This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A new group of doubly charmed molecule with TT-doublet charmed meson pair

Fu-Lai Wang1,2 wangfl2016@lzu.edu.cn    Rui Chen3 chenrui@hunnu.edu.cn    Xiang Liu1,2,4111Corresponding author xiangliu@lzu.edu.cn 1School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
2Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of CAS, Lanzhou 730000, China
3Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effectss and Applications, Hunan Normal University, Changsha 410081, China
4Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, and Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
Abstract

Inspired by the observation of the doubly charmed tetraquark state Tcc+T_{cc}^{+} at the LHCb Collaboration, we systematically study the SS-wave interactions between a pair of charmed mesons (D1,D2D_{1},\,D_{2}^{\ast}) in the TT-doublet, where we adopt the one-boson-exchange model and consider both the SS-DD wave mixing and coupled channel effects. Our numerical results suggest that the prime doubly charmed molecular tetraquark candidates are the SS-wave D1D1D_{1}D_{1} state with I(JP)=0(1+)I(J^{P})=0(1^{+}), the SS-wave D1D2D_{1}{D}_{2}^{\ast} states with I(JP)=0(1+, 2+, 3+)I(J^{P})=0(1^{+},\,2^{+},\,3^{+}), and the SS-wave D2D2{D}_{2}^{\ast}{D}_{2}^{\ast} states with I(JP)=0(1+, 3+)I(J^{P})=0(1^{+},\,3^{+}). The SS-wave D1D1D_{1}D_{1} state with I(JP)=1(2+)I(J^{P})=1(2^{+}), the SS-wave D1D2D_{1}{D}_{2}^{\ast} state with I(JP)=1(3+)I(J^{P})=1(3^{+}), and the SS-wave D2D2{D}_{2}^{\ast}{D}_{2}^{\ast} state with I(JP)=1(4+)I(J^{P})=1(4^{+}) may be the possible isovector doubly charmed molecular tetraquark candidates. We expect the experiments like the LHCb or Belle II collaborations to search for these predicted doubly charmed molecular tetraquarks near the D1D1D_{1}D_{1}, D1D2D_{1}D_{2}^{*}, and D2D2D_{2}^{*}D_{2}^{*} thresholds in the future.

I Introduction

Very recent, the LHCb Collaboration reported the first observation of the doubly charmed tetraquark state Tcc+T_{cc}^{+} in the D0D0π+D^{0}D^{0}\pi^{+} invariant mass spectrum LHCb:2021vvq . Obviously, it is beyond the conventional hadron since the Tcc+T_{cc}^{+} has minimal quark component ccu¯d¯cc\bar{u}\bar{d}. In Ref. LHCb:2021auc , the pole parameters s^=mpoleiΓpole/2\hat{s}=m_{\text{pole}}-i\Gamma_{\text{pole}}/2 for the Tcc+T_{cc}^{+} state related to the D0D+D^{0}D^{*+} mass threshold are

δmpole\displaystyle\delta m_{\text{pole}} =\displaystyle= 360±400+4keV/c2,\displaystyle-360\pm 40^{+4}_{-0}~{}\text{keV}/c^{2},
Γpole\displaystyle\Gamma_{\text{pole}} =\displaystyle= 48±214+0keV.\displaystyle 48\pm 2^{+0}_{-14}~{}\text{keV}.

Additionally, its spin-parity quantum number is JP=1+J^{P}=1^{+}. After the observation of the Tcc+T_{cc}^{+} state, a series of theoretical studies tried to understand its inner structures and properties within the doubly charmed molecular tetraquark Li:2021zbw ; Chen:2021vhg ; Ren:2021dsi ; Xin:2021wcr ; Chen:2021tnn ; Albaladejo:2021vln ; Dong:2021bvy ; Baru:2021ldu ; Du:2021zzh ; Kamiya:2022thy ; Padmanath:2022cvl ; Agaev:2022ast ; Ke:2021rxd ; Zhao:2021cvg ; Deng:2021gnb ; Santowsky:2021bhy ; Dai:2021vgf ; Feijoo:2021ppq and compact doubly charmed tetraquark pictures Guo:2021yws ; Weng:2021hje ; Kim:2022mpa ; Agaev:2021vur . In fact, before the above LHCb experiment, several theoretical groups predicted the existence of the DDDD^{*} doubly charmed molecular tetraquark state Manohar:1992nd ; Ericson:1993wy ; Tornqvist:1993ng ; Janc:2004qn ; Ding:2009vj ; Molina:2010tx ; Ding:2020dio ; Li:2012ss ; Xu:2017tsr ; Liu:2019stu ; Ohkoda:2012hv ; Tang:2019nwv and compact doubly charmed tetraquark states Heller:1986bt ; Carlson:1987hh ; Silvestre-Brac:1993zem ; Semay:1994ht ; Moinester:1995fk ; Pepin:1996id ; Gelman:2002wf ; Vijande:2003ki ; Navarra:2007yw ; Vijande:2007rf ; Ebert:2007rn ; Lee:2009rt ; Yang:2009zzp ; Luo:2017eub ; Karliner:2017qjm ; Eichten:2017ffp ; Wang:2017uld ; Park:2018wjk ; Junnarkar:2018twb ; Deng:2018kly ; Maiani:2019lpu ; Yang:2019itm ; Tan:2020ldi ; Lu:2020rog ; Braaten:2020nwp ; Gao:2020ogo ; Cheng:2020wxa ; Noh:2021lqs ; Faustov:2021hjs , and suggested experimentalists to carry out the search for them.

The importance of the observed TccT_{cc} is equal to that of the X(3872)X(3872). In 2003, the X(3872)X(3872) discovered by the Belle Collaboration Choi:2003ue inspired extensive discussion of assigning it as the DD¯D\bar{D}^{*} charmoniumlike molecular state with I(JPC)=0(1++)I(J^{PC})=0(1^{++}) Wong:2003xk ; Swanson:2003tb ; Suzuki:2005ha ; Liu:2008fh ; Thomas:2008ja ; Liu:2008tn ; Lee:2009hy . Obviously, it is a start point of exploring hidden-charm molecular tetraquark state since more hidden-charm molecular tetraquark explanations to the charmoniumlike X/Y/ZX/Y/Z states have been proposed Chen:2016qju ; Liu:2013waa ; Hosaka:2016pey ; Liu:2019zoy ; Brambilla:2019esw ; Olsen:2017bmm ; Guo:2017jvc , which also stimulated the study of the hidden-charm molecular pentaquarks Wu:2010jy ; Karliner:2015ina ; Wang:2011rga ; Yang:2011wz ; Wu:2012md ; Chen:2015loa and the observation of the PcP_{c} states Aaij:2015tga ; Aaij:2019vzc (see Table 1 for a concise review).

Table 1: A summary of experimental observations and the corresponding hidden-charm and doubly charmed molecular tetraquark explanations.
Hidden-charm molecular tetraquark systems
HH¯H\bar{H} Wang:2021aql ; Wong:2003xk ; Swanson:2003tb ; Suzuki:2005ha ; Liu:2008fh ; Thomas:2008ja ; Liu:2008tn ; Lee:2009hy ; Liu:2008mi ; Liu:2009ei ; Sun:2011uh ; Sun:2012zzd ; Zhao:2015mga ; Liu:2017mrh ; Dong:2021juy ; Liu:2016kqx ; Dai:2018nmw ; Yang:2017prf ; Zhang:2006ix ; Wang:2020elp ; Dai:2020yfu X(3872)X(3872) Choi:2003ue , Zc(3900)Z_{c}(3900) Ablikim:2013mio , X(3915)X(3915) Aubert:2007vj ,
Z(3930)Z(3930) Belle:2005rte , Y(3940)Y(3940) Abe:2004zs , Y(4008)Y(4008) Belle:2007dxy ,
Zc(4020)Z_{c}(4020) BESIII:2013ouc , Zc(4025)Z_{c}(4025) BESIII:2013mhi , Z+(4051)Z^{+}(4051) Mizuk:2008me
HT¯H\bar{T} Dong:2021juy ; Close:2010wq ; Li:2015exa ; Close:2009ag ; He:2017mbh ; Li:2013bca ; Zhu:2013sca Z+(4248)Z^{+}(4248) Mizuk:2008me , Y(4260)Y(4260) Aubert:2005rm , Y(4360)Y(4360) BaBar:2006ait ,
Y(4390)Y(4390) BESIII:2016adj , Z+(4430)Z^{+}(4430) Choi:2007wga
HS¯H\bar{S} Shen:2010ky ; Liu:2007bf ; Liu:2008xz Z+(4248)Z^{+}(4248) Mizuk:2008me , Z+(4430)Z^{+}(4430) Choi:2007wga
TT¯T\bar{T} Dong:2021juy ; Chen:2015add
SS¯S\bar{S} Hu:2010fg
Doubly charmed molecular tetraquark systems
HHHH Li:2021zbw ; Chen:2021vhg ; Ren:2021dsi ; Xin:2021wcr ; Chen:2021tnn ; Albaladejo:2021vln ; Dong:2021bvy ; Baru:2021ldu ; Du:2021zzh ; Kamiya:2022thy ; Padmanath:2022cvl ; Agaev:2022ast ; Ke:2021rxd ; Zhao:2021cvg ; Deng:2021gnb ; Santowsky:2021bhy ; Manohar:1992nd ; Ericson:1993wy ; Tornqvist:1993ng ; Janc:2004qn ; Ding:2009vj ; Molina:2010tx ; Ding:2020dio ; Li:2012ss ; Xu:2017tsr ; Liu:2019stu ; Ohkoda:2012hv ; Tang:2019nwv Tcc+T_{cc}^{+} LHCb:2021vvq
HTHT Wang:2021yld ; Dong:2021bvy

As we can see, there are several common features between the X(3872)X(3872) and TccT_{cc} states. Their masses are very close to the threshold of the DDDD^{*} pair, and the long-range interaction for the DD¯D\bar{D}^{*} state with I(JPC)=0(1++)I(J^{PC})=0(1^{++}) is exactly same as the DDDD^{*} state with I(JP)=0(1+)I(J^{P})=0(1^{+}) Li:2021zbw . Inspired by the X(3872)X(3872), a zoo of the hidden-charm molecular tetraquarks has been formed Wang:2021aql . Along this line, the Tcc+T_{cc}^{+} observation must initiate a parallel zoo of the doubly charmed molecular tetraquarks. Searching for the doubly charmed molecular tetraquarks not only deepens our understanding to the interactions between charmed meson pair, but also may provide some hints to shed light on the interactions between charmed meson and anti-charmed meson.

In the heavy quark spin symmetry Wise:1992hn , the charmed mesons with the same light quark spin-parity quantum number jlPj_{l}^{P} can be categorized into a doublet, such as H[jlP=1/2]=(D,D)H[j_{l}^{P}=1/2^{-}]=(D,\,D^{\ast}), S[jlP=1/2+]=(D0,D1)S[j_{l}^{P}=1/2^{+}]=(D_{0}^{\ast},\,D^{\prime}_{1}), and T[jlP=3/2+]=(D1,D2)T[j_{l}^{P}=3/2^{+}]=(D_{1},\,D^{\ast}_{2}). Here, we need to mention that the D1D_{1} and D2D^{\ast}_{2} states are abbreviation for the D1(2420)D_{1}(2420) and D2(2460)D^{\ast}_{2}(2460) states in the Particle Data Group (PDG), respectively. In Refs. Manohar:1992nd ; Ericson:1993wy ; Tornqvist:1993ng ; Janc:2004qn ; Ding:2009vj ; Molina:2010tx ; Ding:2020dio ; Li:2012ss ; Xu:2017tsr ; Liu:2019stu ; Ohkoda:2012hv ; Tang:2019nwv , the authors predicted the possible doubly charmed molecular tetraquark candidates composed of a pair of charmed mesons in the HH-doublet. Recently, we performed a systematic study of the HTHT-type meson-meson interactions, and predicted a series of possible HTHT-type doubly charmed molecular tetraquark candidates Wang:2021yld .

The newly reported doubly charmed tetraquark state TccT_{cc} makes the study of the interactions between two charmed mesons an intriguing and important research issue LHCb:2021vvq ; LHCb:2021auc , we expect that there exists a zoo of the doubly charmed molecular tetraquarks in the hadron spectroscopy. In fact, the present research status of the doubly charmed molecular tetraquark states is similar to that of the hidden-charm molecular tetraquark states around 2003 Chen:2016qju , the theorists should pay more attention to making the reliable prediction of various types of the doubly charmed molecular tetraquark states and give more abundant suggestions to searching for the doubly charmed molecular tetraquarks accessible at the forthcoming experiment, by which we hope that the crucial information can encourage experimental colleagues to focus on the doubly charmed molecular tetraquark states. For continuing the exploration of doubly charmed molecular tetraquark family, in this work, we focus on the SS-wave interactions between a pair of charmed mesons in the TT-doublet by adopting the one-boson-exchange (OBE) model. In realistic calculation, both the SS-DD wave mixing effect and the coupled channel effect are considered. With these obtained OBE effective potentials, we can further solve the coupled channel Schro¨\rm{\ddot{o}}dinger equation to search for the bound state solutions. By this way, we study how charmed and anti-charmed mesons in the TT doublet form the TTTT-type doubly charmed molecular tetraquark states. Finally, several possible TTTT-type doubly charmed molecular tetraquark candidates are predicted, which is the important step to construct the family of the doubly charmed molecular tetraquarks, where the provided crucial information is helpful to the experimental search for the possible doubly charmed molecular tetraquark candidates in the future expriment.

This paper is organized as follows. After the introduction in Sec. I, we illustrate the detailed deduction of the SS-wave interactions between a pair of charmed mesons in the TT-doublet by adopting the OBE model in Sec. II. With this preparation, we present the corresponding bound state properties of the SS-wave D1D1D_{1}D_{1}, D1D2D_{1}{D}_{2}^{\ast}, and D2D2D_{2}^{\ast}D_{2}^{\ast} systems, and further conclude whether there exist possible TTTT-type doubly charmed molecular tetraquark candidates in Sec. III. This work ends with the summary in Sec. IV.

II Interactions of the SS-wave TTTT systems

In this section, we present the detailed derivation of the OBE effective potentials for these discussed SS-wave TTTT-type doubly charmed tetraquark systems, and we include the contributions from the light scalar meson (σ)(\sigma), pseudoscalar meson (π/η)(\pi/\eta), and vector meson (ρ/ω)(\rho/\omega) exchange processes. In this work, we treat the D1D_{1} and D2D_{2}^{*} states as the PP-wave charmed mesons to study the doubly charmed molecular tetraquark candidates Chen:2016spr . Here, we need to point out that the D1D_{1} and D2D_{2}^{*} states as the hadronic molecular states were also studied in the past decades Guo:2017jvc ; Kolomeitsev:2003ac ; Guo:2006rp ; Gamermann:2007fi ; Molina:2009eb .

II.1 The flavor and spin-orbital wave functions

Before deducing the effective potentials, we first construct the flavor and spin-orbital wave functions for these discussed TTTT-type doubly charmed tetraquark systems. The isospin quantum numbers for the TTTT-type doubly charmed tetraquark systems can be either 0 or 11, and we collect the relevant flavor wave functions |I,I3|I,I_{3}\rangle for the TTTT systems in Table 2 Li:2012ss ; Chen:2021vhg ; Liu:2019stu ; Wang:2021yld .

Table 2: Flavor wave functions |I,I3|I,I_{3}\rangle for the TTTT systems. Here, II and I3I_{3} stand for their isospin and the third component of these discussed TTTT systems, respectively. For the SS-wave D1D2D_{1}{D}_{2}^{\ast} system, the factor (1)JD1D23(-1)^{J_{D_{1}{D}_{2}^{\ast}}-3} comes from the exchange of two charmed mesons Liu:2013rxa ; Chen:2015add ; Zhu:2013sca ; Wang:2021yld ; Li:2015exa .
|I,I3|I,I_{3}\rangle D1D1D_{1}D_{1} system D2D2D_{2}^{\ast}D_{2}^{\ast} system
|1,1|1,1\rangle |D1+D1+|D_{1}^{+}D_{1}^{+}\rangle |D2+D2+|D_{2}^{*+}D_{2}^{*+}\rangle
|1,0|1,0\rangle 12(|D10D1++|D1+D10)\dfrac{1}{\sqrt{2}}\left(|D_{1}^{0}D_{1}^{+}\rangle+|D_{1}^{+}D_{1}^{0}\rangle\right) 12(|D20D2++|D2+D20)\dfrac{1}{\sqrt{2}}\left(|D_{2}^{*0}D_{2}^{*+}\rangle+|D_{2}^{*+}D_{2}^{*0}\rangle\right)
|1,1|1,-1\rangle |D10D10|D_{1}^{0}D_{1}^{0}\rangle |D20D20|D_{2}^{*0}D_{2}^{*0}\rangle
|0,0|0,0\rangle 12(|D10D1+|D1+D10)\dfrac{1}{\sqrt{2}}\left(|D_{1}^{0}D_{1}^{+}\rangle-|D_{1}^{+}D_{1}^{0}\rangle\right) 12(|D20D2+|D2+D20)\dfrac{1}{\sqrt{2}}\left(|D_{2}^{*0}D_{2}^{*+}\rangle-|D_{2}^{*+}D_{2}^{*0}\rangle\right)
|I,I3|I,I_{3}\rangle D1D2D_{1}{D}_{2}^{\ast} system
|1,1|1,1\rangle 12(|D1+D2++(1)JD1D23|D2+D1+)\dfrac{1}{\sqrt{2}}\left(|D_{1}^{+}D_{2}^{*+}\rangle+(-1)^{J_{D_{1}{D}_{2}^{\ast}}-3}|D_{2}^{*+}D_{1}^{+}\rangle\right)
|1,0|1,0\rangle 12[(|D10D2++|D1+D20)+(1)JD1D23(|D2+D10+|D20D1+)]\dfrac{1}{2}\left[\left(|D_{1}^{0}D_{2}^{*+}\rangle+|D_{1}^{+}D_{2}^{*0}\rangle\right)+(-1)^{J_{D_{1}{D}_{2}^{\ast}}-3}\left(|D_{2}^{*+}D_{1}^{0}\rangle+|D_{2}^{*0}D_{1}^{+}\rangle\right)\right]
|1,1|1,-1\rangle 12(|D10D20+(1)JD1D23|D20D10)\dfrac{1}{\sqrt{2}}\left(|D_{1}^{0}D_{2}^{*0}\rangle+(-1)^{J_{D_{1}{D}_{2}^{\ast}}-3}|D_{2}^{*0}D_{1}^{0}\rangle\right)
|0,0|0,0\rangle 12[(|D10D2+|D1+D20)(1)JD1D23(|D2+D10|D20D1+)]\dfrac{1}{2}\left[\left(|D_{1}^{0}D_{2}^{*+}\rangle-|D_{1}^{+}D_{2}^{*0}\rangle\right)-(-1)^{J_{D_{1}{D}_{2}^{\ast}}-3}\left(|D_{2}^{*+}D_{1}^{0}\rangle-|D_{2}^{*0}D_{1}^{+}\rangle\right)\right]

These allowed quantum numbers for the SS-wave D1D1D_{1}D_{1} and D2D2D_{2}^{\ast}D_{2}^{\ast} states include

D1D1[I(JP)]:1(0+),0(1+),1(2+),\displaystyle D_{1}D_{1}[I(J^{P})]:1(0^{+}),0(1^{+}),1(2^{+}),
D2D2[I(JP)]:1(0+),0(1+),1(2+),0(3+),1(4+).\displaystyle D_{2}^{\ast}D_{2}^{\ast}[I(J^{P})]:1(0^{+}),0(1^{+}),1(2^{+}),0(3^{+}),1(4^{+}).

