)(𝝉¯h)+1(𝝉¯h)(𝝋¯h,0)+(𝝉¯h)(𝐮¯h,0)=𝐅^h,0(𝝉¯h)𝝉¯h𝐗h,1(𝝈¯h,0)(𝝍¯h)+𝒞(𝝋¯h,0)(𝝍¯h)=0𝝍¯h𝐘h,(𝝈¯h,0)(𝐯¯h)=𝐆0(𝐯¯h)𝐯¯h𝐙h,\begin{array}[]{llll}\displaystyle\mathcal{A}(\underline{{\boldsymbol{\sigma}}}_{h,0})(\underline{{\boldsymbol{\tau}}}_{h})+\mathcal{B}_{1}(\underline{{\boldsymbol{\tau}}}_{h})(\underline{\boldsymbol{\varphi}}_{h,0})+\mathcal{B}(\underline{{\boldsymbol{\tau}}}_{h})(\underline{\mathbf{u}}_{h,0})&=&\widehat{\mathbf{F}}_{h,0}(\underline{{\boldsymbol{\tau}}}_{h})&\forall\,\underline{{\boldsymbol{\tau}}}_{h}\in\mathbf{X}_{h},\\[8.61108pt] \displaystyle-\,\mathcal{B}_{1}(\underline{{\boldsymbol{\sigma}}}_{h,0})(\underline{\boldsymbol{\psi}}_{h})+\mathcal{C}(\underline{\boldsymbol{\varphi}}_{h,0})(\underline{\boldsymbol{\psi}}_{h})&=&0&\forall\,\underline{\boldsymbol{\psi}}_{h}\in\mathbf{Y}_{h},\\[8.61108pt] \displaystyle-\,\mathcal{B}\,(\underline{{\boldsymbol{\sigma}}}_{h,0})(\underline{{\mathbf{v}}}_{h})&=&\mathbf{G}_{0}(\underline{{\mathbf{v}}}_{h})&\forall\,\underline{{\mathbf{v}}}_{h}\in\mathbf{Z}_{h},\end{array} (5.15)

where 𝐅^h,0=(qf(0),𝟎,𝐟^ph,0,q^ph,0)t𝐗2\widehat{\mathbf{F}}_{h,0}=(q_{f}(0),{\mathbf{0}},\widehat{\mathbf{f}}_{ph,0},\widehat{q}_{ph,0})^{\mathrm{t}}\in\mathbf{X}^{\prime}_{2} and 𝐆0=𝐆(0)𝐙\mathbf{G}_{0}=\mathbf{G}(0)\in\mathbf{Z}^{\prime}, with 𝐟^ph,0𝕏p,2\widehat{\mathbf{f}}_{ph,0}\in\mathbb{X}^{\prime}_{p,2} and q^ph,0Wp,2\widehat{q}_{ph,0}\in\mathrm{W}^{\prime}_{p,2} suitable data. Furthermore, it provides compatible initial data for the non-differentiated elasticity variables (𝜼ph,0,𝝆ph,0,𝝎h,0)({\boldsymbol{\eta}}_{ph,0},{\boldsymbol{\rho}}_{ph,0},{\boldsymbol{\omega}}_{h,0}) in the sense of the first equation in (4.23) (cf. (5)).

5.1 Existence and uniqueness of a solution

Now, we establish the well-posedness of problem (5.11) and the corresponding stability bound.

Theorem 5.2

For each compatible initial data (𝛔¯h,0,𝛗¯h,0,𝐮¯h,0)(\underline{{\boldsymbol{\sigma}}}_{h,0},\underline{\boldsymbol{\varphi}}_{h,0},\underline{\mathbf{u}}_{h,0}) satisfying (5.15) and

𝐟fW1,1(0,T;𝐕f),𝐟pW1,1(0,T;𝐕s),qfW1,1(0,T;𝕏f),qpW1,1(0,T;Wp),\mathbf{f}_{f}\in\mathrm{W}^{1,1}(0,T;\mathbf{V}_{f}^{\prime}),\quad\mathbf{f}_{p}\in\mathrm{W}^{1,1}(0,T;\mathbf{V}_{s}^{\prime}),\quad q_{f}\in\mathrm{W}^{1,1}(0,T;\mathbb{X}^{\prime}_{f}),\quad q_{p}\in\mathrm{W}^{1,1}(0,T;\mathrm{W}^{\prime}_{p})\,,

there exists a unique solution of (5.11), (𝛔¯h,𝛗¯h,𝐮¯h):[0,T]𝐗h×𝐘h×𝐙h(\underline{{\boldsymbol{\sigma}}}_{h},\underline{\boldsymbol{\varphi}}_{h},\underline{\mathbf{u}}_{h}):[0,T]\to\mathbf{X}_{h}\times\mathbf{Y}_{h}\times\mathbf{Z}_{h} such that (𝛔ph,pph)W1,(0,T;𝕏ph)×W1,(0,T;Wph)({\boldsymbol{\sigma}}_{ph},p_{ph})\in\mathrm{W}^{1,\infty}(0,T;\mathbb{X}_{ph})\times\mathrm{W}^{1,\infty}(0,T;\mathrm{W}_{ph}), and (𝛔¯h(0),𝛗¯h(0),𝐮fh(0),𝛄fh(0))=(𝛔¯h,0,𝛗¯h,0,𝐮fh,0,𝛄fh,0)(\underline{{\boldsymbol{\sigma}}}_{h}(0),\underline{\boldsymbol{\varphi}}_{h}(0),\mathbf{u}_{fh}(0),{\boldsymbol{\gamma}}_{fh}(0))=(\underline{{\boldsymbol{\sigma}}}_{h,0},\underline{\boldsymbol{\varphi}}_{h,0},\mathbf{u}_{fh,0},{\boldsymbol{\gamma}}_{fh,0}). Moreover, assuming sufficient regularity of the data, there exists a positive constant CC independent of hh and s0s_{0}, such that

𝝈fhL(0,T;𝕏f)+𝝈fhL2(0,T;𝕏f)+𝐮phL(0,T;𝐋2(Ωp))+𝐮phL2(0,T;𝐕p)+|𝝋h𝜽h|L(0,T;𝙱𝙹𝚂)\displaystyle\displaystyle\|{\boldsymbol{\sigma}}_{fh}\|_{\mathrm{L}^{\infty}(0,T;\mathbb{X}_{f})}+\|{\boldsymbol{\sigma}}_{fh}\|_{\mathrm{L}^{2}(0,T;\mathbb{X}_{f})}+\|\mathbf{u}_{ph}\|_{\mathrm{L}^{\infty}(0,T;\mathbf{L}^{2}(\Omega_{p}))}+\|\mathbf{u}_{ph}\|_{\mathrm{L}^{2}(0,T;\mathbf{V}_{p})}+|{\boldsymbol{\varphi}}_{h}-{\boldsymbol{\theta}}_{h}|_{\mathrm{L}^{\infty}(0,T;\mathtt{BJS})}
+|𝝋h𝜽h|L2(0,T;𝙱𝙹𝚂)+λhL(0,T;Λph)+𝝋¯hL2(0,T;𝐘h)+𝐮¯hL2(0,T;𝐙)+A1/2(𝝈ph)L(0,T;𝕃2(Ωp))\displaystyle\displaystyle\quad+|{\boldsymbol{\varphi}}_{h}-{\boldsymbol{\theta}}_{h}|_{\mathrm{L}^{2}(0,T;\mathtt{BJS})}+\|\lambda_{h}\|_{\mathrm{L}^{\infty}(0,T;\Lambda_{ph})}+\|\underline{\boldsymbol{\varphi}}_{h}\|_{\mathrm{L}^{2}(0,T;\mathbf{Y}_{h})}+\|\underline{\mathbf{u}}_{h}\|_{\mathrm{L}^{2}(0,T;\mathbf{Z})}+\|A^{1/2}({\boldsymbol{\sigma}}_{ph})\|_{\mathrm{L}^{\infty}(0,T;\mathbb{L}^{2}(\Omega_{p}))}
+𝐝𝐢𝐯(𝝈ph)L(0,T;𝐋2(Ωp))+𝐝𝐢𝐯(𝝈ph)L2(0,T;𝐋2(Ωp))+pphL(0,T;Wp)+pphL2(0,T;Wp)\displaystyle\displaystyle\quad+\|\mathbf{div}({\boldsymbol{\sigma}}_{ph})\|_{\mathrm{L}^{\infty}(0,T;\mathbf{L}^{2}(\Omega_{p}))}+\|\mathbf{div}({\boldsymbol{\sigma}}_{ph})\|_{\mathrm{L}^{2}(0,T;\mathbf{L}^{2}(\Omega_{p}))}+\|p_{ph}\|_{\mathrm{L}^{\infty}(0,T;\mathrm{W}_{p})}+\|p_{ph}\|_{\mathrm{L}^{2}(0,T;\mathrm{W}_{p})}
+tA1/2(𝝈ph+αppph𝐈)L2(0,T;𝕃2(Ωp))+s0tpphL2(0,T;Wp)\displaystyle\displaystyle\quad+\|\partial_{t}\,A^{1/2}({\boldsymbol{\sigma}}_{ph}+\alpha_{p}p_{ph}\mathbf{I})\|_{\mathrm{L}^{2}(0,T;\mathbb{L}^{2}(\Omega_{p}))}+\sqrt{s_{0}}\|\partial_{t}\,p_{ph}\|_{\mathrm{L}^{2}(0,T;\mathrm{W}_{p})} (5.16)
C(𝐟fH1(0,T;𝐕f)+𝐟pH1(0,T;𝐕s)+qfH1(0,T;𝕏f)+qpH1(0,T;Wp)\displaystyle\displaystyle\leq C\,\Big{(}\|\mathbf{f}_{f}\|_{\mathrm{H}^{1}(0,T;\mathbf{V}^{\prime}_{f})}+\|\mathbf{f}_{p}\|_{\mathrm{H}^{1}(0,T;\mathbf{V}^{\prime}_{s})}+\|q_{f}\|_{\mathrm{H}^{1}(0,T;\mathbb{X}^{\prime}_{f})}+\|q_{p}\|_{\mathrm{H}^{1}(0,T;\mathrm{W}^{\prime}_{p})}
+(1+s0)pp,0Wp+𝐊pp,0H1(Ωp)).\displaystyle\displaystyle\quad\qquad+(1+\sqrt{s_{0}})\|p_{p,0}\|_{\mathrm{W}_{p}}+\|\mathbf{K}\nabla p_{p,0}\|_{\mathrm{H}^{1}(\Omega_{p})}\Big{)}.

Proof. From the fact that 𝐗h𝐗\mathbf{X}_{h}\subset\mathbf{X}, 𝐙h𝐙\mathbf{Z}_{h}\subset\mathbf{Z}, and 𝐝𝐢𝐯(𝕏fh)=𝐕fh\mathbf{div}(\mathbb{X}_{fh})=\mathbf{V}_{fh}, 𝐝𝐢𝐯(𝕏ph)=𝐕sh\mathbf{div}(\mathbb{X}_{ph})=\mathbf{V}_{sh}, div(𝐕ph)=Wph\mathrm{div}(\mathbf{V}_{ph})=\mathrm{W}_{ph}, considering (𝝈¯h,0,𝝋¯h,0,𝐮¯h,0)(\underline{{\boldsymbol{\sigma}}}_{h,0},\underline{\boldsymbol{\varphi}}_{h,0},\underline{\mathbf{u}}_{h,0}) satisfying (5.15), and employing the continuity and monotonicity properties of the operators 𝒩\mathcal{N} and \mathcal{M} (cf. Lemma 4.3 and (5.4)), as well as the discrete inf-sup conditions (5.7), (5.8), and (5.10), the proof is identical to the proofs of Theorems 4.10 and 4.12, and Corollary 4.11. We note that the proof of Corollary 4.11 works in the discrete case due to the choice of the discrete initial data as the elliptic projection of the continuous initial data (cf. (5)–(5.14)). \square

Remark 5.3

As in the continuous case, we can recover the non-differentiated elasticity variables

𝜼ph(t)=𝜼ph,0+0t𝐮sh(s)𝑑s,𝝆ph(t)=𝝆ph,0+0t𝜸ph(s)𝑑s,𝝎h(t)=𝝎h,0+0t𝜽h(s)𝑑s,{\boldsymbol{\eta}}_{ph}(t)={\boldsymbol{\eta}}_{ph,0}+\int^{t}_{0}\mathbf{u}_{sh}(s)\,ds,\quad{\boldsymbol{\rho}}_{ph}(t)={\boldsymbol{\rho}}_{ph,0}+\int^{t}_{0}{\boldsymbol{\gamma}}_{ph}(s)\,ds,\quad{\boldsymbol{\omega}}_{h}(t)={\boldsymbol{\omega}}_{h,0}+\int^{t}_{0}{\boldsymbol{\theta}}_{h}(s)\,ds\,,

for each t[0,T]t\in[0,T]. Then (3.7) holds discretely, which follows from integrating the equation associated to 𝛕ph{\boldsymbol{\tau}}_{ph} in (5.11) from 0 to t(0,T]t\in(0,T] and using the first equation in (5) (cf. (4.23)).

5.2 Error analysis

We proceed with establishing rates of convergence. To that end, let us set V{Wp,𝐕f,𝐕s,f,p}\mathrm{V}\in\big{\{}\mathrm{W}_{p},\mathbf{V}_{f},\mathbf{V}_{s},\mathbb{Q}_{f},\mathbb{Q}_{p}\big{\}}, Λ{𝚲f,𝚲s,Λp}\Lambda\in\big{\{}{\boldsymbol{\Lambda}}_{f},{\boldsymbol{\Lambda}}_{s},\Lambda_{p}\big{\}} and let Vh,Λh\mathrm{V}_{h},\Lambda_{h} be the discrete counterparts. Let PhV:VVhP_{h}^{\mathrm{V}}:\mathrm{V}\to\mathrm{V}_{h} and PhΛ:ΛΛhP_{h}^{\Lambda}:\Lambda\to\Lambda_{h} be the L2\mathrm{L}^{2}-projection operators, satisfying

(uPhV(u),vh)Ω= 0vhVh,φPhΛ(φ),ψhΓfp= 0ψhΛh,\begin{array}[]{rl}(u-P_{h}^{\mathrm{V}}(u),v_{h})_{\Omega_{\star}}\,=\,0&\forall\,v_{h}\in\mathrm{V}_{h},\\[8.61108pt] \langle\varphi-P_{h}^{\Lambda}(\varphi),\psi_{h}\rangle_{\Gamma_{fp}}\,=\,0&\forall\,\psi_{h}\in\Lambda_{h},\end{array} (5.17)

where {f,p}\star\in\{f,p\}, u{pp,𝐮f,𝐮s,𝜸f,𝜸p}u\in\big{\{}p_{p},\mathbf{u}_{f},\mathbf{u}_{s},{\boldsymbol{\gamma}}_{f},{\boldsymbol{\gamma}}_{p}\big{\}}, φ{𝝋,𝜽,λ}\varphi\in\big{\{}{\boldsymbol{\varphi}},{\boldsymbol{\theta}},\lambda\big{\}}, and vh,ψhv_{h},\psi_{h} are the corresponding discrete test functions. We have the approximation properties [26]:

uPhV(u)L2(Ω)Chsu+1uHsu+1(Ω),φPhΛ(φ)ΛhChsφ+rφHsφ+1(Γfp),\begin{array}[]{c}\|u-P^{\mathrm{V}}_{h}(u)\|_{\mathrm{L}^{2}(\Omega_{\star})}\,\leq\,Ch^{s_{u}+1}\,\|u\|_{\mathrm{H}^{s_{u}+1}(\Omega_{\star})},\\[8.61108pt] \|\varphi-P^{\Lambda}_{h}(\varphi)\|_{\Lambda_{h}}\,\leq\,Ch^{s_{\varphi}+r}\,\|\varphi\|_{\mathrm{H}^{s_{\varphi}+1}(\Gamma_{fp})},\end{array} (5.18)

where su{spp,s𝐮f,s𝐮s,s𝜸f,s𝜸p}s_{u}\in\big{\{}s_{p_{p}},s_{\mathbf{u}_{f}},s_{\mathbf{u}_{s}},s_{{\boldsymbol{\gamma}}_{f}},s_{{\boldsymbol{\gamma}}_{p}}\big{\}} and sφ{s𝝋,s𝜽,sλ}s_{\varphi}\in\big{\{}s_{{\boldsymbol{\varphi}}},s_{{\boldsymbol{\theta}}},s_{\lambda}\big{\}} are the degrees of polynomials in the spaces Vh\mathrm{V}_{h} and Λh\Lambda_{h}, respectively, and (cf. (5.3)),

φΛh:={φH1/2(Γfp), with r=1/2 in (5.18) for conforming spaces (S1),φL2(Γfp), with r=1 in (5.18) for non-conforming spaces (S2).\|\varphi\|_{\Lambda_{h}}:=\left\{\begin{array}[]{l}\|\varphi\|_{\mathrm{H}^{1/2}(\Gamma_{fp})},\mbox{ with }r=1/2\mbox{ in }\eqref{eq:approx-property1}\mbox{ for conforming spaces }\textbf{(S1)},\\[6.45831pt] \|\varphi\|_{\mathrm{L}^{2}(\Gamma_{fp})},\mbox{ with }r=1\mbox{ in }\eqref{eq:approx-property1}\mbox{ for non-conforming spaces }\textbf{(S2)}.\end{array}\right.

Next, denote X{𝕏f,𝕏p,𝐕p}\mathrm{X}\in\big{\{}\mathbb{X}_{f},\mathbb{X}_{p},\mathbf{V}_{p}\big{\}}, σ{𝝈f,𝝈p,𝐮p}X\sigma\in\big{\{}{\boldsymbol{\sigma}}_{f},{\boldsymbol{\sigma}}_{p},\mathbf{u}_{p}\big{\}}\in\mathrm{X} and let Xh\mathrm{X}_{h} and τh\tau_{h} be their discrete counterparts. For the case (S2) when the discrete Lagrange multiplier spaces are chosen as in (5.2), (5.17) implies

φPhΛ(φ),τh𝐧Γfp= 0τhXh,\langle\varphi-P_{h}^{\Lambda}(\varphi),\tau_{h}{\mathbf{n}}_{\star}\rangle_{\Gamma_{fp}}\,=\,0\quad\forall\,\tau_{h}\in\mathrm{X}_{h}, (5.19)

where {f,p}\star\in\{f,p\}. We note that (5.19) does not hold for the case (S1).

Let IhX:XH1(Ω)XhI^{\mathrm{X}}_{h}:\mathrm{X}\cap\mathrm{H}^{1}(\Omega_{\star})\to\mathrm{X}_{h} be the mixed finite element projection operator [18] satisfying

(div(IhX(σ)),wh)Ω=(div(σ),wh)ΩwhWh,IhX(σ)𝐧,τh𝐧Γfp=σ𝐧,τh𝐧ΓfpτhXh,\begin{array}[]{cl}(\mathrm{div}(I^{\mathrm{X}}_{h}(\sigma)),w_{h})_{\Omega_{\star}}=(\mathrm{div}(\sigma),w_{h})_{\Omega_{\star}}&\forall\,w_{h}\in\mathrm{W}_{h},\\[8.61108pt] \left<I^{\mathrm{X}}_{h}(\sigma){\mathbf{n}}_{\star},\tau_{h}{\mathbf{n}}_{\star}\right>_{\Gamma_{fp}}=\left<\sigma{\mathbf{n}}_{\star},\tau_{h}{\mathbf{n}}_{\star}\right>_{\Gamma_{fp}}&\forall\,\tau_{h}\in\mathrm{X}_{h},\end{array} (5.20)

and

σIhX(σ)L2(Ω)Chsσ+1σHsσ+1(Ω),div(σIhX(σ))L2(Ω)Chsσ+1div(σ)Hsσ+1(Ω),\begin{array}[]{c}\|\sigma-I^{\mathrm{X}}_{h}(\sigma)\|_{\mathrm{L}^{2}(\Omega_{\star})}\,\leq\,C\,h^{s_{\sigma}+1}\|\sigma\|_{\mathrm{H}^{s_{\sigma}+1}(\Omega_{\star})},\\[8.61108pt] \|\mathrm{div}(\sigma-I^{\mathrm{X}}_{h}(\sigma))\|_{\mathrm{L}^{2}(\Omega_{\star})}\,\leq\,C\,h^{s_{\sigma}+1}\|\mathrm{div}(\sigma)\|_{\mathrm{H}^{s_{\sigma}+1}(\Omega_{\star})},\end{array} (5.21)

where wh{𝐯fh,𝐯sh,wph}w_{h}\in\big{\{}{\mathbf{v}}_{fh},{\mathbf{v}}_{sh},w_{ph}\big{\}}, Wh{𝐕f,𝐕s,Wp}\mathrm{W}_{h}\in\big{\{}\mathbf{V}_{f},\mathbf{V}_{s},\mathrm{W}_{p}\big{\}}, and sσ{s𝝈f,s𝝈p,s𝐮p}s_{\sigma}\in\big{\{}s_{{\boldsymbol{\sigma}}_{f}},s_{{\boldsymbol{\sigma}}_{p}},s_{\mathbf{u}_{p}}\big{\}} – the degrees of polynomials in the spaces Xh\mathrm{X}_{h}.

Now, let (𝝈f,𝐮p,𝝈p,pp,𝝋,𝜽,λ,𝐮f,𝐮s,𝜸f,𝜸p)({\boldsymbol{\sigma}}_{f},\mathbf{u}_{p},{\boldsymbol{\sigma}}_{p},p_{p},{\boldsymbol{\varphi}},{\boldsymbol{\theta}},\lambda,\mathbf{u}_{f},\mathbf{u}_{s},{\boldsymbol{\gamma}}_{f},{\boldsymbol{\gamma}}_{p}) and (𝝈fh,𝐮ph,𝝈ph,pph,𝝋h,𝜽h,λh,𝐮fh,𝐮sh,𝜸fh,𝜸ph)({\boldsymbol{\sigma}}_{fh},\mathbf{u}_{ph},{\boldsymbol{\sigma}}_{ph},p_{ph},{\boldsymbol{\varphi}}_{h},{\boldsymbol{\theta}}_{h},\lambda_{h},\mathbf{u}_{fh},\mathbf{u}_{sh},{\boldsymbol{\gamma}}_{fh},{\boldsymbol{\gamma}}_{ph}) be the solutions of (3.11) and (5.11), respectively. We introduce the error terms as the differences of these two solutions and decompose them into approximation and discretization errors using the interpolation operators:

𝐞σ:=σσh=(σIhX(σ))+(IhX(σ)σh):=𝐞σI+𝐞σh,σ{𝝈f,𝝈p,𝐮p},𝐞φ:=φφh=(φPhΛ(φ))+(PhΛ(φ)φh):=𝐞φI+𝐞φh,φ{𝝋,𝜽,λ},𝐞u:=uuh=(uPhV(u))+(PhV(u)uh):=𝐞uI+𝐞uh,u{pp,𝐮f,𝐮s,𝜸f,𝜸p}.\begin{array}[]{l}\displaystyle{\mathbf{e}}_{\sigma}\,:=\,\sigma-\sigma_{h}\,=\,(\sigma-I^{\mathrm{X}}_{h}(\sigma))+(I^{\mathrm{X}}_{h}(\sigma)-\sigma_{h})\,:=\,{\mathbf{e}}^{I}_{\sigma}+{\mathbf{e}}^{h}_{\sigma},\quad\sigma\in\big{\{}{\boldsymbol{\sigma}}_{f},{\boldsymbol{\sigma}}_{p},\mathbf{u}_{p}\big{\}},\\[8.61108pt] \displaystyle{\mathbf{e}}_{\varphi}\,:=\,\varphi-\varphi_{h}\,=\,(\varphi-P^{\Lambda}_{h}(\varphi))+(P^{\Lambda}_{h}(\varphi)-\varphi_{h})\,:=\,{\mathbf{e}}^{I}_{\varphi}+{\mathbf{e}}^{h}_{\varphi},\quad\varphi\in\big{\{}{\boldsymbol{\varphi}},{\boldsymbol{\theta}},\lambda\big{\}},\\[8.61108pt] \displaystyle{\mathbf{e}}_{u}\,:=\,u-u_{h}\,=\,(u-P^{\mathrm{V}}_{h}(u))+(P^{\mathrm{V}}_{h}(u)-u_{h})\,:=\,{\mathbf{e}}^{I}_{u}+{\mathbf{e}}^{h}_{u},\quad u\in\big{\{}p_{p},\mathbf{u}_{f},\mathbf{u}_{s},{\boldsymbol{\gamma}}_{f},{\boldsymbol{\gamma}}_{p}\big{\}}.\end{array} (5.22)

Then, we set the errors

𝐞𝝈¯:=(𝐞𝝈f,𝐞𝐮p,𝐞𝝈p,𝐞pp),𝐞𝝋¯:=(𝐞𝝋,𝐞𝜽,𝐞λ),and𝐞𝐮¯:=(𝐞𝐮f,𝐞𝐮s,𝐞𝜸f,𝐞𝜸p).{\mathbf{e}}_{\underline{{\boldsymbol{\sigma}}}}:=({\mathbf{e}}_{{\boldsymbol{\sigma}}_{f}},{\mathbf{e}}_{\mathbf{u}_{p}},{\mathbf{e}}_{{\boldsymbol{\sigma}}_{p}},{\mathbf{e}}_{p_{p}}),\quad{\mathbf{e}}_{\underline{\boldsymbol{\varphi}}}:=({\mathbf{e}}_{{\boldsymbol{\varphi}}},{\mathbf{e}}_{{\boldsymbol{\theta}}},{\mathbf{e}}_{\lambda}),{\quad\hbox{and}\quad}{\mathbf{e}}_{\underline{\mathbf{u}}}:=({\mathbf{e}}_{\mathbf{u}_{f}},{\mathbf{e}}_{\mathbf{u}_{s}},{\mathbf{e}}_{{\boldsymbol{\gamma}}_{f}},{\mathbf{e}}_{{\boldsymbol{\gamma}}_{p}}).

We next form the error system by subtracting the discrete problem (5.11) from the continuous one (3.11). Using that 𝐗h𝐗\mathbf{X}_{h}\subset\mathbf{X} and 𝐙h𝐙\mathbf{Z}_{h}\subset\mathbf{Z}, as well as Remark 5.1, we obtain

(t+𝒜)(𝐞𝝈¯)(𝝉¯h)+1(𝝉¯h)(𝐞𝝋¯)+(𝝉¯h)(𝐞𝐮¯)=0𝝉¯h𝐗h,1(𝐞𝝈¯)(𝝍¯h)+𝒞(𝐞𝝋¯)(𝝍¯h)=0𝝍¯h𝐘h,(𝐞𝝈¯)(𝐯¯h)=0𝐯¯h𝐙h.\begin{array}[]{lll}\displaystyle(\partial_{t}\,\mathcal{E}+\mathcal{A})({\mathbf{e}}_{\underline{{\boldsymbol{\sigma}}}})(\underline{{\boldsymbol{\tau}}}_{h})+\mathcal{B}_{1}(\underline{{\boldsymbol{\tau}}}_{h})({\mathbf{e}}_{\underline{\boldsymbol{\varphi}}})+\mathcal{B}(\underline{{\boldsymbol{\tau}}}_{h})({\mathbf{e}}_{\underline{\mathbf{u}}})&=&0\quad\forall\,\underline{{\boldsymbol{\tau}}}_{h}\in\mathbf{X}_{h},\\[8.61108pt] \displaystyle-\,\mathcal{B}_{1}({\mathbf{e}}_{\underline{{\boldsymbol{\sigma}}}})(\underline{\boldsymbol{\psi}}_{h})+\mathcal{C}({\mathbf{e}}_{\underline{\boldsymbol{\varphi}}})(\underline{\boldsymbol{\psi}}_{h})&=&0\quad\forall\,\underline{\boldsymbol{\psi}}_{h}\in\mathbf{Y}_{h},\\[8.61108pt] \displaystyle-\,\mathcal{B}({\mathbf{e}}_{\underline{{\boldsymbol{\sigma}}}})(\underline{{\mathbf{v}}}_{h})&=&0\quad\forall\,\underline{{\mathbf{v}}}_{h}\in\mathbf{Z}_{h}.\end{array} (5.23)

We now establish the main result of this section.

Theorem 5.3

For the solutions of the continuous and discrete problems (3.11) and (5.11), respectively, assuming sufficient regularity of the true solution according to (5.18) and (5.21), there exists a positive constant CC independent of hh and s0s_{0}, such that

𝐞𝝈fL(0,T;𝕏f)+𝐞𝝈fL2(0,T;𝕏f)+𝐞𝐮pL(0,T;𝐋2(Ωp))+𝐞𝐮pL2(0,T;𝐕p)+|𝐞𝝋𝐞𝜽|L(0,T;𝙱𝙹𝚂)\displaystyle\displaystyle\|{\mathbf{e}}_{{\boldsymbol{\sigma}}_{f}}\|_{\mathrm{L}^{\infty}(0,T;\mathbb{X}_{f})}+\|{\mathbf{e}}_{{\boldsymbol{\sigma}}_{f}}\|_{\mathrm{L}^{2}(0,T;\mathbb{X}_{f})}+\|{\mathbf{e}}_{\mathbf{u}_{p}}\|_{\mathrm{L}^{\infty}(0,T;\mathbf{L}^{2}(\Omega_{p}))}+\|{\mathbf{e}}_{\mathbf{u}_{p}}\|_{\mathrm{L}^{2}(0,T;\mathbf{V}_{p})}+|{\mathbf{e}}_{{\boldsymbol{\varphi}}}-{\mathbf{e}}_{{\boldsymbol{\theta}}}|_{\mathrm{L}^{\infty}(0,T;\mathtt{BJS})}
+|𝐞𝝋𝐞𝜽|L2(0,T;𝙱𝙹𝚂)+𝐞λL(0,T;Λph)+𝐞𝝋¯L2(0,T;𝐘h)+𝐞𝐮¯L2(0,T;𝐙)+A1/2(𝐞𝝈p)L(0,T;𝕃2(Ωp))\displaystyle\displaystyle\quad+|{\mathbf{e}}_{{\boldsymbol{\varphi}}}-{\mathbf{e}}_{{\boldsymbol{\theta}}}|_{\mathrm{L}^{2}(0,T;\mathtt{BJS})}+\|{\mathbf{e}}_{\lambda}\|_{\mathrm{L}^{\infty}(0,T;\Lambda_{ph})}+\|{\mathbf{e}}_{\underline{\boldsymbol{\varphi}}}\|_{\mathrm{L}^{2}(0,T;\mathbf{Y}_{h})}+\|{\mathbf{e}}_{\underline{\mathbf{u}}}\|_{\mathrm{L}^{2}(0,T;\mathbf{Z})}+\|A^{1/2}({\mathbf{e}}_{{\boldsymbol{\sigma}}_{p}})\|_{\mathrm{L}^{\infty}(0,T;\mathbb{L}^{2}(\Omega_{p}))}
+𝐝𝐢𝐯(𝐞𝝈p)L(0,T;𝐋2(Ωp))+𝐝𝐢𝐯(𝐞𝝈p)L2(0,T;𝐋2(Ωp))+𝐞ppL(0,T;Wp)+𝐞ppL2(0,T;Wp)\displaystyle\displaystyle\quad+\|\mathbf{div}({\mathbf{e}}_{{\boldsymbol{\sigma}}_{p}})\|_{\mathrm{L}^{\infty}(0,T;\mathbf{L}^{2}(\Omega_{p}))}+\|\mathbf{div}({\mathbf{e}}_{{\boldsymbol{\sigma}}_{p}})\|_{\mathrm{L}^{2}(0,T;\mathbf{L}^{2}(\Omega_{p}))}+\|{\mathbf{e}}_{p_{p}}\|_{\mathrm{L}^{\infty}(0,T;\mathrm{W}_{p})}+\|{\mathbf{e}}_{p_{p}}\|_{\mathrm{L}^{2}(0,T;\mathrm{W}_{p})}
+tA1/2(𝐞𝝈p+αp𝐞pp𝐈)L2(0,T;𝕃2(Ωp))+s0t𝐞ppL2(0,T;Wp)\displaystyle\displaystyle\quad+\|\partial_{t}\,A^{1/2}({\mathbf{e}}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}{\mathbf{e}}_{p_{p}}\mathbf{I})\|_{\mathrm{L}^{2}(0,T;\mathbb{L}^{2}(\Omega_{p}))}+\sqrt{s_{0}}\|\partial_{t}\,{\mathbf{e}}_{p_{p}}\|_{\mathrm{L}^{2}(0,T;\mathrm{W}_{p})}
Cexp(T)(hs𝝈¯+1+hs𝝋¯+r+hs𝐮¯+1),\displaystyle\displaystyle\leq\,\,C\,\sqrt{\exp(T)}\,\Big{(}h^{s_{\underline{{\boldsymbol{\sigma}}}}+1}+h^{s_{\underline{\boldsymbol{\varphi}}}+r}+h^{s_{\underline{\mathbf{u}}}+1}\Big{)}, (5.24)

where s𝛔¯=min{s𝛔f,s𝐮p,s𝛔p,spp}s_{\underline{{\boldsymbol{\sigma}}}}=\min\{s_{{\boldsymbol{\sigma}}_{f}},s_{\mathbf{u}_{p}},s_{{\boldsymbol{\sigma}}_{p}},s_{p_{p}}\}, s𝛗¯=min{s𝛗,s𝛉,sλ}s_{\underline{\boldsymbol{\varphi}}}=\min\{s_{{\boldsymbol{\varphi}}},s_{{\boldsymbol{\theta}}},s_{\lambda}\}, s𝐮¯=min{s𝐮f,s𝐮s,s𝛄f,s𝛄p}s_{\underline{\mathbf{u}}}=\min\{s_{\mathbf{u}_{f}},s_{\mathbf{u}_{s}},s_{{\boldsymbol{\gamma}}_{f}},s_{{\boldsymbol{\gamma}}_{p}}\}, and rr is defined in (5.18).

Proof. We present in detail the proof for the conforming case (S1). The proof in the non-conforming case (S2) is simpler, since several error terms are zero. We explain the differences at the end of the proof.

We proceed as in Theorem 4.12. Taking (𝝉¯h,𝝍¯h,𝐯¯h)=(𝐞𝝈¯h,𝐞𝝋¯h,𝐞𝐮¯h)(\underline{{\boldsymbol{\tau}}}_{h},\underline{\boldsymbol{\psi}}_{h},\underline{{\mathbf{v}}}_{h})=({\mathbf{e}}^{h}_{\underline{{\boldsymbol{\sigma}}}},{\mathbf{e}}^{h}_{\underline{\boldsymbol{\varphi}}},{\mathbf{e}}^{h}_{\underline{\mathbf{u}}}) in (5.23), we obtain

12t(ae(𝐞𝝈ph,𝐞pph;𝐞𝝈ph,𝐞pph)+s0(𝐞pph,𝐞pph)Ωp)+af(𝐞𝝈fh,𝐞𝝈fh)+ap(𝐞𝐮ph,𝐞𝐮ph)+c𝙱𝙹𝚂(𝐞𝝋h,𝐞𝜽h;𝐞𝝋h,𝐞𝜽h)\displaystyle\displaystyle\frac{1}{2}\,\partial_{t}\left(a_{e}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}},{\mathbf{e}}^{h}_{p_{p}};{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}},{\mathbf{e}}^{h}_{p_{p}})+s_{0}\,({\mathbf{e}}^{h}_{p_{p}},{\mathbf{e}}^{h}_{p_{p}})_{\Omega_{p}}\right)+a_{f}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}},{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}})+a_{p}({\mathbf{e}}^{h}_{\mathbf{u}_{p}},{\mathbf{e}}^{h}_{\mathbf{u}_{p}})+c_{\mathtt{BJS}}({\mathbf{e}}^{h}_{{\boldsymbol{\varphi}}},{\mathbf{e}}^{h}_{{\boldsymbol{\theta}}};{\mathbf{e}}^{h}_{{\boldsymbol{\varphi}}},{\mathbf{e}}^{h}_{{\boldsymbol{\theta}}})
=af(𝐞𝝈fI,𝐞𝝈fh)ap(𝐞𝐮pI,𝐞𝐮ph)ae(t𝐞𝝈pI,t𝐞ppI;𝐞𝝈ph,𝐞pph)𝒞(𝐞𝝋¯I)(𝐞𝝋¯h)\displaystyle\displaystyle=\,-\,a_{f}({\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{f}},{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}})-a_{p}({\mathbf{e}}^{I}_{\mathbf{u}_{p}},{\mathbf{e}}^{h}_{\mathbf{u}_{p}})-a_{e}(\partial_{t}\,{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{p}},\partial_{t}\,{\mathbf{e}}^{I}_{p_{p}};{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}},{\mathbf{e}}^{h}_{p_{p}})-\mathcal{C}({\mathbf{e}}^{I}_{\underline{\boldsymbol{\varphi}}})({\mathbf{e}}^{h}_{\underline{\boldsymbol{\varphi}}})
b𝐧f(𝐞𝝈fh,𝐞𝝋I)b𝐧p(𝐞𝝈ph,𝐞𝜽I)bΓ(𝐞𝐮ph,𝐞λI)+b𝐧f(𝐞𝝈fI,𝐞𝝋h)+b𝐧p(𝐞𝝈pI,𝐞𝜽h)+bΓ(𝐞𝐮pI,𝐞λh)\displaystyle\displaystyle\quad\,-\,b_{{\mathbf{n}}_{f}}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}},{\mathbf{e}}^{I}_{{\boldsymbol{\varphi}}})-b_{{\mathbf{n}}_{p}}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}},{\mathbf{e}}^{I}_{{\boldsymbol{\theta}}})-b_{\Gamma}({\mathbf{e}}^{h}_{\mathbf{u}_{p}},{\mathbf{e}}^{I}_{\lambda})+b_{{\mathbf{n}}_{f}}({\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{f}},{\mathbf{e}}^{h}_{{\boldsymbol{\varphi}}})+b_{{\mathbf{n}}_{p}}({\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{p}},{\mathbf{e}}^{h}_{{\boldsymbol{\theta}}})+b_{\Gamma}({\mathbf{e}}^{I}_{\mathbf{u}_{p}},{\mathbf{e}}^{h}_{\lambda}) (5.25)
bsk,f(𝐞𝝈fh,𝐞𝜸fI)bsk,p(𝐞𝝈ph,𝐞𝜸pI)+bsk,f(𝐞𝝈fI,𝐞𝜸fh)+bsk,p(𝐞𝝈pI,𝐞𝜸ph),\displaystyle\displaystyle\quad\,-\,b_{\mathrm{sk},f}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}},{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{f}})-b_{\mathrm{sk},p}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}},{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{p}})+b_{\mathrm{sk},f}({\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{f}},{\mathbf{e}}^{h}_{{\boldsymbol{\gamma}}_{f}})+\,b_{\mathrm{sk},p}({\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{p}},{\mathbf{e}}^{h}_{{\boldsymbol{\gamma}}_{p}}),

where, the right-hand side of (5.2) has been simplified, since the projection properties (5.17) and (5.20), and the fact that div(𝐞𝐮ph)Wph\mathrm{div}({\mathbf{e}}^{h}_{\mathbf{u}_{p}})\in\mathrm{W}_{ph}, 𝐝𝐢𝐯(𝐞𝝈fh)𝐕fh\mathbf{div}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}})\in\mathbf{V}_{fh}, and 𝐝𝐢𝐯(𝐞𝝈ph)𝐕sh\mathbf{div}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}})\in\mathbf{V}_{sh}, imply that the following terms are zero:

s0(t𝐞ppI,𝐞pph),bp(𝐞𝐮ph,𝐞ppI),bp(𝐞𝐮pI,𝐞pph),bf(𝐞𝝈fh,𝐞𝐮fI),bf(𝐞𝝈fI,𝐞𝐮fh),bs(𝐞𝝈ph,𝐞𝐮sI),bs(𝐞𝝈pI,𝐞𝐮sh).\displaystyle s_{0}(\partial_{t}\,{\mathbf{e}}^{I}_{p_{p}},{\mathbf{e}}^{h}_{p_{p}}),\,b_{p}({\mathbf{e}}^{h}_{\mathbf{u}_{p}},{\mathbf{e}}^{I}_{p_{p}}),\,b_{p}({\mathbf{e}}^{I}_{\mathbf{u}_{p}},{\mathbf{e}}^{h}_{p_{p}}),\,b_{f}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}},{\mathbf{e}}^{I}_{\mathbf{u}_{f}}),\,b_{f}({\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{f}},{\mathbf{e}}^{h}_{\mathbf{u}_{f}}),\,b_{s}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}},{\mathbf{e}}^{I}_{\mathbf{u}_{s}}),\,b_{s}({\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{p}},{\mathbf{e}}^{h}_{\mathbf{u}_{s}}). (5.26)

In turn, from the equations in (5.23) corresponding to test functions 𝐯fh{\mathbf{v}}_{fh}, 𝐯sh{\mathbf{v}}_{sh}, and wphw_{ph}, using the projection properties (5.20), we find that

bf(𝐞𝝈fh,𝐯fh)=0𝐯fh𝐕fh,bs(𝐞𝝈ph,𝐯sh)=0𝐯sh𝐕sh,bp(𝐞𝐮ph,wph)=ae(t𝐞𝝈ph,t𝐞pph;𝟎,wph)+ae(t𝐞𝝈pI,t𝐞ppI;𝟎,wph)+(s0t𝐞pph,wph)ΩpwphWph.\begin{array}[]{c}\displaystyle b_{f}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}},{\mathbf{v}}_{fh})=0\quad\forall\,{\mathbf{v}}_{fh}\in\mathbf{V}_{fh},\quad b_{s}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}},{\mathbf{v}}_{sh})=0\quad\forall\,{\mathbf{v}}_{sh}\in\mathbf{V}_{sh},\\[8.61108pt] \displaystyle b_{p}({\mathbf{e}}^{h}_{\mathbf{u}_{p}},w_{ph})=a_{e}(\partial_{t}\,{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}},\partial_{t}\,{\mathbf{e}}^{h}_{p_{p}};{\mathbf{0}},w_{ph})+a_{e}(\partial_{t}\,{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{p}},\partial_{t}\,{\mathbf{e}}^{I}_{p_{p}};{\mathbf{0}},w_{ph})+(s_{0}\,\partial_{t}\,{\mathbf{e}}^{h}_{p_{p}},w_{ph})_{\Omega_{p}}\quad\forall\,w_{ph}\in\mathrm{W}_{ph}.\end{array}

Therefore 𝐝𝐢𝐯(𝐞𝝈h)=𝟎\mathbf{div}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{\star}})={\mathbf{0}} in Ω\Omega_{\star}, with {f,p}\star\in\{f,p\}, and using (4.2)–(4.3) we deduce

(𝐞𝝈fh)d𝕃2(Ωf)2C𝐞𝝈fh𝕏f2,𝐝𝐢𝐯(𝐞𝝈ph)𝐋2(Ωp)= 0,div(𝐞𝐮ph)L2(Ωp)C(tA1/2(𝐞𝝈pI+αp𝐞ppI𝐈)𝕃2(Ωp)+tA1/2(𝐞𝝈ph+αp𝐞pph𝐈)𝕃2(Ωp)+s0t𝐞pphWp).\begin{array}[]{c}\|({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}})^{\mathrm{d}}\|^{2}_{\mathbb{L}^{2}(\Omega_{f})}\,\geq\,C\,\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}}\|^{2}_{\mathbb{X}_{f}},\quad\|\mathbf{div}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}})\|_{\mathbf{L}^{2}(\Omega_{p})}\,=\,0\,,\\[6.45831pt] \displaystyle\|\mathrm{div}({\mathbf{e}}^{h}_{\mathbf{u}_{p}})\|_{\mathrm{L}^{2}(\Omega_{p})}\,\leq\,C\,\Big{(}\|\partial_{t}\,A^{1/2}({\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{I}_{p_{p}}\mathbf{I})\|_{\mathbb{L}^{2}(\Omega_{p})}\\[6.45831pt] \displaystyle\qquad\qquad+\,\|\partial_{t}\,A^{1/2}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{h}_{p_{p}}\mathbf{I})\|_{\mathbb{L}^{2}(\Omega_{p})}+\sqrt{s_{0}}\,\|\partial_{t}\,{\mathbf{e}}^{h}_{p_{p}}\|_{\mathrm{W}_{p}}\Big{)}\,.\end{array} (5.27)

Then, applying the ellipticity and continuity bounds of the bilinear forms involved in (5.2) (cf. Lemma 4.3) and the Cauchy–Schwarz and Young’s inequalities, in combination with (5.27), we get

t(A1/2(𝐞𝝈ph+αp𝐞pph𝐈)𝕃2(Ωp)2+s0𝐞pphWp2)+𝐞𝝈fh𝕏f2+𝐞𝐮ph𝐕p2+𝐝𝐢𝐯(𝐞𝝈ph)𝐋2(Ωp)2+|𝐞𝝋h𝐞𝜽h|𝙱𝙹𝚂2C(𝐞𝝈fI𝕏f2+𝐞𝐮pI𝐕p2+𝐞𝝈pI𝕏p2+|𝐞𝝋I𝐞𝜽I|𝙱𝙹𝚂2+𝐞𝝋¯I𝐘h2+𝐞𝜸fIf2+𝐞𝜸pIp2+tA1/2(𝐞𝝈pI+αp𝐞ppI𝐈)𝕃2(Ωp)2+A1/2(𝐞𝝈ph+αp𝐞pph𝐈)𝕃2(Ωp)2+tA1/2(𝐞𝝈ph+αp𝐞pph𝐈)𝕃2(Ωp)2+s0t𝐞pphWp2)+δ1(𝐞𝝈fh𝕏f2+𝐞𝐮ph𝐕p2+|𝐞𝝋h𝐞𝜽h|𝙱𝙹𝚂2)+δ2(𝐞𝝈ph𝕃2(Ωp)2+𝐞𝝋¯h𝐘h2+𝐞𝜸fhf2+𝐞𝜸php2),\begin{array}[]{l}\displaystyle\partial_{t}\left(\|A^{1/2}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}{\mathbf{e}}^{h}_{p_{p}}\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+s_{0}\|{\mathbf{e}}^{h}_{p_{p}}\|^{2}_{\mathrm{W}_{p}}\right)+\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}}\|^{2}_{\mathbb{X}_{f}}+\|{\mathbf{e}}^{h}_{\mathbf{u}_{p}}\|^{2}_{\mathbf{V}_{p}}+\|\mathbf{div}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}})\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+|{\mathbf{e}}^{h}_{{\boldsymbol{\varphi}}}-{\mathbf{e}}^{h}_{{\boldsymbol{\theta}}}|^{2}_{\mathtt{BJS}}\\[8.61108pt] \displaystyle\leq\,C\,\Big{(}\|{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{f}}\|^{2}_{\mathbb{X}_{f}}+\|{\mathbf{e}}^{I}_{\mathbf{u}_{p}}\|^{2}_{\mathbf{V}_{p}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{p}}\|^{2}_{\mathbb{X}_{p}}+|{\mathbf{e}}^{I}_{{\boldsymbol{\varphi}}}-{\mathbf{e}}^{I}_{{\boldsymbol{\theta}}}|^{2}_{\mathtt{BJS}}+\|{\mathbf{e}}^{I}_{\underline{\boldsymbol{\varphi}}}\|^{2}_{\mathbf{Y}_{h}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{f}}\|^{2}_{\mathbb{Q}_{f}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{p}}\|^{2}_{\mathbb{Q}_{p}}\\[8.61108pt] \displaystyle\quad+\,\,\|\partial_{t}\,A^{1/2}\,({\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{I}_{p_{p}}\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+\|A^{1/2}\,({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{h}_{p_{p}}\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}\\[8.61108pt] \displaystyle\quad+\,\,\|\partial_{t}\,A^{1/2}\,({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{h}_{p_{p}}\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+s_{0}\|\partial_{t}\,{\mathbf{e}}^{h}_{p_{p}}\|^{2}_{\mathrm{W}_{p}}\Big{)}\\[8.61108pt] \displaystyle+\,\,\delta_{1}\Big{(}\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}}\|^{2}_{\mathbb{X}_{f}}+\|{\mathbf{e}}^{h}_{\mathbf{u}_{p}}\|^{2}_{\mathbf{V}_{p}}+|{\mathbf{e}}^{h}_{{\boldsymbol{\varphi}}}-{\mathbf{e}}^{h}_{{\boldsymbol{\theta}}}|^{2}_{\mathtt{BJS}}\Big{)}+\delta_{2}\,\Big{(}\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+\|{\mathbf{e}}^{h}_{\underline{\boldsymbol{\varphi}}}\|^{2}_{\mathbf{Y}_{h}}+\|{\mathbf{e}}^{h}_{{\boldsymbol{\gamma}}_{f}}\|^{2}_{\mathbb{Q}_{f}}+\|{\mathbf{e}}^{h}_{{\boldsymbol{\gamma}}_{p}}\|^{2}_{\mathbb{Q}_{p}}\Big{)},\end{array}

where for the bound on b𝐧p(𝐞𝝈ph,𝐞𝜽I)b_{{\mathbf{n}}_{p}}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}},{\mathbf{e}}^{I}_{{\boldsymbol{\theta}}}) we used the trace inequality (3.2) and the fact that 𝐝𝐢𝐯(𝐞𝝈ph)=𝟎\mathbf{div}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}})={\mathbf{0}}. Next, integrating from 0 to t(0,T]t\in(0,T], using (4.14) to control the term 𝐞𝝈ph𝕃2(Ωp)2\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}, and choosing δ1\delta_{1} small enough, we find that

A1/2(𝐞𝝈ph+αp𝐞pph𝐈)(t)𝕃2(Ωp)2+s0𝐞pph(t)Wp2\displaystyle\displaystyle\|A^{1/2}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}{\mathbf{e}}^{h}_{p_{p}}\mathbf{I})(t)\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+s_{0}\|{\mathbf{e}}^{h}_{p_{p}}(t)\|^{2}_{\mathrm{W}_{p}}
+0t(𝐞𝝈fh𝕏f2+𝐞𝐮ph𝐕p2+𝐝𝐢𝐯(𝐞𝝈ph)𝐋2(Ωp)2+|𝐞𝝋h𝐞𝜽h|𝙱𝙹𝚂2)𝑑s\displaystyle\displaystyle\quad+\int^{t}_{0}\Big{(}\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}}\|^{2}_{\mathbb{X}_{f}}+\|{\mathbf{e}}^{h}_{\mathbf{u}_{p}}\|^{2}_{\mathbf{V}_{p}}+\|\mathbf{div}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}})\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+|{\mathbf{e}}^{h}_{{\boldsymbol{\varphi}}}-{\mathbf{e}}^{h}_{{\boldsymbol{\theta}}}|^{2}_{\mathtt{BJS}}\Big{)}\,ds
C(0t(𝐞𝝈fI𝕏f2+𝐞𝐮pI𝐕p2+|𝐞𝝋I𝐞𝜽I|𝙱𝙹𝚂2+𝐞𝝋¯I𝐘h2+𝐞𝜸fIf2+𝐞𝜸pIp2+𝐞𝝈pI𝕏p2)ds\displaystyle\displaystyle\leq C\,\Bigg{(}\int^{t}_{0}\Big{(}\|{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{f}}\|^{2}_{\mathbb{X}_{f}}+\|{\mathbf{e}}^{I}_{\mathbf{u}_{p}}\|^{2}_{\mathbf{V}_{p}}+|{\mathbf{e}}^{I}_{{\boldsymbol{\varphi}}}-{\mathbf{e}}^{I}_{{\boldsymbol{\theta}}}|^{2}_{\mathtt{BJS}}+\|{\mathbf{e}}^{I}_{\underline{\boldsymbol{\varphi}}}\|^{2}_{\mathbf{Y}_{h}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{f}}\|^{2}_{\mathbb{Q}_{f}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{p}}\|^{2}_{\mathbb{Q}_{p}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{p}}\|^{2}_{\mathbb{X}_{p}}\Big{)}\,ds
+0t(tA1/2(𝐞𝝈pI+αp𝐞ppI𝐈)𝕃2(Ωp)2+A1/2(𝐞𝝈ph+αp𝐞pph𝐈)𝕃2(Ωp)2)𝑑s\displaystyle\displaystyle\quad+\int^{t}_{0}\Big{(}\|\partial_{t}\,A^{1/2}\,({\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{I}_{p_{p}}\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+\|A^{1/2}\,({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{h}_{p_{p}}\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}\Big{)}\,ds (5.28)
+0t(tA1/2(𝐞𝝈ph+αp𝐞pph𝐈)𝕃2(Ωp)2+s0t𝐞pphWp2)𝑑s+A1/2(𝐞𝝈ph+αp𝐞pph𝐈)(0)𝕃2(Ωp)2\displaystyle\displaystyle\quad+\,\int^{t}_{0}\Big{(}\|\partial_{t}\,A^{1/2}\,({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{h}_{p_{p}}\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+s_{0}\|\partial_{t}\,{\mathbf{e}}^{h}_{p_{p}}\|^{2}_{\mathrm{W}_{p}}\Big{)}\,ds+\|A^{1/2}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{h}_{p_{p}}\,\mathbf{I})(0)\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}
+s0𝐞pph(0)Wp2)+δ2t0(𝐞pphWp2+𝐞𝝋¯h𝐘h2+𝐞𝜸fhf2+𝐞𝜸php2)ds.\displaystyle\displaystyle\quad+\,s_{0}\|{\mathbf{e}}^{h}_{p_{p}}(0)\|^{2}_{\mathrm{W}_{p}}\Bigg{)}+\delta_{2}\int^{t}_{0}\Big{(}\|{\mathbf{e}}^{h}_{p_{p}}\|^{2}_{\mathrm{W}_{p}}+\|{\mathbf{e}}^{h}_{\underline{\boldsymbol{\varphi}}}\|^{2}_{\mathbf{Y}_{h}}+\|{\mathbf{e}}^{h}_{{\boldsymbol{\gamma}}_{f}}\|^{2}_{\mathbb{Q}_{f}}+\|{\mathbf{e}}^{h}_{{\boldsymbol{\gamma}}_{p}}\|^{2}_{\mathbb{Q}_{p}}\Big{)}\,ds\,.

On the other hand, taking 𝝉¯h=(𝝉fh,𝐯ph,𝝉ph,0)𝐕h\underline{{\boldsymbol{\tau}}}_{h}=({\boldsymbol{\tau}}_{fh},{\mathbf{v}}_{ph},{\boldsymbol{\tau}}_{ph},0)\in\mathbf{V}_{h} (cf. (5.6)) in the first equation of (5.23), we obtain

1(𝝉¯h)(𝐞𝝋¯h)=(t+𝒜)(𝐞𝝈¯)(𝝉¯h)1(𝝉¯h)(𝐞𝝋¯I),\mathcal{B}_{1}(\underline{{\boldsymbol{\tau}}}_{h})({\mathbf{e}}^{h}_{\underline{\boldsymbol{\varphi}}})\,=\,-\,(\partial_{t}\,\mathcal{E}+\mathcal{A})({\mathbf{e}}_{\underline{{\boldsymbol{\sigma}}}})(\underline{{\boldsymbol{\tau}}}_{h})-\mathcal{B}_{1}(\underline{{\boldsymbol{\tau}}}_{h})({\mathbf{e}}^{I}_{\underline{\boldsymbol{\varphi}}})\,,

In the above, thanks to the projection properties (5.17), the following terms are zero: bp(𝐯ph,𝐞ppI)b_{p}({\mathbf{v}}_{ph},{\mathbf{e}}^{I}_{p_{p}}), bf(𝝉fh,𝐞𝐮fI)b_{f}({\boldsymbol{\tau}}_{fh},{\mathbf{e}}^{I}_{\mathbf{u}_{f}}), and bs(𝝉ph,𝐞𝐮sI)b_{s}({\boldsymbol{\tau}}_{ph},{\mathbf{e}}^{I}_{\mathbf{u}_{s}}). Then the discrete inf-sup condition of 1\mathcal{B}_{1} (cf. (5.8)) for 𝐞𝝋¯h=(𝐞𝝋h,𝐞𝜽h,𝐞λh)𝐘h{\mathbf{e}}^{h}_{\underline{\boldsymbol{\varphi}}}=({\mathbf{e}}^{h}_{{\boldsymbol{\varphi}}},{\mathbf{e}}^{h}_{{\boldsymbol{\theta}}},{\mathbf{e}}^{h}_{\lambda})\in\mathbf{Y}_{h} gives

𝐞𝝋¯h𝐘hC(𝐞𝝈fI𝕏f+𝐞𝐮pI𝐕p+𝐞𝝋¯I𝐘h+𝐞𝜸fIf2+𝐞𝜸pIp2+tA1/2(𝐞𝝈pI+αp𝐞ppI𝐈)𝕃2(Ωp)\displaystyle\displaystyle\|{\mathbf{e}}^{h}_{\underline{\boldsymbol{\varphi}}}\|_{\mathbf{Y}_{h}}\,\leq\,C\Big{(}\|{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{f}}\|_{\mathbb{X}_{f}}+\|{\mathbf{e}}^{I}_{\mathbf{u}_{p}}\|_{\mathbf{V}_{p}}+\|{\mathbf{e}}^{I}_{\underline{\boldsymbol{\varphi}}}\|_{\mathbf{Y}_{h}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{f}}\|^{2}_{\mathbb{Q}_{f}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{p}}\|^{2}_{\mathbb{Q}_{p}}+\|\partial_{t}\,A^{1/2}\,({\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{I}_{p_{p}}\mathbf{I})\|_{\mathbb{L}^{2}(\Omega_{p})}
+𝐞𝝈fh𝕏f+𝐞𝐮ph𝐕p+𝐞𝜸fhf2+𝐞𝜸php2+tA1/2(𝐞𝝈ph+αp𝐞pph𝐈)𝕃2(Ωp)+𝐞pphWp).\displaystyle\displaystyle\quad+\,\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}}\|_{\mathbb{X}_{f}}+\|{\mathbf{e}}^{h}_{\mathbf{u}_{p}}\|_{\mathbf{V}_{p}}+\|{\mathbf{e}}^{h}_{{\boldsymbol{\gamma}}_{f}}\|^{2}_{\mathbb{Q}_{f}}+\|{\mathbf{e}}^{h}_{{\boldsymbol{\gamma}}_{p}}\|^{2}_{\mathbb{Q}_{p}}+\|\partial_{t}\,A^{1/2}\,({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{h}_{p_{p}}\mathbf{I})\|_{\mathbb{L}^{2}(\Omega_{p})}+\|{\mathbf{e}}^{h}_{p_{p}}\|_{\mathrm{W}_{p}}\Big{)}\,. (5.29)

In turn, to bound 𝐞𝐮¯h𝐙\|{\mathbf{e}}^{h}_{\underline{\mathbf{u}}}\|_{\mathbf{Z}}, we test (5.23) with 𝝉¯h=(𝝉fh,𝟎,𝝉ph,0)𝐗~h\underline{{\boldsymbol{\tau}}}_{h}=({\boldsymbol{\tau}}_{fh},{\mathbf{0}},{\boldsymbol{\tau}}_{ph},0)\in\widetilde{\mathbf{X}}_{h} (cf. (5.5)), to find that

(𝝉¯h)(𝐞𝐮¯h)=(af(𝐞𝝈f,𝝉fh)+ae(t𝐞𝝈p,t𝐞pp;𝝉ph,0)+(𝝉¯h)(𝐞𝐮¯I)).\mathcal{B}(\underline{{\boldsymbol{\tau}}}_{h})({\mathbf{e}}^{h}_{\underline{\mathbf{u}}})\,=\,-\,\Big{(}a_{f}({\mathbf{e}}_{{\boldsymbol{\sigma}}_{f}},{\boldsymbol{\tau}}_{fh})+a_{e}(\partial_{t}\,{\mathbf{e}}_{{\boldsymbol{\sigma}}_{p}},\partial_{t}\,{\mathbf{e}}_{p_{p}};{\boldsymbol{\tau}}_{ph},0)+\mathcal{B}(\underline{{\boldsymbol{\tau}}}_{h})({\mathbf{e}}^{I}_{\underline{\mathbf{u}}})\Big{)}.