The spin-orbital wave functions |LJ2S+1|{}^{2S+1}L_{J}\rangle for the D1D1D_{1}D_{1}, D1D2D_{1}{D}_{2}^{\ast}, and D2D2D_{2}^{\ast}D_{2}^{\ast} systems can be expressed as

D1D1:\displaystyle D_{1}D_{1}: |LJ2S+1=m,m,mS,mLC1m,1mS,mSCSmS,LmLJ,Mϵmμϵmν|YL,mL,\displaystyle|{}^{2S+1}L_{J}\rangle=\sum_{m,m^{\prime},m_{S},m_{L}}C^{S,m_{S}}_{1m,1m^{\prime}}C^{J,M}_{Sm_{S},Lm_{L}}\epsilon_{m}^{\mu}\epsilon_{m^{\prime}}^{\nu}|Y_{L,m_{L}}\rangle,
D1D2:\displaystyle D_{1}D_{2}^{\ast}: |LJ2S+1=m,m,mS,mLC1m,2mS,mSCSmS,LmLJ,Mϵmλζmμν|YL,mL,\displaystyle|{}^{2S+1}L_{J}\rangle=\sum_{m,m^{\prime},m_{S},m_{L}}C^{S,m_{S}}_{1m,2m^{\prime}}C^{J,M}_{Sm_{S},Lm_{L}}\epsilon_{m}^{\lambda}\zeta_{m^{\prime}}^{\mu\nu}|Y_{L,m_{L}}\rangle,
D2D2:\displaystyle D_{2}^{\ast}D_{2}^{\ast}: |LJ2S+1=m,m,mS,mLC2m,2mS,mSCSmS,LmLJ,Mζmμνζmλρ|YL,mL,\displaystyle|{}^{2S+1}L_{J}\rangle=\sum_{m,m^{\prime},m_{S},m_{L}}C^{S,m_{S}}_{2m,2m^{\prime}}C^{J,M}_{Sm_{S},Lm_{L}}\zeta_{m}^{\mu\nu}\zeta_{m^{\prime}}^{\lambda\rho}|Y_{L,m_{L}}\rangle,

respectively. Here, Cab,cde,fC^{e,f}_{ab,cd} is the Clebsch-Gordan coefficient, and |YL,mL|Y_{L,m_{L}}\rangle stands for the spherical harmonics function. ϵmμ(m=0,±1)\epsilon^{\mu}_{m}\,(m=0,\,\pm 1) and ζmμν(m=0,±1,±2)\zeta^{\mu\nu}_{m}\,(m=0,\,\pm 1,\,\pm 2) denote the polarization vector and tensor for the axial-vector charmed meson D1D_{1} and the tensor charmed meson D2D_{2}^{*}, respectively. In the static limit, their explicit expressions can be written as Cheng:2010yd

ϵ0μ\displaystyle\epsilon_{0}^{\mu} =\displaystyle= (0,0,0,1),ϵ±μ=12(0,±1,i, 0),\displaystyle\left(0,0,0,-1\right),~{}~{}~{}~{}~{}~{}\epsilon_{\pm}^{\mu}=\frac{1}{\sqrt{2}}\left(0,\,\pm 1,\,i,\,0\right),
ζmμν\displaystyle\zeta^{\mu\nu}_{m} =\displaystyle= m1,m2C1m1,1m22,mϵm1μϵm2ν.\displaystyle\sum_{m_{1},m_{2}}C^{2,m}_{1m_{1},1m_{2}}\epsilon^{\mu}_{m_{1}}\epsilon^{\nu}_{m_{2}}.

II.2 The effective Lagrangians

In the following, we adopt the effective Lagrangian approach to deduce the OBE effective potentials for the D1D1D_{1}D_{1}, D1D2D_{1}{D}_{2}^{\ast}, and D2D2D_{2}^{\ast}D_{2}^{\ast} systems. Based on the heavy quark symmetry, the chiral symmetry, and the hidden gauge symmetry Casalbuoni:1992gi ; Casalbuoni:1996pg ; Yan:1992gz ; Harada:2003jx ; Bando:1987br , the compact form of the relevant effective Lagrangians can be constructed as Ding:2008gr

TTσ\displaystyle\mathcal{L}_{TT\sigma} =\displaystyle= gσ′′Ta(Q)μσT¯aμ(Q),\displaystyle g^{\prime\prime}_{\sigma}\langle T^{(Q)\mu}_{a}\sigma\overline{T}^{\,({Q})}_{a\mu}\rangle, (2.1)
TT\displaystyle\mathcal{L}_{TT\mathbb{P}} =\displaystyle= ikTb(Q)μ𝒜/baγ5T¯aμ(Q),\displaystyle ik\langle T^{(Q)\mu}_{b}{\cal A}\!\!\!/_{ba}\gamma_{5}\overline{T}^{\,(Q)}_{a\mu}\rangle, (2.2)
TT𝕍\displaystyle\mathcal{L}_{TT\mathbb{V}} =\displaystyle= iβ′′Tb(Q)λvμ(𝒱μρμ)baT¯aλ(Q)\displaystyle i\beta^{\prime\prime}\langle T^{(Q)\lambda}_{b}v^{\mu}({\cal V}_{\mu}-\rho_{\mu})_{ba}\overline{T}^{\,(Q)}_{a\lambda}\rangle (2.3)
+iλ′′Tb(Q)λσμνFμν(ρ)baT¯aλ(Q),\displaystyle+i\lambda^{\prime\prime}\langle T^{(Q)\lambda}_{b}\sigma^{\mu\nu}F_{\mu\nu}(\rho)_{ba}\overline{T}^{\,(Q)}_{a\lambda}\rangle,

where the four velocity is v=(1,𝟎)v=(1,\bm{0}) in the static approximation. Surperfield Ta(Q)μT^{(Q)\mu}_{a} can be expressed as a linear combination of the axial-vector heavy flavor meson P1(Q)P^{(Q)}_{1} with I(JP)=1/2(1+)I(J^{P})=1/2(1^{+}) and the tensor heavy flavor meson P2(Q)P_{2}^{*(Q)} with I(JP)=1/2(2+)I(J^{P})=1/2(2^{+}), which reads as Ding:2008gr

Ta(Q)μ\displaystyle T^{(Q)\mu}_{a} =\displaystyle= 1+v/2[P2a(Q)μνγν32P1aν(Q)γ5(gμνγν(γμvμ)3)],\displaystyle\frac{1+{v}\!\!\!/}{2}\left[P^{*(Q)\mu\nu}_{2a}\gamma_{\nu}-\sqrt{\frac{3}{2}}P^{(Q)}_{1a\nu}\gamma_{5}\left(g^{\mu\nu}-\frac{\gamma^{\nu}(\gamma^{\mu}-v^{\mu})}{3}\right)\right],

where P1(c)=(D10,D1+)P_{1}^{(c)}=(D_{1}^{0},\,D_{1}^{+}), P2(c)=(D20,D2+)P_{2}^{*(c)}=(D_{2}^{*0},\,D_{2}^{*+}), and the normalization relations for these discussed charmed mesons are 0|D1μ|cq¯(1+)=ϵμmD1\langle 0|D_{1}^{\mu}|c\bar{q}(1^{+})\rangle=\epsilon^{\mu}\sqrt{m_{D_{1}}} and 0|D2μν|cq¯(2+)=ξμνmD2\langle 0|D_{2}^{*\mu\nu}|c\bar{q}(2^{+})\rangle=\xi^{\mu\nu}\sqrt{m_{D_{2}^{\ast}}}. Its conjugate field T¯a(Q)μ\overline{T}_{a}^{(Q)\mu} is written as T¯a(Q)μ=γ0Ta(Q)μγ0\overline{T}_{a}^{(Q)\mu}=\gamma^{0}T_{a}^{(Q)\mu{\dagger}}\gamma^{0}.

In Eqs. (2.1)-(2.3), we define the axial current 𝒜μ\mathcal{A}_{\mu}, the vector current 𝒱μ{\cal V}_{\mu}, the vector meson field ρμ\rho_{\mu}, and the vector meson field strength tensor Fμν(ρ)F_{\mu\nu}(\rho), i.e.,

𝒜μ=12(ξμξξμξ),𝒱μ=12(ξμξ+ξμξ),ρμ=igV2𝕍μ,Fμν(ρ)=μρννρμ+[ρμ,ρν],\displaystyle\left.\begin{array}[]{ll}{\mathcal{A}}_{\mu}=\dfrac{1}{2}(\xi^{\dagger}\partial_{\mu}\xi-\xi\partial_{\mu}\xi^{\dagger}),&{\mathcal{V}}_{\mu}=\dfrac{1}{2}(\xi^{\dagger}\partial_{\mu}\xi+\xi\partial_{\mu}\xi^{\dagger}),\\ \rho_{\mu}=\dfrac{ig_{V}}{\sqrt{2}}\mathbb{V}_{\mu},&F_{\mu\nu}(\rho)=\partial_{\mu}\rho_{\nu}-\partial_{\nu}\rho_{\mu}+[\rho_{\mu},\rho_{\nu}],\end{array}\right.

with ξ=exp(i/fπ)\xi=\exp(i\mathbb{P}/f_{\pi}). Here, \mathbb{P} and 𝕍μ\mathbb{V}_{\mu} stand for the pseudoscalar meson and vector meson matrices, respectively, which have the forms of

=(π02+η6π+K+ππ02+η6K0KK¯023η),𝕍μ=(ρ02+ω2ρ+K+ρρ02+ω2K0KK¯0ϕ)μ,\displaystyle\left.\begin{array}[]{l}{\mathbb{P}}={\left(\begin{array}[]{ccc}\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}}&\pi^{+}&K^{+}\\ \pi^{-}&-\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}}&K^{0}\\ K^{-}&\bar{K}^{0}&-\sqrt{\frac{2}{3}}\eta\end{array}\right)},\\ {\mathbb{V}}_{\mu}={\left(\begin{array}[]{ccc}\frac{\rho^{0}}{\sqrt{2}}+\frac{\omega}{\sqrt{2}}&\rho^{+}&K^{*+}\\ \rho^{-}&-\frac{\rho^{0}}{\sqrt{2}}+\frac{\omega}{\sqrt{2}}&K^{*0}\\ K^{*-}&\bar{K}^{*0}&\phi\end{array}\right)}_{\mu},\end{array}\right.

respectively. Once expanding the effective Lagrangians in Eqs. (2.1)-(2.3), we can further obtain the concrete effective Lagrangians between the charmed mesons in the TT-doublet and the light mesons, which can be explicitly expressed as

D1D1σ\displaystyle\mathcal{L}_{D_{1}D_{1}\sigma} =\displaystyle= 2gσ′′D1aμD1aμσ,\displaystyle-2g_{\sigma}^{\prime\prime}D_{1a\mu}D^{\mu\dagger}_{1a}\sigma, (2.8)
D1D1\displaystyle\mathcal{L}_{D_{1}D_{1}\mathbb{P}} =\displaystyle= 5ik3fπϵμνρτvτD1bνD1aμρba,\displaystyle-\frac{5ik}{3f_{\pi}}~{}\epsilon^{\mu\nu\rho\tau}v_{\tau}D_{1b\nu}D^{\dagger}_{1a\mu}\partial_{\rho}\mathbb{P}_{ba}, (2.9)
D1D1𝕍\displaystyle\mathcal{L}_{D_{1}D_{1}\mathbb{V}} =\displaystyle= 2β′′gV(v𝕍ba)D1bμD1aμ\displaystyle-\sqrt{2}\beta^{\prime\prime}g_{V}\left(v\cdot\mathbb{V}_{ba}\right)D_{1b\mu}D^{\mu\dagger}_{1a} (2.10)
+52iλ′′gV3(D1bμD1aνD1bνD1aμ)μ𝕍baν,\displaystyle+\frac{5\sqrt{2}i\lambda^{\prime\prime}g_{V}}{3}\left(D^{\mu}_{1b}D^{\nu\dagger}_{1a}-D^{\nu}_{1b}D^{\mu\dagger}_{1a}\right)\partial_{\mu}\mathbb{V}_{ba\nu},
D2D2σ\displaystyle\mathcal{L}_{D^{\ast}_{2}D^{\ast}_{2}\sigma} =\displaystyle= 2gσ′′D2aμνD2aμνσ,\displaystyle 2g_{\sigma}^{\prime\prime}D^{*\mu\nu}_{2a}D^{*\dagger}_{2a\mu\nu}\sigma, (2.11)
D2D2\displaystyle\mathcal{L}_{D^{\ast}_{2}D^{\ast}_{2}\mathbb{P}} =\displaystyle= 2ikfπϵμνρτvνD2bατD2aραμba,\displaystyle\frac{2ik}{f_{\pi}}~{}\epsilon^{\mu\nu\rho\tau}v_{\nu}D^{*}_{2b\alpha\tau}D^{*\alpha\dagger}_{2a\rho}\partial_{\mu}\mathbb{P}_{ba}, (2.12)
D2D2𝕍\displaystyle\mathcal{L}_{D^{\ast}_{2}D^{\ast}_{2}\mathbb{V}} =\displaystyle= 2β′′gV(v𝕍ba)D2bλνD2aλν+22iλ′′gV\displaystyle\sqrt{2}\beta^{\prime\prime}g_{V}\left(v\cdot\mathbb{V}_{ba}\right)D_{2b}^{*\lambda\nu}D^{*\dagger}_{2a{\lambda\nu}}+2\sqrt{2}i\lambda^{\prime\prime}g_{V} (2.13)
×(D2bλνD2aλμD2bλμD2aλν)μ𝕍baν,\displaystyle\times\left(D^{*\lambda\nu}_{2b}D^{*\mu\dagger}_{2a\lambda}-D^{*\mu}_{2b\lambda}D^{*\lambda\nu\dagger}_{2a}\right)\partial_{\mu}\mathbb{V}_{ba\nu},
D1D2σ\displaystyle\mathcal{L}_{D_{1}D^{\ast}_{2}\sigma} =\displaystyle= 23igσ′′ϵμνρτvρ(D2aμτD1aνD1aνD2aμτ)σ,\displaystyle\sqrt{\frac{2}{3}}ig_{\sigma}^{\prime\prime}\epsilon^{\mu\nu\rho\tau}v_{\rho}\left(D^{*}_{2a\mu\tau}D^{\dagger}_{1a\nu}-D_{1a\nu}D^{*\dagger}_{2a\mu\tau}\right)\sigma, (2.14)
D1D2\displaystyle\mathcal{L}_{D_{1}D^{\ast}_{2}\mathbb{P}} =\displaystyle= 23kfπ(D2bμλD1aμ+D1bμD2aμλ)λba,\displaystyle-\sqrt{\frac{2}{3}}\frac{k}{f_{\pi}}\left(D^{*\mu\lambda}_{2b}D^{\dagger}_{1a\mu}+D_{1b\mu}D^{*\mu\lambda\dagger}_{2a}\right)\partial_{\lambda}\mathbb{P}_{ba}, (2.15)
D1D2𝕍\displaystyle\mathcal{L}_{D_{1}D^{\ast}_{2}\mathbb{V}} =\displaystyle= iβ′′gV3ϵλαρτvρ(v𝕍ba)(D2bλτD1aαD1bαD2aλτ)\displaystyle\frac{i\beta^{\prime\prime}g_{V}}{\sqrt{3}}\epsilon^{\lambda\alpha\rho\tau}v_{\rho}\left(v\cdot\mathbb{V}_{ba}\right)\left(D^{*}_{2b\lambda\tau}D^{\dagger}_{1a\alpha}-D_{1b\alpha}D^{*\dagger}_{2a\lambda\tau}\right) (2.16)
+2λ′′gV3[3ϵμλντvλ(D2bατD1aα+D1bαD2aατ)μ𝕍baν\displaystyle+\frac{2\lambda^{\prime\prime}g_{V}}{\sqrt{3}}\left[3\epsilon^{\mu\lambda\nu\tau}v_{\lambda}\left(D^{*}_{2b\alpha\tau}D^{\alpha\dagger}_{1a}+D^{\alpha}_{1b}D^{*\dagger}_{2a\alpha\tau}\right)\partial_{\mu}\mathbb{V}_{ba\nu}\right.
+2ϵλαρνvρ(D2bλμD1aα+D1bαD2aλμ)\displaystyle+2\epsilon^{\lambda\alpha\rho\nu}v_{\rho}\left(D^{*\mu}_{2b\lambda}D^{\dagger}_{1a\alpha}+D_{1b\alpha}D^{*\mu\dagger}_{2a\lambda}\right)
×(μ𝕍baνν𝕍baμ)].\displaystyle\left.\times\left(\partial_{\mu}\mathbb{V}_{ba\nu}-\partial_{\nu}\mathbb{V}_{ba\mu}\right)\right].

In this work, we estimate all the coupling constants in the quark model (see Refs. Wang:2019nwt ; Liu:2011xc ; Wang:2019aoc ; Riska:2000gd for more details). The values for the involved coupling constants are gσ′′=0.76g^{\prime\prime}_{\sigma}=0.76, k=0.59k=0.59, fπ=132MeVf_{\pi}=132~{}\rm{MeV}, β′′=0.90\beta^{\prime\prime}=0.90, λ′′=0.56GeV1\lambda^{\prime\prime}=0.56~{}\rm{GeV}^{-1}, and gV=5.83g_{V}=5.83 Wang:2019nwt . The masses of these involved hadrons are mσ=600.00MeVm_{\sigma}=600.00~{}\rm{MeV}, mπ=137.27MeVm_{\pi}=137.27~{}\rm{MeV}, mη=547.86MeVm_{\eta}=547.86~{}\rm{MeV}, mρ=775.26MeVm_{\rho}=775.26~{}\rm{MeV}, mω=782.66MeVm_{\omega}=782.66~{}\rm{MeV}, mD1=2422.00MeVm_{D_{1}}=2422.00~{}\rm{MeV}, and mD2=2463.05MeVm_{D_{2}^{*}}=2463.05~{}\rm{MeV} Zyla:2020zbs . As the important input parameters within the OBE model, the information about the coupling constants is crucial when studying the existence possibility of the hadronic molecular states. However, the coupling constants with the charmed meson in TT-doublet cannot be fixed based on the experimental data at present, and we estimate these coupling constants by the quark model in this work Riska:2000gd , which is often adopted to determine the coupling constants. Because of the uncertainties of the coupling constants, we should be cautious when studying the existence possibility of the hadronic molecular states. Here, we need to indicate our results of the existence possibility of the hadronic molecular states at the qualitative level, but the uncertainties of the coupling constants do not significantly affect our qualitative conclusions.

II.3 The effective potentials

Based on the above preparation, we can further deduce the effective potentials to judge whether these discussed doubly-charmed molecular tetraquark states exist or not. As indicated in Ref. Wang:2019nwt , there exists the standard strategy to judge the possibility of the existence of the investigated hadronic molecular state within the OBE model, which is given in Fig. 1.

Refer to caption
Figure 1: (color online) The standard strategy to judge the possibility of the existence of the investigated hadronic molecular state within the OBE model.

For extracting the effective potential in the coordinate space, which is shown in the upper part of the Fig. 1, we will give a brief introduction in the following. First, we can write down the scattering amplitude h1h2h3h4(𝒒)\mathcal{M}^{h_{1}h_{2}\to h_{3}h_{4}}(\bm{q}) of the scattering process h1h2h3h4h_{1}h_{2}\to h_{3}h_{4} by exchanging the light mesons under the effective Lagrangian approach. The relevant Feynman diagram is given in Fig. 2, and the scattering amplitude h1h2h3h4(𝒒)\mathcal{M}^{h_{1}h_{2}\to h_{3}h_{4}}(\bm{q}) can be written as

ih1h2h3h4(𝒒)=m=σ,,𝕍iΓ(μ)h1h3mPm(μν)iΓ(ν)h2h4m,\displaystyle i\mathcal{M}^{h_{1}h_{2}\to h_{3}h_{4}}(\bm{q})=\sum_{m=\sigma,\,\mathbb{P},\,\mathbb{V}}i\Gamma^{h_{1}h_{3}m}_{(\mu)}P_{m}^{(\mu\nu)}i\Gamma^{h_{2}h_{4}m}_{(\nu)}, (2.17)

where the interaction vertices Γ(μ)h1h3m\Gamma^{h_{1}h_{3}m}_{(\mu)} and Γ(ν)h2h4m\Gamma^{h_{2}h_{4}m}_{(\nu)} can be extracted from the former effective Lagrangians.

Refer to caption
Figure 2: The relevant Feynman diagram for the scattering process h1h2h3h4h_{1}h_{2}\to h_{3}h_{4}.

And then, we adopt the Breit approximation Breit:1929zz ; Breit:1930zza and the nonrelativistic normalizations to obtain the relations between the effective potential in the momentum space 𝒱Eh1h2h3h4(𝒒)\mathcal{V}^{h_{1}h_{2}\to h_{3}h_{4}}_{E}(\bm{q}) and the corresponding scattering amplitude h1h2h3h4(𝒒)\mathcal{M}^{h_{1}h_{2}\to h_{3}h_{4}}(\bm{q}), i.e.,

𝒱Eh1h2h3h4(𝒒)=h1h2h3h4(𝒒)i2mif2mf,\displaystyle\mathcal{V}_{E}^{h_{1}h_{2}\to h_{3}h_{4}}(\bm{q})=-\frac{\mathcal{M}^{h_{1}h_{2}\to h_{3}h_{4}}(\bm{q})}{\sqrt{\prod_{i}2m_{i}\prod_{f}2m_{f}}}, (2.18)

where mi(f)m_{i(f)} are the masses of the initial (final) states. Finally, we can perform the Fourier transformation to deduce the effective potential in the coordinate space 𝒱Eh1h2h3h4(𝒓)\mathcal{V}^{h_{1}h_{2}\to h_{3}h_{4}}_{E}(\bm{r}), i.e.,

𝒱Eh1h2h3h4(𝒓)=d3𝒒(2π)3ei𝒒𝒓𝒱Eh1h2h3h4(𝒒)2(q2,mE2).\displaystyle\mathcal{V}^{h_{1}h_{2}\to h_{3}h_{4}}_{E}(\bm{r})=\int\frac{d^{3}\bm{q}}{(2\pi)^{3}}e^{i\bm{q}\cdot\bm{r}}\mathcal{V}^{h_{1}h_{2}\to h_{3}h_{4}}_{E}(\bm{q})\mathcal{F}^{2}(q^{2},m_{E}^{2}).

In order to compensate the off-shell effect of the exchanged particles, we introduce the form factor (q2,mE2)\mathcal{F}(q^{2},m_{E}^{2}) at every interaction vertex, (q2,mE2)=(Λ2mE2)/(Λ2q2)\mathcal{F}(q^{2},m_{E}^{2})=(\Lambda^{2}-m_{E}^{2})/(\Lambda^{2}-q^{2}). Here, Λ\Lambda, qq, and mEm_{E} are the cutoff parameter, the four-momentum, and the mass of the exchanged light mesons, respectively. According to the experience of studying the deuteron, a reasonable cutoff value is taken around 1.00 GeV Tornqvist:1993ng ; Tornqvist:1993vu , in this cutoff region, we can reproduce the masses of the three PcP_{c} states Wu:2010jy ; Karliner:2015ina ; Wang:2011rga ; Yang:2011wz ; Wu:2012md ; Chen:2015loa and the TccT_{cc} state Li:2021zbw ; Chen:2021vhg ; Agaev:2021vur ; Ren:2021dsi ; Xin:2021wcr ; Chen:2021tnn ; Albaladejo:2021vln ; Ding:2020dio ; Li:2012ss ; Xu:2017tsr ; Liu:2019stu ; Dong:2021bvy in the hadronic molecular picture.

After getting the effective potentials in the coordinate space for the discussed systems by the above three typical steps, we can search for the bound state solutions by numerically solving the coupled channel Schrödinger equation,

12μ(2(+1)r2)ψ(r)+V(r)ψ(r)=Eψ(r),\displaystyle-\frac{1}{2\mu}\left(\nabla^{2}-\frac{\ell(\ell+1)}{r^{2}}\right)\psi(r)+V(r)\psi(r)=E\psi(r), (2.20)

where 2=1r2rr2r\nabla^{2}=\frac{1}{r^{2}}\frac{\partial}{\partial r}r^{2}\frac{\partial}{\partial r}, and μ=m1m2m1+m2\mu=\frac{m_{1}m_{2}}{m_{1}+m_{2}} is the reduced mass for the discussed systems. In our calculation, the obtained bound state solutions mainly include the binding energy EE and the radial wave function ψ(r)\psi(r), with which we can further calculate the root-mean-square radius rRMSr_{\rm RMS} and the probability of the individual channel PiP_{i}.

The total OBE effective potentials for all the discussed TTTT-type doubly charmed tetraquarks can be expressed as

𝒱1\displaystyle\mathcal{V}_{1} =\displaystyle= gσ′′2𝒪1Yσ25k2108fπ2(𝒪2𝒵r+𝒪3𝒯r)(𝒢Yπ2+Yη6)\displaystyle-g^{\prime\prime 2}_{\sigma}\mathcal{O}_{1}Y_{\sigma}-\frac{25k^{2}}{108f^{2}_{\pi}}\left(\mathcal{O}_{2}\mathcal{Z}_{r}+\mathcal{O}_{3}\mathcal{T}_{r}\right)\left(\frac{\mathcal{G}Y_{\pi}}{2}+\frac{Y_{\eta}}{6}\right) (2.21)
+12β′′2gV2𝒪1(𝒢Yρ2+Yω2)\displaystyle+\frac{1}{2}\beta^{\prime\prime 2}g^{2}_{V}\mathcal{O}_{1}\left(\frac{\mathcal{G}Y_{\rho}}{2}+\frac{Y_{\omega}}{2}\right)
2554λ′′2gV2(2𝒪2𝒵r𝒪3𝒯r)(𝒢Yρ2+Yω2)\displaystyle-\frac{25}{54}\lambda^{\prime\prime 2}g^{2}_{V}\left(2\mathcal{O}_{2}\mathcal{Z}_{r}-\mathcal{O}_{3}\mathcal{T}_{r}\right)\left(\frac{\mathcal{G}Y_{\rho}}{2}+\frac{Y_{\omega}}{2}\right)

for the D1D1D1D1{D}_{1}{D}_{1}\to{D}_{1}{D}_{1} process,

𝒱2\displaystyle\mathcal{V}_{2} =\displaystyle= gσ′′2𝒪4+𝒪42Yσ\displaystyle-g^{\prime\prime 2}_{\sigma}\frac{\mathcal{O}_{4}+\mathcal{O}_{4}^{\prime}}{2}Y_{\sigma}
5k218fπ2(𝒪5+𝒪52𝒵r+𝒪6+𝒪62𝒯r)(𝒢Yπ2+Yη6)\displaystyle-\frac{5k^{2}}{18f^{2}_{\pi}}\left(\frac{\mathcal{O}_{5}+\mathcal{O}_{5}^{\prime}}{2}\mathcal{Z}_{r}+\frac{\mathcal{O}_{6}+\mathcal{O}_{6}^{\prime}}{2}\mathcal{T}_{r}\right)\left(\frac{\mathcal{G}Y_{\pi}}{2}+\frac{Y_{\eta}}{6}\right)
+12β′′2gV2𝒪4+𝒪42(𝒢2Yρ+12Yω)\displaystyle+\frac{1}{2}\beta^{\prime\prime 2}g^{2}_{V}\frac{\mathcal{O}_{4}+\mathcal{O}_{4}^{\prime}}{2}\left(\frac{\mathcal{G}}{2}Y_{\rho}+\frac{1}{2}Y_{\omega}\right)
23λ′′2gV2(2𝒪5+𝒪52𝒵r𝒪6+𝒪62𝒯r)(𝒢Yρ2+Yω2)\displaystyle-\frac{2}{3}\lambda^{\prime\prime 2}g^{2}_{V}\left(2\frac{\mathcal{O}_{5}+\mathcal{O}_{5}^{\prime}}{2}\mathcal{Z}_{r}-\frac{\mathcal{O}_{6}+\mathcal{O}_{6}^{\prime}}{2}\mathcal{T}_{r}\right)\left(\frac{\mathcal{G}Y_{\rho}}{2}+\frac{Y_{\omega}}{2}\right)

for the D1D2D1D2{D}_{1}{D}_{2}^{\ast}\to{D}_{1}{D}_{2}^{\ast} process,

𝒱3\displaystyle\mathcal{V}_{3} =\displaystyle= k218fπ2(𝒪7+𝒪72𝒵r+𝒪8+𝒪82𝒯r)(𝒢Yπ02+Yη06)\displaystyle\frac{k^{2}}{18f^{2}_{\pi}}\left(\frac{\mathcal{O}_{7}+\mathcal{O}_{7}^{\prime}}{2}\mathcal{Z}_{r}+\frac{\mathcal{O}_{8}+\mathcal{O}_{8}^{\prime}}{2}\mathcal{T}_{r}\right)\left(\frac{\mathcal{G}Y_{\pi 0}}{2}+\frac{Y_{\eta 0}}{6}\right)
+λ′′2gV29(2𝒪7+𝒪72𝒵r𝒪8+𝒪82𝒯r)(𝒢Yρ02+Yω02)\displaystyle+\frac{\lambda^{\prime\prime 2}g^{2}_{V}}{9}\left(2\frac{\mathcal{O}_{7}+\mathcal{O}_{7}^{\prime}}{2}\mathcal{Z}_{r}-\frac{\mathcal{O}_{8}+\mathcal{O}_{8}^{\prime}}{2}\mathcal{T}_{r}\right)\left(\frac{\mathcal{G}Y_{\rho 0}}{2}+\frac{Y_{\omega 0}}{2}\right)

for the D1D2D2D1{D}_{1}{D}_{2}^{\ast}\to{D}_{2}^{\ast}{D}_{1} process, and

𝒱4\displaystyle\mathcal{V}_{4} =\displaystyle= gσ′′2𝒪9Yσk23fπ2(𝒪10𝒵r+𝒪11𝒯r)(𝒢Yπ2+Yη6)\displaystyle-g^{\prime\prime 2}_{\sigma}\mathcal{O}_{9}Y_{\sigma}-\frac{k^{2}}{3f^{2}_{\pi}}\left(\mathcal{O}_{10}\mathcal{Z}_{r}+\mathcal{O}_{11}\mathcal{T}_{r}\right)\left(\frac{\mathcal{G}Y_{\pi}}{2}+\frac{Y_{\eta}}{6}\right) (2.24)
+12β′′2gV2𝒪9(𝒢Yρ2+Yω2)\displaystyle+\frac{1}{2}\beta^{\prime\prime 2}g^{2}_{V}\mathcal{O}_{9}\left(\frac{\mathcal{G}Y_{\rho}}{2}+\frac{Y_{\omega}}{2}\right)
23λ′′2gV2(2𝒪10𝒵r𝒪11𝒯r)(𝒢Yρ2+Yω2)\displaystyle-\frac{2}{3}\lambda^{\prime\prime 2}g^{2}_{V}\left(2\mathcal{O}_{10}\mathcal{Z}_{r}-\mathcal{O}_{11}\mathcal{T}_{r}\right)\left(\frac{\mathcal{G}Y_{\rho}}{2}+\frac{Y_{\omega}}{2}\right)

for the D2D2D2D2{D}_{2}^{\ast}{D}_{2}^{\ast}\to{D}_{2}^{\ast}{D}_{2}^{\ast} process. Here, the constant 𝒢\mathcal{G} is taken as 3-3 for the isoscalar system and 1 for the isovector system, respectively. For the convenience, we define the following expressions

𝒵r\displaystyle\mathcal{Z}_{r} =\displaystyle= 1r2rr2r,𝒯r=rr1rr,\displaystyle\frac{1}{r^{2}}\frac{\partial}{\partial r}r^{2}\frac{\partial}{\partial r},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\mathcal{T}_{r}=r\frac{\partial}{\partial r}\frac{1}{r}\frac{\partial}{\partial r},
Yi\displaystyle Y_{i} =\displaystyle= emireΛir4πrΛi2mi28πΛieΛir.\displaystyle\dfrac{e^{-m_{i}r}-e^{-\Lambda_{i}r}}{4\pi r}-\dfrac{\Lambda_{i}^{2}-m_{i}^{2}}{8\pi\Lambda_{i}}e^{-\Lambda_{i}r}. (2.25)

Here, m0=m2q02m_{0}=\sqrt{m^{2}-q_{0}^{2}} and Λ0=Λ2q02\Lambda_{0}=\sqrt{\Lambda^{2}-q_{0}^{2}} with q0=mD2mD1q_{0}=m_{{D}_{2}^{\ast}}-m_{{D}_{1}}.

In the above OBE effective potentials, we define several relevant operators 𝒪k()\mathcal{O}_{k}^{(\prime)}, which include

𝒪1\displaystyle\mathcal{O}_{1} =\displaystyle= (ϵ3ϵ1)(ϵ4ϵ2),𝒪2=(ϵ3×ϵ1)(ϵ4×ϵ2),\displaystyle\left({\bm{\epsilon}^{\dagger}_{3}}\cdot{\bm{\epsilon}_{1}}\right)\left({\bm{\epsilon}^{\dagger}_{4}}\cdot{\bm{\epsilon}_{2}}\right),~{}~{}~{}~{}~{}\mathcal{O}_{2}=\left({\bm{\epsilon}^{\dagger}_{3}}\times{\bm{\epsilon}_{1}}\right)\cdot\left({\bm{\epsilon}^{\dagger}_{4}}\times{\bm{\epsilon}_{2}}\right),
𝒪3\displaystyle\mathcal{O}_{3} =\displaystyle= S(ϵ3×ϵ1,ϵ4×ϵ2,𝒓^),\displaystyle S({\bm{\epsilon}^{\dagger}_{3}}\times{\bm{\epsilon}_{1}},{\bm{\epsilon}^{\dagger}_{4}}\times{\bm{\epsilon}_{2}},\hat{\bm{r}}),
𝒪4\displaystyle\mathcal{O}_{4} =\displaystyle= 𝒜(ϵ3ϵ1)(ϵ4aϵ2c)(ϵ4bϵ2d),\displaystyle\mathcal{A}\left({\bm{\epsilon}^{\dagger}_{3}}\cdot{\bm{\epsilon}_{1}}\right)\left({\bm{\epsilon}^{\dagger}_{4a}}\cdot{\bm{\epsilon}_{2c}}\right)\left({\bm{\epsilon}^{\dagger}_{4b}}\cdot{\bm{\epsilon}_{2d}}\right),
𝒪4\displaystyle\mathcal{O}_{4}^{\prime} =\displaystyle= 𝒜(ϵ4ϵ2)(ϵ3aϵ1c)(ϵ3bϵ1d),\displaystyle\mathcal{A}\left({\bm{\epsilon}^{\dagger}_{4}}\cdot{\bm{\epsilon}_{2}}\right)\left({\bm{\epsilon}^{\dagger}_{3a}}\cdot{\bm{\epsilon}_{1c}}\right)\left({\bm{\epsilon}^{\dagger}_{3b}}\cdot{\bm{\epsilon}_{1d}}\right),
𝒪5\displaystyle\mathcal{O}_{5} =\displaystyle= 𝒜(ϵ4aϵ2c)[(ϵ3×ϵ1)(ϵ4b×ϵ2d)],\displaystyle\mathcal{A}\left({\bm{\epsilon}^{\dagger}_{4a}}\cdot{\bm{\epsilon}_{2c}}\right)\left[\left({\bm{\epsilon}^{\dagger}_{3}}\times{\bm{\epsilon}_{1}}\right)\cdot\left({\bm{\epsilon}^{\dagger}_{4b}}\times{\bm{\epsilon}_{2d}}\right)\right],
𝒪5\displaystyle\mathcal{O}_{5}^{\prime} =\displaystyle= 𝒜(ϵ3aϵ1c)[(ϵ4×ϵ2)(ϵ3b×ϵ1d)],\displaystyle\mathcal{A}\left({\bm{\epsilon}^{\dagger}_{3a}}\cdot{\bm{\epsilon}_{1c}}\right)\left[\left({\bm{\epsilon}^{\dagger}_{4}}\times{\bm{\epsilon}_{2}}\right)\cdot\left({\bm{\epsilon}^{\dagger}_{3b}}\times{\bm{\epsilon}_{1d}}\right)\right],
𝒪6\displaystyle\mathcal{O}_{6} =\displaystyle= 𝒜(ϵ4aϵ2c)S(ϵ3×ϵ1,ϵ4b×ϵ2d,𝒓^),\displaystyle\mathcal{A}\left({\bm{\epsilon}^{\dagger}_{4a}}\cdot{\bm{\epsilon}_{2c}}\right)S({\bm{\epsilon}^{\dagger}_{3}}\times{\bm{\epsilon}_{1}},{\bm{\epsilon}^{\dagger}_{4b}}\times{\bm{\epsilon}_{2d}},\hat{\bm{r}}),
𝒪6\displaystyle\mathcal{O}_{6}^{\prime} =\displaystyle= 𝒜(ϵ3aϵ1c)S(ϵ4×ϵ2,ϵ3b×ϵ1d,𝒓^),\displaystyle\mathcal{A}\left({\bm{\epsilon}^{\dagger}_{3a}}\cdot{\bm{\epsilon}_{1c}}\right)S({\bm{\epsilon}^{\dagger}_{4}}\times{\bm{\epsilon}_{2}},{\bm{\epsilon}^{\dagger}_{3b}}\times{\bm{\epsilon}_{1d}},\hat{\bm{r}}),
𝒪7\displaystyle\mathcal{O}_{7} =\displaystyle= 𝒜(ϵ3aϵ1)(ϵ4ϵ2c)(ϵ3bϵ2d),\displaystyle\mathcal{A}\left({\bm{\epsilon}^{\dagger}_{3a}}\cdot{\bm{\epsilon}_{1}}\right)\left({\bm{\epsilon}^{\dagger}_{4}}\cdot{\bm{\epsilon}_{2c}}\right)\left({\bm{\epsilon}^{\dagger}_{3b}}\cdot{\bm{\epsilon}_{2d}}\right),
𝒪7\displaystyle\mathcal{O}_{7}^{\prime} =\displaystyle= 𝒜(ϵ4aϵ2)(ϵ3ϵ1c)(ϵ4bϵ1d),\displaystyle\mathcal{A}\left({\bm{\epsilon}^{\dagger}_{4a}}\cdot{\bm{\epsilon}_{2}}\right)\left({\bm{\epsilon}^{\dagger}_{3}}\cdot{\bm{\epsilon}_{1c}}\right)\left({\bm{\epsilon}^{\dagger}_{4b}}\cdot{\bm{\epsilon}_{1d}}\right),
𝒪8\displaystyle\mathcal{O}_{8} =\displaystyle= 𝒜(ϵ3aϵ1)(ϵ4ϵ2c)S(ϵ3b,ϵ2d,𝒓^),\displaystyle\mathcal{A}\left({\bm{\epsilon}^{\dagger}_{3a}}\cdot{\bm{\epsilon}_{1}}\right)\left({\bm{\epsilon}^{\dagger}_{4}}\cdot{\bm{\epsilon}_{2c}}\right)S({\bm{\epsilon}^{\dagger}_{3b}},{\bm{\epsilon}_{2d}},\hat{\bm{r}}),
𝒪8\displaystyle\mathcal{O}_{8}^{\prime} =\displaystyle= 𝒜(ϵ4aϵ2)(ϵ3ϵ1c)S(ϵ4b,ϵ1d,𝒓^),\displaystyle\mathcal{A}\left({\bm{\epsilon}^{\dagger}_{4a}}\cdot{\bm{\epsilon}_{2}}\right)\left({\bm{\epsilon}^{\dagger}_{3}}\cdot{\bm{\epsilon}_{1c}}\right)S({\bm{\epsilon}^{\dagger}_{4b}},{\bm{\epsilon}_{1d}},\hat{\bm{r}}),
𝒪9\displaystyle\mathcal{O}_{9} =\displaystyle= (ϵ3aϵ1c)(ϵ3bϵ1d)(ϵ4eϵ2g)(ϵ4fϵ2h),\displaystyle\mathcal{B}\left({\bm{\epsilon}^{\dagger}_{3a}}\cdot{\bm{\epsilon}_{1c}}\right)\left({\bm{\epsilon}^{\dagger}_{3b}}\cdot{\bm{\epsilon}_{1d}}\right)\left({\bm{\epsilon}^{\dagger}_{4e}}\cdot{\bm{\epsilon}_{2g}}\right)\left({\bm{\epsilon}^{\dagger}_{4f}}\cdot{\bm{\epsilon}_{2h}}\right),
𝒪10\displaystyle\mathcal{O}_{10} =\displaystyle= (ϵ3aϵ1c)(ϵ4eϵ2g)[(ϵ3b×ϵ1d)(ϵ4f×ϵ2h)],\displaystyle\mathcal{B}\left({\bm{\epsilon}^{\dagger}_{3a}}\cdot{\bm{\epsilon}_{1c}}\right)\left({\bm{\epsilon}^{\dagger}_{4e}}\cdot{\bm{\epsilon}_{2g}}\right)\left[\left({\bm{\epsilon}^{\dagger}_{3b}}\times{\bm{\epsilon}_{1d}}\right)\cdot\left({\bm{\epsilon}^{\dagger}_{4f}}\times{\bm{\epsilon}_{2h}}\right)\right],
𝒪11\displaystyle\mathcal{O}_{11} =\displaystyle= (ϵ3aϵ1c)(ϵ4eϵ2g)S(ϵ3b×ϵ1d,ϵ4f×ϵ2h,𝒓^)\displaystyle\mathcal{B}\left({\bm{\epsilon}^{\dagger}_{3a}}\cdot{\bm{\epsilon}_{1c}}\right)\left({\bm{\epsilon}^{\dagger}_{4e}}\cdot{\bm{\epsilon}_{2g}}\right)S({\bm{\epsilon}^{\dagger}_{3b}}\times{\bm{\epsilon}_{1d}},{\bm{\epsilon}^{\dagger}_{4f}}\times{\bm{\epsilon}_{2h}},\hat{\bm{r}})