In the above, the terms bf(𝝉fh,𝐞𝐮fI)b_{f}({\boldsymbol{\tau}}_{fh},{\mathbf{e}}^{I}_{\mathbf{u}_{f}}) and bs(𝝉ph,𝐞𝐮sI)b_{s}({\boldsymbol{\tau}}_{ph},{\mathbf{e}}^{I}_{\mathbf{u}_{s}}) are zero, due to the projection property (5.17). Then, the discrete inf-sup condition of \mathcal{B} (cf. (5.7)) for 𝐞𝐮¯h𝐙h{\mathbf{e}}^{h}_{\underline{\mathbf{u}}}\in\mathbf{Z}_{h}, yields

𝐞𝐮¯h𝐙C(𝐞𝝈fI𝕏f+tA1/2(𝐞𝝈pI+αp𝐞ppI𝐈)𝕃2(Ωp)+𝐞𝜸fIf+𝐞𝜸pIp+𝐞𝝈fh𝕏f+tA1/2(𝐞𝝈ph+αp𝐞pph𝐈)𝕃2(Ωp)).\begin{array}[]{l}\displaystyle\|{\mathbf{e}}^{h}_{\underline{\mathbf{u}}}\|_{\mathbf{Z}}\,\leq\,C\,\Big{(}\|{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{f}}\|_{\mathbb{X}_{f}}+\|\partial_{t}\,A^{1/2}\,({\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{I}_{p_{p}}\mathbf{I})\|_{\mathbb{L}^{2}(\Omega_{p})}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{f}}\|_{\mathbb{Q}_{f}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{p}}\|_{\mathbb{Q}_{p}}\\[8.61108pt] \displaystyle\qquad\qquad\qquad+\,\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}}\|_{\mathbb{X}_{f}}+\|\partial_{t}\,A^{1/2}\,({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{h}_{p_{p}}\mathbf{I})\|_{\mathbb{L}^{2}(\Omega_{p})}\Big{)}\,.\end{array} (5.30)

Finally, to bound 𝐞pphWp\|{\mathbf{e}}^{h}_{p_{p}}\|_{\mathrm{W}_{p}}, we test (5.23) with 𝝉¯h=(𝝉fh,𝐯ph,𝝉ph,0)𝐗h\underline{{\boldsymbol{\tau}}}_{h}=({\boldsymbol{\tau}}_{fh},{\mathbf{v}}_{ph},{\boldsymbol{\tau}}_{ph},0)\in\mathbf{X}_{h} to get

bp(𝐯ph,𝐞pph)+bΓ(𝐯ph,𝐞λh)=(ap(𝐞𝐮p,𝐯ph)+bp(𝐯ph,𝐞ppI)+bΓ(𝐯ph,𝐞λI)).b_{p}({\mathbf{v}}_{ph},{\mathbf{e}}^{h}_{p_{p}})+b_{\Gamma}({\mathbf{v}}_{ph},{\mathbf{e}}^{h}_{\lambda})\,=\,-\,\Big{(}a_{p}({\mathbf{e}}_{\mathbf{u}_{p}},{\mathbf{v}}_{ph})+b_{p}({\mathbf{v}}_{ph},{\mathbf{e}}^{I}_{p_{p}})+b_{\Gamma}({\mathbf{v}}_{ph},{\mathbf{e}}^{I}_{\lambda})\Big{)}.

Note that bp(𝐯ph,𝐞ppI)=0b_{p}({\mathbf{v}}_{ph},{\mathbf{e}}^{I}_{p_{p}})=0 due to the projection property (5.17), thus the discrete inf-sup condition (5.10) gives

𝐞pphWp+𝐞λhΛphC(𝐞𝐮pI𝐋2(Ωp)+𝐞λIΛph+𝐞𝐮ph𝐋2(Ωp)).\|{\mathbf{e}}^{h}_{p_{p}}\|_{\mathrm{W}_{p}}+\|{\mathbf{e}}^{h}_{\lambda}\|_{\Lambda_{ph}}\leq C\Big{(}\|{\mathbf{e}}^{I}_{\mathbf{u}_{p}}\|_{\mathbf{L}^{2}(\Omega_{p})}+\|{\mathbf{e}}^{I}_{\lambda}\|_{\Lambda_{ph}}+\|{\mathbf{e}}^{h}_{\mathbf{u}_{p}}\|_{\mathbf{L}^{2}(\Omega_{p})}\Big{)}. (5.31)

Combining (5.2) with (5.2), (5.30), and (5.31), choosing δ2\delta_{2} small enough, and employing the Gronwall’s inequality to deal with the term 0tA1/2(𝐞𝝈ph+αp𝐞pph𝐈)𝕃2(Ωp)2𝑑s\displaystyle\int^{t}_{0}\|A^{1/2}\,({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{h}_{p_{p}}\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}\,ds, we obtain

A1/2(𝐞𝝈ph+αp𝐞pph𝐈)(t)𝕃2(Ωp)2+s0𝐞pph(t)Wp2\displaystyle\displaystyle\|A^{1/2}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{h}_{p_{p}}\mathbf{I})(t)\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+s_{0}\,\|{\mathbf{e}}^{h}_{p_{p}}(t)\|^{2}_{\mathrm{W}_{p}}
+0t(𝐞𝝈fh𝕏f2+𝐞𝐮ph𝐕p2+𝐝𝐢𝐯(𝐞𝝈ph)𝐋2(Ωp)2+𝐞pphWp2+|𝐞𝝋h𝐞𝜽h|𝙱𝙹𝚂2+𝐞𝝋¯h𝐘h2+𝐞𝐮¯h𝐙2)𝑑s\displaystyle\displaystyle\quad+\,\int^{t}_{0}\Big{(}\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}}\|^{2}_{\mathbb{X}_{f}}+\|{\mathbf{e}}^{h}_{\mathbf{u}_{p}}\|^{2}_{\mathbf{V}_{p}}+\|\mathbf{div}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}})\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+\|{\mathbf{e}}^{h}_{p_{p}}\|^{2}_{\mathrm{W}_{p}}+|{\mathbf{e}}^{h}_{{\boldsymbol{\varphi}}}-{\mathbf{e}}^{h}_{{\boldsymbol{\theta}}}|^{2}_{\mathtt{BJS}}+\|{\mathbf{e}}^{h}_{\underline{\boldsymbol{\varphi}}}\|^{2}_{\mathbf{Y}_{h}}+\|{\mathbf{e}}^{h}_{\underline{\mathbf{u}}}\|^{2}_{\mathbf{Z}}\Big{)}\,ds
Cexp(T)(0t(𝐞𝝈¯I𝐗2+𝐞𝝋¯I𝐘h2+𝐞𝐮¯I𝐙2+|𝐞𝝋I𝐞𝜽I|𝙱𝙹𝚂2+tA1/2(𝐞𝝈pI+αp𝐞ppI𝐈)𝕃2(Ωp)2)ds\displaystyle\displaystyle\leq C\,\exp(T)\,\Bigg{(}\int^{t}_{0}\Big{(}\|{\mathbf{e}}^{I}_{\underline{{\boldsymbol{\sigma}}}}\|^{2}_{\mathbf{X}}+\|{\mathbf{e}}^{I}_{\underline{\boldsymbol{\varphi}}}\|^{2}_{\mathbf{Y}_{h}}+\|{\mathbf{e}}^{I}_{\underline{\mathbf{u}}}\|^{2}_{\mathbf{Z}}+|{\mathbf{e}}^{I}_{{\boldsymbol{\varphi}}}-{\mathbf{e}}^{I}_{{\boldsymbol{\theta}}}|^{2}_{\mathtt{BJS}}+\|\partial_{t}\,A^{1/2}\,({\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{I}_{p_{p}}\,\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}\Big{)}\,ds
+0t(tA1/2(𝐞𝝈ph+αp𝐞pph𝐈)𝕃2(Ωp)2+s0t𝐞pphWp2)𝑑s\displaystyle\displaystyle\quad+\,\int^{t}_{0}\Big{(}\|\partial_{t}\,A^{1/2}\,({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{h}_{p_{p}}\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+s_{0}\|\partial_{t}\,{\mathbf{e}}^{h}_{p_{p}}\|^{2}_{\mathrm{W}_{p}}\Big{)}\,ds (5.32)
+A1/2(𝐞𝝈ph+αp𝐞pph𝐈)(0)𝕃2(Ωp)2+s0𝐞pph(0)Wp2).\displaystyle\displaystyle\quad+\,\,\|A^{1/2}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{h}_{p_{p}}\mathbf{I})(0)\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+s_{0}\|{\mathbf{e}}^{h}_{p_{p}}(0)\|^{2}_{\mathrm{W}_{p}}\Bigg{)}.

Now, in order to bound 0t(tA1/2(𝐞𝝈ph+αp𝐞pph𝐈)𝕃2(Ωp)2+s0t𝐞pphWp2)𝑑s\displaystyle\int^{t}_{0}\Big{(}\|\partial_{t}\,A^{1/2}\,({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{h}_{p_{p}}\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+s_{0}\|\partial_{t}\,{\mathbf{e}}^{h}_{p_{p}}\|^{2}_{\mathrm{W}_{p}}\Big{)}\,ds on the right-hand side of (5.2), we test (5.23) with 𝝉¯h=(t𝐞𝝈fh,𝐞𝐮ph,t𝐞𝝈ph,t𝐞pph)\underline{{\boldsymbol{\tau}}}_{h}=(\partial_{t}{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}},{\mathbf{e}}^{h}_{\mathbf{u}_{p}},\partial_{t}{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}},\partial_{t}{\mathbf{e}}^{h}_{p_{p}}), 𝝍¯h=(𝐞𝝋h,𝐞𝜽h,t𝐞λh)\underline{\boldsymbol{\psi}}_{h}=({\mathbf{e}}^{h}_{{\boldsymbol{\varphi}}},{\mathbf{e}}^{h}_{{\boldsymbol{\theta}}},\partial_{t}{\mathbf{e}}^{h}_{\lambda}), and 𝐯¯h=(𝐞𝐮fh,𝐞𝐮sh,𝐞𝜸fh,𝐞𝜸ph)\underline{{\mathbf{v}}}_{h}=({\mathbf{e}}^{h}_{\mathbf{u}_{f}},{\mathbf{e}}^{h}_{\mathbf{u}_{s}},{\mathbf{e}}^{h}_{{\boldsymbol{\gamma}}_{f}},{\mathbf{e}}^{h}_{{\boldsymbol{\gamma}}_{p}}), differentiate in time the rows in (5.23) associated to 𝐯ph,𝝍h,ϕh,𝐯fh,𝐯sh,𝝌fh,𝝌ph{\mathbf{v}}_{ph},{\boldsymbol{\psi}}_{h},{\boldsymbol{\phi}}_{h},{\mathbf{v}}_{fh},{\mathbf{v}}_{sh},{\boldsymbol{\chi}}_{fh},{\boldsymbol{\chi}}_{ph}, and employ the projections properties (5.17)–(5.20) to eliminate some of the terms (cf. (5.26)), obtaining

12t(12μ(𝐞𝝈fh)d𝕃2(Ωf)2+ap(𝐞𝐮ph,𝐞𝐮ph)+c𝙱𝙹𝚂(𝐞𝝋h,𝐞𝜽h;𝐞𝝋h,𝐞𝜽h))\displaystyle\displaystyle\frac{1}{2}\partial_{t}\Big{(}\frac{1}{2\mu}\|({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}})^{\mathrm{d}}\|^{2}_{\mathbb{L}^{2}(\Omega_{f})}+a_{p}({\mathbf{e}}^{h}_{\mathbf{u}_{p}},{\mathbf{e}}^{h}_{\mathbf{u}_{p}})+c_{\mathtt{BJS}}({\mathbf{e}}^{h}_{{\boldsymbol{\varphi}}},{\mathbf{e}}^{h}_{{\boldsymbol{\theta}}};{\mathbf{e}}^{h}_{{\boldsymbol{\varphi}}},{\mathbf{e}}^{h}_{{\boldsymbol{\theta}}})\Big{)}
+tA1/2(𝐞𝝈ph+αp𝐞pph𝐈)𝕃2(Ωp)2+s0t𝐞pphWp2\displaystyle\displaystyle\quad+\|\partial_{t}A^{1/2}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}{+}\alpha_{p}{\mathbf{e}}^{h}_{p_{p}}\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+s_{0}\|\partial_{t}{\mathbf{e}}^{h}_{p_{p}}\|^{2}_{\mathrm{W}_{p}}
=af(𝐞𝝈fI,t𝐞𝝈fh)ap(t𝐞𝐮pI,𝐞𝐮ph)ae(t𝐞𝝈pI,t𝐞ppI;t𝐞𝝈ph,t𝐞pph)c𝙱𝙹𝚂(t𝐞𝝋I,t𝐞𝜽I;𝐞𝝋h,𝐞𝜽h)\displaystyle\displaystyle=-\,a_{f}({\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{f}},\partial_{t}\,{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}})-a_{p}(\partial_{t}\,{\mathbf{e}}^{I}_{\mathbf{u}_{p}},{\mathbf{e}}^{h}_{\mathbf{u}_{p}})-a_{e}(\partial_{t}\,{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{p}},\partial_{t}\,{\mathbf{e}}^{I}_{p_{p}};\partial_{t}\,{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}},\partial_{t}\,{\mathbf{e}}^{h}_{p_{p}})-c_{\mathtt{BJS}}(\partial_{t}\,{\mathbf{e}}^{I}_{{\boldsymbol{\varphi}}},\partial_{t}\,{\mathbf{e}}^{I}_{{\boldsymbol{\theta}}};{\mathbf{e}}^{h}_{{\boldsymbol{\varphi}}},{\mathbf{e}}^{h}_{{\boldsymbol{\theta}}})
+cΓ(𝐞𝝋h,𝐞𝜽h;t𝐞λI)cΓ(𝐞𝝋I,𝐞𝜽I;t𝐞λh)b𝐧f(t𝐞𝝈fh,𝐞𝝋I)b𝐧p(t𝐞𝝈ph,𝐞𝜽I)bΓ(𝐞𝐮ph,t𝐞λI)\displaystyle\displaystyle\quad+c_{\Gamma}({\mathbf{e}}^{h}_{{\boldsymbol{\varphi}}},{\mathbf{e}}^{h}_{{\boldsymbol{\theta}}};\partial_{t}\,{\mathbf{e}}^{I}_{\lambda})-c_{\Gamma}({\mathbf{e}}^{I}_{{\boldsymbol{\varphi}}},{\mathbf{e}}^{I}_{{\boldsymbol{\theta}}};\partial_{t}\,{\mathbf{e}}^{h}_{\lambda})-\,b_{{\mathbf{n}}_{f}}(\partial_{t}\,{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}},{\mathbf{e}}^{I}_{{\boldsymbol{\varphi}}})-b_{{\mathbf{n}}_{p}}(\partial_{t}\,{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}},{\mathbf{e}}^{I}_{{\boldsymbol{\theta}}})-b_{\Gamma}({\mathbf{e}}^{h}_{\mathbf{u}_{p}},\partial_{t}\,{\mathbf{e}}^{I}_{\lambda}) (5.33)
+b𝐧f(t𝐞𝝈fI,𝐞𝝋h)+b𝐧p(t𝐞𝝈pI,𝐞𝜽h)+bΓ(𝐞𝐮pI,t𝐞λh)bsk,f(t𝐞𝝈fh,𝐞𝜸fI)bsk,p(t𝐞𝝈ph,𝐞𝜸pI)\displaystyle\displaystyle\quad+\,b_{{\mathbf{n}}_{f}}(\partial_{t}\,{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{f}},{\mathbf{e}}^{h}_{{\boldsymbol{\varphi}}})+b_{{\mathbf{n}}_{p}}(\partial_{t}\,{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{p}},{\mathbf{e}}^{h}_{{\boldsymbol{\theta}}})+b_{\Gamma}({\mathbf{e}}^{I}_{\mathbf{u}_{p}},\partial_{t}\,{\mathbf{e}}^{h}_{\lambda})-b_{\mathrm{sk},f}(\partial_{t}\,{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}},{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{f}})-b_{\mathrm{sk},p}(\partial_{t}\,{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}},{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{p}})
+bsk,f(t𝐞𝝈fI,𝐞𝜸fh)+bsk,p(t𝐞𝝈pI,𝐞𝜸ph).\displaystyle\displaystyle\quad+\,b_{\mathrm{sk},f}(\partial_{t}\,{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{f}},{\mathbf{e}}^{h}_{{\boldsymbol{\gamma}}_{f}})+b_{\mathrm{sk},p}(\partial_{t}\,{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{p}},{\mathbf{e}}^{h}_{{\boldsymbol{\gamma}}_{p}})\,.

Then, integrating (5.2) from 0 to t(0,T]t\in(0,T], using the identities

0taf(𝐞𝝈fI,t𝐞𝝈fh)𝑑s=af(𝐞𝝈fI,𝐞𝝈fh)|0t0taf(t𝐞𝝈fI,𝐞𝝈fh)𝑑s,0tb𝐧(t𝐞𝝈h,𝐞I)ds=b𝐧(𝐞𝝈h,𝐞I)|0t0tb𝐧(𝐞𝝈h,t𝐞I)ds,{f,p},{𝝋,𝜽},0tbsk,(t𝐞𝝈h,𝐞𝜸I)𝑑s=bsk,(𝐞𝝈h,𝐞𝜸I)|0t0tbsk,(𝐞𝝈h,t𝐞𝜸I)𝑑s,0t𝐞I𝐧f,t𝐞λhΓfpds=𝐞I𝐧f,𝐞λhΓfp|0t0tt𝐞I𝐧f,𝐞λhΓfpds,{𝝋,𝜽,𝐮p},\begin{array}[]{l}\displaystyle\int^{t}_{0}a_{f}({\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{f}},\partial_{t}\,{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}})\,ds\,=\,a_{f}({\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{f}},{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}})\Big{|}_{0}^{t}-\int^{t}_{0}a_{f}(\partial_{t}\,{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{f}},{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}})\,ds\,,\\[10.76385pt] \displaystyle\int^{t}_{0}b_{{\mathbf{n}}_{\star}}(\partial_{t}\,{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{\star}},{\mathbf{e}}^{I}_{\circ})\,ds\,=\,b_{{\mathbf{n}}_{\star}}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{\star}},{\mathbf{e}}^{I}_{\circ})\Big{|}_{0}^{t}-\int^{t}_{0}b_{{\mathbf{n}}_{\star}}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{\star}},\partial_{t}\,{\mathbf{e}}^{I}_{\circ})\,ds\,,\,\,\star\in\{f,p\},\,\circ\in\{{\boldsymbol{\varphi}},{\boldsymbol{\theta}}\}\,,\\[10.76385pt] \displaystyle\int^{t}_{0}b_{\mathrm{sk},\star}(\partial_{t}\,{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{\star}},{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{\star}})\,ds\,=\,b_{\mathrm{sk},\star}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{\star}},{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{\star}})\Big{|}_{0}^{t}-\int^{t}_{0}b_{\mathrm{sk},\star}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{\star}},\partial_{t}\,{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{\star}})\,ds\,,\\[10.76385pt] \displaystyle\int^{t}_{0}\left<{\mathbf{e}}^{I}_{\diamond}\cdot{\mathbf{n}}_{f},\partial_{t}\,{\mathbf{e}}^{h}_{\lambda}\right>_{\Gamma_{fp}}ds\,=\,\left<{\mathbf{e}}^{I}_{\diamond}\cdot{\mathbf{n}}_{f},{\mathbf{e}}^{h}_{\lambda}\right>_{\Gamma_{fp}}\Big{|}_{0}^{t}-\int^{t}_{0}\left<\partial_{t}\,{\mathbf{e}}^{I}_{\diamond}\cdot{\mathbf{n}}_{f},{\mathbf{e}}^{h}_{\lambda}\right>_{\Gamma_{fp}}ds\,,\,\,\diamond\in\{{\boldsymbol{\varphi}},{\boldsymbol{\theta}},\mathbf{u}_{p}\},\end{array} (5.34)

and applying the ellipticity and continuity bounds of the bilinear forms involved (cf. Lemma 4.3), the Cauchy-Schwarz and Young’s inequalities, and the fact that 𝐝𝐢𝐯(𝐞𝝈h)=𝟎\mathbf{div}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{\star}})={\mathbf{0}} in Ω\Omega_{\star} with {f,p}\star\in\{f,p\} (cf. (5.27)), we obtain

𝐞𝝈fh(t)𝕏f2+𝐞𝐮ph(t)𝐋2(Ωp)2+𝐝𝐢𝐯(𝐞𝝈ph(t))𝐋2(Ωp)2+|(𝐞𝝋h𝐞𝜽h)(t)|𝙱𝙹𝚂2\displaystyle\displaystyle\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}}(t)\|^{2}_{\mathbb{X}_{f}}+\|{\mathbf{e}}^{h}_{\mathbf{u}_{p}}(t)\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+\|\mathbf{div}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}(t))\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+|({\mathbf{e}}^{h}_{\boldsymbol{\varphi}}-{\mathbf{e}}^{h}_{\boldsymbol{\theta}})(t)|^{2}_{\mathtt{BJS}}
+0t(tA1/2(𝐞𝝈ph+αp𝐞pph𝐈)𝕃2(Ωp)2+s0t𝐞pphWp2)𝑑s\displaystyle\displaystyle\quad+\,\int^{t}_{0}\Big{(}\|\partial_{t}\,A^{1/2}\,({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{h}_{p_{p}}\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+s_{0}\|\partial_{t}\,{\mathbf{e}}^{h}_{p_{p}}\|^{2}_{\mathrm{W}_{p}}\Big{)}\,ds
C(𝐞𝝈fI(t)𝕃2(Ωf)2+𝐞𝐮pI(t)𝐕p2+𝐞𝝈pI(t)𝕃2(Ωp)2+𝐞𝝋I(t)𝚲fh2+𝐞𝜽I(t)𝚲sh2+𝐞𝜸fI(t)f2\displaystyle\displaystyle\leq\,C\,\Bigg{(}\|{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{f}}(t)\|^{2}_{\mathbb{L}^{2}(\Omega_{f})}+\|{\mathbf{e}}^{I}_{\mathbf{u}_{p}}(t)\|^{2}_{\mathbf{V}_{p}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{p}}(t)\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\varphi}}}(t)\|^{2}_{{\boldsymbol{\Lambda}}_{fh}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\theta}}}(t)\|^{2}_{{\boldsymbol{\Lambda}}_{sh}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{f}}(t)\|^{2}_{\mathbb{Q}_{f}}
+𝐞𝜸pI(t)p2+0t(t𝐞𝝈fI𝕏f2+t𝐞𝐮pI𝐕p2+|t(𝐞𝝋I𝐞𝜽I)|𝙱𝙹𝚂2+𝐞𝜽I𝚲sh2+t𝐞𝝋¯I𝐘h2\displaystyle\displaystyle\quad+\,\|{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{p}}(t)\|^{2}_{\mathbb{Q}_{p}}+\int^{t}_{0}\Big{(}\|\partial_{t}\,{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{f}}\|^{2}_{\mathbb{X}_{f}}+\|\partial_{t}\,{\mathbf{e}}^{I}_{\mathbf{u}_{p}}\|^{2}_{\mathbf{V}_{p}}+|\partial_{t}\,({\mathbf{e}}^{I}_{{\boldsymbol{\varphi}}}-{\mathbf{e}}^{I}_{{\boldsymbol{\theta}}})|^{2}_{\mathtt{BJS}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\theta}}}\|^{2}_{{\boldsymbol{\Lambda}}_{sh}}+\|\partial_{t}\,{\mathbf{e}}^{I}_{\underline{\boldsymbol{\varphi}}}\|^{2}_{\mathbf{Y}_{h}}
+t𝐞𝜸fIf2+t𝐞𝜸pIp2+tA1/2(𝐞𝝈pI+αp𝐞ppI𝐈)𝕃2(Ωp)2+t𝐞𝝈pI𝕏p2)ds\displaystyle\displaystyle\quad+\|\partial_{t}\,{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{f}}\|^{2}_{\mathbb{Q}_{f}}+\|\partial_{t}\,{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{p}}\|^{2}_{\mathbb{Q}_{p}}+\|\partial_{t}\,A^{1/2}\,({\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{I}_{p_{p}}\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+\|\partial_{t}\,{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{p}}\|^{2}_{\mathbb{X}_{p}}\Big{)}\,ds
+𝐞𝝈fI(0)𝕃2(Ωf)2+𝐞𝐮pI(0)𝐕p2+𝐞𝝋I(0)𝚲fh2+𝐞𝜽I(0)𝚲sh2+𝐞𝜸fI(0)f2)\displaystyle\displaystyle\quad+\,\|{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{f}}(0)\|^{2}_{\mathbb{L}^{2}(\Omega_{f})}+\|{\mathbf{e}}^{I}_{\mathbf{u}_{p}}(0)\|^{2}_{\mathbf{V}_{p}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\varphi}}}(0)\|^{2}_{{\boldsymbol{\Lambda}}_{fh}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\theta}}}(0)\|^{2}_{{\boldsymbol{\Lambda}}_{sh}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{f}}(0)\|^{2}_{\mathbb{Q}_{f}}\Bigg{)}
+δ3(𝐞𝝈fh(t)𝕏f2+𝐞𝝈ph(t)𝕃2(Ωp)2+𝐞λh(t)Λph2+0t(𝐞𝝈fh𝕏f2+𝐞𝐮ph𝐕p2+|𝐞𝝋h𝐞𝜽h|𝙱𝙹𝚂2)ds\displaystyle\displaystyle+\,\delta_{3}\,\Bigg{(}\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}}(t)\|^{2}_{\mathbb{X}_{f}}+\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}(t)\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+\|{\mathbf{e}}^{h}_{\lambda}(t)\|^{2}_{\Lambda_{ph}}+\int^{t}_{0}\Big{(}\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}}\|^{2}_{\mathbb{X}_{f}}+\|{\mathbf{e}}^{h}_{\mathbf{u}_{p}}\|^{2}_{\mathbf{V}_{p}}+|{\mathbf{e}}^{h}_{{\boldsymbol{\varphi}}}-{\mathbf{e}}^{h}_{{\boldsymbol{\theta}}}|^{2}_{\mathtt{BJS}}\Big{)}\,ds
+0t(𝐞𝝋¯h𝐘h2+𝐞𝐮¯h𝐙2)ds)+12t0tA1/2(𝐞𝝈ph+αp𝐞pph𝐈)2𝕃2(Ωp)ds\displaystyle\displaystyle\quad+\,\int^{t}_{0}\Big{(}\|{\mathbf{e}}^{h}_{\underline{\boldsymbol{\varphi}}}\|^{2}_{\mathbf{Y}_{h}}+\|{\mathbf{e}}^{h}_{\underline{\mathbf{u}}}\|^{2}_{\mathbf{Z}}\Big{)}\,ds\Bigg{)}+\frac{1}{2}\,\int^{t}_{0}\|\partial_{t}\,A^{1/2}\,({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{h}_{p_{p}}\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}\,ds
+C(𝐞𝝈fh(0)𝕏f2+𝐞𝐮ph(0)𝐋2(Ωp)2+𝐞𝝈ph(0)𝕏p2+|(𝐞𝝋h𝐞𝜽h)(0)|𝙱𝙹𝚂2+𝐞λh(0)Λph2).\displaystyle\displaystyle\quad+\,C\,\Big{(}\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}}(0)\|^{2}_{\mathbb{X}_{f}}+\|{\mathbf{e}}^{h}_{\mathbf{u}_{p}}(0)\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}(0)\|^{2}_{\mathbb{X}_{p}}+|({\mathbf{e}}^{h}_{{\boldsymbol{\varphi}}}-{\mathbf{e}}^{h}_{{\boldsymbol{\theta}}})(0)|^{2}_{\mathtt{BJS}}+\|{\mathbf{e}}^{h}_{\lambda}(0)\|^{2}_{\Lambda_{ph}}\Big{)}\,. (5.35)

We note that 𝐞𝝈ph(t)𝕃2(Ωp)2+𝐞λh(t)Λph2\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}(t)\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+\|{\mathbf{e}}^{h}_{\lambda}(t)\|^{2}_{\Lambda_{ph}} can be bounded by using (4.14) and (5.31), whereas all the other terms with δ3\delta_{3} can be bounded by the left hand side of (5.2). Thus, combining (5.2) with (5.31) and (5.2), using algebraic manipulations, and choosing δ3\delta_{3} small enough, we get