with S(𝒙,𝒚,𝒓^)=3(𝒓^𝒙)(𝒓^𝒚)𝒙𝒚S({\bm{x}},{\bm{y}},\hat{\bm{r}})=3\left(\hat{\bm{r}}\cdot{\bm{x}}\right)\left(\hat{\bm{r}}\cdot{\bm{y}}\right)-{\bm{x}}\cdot{\bm{y}}, 𝒜=a,bc,dC1a,1b2,a+bC1c,1d2,c+d\mathcal{A}=\sum_{a,b}^{c,d}C^{2,a+b}_{1a,1b}C^{2,c+d}_{1c,1d}, and =a,b,c,de,f,g,hC1a,1b2,a+bC1c,1d2,c+dC1e,1f2,e+fC1g,1h2,g+h\mathcal{B}=\sum_{a,b,c,d}^{e,f,g,h}C^{2,a+b}_{1a,1b}C^{2,c+d}_{1c,1d}C^{2,e+f}_{1e,1f}C^{2,g+h}_{1g,1h}. The operator matrix elements f|𝒪k()|i\langle f|\mathcal{O}_{k}^{(\prime)}|i\rangle are collected in Appendix A.

III Numerical results and discussions

In this section, we solve the coupled channel Schro¨\rm{\ddot{o}}dinger equations to search for the bound state solutions for the SS-wave D1D1D_{1}D_{1}, D1D2D_{1}D_{2}^{*}, and D2D2D_{2}^{*}D_{2}^{*} systems. Our numerical calculations are presented in three cases. First, we perform a single channel analysis with the OBE effective potentials. After that, we further introduce the SS-DD wave mixing effect and the coupled channel effect, and give the numerical analysis again. With these steps, we can reveal the roles of the SS-DD wave mixing effect and the coupled channel effect in the formation of the TTTT-type doubly charmed molecular tetraquark states.

When we consider the SS-DD wave mixing effect and the coupled channel effect, the relevant spin-orbit wave functions |2S+1LJ|^{2S+1}L_{J}\rangle for the D1D1D_{1}D_{1}, D1D2D_{1}D_{2}^{*}, and D2D2D_{2}^{*}D_{2}^{*} systems are

(I,JP)=(1,0+):\displaystyle(I,J^{P})=(1,0^{+}): D1D1|𝕊01/|𝔻05,D2D2|𝕊01/|𝔻05;\displaystyle D_{1}D_{1}|{}^{1}\mathbb{S}_{0}\rangle/|{}^{5}\mathbb{D}_{0}\rangle,~{}~{}D_{2}^{\ast}D_{2}^{\ast}|{}^{1}\mathbb{S}_{0}\rangle/|{}^{5}\mathbb{D}_{0}\rangle;
(I,JP)=(0,1+):\displaystyle(I,J^{P})=(0,1^{+}): D1D1|𝕊13/|𝔻13,D1D2|𝕊13/|𝔻13,5,7,\displaystyle D_{1}D_{1}|{}^{3}\mathbb{S}_{1}\rangle/|{}^{3}\mathbb{D}_{1}\rangle,~{}~{}D_{1}D_{2}^{\ast}|{}^{3}\mathbb{S}_{1}\rangle/|{}^{3,5,7}\mathbb{D}_{1}\rangle,
D2D2|𝕊13/|𝔻13,7;\displaystyle D_{2}^{\ast}D_{2}^{\ast}|{}^{3}\mathbb{S}_{1}\rangle/|{}^{3,7}\mathbb{D}_{1}\rangle;
(I,JP)=(1,1+):\displaystyle(I,J^{P})=(1,1^{+}): D1D2|𝕊13/|𝔻13,5,7;\displaystyle D_{1}D_{2}^{\ast}|{}^{3}\mathbb{S}_{1}\rangle/|{}^{3,5,7}\mathbb{D}_{1}\rangle;
(I,JP)=(0,2+):\displaystyle(I,J^{P})=(0,2^{+}): D1D2|5𝕊2/|𝔻23,5,7;\displaystyle D_{1}D_{2}^{\ast}|^{5}\mathbb{S}_{2}\rangle/|{}^{3,5,7}\mathbb{D}_{2}\rangle;
(I,JP)=(1,2+):\displaystyle(I,J^{P})=(1,2^{+}): D1D1|𝕊25/|𝔻21,5,D1D2|5𝕊2/|𝔻23,5,7,\displaystyle D_{1}D_{1}|{}^{5}\mathbb{S}_{2}\rangle/|{}^{1,5}\mathbb{D}_{2}\rangle,~{}~{}D_{1}D_{2}^{\ast}|^{5}\mathbb{S}_{2}\rangle/|{}^{3,5,7}\mathbb{D}_{2}\rangle,
D2D2|𝕊25/|1,5,9𝔻2;\displaystyle D_{2}^{\ast}D_{2}^{\ast}|{}^{5}\mathbb{S}_{2}\rangle/|^{1,5,9}\mathbb{D}_{2}\rangle;
(I,JP)=(0,3+):\displaystyle(I,J^{P})=(0,3^{+}): D1D2|𝕊37/|𝔻33,5,7,D2D2|𝕊37/|𝔻33,7;\displaystyle D_{1}D_{2}^{\ast}|{}^{7}\mathbb{S}_{3}\rangle/|{}^{3,5,7}\mathbb{D}_{3}\rangle,~{}~{}D_{2}^{\ast}D_{2}^{\ast}|{}^{7}\mathbb{S}_{3}\rangle/|{}^{3,7}\mathbb{D}_{3}\rangle;
(I,JP)=(1,3+):\displaystyle(I,J^{P})=(1,3^{+}): D1D2|𝕊37/|𝔻33,5,7;\displaystyle D_{1}D_{2}^{\ast}|{}^{7}\mathbb{S}_{3}\rangle/|{}^{3,5,7}\mathbb{D}_{3}\rangle;
(I,JP)=(1,4+):\displaystyle(I,J^{P})=(1,4^{+}): D2D2|𝕊49/|𝔻45,9.\displaystyle D_{2}^{\ast}D_{2}^{\ast}|{}^{9}\mathbb{S}_{4}\rangle/|{}^{5,9}\mathbb{D}_{4}\rangle.

Within the OBE model, the bound state properties are depend on the cutoff values, but the cutoff parameter cannot be determined exactly without relevant experiment data. According to the experience of studying the deuteron, we believe the cutoff parameter around 1.0 GeV is the reasonable input Tornqvist:1993ng ; Tornqvist:1993vu . Thus, we attempt to find the loosely bound state solutions of the SS-wave TTTT systems by varying the cutoff parameter in the range around 1.0 GeV in this work. In addition, when judging whether the bound state is an ideal hadronic molecular candidate, we expect that the typical root mean square radius should be larger than the size of all the included component hadrons, and the reasonable binding energy is around several MeV to several tens MeV only, which is due to the hadronic molecular state is a loosely bound state Chen:2016qju . Therefore, we consider the root mean square radius is greater than 0.7 fm and the binding energy is less than 20.020.0 MeV when presenting the loosely bound state solutions of the SS-wave TTTT systems in the present work. In short, a loosely bound state with the cutoff parameter closed to 1.0 GeV can be suggested as a good hadronic molecular candidate in realistic calculation.

III.1 The SS-wave D1D1D_{1}D_{1} system

When we take the cutoff value Λ\Lambda in the range of 0.8<Λ<2.50.8<\Lambda<2.5 GeV, we cannot find the bound state solutions for the SS-wave D1D1D_{1}D_{1} state with I(JP)=1(0+)I(J^{P})=1(0^{+}), even if we include the SS-DD wave mixing effect and the coupled channel effect.

In Fig. 3, we present the cutoff parameter Λ\Lambda dependence of the binding energy EE, the root-mean-square (RMS) radius rRMSr_{RMS}, and the probabilities for different components PiP_{i} for the SS-wave D1D1D_{1}D_{1} state with I(JP)=0(1+)I(J^{P})=0(1^{+}) after considering the single channel, the SS-DD wave mixing effect, and the coupled channel effect. As we can see, for the single |𝕊13|{}^{3}\mathbb{S}_{1}\rangle channel analysis, the binding energy appears when taking the cutoff value Λ1.23\Lambda\sim 1.23 GeV. With increasing the cutoff value, its binding becomes deeper. When the cutoff value Λ\Lambda is taken as 1.44 GeV, the binding energy increases to be 18.00 MeV, and the RMS radius decreases to be 0.80 fm. Thus, we suggest that the SS-wave D1D1D_{1}D_{1} state with I(JP)=0(1+)I(J^{P})=0(1^{+}) can be a good doubly charmed molecular tetraquark candidate when we only consider the contribution of the |𝕊13|{}^{3}\mathbb{S}_{1}\rangle channel. After considering the SS-DD wave mixing effect, the bound state solutions are very similar to those in the single channel analysis, but the cutoff value Λ\Lambda becomes smaller if obtaining the same binding energy. Thus, the SS-DD wave mixing effect is helpful to form the D1D1D_{1}D_{1} bound state with I(JP)=0(1+)I(J^{P})=0(1^{+}). Here, we find that the probability for the DD-wave component for this bound state is very tiny, which is less than 1%. When we perform the coupled channel analysis from the D1D1|𝕊13D_{1}D_{1}|{}^{3}\mathbb{S}_{1}\rangle, D1D2|𝕊13D_{1}{D}_{2}^{\ast}|{}^{3}\mathbb{S}_{1}\rangle, and D2D2|𝕊13D_{2}^{\ast}D_{2}^{\ast}|{}^{3}\mathbb{S}_{1}\rangle interactions, we can obtain the loosely bound state solutions with the cutoff value Λ\Lambda around 1.12 GeV, which is a little smaller than those in the single channel and the SS-DD wave mixing analysis. Obviously, the coupled channel effect can help to generate this bound state. When the binding energy is less than a dozen of MeV, the dominant channel is the D1D1|𝕊13D_{1}D_{1}|{}^{3}\mathbb{S}_{1}\rangle component, followed by the D1D2|𝕊13D_{1}{D}_{2}^{\ast}|{}^{3}\mathbb{S}_{1}\rangle and D2D2|𝕊13D_{2}^{\ast}D_{2}^{\ast}|{}^{3}\mathbb{S}_{1}\rangle channels. As the increasing of the cutoff value, the D1D2|𝕊13D_{1}{D}_{2}^{\ast}|{}^{3}\mathbb{S}_{1}\rangle and D2D2|𝕊13D_{2}^{\ast}D_{2}^{\ast}|{}^{3}\mathbb{S}_{1}\rangle channels become much more important. To summary, the SS-wave D1D1D_{1}D_{1} state with I(JP)=0(1+)I(J^{P})=0(1^{+}) can be a good doubly charmed molecular tetraquark candidate, and the SS-DD wave mixing effect and the coupled channel effect play a minor role in generating the SS-wave D1D1D_{1}D_{1} bound state with I(JP)=0(1+)I(J^{P})=0(1^{+}).

Refer to caption
Figure 3: (color online) The cutoff parameter Λ\Lambda dependence of the bound state solutions for the SS-wave D1D1D_{1}D_{1} state with I(JP)=0(1+)I(J^{P})=0(1^{+}) when performing (a) the single channel analysis, (b) the SS-DD wave mixing analysis, and (c) the coupled channel analysis.

For the SS-wave D1D1D_{1}D_{1} state with I(JP)=1(2+)I(J^{P})=1(2^{+}), there does not exist the bound state solutions with the cutoff parameter around 0.80 to 2.50 GeV after performing both of the single channel analysis and the SS-DD wave mixing analysis. However, when we take into account the coupled channel effect by including the D1D1|𝕊25D_{1}D_{1}|{}^{5}\mathbb{S}_{2}\rangle, D1D2|𝕊25D_{1}{D}_{2}^{\ast}|{}^{5}\mathbb{S}_{2}\rangle, and D2D2|𝕊25D_{2}^{\ast}D_{2}^{\ast}|{}^{5}\mathbb{S}_{2}\rangle channels, we can find weakly binding with the cutoff value larger than 2.30 GeV, which is much larger than the cutoff value in the SS-wave D1D1D_{1}D_{1} state with I(JP)=0(1+)I(J^{P})=0(1^{+}). Thus, the SS-wave D1D1D_{1}D_{1} state with I(JP)=1(2+)I(J^{P})=1(2^{+}) may be the possible doubly charmed molecular tetraquark candidate. As shown in Fig. 4, we present the bound state solutions for the SS-wave D1D1D_{1}D_{1} state with I(JP)=1(2+)I(J^{P})=1(2^{+}) after considering the coupled channel effects, where the D1D1|𝕊25D_{1}D_{1}|{}^{5}\mathbb{S}_{2}\rangle is the dominant channel with the probability over 80%.

Refer to caption
Figure 4: The cutoff parameter Λ\Lambda dependence of the bound state solutions for the SS-wave D1D1D_{1}D_{1} state with I(JP)=1(2+)I(J^{P})=1(2^{+}) by performing the coupled channel analysis.

Because the hadrons are not point-like particles, we usually introduce the form factor at each interaction vertexes to describe the off-shell effect of the exchanged light mesons and reflect the inner structure effect of the discussed hadrons. As a general rule, the monopole form factor (q2,mE2)=(Λ2mE2)/(Λ2q2)\mathcal{F}(q^{2},m_{E}^{2})=(\Lambda^{2}-m_{E}^{2})/(\Lambda^{2}-q^{2}) is often adopted to discuss the hadron-hadron interactions within the OBE model, which may reduce the strength of the vector meson exchange interactions compared with the π\pi exchange interaction. However, the contribution of the vector meson exchange interactions may not be suppressed by the factor (Λ2mE2)(\Lambda^{2}-m_{E}^{2}) Ecker:1989yg . In order to further test our conclusions, we use other kind of form factor (q2)=Λ2/(Λ2q2)\mathcal{F}(q^{2})=\Lambda^{2}/(\Lambda^{2}-q^{2}) to discuss the bound state properties Chen:2017vai , which is not suppress the contribution of the vector meson exchange interactions. Here, we would like to mention that the cutoff values around 1.0 GeV in the form factor (q2,mE2)=(Λ2mE2)/(Λ2q2)\mathcal{F}(q^{2},m_{E}^{2})=(\Lambda^{2}-m_{E}^{2})/(\Lambda^{2}-q^{2}) and 0.5 GeV in the form factor (q2)=Λ2/(Λ2q2)\mathcal{F}(q^{2})=\Lambda^{2}/(\Lambda^{2}-q^{2}) are the reasonable input parameters to study the hadronic molecular candidates Chen:2017vai . In Table 3, we give the bound state properties for the single SS-wave D1D1D_{1}D_{1} states with the form factors (q2,mE2)=(Λ2mE2)/(Λ2q2)\mathcal{F}(q^{2},m_{E}^{2})=(\Lambda^{2}-m_{E}^{2})/(\Lambda^{2}-q^{2}) and (q2)=Λ2/(Λ2q2)\mathcal{F}(q^{2})=\Lambda^{2}/(\Lambda^{2}-q^{2}). For the SS-wave D1D1D_{1}D_{1} state with I(JP)=0(1+)I(J^{P})=0(1^{+}), we can obtain the bound state solution by setting the cutoff values around 1.24 GeV in the form factor (q2,mE2)\mathcal{F}(q^{2},m_{E}^{2}) and 0.63 GeV in the form factor (q2)\mathcal{F}(q^{2}), which reflects that the SS-wave D1D1D_{1}D_{1} state with I(JP)=0(1+)I(J^{P})=0(1^{+}) can be viewed as a good doubly charmed molecular tetraquark candidate when using the two types of form factors. For the SS-wave D1D1D_{1}D_{1} states with I(JP)=1(0+, 2+)I(J^{P})=1(0^{+},\,2^{+}), we cannot find the bound state solutions with the two types of form factors until we increase the cutoff value to be around 2.5 GeV, which indicates that the SS-wave D1D1D_{1}D_{1} states with I(JP)=1(0+, 2+)I(J^{P})=1(0^{+},\,2^{+}) as the hadronic molecular candidates are no priority if we use the two types of form factors. Based on the analysis mentioned above, it is clear that the qualitative conclusion of the existence priority of the SS-wave D1D1D_{1}D_{1} hadronic molecular states does not change when increasing the contribution of the vector meson exchange interactions.

Table 3: Bound state properties for the single SS-wave D1D1D_{1}D_{1} states with different form factors (q2,mE2)=(Λ2mE2)/(Λ2q2)\mathcal{F}(q^{2},m_{E}^{2})=(\Lambda^{2}-m_{E}^{2})/(\Lambda^{2}-q^{2}) and (q2)=Λ2/(Λ2q2)\mathcal{F}(q^{2})=\Lambda^{2}/(\Lambda^{2}-q^{2}). Here, “×\times” indicates no bound state solutions until we increase the cutoff parameter to be around 2.5 GeV.
Form factors (q2,mE2)\mathcal{F}(q^{2},m_{E}^{2}) (q2)\mathcal{F}(q^{2})
(I,JP)(I,J^{P}) Λ(GeV)\Lambda(\rm{GeV}) E(MeV)E(\rm{MeV}) rRMS(fm)r_{\rm RMS}(\rm{fm}) Λ(GeV)\Lambda(\rm{GeV}) E(MeV)E(\rm{MeV}) rRMS(fm)r_{\rm RMS}(\rm{fm})
(1,0+)(1,0^{+}) ×\times ×\times ×\times ×\times ×\times ×\times
(0,1+)(0,1^{+}) 1.24 0.42-0.42 4.18 0.63 0.35-0.35 4.60
1.35 6.80-6.80 1.27 0.82 5.62-5.62 1.49
1.45 19.50-19.50 0.81 1.00 19.10-19.10 0.88
(1,2+)(1,2^{+}) ×\times ×\times ×\times ×\times ×\times ×\times

In the light pseudoscalar meson matrix \mathbb{P}, there exists the ηη\eta-\eta^{\prime} mixing. In the following, we test the effect of the ηη\eta-\eta^{\prime} mixing in forming the bound states. If we consider the ηη\eta-\eta^{\prime} mixing, the light pseudoscalar meson matrix \mathbb{P} in the effective Lagrangians is defined as

=(π02+αη+βηπππ02+αη+βη),\displaystyle\mathbb{P}=\left(\begin{matrix}\frac{\pi^{0}}{\sqrt{2}}+\alpha\eta+\beta\eta^{\prime}&\pi^{-}\\ \pi^{-}&-\frac{\pi^{0}}{\sqrt{2}}+\alpha\eta+\beta\eta^{\prime}\end{matrix}\right), (3.1)

where the parameters α\alpha and β\beta can be related to the mixing angle θ\theta by

α=cosθ2sinθ6,β=sinθ+2cosθ6.\displaystyle\alpha=\frac{\cos\theta-\sqrt{2}\sin\theta}{\sqrt{6}},~{}~{}~{}~{}~{}~{}~{}\beta=\frac{\sin\theta+\sqrt{2}\cos\theta}{\sqrt{6}}. (3.2)

Here, we use the mixing angle θ=19.1\theta=-19.1^{\circ} Chen:2012nva . In Table 4, we present the numerical results both without and with considering the ηη\eta-\eta^{\prime} mixing for the single SS-wave D1D1D_{1}D_{1} state with I(JP)=0(1+)I(J^{P})=0(1^{+}). As presented in Table 4, if we take the same cutoff value without and with considering the ηη\eta-\eta^{\prime} mixing, we notice that the binding energies increase less than 4.0 MeV for the single SS-wave D1D1D_{1}D_{1} state with I(JP)=0(1+)I(J^{P})=0(1^{+}). Thus, the ηη\eta-\eta^{\prime} mixing does not obviously affect the bound state properties, which is due to the contribution from the η(η)\eta(\eta^{\prime}) exchange interaction is small compared with the π\pi exchange interaction Chen:2016ryt .

Table 4: Bound state properties for the single SS-wave D1D1D_{1}D_{1} state with I(JP)=0(1+)I(J^{P})=0(1^{+}) without and with considering the ηη\eta-\eta^{\prime} mixing.
Cases Without the ηη\eta-\eta^{\prime} mixing With the ηη\eta-\eta^{\prime} mixing
Λ(GeV)\Lambda(\rm{GeV}) E(MeV)E(\rm{MeV}) rRMS(fm)r_{\rm RMS}(\rm{fm}) E(MeV)E(\rm{MeV}) rRMS(fm)r_{\rm RMS}(\rm{fm})
1.24 0.42-0.42 4.18 0.16-0.16 5.27
1.35 6.80-6.80 1.27 5.21-5.21 1.42
1.45 19.50-19.50 0.81 15.88-15.88 0.88

III.2 The SS-wave D1D2D_{1}{D}_{2}^{\ast} system

Table 5: Bound state properties for the SS-wave D1D2D_{1}{D}_{2}^{\ast} system. The cutoff Λ\Lambda, the binding energy EE, and the root-mean-square radius rRMSr_{RMS} are in units of GeV\rm{GeV}, MeV\rm{MeV}, and fm\rm{fm}, respectively. Here, we label the major probability for the corresponding channels in a bold manner.
Single channel analysis
I(JP)I(J^{P}) Λ\Lambda EE rRMSr_{\rm RMS}
0(1+)0(1^{+}) 1.04 0.29-0.29 4.59
1.12 6.01-6.01 1.33
1.20 19.53-19.53 0.81
0(2+)0(2^{+}) 1.45 0.42-0.42 4.20
1.62 6.91-6.91 1.27
1.78 20.03-20.03 0.81
1(3+)1(3^{+}) 2.26 0.50-0.50 3.42
2.28 4.92-4.92 1.08
2.30 11.50-11.50 0.71
SS-DD wave mixing analysis
I(JP)I(J^{P}) Λ\Lambda EE rRMSr_{\rm RMS} P(𝕊13/𝔻13/𝔻15/𝔻17)P({}^{3}\mathbb{S}_{1}/{}^{3}\mathbb{D}_{1}/{}^{5}\mathbb{D}_{1}/{}^{7}\mathbb{D}_{1})
0(1+)0(1^{+}) 1.04 0.42-0.42 4.14 99.89/0.01/o(0)o(0)/0.10
1.12 6.37-6.37 1.30 99.83/0.02/o(0)o(0)/0.15
1.20 20.05-20.05 0.81 99.85/0.02/o(0)o(0)/0.13
I(JP)I(J^{P}) Λ\Lambda EE rRMSr_{\rm RMS} P(𝕊25/𝔻23/𝔻25/𝔻27)P({}^{5}\mathbb{S}_{2}/{}^{3}\mathbb{D}_{2}/{}^{5}\mathbb{D}_{2}/{}^{7}\mathbb{D}_{2})
0(2+)0(2^{+}) 1.42 0.26-0.26 4.83 99.82/o(0)o(0)/0.18/o(0)o(0)
1.59 6.10-6.10 1.35 99.62/o(0)o(0)/0.38/o(0)o(0)
1.76 19.47-19.47 0.82 99.60/o(0)o(0)/0.40/o(0)o(0)
I(JP)I(J^{P}) Λ\Lambda EE rRMSr_{\rm RMS} P(𝕊37/𝔻33/𝔻35/𝔻37)P({}^{7}\mathbb{S}_{3}/{}^{3}\mathbb{D}_{3}/{}^{5}\mathbb{D}_{3}/{}^{7}\mathbb{D}_{3})
0(3+)0(3^{+}) 2.47 0.26-0.26 5.01 98.81/0.05/o(0)o(0)/1.14
2.49 0.30-0.30 4.84 98.75/0.05/o(0)o(0)/1.20
2.50 0.33-0.33 4.75 98.72/0.05/o(0)o(0)/1.23
1(3+)1(3^{+}) 2.26 0.60-0.60 3.17 99.96/0.01/o(0)o(0)/0.03
2.28 5.12-5.12 1.06 99.97/0.01/o(0)o(0)/0.02
2.30 11.75-11.75 0.70 99.98/0.01/o(0)o(0)/0.01
Coupled channel analysis
I(JP)I(J^{P}) Λ\Lambda EE rRMSr_{\rm RMS} P(D1D2/D2D2)P(D_{1}D_{2}^{*}/D_{2}^{*}D_{2}^{*})
0(1+)0(1^{+}) 1.02 0.40-0.40 4.18 99.00/1.00
1.09 6.67-6.67 1.24 93.87/6.13
1.15 19.07-19.07 0.79 86.86/13.14
0(3+)0(3^{+}) 1.75 0.22-0.22 4.98 93.96/6.14
1.85 5.20-5.20 1.25 66.77/33.23
1.95 16.30-16.30 0.73 48.78/51.22

In Table 5, we present the obtained bound state properties for the SS-wave D1D2D_{1}{D}_{2}^{\ast} system by performing the single channel, SS-DD wave mixing, and coupled channel analysis. For simplicity, we collect typical loosely bound state solutions for three groups, i.e.,

  • For the D1D2D_{1}{D}_{2}^{\ast} system with I(JP)=0(1+)I(J^{P})=0(1^{+}), the binding energy appears at the cutoff parameter around 1.04 GeV, when we take into account the single |𝕊13|{}^{3}\mathbb{S}_{1}\rangle channel. When further adding the contribution from the DD-wave channels, it is easy to form the D1D2D_{1}{D}_{2}^{\ast} bound state with I(JP)=0(1+)I(J^{P})=0(1^{+}). The probability of the |𝕊13|{}^{3}\mathbb{S}_{1}\rangle channel is over 99%, where the SS-DD wave mixing effect can be ignored in forming the SS-wave D1D2D_{1}{D}_{2}^{\ast} bound state with I(JP)=0(1+)I(J^{P})=0(1^{+}). By performing the coupled channel analysis with the D1D2|𝕊13D_{1}{D}_{2}^{\ast}|{}^{3}\mathbb{S}_{1}\rangle and D2D2|𝕊13D_{2}^{\ast}D_{2}^{\ast}|{}^{3}\mathbb{S}_{1}\rangle channels, we can obtain the loosely bound state solutions with the cutoff value Λ=1.02\Lambda=1.02 GeV, and the probability for the D1D2|𝕊13D_{1}{D}_{2}^{\ast}|{}^{3}\mathbb{S}_{1}\rangle channel is over 85%.

  • For the D1D2D_{1}{D}_{2}^{\ast} system with I(JP)=0(2+)I(J^{P})=0(2^{+}), the bound state solutions appear at the cutoff parameter larger than 1.45 GeV for the single channel case. In the SS-DD wave mixing case, the corresponding cutoff parameter becomes smaller if getting the same binding energy, where the DD-wave contribution is not obvious.

  • For the D1D2D_{1}{D}_{2}^{\ast} system with I(JP)=0(3+)I(J^{P})=0(3^{+}), we can find a shallow binding energy with the cutoff value Λ\Lambda around 2.50 GeV after considering the SS-DD wave mixing effect. However, taking this cutoff range, there is no bound state solutions for the single channel case. If we further consider the coupled channels like D1D2|𝕊37D_{1}{D}_{2}^{\ast}|{}^{7}\mathbb{S}_{3}\rangle and D2D2|𝕊37D_{2}^{\ast}D_{2}^{\ast}|{}^{7}\mathbb{S}_{3}\rangle, the bound state solutions appear with the cutoff parameter around 1.75 GeV, and the D1D2D_{1}{D}_{2}^{\ast} channel is the dominant component when the binding energy is less than 12.00 MeV. Thus, the coupled channel effect plays an important role for forming the SS-wave D1D2D_{1}{D}_{2}^{\ast} bound state with I(JP)=0(3+)I(J^{P})=0(3^{+}).

  • In the cutoff range 0.8<Λ<2.50.8<\Lambda<2.5 GeV, we cannot find the bound state solutions for the D1D2D_{1}{D}_{2}^{\ast} systems with I(JP)=1(1+, 2+)I(J^{P})=1(1^{+},\,2^{+}) even if we introduce the SS-DD wave mixing effect and the coupled channel effect.

  • For the D1D2D_{1}{D}_{2}^{\ast} system with I(JP)=1(3+)I(J^{P})=1(3^{+}), we obtain the loosely bound state solutions with the binding energy around several to several tens MeV, where the RMS radius is around several fm in the cutoff value larger than 2.20 GeV. Here, the bound state solutions are almost same for the single channel case and the SS-DD wave mixing case.

To summarize, we can predict several possible doubly charmed molecular tetraquark candidates, such as the SS-wave D1D2D_{1}{D}_{2}^{\ast} states with I(JP)=0(1+)I(J^{P})=0(1^{+}), 0(2+)0(2^{+}), and 0(3+)0(3^{+}). The D1D2D_{1}{D}_{2}^{\ast} state with I(JP)=1(3+)I(J^{P})=1(3^{+}) cannot be excluded as the possible doubly charmed molecular tetraquark candidate. In addition, we find the coupled channel effect plays an essential role in the formation of the D1D2D_{1}{D}_{2}^{\ast} bound state with I(JP)=0(3+)I(J^{P})=0(3^{+}).

III.3 The SS-wave D2D2D_{2}^{\ast}D_{2}^{\ast} system

In Fig. 5, we present the relevant bound state properties for the SS-wave D2D2D_{2}^{\ast}D_{2}^{\ast} system by performing the single channel and SS-DD wave mixing analysis.

Refer to caption
Refer to caption
Figure 5: The cutoff parameter Λ\Lambda dependence of the bound state solutions for the SS-wave D2D2D_{2}^{\ast}D_{2}^{\ast} system by performing the single channel and SS-DD wave mixing analysis.

For the SS-wave D2D2D_{2}^{\ast}D_{2}^{\ast} state with I(JP)=0(1+)I(J^{P})=0(1^{+}), there exists the bound state solutions with the small binding energy and the suitable RMS radius at the cutoff parameter around 1.04 GeV for the single channel analysis. Compared to the results for the single channel case, the bound state properties in the SS-DD wave mixing analysis change slightly.

For the SS-wave D2D2D_{2}^{\ast}D_{2}^{\ast} state with I(JP)=0(3+)I(J^{P})=0(3^{+}), the OBE effective interactions are a little weaker than those in the SS-wave D2D2D_{2}^{\ast}D_{2}^{\ast} state with I(JP)=0(1+)I(J^{P})=0(1^{+}). When the cutoff value is taken to be larger than 1.87 GeV, we can obtain the bound state solutions for the single channel analysis. After considering the mixing effect of the |𝕊37|{}^{7}\mathbb{S}_{3}\rangle, |𝔻33|{}^{3}\mathbb{D}_{3}\rangle, and |𝔻37|{}^{7}\mathbb{D}_{3}\rangle channels, there exists the loosely bound state solutions at the cutoff value Λ>1.64GeV\Lambda>1.64~{}{\rm GeV}, and the probabilities for the DD-wave components are less than 2%.

For the SS-wave D2D2D_{2}^{\ast}D_{2}^{\ast} states with I(JP)=1(0+, 2+)I(J^{P})=1(0^{+},\,2^{+}), their OBE effective potentials are weak attractive or repulsive by varying the cutoff parameter in the range of 0.80 to 2.50 GeV, these interactions are not strong enough to form the bound states. For the D2D2D_{2}^{\ast}D_{2}^{\ast} state with I(JP)=1(4+)I(J^{P})=1(4^{+}), we can obtain the loosely bound state solutions with the cutoff value around 2.25 GeV or even larger for both the single channel case and the SS-DD wave mixing effect case, and the SS-DD wave mixing effect plays a rather minor role to form the SS-wave D2D2D_{2}^{\ast}D_{2}^{\ast} bound state with I(JP)=1(4+)I(J^{P})=1(4^{+}). Here, we need to specify that the cutoff parameter is a little larger than the reasonable value around 1.001.00 GeV Tornqvist:1993ng ; Tornqvist:1993vu , and we conclude that the D2D2{D}_{2}^{\ast}{D}_{2}^{\ast} state with I(JP)=1(4+)I(J^{P})=1(4^{+}) may be viewed as the possible doubly charmed molecular tetraquark candidate.

Based on the above numerical results, the D2D2{D}_{2}^{\ast}{D}_{2}^{\ast} states with I(JP)=0(1+)I(J^{P})=0(1^{+}) and 0(3+)0(3^{+}) can be good doubly charmed molecular tetraquark candidates, and the D2D2{D}_{2}^{\ast}{D}_{2}^{\ast} state with I(JP)=1(4+)I(J^{P})=1(4^{+}) as the possible doubly charmed molecular tetraquark candidate can be also acceptable.

In the following, we discuss how the binding energies of the SS-wave D1D1D_{1}D_{1}, D1D2D_{1}{D}_{2}^{\ast}, and D2D2{D}_{2}^{\ast}{D}_{2}^{\ast} states can be affected by the SS-wave DDDD, DDD{D}^{\ast}, and DD{D}^{\ast}{D}^{\ast} states. For example, when we restudy the bound state properties for the SS-wave D1D1D_{1}D_{1} state with I(JP)=0(1+)I(J^{P})=0(1^{+}), we consider the SS-wave DDDD^{*}, DDD^{*}D^{*}, and D1D1D_{1}D_{1} scattering processes. As shown in the Table 6, we present the binding energies EE for the single SS-wave D1D1D_{1}D_{1} state with I(JP)=0(1+)I(J^{P})=0(1^{+}) in the second column, and the mass gaps ΔM=MresonanceMD1D1\Delta M=M_{\text{resonance}}-M_{D_{1}D_{1}} between the mass of the obtained resonance and the D1D1D_{1}D_{1} threshold after considering the SS-wave DD/DD/D1D1DD^{*}/D^{*}D^{*}/D_{1}D_{1} scattering processes in the third column. From the Table 6, we can find the masses for the SS-wave D1D1D_{1}D_{1} bound state with I(JP)=0(1+)I(J^{P})=0(1^{+}) are almost the same with the masses for the obtained resonance when we take the same cutoff values. It indicates that the lower DDDD^{*} and DDD^{*}D^{*} states barely affect the binding energies for the SS-wave D1D1D_{1}D_{1} state with I(JP)=0(1+)I(J^{P})=0(1^{+}), which is due to the mass threshold of the D1D1D_{1}D_{1} channel is far from that of the D()D(){D}^{(\ast)}{D}^{(\ast)} channels around 1.0 GeV.