𝐞𝝈fh(t)𝕏f2+𝐞𝐮ph(t)𝐋2(Ωp)2+|(𝐞𝝋h𝐞𝜽h)(t)|𝙱𝙹𝚂2+𝐞λh(t)Λph2+A1/2(𝐞𝝈ph+αp𝐞pph𝐈)(t)𝕃2(Ωp)2\displaystyle\displaystyle\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}}(t)\|^{2}_{\mathbb{X}_{f}}+\|{\mathbf{e}}^{h}_{\mathbf{u}_{p}}(t)\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+|({\mathbf{e}}^{h}_{\boldsymbol{\varphi}}-{\mathbf{e}}^{h}_{\boldsymbol{\theta}})(t)|^{2}_{\mathtt{BJS}}+\|{\mathbf{e}}^{h}_{\lambda}(t)\|^{2}_{\Lambda_{ph}}+\|A^{1/2}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{h}_{p_{p}}\,\mathbf{I})(t)\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}
+𝐝𝐢𝐯(𝐞𝝈ph(t))𝐋2(Ωp)2+𝐞pph(t)Wp2+0t(𝐞𝝈fh𝕏f2+𝐞𝐮ph𝐕p2+|𝐞𝝋h𝐞𝜽h|𝙱𝙹𝚂2+𝐞𝝋¯h𝐘h2\displaystyle\displaystyle\quad+\|\mathbf{div}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}(t))\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+\|{\mathbf{e}}^{h}_{p_{p}}(t)\|^{2}_{\mathrm{W}_{p}}+\int^{t}_{0}\Big{(}\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}}\|^{2}_{\mathbb{X}_{f}}+\|{\mathbf{e}}^{h}_{\mathbf{u}_{p}}\|^{2}_{\mathbf{V}_{p}}+|{\mathbf{e}}^{h}_{{\boldsymbol{\varphi}}}-{\mathbf{e}}^{h}_{{\boldsymbol{\theta}}}|^{2}_{\mathtt{BJS}}+\|{\mathbf{e}}^{h}_{\underline{\boldsymbol{\varphi}}}\|^{2}_{\mathbf{Y}_{h}}
+𝐞𝐮¯h𝐙2+𝐝𝐢𝐯(𝐞𝝈ph)𝐋2(Ωp)2+𝐞pphWp2+tA1/2(𝐞𝝈ph+αp𝐞pph𝐈)𝕃2(Ωp)2+s0t𝐞pphWp2)ds\displaystyle\displaystyle\quad+\|{\mathbf{e}}^{h}_{\underline{\mathbf{u}}}\|^{2}_{\mathbf{Z}}+\|\mathbf{div}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}})\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+\|{\mathbf{e}}^{h}_{p_{p}}\|^{2}_{\mathrm{W}_{p}}+\|\partial_{t}\,A^{1/2}\,({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}\,{\mathbf{e}}^{h}_{p_{p}}\,\mathbf{I})\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+s_{0}\|\partial_{t}\,{\mathbf{e}}^{h}_{p_{p}}\|^{2}_{\mathrm{W}_{p}}\Big{)}\,ds
Cexp(T)(𝐞𝝈fI(t)𝕃2(Ωf)2+𝐞𝐮pI(t)𝐕p2+𝐞𝝈pI(t)𝕃2(Ωp)2+𝐞𝝋I(t)𝚲fh2+𝐞𝜽I(t)𝚲sh2\displaystyle\displaystyle\leq\,C\,\exp(T)\Bigg{(}\|{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{f}}(t)\|^{2}_{\mathbb{L}^{2}(\Omega_{f})}+\|{\mathbf{e}}^{I}_{\mathbf{u}_{p}}(t)\|^{2}_{\mathbf{V}_{p}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{p}}(t)\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\varphi}}}(t)\|^{2}_{{\boldsymbol{\Lambda}}_{fh}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\theta}}}(t)\|^{2}_{{\boldsymbol{\Lambda}}_{sh}}
+𝐞𝜸fI(t)f2+𝐞𝜸pI(t)p2+0t(𝐞𝝈¯I𝐗2+𝐞𝝋¯I𝐘h2+𝐞𝐮¯I𝐙2+|𝐞𝝋I𝐞𝜽I|𝙱𝙹𝚂2+t𝐞𝝈¯I𝐗2)𝑑s\displaystyle\displaystyle\quad+\|{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{f}}(t)\|^{2}_{\mathbb{Q}_{f}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{p}}(t)\|^{2}_{\mathbb{Q}_{p}}+\int^{t}_{0}\Big{(}\|{\mathbf{e}}^{I}_{\underline{{\boldsymbol{\sigma}}}}\|^{2}_{\mathbf{X}}+\|{\mathbf{e}}^{I}_{\underline{\boldsymbol{\varphi}}}\|^{2}_{\mathbf{Y}_{h}}+\|{\mathbf{e}}^{I}_{\underline{\mathbf{u}}}\|^{2}_{\mathbf{Z}}+|{\mathbf{e}}^{I}_{{\boldsymbol{\varphi}}}-{\mathbf{e}}^{I}_{{\boldsymbol{\theta}}}|^{2}_{\mathtt{BJS}}+\|\partial_{t}\,{\mathbf{e}}^{I}_{\underline{{\boldsymbol{\sigma}}}}\|^{2}_{\mathbf{X}}\Big{)}\,ds
+0t(t𝐞𝝋¯I𝐘h2+|t(𝐞𝝋I𝐞𝜽I)|𝙱𝙹𝚂2+t𝐞𝜸fIf2+t𝐞𝜸pIp2)𝑑s+𝐞𝝈fI(0)𝕃2(Ωf)2\displaystyle\displaystyle\quad+\int^{t}_{0}\Big{(}\|\partial_{t}\,{\mathbf{e}}^{I}_{\underline{\boldsymbol{\varphi}}}\|^{2}_{\mathbf{Y}_{h}}+|\partial_{t}\,({\mathbf{e}}^{I}_{{\boldsymbol{\varphi}}}-{\mathbf{e}}^{I}_{{\boldsymbol{\theta}}})|^{2}_{\mathtt{BJS}}+\|\partial_{t}\,{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{f}}\|^{2}_{\mathbb{Q}_{f}}+\|\partial_{t}\,{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{p}}\|^{2}_{\mathbb{Q}_{p}}\Big{)}\,ds+\|{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{f}}(0)\|^{2}_{\mathbb{L}^{2}(\Omega_{f})}
+𝐞𝐮pI(0)𝐕p2+𝐞𝝋I(0)𝚲fh2+𝐞𝜽I(0)𝚲sh2+𝐞𝜸fI(0)f2+𝐞𝝈fh(0)𝕏f2+𝐞𝐮ph(0)𝐋2(Ωp)2\displaystyle\displaystyle\quad+\|{\mathbf{e}}^{I}_{\mathbf{u}_{p}}(0)\|^{2}_{\mathbf{V}_{p}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\varphi}}}(0)\|^{2}_{{\boldsymbol{\Lambda}}_{fh}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\theta}}}(0)\|^{2}_{{\boldsymbol{\Lambda}}_{sh}}+\|{\mathbf{e}}^{I}_{{\boldsymbol{\gamma}}_{f}}(0)\|^{2}_{\mathbb{Q}_{f}}+\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}}(0)\|^{2}_{\mathbb{X}_{f}}+\|{\mathbf{e}}^{h}_{\mathbf{u}_{p}}(0)\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}
+𝐞𝝈ph(0)𝕏p2+(1+s0)𝐞pph(0)Wp2+|(𝐞𝝋h𝐞𝜽h)(0)|𝙱𝙹𝚂2+𝐞λh(0)Λph2).\displaystyle\displaystyle\quad+\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}(0)\|^{2}_{\mathbb{X}_{p}}+(1+s_{0})\|{\mathbf{e}}^{h}_{p_{p}}(0)\|^{2}_{\mathrm{W}_{p}}+|({\mathbf{e}}^{h}_{{\boldsymbol{\varphi}}}-{\mathbf{e}}^{h}_{{\boldsymbol{\theta}}})(0)|^{2}_{\mathtt{BJS}}+\|{\mathbf{e}}^{h}_{\lambda}(0)\|^{2}_{\Lambda_{ph}}\Bigg{)}. (5.36)

Finally, we establish a bound on the initial data terms above. In fact, proceeding as in (4.45), recalling from Corollary 4.11 and Theorem 5.2 that (𝝈¯(0),𝝋¯(0))=(𝝈¯0,𝝋¯0)(\underline{{\boldsymbol{\sigma}}}(0),\underline{\boldsymbol{\varphi}}(0))=(\underline{{\boldsymbol{\sigma}}}_{0},\underline{\boldsymbol{\varphi}}_{0}) and (𝝈¯h(0),𝝋¯h(0))=(𝝈¯h,0,𝝋¯h,0)(\underline{{\boldsymbol{\sigma}}}_{h}(0),\underline{\boldsymbol{\varphi}}_{h}(0))=(\underline{{\boldsymbol{\sigma}}}_{h,0},\underline{\boldsymbol{\varphi}}_{h,0}), using similar arguments to (5.2) in combination with the error system derived from (5)–(5), we deduce

𝐞𝝈fh(0)𝕏f2+𝐞𝐮ph(0)𝐕p2+A1/2(𝐞𝝈ph(0))𝕃2(Ωp)2+𝐝𝐢𝐯(𝐞𝝈ph(0))𝐋2(Ωp)2+𝐞pph(0)Wp2+|(𝐞𝝋h𝐞𝜽h)(0)|𝙱𝙹𝚂2+𝐞λh(0)Λph2C(𝐞𝝈¯0I𝐗2+𝐞𝝋¯~0I𝐘h2+𝐞𝐮¯~0I𝐙2),\begin{array}[]{l}\displaystyle\|{\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}}(0)\|^{2}_{\mathbb{X}_{f}}+\|{\mathbf{e}}^{h}_{\mathbf{u}_{p}}(0)\|^{2}_{\mathbf{V}_{p}}+\|A^{1/2}\,({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}(0))\|^{2}_{\mathbb{L}^{2}(\Omega_{p})}+\|\mathbf{div}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}}(0))\|^{2}_{\mathbf{L}^{2}(\Omega_{p})}+\|{\mathbf{e}}^{h}_{p_{p}}(0)\|^{2}_{\mathrm{W}_{p}}\\[8.61108pt] \displaystyle\quad+\,\,|({\mathbf{e}}^{h}_{{\boldsymbol{\varphi}}}-{\mathbf{e}}^{h}_{{\boldsymbol{\theta}}})(0)|^{2}_{\mathtt{BJS}}+\|{\mathbf{e}}^{h}_{\lambda}(0)\|^{2}_{\Lambda_{ph}}\,\leq\,C\,\Big{(}\|{\mathbf{e}}^{I}_{\underline{{\boldsymbol{\sigma}}}_{0}}\|^{2}_{\mathbf{X}}+\|{\mathbf{e}}^{I}_{\widetilde{\underline{\boldsymbol{\varphi}}}_{0}}\|^{2}_{\mathbf{Y}_{h}}+\|{\mathbf{e}}^{I}_{\widetilde{\underline{\mathbf{u}}}_{0}}\|^{2}_{\mathbf{Z}}\Big{)}\,,\end{array} (5.37)

where 𝝈¯0=(𝝈f,0,𝐮p,0,𝝈p,0,pp,0)\underline{{\boldsymbol{\sigma}}}_{0}=({\boldsymbol{\sigma}}_{f,0},\mathbf{u}_{p,0},{\boldsymbol{\sigma}}_{p,0},p_{p,0}), 𝝋¯~0=(𝝋0,𝝎0,λ0)\widetilde{\underline{\boldsymbol{\varphi}}}_{0}=({\boldsymbol{\varphi}}_{0},{\boldsymbol{\omega}}_{0},\lambda_{0}) and 𝐮¯~0=(𝐮f,0,𝜼p,0,𝜸f,0,𝝆p,0)\widetilde{\underline{\mathbf{u}}}_{0}=(\mathbf{u}_{f,0},{\boldsymbol{\eta}}_{p,0},{\boldsymbol{\gamma}}_{f,0},{\boldsymbol{\rho}}_{p,0}), and 𝐞𝝈0I,𝐞𝝋¯~0I,𝐞𝐮¯~0I{\mathbf{e}}^{I}_{{\boldsymbol{\sigma}}_{0}},{\mathbf{e}}^{I}_{\widetilde{\underline{\boldsymbol{\varphi}}}_{0}},{\mathbf{e}}^{I}_{\widetilde{\underline{\mathbf{u}}}_{0}} denote their corresponding approximation errors. Thus, using the error decomposition (5.22) in combination with (5.2)–(5.37), the triangle inequality, (4.14) and the approximation properties (5.18) and (5.21), we obtain (5.3) with a positive constant CC depending on parameters μ,λp,μp,αp,kmin,kmax,α𝙱𝙹𝚂\mu,\lambda_{p},\mu_{p},\alpha_{p},k_{\min},k_{\max},\alpha_{\mathtt{BJS}}, and the extra regularity assumptions for 𝝈¯,𝝋¯\underline{{\boldsymbol{\sigma}}},\underline{\boldsymbol{\varphi}}, and 𝐮¯\underline{\mathbf{u}} whose expressions are obtained from the right-hands side of (5.18) and (5.21). This completes the proof in the conforming case (S1).

The proof in the non-conforming case (S2) follows by using similar arguments. We exploit the projection property (5.19) to conclude that some terms in (5.2) are zero, namely b𝐧f(𝐞𝝈fh,𝐞𝝋I)b_{{\mathbf{n}}_{f}}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{f}},{\mathbf{e}}^{I}_{{\boldsymbol{\varphi}}}), b𝐧p(𝐞𝝈ph,𝐞𝜽I)b_{{\mathbf{n}}_{p}}({\mathbf{e}}^{h}_{{\boldsymbol{\sigma}}_{p}},{\mathbf{e}}^{I}_{{\boldsymbol{\theta}}}), and bΓ(𝐞𝐮ph,𝐞λI)b_{\Gamma}({\mathbf{e}}^{h}_{\mathbf{u}_{p}},{\mathbf{e}}^{I}_{\lambda}), as well as terms appearing in the operator 𝒞\mathcal{C} (cf. (3.9)): 𝐞𝝋h𝐧f,𝐞λIΓfp\left<{\mathbf{e}}^{h}_{{\boldsymbol{\varphi}}}\cdot{\mathbf{n}}_{f},{\mathbf{e}}^{I}_{\lambda}\right>_{\Gamma_{fp}}, 𝐞𝝋I𝐧f,𝐞λhΓfp\left<{\mathbf{e}}^{I}_{\boldsymbol{\varphi}}\cdot{\mathbf{n}}_{f},{\mathbf{e}}^{h}_{\lambda}\right>_{\Gamma_{fp}}, 𝐞𝜽h𝐧p,𝐞λIΓfp\left<{\mathbf{e}}^{h}_{{\boldsymbol{\theta}}}\cdot{\mathbf{n}}_{p},{\mathbf{e}}^{I}_{\lambda}\right>_{\Gamma_{fp}}, and 𝐞𝜽I𝐧p,𝐞λhΓfp\left<{\mathbf{e}}^{I}_{\boldsymbol{\theta}}\cdot{\mathbf{n}}_{p},{\mathbf{e}}^{h}_{\lambda}\right>_{\Gamma_{fp}}. In addition, in the non-conforming version of (5.2) the terms 𝐞λIΛph\|{\mathbf{e}}^{I}_{\lambda}\|_{\Lambda_{ph}}, 𝐞𝝋I𝚲fh\|{\mathbf{e}}^{I}_{{\boldsymbol{\varphi}}}\|_{{\boldsymbol{\Lambda}}_{fh}}, and 𝐞𝜽I𝚲sh\|{\mathbf{e}}^{I}_{{\boldsymbol{\theta}}}\|_{{\boldsymbol{\Lambda}}_{sh}} do not appear, since the bilinear forms bΓ(𝐯ph,𝐞λI)b_{\Gamma}({\mathbf{v}}_{ph},{\mathbf{e}}^{I}_{\lambda}), b𝐧f(𝝉fh,𝐞𝝋I)b_{{\mathbf{n}}_{f}}({\boldsymbol{\tau}}_{fh},{\mathbf{e}}^{I}_{{\boldsymbol{\varphi}}}), and b𝐧p(𝝉ph,𝐞𝜽I)b_{{\mathbf{n}}_{p}}({\boldsymbol{\tau}}_{ph},{\mathbf{e}}^{I}_{{\boldsymbol{\theta}}}) are zero by a direct application of the projection property (5.19). \square

6 A multipoint stress-flux mixed finite element method

In this section, inspired by previous works on the multipoint flux mixed finite element method for Darcy flow [40, 57, 58, 19] and the multipoint stress mixed finite element method for elasticity [5, 6, 7], we present a vertex quadrature rule that allows for local elimination of the stresses, rotations, and Darcy fluxes, leading to a positive-definite cell-centered pressure-velocities-traces system. We emphasize that, to the best of our knowledge, this is the first time such method is developed for the Stokes equations. To that end, the finite element spaces to be considered for both (𝕏fh,𝐕fh,fh)(\mathbb{X}_{fh},\mathbf{V}_{fh},\mathbb{Q}_{fh}) and (𝕏ph,𝐕sh,ph)(\mathbb{X}_{ph},\mathbf{V}_{sh},\mathbb{Q}_{ph}) are the triple 𝔹𝔻𝕄1𝐏01\mathbb{BDM}_{1}-\mathbf{P}_{0}-\mathbb{P}_{1}, which have been shown to be stable for mixed elasticity with weak stress symmetry in [15, 16, 30], whereas (𝐕ph,Wph)(\mathbf{V}_{ph},\mathrm{W}_{ph}) is chosen to be 𝐁𝐃𝐌1P0\mathbf{BDM}_{1}-\mathrm{P}_{0} [17], and the Lagrange multiplier spaces (𝚲fh,𝚲sh,Λph)({\boldsymbol{\Lambda}}_{fh},{\boldsymbol{\Lambda}}_{sh},\Lambda_{ph}) are either 𝐏1𝐏1P1\mathbf{P}_{1}-\mathbf{P}_{1}-\mathrm{P}_{1} or 𝐏1dc𝐏1dcP1dc\mathbf{P}^{\mathrm{dc}}_{1}-\mathbf{P}^{\mathrm{dc}}_{1}-\mathrm{P}^{\mathrm{dc}}_{1} satisfying (S1) or (S2) (cf. (5.1), (5.2)), respectively, where P1dc\mathrm{P}^{\mathrm{dc}}_{1} denotes the piecewise linear discontinuous finite element space and 𝐏1dc\mathbf{P}^{\mathrm{dc}}_{1} is its corresponding vector version.

6.1 A quadrature rule setting

Let SS_{\star} denote the space of elementwise continuous functions on 𝒯h\mathcal{T}_{h}^{\star}. For any pair of tensor or vector valued functions φ\varphi and ψ\psi with elements in SS_{\star}, we define the vertex quadrature rule as in [58] (see also [5, 7]):

(φ,ψ)Q,Ω:=E𝒯h(φ,ψ)Q,E=E𝒯h|E|si=1sφ(𝐫i)ψ(𝐫i),(\varphi,\psi)_{Q,\Omega_{\star}}\,:=\,\sum_{E\in\mathcal{T}_{h}^{\star}}(\varphi,\psi)_{Q,E}\,=\,\sum_{E\in\mathcal{T}_{h}^{\star}}\frac{|E|}{s}\sum^{s}_{i=1}\,\varphi(\mathbf{r}_{i})\cdot\psi(\mathbf{r}_{i}), (6.1)

where {f,p}\star\in\{f,p\}, s=3s=3 on triangles and s=4s=4 on tetrahedra, 𝐫i\mathbf{r}_{i}, i=1,,si=1,\ldots,s, are the vertices of the element EE, and \cdot denotes the inner product for both vectors and tensors.

We will apply the quadrature rule for the bilinear forms afa_{f}, apa_{p}, aea_{e} and bsk,b_{\mathrm{sk},\star}, which will be denoted by afha^{h}_{f}, apha^{h}_{p}, aeha^{h}_{e} and bsk,hb^{h}_{\mathrm{sk},\star}, respectively. These bilinear forms involve the stress spaces 𝕏fh\mathbb{X}_{fh} and 𝕏ph\mathbb{X}_{ph}, the vorticity space fh\mathbb{Q}_{fh} and rotation space ph\mathbb{Q}_{ph}, and the Darcy velocity space 𝐕ph\mathbf{V}_{ph}. The 𝐁𝐃𝐌1\mathbf{BDM}_{1} spaces have for degrees of freedom s1s-1 normal components on each element edge (face), which can be associated with the vertices of the edge (face). At any element vertex 𝐫i\mathbf{r}_{i}, the value of a tensor or vector function is uniquely determined by its normal components at the associated two edges or three faces. Also, the vorticity space fh\mathbb{Q}_{fh} and the rotation space ph\mathbb{Q}_{ph} are vertex-based. Therefore the application of the vertex quadrature rule (6.1) for the bilinear forms involving the above spaces results in coupling only the degrees of freedom associated with a mesh vertex, which allows for local elimination of these variables. Next, we state a preliminary lemma to be used later on, which has been proved in [7, Lemma 3.1] and [5, Lemma 2.2].

Lemma 6.1

There exist positive constants C0C_{0} and C1C_{1} independent of hh, such that for any linear uniformly bounded and positive-definite operator LL, there hold

(L(φ),φ)Q,ΩC0φΩ2,(L(φ),ψ)Q,ΩC1φΩψΩ,φ,ψS,{f,p}.(L(\varphi),\varphi)_{Q,\Omega_{\star}}\,\geq\,C_{0}\,\|\varphi\|_{\Omega_{\star}}^{2},\quad(L(\varphi),\psi)_{Q,\Omega_{\star}}\,\leq\,C_{1}\,\|\varphi\|_{\Omega_{\star}}\|\psi\|_{\Omega_{\star}},\quad\forall\,\varphi,\psi\in S_{\star},\ \ \star\in\{f,p\}.

Consequently, the bilinear form (L(φ),φ)Q,Ω(L(\varphi),\varphi)_{Q,\Omega_{\star}} is an inner product in L2(Ω)\mathrm{L}^{2}(\Omega_{\star}) and (L(φ),φ)Q,Ω1/2(L(\varphi),\varphi)^{1/2}_{Q,\Omega_{\star}} is a norm equivalent to φΩ\|\varphi\|_{\Omega_{\star}}.

The semidiscrete coupled multipoint stress-flux mixed finite element method for (3.11) reads: Find (𝝈¯h,𝝋¯h,𝐮¯h):[0,T]𝐗h×𝐘h×𝐙h(\underline{{\boldsymbol{\sigma}}}_{h},\underline{\boldsymbol{\varphi}}_{h},\underline{\mathbf{u}}_{h}):[0,T]\to\mathbf{X}_{h}\times\mathbf{Y}_{h}\times\mathbf{Z}_{h} such that for all (𝝉¯h,𝝍¯h,𝐯¯h)𝐗h×𝐘h×𝐙h(\underline{{\boldsymbol{\tau}}}_{h},\underline{\boldsymbol{\psi}}_{h},\underline{{\mathbf{v}}}_{h})\in\mathbf{X}_{h}\times\mathbf{Y}_{h}\times\mathbf{Z}_{h}, and for a.e. t(0,T)t\in(0,T),

th(𝝈¯h)(𝝉¯h)+𝒜h(𝝈¯h)(𝝉¯h)+1(𝝉¯h)(𝝋¯h)+h(𝝉¯h)(𝐮¯h)=𝐅(𝝉¯h),1(𝝈¯h)(𝝍¯h)+𝒞(𝝋¯h)(𝝍¯h)=0,h(𝝈¯h)(𝐯¯h)=𝐆(𝐯¯h),\begin{array}[]{lll}\displaystyle\frac{\partial}{\partial t}\,\mathcal{E}_{h}(\underline{{\boldsymbol{\sigma}}}_{h})(\underline{{\boldsymbol{\tau}}}_{h})+\mathcal{A}_{h}(\underline{{\boldsymbol{\sigma}}}_{h})(\underline{{\boldsymbol{\tau}}}_{h})+\mathcal{B}_{1}(\underline{{\boldsymbol{\tau}}}_{h})(\underline{\boldsymbol{\varphi}}_{h})+\mathcal{B}_{h}(\underline{{\boldsymbol{\tau}}}_{h})(\underline{\mathbf{u}}_{h})&=&\mathbf{F}(\underline{{\boldsymbol{\tau}}}_{h}),\\[6.45831pt] \displaystyle-\,\mathcal{B}_{1}(\underline{{\boldsymbol{\sigma}}}_{h})(\underline{\boldsymbol{\psi}}_{h})+\mathcal{C}(\underline{\boldsymbol{\varphi}}_{h})(\underline{\boldsymbol{\psi}}_{h})&=&0,\\[6.45831pt] \displaystyle-\,\mathcal{B}_{h}(\underline{{\boldsymbol{\sigma}}}_{h})(\underline{{\mathbf{v}}}_{h})&=&\mathbf{G}(\underline{{\mathbf{v}}}_{h}),\end{array} (6.2)

where

𝒜h(𝝈¯h)(𝝉¯h):=afh(𝝈fh,𝝉fh)+aph(𝐮ph,𝐯ph)+bp(𝐯ph,pph)bp(𝐮ph,wph),h(𝝈¯h)(𝝉¯h):=aeh(𝝈ph,pph;𝝉ph,wph)+(s0pph,wph)Ωp,h(𝝉¯h)(𝐯¯h):=bf(𝝉fh,𝐯fh)+bs(𝝉ph,𝐯sh)+bsk,fh(𝝉fh,𝝌fh)+bsk,ph(𝝉ph,𝝌ph).\begin{array}[]{l}\displaystyle\mathcal{A}_{h}(\underline{{\boldsymbol{\sigma}}}_{h})(\underline{{\boldsymbol{\tau}}}_{h})\,:=\,a^{h}_{f}({\boldsymbol{\sigma}}_{fh},{\boldsymbol{\tau}}_{fh})+a^{h}_{p}(\mathbf{u}_{ph},{\mathbf{v}}_{ph})+b_{p}({\mathbf{v}}_{ph},p_{ph})-b_{p}(\mathbf{u}_{ph},w_{ph}),\\[6.45831pt] \displaystyle\mathcal{E}_{h}(\underline{{\boldsymbol{\sigma}}}_{h})(\underline{{\boldsymbol{\tau}}}_{h})\,:=\,a^{h}_{e}({\boldsymbol{\sigma}}_{ph},p_{ph};{\boldsymbol{\tau}}_{ph},w_{ph})+(s_{0}\,p_{ph},w_{ph})_{\Omega_{p}},\\[6.45831pt] \displaystyle\mathcal{B}_{h}(\underline{{\boldsymbol{\tau}}}_{h})(\underline{{\mathbf{v}}}_{h})\,:=\,b_{f}({\boldsymbol{\tau}}_{fh},{\mathbf{v}}_{fh})+b_{s}({\boldsymbol{\tau}}_{ph},{\mathbf{v}}_{sh})+b^{h}_{{\mathrm{sk},f}}({\boldsymbol{\tau}}_{fh},{\boldsymbol{\chi}}_{fh})+b^{h}_{{\mathrm{sk},p}}({\boldsymbol{\tau}}_{ph},{\boldsymbol{\chi}}_{ph}).\end{array}

We next discuss the discrete inf-sup conditions. We recall the space 𝐗~h\widetilde{\mathbf{X}}_{h} defined in (5.5). We also define the discrete kernel of the operator h\mathcal{B}_{h} as

𝐕^h:={𝝉¯h𝐗h:h(𝝉¯h)(𝐯¯h)=0𝐯h𝐙h}=𝕏^fh×𝐕ph×𝕏^ph×Wph,\widehat{\mathbf{V}}_{h}:=\Big{\{}\underline{{\boldsymbol{\tau}}}_{h}\in\mathbf{X}_{h}:\quad\mathcal{B}_{h}(\underline{{\boldsymbol{\tau}}}_{h})(\underline{{\mathbf{v}}}_{h})=0\quad\forall\,{\mathbf{v}}_{h}\in\mathbf{Z}_{h}\Big{\}}=\widehat{\mathbb{X}}_{fh}\times\mathbf{V}_{ph}\times\widehat{\mathbb{X}}_{ph}\times\mathrm{W}_{ph}, (6.3)

where

𝕏^h:={𝝉h𝕏h:(𝝉h,𝝃h)Q,Ω=0𝝃hhand𝐝𝐢𝐯(𝝉h)=𝟎inΩ},{f,p},\widehat{\mathbb{X}}_{\star h}:=\Big{\{}{\boldsymbol{\tau}}_{\star h}\in\mathbb{X}_{\star h}:\,({\boldsymbol{\tau}}_{\star h},{\boldsymbol{\xi}}_{\star h})_{Q,\Omega_{\star}}=0\ \ \forall\,{\boldsymbol{\xi}}_{\star h}\in\mathbb{Q}_{\star h}{\quad\hbox{and}\quad}\mathbf{div}({\boldsymbol{\tau}}_{\star h})={\mathbf{0}}{\quad\hbox{in}\quad}\Omega_{\star}\Big{\}},\quad\star\in\{f,p\},

emphasizing the difference from the discrete kernel of \mathcal{B} defined in (5.6).

Lemma 6.2

There exist positive constants β^\widehat{\beta} and β^1\widehat{\beta}_{1}, such that

sup𝟎𝝉¯h𝐗~hh(𝝉¯h)(𝐯¯h)𝝉¯h𝐗β^𝐯¯h𝐙𝐯¯h𝐙h,\sup_{{\mathbf{0}}\neq\underline{{\boldsymbol{\tau}}}_{h}\in\widetilde{\mathbf{X}}_{h}}\,\frac{\mathcal{B}_{h}(\underline{{\boldsymbol{\tau}}}_{h})(\underline{{\mathbf{v}}}_{h})}{\|\underline{{\boldsymbol{\tau}}}_{h}\|_{\mathbf{X}}}\,\geq\,\widehat{\beta}\,\|\underline{{\mathbf{v}}}_{h}\|_{\mathbf{Z}}\quad\forall\,\underline{{\mathbf{v}}}_{h}\in\mathbf{Z}_{h}, (6.4)
sup𝟎𝝉¯h𝐕^h1(𝝉¯h)(𝝍¯h)𝝉¯h𝐗β^1𝝍¯h𝐘h𝝍¯h𝐘h.\sup_{{\mathbf{0}}\neq\underline{{\boldsymbol{\tau}}}_{h}\in\widehat{\mathbf{V}}_{h}}\frac{\mathcal{B}_{1}(\underline{{\boldsymbol{\tau}}}_{h})(\underline{\boldsymbol{\psi}}_{h})}{\|\underline{{\boldsymbol{\tau}}}_{h}\|_{\mathbf{X}}}\,\geq\,\widehat{\beta}_{1}\,\|\underline{\boldsymbol{\psi}}_{h}\|_{\mathbf{Y}_{h}}\quad\forall\,\underline{\boldsymbol{\psi}}_{h}\in\mathbf{Y}_{h}. (6.5)

Proof. The proof of (6.4) follows from a slight adaptation of the argument in [5, Theorem 4.2]. The proof of (6.5) is similar to the proof of (5.8). The main difference is replacing the interpolant satisfying (5.9) by an interpolant Π^hf:1(Ωf)𝕏fh\hat{\Pi}_{h}^{f}:\mathbb{H}^{1}(\Omega_{f})\to\mathbb{X}_{fh} satisfying

bf(Π^hf𝝉f𝝉f,𝐯fh)=0𝐯fh𝐕fh,bsk,fh(Π^hf𝝉f𝝉f,𝝌fh)=0𝝌fhfh,(Π^hf𝝉f𝝉f)𝐧f,𝝉fh𝐧fΓfpΓfN=0𝝉fh𝕏fh,\begin{array}[]{c}b_{f}(\hat{\Pi}_{h}^{f}{\boldsymbol{\tau}}_{f}-{\boldsymbol{\tau}}_{f},{\mathbf{v}}_{fh})=0\quad\forall\,{\mathbf{v}}_{fh}\in\mathbf{V}_{fh},\quad b_{\mathrm{sk},f}^{h}(\hat{\Pi}_{h}^{f}{\boldsymbol{\tau}}_{f}-{\boldsymbol{\tau}}_{f},{\boldsymbol{\chi}}_{fh})=0\quad\forall\,{\boldsymbol{\chi}}_{fh}\in\mathbb{Q}_{fh},\\[4.30554pt] \langle(\hat{\Pi}_{h}^{f}{\boldsymbol{\tau}}_{f}-{\boldsymbol{\tau}}_{f}){\mathbf{n}}_{f},{\boldsymbol{\tau}}_{fh}{\mathbf{n}}_{f}\rangle_{\Gamma_{fp}\cup\Gamma_{f}^{N}}=0\quad\forall\,{\boldsymbol{\tau}}_{fh}\in\mathbb{X}_{fh},\end{array}

whose existence follows from the inf-sup condition for h\mathcal{B}_{h} (6.4). \square

We can establish the following well-posedness result.

Theorem 6.3

For each compatible initial data (𝛔¯h,0,𝛗¯h,0,𝐮¯h,0)(\underline{{\boldsymbol{\sigma}}}_{h,0},\underline{\boldsymbol{\varphi}}_{h,0},\underline{\mathbf{u}}_{h,0}) satisfying (5.15) and

𝐟fW1,1(0,T;𝐕f),𝐟pW1,1(0,T;𝐕s),qfW1,1(0,T;𝕏f),qpW1,1(0,T;Wp),\mathbf{f}_{f}\in\mathrm{W}^{1,1}(0,T;\mathbf{V}_{f}^{\prime}),\quad\mathbf{f}_{p}\in\mathrm{W}^{1,1}(0,T;\mathbf{V}_{s}^{\prime}),\quad q_{f}\in\mathrm{W}^{1,1}(0,T;\mathbb{X}^{\prime}_{f}),\quad q_{p}\in\mathrm{W}^{1,1}(0,T;\mathrm{W}^{\prime}_{p}),

there exists a unique solution of (6.2), (𝛔¯h,𝛗¯h,𝐮¯h):[0,T]𝐗h×𝐘h×𝐙h(\underline{{\boldsymbol{\sigma}}}_{h},\underline{\boldsymbol{\varphi}}_{h},\underline{\mathbf{u}}_{h}):[0,T]\to\mathbf{X}_{h}\times\mathbf{Y}_{h}\times\mathbf{Z}_{h} such that (𝛔ph,pph)W1,(0,T;𝕏ph)×W1,(0,T;Wph)({\boldsymbol{\sigma}}_{ph},p_{ph})\in\mathrm{W}^{1,\infty}(0,T;\mathbb{X}_{ph})\times\mathrm{W}^{1,\infty}(0,T;\mathrm{W}_{ph}), and (𝛔¯h(0),𝛗¯h(0),𝐮fh(0),𝛄fh(0))=(𝛔¯h,0,𝛗¯h,0,𝐮fh,0,𝛄fh,0)(\underline{{\boldsymbol{\sigma}}}_{h}(0),\underline{\boldsymbol{\varphi}}_{h}(0),\mathbf{u}_{fh}(0),{\boldsymbol{\gamma}}_{fh}(0))=(\underline{{\boldsymbol{\sigma}}}_{h,0},\underline{\boldsymbol{\varphi}}_{h,0},\mathbf{u}_{fh,0},{\boldsymbol{\gamma}}_{fh,0}). Moreover, assuming sufficient regularity of the data, a stability bound as in (5.2) also holds.

Proof. The theorem follows from similar arguments to the proof of Theorem 5.2, in conjunction with Lemmas 6.1 and 6.2. \square

6.2 Error analysis

Now, we obtain the error estimates and theoretical rates of convergence for the multipoint stress-flux mixed scheme (6.2). To that end, for each 𝝈fh{\boldsymbol{\sigma}}_{fh}, 𝝉fh𝕏fh{\boldsymbol{\tau}}_{fh}\in\mathbb{X}_{fh}, 𝐮ph\mathbf{u}_{ph}, 𝐯ph𝐕ph{\mathbf{v}}_{ph}\in\mathbf{V}_{ph}, 𝝈ph{\boldsymbol{\sigma}}_{ph}, 𝝉ph𝕏ph{\boldsymbol{\tau}}_{ph}\in\mathbb{X}_{ph}, pphp_{ph}, wphWphw_{ph}\in\mathrm{W}_{ph}, 𝝌fhfh{\boldsymbol{\chi}}_{fh}\in\mathbb{Q}_{fh}, and 𝝌phph{\boldsymbol{\chi}}_{ph}\in\mathbb{Q}_{ph}, we denote the quadrature errors by

δf(𝝈fh,𝝉fh)=af(𝝈fh,𝝉fh)afh(𝝈fh,𝝉fh),δp(𝐮ph,𝐯ph)=ap(𝐮ph,𝐯ph)aph(𝐮ph,𝐯ph),δe(𝝈ph,pph;𝝉ph,wph)=ae(𝝈ph,pph;𝝉ph,wph)aeh(𝝈ph,pph;𝝉ph,wph),δsk,(𝝌h,𝝉h)=bsk,(𝝌h,𝝉h)bsk,h(𝝌h,𝝉h),{f,p}.\begin{array}[]{rl}\delta_{f}({\boldsymbol{\sigma}}_{fh},{\boldsymbol{\tau}}_{fh})\,=&a_{f}({\boldsymbol{\sigma}}_{fh},{\boldsymbol{\tau}}_{fh})-a_{f}^{h}({\boldsymbol{\sigma}}_{fh},{\boldsymbol{\tau}}_{fh}),\\[6.45831pt] \delta_{p}(\mathbf{u}_{ph},{\mathbf{v}}_{ph})\,=&a_{p}(\mathbf{u}_{ph},{\mathbf{v}}_{ph})-a_{p}^{h}(\mathbf{u}_{ph},{\mathbf{v}}_{ph}),\\[6.45831pt] \delta_{e}({\boldsymbol{\sigma}}_{ph},p_{ph};{\boldsymbol{\tau}}_{ph},w_{ph})\,=&a_{e}({\boldsymbol{\sigma}}_{ph},p_{ph};{\boldsymbol{\tau}}_{ph},w_{ph})-a_{e}^{h}({\boldsymbol{\sigma}}_{ph},p_{ph};{\boldsymbol{\tau}}_{ph},w_{ph}),\\[6.45831pt] \delta_{\mathrm{sk},\star}({\boldsymbol{\chi}}_{\star h},{\boldsymbol{\tau}}_{\star h})\,=&b_{\mathrm{sk},\star}({\boldsymbol{\chi}}_{\star h},{\boldsymbol{\tau}}_{\star h})-b_{\mathrm{sk},\star}^{h}({\boldsymbol{\chi}}_{\star h},{\boldsymbol{\tau}}_{\star h}),\quad\star\in\{f,p\}.\end{array} (6.6)

Next, for the operator AA (cf. (2.4)) we will say that A𝕎𝒯hp1,A\in\mathbb{W}^{1,\infty}_{\mathcal{T}_{h}^{p}} if A𝕎1,(E)A\in\mathbb{W}^{1,\infty}(E) for all E𝒯hpE\in\mathcal{T}_{h}^{p} and A𝕎1,(E)\|A\|_{\mathbb{W}^{1,\infty}(E)} is uniformly bounded independently of hh. Similar notation holds for 𝐊1\mathbf{K}^{-1}. In the next lemma we establish bounds on the quadrature errors. The proof follows from a slight adaptation of [5, Lemma 5.2] to our context (see also [58, 7]).

Lemma 6.4

If 𝐊1𝕎𝒯hp1,\mathbf{K}^{-1}\in\mathbb{W}^{1,\infty}_{\mathcal{T}_{h}^{p}} and A𝕎𝒯hp1,A\in\mathbb{W}^{1,\infty}_{\mathcal{T}_{h}^{p}}, then there is a constant C>0C>0 independent of hh such that

|δf(𝝈fh,𝝉fh)|\displaystyle|\delta_{f}({\boldsymbol{\sigma}}_{fh},{\boldsymbol{\tau}}_{fh})| CE𝒯hfh𝝈fh1(E)𝝉fh𝕃2(E),\displaystyle\,\leq\,\displaystyle C\sum_{E\in\mathcal{T}_{h}^{f}}h\,\|{\boldsymbol{\sigma}}_{fh}\|_{\mathbb{H}^{1}(E)}\,\|{\boldsymbol{\tau}}_{fh}\|_{\mathbb{L}^{2}(E)},
|δp(𝐮ph,𝐯ph)|\displaystyle|\delta_{p}(\mathbf{u}_{ph},{\mathbf{v}}_{ph})| CE𝒯hph𝐊1𝕎1,(E)𝐮ph𝐇1(E)𝐯ph𝐋2(E),\displaystyle\,\leq\,\displaystyle C\sum_{E\in\mathcal{T}_{h}^{p}}h\,\|\mathbf{K}^{-1}\|_{\mathbb{W}^{1,\infty}(E)}\,\|\mathbf{u}_{ph}\|_{\mathbf{H}^{1}(E)}\,\|{\mathbf{v}}_{ph}\|_{\mathbf{L}^{2}(E)},
|δe(𝝈ph,pph;𝝉ph,wph)|\displaystyle|\delta_{e}({\boldsymbol{\sigma}}_{ph},p_{ph};{\boldsymbol{\tau}}_{ph},w_{ph})| CE𝒯hphA𝕎1,(E)(𝝈ph,pph)1(E)×L2(E)(𝝉ph,wph)𝕃2(E)×L2(E),\displaystyle\,\leq\,\displaystyle C\sum_{E\in\mathcal{T}_{h}^{p}}h\,\|A\|_{\mathbb{W}^{1,\infty}(E)}\|({\boldsymbol{\sigma}}_{ph},p_{ph})\|_{\mathbb{H}^{1}(E)\times\mathrm{L}^{2}(E)}\|({\boldsymbol{\tau}}_{ph},w_{ph})\|_{\mathbb{L}^{2}(E)\times\mathrm{L}^{2}(E)},
|δsk,(𝝉h,𝝌h)|\displaystyle|\delta_{\mathrm{sk},\star}({\boldsymbol{\tau}}_{\star h},{\boldsymbol{\chi}}_{\star h})| CE𝒯hh𝝉h𝕃2(E)𝝌h1(E),{f,p},\displaystyle\,\leq\,\displaystyle C\sum_{E\in\mathcal{T}_{h}^{\star}}h\,\|{\boldsymbol{\tau}}_{\star h}\|_{\mathbb{L}^{2}(E)}\,\|{\boldsymbol{\chi}}_{\star h}\|_{\mathbb{H}^{1}(E)},\quad\star\in\{f,p\},
|δsk,(𝝉h,𝝌h)|\displaystyle|\delta_{\mathrm{sk},\star}({\boldsymbol{\tau}}_{\star h},{\boldsymbol{\chi}}_{\star h})| CE𝒯hh𝝉h1(E)𝝌h𝕃2(E),{f,p},\displaystyle\,\leq\,\displaystyle C\sum_{E\in\mathcal{T}_{h}^{\star}}h\,\|{\boldsymbol{\tau}}_{\star h}\|_{\mathbb{H}^{1}(E)}\,\|{\boldsymbol{\chi}}_{\star h}\|_{\mathbb{L}^{2}(E)},\quad\star\in\{f,p\},

for all 𝛔fh,𝛕fh𝕏fh{\boldsymbol{\sigma}}_{fh},{\boldsymbol{\tau}}_{fh}\in\mathbb{X}_{fh}, 𝐮ph,𝐯ph𝐕ph\mathbf{u}_{ph},{\mathbf{v}}_{ph}\in\mathbf{V}_{ph}, 𝛔ph,𝛕ph𝕏ph{\boldsymbol{\sigma}}_{ph},{\boldsymbol{\tau}}_{ph}\in\mathbb{X}_{ph}, pph,wphWphp_{ph},w_{ph}\in\mathrm{W}_{ph}, 𝛘fhfh{\boldsymbol{\chi}}_{fh}\in\mathbb{Q}_{fh}, 𝛘phph{\boldsymbol{\chi}}_{ph}\in\mathbb{Q}_{ph}.

We are ready to establish the convergence of the multipoint stress-flux mixed finite element method.

Theorem 6.5

For the solutions of the continuous and semidiscrete problems (3.11) and (6.2), respectively, assuming sufficient regularity of the true solution according to (5.18) and (5.21), there exists a positive constant CC independent of hh and s0s_{0}, such that

𝐞𝝈fL(0,T;𝕏f)+𝐞𝝈fL2(0,T;𝕏f)+𝐞𝐮pL(0,T;𝐋2(Ωp))+𝐞𝐮pL2(0,T;𝐕p)+|𝐞𝝋𝐞𝜽|L(0,T;𝙱𝙹𝚂)\displaystyle\displaystyle\|{\mathbf{e}}_{{\boldsymbol{\sigma}}_{f}}\|_{\mathrm{L}^{\infty}(0,T;\mathbb{X}_{f})}+\|{\mathbf{e}}_{{\boldsymbol{\sigma}}_{f}}\|_{\mathrm{L}^{2}(0,T;\mathbb{X}_{f})}+\|{\mathbf{e}}_{\mathbf{u}_{p}}\|_{\mathrm{L}^{\infty}(0,T;\mathbf{L}^{2}(\Omega_{p}))}+\|{\mathbf{e}}_{\mathbf{u}_{p}}\|_{\mathrm{L}^{2}(0,T;\mathbf{V}_{p})}+|{\mathbf{e}}_{{\boldsymbol{\varphi}}}-{\mathbf{e}}_{{\boldsymbol{\theta}}}|_{\mathrm{L}^{\infty}(0,T;\mathtt{BJS})}
+|𝐞𝝋𝐞𝜽|L2(0,T;𝙱𝙹𝚂)+𝐞λL(0,T;Λph)+𝐞𝝋¯L2(0,T;𝐘h)+𝐞𝐮¯L2(0,T;𝐙)+A1/2(𝐞𝝈p)L(0,T;𝕃2(Ωp))\displaystyle\displaystyle\quad+|{\mathbf{e}}_{{\boldsymbol{\varphi}}}-{\mathbf{e}}_{{\boldsymbol{\theta}}}|_{\mathrm{L}^{2}(0,T;\mathtt{BJS})}+\|{\mathbf{e}}_{\lambda}\|_{\mathrm{L}^{\infty}(0,T;\Lambda_{ph})}+\|{\mathbf{e}}_{\underline{\boldsymbol{\varphi}}}\|_{\mathrm{L}^{2}(0,T;\mathbf{Y}_{h})}+\|{\mathbf{e}}_{\underline{\mathbf{u}}}\|_{\mathrm{L}^{2}(0,T;\mathbf{Z})}+\|A^{1/2}({\mathbf{e}}_{{\boldsymbol{\sigma}}_{p}})\|_{\mathrm{L}^{\infty}(0,T;\mathbb{L}^{2}(\Omega_{p}))}
+𝐝𝐢𝐯(𝐞𝝈p)L(0,T;𝐋2(Ωp))+𝐞ppL(0,T;Wp)+𝐝𝐢𝐯(𝐞𝝈p)L2(0,T;𝐋2(Ωp))+𝐞ppL2(0,T;Wp)\displaystyle\displaystyle\quad+\|\mathbf{div}({\mathbf{e}}_{{\boldsymbol{\sigma}}_{p}})\|_{\mathrm{L}^{\infty}(0,T;\mathbf{L}^{2}(\Omega_{p}))}+\|{\mathbf{e}}_{p_{p}}\|_{\mathrm{L}^{\infty}(0,T;\mathrm{W}_{p})}+\|\mathbf{div}({\mathbf{e}}_{{\boldsymbol{\sigma}}_{p}})\|_{\mathrm{L}^{2}(0,T;\mathbf{L}^{2}(\Omega_{p}))}+\|{\mathbf{e}}_{p_{p}}\|_{\mathrm{L}^{2}(0,T;\mathrm{W}_{p})}
+tA1/2(𝐞𝝈p+αp𝐞pp𝐈)L2(0,T;𝕃2(Ωp))+s0t𝐞ppL2(0,T;Wp)\displaystyle\displaystyle\quad+\|\partial_{t}\,A^{1/2}({\mathbf{e}}_{{\boldsymbol{\sigma}}_{p}}+\alpha_{p}{\mathbf{e}}_{p_{p}}\mathbf{I})\|_{\mathrm{L}^{2}(0,T;\mathbb{L}^{2}(\Omega_{p}))}+\sqrt{s_{0}}\|\partial_{t}\,{\mathbf{e}}_{p_{p}}\|_{\mathrm{L}^{2}(0,T;\mathrm{W}_{p})}
C(h+h1+r),\displaystyle\displaystyle\leq\,\,C\,\Big{(}h+h^{1+r}\Big{)}\,, (6.7)

where rr is defined in (5.18).

Proof. To obtain the error equations, we subtract the multipoint stress-flux mixed finite element formulation (6.2) from the continuous one (3.11). Using the error decomposition (5.22) and applying some algebraic manipulations, we obtain the error system:

(th+𝒜h)(𝐞𝝈¯h)(𝝉¯h)+1(𝝉¯h)(𝐞𝝋¯h)+h(𝝉¯h)(𝐞𝐮¯h)=(t+𝒜)(𝐞𝝈¯I)(𝝉¯h)1(𝝉¯h)(𝐞𝝋¯I)(𝝉¯h)(𝐞𝐮¯I)𝜹fep(Ih(𝝈¯),Ph(𝐮¯))(𝝉¯h),1(𝐞𝝈¯h)(𝝍¯h)+𝒞(𝐞𝝋¯h)(𝝍¯h)=1(𝐞𝝈¯I)(𝝍¯h)𝒞(𝐞𝝋¯I)(𝝍¯h)h(𝐞𝝈¯h)(𝐯¯h)=(𝐞𝝈¯I)(𝐯¯h)+𝜹fp(Ih(𝝈¯))(𝐯¯h),\begin{array}[]{l}\displaystyle\big{(}\partial_{t}\,\mathcal{E}_{h}+\mathcal{A}_{h}\big{)}({\mathbf{e}}^{h}_{\underline{{\boldsymbol{\sigma}}}})(\underline{{\boldsymbol{\tau}}}_{h})+\mathcal{B}_{1}(\underline{{\boldsymbol{\tau}}}_{h})({\mathbf{e}}^{h}_{\underline{\boldsymbol{\varphi}}})+\mathcal{B}_{h}(\underline{{\boldsymbol{\tau}}}_{h})({\mathbf{e}}^{h}_{\underline{\mathbf{u}}})\\[8.61108pt] \displaystyle\quad\,=\,-\big{(}\partial_{t}\,\mathcal{E}+\mathcal{A}\big{)}({\mathbf{e}}^{I}_{\underline{{\boldsymbol{\sigma}}}})(\underline{{\boldsymbol{\tau}}}_{h})-\mathcal{B}_{1}(\underline{{\boldsymbol{\tau}}}_{h})({\mathbf{e}}^{I}_{\underline{\boldsymbol{\varphi}}})-\mathcal{B}(\underline{{\boldsymbol{\tau}}}_{h})({\mathbf{e}}^{I}_{\underline{\mathbf{u}}})-{\boldsymbol{\delta}}_{fep}(I_{h}(\underline{{\boldsymbol{\sigma}}}),P_{h}(\underline{\mathbf{u}}))(\underline{{\boldsymbol{\tau}}}_{h}),\\[8.61108pt] \displaystyle-\,\mathcal{B}_{1}({\mathbf{e}}^{h}_{\underline{{\boldsymbol{\sigma}}}})(\underline{\boldsymbol{\psi}}_{h})+\mathcal{C}({\mathbf{e}}^{h}_{\underline{\boldsymbol{\varphi}}})(\underline{\boldsymbol{\psi}}_{h})\,=\,\mathcal{B}_{1}({\mathbf{e}}^{I}_{\underline{{\boldsymbol{\sigma}}}})(\underline{\boldsymbol{\psi}}_{h})-\mathcal{C}({\mathbf{e}}^{I}_{\underline{\boldsymbol{\varphi}}})(\underline{\boldsymbol{\psi}}_{h})\\[8.61108pt] \displaystyle-\,\mathcal{B}_{h}({\mathbf{e}}^{h}_{\underline{{\boldsymbol{\sigma}}}})(\underline{{\mathbf{v}}}_{h})\,=\,\mathcal{B}({\mathbf{e}}^{I}_{\underline{{\boldsymbol{\sigma}}}})(\underline{{\mathbf{v}}}_{h})+{\boldsymbol{\delta}}_{fp}(I_{h}(\underline{{\boldsymbol{\sigma}}}))(\underline{{\mathbf{v}}}_{h})\,,\end{array} (6.8)

for all (𝝉¯h,𝝍¯h,𝐯¯h)𝐗h×𝐘h×𝐙h(\underline{{\boldsymbol{\tau}}}_{h},\underline{\boldsymbol{\psi}}_{h},\underline{{\mathbf{v}}}_{h})\in\mathbf{X}_{h}\times\mathbf{Y}_{h}\times\mathbf{Z}_{h}, where

𝜹fep(Ih(𝝈¯),Ph(𝐮¯))(𝝉¯h):=δf(Ih𝕏f(𝝈f),𝝉fh)δe(Ih𝕏p(𝝈p),pp;𝝉ph,wph)δp(Ih𝐕p(𝐮p),𝐯ph)δsk,f(𝝉fh,Phf(𝜸f))δsk,p(𝝉ph,Php(𝜸p))\begin{array}[]{l}\displaystyle{\boldsymbol{\delta}}_{fep}(I_{h}(\underline{{\boldsymbol{\sigma}}}),P_{h}(\underline{\mathbf{u}}))(\underline{{\boldsymbol{\tau}}}_{h})\,:=\,-\,\delta_{f}(I^{\mathbb{X}_{f}}_{h}({\boldsymbol{\sigma}}_{f}),{\boldsymbol{\tau}}_{fh})-\delta_{e}(I^{\mathbb{X}_{p}}_{h}({\boldsymbol{\sigma}}_{p}),p_{p};{\boldsymbol{\tau}}_{ph},w_{ph})\\[8.61108pt] \displaystyle\quad-\,\delta_{p}(I^{\mathbf{V}_{p}}_{h}(\mathbf{u}_{p}),{\mathbf{v}}_{ph})-\delta_{\mathrm{sk},f}({\boldsymbol{\tau}}_{fh},P^{\mathbb{Q}_{f}}_{h}({\boldsymbol{\gamma}}_{f}))-\delta_{\mathrm{sk},p}({\boldsymbol{\tau}}_{ph},P^{\mathbb{Q}_{p}}_{h}({\boldsymbol{\gamma}}_{p}))\end{array}

and

𝜹fp(Ih(𝝈¯))(𝐯¯h):=δsk,f(Ih𝕏f(𝝈f),𝝌fh)+δsk,p(Ih𝕏p(𝝈p),𝝌ph).{\boldsymbol{\delta}}_{fp}(I_{h}(\underline{{\boldsymbol{\sigma}}}))(\underline{{\mathbf{v}}}_{h})\,:=\,\delta_{\mathrm{sk},f}(I^{\mathbb{X}_{f}}_{h}({\boldsymbol{\sigma}}_{f}),{\boldsymbol{\chi}}_{fh})+\delta_{\mathrm{sk},p}(I^{\mathbb{X}_{p}}_{h}({\boldsymbol{\sigma}}_{p}),{\boldsymbol{\chi}}_{ph})\,.

Notice that the error system (6.8) is similar to (5.23), except for the additional quadrature error terms. The rest of the proof follows from the arguments in the proof of (5.3), using Lemmas 6.1, 6.2 and 6.4, and utilizing the continuity bounds of the interpolation operators Ih𝐗,Ih𝐯p,PhI^{\mathbf{X}_{\star}}_{h},I^{{\mathbf{v}}_{p}}_{h},P^{\mathbb{Q}_{\star}}_{h} [5, Lemma 5.1]:

Ih𝕏(𝝉h)1(E)\displaystyle\displaystyle\|I^{\mathbb{X}_{\star}}_{h}({\boldsymbol{\tau}}_{\star h})\|_{\mathbb{H}^{1}(E)} C𝝉h1(E)𝝉h1(E),{f,p},\displaystyle\,\leq\,C\,\|{\boldsymbol{\tau}}_{\star h}\|_{\mathbb{H}^{1}(E)}\quad\forall\,{\boldsymbol{\tau}}_{\star h}\in\mathbb{H}^{1}(E)\,,\quad\star\in\{f,p\}\,,
Ph(𝝌h)1(E)\displaystyle\displaystyle\|P^{\mathbb{Q}_{\star}}_{h}({\boldsymbol{\chi}}_{\star h})\|_{\mathbb{H}^{1}(E)} C𝝌h1(E)𝝌h1(E),\displaystyle\,\leq\,C\,\|{\boldsymbol{\chi}}_{\star h}\|_{\mathbb{H}^{1}(E)}\quad\forall\,{\boldsymbol{\chi}}_{\star h}\in\mathbb{H}^{1}(E)\,,
Ih𝐕p(𝐯ph)𝐇1(E)\displaystyle\displaystyle\|I^{\mathbf{V}_{p}}_{h}({\mathbf{v}}_{ph})\|_{\mathbf{H}^{1}(E)} C𝐯ph𝐇1(E)𝐯ph𝐇1(E).\displaystyle\,\leq\,C\,\|{\mathbf{v}}_{ph}\|_{\mathbf{H}^{1}(E)}\quad\forall\,{\mathbf{v}}_{ph}\in\mathbf{H}^{1}(E)\,.