Table 6: Bound state properties for the single SS-wave D1D1D_{1}D_{1} state with I(JP)=0(1+)I(J^{P})=0(1^{+}) without and with considering the scattering states.
Λ(GeV)\Lambda(\rm{GeV}) E(MeV)E(\rm{MeV}) MresonanceMD1D1(MeV)M_{\text{resonance}}-M_{D_{1}D_{1}}(\rm{MeV})
1.26 1.01-1.01 1.08-1.08
1.35 6.80-6.80 6.90-6.90
1.42 14.96-14.96 15.10-15.10

IV Summary

In the past decades, the study of the exotic hadronic state has become an influential and attractive research field for the hadron physics. Benefited from the accumulation of experimental data with the high precision, the LHCb Collaboration reported a new structure Tcc+T_{cc}^{+} existing in the D0D0π+D^{0}D^{0}\pi^{+} invariant mass spectrum LHCb:2021vvq , where the Tcc+T_{cc}^{+} state can be regarded as the DDDD^{\ast} doubly charmed molecular state with JP=1+J^{P}=1^{+} Li:2021zbw ; Chen:2021vhg ; Ren:2021dsi ; Xin:2021wcr ; Chen:2021tnn ; Albaladejo:2021vln ; Dong:2021bvy ; Baru:2021ldu ; Du:2021zzh ; Kamiya:2022thy ; Padmanath:2022cvl ; Agaev:2022ast ; Ke:2021rxd ; Zhao:2021cvg ; Deng:2021gnb ; Santowsky:2021bhy ; Dai:2021vgf ; Feijoo:2021ppq . This new observation provides us a good opportunity to construct the family of the doubly charmed molecular tetraquarks.

In this work, we systematically study the SS-wave interactions between a pair of charmed mesons in the TT-doublet, where we can predict possible doubly charmed molecular tetraquarks. For the interactions between charmed meson pair in the TT-doublet, we consider both the long-range contribution from the pseudoscalar meson exchange and the short-range and medium-range contributions from the vector and scalar meson exchanges. In the realistic calculation, we explore the roles of the single channel, the SS-DD wave mixing effect, and the coupled channel effect to form the possible doubly charmed molecular tetraquark states, simultaneously.

Our numerical results show that the SS-wave D1D1D_{1}D_{1} state with I(JP)=0(1+)I(J^{P})=0(1^{+}), the SS-wave D1D2D_{1}{D}_{2}^{\ast} states with I(JP)=0(1+, 2+, 3+)I(J^{P})=0(1^{+},\,2^{+},\,3^{+}), and the SS-wave D2D2{D}_{2}^{\ast}{D}_{2}^{\ast} states with I(JP)=0(1+, 3+)I(J^{P})=0(1^{+},\,3^{+}) can be recommended as the prime doubly charmed molecular tetraquark candidates, which are consistent with the theoretical predictions in Ref. Dong:2021bvy . From the numerical results, we also can find that the binding properties of these most promising doubly charmed molecular tetraquark candidates are not significantly dependent on the cutoff values. Meanwhile, the SS-wave D1D1D_{1}D_{1} state with I(JP)=1(2+)I(J^{P})=1(2^{+}), the SS-wave D1D2D_{1}{D}_{2}^{\ast} state with I(JP)=1(3+)I(J^{P})=1(3^{+}), and the SS-wave D2D2{D}_{2}^{\ast}{D}_{2}^{\ast} state with I(JP)=1(4+)I(J^{P})=1(4^{+}) may be the secondary doubly charmed molecular tetraquark candidates. Their allowed decay modes include (i) two charmed mesons, (ii) a doubly charmed baryon plus a light anti-baryon, (iii) two charmed mesons plus one light meson, and (iv) two charmed mesons plus one photon.

Experimental search for these predicted doubly charmed molecular tetraquark candidates is an interesting and important research topic. With the accumulation of the Run II and Run III data Bediaga:2018lhg , the LHCb Collaboration has the potential to hunt for these predicted doubly charmed molecular tetraquarks.

ACKNOWLEDGMENTS

F. L. Wang would like to thank J. Z. Wang for very helpful discussions. This work is supported by the China National Funds for Distinguished Young Scientists under Grant No. 11825503, National Key Research and Development Program of China under Contract No. 2020YFA0406400, the 111 Project under Grant No. B20063, and the National Natural Science Foundation of China under Grant No. 12047501.

Appendix A The operator matrix elements f|𝒪k()|i[J]\langle f|\mathcal{O}_{k}^{(\prime)}|i\rangle_{[J]}

For the operators 𝒪k()(k=1,,11)\mathcal{O}_{k}^{(\prime)}\,(k=1,\cdot\cdot\cdot,11), they should be sandwiched by the relevant spin-orbit wave functions |LJ2S+1|{}^{2S+1}L_{J}\rangle. In Table 7, we present the operator matrix elements f|𝒪k()|i[J]\langle f|\mathcal{O}_{k}^{(\prime)}|i\rangle_{[J]} Chen:2015add .

Table 7: The operator matrix elements f|𝒪k()|i[J]\langle f|\mathcal{O}_{k}^{(\prime)}|i\rangle_{[J]} for the operators 𝒪k()(k=1,,11)\mathcal{O}_{k}^{(\prime)}\,(k=1,\cdot\cdot\cdot,11) in the effective potentials.
f|𝒪k()|i\langle f|\mathcal{O}_{k}^{(\prime)}|i\rangle f|𝒪k()|i[J]\langle f|\mathcal{O}_{k}^{(\prime)}|i\rangle_{[J]}
D1D1|𝒪1|D1D1\langle D_{1}D_{1}|\mathcal{O}_{1}|D_{1}D_{1}\rangle Diag(1,1)[0]{\rm{Diag}(1,1)}_{[0]} Diag(1,1)[1]{\rm{Diag}(1,1)}_{[1]} Diag(1,1,1)[2]{\rm{Diag}(1,1,1)}_{[2]}
D1D1|𝒪2|D1D1\langle D_{1}D_{1}|\mathcal{O}_{2}|D_{1}D_{1}\rangle Diag(2,1)[0]{\rm{Diag}(2,-1)}_{[0]} Diag(1,1)[1]{\rm{Diag}(1,1)}_{[1]} Diag(1,2,1)[2]{\rm{Diag}(-1,2,-1)}_{[2]}
D1D1|𝒪3|D1D1\langle D_{1}D_{1}|\mathcal{O}_{3}|D_{1}D_{1}\rangle (0222)[0]\left(\begin{array}[]{cc}0&\sqrt{2}\\ \sqrt{2}&2\end{array}\right)_{[0]} (0221)[1]\left(\begin{array}[]{cc}0&-\sqrt{2}\\ -\sqrt{2}&1\end{array}\right)_{[1]} (025145250271452737)[2]\left(\begin{array}[]{ccc}0&\sqrt{\frac{2}{5}}&-\sqrt{\frac{14}{5}}\\ \sqrt{\frac{2}{5}}&0&-\frac{2}{\sqrt{7}}\\ -\sqrt{\frac{14}{5}}&-\frac{2}{\sqrt{7}}&-\frac{3}{7}\end{array}\right)_{[2]}
D1D2|𝒪4|D1D2\langle D_{1}D_{2}^{\ast}|\mathcal{O}_{4}|D_{1}D_{2}^{\ast}\rangle Diag(1,1,1,1)[1]{\rm{Diag}(1,1,1,1)}_{[1]} Diag(1,1,1,1)[2]{\rm{Diag}(1,1,1,1)}_{[2]} Diag(1,1,1,1)[3]{\rm{Diag}(1,1,1,1)}_{[3]}
D2D1|𝒪4|D2D1\langle D_{2}^{\ast}D_{1}|\mathcal{O}_{4}^{\prime}|D_{2}^{\ast}D_{1}\rangle Diag(1,1,1,1)[1]{\rm{Diag}(1,1,1,1)}_{[1]} Diag(1,1,1,1)[2]{\rm{Diag}(1,1,1,1)}_{[2]} Diag(1,1,1,1)[3]{\rm{Diag}(1,1,1,1)}_{[3]}
D1D2|𝒪5|D1D2\langle D_{1}D_{2}^{\ast}|\mathcal{O}_{5}|D_{1}D_{2}^{\ast}\rangle Diag(32,32,12,1)[1]{\rm{Diag}(\frac{3}{2},\frac{3}{2},\frac{1}{2},-1)}_{[1]} Diag(12,32,12,1)[2]{\rm{Diag}(\frac{1}{2},\frac{3}{2},\frac{1}{2},-1)}_{[2]} Diag(1,32,12,1)[3]{\rm{Diag}(-1,\frac{3}{2},\frac{1}{2},-1)}_{[3]}
D2D1|𝒪5|D2D1\langle D_{2}^{\ast}D_{1}|\mathcal{O}_{5}^{\prime}|D_{2}^{\ast}D_{1}\rangle Diag(32,32,12,1)[1]{\rm{Diag}(\frac{3}{2},\frac{3}{2},\frac{1}{2},-1)}_{[1]} Diag(12,32,12,1)[2]{\rm{Diag}(\frac{1}{2},\frac{3}{2},\frac{1}{2},-1)}_{[2]} Diag(1,32,12,1)[3]{\rm{Diag}(-1,\frac{3}{2},\frac{1}{2},-1)}_{[3]}
D1D2|𝒪6|D1D2\langle D_{1}D_{2}^{\ast}|\mathcal{O}_{6}|D_{1}D_{2}^{\ast}\rangle (03526521253523103537565351223521253752354835)[1]\left(\begin{array}[]{cccc}0&\frac{3}{5\sqrt{2}}&\sqrt{\frac{6}{5}}&\frac{\sqrt{\frac{21}{2}}}{5}\\ \frac{3}{5\sqrt{2}}&-\frac{3}{10}&\sqrt{\frac{3}{5}}&-\frac{\sqrt{\frac{3}{7}}}{5}\\ \sqrt{\frac{6}{5}}&\sqrt{\frac{3}{5}}&\frac{1}{2}&\frac{2}{\sqrt{35}}\\ \frac{\sqrt{\frac{21}{2}}}{5}&-\frac{\sqrt{\frac{3}{7}}}{5}&\frac{2}{\sqrt{35}}&\frac{48}{35}\end{array}\right)_{[1]} (0325710753253103353275710335314425775327542571235)[2]\left(\begin{array}[]{cccc}0&-\frac{3\sqrt{2}}{5}&-\sqrt{\frac{7}{10}}&\frac{\sqrt{7}}{5}\\ -\frac{3\sqrt{2}}{5}&\frac{3}{10}&\frac{3}{\sqrt{35}}&-\frac{3\sqrt{\frac{2}{7}}}{5}\\ -\sqrt{\frac{7}{10}}&\frac{3}{\sqrt{35}}&-\frac{3}{14}&\frac{4\sqrt{\frac{2}{5}}}{7}\\ \frac{\sqrt{7}}{5}&-\frac{3\sqrt{\frac{2}{7}}}{5}&\frac{4\sqrt{\frac{2}{5}}}{7}&\frac{12}{35}\end{array}\right)_{[2]} (035215435352335625766351562574735743566353572235)[3]\left(\begin{array}[]{cccc}0&\frac{3}{5\sqrt{2}}&-\frac{1}{\sqrt{5}}&-\frac{4\sqrt{3}}{5}\\ \frac{3}{5\sqrt{2}}&-\frac{3}{35}&-\frac{6\sqrt{\frac{2}{5}}}{7}&-\frac{6\sqrt{6}}{35}\\ -\frac{1}{\sqrt{5}}&-\frac{6\sqrt{\frac{2}{5}}}{7}&-\frac{4}{7}&\frac{\sqrt{\frac{3}{5}}}{7}\\ -\frac{4\sqrt{3}}{5}&-\frac{6\sqrt{6}}{35}&\frac{\sqrt{\frac{3}{5}}}{7}&-\frac{22}{35}\end{array}\right)_{[3]}
D2D1|𝒪6|D2D1\langle D_{2}^{\ast}D_{1}|\mathcal{O}_{6}^{\prime}|D_{2}^{\ast}D_{1}\rangle (03526521253523103537565351223521253752354835)[1]\left(\begin{array}[]{cccc}0&\frac{3}{5\sqrt{2}}&-\sqrt{\frac{6}{5}}&\frac{\sqrt{\frac{21}{2}}}{5}\\ \frac{3}{5\sqrt{2}}&-\frac{3}{10}&-\sqrt{\frac{3}{5}}&-\frac{\sqrt{\frac{3}{7}}}{5}\\ -\sqrt{\frac{6}{5}}&-\sqrt{\frac{3}{5}}&\frac{1}{2}&-\frac{2}{\sqrt{35}}\\ \frac{\sqrt{\frac{21}{2}}}{5}&-\frac{\sqrt{\frac{3}{7}}}{5}&-\frac{2}{\sqrt{35}}&\frac{48}{35}\end{array}\right)_{[1]} (0325710753253103353275710335314425775327542571235)[2]\left(\begin{array}[]{cccc}0&\frac{3\sqrt{2}}{5}&-\sqrt{\frac{7}{10}}&-\frac{\sqrt{7}}{5}\\ \frac{3\sqrt{2}}{5}&\frac{3}{10}&-\frac{3}{\sqrt{35}}&-\frac{3\sqrt{\frac{2}{7}}}{5}\\ -\sqrt{\frac{7}{10}}&-\frac{3}{\sqrt{35}}&-\frac{3}{14}&-\frac{4\sqrt{\frac{2}{5}}}{7}\\ -\frac{\sqrt{7}}{5}&-\frac{3\sqrt{\frac{2}{7}}}{5}&-\frac{4\sqrt{\frac{2}{5}}}{7}&\frac{12}{35}\end{array}\right)_{[2]} (035215435352335625766351562574735743566353572235)[3]\left(\begin{array}[]{cccc}0&\frac{3}{5\sqrt{2}}&\frac{1}{\sqrt{5}}&-\frac{4\sqrt{3}}{5}\\ \frac{3}{5\sqrt{2}}&-\frac{3}{35}&\frac{6\sqrt{\frac{2}{5}}}{7}&-\frac{6\sqrt{6}}{35}\\ \frac{1}{\sqrt{5}}&\frac{6\sqrt{\frac{2}{5}}}{7}&-\frac{4}{7}&-\frac{\sqrt{\frac{3}{5}}}{7}\\ -\frac{4\sqrt{3}}{5}&-\frac{6\sqrt{6}}{35}&-\frac{\sqrt{\frac{3}{5}}}{7}&-\frac{22}{35}\end{array}\right)_{[3]}
D2D1|𝒪7|D1D2\langle D_{2}^{\ast}D_{1}|\mathcal{O}_{7}|D_{1}D_{2}^{\ast}\rangle Diag(16,16,12,1)[1]{\rm{Diag}(\frac{1}{6},\frac{1}{6},\frac{1}{2},1)}_{[1]} Diag(12,16,12,1)[2]{\rm{Diag}(\frac{1}{2},\frac{1}{6},\frac{1}{2},1)}_{[2]} Diag(1,16,12,1)[3]{\rm{Diag}(1,\frac{1}{6},\frac{1}{2},1)}_{[3]}
D1D2|𝒪7|D2D1\langle D_{1}D_{2}^{\ast}|\mathcal{O}_{7}^{\prime}|D_{2}^{\ast}D_{1}\rangle Diag(16,16,12,1)[1]{\rm{Diag}(\frac{1}{6},\frac{1}{6},\frac{1}{2},1)}_{[1]} Diag(12,16,12,1)[2]{\rm{Diag}(\frac{1}{2},\frac{1}{6},\frac{1}{2},1)}_{[2]} Diag(1,16,12,1)[3]{\rm{Diag}(1,\frac{1}{6},\frac{1}{2},1)}_{[3]}
D2D1|𝒪8|D1D2\langle D_{2}^{\ast}D_{1}|\mathcal{O}_{8}|D_{1}D_{2}^{\ast}\rangle (0231522215765231522330215152122152151223576515212352435)[1]\left(\begin{array}[]{cccc}0&-\frac{23}{15\sqrt{2}}&-2\sqrt{\frac{2}{15}}&-\frac{\sqrt{\frac{7}{6}}}{5}\\ -\frac{23}{15\sqrt{2}}&\frac{23}{30}&-\frac{2}{\sqrt{15}}&\frac{1}{5\sqrt{21}}\\ 2\sqrt{\frac{2}{15}}&\frac{2}{\sqrt{15}}&\frac{1}{2}&-\frac{2}{\sqrt{35}}\\ -\frac{\sqrt{\frac{7}{6}}}{5}&\frac{1}{5\sqrt{21}}&\frac{2}{\sqrt{35}}&\frac{24}{35}\end{array}\right)_{[1]} (02257107522523302352757102353144257752754257635)[2]\left(\begin{array}[]{cccc}0&-\frac{2\sqrt{2}}{5}&-\sqrt{\frac{7}{10}}&-\frac{\sqrt{7}}{5}\\ \frac{2\sqrt{2}}{5}&-\frac{23}{30}&-\frac{2}{\sqrt{35}}&\frac{\sqrt{\frac{2}{7}}}{5}\\ -\sqrt{\frac{7}{10}}&\frac{2}{\sqrt{35}}&-\frac{3}{14}&-\frac{4\sqrt{\frac{2}{5}}}{7}\\ \frac{\sqrt{7}}{5}&\frac{\sqrt{\frac{2}{7}}}{5}&\frac{4\sqrt{\frac{2}{5}}}{7}&\frac{6}{35}\end{array}\right)_{[2]} (01521523515223105425726351542574735723526353571135)[3]\left(\begin{array}[]{cccc}0&-\frac{1}{5\sqrt{2}}&-\frac{1}{\sqrt{5}}&-\frac{2\sqrt{3}}{5}\\ -\frac{1}{5\sqrt{2}}&\frac{23}{105}&\frac{4\sqrt{\frac{2}{5}}}{7}&\frac{2\sqrt{6}}{35}\\ \frac{1}{\sqrt{5}}&-\frac{4\sqrt{\frac{2}{5}}}{7}&-\frac{4}{7}&-\frac{\sqrt{\frac{3}{5}}}{7}\\ -\frac{2\sqrt{3}}{5}&\frac{2\sqrt{6}}{35}&\frac{\sqrt{\frac{3}{5}}}{7}&-\frac{11}{35}\end{array}\right)_{[3]}
D1D2|𝒪8|D2D1\langle D_{1}D_{2}^{\ast}|\mathcal{O}_{8}^{\prime}|D_{2}^{\ast}D_{1}\rangle (0231522215765231522330215152122152151223576515212352435)[1]\left(\begin{array}[]{cccc}0&-\frac{23}{15\sqrt{2}}&2\sqrt{\frac{2}{15}}&-\frac{\sqrt{\frac{7}{6}}}{5}\\ -\frac{23}{15\sqrt{2}}&\frac{23}{30}&\frac{2}{\sqrt{15}}&\frac{1}{5\sqrt{21}}\\ -2\sqrt{\frac{2}{15}}&-\frac{2}{\sqrt{15}}&\frac{1}{2}&\frac{2}{\sqrt{35}}\\ -\frac{\sqrt{\frac{7}{6}}}{5}&\frac{1}{5\sqrt{21}}&-\frac{2}{\sqrt{35}}&\frac{24}{35}\end{array}\right)_{[1]} (02257107522523302352757102353144257752754257635)[2]\left(\begin{array}[]{cccc}0&\frac{2\sqrt{2}}{5}&-\sqrt{\frac{7}{10}}&\frac{\sqrt{7}}{5}\\ -\frac{2\sqrt{2}}{5}&-\frac{23}{30}&\frac{2}{\sqrt{35}}&\frac{\sqrt{\frac{2}{7}}}{5}\\ -\sqrt{\frac{7}{10}}&-\frac{2}{\sqrt{35}}&-\frac{3}{14}&\frac{4\sqrt{\frac{2}{5}}}{7}\\ -\frac{\sqrt{7}}{5}&\frac{\sqrt{\frac{2}{7}}}{5}&-\frac{4\sqrt{\frac{2}{5}}}{7}&\frac{6}{35}\end{array}\right)_{[2]} (01521523515223105425726351542574735723526353571135)[3]\left(\begin{array}[]{cccc}0&-\frac{1}{5\sqrt{2}}&\frac{1}{\sqrt{5}}&-\frac{2\sqrt{3}}{5}\\ -\frac{1}{5\sqrt{2}}&\frac{23}{105}&-\frac{4\sqrt{\frac{2}{5}}}{7}&\frac{2\sqrt{6}}{35}\\ -\frac{1}{\sqrt{5}}&\frac{4\sqrt{\frac{2}{5}}}{7}&-\frac{4}{7}&\frac{\sqrt{\frac{3}{5}}}{7}\\ -\frac{2\sqrt{3}}{5}&\frac{2\sqrt{6}}{35}&-\frac{\sqrt{\frac{3}{5}}}{7}&-\frac{11}{35}\end{array}\right)_{[3]}
D2D2|𝒪9|D2D2\langle D_{2}^{\ast}D_{2}^{\ast}|\mathcal{O}_{9}|D_{2}^{\ast}D_{2}^{\ast}\rangle Diag(1,1)[0]{\rm{Diag}(1,1)}_{[0]} Diag(1,1,1)[1]{\rm{Diag}(1,1,1)}_{[1]} Diag(1,1,1,1)[2]{\rm{Diag}(1,1,1,1)}_{[2]}
Diag(1,1,1)[3]{\rm{Diag}(1,1,1)}_{[3]} Diag(1,1,1)[4]{\rm{Diag}(1,1,1)}_{[4]}
D2D2|𝒪10|D2D2\langle D_{2}^{\ast}D_{2}^{\ast}|\mathcal{O}_{10}|D_{2}^{\ast}D_{2}^{\ast}\rangle Diag(32,34)[0]{\rm{Diag}(\frac{3}{2},\frac{3}{4})}_{[0]} Diag(54,54,0)[1]{\rm{Diag}(\frac{5}{4},\frac{5}{4},0)}_{[1]} Diag(34,34,34,1)[2]{\rm{Diag}(\frac{3}{4},\frac{3}{4},\frac{3}{4},-1)}_{[2]}
Diag(0,54,0)[3]{\rm{Diag}(0,\frac{5}{4},0)}_{[3]} Diag(1,34,1)[4]{\rm{Diag}(-1,\frac{3}{4},-1)}_{[4]}
D2D2|𝒪11|D2D2\langle D_{2}^{\ast}D_{2}^{\ast}|\mathcal{O}_{11}|D_{2}^{\ast}D_{2}^{\ast}\rangle (037102371021514)[0]\left(\begin{array}[]{cc}0&\frac{3\sqrt{\frac{7}{10}}}{2}\\ \frac{3\sqrt{\frac{7}{10}}}{2}&\frac{15}{14}\end{array}\right)_{[0]} (01310237101310213203514371035143635)[1]\left(\begin{array}[]{ccc}0&-\frac{13}{10\sqrt{2}}&\frac{3\sqrt{7}}{10}\\ -\frac{13}{10\sqrt{2}}&\frac{13}{20}&-\frac{3}{5\sqrt{14}}\\ \frac{3\sqrt{7}}{10}&-\frac{3}{5\sqrt{14}}&\frac{36}{35}\end{array}\right)_{[1]} (037210351429514372100325035142325451961849595140184950)[2]\left(\begin{array}[]{cccc}0&\frac{3\sqrt{\frac{7}{2}}}{10}&-\frac{3\sqrt{\frac{5}{14}}}{2}&\frac{9}{5\sqrt{14}}\\ \frac{3\sqrt{\frac{7}{2}}}{10}&0&-\frac{3}{2\sqrt{5}}&0\\ -\frac{3\sqrt{\frac{5}{14}}}{2}&-\frac{3}{2\sqrt{5}}&-\frac{45}{196}&-\frac{18}{49\sqrt{5}}\\ \frac{9}{5\sqrt{14}}&0&-\frac{18}{49\sqrt{5}}&0\end{array}\right)_{[2]}
(0331033533101370183533518353370)[3]\left(\begin{array}[]{ccc}0&\frac{3\sqrt{3}}{10}&-\frac{3\sqrt{3}}{5}\\ \frac{3\sqrt{3}}{10}&\frac{13}{70}&-\frac{18}{35}\\ -\frac{3\sqrt{3}}{5}&-\frac{18}{35}&-\frac{33}{70}\end{array}\right)_{[3]} (037011737015493552491173552496598)[4]\left(\begin{array}[]{ccc}0&\frac{3}{\sqrt{70}}&-\sqrt{\frac{11}{7}}\\ \frac{3}{\sqrt{70}}&\frac{15}{49}&-\frac{3\sqrt{\frac{55}{2}}}{49}\\ -\sqrt{\frac{11}{7}}&-\frac{3\sqrt{\frac{55}{2}}}{49}&\frac{65}{98}\end{array}\right)_{[4]}