We omit further details, and refer to [5, 58, 7] for more details on the error analysis of the multipoint flux and multipoint stress mixed finite element methods on simplicial grids. \square

6.3 Reduction to a cell-centered pressure-velocities-traces system

In this section we focus on the fully discrete problem associated to (6.2) (cf. (3.11), (5.11)), and describe how to obtain a reduced cell-centered system for the algebraic problem at each time step. For the time discretization we employ the backward Euler method. Let Δt\Delta t be the time step, T=MΔtT=M\,\Delta t, tm=mΔtt_{m}=m\,\Delta t, m=0,,Mm=0,\dots,M. Let dtum:=(Δt)1(umum1)d_{t}\,u^{m}:=(\Delta t)^{-1}(u^{m}-u^{m-1}) be the first order (backward) discrete time derivative, where um:=u(tm)u^{m}:=u(t_{m}). Then the fully discrete model reads: given (𝝈¯h0,𝝋¯h0,𝐮¯h0)=(𝝈¯h,0,𝝋¯h,0,𝐮¯h,0)(\underline{{\boldsymbol{\sigma}}}^{0}_{h},\underline{\boldsymbol{\varphi}}^{0}_{h},\underline{\mathbf{u}}^{0}_{h})=(\underline{{\boldsymbol{\sigma}}}_{h,0},\underline{\boldsymbol{\varphi}}_{h,0},\underline{\mathbf{u}}_{h,0}) satisfying (5.15), find (𝝈¯hm,𝝋¯hm,𝐮¯hm)𝐗h×𝐘h×𝐙h(\underline{{\boldsymbol{\sigma}}}^{m}_{h},\underline{\boldsymbol{\varphi}}^{m}_{h},\underline{\mathbf{u}}^{m}_{h})\in\mathbf{X}_{h}\times\mathbf{Y}_{h}\times\mathbf{Z}_{h}, m=1,,Mm=1,\dots,M, such that for all (𝝉¯h,𝝍¯h,𝐯¯h)𝐗h×𝐘h×𝐙h(\underline{{\boldsymbol{\tau}}}_{h},\underline{\boldsymbol{\psi}}_{h},\underline{{\mathbf{v}}}_{h})\in\mathbf{X}_{h}\times\mathbf{Y}_{h}\times\mathbf{Z}_{h},

dth(𝝈¯hm)(𝝉¯h)+𝒜h(𝝈¯hm)(𝝉¯h)+1(𝝉¯h)(𝝋¯hm)+h(𝝉¯h)(𝐮¯hm)=𝐅(𝝉¯h),1(𝝈¯hm)(𝝍¯h)+𝒞(𝝋¯hm)(𝝍¯h)=0,h(𝝈¯hm)(𝐯¯h)=𝐆(𝐯¯h).\begin{array}[]{lll}\displaystyle d_{t}\,\mathcal{E}_{h}(\underline{{\boldsymbol{\sigma}}}^{m}_{h})(\underline{{\boldsymbol{\tau}}}_{h})+\mathcal{A}_{h}(\underline{{\boldsymbol{\sigma}}}^{m}_{h})(\underline{{\boldsymbol{\tau}}}_{h})+\mathcal{B}_{1}(\underline{{\boldsymbol{\tau}}}_{h})(\underline{\boldsymbol{\varphi}}^{m}_{h})+\mathcal{B}_{h}(\underline{{\boldsymbol{\tau}}}_{h})(\underline{\mathbf{u}}^{m}_{h})&=&\displaystyle\mathbf{F}(\underline{{\boldsymbol{\tau}}}_{h})\,,\\[8.61108pt] \displaystyle-\,\mathcal{B}_{1}(\underline{{\boldsymbol{\sigma}}}^{m}_{h})(\underline{\boldsymbol{\psi}}_{h})+\mathcal{C}(\underline{\boldsymbol{\varphi}}^{m}_{h})(\underline{\boldsymbol{\psi}}_{h})&=&0\,,\\[8.61108pt] \displaystyle-\,\mathcal{B}_{h}(\underline{{\boldsymbol{\sigma}}}^{m}_{h})(\underline{{\mathbf{v}}}_{h})&=&\mathbf{G}(\underline{{\mathbf{v}}}_{h})\,.\end{array} (6.9)
Remark 6.1

The well-posedness and error estimate associated to the fully discrete problem (6.9) can be derived employing similar arguments to Theorems 6.3 and 6.5 in combination with the theory developed in [8, Sections 6 and 9]. In particular, we note that at each time step the well-posedness of the fully discrete problem (6.9), with m=1,,Mm=1,\dots,M, follows from similar arguments to the proof of Lemma 4.7.

Notice that the first row in (6.9) can be rewritten equivalently as

((Δt)1h+𝒜h)(𝝈¯hm)(𝝉¯h)+1(𝝉¯h)(𝝋¯hm)+h(𝝉¯h)(𝐮¯hm)=𝐅(𝝉¯h)+(Δt)1h(𝝈¯hm1)(𝝉¯h).\left((\Delta t)^{-1}\mathcal{E}_{h}+\mathcal{A}_{h}\right)(\underline{{\boldsymbol{\sigma}}}^{m}_{h})(\underline{{\boldsymbol{\tau}}}_{h})+\mathcal{B}_{1}(\underline{{\boldsymbol{\tau}}}_{h})(\underline{\boldsymbol{\varphi}}^{m}_{h})+\mathcal{B}_{h}(\underline{{\boldsymbol{\tau}}}_{h})(\underline{\mathbf{u}}^{m}_{h})\,=\,\mathbf{F}(\underline{{\boldsymbol{\tau}}}_{h})+(\Delta t)^{-1}\mathcal{E}_{h}(\underline{{\boldsymbol{\sigma}}}^{m-1}_{h})(\underline{{\boldsymbol{\tau}}}_{h})\,. (6.10)

Let us associate with the operators in (6.9)–(6.10) matrices denoted in the same way. We then have

((Δt)1h+𝒜h)=(A𝝈f𝝈f0000A𝐮p𝐮p0A𝐮pppt00A𝝈p𝝈pA𝝈pppt0A𝐮pppA𝝈pppApppp),h=(A𝝈f𝐮f00000A𝝈p𝐮s0A𝝈f𝜸f00000A𝝈p𝜸p0),\left((\Delta t)^{-1}\,\mathcal{E}_{h}+\mathcal{A}_{h}\right)=\left(\begin{array}[]{cccc}A_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\sigma}}_{f}}&0&0&0\\[4.30554pt] 0&A_{\mathbf{u}_{p}\mathbf{u}_{p}}&0&A^{\mathrm{t}}_{\mathbf{u}_{p}p_{p}}\\[4.30554pt] 0&0&A_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}&A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}p_{p}}\\[4.30554pt] 0&-A_{\mathbf{u}_{p}p_{p}}&A_{{\boldsymbol{\sigma}}_{p}p_{p}}&A_{p_{p}p_{p}}\end{array}\right),\quad\mathcal{B}_{h}=\left(\begin{array}[]{cccc}A_{{\boldsymbol{\sigma}}_{f}\mathbf{u}_{f}}&0&0&0\\[4.30554pt] 0&0&A_{{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}&0\\[4.30554pt] A_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}&0&0&0\\[4.30554pt] 0&0&A_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}&0\end{array}\right),
1=(A𝝈f𝝋00000A𝝈p𝜽00A𝐮pλ00),𝒞=(A𝝋𝝋A𝝋𝜽tA𝝋λtA𝝋𝜽A𝜽𝜽A𝜽λtA𝝋λA𝜽λ0),\displaystyle\mathcal{B}_{1}=\left(\begin{array}[]{cccc}A_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}&0&0&0\\[4.30554pt] 0&0&A_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}&0\\[4.30554pt] 0&A_{\mathbf{u}_{p}\lambda}&0&0\end{array}\right),\quad\mathcal{C}=\left(\begin{array}[]{ccc}A_{{\boldsymbol{\varphi}}{\boldsymbol{\varphi}}}&A^{\mathrm{t}}_{{\boldsymbol{\varphi}}{\boldsymbol{\theta}}}&A^{\mathrm{t}}_{{\boldsymbol{\varphi}}\lambda}\\[4.30554pt] A_{{\boldsymbol{\varphi}}{\boldsymbol{\theta}}}&A_{{\boldsymbol{\theta}}{\boldsymbol{\theta}}}&A^{\mathrm{t}}_{{\boldsymbol{\theta}}\lambda}\\[4.30554pt] -A_{{\boldsymbol{\varphi}}\lambda}&-A_{{\boldsymbol{\theta}}\lambda}&0\end{array}\right),

with

A𝝈f𝝈fafh(,),A𝐮p𝐮paph(,),A𝝈p𝝈p(Δt)1aeh(,0;,0),A𝝈ppp(Δt)1aeh(,0;𝟎,),\displaystyle\displaystyle A_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\sigma}}_{f}}\sim a^{h}_{f}(\cdot,\cdot),\,\,A_{\mathbf{u}_{p}\mathbf{u}_{p}}\sim a^{h}_{p}(\cdot,\cdot),\,\,A_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}\sim(\Delta t)^{-1}\,a^{h}_{e}(\cdot,0;\cdot,0),\,\,\displaystyle A_{{\boldsymbol{\sigma}}_{p}p_{p}}\sim(\Delta t)^{-1}a^{h}_{e}(\cdot,0;{\mathbf{0}},\cdot),
Apppp(Δt)1aeh(𝟎,;𝟎,)+(Δt)1(s0,)Ωp,A𝐮pppbp(,),A𝝈f𝝋b𝐧f(,),A𝐮pλbΓ(,),\displaystyle A_{p_{p}p_{p}}\sim(\Delta t)^{-1}a^{h}_{e}({\mathbf{0}},\cdot;{\mathbf{0}},\cdot)+(\Delta t)^{-1}(s_{0}\,\cdot,\cdot)_{\Omega_{p}},\displaystyle A_{\mathbf{u}_{p}p_{p}}\sim b_{p}(\cdot,\cdot),\,\,A_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}\sim b_{{\mathbf{n}}_{f}}(\cdot,\cdot),\,\,A_{\mathbf{u}_{p}\lambda}\sim b_{\Gamma}(\cdot,\cdot),
A𝝈p𝜽b𝐧p(,),A𝝋𝝋c𝙱𝙹𝚂(,𝟎;,𝟎),A𝝋𝜽c𝙱𝙹𝚂(,𝟎;𝟎,),A𝜽𝜽c𝙱𝙹𝚂(𝟎,;𝟎,),A𝝋λcΓ(,𝟎;),\displaystyle A_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}\sim b_{{\mathbf{n}}_{p}}(\cdot,\cdot),\,\,\displaystyle A_{{\boldsymbol{\varphi}}{\boldsymbol{\varphi}}}\sim c_{\mathtt{BJS}}(\cdot,{\mathbf{0}};\cdot,{\mathbf{0}}),\,\,A_{{\boldsymbol{\varphi}}{\boldsymbol{\theta}}}\sim c_{\mathtt{BJS}}(\cdot,{\mathbf{0}};{\mathbf{0}},\cdot),\,\,A_{{\boldsymbol{\theta}}{\boldsymbol{\theta}}}\sim c_{\mathtt{BJS}}({\mathbf{0}},\cdot;{\mathbf{0}},\cdot),\,\,A_{{\boldsymbol{\varphi}}\lambda}\sim c_{\Gamma}(\cdot,{\mathbf{0}};\cdot),
A𝜽λcΓ(𝟎,;),A𝝈f𝐮fbf(,),A𝝈f𝜸fbsk,fh(,),A𝝈p𝐮sbs(,),A𝝈p𝜸pbsk,ph(,),\displaystyle\displaystyle A_{{\boldsymbol{\theta}}\lambda}\sim c_{\Gamma}({\mathbf{0}},\cdot;\cdot),\,\,A_{{\boldsymbol{\sigma}}_{f}\mathbf{u}_{f}}\sim b_{f}(\cdot,\cdot),\,\,A_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}\sim b^{h}_{{\mathrm{sk},f}}(\cdot,\cdot),\,\,A_{{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}\sim b_{s}(\cdot,\cdot),\,\,A_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}\sim b^{h}_{{\mathrm{sk},p}}(\cdot,\cdot),

where the notation AaA\sim a means that the matrix AA is associated with the bilinear form aa. Denoting the algebraic vectors corresponding to the variables 𝝈¯hm\underline{{\boldsymbol{\sigma}}}^{m}_{h}, 𝝋¯hm\underline{\boldsymbol{\varphi}}^{m}_{h}, and 𝐮¯hm\underline{\mathbf{u}}^{m}_{h} in the same way, we can then write the system (6.9) in a matrix-vector form as

((Δt)1h+𝒜h1tht1𝒞0h00)(𝝈¯hm𝝋¯hm𝐮¯hm)=(𝐅+(Δt)1h(𝝈¯hm1)0𝐆).\left(\begin{array}[]{ccc}(\Delta t)^{-1}\,\mathcal{E}_{h}+\mathcal{A}_{h}&\mathcal{B}_{1}^{\mathrm{t}}&\mathcal{B}_{h}^{\mathrm{t}}\\ -\mathcal{B}_{1}&\mathcal{C}&0\\ -\mathcal{B}_{h}&0&0\end{array}\right)\left(\begin{array}[]{c}\underline{{\boldsymbol{\sigma}}}^{m}_{h}\\ \underline{\boldsymbol{\varphi}}^{m}_{h}\\ \underline{\mathbf{u}}^{m}_{h}\end{array}\right)=\left(\begin{array}[]{c}\mathbf{F}+(\Delta t)^{-1}\mathcal{E}_{h}(\underline{{\boldsymbol{\sigma}}}^{m-1}_{h})\\ 0\\ \mathbf{G}\end{array}\right). (6.11)

As we noted in Section 6.1, due to the the use of the vertex quadrature rule, the degrees of freedom (DOFs) of the Stokes stress 𝝈fhm{\boldsymbol{\sigma}}^{m}_{fh}, Darcy velocity 𝐮phm\mathbf{u}^{m}_{ph} and poroelastic stress tensor 𝝈phm{\boldsymbol{\sigma}}^{m}_{ph} associated with a mesh vertex become decoupled from the rest of the DOFs. As a result, the assembled mass matrices have a block-diagonal structure with one block per mesh vertex. The dimension of each block equals the number of DOFs associated with the vertex. These matrices can then be easily inverted with local computations. Inverting each local block in A𝐮p𝐮pA_{\mathbf{u}_{p}\mathbf{u}_{p}} allows for expressing the Darcy velocity DOFs associated with a vertex in terms of the Darcy pressure pphmp^{m}_{ph} at the centers of the elements that share the vertex, as well as the trace unknown λhm\lambda^{m}_{h} on neighboring edges (faces) for vertices on Γfp\Gamma_{fp}. Similarly, inverting each local block in A𝝈f𝝈fA_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\sigma}}_{f}} allows for expressing the Stokes stress DOFs associated with a vertex in terms of neighboring Stokes velocity 𝐮fhm\mathbf{u}^{m}_{fh}, vorticity 𝜸fhm{\boldsymbol{\gamma}}^{m}_{fh}, and trace 𝝋hm{\boldsymbol{\varphi}}^{m}_{h}. Finally, inverting each local block in A𝝈p𝝈pA_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}} allows for expressing the poroelastic stress DOFs associated with a vertex in terms of neighboring Darcy pressure pphmp^{m}_{ph}, structure velocity 𝐮shm\mathbf{u}^{m}_{sh}, structure rotation 𝜸phm{\boldsymbol{\gamma}}^{m}_{ph}, and trace 𝜽hm{\boldsymbol{\theta}}^{m}_{h}. Then we have

𝐮phm=A𝐮p𝐮p1A𝐮ppptpphmA𝐮p𝐮p1A𝐮pλtλhm,𝝈fhm=A𝝈f𝝈f1A𝝈f𝝋t𝝋hmA𝝈f𝝈f1A𝝈f𝐮ft𝐮fhmA𝝈f𝝈f1A𝝈f𝜸ft𝜸fhm,𝝈phm=A𝝈p𝝈p1A𝝈ppptpphmA𝝈p𝝈p1A𝝈p𝜽t𝜽hmA𝝈p𝝈p1A𝝈p𝐮st𝐮shmA𝝈p𝝈p1A𝝈p𝜸pt𝜸phm.\begin{array}[]{l}\mathbf{u}^{m}_{ph}\,=\,-\,A^{-1}_{\mathbf{u}_{p}\mathbf{u}_{p}}A^{\mathrm{t}}_{\mathbf{u}_{p}p_{p}}\,p^{m}_{ph}-A^{-1}_{\mathbf{u}_{p}\mathbf{u}_{p}}A^{\mathrm{t}}_{\mathbf{u}_{p}\lambda}\,\lambda^{m}_{h},\\[8.61108pt] {\boldsymbol{\sigma}}^{m}_{fh}\,=\,-\,A^{-1}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\sigma}}_{f}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}\,{\boldsymbol{\varphi}}^{m}_{h}-A^{-1}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\sigma}}_{f}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{f}\mathbf{u}_{f}}\,\mathbf{u}^{m}_{fh}-A^{-1}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\sigma}}_{f}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}\,{\boldsymbol{\gamma}}^{m}_{fh},\\[8.61108pt] {\boldsymbol{\sigma}}^{m}_{ph}\,=\,-\,A^{-1}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}p_{p}}\,p^{m}_{ph}-A^{-1}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}\,{\boldsymbol{\theta}}^{m}_{h}-A^{-1}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}\,\mathbf{u}^{m}_{sh}-A^{-1}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}\,{\boldsymbol{\gamma}}^{m}_{ph}.\end{array} (6.12)

The reduced matrix associated to (6.11) in terms of (pphm,𝝋hm,𝜽hm,λhm,𝐮fhm,𝐮shm,𝜸fhm,𝜸phm)(p^{m}_{ph},{\boldsymbol{\varphi}}^{m}_{h},{\boldsymbol{\theta}}^{m}_{h},\lambda^{m}_{h},\mathbf{u}^{m}_{fh},\mathbf{u}^{m}_{sh},{\boldsymbol{\gamma}}^{m}_{fh},{\boldsymbol{\gamma}}^{m}_{ph}) is given by

(App𝝈ppp+App𝐮ppp0App𝝈p𝜽App𝐮pλ0App𝝈p𝐮s0App𝝈p𝜸p0A𝝋𝝋+A𝝋𝝈f𝝋A𝝋𝜽tA𝝋λtA𝐮f𝝈f𝝋0A𝜸f𝝈f𝝋0App𝝈pθtA𝝋𝜽A𝜽𝜽+A𝜽𝝈p𝜽A𝜽λt0A𝐮s𝝈p𝜽0A𝜸p𝝈p𝜽App𝐮pλtA𝝋λA𝜽λAλ𝐮pλ00000A𝐮f𝝈f𝝋t00A𝐮f𝝈f𝐮f0A𝐮f𝝈f𝜸f0App𝝈p𝐮st0A𝐮s𝝈p𝜽t00A𝐮s𝝈p𝐮s0A𝐮s𝝈p𝜸p0A𝜸f𝝈f𝝋t00A𝐮f𝝈f𝜸ft0A𝜸f𝝈f𝜸f0App𝝈p𝜸pt0A𝜸p𝝈p𝜽t00A𝐮s𝝈p𝜸pt0Aγp𝝈p𝜸p)\left(\begin{array}[]{cccccccc}A_{p_{p}{\boldsymbol{\sigma}}_{p}p_{p}}+A_{p_{p}\mathbf{u}_{p}p_{p}}&0&-A_{p_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}&A_{p_{p}\mathbf{u}_{p}\lambda}&0&-A_{p_{p}{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}&0&-A_{p_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}\\[4.30554pt] 0&A_{{\boldsymbol{\varphi}}{\boldsymbol{\varphi}}}{+}A_{{\boldsymbol{\varphi}}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}&A^{\mathrm{t}}_{{\boldsymbol{\varphi}}{\boldsymbol{\theta}}}&A^{\mathrm{t}}_{{\boldsymbol{\varphi}}\lambda}&A_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}&0&A_{{\boldsymbol{\gamma}}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}&0\\[4.30554pt] A^{\mathrm{t}}_{p_{p}{\boldsymbol{\sigma}}_{p}\theta}&A_{{\boldsymbol{\varphi}}{\boldsymbol{\theta}}}&A_{{\boldsymbol{\theta}}{\boldsymbol{\theta}}}{+}A_{{\boldsymbol{\theta}}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}&A^{\mathrm{t}}_{{\boldsymbol{\theta}}\lambda}&0&A_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}&0&A_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}\\[4.30554pt] A^{\mathrm{t}}_{p_{p}\mathbf{u}_{p}\lambda}&-A_{{\boldsymbol{\varphi}}\lambda}&-A_{{\boldsymbol{\theta}}\lambda}&A_{\lambda\mathbf{u}_{p}\lambda}&0&0&0&0\\[4.30554pt] 0&A^{\mathrm{t}}_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}&0&0&A_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}\mathbf{u}_{f}}&0&A_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}&0\\[4.30554pt] A^{\mathrm{t}}_{p_{p}{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}&0&A^{\mathrm{t}}_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}&0&0&A_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}&0&A_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}\\[4.30554pt] 0&A^{\mathrm{t}}_{{\boldsymbol{\gamma}}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}&0&0&A^{\mathrm{t}}_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}&0&A_{{\boldsymbol{\gamma}}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}&0\\[4.30554pt] A^{\mathrm{t}}_{p_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}&0&A^{\mathrm{t}}_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}&0&0&A^{\mathrm{t}}_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}&0&A_{\gamma_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}\end{array}\right) (6.13)

where

App𝝈ppp=AppppA𝝈pppA𝝈p𝝈p1A𝝈pppt,App𝐮ppp=A𝐮pppA𝐮p𝐮p1A𝐮pppt,App𝝈p𝜽=A𝝈pppA𝝈p𝝈p1A𝝈p𝜽t,\displaystyle\displaystyle A_{p_{p}{\boldsymbol{\sigma}}_{p}p_{p}}=A_{p_{p}p_{p}}-A_{{\boldsymbol{\sigma}}_{p}p_{p}}A^{-1}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}p_{p}},\,\,A_{p_{p}\mathbf{u}_{p}p_{p}}=A_{\mathbf{u}_{p}p_{p}}A^{-1}_{\mathbf{u}_{p}\mathbf{u}_{p}}A^{\mathrm{t}}_{\mathbf{u}_{p}p_{p}},\,\,A_{p_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}=A_{{\boldsymbol{\sigma}}_{p}p_{p}}A^{-1}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}},
App𝐮pλ=A𝐮pppA𝐮p𝐮p1A𝐮pλt,App𝝈p𝐮s=A𝝈pppA𝝈p𝝈p1A𝝈p𝐮st,App𝝈p𝜸p=A𝝈pppA𝝈p𝝈p1A𝝈p𝜸pt,\displaystyle\displaystyle A_{p_{p}\mathbf{u}_{p}\lambda}=A_{\mathbf{u}_{p}p_{p}}A^{-1}_{\mathbf{u}_{p}\mathbf{u}_{p}}A^{\mathrm{t}}_{\mathbf{u}_{p}\lambda},\,\,A_{p_{p}{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}=A_{{\boldsymbol{\sigma}}_{p}p_{p}}A^{-1}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}},\,\,A_{p_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}=A_{{\boldsymbol{\sigma}}_{p}p_{p}}A^{-1}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}},
A𝝋𝝈f𝝋=A𝝈f𝝋A𝝈f𝝈f1A𝝈f𝝋t,A𝜽𝝈p𝜽=A𝝈p𝜽A𝝈p𝝈p1A𝝈p𝜽t,\displaystyle\displaystyle A_{{\boldsymbol{\varphi}}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}=A_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}A^{-1}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\sigma}}_{f}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}},\,\,A_{{\boldsymbol{\theta}}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}=A_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}A^{-1}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}},
Aλ𝐮pλ=A𝐮pλA𝐮p𝐮p1A𝐮pλt,A𝐮f𝝈f𝝋=A𝝈f𝝋A𝝈f𝝈f1A𝝈f𝐮ft,A𝐮f𝝈f𝐮f=A𝝈f𝐮fA𝝈f𝝈f1A𝝈f𝐮ft,\displaystyle\displaystyle A_{\lambda\mathbf{u}_{p}\lambda}=A_{\mathbf{u}_{p}\lambda}A^{-1}_{\mathbf{u}_{p}\mathbf{u}_{p}}A^{\mathrm{t}}_{\mathbf{u}_{p}\lambda},\,\,A_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}=A_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}A^{-1}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\sigma}}_{f}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{f}\mathbf{u}_{f}},\,\,A_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}\mathbf{u}_{f}}=A_{{\boldsymbol{\sigma}}_{f}\mathbf{u}_{f}}A^{-1}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\sigma}}_{f}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{f}\mathbf{u}_{f}}, (6.14)
A𝐮f𝝈f𝜸f=A𝝈f𝐮fA𝝈f𝝈f1A𝝈f𝜸ft,A𝐮s𝝈p𝜽=A𝝈p𝜽A𝝈p𝝈p1A𝝈p𝐮st,A𝐮s𝝈p𝐮s=A𝝈p𝐮sA𝝈p𝝈p1A𝝈p𝐮st,\displaystyle\displaystyle A_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}=A_{{\boldsymbol{\sigma}}_{f}\mathbf{u}_{f}}A^{-1}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\sigma}}_{f}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}},\,\,A_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}=A_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}A^{-1}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}},\,\,A_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}=A_{{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}A^{-1}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}},
A𝐮s𝝈p𝜸p=A𝝈p𝐮sA𝝈p𝝈p1A𝝈p𝜸pt,A𝜸p𝝈p𝜸p=A𝝈p𝜸pA𝝈p𝝈p1A𝝈p𝜸pt,A𝜸p𝝈p𝜽=A𝝈p𝜽A𝝈p𝝈p1A𝝈p𝜸pt,\displaystyle\displaystyle A_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}=A_{{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}A^{-1}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}},\,\,A_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}=A_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}A^{-1}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}},\,\,A_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}=A_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}A^{-1}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}},
A𝜸f𝝈f𝜸f=A𝝈f𝜸fA𝝈f𝝈f1A𝝈f𝜸ft,A𝜸f𝝈f𝝋=A𝝈f𝝋A𝝈f𝝈f1A𝝈f𝜸ft.\displaystyle\displaystyle A_{{\boldsymbol{\gamma}}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}=A_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}A^{-1}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\sigma}}_{f}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}},\,\,A_{{\boldsymbol{\gamma}}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}=A_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}A^{-1}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\sigma}}_{f}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}.

Furthermore, due to the vertex quadrature rule, the vorticity and structure rotation DOFs corresponding to each vertex of the grid become decoupled from the rest of the DOFs, leading to block-diagonal matrices A𝜸f𝝈f𝜸fA_{{\boldsymbol{\gamma}}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}} and A𝜸p𝝈p𝜸pA_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}. Recalling the matrix definitions in (6.3), each block is symmetric and positive definite and thus locally invertible, due the positive definiteness of A𝝈f𝝈f1A^{-1}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\sigma}}_{f}} and A𝝈p𝝈p1A^{-1}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}} and the inf-sup condition (5.7). We then have

𝜸fhm=A𝜸f𝝈f𝜸f1A𝜸f𝝈f𝝋𝝋hmA𝜸f𝝈f𝜸f1A𝐮f𝝈f𝜸ft𝐮fhm,𝜸phm=A𝜸p𝝈p𝜸p1App𝝈p𝜸ptpphmA𝜸p𝝈p𝜸p1A𝜸p𝝈p𝜽𝜽hmA𝜸p𝝈p𝜸p1A𝐮s𝝈p𝜸pt𝐮shm,\begin{array}[]{l}{\boldsymbol{\gamma}}^{m}_{fh}\,=\,-\,A^{-1}_{{\boldsymbol{\gamma}}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}A_{{\boldsymbol{\gamma}}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}\,{\boldsymbol{\varphi}}^{m}_{h}-A^{-1}_{{\boldsymbol{\gamma}}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}A^{\mathrm{t}}_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}\,\mathbf{u}^{m}_{fh},\\[8.61108pt] {\boldsymbol{\gamma}}^{m}_{ph}\,=\,-\,A^{-1}_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}A^{\mathrm{t}}_{p_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}\,p^{m}_{ph}-A^{-1}_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}A_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}\,{\boldsymbol{\theta}}^{m}_{h}-A^{-1}_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}A^{\mathrm{t}}_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}\,\mathbf{u}^{m}_{sh},\end{array} (6.15)

and using some algebraic manipulation, we obtain the reduced problem 𝐀𝐩hm=𝐅\mathbf{A}\vec{\mathbf{p}}^{m}_{h}=\vec{\mathbf{F}}, with vector solution 𝐩hm:=(pphm,𝝋hm,𝜽hm,λhm,𝐮fhm,𝐮shm)\vec{\mathbf{p}}^{m}_{h}:=(p^{m}_{ph},{\boldsymbol{\varphi}}^{m}_{h},{\boldsymbol{\theta}}^{m}_{h},\lambda^{m}_{h},\mathbf{u}^{m}_{fh},\mathbf{u}^{m}_{sh}) and matrix