References

  • (1) R. Aaij et al. (LHCb Collaboration), Observation of an exotic narrow doubly charmed tetraquark, arXiv:2109.01038.
  • (2) R. Aaij et al. (LHCb Collaboration), Study of the doubly charmed tetraquark Tcc+T_{cc}^{+}, arXiv:2109.01056.
  • (3) N. Li, Z. F. Sun, X. Liu and S. L. Zhu, Perfect DDDD^{*} molecular prediction matching the TccT_{cc} observation at LHCb, Chin. Phys. Lett. 38, 092001 (2021).
  • (4) R. Chen, Q. Huang, X. Liu and S. L. Zhu, Another doubly charmed molecular resonance Tcc+(3876)T_{cc}^{\prime+}(3876), arXiv:2108.01911.
  • (5) H. Ren, F. Wu and R. Zhu, Hadronic molecule interpretation of Tcc+T^{+}_{cc} and its beauty-partners, arXiv:2109.02531.
  • (6) Q. Xin and Z. G. Wang, Analysis of the axialvector doubly charmed tetraquark molecular states with the QCD sum rules, arXiv:2108.12597.
  • (7) X. Chen, Doubly heavy tetraquark states ccu¯d¯cc\bar{u}\bar{d} and bbu¯d¯bb\bar{u}\bar{d}, arXiv:2109.02828.
  • (8) M. Albaladejo, Tcc+T_{cc}^{+} coupled channel analysis and predictions, arXiv:2110.02944.
  • (9) X. K. Dong, F. K. Guo and B. S. Zou, A survey of heavy-heavy hadronic molecules, arXiv:2108.02673.
  • (10) V. Baru, X. K. Dong, M. L. Du, A. Filin, F. K. Guo, C. Hanhart, A. Nefediev, J. Nieves and Q. Wang, Effective range expansion for narrow near-threshold resonances, arXiv:2110.07484.
  • (11) M. L. Du, V. Baru, X. K. Dong, A. Filin, F. K. Guo, C. Hanhart, A. Nefediev, J. Nieves and Q. Wang, Coupled-channel approach to Tcc+T_{cc}^{+} including three-body effects, arXiv:2110.13765.
  • (12) Y. Kamiya, T. Hyodo and A. Ohnishi, Femtoscopic study on DDDD^{*} and DD¯D\bar{D}^{*} interactions for TccT_{cc} and X(3872)X(3872), arXiv:2203.13814.
  • (13) M. Padmanath and S. Prelovsek, Evidence for a doubly charm tetraquark pole in DDDD^{*} scattering on the lattice, arXiv:2202.10110.
  • (14) S. S. Agaev, K. Azizi and H. Sundu, Hadronic molecule model for the doubly charmed state Tcc+T^{+}_{cc}, arXiv:2201.02788.
  • (15) H. W. Ke, X. H. Liu and X. Q. Li, Possible molecular states of D()D()D^{(*)}D^{(*)} and B()B()B^{(*)}B^{(*)} within the Bethe–Salpeter framework, Eur. Phys. J. C 82 (2022) no.2, 144.
  • (16) M. J. Zhao, Z. Y. Wang, C. Wang and X. H. Guo, Investigation of the possible DD¯D\bar{D}^{*}/BB¯B\bar{B}^{*} and DDDD^{*}/B¯B¯\bar{B}\bar{B}^{*} molecule states, arXiv:2112.12633.
  • (17) C. Deng and S. L. Zhu, Tcc+T_{cc}^{+} and its partners, Phys. Rev. D 105 (2022) no.5, 054015.
  • (18) N. Santowsky and C. S. Fischer, Four-quark states with charm quarks in a two-body Bethe-Salpeter approach, arXiv:2111.15310.
  • (19) L. R. Dai, R. Molina and E. Oset, Prediction of new TccT_{cc} states of DDD^{*}D^{*} and DsDD_{s}^{*}D^{*} molecular nature, Phys. Rev. D 105 (2022) no.1, 016029.
  • (20) A. Feijoo, W. H. Liang and E. Oset, D0D0π+D^{0}D^{0}\pi^{+} mass distribution in the production of the TccT_{cc} exotic state, Phys. Rev. D 104 (2021) no.11, 114015.
  • (21) T. Guo, J. Li, J. Zhao and L. He, Mass spectra of doubly heavy tetraquarks in an improved chromomagnetic interaction model, Phys. Rev. D 105 (2022) no.1, 014021.
  • (22) X. Z. Weng, W. Z. Deng and S. L. Zhu, Doubly heavy tetraquarks in an extended chromomagnetic model, Chin. Phys. C 46 (2022) no.1, 013102.
  • (23) Y. Kim, M. Oka and K. Suzuki, Doubly heavy tetraquarks in a chiral-diquark picture, arXiv:2202.06520.
  • (24) S. S. Agaev, K. Azizi and H. Sundu, Newly observed exotic doubly charmed meson Tcc+T_{cc}^{+}, Nucl. Phys. B 975 (2022), 115650.
  • (25) R. Molina, T. Branz and E. Oset, A new interpretation for the Ds2(2573)D^{*}_{s2}(2573) and the prediction of novel exotic charmed mesons, Phys. Rev. D 82 (2010), 014010.
  • (26) A. V. Manohar and M. B. Wise, Exotic QQq¯q¯QQ\bar{q}\bar{q} states in QCD, Nucl. Phys. B 399 (1993), 17-33
  • (27) T. E. O. Ericson and G. Karl, Strength of pion exchange in hadronic molecules, Phys. Lett. B 309 (1993), 426-430.
  • (28) N. A. Tornqvist, From the deuteron to deusons, an analysis of deuteron - like meson meson bound states, Z. Phys. C 61 (1994), 525-537.
  • (29) D. Janc and M. Rosina, The Tcc=DDT_{cc}=DD^{*} molecular state, Few Body Syst. 35, 175-196 (2004).
  • (30) G. J. Ding, J. F. Liu and M. L. Yan, Dynamics of Hadronic Molecule in One-Boson Exchange Approach and Possible Heavy Flavor Molecules, Phys. Rev. D 79 (2009), 054005.
  • (31) S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh and A. Hosaka, Exotic mesons with double charm and bottom flavor, Phys. Rev. D 86 (2012), 034019.
  • (32) N. Li, Z. F. Sun, X. Liu and S. L. Zhu, Coupled-channel analysis of The possible D()D(),B¯()B¯()D^{(*)}D^{(*)},\overline{B}^{(*)}\overline{B}^{(*)} and D()B¯()D^{(*)}\overline{B}^{(*)} molecular states, Phys. Rev. D 88, 114008 (2013).
  • (33) H. Xu, B. Wang, Z. W. Liu and X. Liu, DDDD^{*} potentials in chiral perturbation theory and possible molecular states, Phys. Rev. D 99, 014027 (2019).
  • (34) L. Tang, B. D. Wan, K. Maltman and C. F. Qiao, Doubly Heavy Tetraquarks in QCD Sum Rules, Phys. Rev. D 101 (2020) no.9, 094032.
  • (35) M. Z. Liu, T. W. Wu, M. Pavon Valderrama, J. J. Xie and L. S. Geng, Heavy-quark spin and flavor symmetry partners of the X(3872)X(3872) revisited: What can we learn from the one boson exchange model?, Phys. Rev. D 99, 094018 (2019).
  • (36) Z. M. Ding, H. Y. Jiang and J. He, Molecular states from D()D¯()/B()B¯()D^{(*)}\bar{D}^{(*)}/B^{(*)}\bar{B}^{(*)} and D()D()/B¯()B¯()D^{(*)}D^{(*)}/\bar{B}^{(*)}\bar{B}^{(*)} interactions, Eur. Phys. J. C 80, 1179 (2020).
  • (37) L. Heller and J. A. Tjon, On the Existence of Stable Dimesons, Phys. Rev. D 35, 969 (1987).
  • (38) J. Carlson, L. Heller and J. A. Tjon, Stability of Dimesons, Phys. Rev. D 37, 744 (1988).
  • (39) B. Silvestre-Brac and C. Semay, Systematics of L = 0 q2q¯2q^{2}\bar{q}^{2} systems, Z. Phys. C 57, 273-282 (1993).
  • (40) C. Semay and B. Silvestre-Brac, Diquonia and potential models, Z. Phys. C 61, 271-275 (1994).
  • (41) M. A. Moinester, How to search for doubly charmed baryons and tetraquarks, Z. Phys. A 355, 349-362 (1996).
  • (42) S. Pepin, F. Stancu, M. Genovese and J. M. Richard, Tetraquarks with color blind forces in chiral quark models, Phys. Lett. B 393, 119-123 (1997).
  • (43) B. A. Gelman and S. Nussinov, Does a narrow tetraquark ccu¯d¯cc\bar{u}\bar{d} state exist?, Phys. Lett. B 551, 296-304 (2003).
  • (44) J. Vijande, F. Fernandez, A. Valcarce and B. Silvestre-Brac, Tetraquarks in a chiral constituent quark model, Eur. Phys. J. A 19, 383 (2004).
  • (45) F. S. Navarra, M. Nielsen and S. H. Lee, QCD sum rules study of QQu¯d¯QQ\bar{u}\bar{d} mesons, Phys. Lett. B 649, 166-172 (2007).
  • (46) J. Vijande, E. Weissman, A. Valcarce and N. Barnea, Are there compact heavy four-quark bound states?, Phys. Rev. D 76, 094027 (2007).
  • (47) D. Ebert, R. N. Faustov, V. O. Galkin and W. Lucha, Masses of tetraquarks with two heavy quarks in the relativistic quark model, Phys. Rev. D 76, 114015 (2007).
  • (48) S. H. Lee and S. Yasui, Stable multiquark states with heavy quarks in a diquark model, Eur. Phys. J. C 64, 283-295 (2009).
  • (49) Y. Yang, C. Deng, J. Ping and T. Goldman, S-wave QQq¯q¯QQ\bar{q}\bar{q} state in the constituent quark model, Phys. Rev. D 80, 114023 (2009).
  • (50) S. Q. Luo, K. Chen, X. Liu, Y. R. Liu and S. L. Zhu, Exotic tetraquark states with the qqQ¯Q¯qq\bar{Q}\bar{Q} configuration, Eur. Phys. J. C 77, no.10, 709 (2017).
  • (51) M. Karliner and J. L. Rosner, Discovery of doubly-charmed Ξcc\Xi_{cc} baryon implies a stable (bbu¯d¯bb\bar{u}\bar{d}) tetraquark, Phys. Rev. Lett. 119, no.20, 202001 (2017).
  • (52) E. J. Eichten and C. Quigg, Heavy-quark symmetry implies stable heavy tetraquark mesons QiQjq¯kq¯lQ_{i}Q_{j}\bar{q}_{k}\bar{q}_{l}, Phys. Rev. Lett. 119, no.20, 202002 (2017)
  • (53) Z. G. Wang, Analysis of the axialvector doubly heavy tetraquark states with QCD sum rules, Acta Phys. Polon. B 49, 1781 (2018).
  • (54) W. Park, S. Noh and S. H. Lee, Masses of the doubly heavy tetraquarks in a constituent quark model, Nucl. Phys. A 983, 1-19 (2019).
  • (55) P. Junnarkar, N. Mathur and M. Padmanath, Study of doubly heavy tetraquarks in Lattice QCD, Phys. Rev. D 99, no.3, 034507 (2019).
  • (56) C. Deng, H. Chen and J. Ping, Systematical investigation on the stability of doubly heavy tetraquark states, Eur. Phys. J. A 56, no.1, 9 (2020).
  • (57) L. Maiani, A. D. Polosa and V. Riquer, Hydrogen bond of QCD in doubly heavy baryons and tetraquarks, Phys. Rev. D 100, no.7, 074002 (2019).
  • (58) G. Yang, J. Ping and J. Segovia, Doubly-heavy tetraquarks, Phys. Rev. D 101, no.1, 014001 (2020).
  • (59) Y. Tan, W. Lu and J. Ping, Systematics of QQq¯q¯QQ{\bar{q}}{\bar{q}} in a chiral constituent quark model, Eur. Phys. J. Plus 135, no.9, 716 (2020).
  • (60) Q. F. Lü, D. Y. Chen and Y. B. Dong, Masses of doubly heavy tetraquarks TQQT_{QQ^{\prime}} in a relativized quark model, Phys. Rev. D 102, no.3, 034012 (2020).
  • (61) E. Braaten, L. P. He and A. Mohapatra, Masses of doubly heavy tetraquarks with error bars, Phys. Rev. D 103, no.1, 016001 (2021).
  • (62) D. Gao, D. Jia, Y. J. Sun, Z. Zhang, W. N. Liu and Q. Mei, Masses of doubly heavy tetraquark states with isospin = 12\frac{1}{2} and 1 and spin-parity 1+±1^{+\pm}, arXiv:2007.15213.
  • (63) J. B. Cheng, S. Y. Li, Y. R. Liu, Z. G. Si and T. Yao, Double-heavy tetraquark states with heavy diquark-antiquark symmetry, Chin. Phys. C 45, no.4, 043102 (2021).
  • (64) S. Noh, W. Park and S. H. Lee, The Doubly-heavy Tetraquarks (qqQ¯Q¯qq^{\prime}\bar{Q}\bar{Q^{\prime}}) in a Constituent Quark Model with a Complete Set of Harmonic Oscillator Bases, Phys. Rev. D 103, 114009 (2021).
  • (65) R. N. Faustov, V. O. Galkin and E. M. Savchenko, Heavy tetraquarks in the relativistic quark model, Universe 7, no.4, 94 (2021).
  • (66) S. K. Choi et al. [Belle Collaboration], Observation of a Narrow Charmonium-Like State in Exclusive B±K±π+πJ/ψB^{\pm}\to K^{\pm}\pi^{+}\pi^{-}J/\psi Decays, Phys. Rev. Lett.  91, 262001 (2003).
  • (67) C. Y. Wong, Molecular states of heavy quark mesons, Phys. Rev. C 69, 055202 (2004).
  • (68) E. S. Swanson, Short range structure in the X(3872)X(3872), Phys. Lett. B 588, 189 (2004).
  • (69) M. Suzuki, The X(3872)X(3872) boson: Molecule or charmonium, Phys. Rev. D 72, 114013 (2005).
  • (70) Y. R. Liu, X. Liu, W. Z. Deng, and S. L. Zhu, Is X(3872)X(3872) really a molecular state?, Eur. Phys. J. C 56, 63 (2008).
  • (71) C. E. Thomas and F. E. Close, Is X(3872)X(3872) a molecule?, Phys. Rev. D 78, 034007 (2008).
  • (72) X. Liu, Z. G. Luo, Y. R. Liu, and S. L. Zhu, X(3872)X(3872) and other possible heavy molecular states, Eur. Phys. J. C 61, 411 (2009).
  • (73) I. W. Lee, A. Faessler, T. Gutsche, and V. E. Lyubovitskij, X(3872)X(3872) as a molecular DDDD^{*} state in a potential model, Phys. Rev. D 80, 094005 (2009).
  • (74) N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, The XYZXYZ states: Experimental and theoretical status and perspectives, Phys. Rep. 873, 1 (2020).
  • (75) H. X. Chen, W. Chen, X. Liu, and S. L. Zhu, The hidden-charm pentaquark and tetraquark states, Phys. Rep.  639, 1 (2016).
  • (76) X. Liu, An overview of XYZXYZ new particles, Chin. Sci. Bull.  59, 3815 (2014).
  • (77) A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, and S. Yasui, Exotic hadrons with heavy flavors: XX, YY, ZZ, and related states, Prog. Theor. Exp. Phys. 2016, 062C01 (2016).
  • (78) Y. R. Liu, H. X. Chen, W. Chen, X. Liu, and S. L. Zhu, Pentaquark and tetraquark states, Prog. Part. Nucl. Phys.  107, 237 (2019).
  • (79) S. L. Olsen, T. Skwarnicki, and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys.  90, 015003 (2018).
  • (80) F. K. Guo, C. Hanhart, U. G. Meiß\ssner, Q. Wang, Q. Zhao, and B. S. Zou, Hadronic molecules, Rev. Mod. Phys.  90, 015004 (2018).
  • (81) J. J. Wu, R. Molina, E. Oset and B. S. Zou, Prediction of narrow NN^{*} and Λ\Lambda^{*} resonances with hidden charm above 4 GeV, Phys. Rev. Lett.  105, 232001 (2010).
  • (82) M. Karliner and J. L. Rosner, New Exotic Meson and Baryon Resonances from Doubly-Heavy Hadronic Molecules, Phys. Rev. Lett.  115, 122001 (2015).
  • (83) W. L. Wang, F. Huang, Z. Y. Zhang and B. S. Zou, ΣcD¯\Sigma_{c}\bar{D} and ΛcD¯\Lambda_{c}\bar{D} states in a chiral quark model, Phys. Rev. C 84, 015203 (2011).
  • (84) Z. C. Yang, Z. F. Sun, J. He, X. Liu and S. L. Zhu, The possible hidden-charm molecular baryons composed of anti-charmed meson and charmed baryon, Chin. Phys. C 36, 6 (2012).
  • (85) J. J. Wu, T. S. H. Lee and B. S. Zou, Nucleon Resonances with Hidden Charm in Coupled-Channel Models, Phys. Rev. C 85, 044002 (2012).
  • (86) R. Chen, X. Liu, X. Q. Li and S. L. Zhu, Identifying exotic hidden-charm pentaquarks, Phys. Rev. Lett.  115, 132002 (2015).
  • (87) R. Aaij et al. [LHCb Collaboration], Observation of J/ψJ/\psi Resonances Consistent with Pentaquark States in Λb0J/ψKp\Lambda_{b}^{0}\rightarrow J/\psi K^{-}p Decays, Phys. Rev. Lett.  115, 072001 (2015).
  • (88) R. Aaij et al. [LHCb Collaboration], Observation of a narrow pentaquark state, Pc(4312)+P_{c}(4312)^{+}, and of two-peak structure of the Pc(4450)+P_{c}(4450)^{+}, Phys. Rev. Lett.  122, no. 22, 222001 (2019).
  • (89) F. L. Wang, X. D. Yang, R. Chen and X. Liu, Correlation of the hidden-charm molecular tetraquarks and the charmonium-like structures existing in the BXYZ+KB\to XYZ+K, arXiv:2103.04698.
  • (90) X. Liu and S. L. Zhu, Y(4143)Y(4143) is probably a molecular partner of Y(3930)Y(3930), Phys. Rev. D 80, 017502 (2009).
  • (91) L. Zhao, L. Ma and S. L. Zhu, The recoil correction and spin-orbit force for the possible BB¯B^{*}\bar{B}^{*} and DD¯D^{*}\bar{D}^{*} states, Nucl. Phys. A 942, 18 (2015).
  • (92) Y. R. Liu and Z. Y. Zhang, The Bound state problem of S-wave heavy quark meson-aitimeson systems, Phys. Rev. C 80, 015208 (2009).
  • (93) Y. Liu and I. Zahed, Heavy Exotic Molecules with Charm and Bottom, Phys. Lett. B 762, 362 (2016).
  • (94) L. R. Dai, G. Y. Wang, X. Chen, E. Wang, E. Oset and D. M. Li, The B+J/ψωK+B^{+}\rightarrow J/\psi\omega K^{+} reaction and DD¯D^{\ast}\bar{D}^{\ast} molecular states, Eur. Phys. J. A 55, 36 (2019).
  • (95) Z. F. Sun, J. He, X. Liu, Z. G. Luo and S. L. Zhu, Zb(10610)±Z_{b}(10610)^{\pm} and Zb(10650)±Z_{b}(10650)^{\pm} as the BB¯B^{*}\bar{B} and BB¯B^{*}\bar{B}^{*} molecular states, Phys. Rev. D 84, 054002 (2011).
  • (96) M. Z. Liu, D. J. Jia and D. Y. Chen, Possible hadronic molecular states composed of SS-wave heavy-light mesons, Chin. Phys. C 41, 053105 (2017).
  • (97) Y. C. Yang, Z. Y. Tan, J. Ping and H. S. Zong, Possible D()D¯()D^{(*)}\bar{D}^{(*)} and B()B¯()B^{(*)}\bar{B}^{(*)} molecular states in the extended constituent quark models, Eur. Phys. J. C 77, 575 (2017).
  • (98) Y. J. Zhang, H. C. Chiang, P. N. Shen and B. S. Zou, Possible S-wave bound-states of two pseudoscalar mesons, Phys. Rev. D 74, 014013 (2006).
  • (99) X. K. Dong, F. K. Guo and B. S. Zou, A survey of heavy-antiheavy hadronic molecules, Progr. Phys.  41, 65 (2021).
  • (100) Z. F. Sun, Z. G. Luo, J. He, X. Liu, and S. L. Zhu, A note on the BB¯B^{*}\bar{B}, BB¯B^{*}\bar{B}, DD¯D^{*}\bar{D}, DD¯D^{*}\bar{D} molecular states, Chin. Phys. C 36, 194 (2012).
  • (101) E. Wang, H. S. Li, W. H. Liang and E. Oset, Analysis of the γγDD¯\gamma\gamma\to D\bar{D} reaction and the DD¯D\bar{D} bound state, Phys. Rev. D 103 (2021) no.5, 054008.
  • (102) L. Dai, G. Toledo and E. Oset, Searching for a DD¯D{\bar{D}} bound state with the ψ(3770)γD0D¯0\psi(3770)\rightarrow\gamma D^{0}{\bar{D}}^{0} decay, Eur. Phys. J. C 80 (2020) no.6, 510.
  • (103) M. Ablikim et al. (BESIII Collaboration), Observation of a Charged Charmonium-like Structure in e+eπ+πJ/ψe^{+}e^{-}\to\pi^{+}\pi^{-}J/\psi at s\sqrt{s} =4.26 GeV, Phys. Rev. Lett.  110, 252001 (2013).
  • (104) B. Aubert et al. (BaBar Collaboration), Observation of Y(3940) J/ψω\to J/\psi\omega in BJ/ψωKB\to J/\psi\omega K at BABAR, Phys. Rev. Lett.  101, 082001 (2008).
  • (105) S. Uehara et al. (Belle Collaboration), Observation of a χc2\chi^{\prime}_{c2} candidate in γγDD¯\gamma\gamma\to D\bar{D} production at BELLE, Phys. Rev. Lett. 96, 082003 (2006).
  • (106) K. Abe et al. (Belle Collaboration), Observation of a near-threshold ωJ/ψ\omega J/\psi mass enhancement in exclusive BKωJ/ψB\to K\omega J/\psi decays, Phys. Rev. Lett.  94, 182002 (2005).
  • (107) C. Z. Yuan et al. (Belle Collaboration), Measurement of e+eπ+πJ/ψe^{+}e^{-}\to\pi^{+}\pi^{-}J/\psi cross-section via initial state radiation at Belle, Phys. Rev. Lett. 99, 182004 (2007).
  • (108) M. Ablikim et al. (BESIII Collaboration), Observation of a Charged Charmoniumlike Structure ZcZ_{c}(4020) and Search for the ZcZ_{c}(3900) in e+eπ+πhce^{+}e^{-}\to\pi^{+}\pi^{-}h_{c}, Phys. Rev. Lett. 111, 242001 (2013).
  • (109) M. Ablikim et al. (BESIII Collaboration), Observation of a charged charmoniumlike structure in e+e(DD¯)±πe^{+}e^{-}\to(D^{*}\bar{D}^{*})^{\pm}\pi^{\mp} at s=4.26\sqrt{s}=4.26GeV,” Phys. Rev. Lett. 112, 132001 (2014).
  • (110) R. Mizuk et al. (Belle Collaboration), Observation of two resonance-like structures in the π+χc1\pi^{+}\chi_{c1} mass distribution in exclusive B¯0Kπ+χc1\bar{B}^{0}\to K^{-}\pi^{+}\chi_{c1} decays, Phys. Rev. D 78, 072004 (2008).
  • (111) F. Close and C. Downum, On the possibility of Deeply Bound Hadronic Molecules from single Pion Exchange, Phys. Rev. Lett.  102, 242003 (2009).
  • (112) M. T. Li, W. L. Wang, Y. B. Dong and Z. Y. Zhang, A Study of One SS- and One PP-Wave Heavy Meson Interaction in a Chiral Quark Model, Commun. Theor. Phys.  63, 63 (2015).
  • (113) M. T. Li, W. L. Wang, Y. B. Dong and Z. Y. Zhang, A Study of P-wave Heavy Meson Interactions in A Chiral Quark Model, arXiv:1303.4140.
  • (114) F. Close, C. Downum and C. E. Thomas, Novel Charmonium and Bottomonium Spectroscopies due to Deeply Bound Hadronic Molecules from Single Pion Exchange, Phys. Rev. D 81, 074033 (2010).
  • (115) J. He and D. Y. Chen, Interpretation of Y(4390)Y(4390) as an isoscalar partner of Z(4430)Z(4430) from D(2010)D¯1(2420)D^{*}(2010)\bar{D}_{1}(2420) interaction, Eur. Phys. J. C 77, 398 (2017).
  • (116) W. Zhu, Y. R. Liu and T. Yao, Is JPC=3+J^{PC}=3^{-+} molecule possible?, Chin. Phys. C 39, 023101 (2015).
  • (117) B. Aubert et al. (BaBar Collaboration), Observation of a Broad Structure in the π+πJ/ψ\pi^{+}\pi^{-}J/\psi Mass Spectrum Around 4.26-GeV/c2, Phys. Rev. Lett.  95, 142001 (2005).
  • (118) B. Aubert et al. (BaBar Collaboration), Evidence of a broad structure at an invariant mass of 4.32- GeV/c2GeV/c^{2} in the reaction e+eπ+πψ2Se^{+}e^{-}\to\pi^{+}\pi^{-}\psi_{2S} measured at BaBar, Phys. Rev. Lett. 98, 212001 (2007).
  • (119) M. Ablikim et al. (BESIII Collaboration), Evidence of Two Resonant Structures in e+eπ+πhce^{+}e^{-}\to\pi^{+}\pi^{-}h_{c}, Phys. Rev. Lett. 118, 092002 (2017).
  • (120) S. K. Choi et al. (Belle Collaboration), Observation of a ResonanceLike Structure in the π±ψ\pi^{\pm}\psi^{\prime} Mass Distribution in Exclusive BKπ±ψB\to K\pi^{\pm}\psi^{\prime} Decays, Phys. Rev. Lett.  100, 142001 (2008).
  • (121) L. L. Shen, X. L. Chen, Z. G. Luo, P. Z. Huang, S. L. Zhu, P. F. Yu, and X. Liu, The molecular systems composed of the charmed mesons in the HS¯+h.c.H\bar{S}+h.c. doublet, Eur. Phys. J. C 70, 183 (2010).
  • (122) X. Liu, Y. R. Liu, W. Z. Deng, and S. L. Zhu, Is Z+(4430)Z^{+}(4430) a loosely bound molecular state?, Phys. Rev. D 77, 034003 (2008).
  • (123) X. Liu, Y. R. Liu, W. Z. Deng, and S. L. Zhu, Z+(4430)Z^{+}(4430) as a D1D(D1D)D_{1}^{\prime}D^{*}(D_{1}D^{*}) molecular state, Phys. Rev. D 77, 094015 (2008).
  • (124) R. Chen, X. Liu, Y. R. Liu, and S. L. Zhu, Predictions of the hidden-charm molecular states with four-quark component, Eur. Phys. J. C 76, 319 (2016).
  • (125) B. Hu, X. L. Chen, Z. G. Luo, P. Z. Huang, S. L. Zhu, P. F. Yu, and X. Liu, Possible heavy molecular states composed of a pair of excited charm-strange mesons, Chin. Phys. C 35, 113 (2011).
  • (126) F. L. Wang and X. Liu, Investigating new type of doubly charmed molecular tetraquarks composed of the charmed meson in HH-doublet and the charmed meson in TT-doublet, arXiv:2108.09925.
  • (127) M. B. Wise, Chiral perturbation theory for hadrons containing a heavy quark, Phys. Rev. D 45, R2188 (1992).
  • (128) H. X. Chen, W. Chen, X. Liu, Y. R. Liu and S. L. Zhu, A review of the open charm and open bottom systems, Rept. Prog. Phys. 80 (2017) no.7, 076201.
  • (129) E. E. Kolomeitsev and M. F. M. Lutz, On Heavy light meson resonances and chiral symmetry, Phys. Lett. B 582 (2004), 39-48.
  • (130) F. K. Guo, P. N. Shen and H. C. Chiang, Dynamically generated 1+1^{+} heavy mesons, Phys. Lett. B 647 (2007), 133-139.
  • (131) D. Gamermann and E. Oset, Axial resonances in the open and hidden charm sectors, Eur. Phys. J. A 33 (2007), 119-131.
  • (132) R. Molina, H. Nagahiro, A. Hosaka and E. Oset, Scalar, axial-vector and tensor resonances from the ρD\rho D^{*}, ωD\omega D^{*} interaction in the hidden gauge formalism, Phys. Rev. D 80 (2009), 014025.
  • (133) Y. R. Liu, Heavy quark spin selection rules in meson-antimeson states, Phys. Rev. D 88, 074008 (2013).
  • (134) H. Y. Cheng and K. C. Yang, Charmless hadronic BB decays into a tensor meson, Phys. Rev. D 83, 034001 (2011).
  • (135) R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Feruglio, and G. Nardulli, Light vector resonances in the effectsive chiral Lagrangian for heavy mesons, Phys. Lett. B 292, 371 (1992).
  • (136) R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Feruglio, and G. Nardulli, Phenomenology of heavy meson chiral Lagrangians, Phys. Rep.  281, 145 (1997).
  • (137) T. M. Yan, H. Y. Cheng, C. Y. Cheung, G. L. Lin, Y. C. Lin, and H. L. Yu, Heavy quark symmetry and chiral dynamics, Phys. Rev. D 46, 1148 (1992); [Phys. Rev. D 55, 5851E (1997)].
  • (138) M. Bando, T. Kugo, and K. Yamawaki, Nonlinear realization and hidden local symmetries, Phys. Rep.  164, 217 (1988).
  • (139) M. Harada and K. Yamawaki, Hidden local symmetry at loop: A new perspective of composite gauge boson and chiral phase transition, Phys. Rep.  381, 1 (2003).
  • (140) G. J. Ding, Are Y(4260)Y(4260) and Z2+Z_{2}^{+}(4250) D1D{\rm D_{1}D} or D0D{\rm D_{0}D^{*}} hadronic molecules? Phys. Rev. D 79, 014001 (2009).
  • (141) F. L. Wang, R. Chen, Z. W. Liu, and X. Liu, Probing new types of PcP_{c} states inspired by the interaction between SS-wave charmed baryon and anti-charmed meson in a T¯\bar{T} doublet, Phys. Rev. C 101, 025201 (2020).
  • (142) D. O. Riska and G. E. Brown, Nucleon resonance transition couplings to vector mesons, Nucl. Phys. A 679, 577 (2001).
  • (143) F. L. Wang, R. Chen, Z. W. Liu, and X. Liu, Possible triple-charm molecular pentaquarks from ΞccD1/ΞccD2\Xi_{cc}D_{1}/\Xi_{cc}D_{2}^{*} interactions, Phys. Rev. D 99, 054021 (2019).
  • (144) Y. R. Liu and M. Oka, ΛcN\Lambda_{c}N bound states revisited, Phys. Rev. D 85, 014015 (2012).
  • (145) P. A. Zyla et al. [Particle Data Group], Review of Particle Physics, PTEP 2020, 083C01 (2020).
  • (146) G. Breit, The effects of retardation on the interaction of two electrons, Phys. Rev.  34, 553 (1929).
  • (147) G. Breit, The fine structure of HE as a test of the spin interactions of two electrons, Phys. Rev.  36, 383 (1930).
  • (148) N. A. Tornqvist, On deusons or deuteron-like meson-meson bound states, Nuovo Cimento Soc. Ital. Fis. 107A, 2471 (1994).
  • (149) G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Chiral Lagrangians for Massive Spin 1 Fields, Phys. Lett. B 223 (1989), 425-432.
  • (150) R. Chen, A. Hosaka and X. Liu, Heavy molecules and one-σ/ω\sigma/\omega-exchange model, Phys. Rev. D 96 (2017) no.11, 116012.
  • (151) D. Y. Chen, X. Liu and T. Matsuki, η\eta transitions between charmonia with meson loop contributions, Phys. Rev. D 87 (2013) no.5, 054006.
  • (152) R. Chen, J. He and X. Liu, Possible strange hidden-charm pentaquarks from Σc()D¯s\Sigma_{c}^{(*)}\bar{D}_{s}^{*} and Ξc(,)D¯\Xi^{(^{\prime},*)}_{c}\bar{D}^{*} interactions, Chin. Phys. C 41 (2017) no.10, 103105.
  • (153) R. Aaij et al. (LHCb Collaboration), Physics case for an LHCb Upgrade II-Opportunities in flavour physics, and beyond, in the HL-LHC era, arXiv:1808.08865.