𝐀=(A~pp𝝈ppp+App𝐮ppp0A~pp𝝈pθApp𝐮pλ0A~pp𝝈p𝐮s0A~𝝋𝝈f𝝋+A𝝋𝝋A𝝋𝜽tA𝝋λtA~𝐮f𝝈f𝝋0A~pp𝝈p𝜽tA𝝋𝜽A~𝜽𝝈p𝜽+A𝜽𝜽A𝜽λt0A~𝐮s𝝈p𝜽App𝐮pλtA𝝋λA𝜽λAλ𝐮pλ000A~𝐮f𝝈f𝝋t00A~𝐮f𝝈f𝐮f0A~pp𝝈p𝐮st0A~𝐮s𝝈p𝜽t00A~𝐮s𝝈p𝐮s)\mathbf{A}=\left(\begin{array}[]{cccccc}\widetilde{A}_{p_{p}{\boldsymbol{\sigma}}_{p}p_{p}}+A_{p_{p}\mathbf{u}_{p}p_{p}}&0&-\widetilde{A}_{p_{p}{\boldsymbol{\sigma}}_{p}\theta}&A_{p_{p}\mathbf{u}_{p}\lambda}&0&-\widetilde{A}_{p_{p}{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}\\[4.30554pt] 0&\widetilde{A}_{{\boldsymbol{\varphi}}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}{+}A_{{\boldsymbol{\varphi}}{\boldsymbol{\varphi}}}&A^{\mathrm{t}}_{{\boldsymbol{\varphi}}{\boldsymbol{\theta}}}&A^{\mathrm{t}}_{{\boldsymbol{\varphi}}\lambda}&\widetilde{A}_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}&0\\[4.30554pt] \widetilde{A}^{\mathrm{t}}_{p_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}&A_{{\boldsymbol{\varphi}}{\boldsymbol{\theta}}}&\widetilde{A}_{{\boldsymbol{\theta}}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}{+}A_{{\boldsymbol{\theta}}{\boldsymbol{\theta}}}&A^{\mathrm{t}}_{{\boldsymbol{\theta}}\lambda}&0&\widetilde{A}_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}\\[4.30554pt] A^{\mathrm{t}}_{p_{p}\mathbf{u}_{p}\lambda}&-A_{{\boldsymbol{\varphi}}\lambda}&-A_{{\boldsymbol{\theta}}\lambda}&A_{\lambda\mathbf{u}_{p}\lambda}&0&0\\[4.30554pt] 0&\widetilde{A}^{\mathrm{t}}_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}&0&0&\widetilde{A}_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}\mathbf{u}_{f}}&0\\[4.30554pt] \widetilde{A}^{\mathrm{t}}_{p_{p}{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}&0&\widetilde{A}^{\mathrm{t}}_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}&0&0&\widetilde{A}_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}\par\end{array}\right) (6.16)

where

A~pp𝝈ppp=App𝝈ppp+App𝝈p𝜸pA𝜸p𝝈p𝜸p1App𝝈p𝜸pt,A~pp𝝈p𝜽=App𝝈p𝜽Ap𝝈p𝜽A𝜸p𝝈p𝜸p1A𝜸p𝝈p𝜽t,\displaystyle\widetilde{A}_{p_{p}{\boldsymbol{\sigma}}_{p}p_{p}}=A_{p_{p}{\boldsymbol{\sigma}}_{p}p_{p}}+A_{p_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}A^{-1}_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}A^{\mathrm{t}}_{p_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}},\,\,\widetilde{A}_{p_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}=A_{p_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}-A_{p{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}A^{-1}_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}A^{\mathrm{t}}_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}},
A~pp𝝈p𝐮s=App𝝈p𝐮sApp𝝈p𝜸pA𝜸p𝝈p𝜸p1A𝐮s𝝈p𝜸pt,A~𝝋𝝈f𝝋=A𝝋𝝈f𝝋A𝜸f𝝈f𝝋A𝜸f𝝈f𝜸f1A𝜸f𝝈f𝝋t,\displaystyle\widetilde{A}_{p_{p}{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}=A_{p_{p}{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}-A_{p_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}A^{-1}_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}A^{\mathrm{t}}_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}},\,\,\widetilde{A}_{{\boldsymbol{\varphi}}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}=A_{{\boldsymbol{\varphi}}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}-A_{{\boldsymbol{\gamma}}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}A^{-1}_{{\boldsymbol{\gamma}}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}A^{\mathrm{t}}_{{\boldsymbol{\gamma}}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}},
A~𝐮f𝝈f𝝋=A𝐮f𝝈f𝝋A𝜸f𝝈f𝝋A𝜸f𝝈f𝜸f1A𝐮f𝝈f𝜸ft,A~𝜽𝝈p𝜽=A𝜽𝝈p𝜽A𝜸p𝝈p𝜽A𝜸p𝝈p𝜸p1A𝜸p𝝈p𝜽t,\displaystyle\widetilde{A}_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}=A_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}-A_{{\boldsymbol{\gamma}}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}A^{-1}_{{\boldsymbol{\gamma}}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}A^{\mathrm{t}}_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}},\,\,\widetilde{A}_{{\boldsymbol{\theta}}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}=A_{{\boldsymbol{\theta}}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}-A_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}A^{-1}_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}A^{\mathrm{t}}_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}},\qquad (6.17)
A~𝐮s𝝈p𝜽=A𝐮s𝝈p𝜽A𝜸p𝝈p𝜽A𝜸p𝝈p𝜸p1A𝐮s𝝈p𝜸pt,A~𝐮f𝝈f𝐮f=A𝐮f𝝈f𝐮fA𝐮f𝝈f𝜸fA𝜸f𝝈f𝜸f1A𝐮f𝝈f𝜸ft,\displaystyle\widetilde{A}_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}=A_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}-A_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}A^{-1}_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}A^{\mathrm{t}}_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}},\,\,\widetilde{A}_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}\mathbf{u}_{f}}=A_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}\mathbf{u}_{f}}-A_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}A^{-1}_{{\boldsymbol{\gamma}}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}A^{\mathrm{t}}_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}},
A~𝐮s𝝈p𝐮s=A𝐮s𝝈p𝐮sA𝐮s𝝈p𝜸pA𝜸p𝝈p𝜸p1A𝐮s𝝈p𝜸pt,\displaystyle\widetilde{A}_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}=A_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}-A_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}A^{-1}_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}A^{\mathrm{t}}_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}},

and the right hand side vector 𝐅\vec{\mathbf{F}} has been obtained by transforming the right-hand side in (6.9) accordingly to the procedure above. Note that, after solving the problem with matrix (6.16), we can recover 𝐮phm,𝝈fhm,𝝈phm\mathbf{u}^{m}_{ph},{\boldsymbol{\sigma}}^{m}_{fh},{\boldsymbol{\sigma}}^{m}_{ph} and 𝜸fhm,𝜸phm{\boldsymbol{\gamma}}^{m}_{fh},{\boldsymbol{\gamma}}^{m}_{ph} through the formulae (6.12) and (6.15), respectively, thus obtaining the full solution to (6.9).

Lemma 6.6

The cell-centered finite difference system for the pressure-velocities-traces problem (6.16) is positive definite.

Proof. Consider a vector 𝐪t=(wpht𝝍htϕhtξht𝐯fht𝐯sht)𝟎\vec{\mathbf{q}}^{\mathrm{t}}=(w^{\mathrm{t}}_{ph}\,\,{\boldsymbol{\psi}}^{\mathrm{t}}_{h}\,\,{\boldsymbol{\phi}}^{\mathrm{t}}_{h}\,\,\xi^{\mathrm{t}}_{h}\,\,{\mathbf{v}}^{\mathrm{t}}_{fh}\,\,{\mathbf{v}}^{\mathrm{t}}_{sh})\neq\vec{{\mathbf{0}}}. Employing the matrices in (6.3) and (6.3) and some algebraic manipulations, we obtain

𝐪t𝐀𝐪=wpht(AppppA𝝈pppA𝝈p𝝈p1A𝝈pppt)wph+wphtApp𝝈p𝜸pA𝜸p𝝈p𝜸p1App𝝈p𝜸ptwph+(A𝐮ppptwph+A𝐮pλtξh)tA𝐮p𝐮p1(A𝐮ppptwph+A𝐮pλtξh)+(𝝍htϕht)(A𝝋𝝋A𝝋𝜽tA𝝋𝜽A𝜽𝜽)(𝝍hϕh)+(𝝍ht𝐯fht)(A~𝝋𝝈f𝝋A~𝐮f𝝈f𝝋A~𝐮f𝝈f𝝋tA~𝐮f𝝈f𝐮f)(𝝍h𝐯fh)+(ϕht𝐯sht)(A~𝜽𝝈p𝜽A~𝐮s𝝈p𝜽A~𝐮s𝝈p𝜽tA~𝐮s𝝈p𝐮s)(ϕh𝐯sh).\begin{array}[]{l}\displaystyle\vec{\mathbf{q}}^{\mathrm{t}}\,\mathbf{A}\,\vec{\mathbf{q}}\,=\,w^{\mathrm{t}}_{ph}\big{(}A_{p_{p}p_{p}}-A_{{\boldsymbol{\sigma}}_{p}p_{p}}A^{-1}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}p_{p}}\big{)}w_{ph}+w^{\mathrm{t}}_{ph}A_{p_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}A^{-1}_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}A^{\mathrm{t}}_{p_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}w_{ph}\\[8.61108pt] \displaystyle\quad+\,\,\big{(}A^{\mathrm{t}}_{\mathbf{u}_{p}p_{p}}\,w_{ph}+A^{\mathrm{t}}_{\mathbf{u}_{p}\lambda}\,\xi_{h}\big{)}^{\mathrm{t}}A^{-1}_{\mathbf{u}_{p}\mathbf{u}_{p}}\big{(}A^{\mathrm{t}}_{\mathbf{u}_{p}p_{p}}\,w_{ph}+A^{\mathrm{t}}_{\mathbf{u}_{p}\lambda}\,\xi_{h}\big{)}+\,\,({\boldsymbol{\psi}}^{\mathrm{t}}_{h}\,\,{\boldsymbol{\phi}}^{\mathrm{t}}_{h})\left(\begin{array}[]{cc}A_{{\boldsymbol{\varphi}}{\boldsymbol{\varphi}}}&A^{\mathrm{t}}_{{\boldsymbol{\varphi}}{\boldsymbol{\theta}}}\\ A_{{\boldsymbol{\varphi}}{\boldsymbol{\theta}}}&A_{{\boldsymbol{\theta}}{\boldsymbol{\theta}}}\end{array}\right)\left(\begin{array}[]{c}{\boldsymbol{\psi}}_{h}\\ {\boldsymbol{\phi}}_{h}\end{array}\right)\\[8.61108pt] \displaystyle\quad+\,\,({\boldsymbol{\psi}}^{\mathrm{t}}_{h}\,\,{\mathbf{v}}^{\mathrm{t}}_{fh})\left(\begin{array}[]{cc}\widetilde{A}_{{\boldsymbol{\varphi}}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}&\widetilde{A}_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}\\ \widetilde{A}^{\mathrm{t}}_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}&\widetilde{A}_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}\mathbf{u}_{f}}\end{array}\right)\left(\begin{array}[]{c}{\boldsymbol{\psi}}_{h}\\ {\mathbf{v}}_{fh}\end{array}\right)+\,\,({\boldsymbol{\phi}}^{\mathrm{t}}_{h}\,\,{\mathbf{v}}^{\mathrm{t}}_{sh})\left(\begin{array}[]{cc}\widetilde{A}_{{\boldsymbol{\theta}}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}&\widetilde{A}_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}\\ \widetilde{A}^{\mathrm{t}}_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}&\widetilde{A}_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}\end{array}\right)\left(\begin{array}[]{c}{\boldsymbol{\phi}}_{h}\\ {\mathbf{v}}_{sh}\end{array}\right).\end{array} (6.18)

Now, we focus on analyzing the six terms in the right-hand side of (6.18). The first term is non-negative due to [39, Theorem 7.7.6] and the fact that the matrix AppppA𝝈pppA𝝈p𝝈p1A𝝈ppptA_{p_{p}p_{p}}-A_{{\boldsymbol{\sigma}}_{p}p_{p}}A^{-1}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}p_{p}} is a Schur complement of the matrix

(A𝝈p𝝈pA𝝈ppptA𝝈pppApppp),\left(\begin{array}[]{cc}A_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}&A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}p_{p}}\\[4.30554pt] A_{{\boldsymbol{\sigma}}_{p}p_{p}}&A_{p_{p}p_{p}}\end{array}\right),

which is positive semi-definite as a consequence of the ellipticity property of the operator aea_{e} (cf. (3.8) and (4.7)). The second term is nonnegative, since the matrix A𝜸p𝝈p𝜸pA_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}} is positive definite, as noted in (6.15). The third term is positive for (wphtξht)𝟎(w^{\mathrm{t}}_{ph}\,\,\xi^{\mathrm{t}}_{h})\neq\vec{{\mathbf{0}}}, due to the positive-definiteness of A𝐮p𝐮p1A^{-1}_{\mathbf{u}_{p}\mathbf{u}_{p}} and the inf-sup condition (5.10). The fourth term is non-negative since the operator 𝒞\mathcal{C} (cf. (4.8)) is positive semi-definite. The matrices in the last two terms are Schur complements of the matrices

Af:=(A𝝋𝝈f𝝋A𝐮f𝝈f𝝋A𝜸f𝝈f𝝋A𝐮f𝝈f𝝋tA𝐮f𝝈f𝐮fA𝐮f𝝈f𝜸fA𝜸f𝝈f𝝋tA𝐮f𝝈f𝜸ftA𝜸f𝝈f𝜸f)andAp:=(A𝜽𝝈p𝜽A𝐮s𝝈p𝜽A𝜸p𝝈p𝜽A𝐮s𝝈p𝜽tA𝐮s𝝈p𝐮sA𝐮s𝝈p𝜸pA𝜸p𝝈p𝜽tA𝐮s𝝈p𝜸ptA𝜸p𝝈p𝜸p),A_{f}:=\left(\begin{array}[]{ccc}A_{{\boldsymbol{\varphi}}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}&A_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}&A_{{\boldsymbol{\gamma}}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}\\ A^{\mathrm{t}}_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}&A_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}\mathbf{u}_{f}}&A_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}\\ A^{\mathrm{t}}_{{\boldsymbol{\gamma}}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}&A^{\mathrm{t}}_{\mathbf{u}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}&A_{{\boldsymbol{\gamma}}_{f}{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}\end{array}\right)\quad\mbox{and}\quad A_{p}:=\left(\begin{array}[]{ccc}A_{{\boldsymbol{\theta}}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}&A_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}&A_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}\\ A^{\mathrm{t}}_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}&A_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}&A_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}\\ A^{\mathrm{t}}_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}&A^{\mathrm{t}}_{\mathbf{u}_{s}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}&A_{{\boldsymbol{\gamma}}_{p}{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}\end{array}\right),

respectively, which are positive definite. In particular, for 𝐯ft=(𝝍ht𝐯fht𝝌fht)𝟎\vec{{\mathbf{v}}}_{f}^{\mathrm{t}}=({\boldsymbol{\psi}}^{\mathrm{t}}_{h}\,\,{\mathbf{v}}^{\mathrm{t}}_{fh}\,\,{\boldsymbol{\chi}}^{\mathrm{t}}_{fh})\neq\vec{{\mathbf{0}}} and 𝐯pt=(ϕht𝐯sht𝝌pht)𝟎\vec{{\mathbf{v}}}_{p}^{\mathrm{t}}=({\boldsymbol{\phi}}^{\mathrm{t}}_{h}\,\,{\mathbf{v}}^{\mathrm{t}}_{sh}\,\,{\boldsymbol{\chi}}^{\mathrm{t}}_{ph})\neq\vec{{\mathbf{0}}}, we have

𝐯ftAf𝐯f=(A𝝈f𝝋t𝝍h+A𝝈f𝐮ft𝐯fh+A𝝈f𝜸ft𝝌fh)tA𝝈f𝝈f1(A𝝈f𝝋t𝝍h+A𝝈f𝐮ft𝐯fh+A𝝈f𝜸ft𝝌fh)>0,\displaystyle\vec{{\mathbf{v}}}_{f}^{\mathrm{t}}A_{f}\vec{{\mathbf{v}}}_{f}=\big{(}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}\,{\boldsymbol{\psi}}_{h}+A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{f}\mathbf{u}_{f}}\,{\mathbf{v}}_{fh}+A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}\,{\boldsymbol{\chi}}_{fh}\big{)}^{\mathrm{t}}A^{-1}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\sigma}}_{f}}\big{(}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\varphi}}}\,{\boldsymbol{\psi}}_{h}+A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{f}\mathbf{u}_{f}}\,{\mathbf{v}}_{fh}+A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\gamma}}_{f}}\,{\boldsymbol{\chi}}_{fh}\big{)}>0,
𝐯ptAp𝐯p=(A𝝈p𝜽tϕh+A𝝈p𝐮st𝐯sh+A𝝈p𝜸pt𝝌ph)tA𝝈p𝝈p1(A𝝈p𝜽tϕh+A𝝈p𝐮st𝐯sh+A𝝈p𝜸pt𝝌ph)>0,\displaystyle\vec{{\mathbf{v}}}_{p}^{\mathrm{t}}A_{p}\vec{{\mathbf{v}}}_{p}=\big{(}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}\,{\boldsymbol{\phi}}_{h}+A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}\,{\mathbf{v}}_{sh}+A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}\,{\boldsymbol{\chi}}_{ph}\big{)}^{\mathrm{t}}A^{-1}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}\big{(}A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\theta}}}\,{\boldsymbol{\phi}}_{h}+A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}\mathbf{u}_{s}}\,{\mathbf{v}}_{sh}+A^{\mathrm{t}}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\gamma}}_{p}}\,{\boldsymbol{\chi}}_{ph}\big{)}>0,

due to the positive-definiteness of A𝝈f𝝈f1A^{-1}_{{\boldsymbol{\sigma}}_{f}{\boldsymbol{\sigma}}_{f}} and A𝝈p𝝈p1A^{-1}_{{\boldsymbol{\sigma}}_{p}{\boldsymbol{\sigma}}_{p}}, along with the combined inf-sup condition for h(𝝉¯h)(𝐯¯h)+1(𝝉¯h)(𝝍¯h)\mathcal{B}_{h}(\underline{{\boldsymbol{\tau}}}_{h})(\underline{{\mathbf{v}}}_{h})+\mathcal{B}_{1}(\underline{{\boldsymbol{\tau}}}_{h})(\underline{\boldsymbol{\psi}}_{h}). The latter follows from the inf-sup conditions (6.4) and (6.5), using that (6.5) holds in the kernel of h\mathcal{B}_{h}. Then, applying again [39, Theorem 7.7.6], we conclude that the last two terms in (6.18) are positive for (𝝍ht𝐯fht)𝟎({\boldsymbol{\psi}}^{\mathrm{t}}_{h}\,\,{\mathbf{v}}^{\mathrm{t}}_{fh})\neq\vec{{\mathbf{0}}} and (ϕht𝐯sht)𝟎({\boldsymbol{\phi}}^{\mathrm{t}}_{h}\,\,{\mathbf{v}}^{\mathrm{t}}_{sh})\neq\vec{{\mathbf{0}}}. Therefore 𝐪t𝐀𝐪>0\vec{\mathbf{q}}^{\mathrm{t}}\,\mathbf{A}\,\vec{\mathbf{q}}>0 for all 𝐪𝟎\vec{\mathbf{q}}\neq\vec{{\mathbf{0}}}, implying that the matrix 𝐀\mathbf{A} from (6.16) is positive definite. \square

Remark 6.2

The solution of the reduced system with the matrix 𝐀\mathbf{A} from (6.16) results in significant computational savings compared to the original system (6.11). In particular, five of the eleven variables have been eliminated. Three of the remaining variables are Lagrange multipliers that appear only on the interface Γfp\Gamma_{fp}. The other three are the cell-centered velocities and Darcy pressure, with only nn DOFs per element in the Stokes region and n+1n+1 DOFs per element in the Biot region, which are the smallest possible number of DOFs for the sub-problems. Furthermore, since the reduced system is positive definite, efficient iterative solvers such as GMRES can be utilized for its solution.

7 Numerical results

In this section we present numerical results that illustrate the behavior of the fully discrete multipoint stress-flux mixed finite element method (6.9). Our implementation is in two dimensions and it is based on FreeFem++ [38], in conjunction with the direct linear solver UMFPACK [28]. For spatial discretization, we use the (𝔹𝔻𝕄1𝐏01)(\mathbb{BDM}_{1}-\mathbf{P}_{0}-\mathbb{P}_{1}) spaces for Stokes, the (𝔹𝔻𝕄1𝐏01)(𝐁𝐃𝐌1P0)(\mathbb{BDM}_{1}-\mathbf{P}_{0}-\mathbb{P}_{1})-(\mathbf{BDM}_{1}-\mathrm{P}_{0}) spaces for Biot, and either (𝐏1𝐏1P1)(\mathbf{P}_{1}-\mathbf{P}_{1}-\mathrm{P}_{1}) or 𝐏1dc𝐏1dcP1dc\mathbf{P}^{\mathrm{dc}}_{1}-\mathbf{P}^{\mathrm{dc}}_{1}-\mathrm{P}^{\mathrm{dc}}_{1} for the Lagrange multipliers. We present three examples. Example 1 is used to corroborate the rates of convergence. Example 2 is a simulation of the coupling of surface and subsurface hydrological systems, focusing on the qualitative behavior of the solution. Example 3 illustrates an application to flow in a poroelastic medium with an irregularly shaped cavity, using physically realistic parameters.

7.1 Example 1: convergence test

In this test we study the convergence rates for the space discretization using an analytical solution. The domain is Ω¯=Ω¯fΩ¯p\overline{\Omega}=\overline{\Omega}_{f}\cup\overline{\Omega}_{p}, where Ωf=(0,1)×(0,1)\Omega_{f}=(0,1)\times(0,1) and Ωp=(0,1)×(1,0)\Omega_{p}=(0,1)\times(-1,0). In particular, the upper half is associated with the Stokes flow, while the lower half represents the flow in the poroelastic structure governed by the Biot system, see Figure 7.1 (left). The interface conditions are enforced along the interface Γfp\Gamma_{fp}. The parameters and analytical solution are given in Figure 7.1 (right). The solution is designed to satisfy the interface conditions (2.8). The right hand side functions 𝐟f,qf,𝐟p\mathbf{f}_{f},q_{f},\mathbf{f}_{p} and qpq_{p} are computed from (2.2)–(2.6) using the true solution. The model problem is then complemented with the appropriate boundary conditions, which are described in Figure 7.1 (left), and initial data. Notice that the boundary conditions for 𝝈f,𝐮f,𝐮p,𝝈p{\boldsymbol{\sigma}}_{f},\mathbf{u}_{f},\mathbf{u}_{p},{\boldsymbol{\sigma}}_{p}, and 𝜼p{\boldsymbol{\eta}}_{p} (cf. (2.2)–(2.6)) are not homogeneous and therefore the right-hand side of the resulting system must be modified accordingly. The total simulation time for this example is T=0.01T=0.01 and the time step is Δt=103\Delta t=10^{-3}. The time step is sufficiently small, so that the time discretization error does not affect the convergence rates.

Refer to caption
μ=1,αp=1,λp=1,μp=1,s0=1,𝐊=𝐈,α𝙱𝙹𝚂=1,\displaystyle\mu=1,\quad\alpha_{p}=1,\quad\lambda_{p}=1,\quad\mu_{p}=1,\quad s_{0}=1,\quad\mathbf{K}=\mathbf{I},\quad\alpha_{\mathtt{BJS}}=1,
𝐮f=πcos(πt)(3x+cos(y)y+1),\displaystyle\mathbf{u}_{f}=\pi\,\cos(\pi\,t)\left(\begin{array}[]{c}-3x+\cos(y)\\ y+1\end{array}\right),
pf=exp(t)sin(πx)cos(πy2)+2πcos(πt),\displaystyle p_{f}=\exp(t)\,\sin(\pi\,x)\,\cos\left(\frac{\pi\,y}{2}\right)+2\,\pi\,\cos(\pi\,t),
pp=exp(t)sin(πx)cos(πy2),\displaystyle p_{p}=\exp(t)\,\sin(\pi\,x)\,\cos\left(\frac{\pi\,y}{2}\right),
𝐮p=1μ𝐊pp,𝜼p=sin(πt)(3x+cos(y)y+1).\displaystyle\mathbf{u}_{p}=-\frac{1}{\mu}\,\mathbf{K}\,\nabla p_{p},\quad{\boldsymbol{\eta}}_{p}=\sin(\pi\,t)\,\left(\begin{array}[]{c}-3x+\cos(y)\\ y+1\end{array}\right).
Figure 7.1: Example 1, domain and coarsest mesh level (left), parameters and analytical solution (right).

Tables 7.1 and 7.2 show the convergence history for a sequence of quasi-uniform mesh refinements with non-matching grids along the interface employing conforming and non-conforming spaces for the Lagrange multipliers (cf. (5.1)–(5.2)), respectively. In the tables, hfh_{f} and hph_{p} denote the mesh sizes in Ωf\Omega_{f} and Ωp\Omega_{p}, respectively, while the mesh sizes for their traces on Γfp\Gamma_{fp} are htfh_{tf} and htph_{tp}, satisfying htf=58htph_{tf}=\frac{5}{8}\,h_{tp}. We note that the Stokes pressure and the displacement at time tmt_{m} are recovered by the post-processed formulae pfm=1n(tr(𝝈fm)2μqfm)p^{m}_{f}=-\frac{1}{n}(\mathrm{tr}({\boldsymbol{\sigma}}^{m}_{f})-2\,\mu\,q^{m}_{f}) (cf. (2.2)) and 𝜼pm=𝜼pm1+Δt𝐮sm{\boldsymbol{\eta}}^{m}_{p}={\boldsymbol{\eta}}^{m-1}_{p}+\Delta t\,\mathbf{u}^{m}_{s} (cf. Remark 5.3), respectively. The results illustrate that spatial rates of convergence 𝒪(h)\mathcal{O}(h), as provided by Theorem 6.5, are attained for all subdomain variables in their natural norms. The Lagrange multiplier variables, which are approximated in 𝐏1𝐏1P1\mathbf{P}_{1}-\mathbf{P}_{1}-\mathrm{P}_{1} and 𝐏1dc𝐏1dcP1dc\mathbf{P}^{\mathrm{dc}}_{1}-\mathbf{P}^{\mathrm{dc}}_{1}-\mathrm{P}^{\mathrm{dc}}_{1}, exhibit rates of convergence 𝒪(h3/2)\mathcal{O}(h^{3/2}) and 𝒪(h2)\mathcal{O}(h^{2}) in the H1/2\mathrm{H}^{1/2} and L2\mathrm{L}^{2}-norms on Γfp\Gamma_{fp}, respectively, which is consistent with the order of approximation.

𝐞𝝈f2(0,T;𝕏f)\|{\mathbf{e}}_{{\boldsymbol{\sigma}}_{f}}\|_{\ell^{2}(0,T;\mathbb{X}_{f})} 𝐞𝐮f2(0,T;𝐕f)\|{\mathbf{e}}_{\mathbf{u}_{f}}\|_{\ell^{2}(0,T;\mathbf{V}_{f})} 𝐞𝜸f2(0,T;f)\|{\mathbf{e}}_{{\boldsymbol{\gamma}}_{f}}\|_{\ell^{2}(0,T;\mathbb{Q}_{f})} 𝐞pf2(0,T;L2(Ωf))\|{\mathbf{e}}_{p_{f}}\|_{\ell^{2}(0,T;\mathrm{L}^{2}(\Omega_{f}))}
hfh_{f} error rate error rate error rate error rate
0.1964 2.2E-02 2.7E-02 2.4E-03 6.3E-03
0.0997 1.2E-02 0.95 1.4E-02 1.00 9.3E-04 1.41 3.1E-03 1.05
0.0487 5.7E-03 0.99 6.8E-03 0.99 4.2E-04 1.11 1.6E-03 0.93
0.0250 2.9E-03 1.04 3.4E-03 1.04 2.0E-04 1.13 7.8E-04 1.07
0.0136 1.4E-03 1.14 1.7E-03 1.15 9.4E-05 1.23 3.9E-04 1.15
0.0072 7.1E-04 1.08 8.4E-04 1.10 4.7E-05 1.09 2.0E-04 1.02
𝐞𝝈p(0,T;𝕏p)\|{\mathbf{e}}_{{\boldsymbol{\sigma}}_{p}}\|_{\ell^{\infty}(0,T;\mathbb{X}_{p})} 𝐞𝐮s2(0,T;𝐕s)\|{\mathbf{e}}_{\mathbf{u}_{s}}\|_{\ell^{2}(0,T;\mathbf{V}_{s})} 𝐞𝜸p2(0,T;p)\|{\mathbf{e}}_{{\boldsymbol{\gamma}}_{p}}\|_{\ell^{2}(0,T;\mathbb{Q}_{p})} 𝐞𝐮p2(0,T;𝐕p)\|{\mathbf{e}}_{\mathbf{u}_{p}}\|_{\ell^{2}(0,T;\mathbf{V}_{p})} 𝐞pp(0,T;Wp)\|{\mathbf{e}}_{p_{p}}\|_{\ell^{\infty}(0,T;\mathrm{W}_{p})}
hph_{p} error rate error rate error rate error rate error rate
0.2828 2.7E-01 4.3E-02 3.4E-02 1.0E-01 7.5E-02
0.1646 1.4E-01 1.27 2.2E-02 1.23 9.4E-03 2.38 5.2E-02 1.27 3.8E-02 1.25
0.0779 6.7E-02 0.97 1.1E-02 0.96 2.2E-03 1.96 2.5E-02 1.00 1.9E-02 0.93
0.0434 3.4E-02 1.17 5.4E-03 1.19 5.8E-04 2.25 1.2E-02 1.24 9.4E-03 1.22
0.0227 1.7E-02 1.06 2.7E-03 1.07 2.0E-04 1.68 5.9E-03 1.08 4.7E-03 1.07
0.0124 8.4E-03 1.15 1.4E-03 1.15 8.1E-05 1.48 2.9E-03 1.15 2.4E-03 1.14
𝐞𝜼p2(0,T;𝐋2(Ωp))\|{\mathbf{e}}_{{\boldsymbol{\eta}}_{p}}\|_{\ell^{2}(0,T;\mathbf{L}^{2}(\Omega_{p}))} 𝐞𝝋2(0,T;𝚲f)\|{\mathbf{e}}_{{\boldsymbol{\varphi}}}\|_{\ell^{2}(0,T;{\boldsymbol{\Lambda}}_{f})} 𝐞𝜽2(0,T;𝚲s))\|{\mathbf{e}}_{{\boldsymbol{\theta}}}\|_{\ell^{2}(0,T;{\boldsymbol{\Lambda}}_{s}))} 𝐞λ2(0,T;Λp)\|{\mathbf{e}}_{\lambda}\|_{\ell^{2}(0,T;\Lambda_{p})}
error rate htfh_{tf} error rate htph_{tp} error rate error rate
2.7E-04 1/8 1.6E-03 1/5 1.6E-02 6.9E-03
1.4E-04 1.23 1/16 3.7E-04 2.11 1/10 5.7E-03 1.49 2.5E-03 1.49
6.7E-05 0.96 1/32 1.3E-04 1.45 1/20 1.2E-03 2.31 8.5E-04 1.52
3.4E-05 1.19 1/64 4.6E-05 1.54 1/40 3.4E-04 1.76 3.0E-04 1.50
1.7E-05 1.07 1/128 1.2E-05 1.96 1/80 1.1E-04 1.62 1.1E-04 1.50
8.4E-06 1.15 1/256 3.6E-06 1.70 1/160 2.2E-05 2.34 3.7E-05 1.54
Table 7.1: Example 1, errors and convergence rates with 𝐏1𝐏1P1\mathbf{P}_{1}-\mathbf{P}_{1}-\mathrm{P}_{1} Lagrange multipliers.
𝐞𝝈f2(0,T;𝕏f)\|{\mathbf{e}}_{{\boldsymbol{\sigma}}_{f}}\|_{\ell^{2}(0,T;\mathbb{X}_{f})} 𝐞𝐮f2(0,T;𝐕f)\|{\mathbf{e}}_{\mathbf{u}_{f}}\|_{\ell^{2}(0,T;\mathbf{V}_{f})} 𝐞𝜸f2(0,T;f)\|{\mathbf{e}}_{{\boldsymbol{\gamma}}_{f}}\|_{\ell^{2}(0,T;\mathbb{Q}_{f})} 𝐞pf2(0,T;L2(Ωf))\|{\mathbf{e}}_{p_{f}}\|_{\ell^{2}(0,T;\mathrm{L}^{2}(\Omega_{f}))}
hfh_{f} error rate error rate error rate error rate
0.1964 2.2E-02 2.7E-02 2.4E-03 6.1E-03
0.0997 1.2E-02 0.94 1.4E-02 1.00 9.7E-04 1.31 3.1E-03 1.02
0.0487 5.7E-03 0.99 6.8E-03 0.99 4.2E-04 1.16 1.6E-03 0.92
0.0250 2.8E-03 1.04 3.4E-03 1.04 2.0E-04 1.13 7.8E-04 1.07
0.0136 1.4E-03 1.14 1.7E-03 1.15 9.4E-05 1.23 3.9E-04 1.15
0.0072 7.1E-04 1.08 8.4E-04 1.09 4.7E-05 1.09 2.0E-04 1.02
𝐞𝝈p(0,T;𝕏p)\|{\mathbf{e}}_{{\boldsymbol{\sigma}}_{p}}\|_{\ell^{\infty}(0,T;\mathbb{X}_{p})} 𝐞𝐮s2(0,T;𝐕s)\|{\mathbf{e}}_{\mathbf{u}_{s}}\|_{\ell^{2}(0,T;\mathbf{V}_{s})} 𝐞𝜸p2(0,T;p)\|{\mathbf{e}}_{{\boldsymbol{\gamma}}_{p}}\|_{\ell^{2}(0,T;\mathbb{Q}_{p})} 𝐞𝐮p2(0,T;𝐕p)\|{\mathbf{e}}_{\mathbf{u}_{p}}\|_{\ell^{2}(0,T;\mathbf{V}_{p})} 𝐞pp(0,T;Wp)\|{\mathbf{e}}_{p_{p}}\|_{\ell^{\infty}(0,T;\mathrm{W}_{p})}
hph_{p} error rate error rate error rate error rate error rate
0.2828 2.7E-01 4.3E-02 3.4E-02 1.0E-01 7.5E-02
0.1646 1.4E-01 1.27 2.2E-02 1.23 9.4E-03 2.39 5.2E-02 1.26 3.8E-02 1.25
0.0779 6.7E-02 0.97 1.1E-02 0.96 2.2E-03 1.96 2.5E-02 1.00 1.9E-02 0.93
0.0434 3.4E-02 1.17 5.4E-03 1.19 5.8E-04 2.25 1.2E-02 1.24 9.4E-03 1.22
0.0227 1.7E-02 1.06 2.7E-03 1.07 2.0E-04 1.67 5.9E-03 1.08 4.7E-03 1.07
0.0124 8.4E-03 1.15 1.4E-03 1.15 8.1E-05 1.48 2.9E-03 1.15 2.4E-03 1.14
𝐞𝜼p2(0,T;𝐋2(Ωp))\|{\mathbf{e}}_{{\boldsymbol{\eta}}_{p}}\|_{\ell^{2}(0,T;\mathbf{L}^{2}(\Omega_{p}))} 𝐞𝝋2(0,T;𝐋2(Γfp))\|{\mathbf{e}}_{{\boldsymbol{\varphi}}}\|_{\ell^{2}(0,T;\mathbf{L}^{2}(\Gamma_{fp}))} 𝐞𝜽2(0,T;𝐋2(Γfp))\|{\mathbf{e}}_{{\boldsymbol{\theta}}}\|_{\ell^{2}(0,T;\mathbf{L}^{2}(\Gamma_{fp}))} 𝐞λ2(0,T;L2(Γfp))\|{\mathbf{e}}_{\lambda}\|_{\ell^{2}(0,T;\mathrm{L}^{2}(\Gamma_{fp}))}
error rate htfh_{tf} error rate htph_{tp} error rate error rate
2.7E-04 1/8 4.1E-04 1/5 7.9E-03 1.1E-03
1.4E-04 1.23 1/16 2.0E-04 1.04 1/10 2.9E-03 1.46 3.1E-04 1.87
6.7E-05 0.96 1/32 2.4E-05 3.07 1/20 5.7E-04 2.34 7.7E-05 2.01
3.4E-05 1.19 1/64 6.4E-06 1.89 1/40 1.5E-04 1.89 1.9E-05 2.00
1.7E-05 1.07 1/128 1.6E-06 1.97 1/80 3.8E-05 2.01 4.9E-06 1.98
8.4E-06 1.15 1/256 4.0E-07 2.02 1/160 9.0E-06 2.09 1.2E-06 2.09
Table 7.2: Example 1, errors and convergence rates with 𝐏1dc𝐏1dcP1dc\mathbf{P}^{\mathrm{dc}}_{1}-\mathbf{P}^{\mathrm{dc}}_{1}-\mathrm{P}^{\mathrm{dc}}_{1} Lagrange multipliers.

7.2 Example 2: coupled surface and subsurface flows

In this example, we simulate coupling of surface and subsurface flows, which could be used to describe the interaction between a river and an aquifer. We consider the domain Ω=(0,2)×(1,1)\Omega=(0,2)\times(-1,1). We associate the upper half with the river flow modeled by Stokes equations, while the lower half represents the flow in the aquifer governed by the Biot system. The appropriate interface conditions are enforced along the interface y=0y=0. In this example we focus on the qualitative behavior of the solution and use unit physical parameters:

μ=1,αp=1,λp=1,μp=1,s0=1,𝐊=𝐈,α𝙱𝙹𝚂=1.\mu=1,\quad\alpha_{p}=1,\quad\lambda_{p}=1,\quad\mu_{p}=1,\quad s_{0}=1,\quad\mathbf{K}=\mathbf{I},\quad\alpha_{\mathtt{BJS}}=1.

The body forces terms and external source are set to zero, as well as the initial conditions. The flow is driven through a parabolic fluid velocity on the left boundary of the fluid region with boundary conditions specified as follows:

𝐮f=(40y(y1) 0)tonΓf,left,𝐮f=𝟎onΓf,top,𝝈f𝐧f=𝟎onΓf,right,pp=0and𝝈p𝐧p=𝟎onΓp,bottom,𝐮p𝐧p=0and𝐮s=𝟎onΓp,leftΓp,right.\begin{array}[]{lll}\displaystyle\mathbf{u}_{f}=(-40y(y-1)\ \ 0)^{t}&\mbox{on}&\Gamma_{f,left},\\[4.30554pt] \displaystyle\mathbf{u}_{f}={\mathbf{0}}&\mbox{on}&\Gamma_{f,top},\\[4.30554pt] \displaystyle{\boldsymbol{\sigma}}_{f}{\mathbf{n}}_{f}={\mathbf{0}}&\mbox{on}&\Gamma_{f,right},\\[4.30554pt] \displaystyle p_{p}=0{\quad\hbox{and}\quad}{\boldsymbol{\sigma}}_{p}{\mathbf{n}}_{p}={\mathbf{0}}&\mbox{on}&\Gamma_{p,bottom},\\[4.30554pt] \displaystyle\mathbf{u}_{p}\cdot{\mathbf{n}}_{p}=0{\quad\hbox{and}\quad}\mathbf{u}_{s}={\mathbf{0}}&\mbox{on}&\Gamma_{p,left}\cup\Gamma_{p,right}.\end{array}

The simulation is run for a total time T=3T=3 with a time step Δt=0.06\Delta t=0.06. The computed solution is presented in Figure 7.2.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 7.2: Example 2, computed solution at T=3T=3. Top left: velocities 𝐮fh\mathbf{u}_{fh} and 𝐮ph\mathbf{u}_{ph} (arrows), 𝐮fh,2\mathbf{u}_{fh,2} and 𝐮ph,2\mathbf{u}_{ph,2} (color). Top middle and right: negative stresses (𝝈fh,12,𝝈fh,22)t-({\boldsymbol{\sigma}}_{fh,12},{\boldsymbol{\sigma}}_{fh,22})^{\mathrm{t}} and (𝝈ph,12,𝝈ph,22)t-({\boldsymbol{\sigma}}_{ph,12},{\boldsymbol{\sigma}}_{ph,22})^{\mathrm{t}} (arrows); middle: 𝝈fh,12-{\boldsymbol{\sigma}}_{fh,12} and 𝝈ph,12-{\boldsymbol{\sigma}}_{ph,12} (color); right: 𝝈fh,22-{\boldsymbol{\sigma}}_{fh,22} and 𝝈ph,22-{\boldsymbol{\sigma}}_{ph,22} (color). Bottom left: negative Stokes stress 𝝈fh,22-{\boldsymbol{\sigma}}_{fh,22} and Darcy pressure pphp_{ph}. Bottom right: displacement 𝜼ph{\boldsymbol{\eta}}_{ph} (arrows) and its magnitude (color).

From the velocity plot (top left), we see that the flow in the Stokes region is moving primarily from left to right, driven by the parabolic inflow condition, with some of the fluid percolating downward into the poroelastic medium due to the zero pressure at the bottom, which simulates gravity. The mass conservation 𝐮f𝐧f+(t𝜼p+𝐮p)𝐧p=0\mathbf{u}_{f}\cdot{\mathbf{n}}_{f}+\left(\partial_{t}{\boldsymbol{\eta}}_{p}+\mathbf{u}_{p}\right)\cdot{\mathbf{n}}_{p}=0 on the interface with 𝐧p=(0,1)t{\mathbf{n}}_{p}=(0,1)^{\mathrm{t}} indicates the continuity of the second components of the fluid velocity and Darcy velocity when the displacement becomes steady, which is observed from the color plot of the vertical velocity. The stress plots (top middle and right) illustrate the ability of our fully mixed formulation to compute accurate (𝐝𝐢𝐯)\mathbb{H}(\mathbf{div}) stresses in both the fluid and poroelastic regions, without the need for numerical differentiation. In addition, the conservation of momentum 𝝈f𝐧f+𝝈p𝐧p=𝟎{\boldsymbol{\sigma}}_{f}{\mathbf{n}}_{f}+{\boldsymbol{\sigma}}_{p}{\mathbf{n}}_{p}={\mathbf{0}} and balance of normal stress (𝝈f𝐧f)𝐧f=pp({\boldsymbol{\sigma}}_{f}{\mathbf{n}}_{f})\cdot{\mathbf{n}}_{f}=-p_{p} imply that 𝝈f,12=𝝈p,12{\boldsymbol{\sigma}}_{f,12}={\boldsymbol{\sigma}}_{p,12}, 𝝈f,22=𝝈p,22{\boldsymbol{\sigma}}_{f,22}={\boldsymbol{\sigma}}_{p,22} and 𝝈f,22=pp-{\boldsymbol{\sigma}}_{f,22}=p_{p} on the interface. These conditions are verified from the top middle and right color plots, as well as the bottom left plot. Furthermore, the arrows in the stress plots are formed by the second columns of the stresses, whose traces on the interface are 𝝈f𝐧f{\boldsymbol{\sigma}}_{f}{\mathbf{n}}_{f} and 𝝈p𝐧p-{\boldsymbol{\sigma}}_{p}{\mathbf{n}}_{p}, respectively. For visualization purpose, the Stokes stress is scaled by a factor of 1/51/5 compared to the poroelastic stress, due to large difference in their magnitudes away from the interface. Nevertheless, the continuity of the vector field across the interface is evident, consistent with the conservation of momentum condition 𝝈f𝐧f+𝝈p𝐧p=𝟎{\boldsymbol{\sigma}}_{f}{\mathbf{n}}_{f}+{\boldsymbol{\sigma}}_{p}{\mathbf{n}}_{p}={\mathbf{0}}. The overall qualitative behavior of the computed stresses is consistent with the specified boundary and interface conditions. In particular, we observe large fluid stress along the top boundary due to the no slip condition, as well as along the interface due to the slip with friction condition. The singularity near the lower left corner of the Stokes region is due to the mismatch in boundary conditions between the fluid and poroelastic regions. Finally, the last plot shows that the inflow from the Stokes region causes deformation of the poroelastic medium.

7.3 Example 3: irregularly shaped fluid-filled cavity

This example features highly irregularly shaped cavity motivated by modeling flow through vuggy or naturally fractured reservoirs or aquifers. It uses physical units and realistic parameter values taken from the reservoir engineering literature [37]:

μ=106 kPa s,αp=1,λp=5/18×107 kPa,μp=5/12×107 kPa,s0=6.89×102 kPa1,𝐊=108×𝐈 m2,α𝙱𝙹𝚂=1.\begin{array}[]{c}\mu=10^{-6}\text{ kPa s},\quad\alpha_{p}=1,\quad\lambda_{p}=5/18\times 10^{7}\text{ kPa},\quad\mu_{p}=5/12\times 10^{7}\text{ kPa},\\[8.61108pt] s_{0}=6.89\times 10^{-2}\text{ kPa}^{-1},\quad\mathbf{K}=10^{-8}\times\mathbf{I}\text{ m}^{2},\quad\alpha_{\mathtt{BJS}}=1.\end{array}

We emphasize that the problem features very small permeability and storativity, as well as large Lamé parameters. These are parameter regimes that are known to lead locking in modeling of the Biot system of poroelasticity [45, 60]. The domain is Ω=(0,1)×(0,1)\Omega=(0,1)\times(0,1), with a large fluid-filled cavity in the interior. The body forces and external sources are set to zero. The flow is driven from left to right via a pressure drop of 1 kPa, with boundary conditions specified as follows:

𝝈f𝐧f𝐧f=1000,𝐮f𝐭f=0onΓf,right,pp=1001onΓp,left,pp=1000onΓp,rightand𝐮p𝐧p=0onΓp,topΓp,bottom,𝝈p𝐧p=αppp𝐧ponΓp,leftΓp,rightand𝐮s=𝟎onΓp,topΓp,bottom.\begin{array}[]{l}{\boldsymbol{\sigma}}_{f}{\mathbf{n}}_{f}\cdot{\mathbf{n}}_{f}=1000,\quad\mathbf{u}_{f}\cdot{\mathbf{t}}_{f}=0{\quad\hbox{on}\quad}\Gamma_{f,right},\\[8.61108pt] p_{p}=1001{\quad\hbox{on}\quad}\Gamma_{p,left},\quad p_{p}=1000{\quad\hbox{on}\quad}\Gamma_{p,right}{\quad\hbox{and}\quad}\mathbf{u}_{p}\cdot{\mathbf{n}}_{p}=0{\quad\hbox{on}\quad}\Gamma_{p,top}\cup\Gamma_{p,bottom},\\[8.61108pt] {\boldsymbol{\sigma}}_{p}\,{\mathbf{n}}_{p}=-\alpha_{p}\,p_{p}\,{\mathbf{n}}_{p}{\quad\hbox{on}\quad}\Gamma_{p,left}\cup\Gamma_{p,right}{\quad\hbox{and}\quad}\mathbf{u}_{s}={\mathbf{0}}{\quad\hbox{on}\quad}\Gamma_{p,top}\cup\Gamma_{p,bottom}.\end{array}

The total simulation time is T=10T=10\,s with a time step of size Δt=0.05\Delta t=0.05\,s. To avoid inconsistency between the initial and boundary conditions for ppp_{p}, we start with pp=1000p_{p}=1000 on Γp,left\Gamma_{p,left} and gradually increase it to reach pp=1001p_{p}=1001 at t=0.5t=0.5\,s. Similar adjustment is done for 𝝈p𝐧p{\boldsymbol{\sigma}}_{p}{\mathbf{n}}_{p}.

The simulation results at the final time T=10T=10\,s are shown in Figure 7.3. In the top plots, we present the Darcy pressure and Darcy velocity vector, the displacement vector with its magnitude, and the first row of the poroelastic stress with its magnitude. Since the pressure variation is small relative to its value, for visualization purpose we plot its difference from the reference pressure, pp1000p_{p}-1000. The Darcy velocity and the pressure drop are largest in the region between the left inflow boundary and the cavity. The displacement is largest around the cavity, due to the large fluid velocity within the cavity and the slip with friction interface condition. The poroelastic stress exhibits singularities near some of the sharp tips of the cavity. The bottom plots show the fluid pressure and velocity vector, the velocity vector with its magnitude, and the first row of the fluid stress with its magnitude. Similarly to the Darcy pressure, we plot pf1000p_{f}-1000. A channel-like flow profile is clearly visible within the cavity, with the largest velocity along a central path away from the cavity walls. The fluid pressure is decreasing from left to right along the central path of the cavity. Consistent with the poroelastic stress, the fluid stress near the tips of the cavity is relatively larger. We emphasize that, despite the locking regime of the parameters, the computed solution is free of locking and spurious oscillations. This example illustrates the ability of our method to handle computationally challenging problems with physically realistic parameters in poroelastic locking regimes.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 7.3: Example 3, computed solution at T=10T=10\,s. Top left: Darcy velocity (arrows) and pressure (color). Top middle: displacement (arrows) and its magnitude (color). Top right: first row of the poroelastic stress tensor (arrows) and its magnitude (color). Bottom left: Stokes velocity (arrows) and pressure (color). Bottom middle: Stokes velocity (arrows) and its magnitude (color). Bottom right: first row of the Stokes stress (arrows) and its magnitude (color).

8 Conclusions

In this paper we present and analyze the first, to the best of our knowledge, fully dual mixed formulation of the quasi-static Stokes-Biot model, and its mixed finite element approximation, using a velocity-pressure Darcy formulation, a weakly symmetric stress-displacement-rotation elasticity formulation, and a weakly symmetric stress-velocity-vorticity Stokes formulation. Essential-type interface conditions are imposed via suitable Lagrange multipliers. The numerical method features accurate stresses and Darcy velocity with local mass and momentum conservation. Furthermore, a new multipoint stress-flux mixed finite element method is developed that allows for local elimination of the Darcy velocity, the fluid and poroelastic stresses, the vorticity, and the rotation, resulting in a reduced positive definite cell-centered pressure-velocities-traces system. The theoretical results are complemented by a series of numerical experiments that illustrate the convergence rates for all variables in their natural norms, as well as the ability of the method to simulate physically realistic problems motivated by applications to coupled surface-subsurface flows and flows in fractured poroelastic media with parameter values in locking regimes.

References

  • [1] J. A. Almonacid, H. S. Díaz, G. N. Gatica, and A. Márquez. A fully-mixed finite element method for the Darcy–Forchheimer/Stokes coupled problem. IMA J. Numer. Anal., 40(2):1454–1502, 2020.
  • [2] M. Amara and J. M. Thomas. Equilibrium finite elements for the linear elastic problem. Numer. Math., 33(4):367–383, 1979.
  • [3] I. Ambartsumyan, V. J. Ervin, T. Nguyen, and I. Yotov. A nonlinear Stokes-Biot model for the interaction of a non-Newtonian fluid with poroelastic media. ESAIM Math. Model. Numer. Anal., 53(6):1915–1955, 2019.
  • [4] I. Ambartsumyan, E. Khattatov, T. Nguyen, and I. Yotov. Flow and transport in fractured poroelastic media. GEM Int. J. Geomath., 10(1):1–34, 2019.
  • [5] I. Ambartsumyan, E. Khattatov, J. M. Nordbotten, and I. Yotov. A multipoint stress mixed finite element method for elasticity on simplicial grids. SIAM J. Numer. Anal., 58(1):630–656, 2020.
  • [6] I. Ambartsumyan, E. Khattatov, J. M. Nordbotten, and I. Yotov. A multipoint stress mixed finite element method for elasticity on quadrilateral grids. Numer. Methods Partial Differential Equations, 37(3):1886–1915, 2021.
  • [7] I. Ambartsumyan, E. Khattatov, and I. Yotov. A coupled multipoint stress–multipoint flux mixed finite element method for the Biot system of poroelasticity. Comput. Methods Appl. Mech. Engrg., 372:113407, 2020.
  • [8] I. Ambartsumyan, E. Khattatov, I. Yotov, and P. Zunino. A Lagrange multiplier method for a Stokes-Biot fluid-poroelastic structure interaction model. Numer. Math., 140(2):513–553, 2018.
  • [9] D. N. Arnold, F. Brezzi, and J. Douglas. PEERS: a new mixed finite element for plane elasticity. Japan J. Appl. Math., 1(2):347–367, 1984.
  • [10] D. N. Arnold, R. S. Falk, and R. Winter. Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comp., 76(260):1699–1723, 2007.
  • [11] G. Awanou. Rectangular mixed elements for elasticity with weakly imposed symmetry condition. Adv. Comput. Math., 38(2):351–367, 2013.
  • [12] S. Badia, A. Quaini, and A. Quarteroni. Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction. J. Comput. Phys., 228(21):7986–8014, 2009.
  • [13] E. A. Bergkamp, C. V. Verhoosel, J. J. C. Remmers, and D. M. J. Smeulders. A staggered finite element procedure for the coupled Stokes-Biot system with fluid entry resistance. Comput. Geosci., 24(4):1497–1522, 2020.
  • [14] M. Biot. General theory of three-dimensional consolidation. J. Appl. Phys., 12:155–164, 1941.
  • [15] D. Boffi, F. Brezzi, L. F. Demkowicz, R. G. Durán, R. S. Falk, and M. Fortin. Mixed finite elements, compatibility conditions, and applications, volume 1939 of Lecture Notes in Mathematics. Springer-Verlag, Berlin; Fondazione C.I.M.E., Florence, 2008.
  • [16] D. Boffi, F. Brezzi, and M. Fortin. Reduced symmetry elements in linear elasticity. Commun. Pure Appl. Anal., 8(1):95–121, 2009.
  • [17] F. Brezzi, J. Douglas, and L. D. Marini. Two families of mixed finite elements for second order elliptic problems. Numer. Math., 47(2):217–235, 1985.
  • [18] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, 15. Springer-Verlag, New York, 1991.
  • [19] F. Brezzi, M. Fortin, and L. D. Marini. Error analysis of piecewise constant pressure approximations of Darcy’s law. Comput. Methods Appl. Mech. Eng., 195:1547–1559, 2006.
  • [20] M. Bukac, I. Yotov, R. Zakerzadeh, and P. Zunino. Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach. Comput. Methods Appl. Mech. Engrg., 292:138–170, 2015.
  • [21] M. Bukac, I. Yotov, and P. Zunino. An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure. Numer. Methods Partial Differential Equations, 31(4):1054–1100, 2015.
  • [22] M. Bukac, I. Yotov, and P. Zunino. Dimensional model reduction for flow through fractures in poroelastic media. ESAIM Math. Model. Numer. Anal., 51(4):1429–1471, 2017.
  • [23] A. Cesmelioglu and P. Chidyagwai. Numerical analysis of the coupling of free fluid with a poroelastic material. Numer. Methods Partial Differential Equations, 36(3):463–494, 2020.
  • [24] A. Cesmelioglu, H. Lee, A. Quaini, K. Wang, and S.-Y. Yi. Optimization-based decoupling algorithms for a fluid-poroelastic system. In Topics in numerical partial differential equations and scientific computing, volume 160 of IMA Vol. Math. Appl., pages 79–98. Springer, New York, 2016.
  • [25] S. Cesmelioglu. Analysis of the coupled Navier-Stokes/Biot problem. J. Math. Anal. Appl., 456(2):970–991, 2017.
  • [26] P. Ciarlet. The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, Vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978.
  • [27] B. Cockburn, J. Gopalakrishnan, and J. Guzmán. A new elasticity element made for enforcing weak stress symmetry. Math. Comp., 79(271):1331–1349, 2010.
  • [28] T. Davis. Algorithm 832: UMFPACK V4.3 - an unsymmetric-pattern multifrontal method. ACM Trans. Math. Software, 30(2):196–199, 2004.
  • [29] V. J. Ervin, E. W. Jenkins, and S. Sun. Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal., 47(2):929–952, 2009.
  • [30] M. Farhloul and M. Fortin. Dual hybrid methods for the elasticity and the Stokes problems: a unified approach. Numer. Math., 76(4):419–440, 1997.
  • [31] J. Galvis and M. Sarkis. Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. Electron. Trans. Numer. Anal., 26:350–384, 2007.
  • [32] G. N. Gatica. A Simple Introduction to the Mixed Finite Element Method. Theory and Applications. Springer Briefs in Mathematics. Springer, Cham, 2014.
  • [33] G. N. Gatica, N. Heuer, and S. Meddahi. On the numerical analysis of nonlinear twofold saddle point problems. IMA J. Numer. Anal., 23(2):301–330, 2003.
  • [34] G. N. Gatica, A. Márquez, R. Oyarzúa, and R. Rebolledo. Analysis of an augmented fully-mixed approach for the coupling of quasi-Newtonian fluids and porous media. Comput. Methods Appl. Mech. Engrg., 270:76–112, 2014.
  • [35] G. N. Gatica, R. Oyarzúa, and F. J. Sayas. Analysis of fully-mixed finite element methods for the Stokes–Darcy coupled problem. Math. Comp., 80(276):1911–1948, 2011.
  • [36] G. N. Gatica, R. Oyarzúa, and F. J. Sayas. A twofold saddle point approach for the coupling of fluid flow with nonlinear porous media flow. IMA J. Numer. Anal., 32(3):845–887, 2012.
  • [37] V. Girault, M. F. Wheeler, B. Ganis, and M. E. Mear. A lubrication fracture model in a poroelastic medium. Math. Models Methods Appl. Sci., 25(4):587–645, 2015.
  • [38] F. Hecht. New development in FreeFem++. J. Numer. Math., 20(3-4):251–265, 2012.
  • [39] R. Horn and C. R. Johnson. Matrix analysis. Corrected reprint of the 1985 original. Cambridge University Press, Cambridge, 1990.
  • [40] R. Ingram, M. F. Wheeler, and I. Yotov. A multipoint flux mixed finite element method on hexahedra. SIAM J. Math. Anal., 48(4):1281–1312, 2010.
  • [41] E. Keilegavlen and J. M. Nordbotten. Finite volume methods for elasticity with weak symmetry. Int. J. Numer. Meth. Engng., 112(8):939–962, 2017.
  • [42] E. Khattatov and I. Yotov. Domain decomposition and multiscale mortar mixed finite element methods for linear elasticity with weak stress symmetry. ESAIM Math. Model. Numer. Anal., 53(6):2081–2108, 2019.
  • [43] R. A. Klausen and R. Winther. Robust convergence of multi point flux approximation on rough grids. Numer. Math., 104(3):317–337, 2006.
  • [44] H. Kunwar, H. Lee, and K. Seelman. Second-order time discretization for a coupled quasi-Newtonian fluid-poroelastic system. Internat. J. Numer. Methods Fluids, 92(7):687–702, 2020.
  • [45] J. J. Lee. Robust error analysis of coupled mixed methods for Biot’s consolidation model. J. Sci. Comput., 69(2):610–632, 2016.
  • [46] J. J. Lee. Towards a unified analysis of mixed methods for elasticity with weakly symmetric stress. Adv. Comput. Math., 42(2):361–376, 2016.
  • [47] T. Li and I. Yotov. A mixed elasticity formulation for fluid–poroelastic structure interaction. arXiv:2011.00132v2 [math.NA].
  • [48] J.-C. Nédélec. A new family of mixed finite elements in 𝐑3{\bf R}^{3}. Numer. Math., 50(1):57–81, 1986.
  • [49] J. M. Nordbotten. Cell-centered finite volume discretizations for deformable porous media. Internat. J. Numer. Methods Engrg., 100(6):399–418, 2014.
  • [50] J. M. Nordbotten. Convergence of a cell-centered finite volume discretization for linear elasticity. SIAM J. Numer. Anal., 53(6):2605–2625, 2015.
  • [51] J. M. Nordbotten. Stable cell-centered finite volume discretization for Biot equations. SIAM J. Numer. Anal., 54(2):942–968, 2016.
  • [52] R. E. Showalter. Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs, 49. American Mathematical Society, Providence, RI, 1997.
  • [53] R. E. Showalter. Poroelastic filtration coupled to Stokes flow. Control theory of partial differential equations. Lect. Notes Pure Appl. Math., 242, Chapman & Hall/CRC, Boca Raton, FL, pages 229–241, 2005.
  • [54] R. E. Showalter. Nonlinear degenerate evolution equations in mixed formulations. SIAM J. Math. Anal., 42(5):2114–2131, 2010.
  • [55] R. Stenberg. A family of mixed finite elements for the elasticity problem. Numer. Math., 53(5):513–538, 1988.
  • [56] J. Wen and Y. He. A strongly conservative finite element method for the coupled Stokes-Biot model. Comput. Math. Appl., 80(5):1421–1442, 2020.
  • [57] M. F. Wheeler, G. Xue, and I. Yotov. A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra. Numer. Math., 121(1):165–204, 2012.
  • [58] M. F. Wheeler and I. Yotov. A multipoint flux mixed finite element method. SIAM J. Numer. Anal., 44(5):2082–2106, 2006.
  • [59] S.-Y. Yi. Convergence analysis of a new mixed finite element method for Biot’s consolidation model. Numer. Methods Partial Differential Equations, 30(4):1189–1210, 2014.
  • [60] S.-Y. Yi. A study of two modes of locking in poroelasticity. SIAM J. Numer. Anal., 55(4):1915–1936, 2017.