This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A new operator extension of strong subadditivity of quantum entropy

Ting-Chun Lin Department of Physics, University of California San Diego, CA 92093, USA Hon Hai (Foxconn) Research Institute, Taipei, Taiwan. Isaac H. Kim Department of Computer Science, UC Davis, Davis, CA 95616, USA Min-Hsiu Hsieh Hon Hai (Foxconn) Research Institute, Taipei, Taiwan.
Abstract

Let S(ρ)S(\rho) be the von Neumann entropy of a density matrix ρ\rho. Weak monotonicity asserts that S(ρAB)S(ρA)+S(ρBC)S(ρC)0S(\rho_{AB})-S(\rho_{A})+S(\rho_{BC})-S(\rho_{C})\geq 0 for any tripartite density matrix ρABC\rho_{ABC}, a fact that is equivalent to the strong subadditivity of entropy. We prove an operator inequality, which, upon taking an expectation value with respect to the state ρABC\rho_{ABC}, reduces to the weak monotonicity inequality. Generalizations of this inequality to the one involving two independent density matrices, as well as their Rényi-generalizations, are also presented.

1 Introduction

In quantum mechanics, the notion of conditional probability is generally ill-defined. For example, consider an EPR pair over two qubits. The density matrix of a qubit is maximally mixed but the global state is pure. Thus, the entropy of the global state is strictly smaller than the entropy of its marginal. Examples like this show that one cannot generally ensure S(ρAB)S(ρB)0S(\rho_{AB})-S(\rho_{B})\geq 0, where S(ρ)Tr(ρlogρ)S(\rho)\coloneqq-\text{Tr}(\rho\log\rho) is the von Neumann entropy of a density matrix ρ\rho. Nevertheless, the following inequality is still true:

S(ρAB)S(ρA)+S(ρBC)S(ρC)0.S(\rho_{AB})-S(\rho_{A})+S(\rho_{BC})-S(\rho_{C})\geq 0. (1)

This inequality is known as the weak monotonicity in the literature. We note that weak monotonicity is equivalent to the strong subadditivity of entropy [1], a fact that can be shown by considering a purification of ρABC\rho_{ABC}.

In this paper, we prove operator extensions of Eq. (1). Consider a tripartite system ABC\mathcal{H}_{A}\otimes\mathcal{H}_{B}\otimes\mathcal{H}_{C}. For any positive definite density matrix ρABC\rho_{ABC}, we show that

logρABlogρA+logρBClogρC0,\log\rho_{AB}-\log\rho_{A}+\log\rho_{BC}-\log\rho_{C}\leq 0, (2)

where a tensor product with the identity operator is suppressed for notational convenience. For instance, logρAB\log\rho_{AB} is a short-hand notation for logρABIC\log\rho_{AB}\otimes I_{C}, where ICI_{C} is the identity acting on C\mathcal{H}_{C}. Note that, by taking the expectation value with respect to ρABC\rho_{ABC}, Eq. (1) is recovered. Therefore, Eq. (2) is an operator extension of weak monotonicity. In fact, this inequality can be extended to an inequality involving two independent density matrices ρ\rho and σ\sigma. Let ρAB\rho_{AB} and σBC\sigma_{BC} be positive definite density matrices acting on AB\mathcal{H}_{A}\otimes\mathcal{H}_{B} and BC\mathcal{H}_{B}\otimes\mathcal{H}_{C}, respectively. We show that

logρABlogρA+logσBClogσC0,\log\rho_{AB}-\log\rho_{A}+\log\sigma_{BC}-\log\sigma_{C}\leq 0, (3)

again suppressing the tensor product with the identity operator.

These inequalities are somewhat surprising because logρABlogρA\log\rho_{AB}-\log\rho_{A} can have positive eigenvalues in general. In particular, in Eq. (3), we emphasize again that ρ\rho and σ\sigma need not be related to each other in any way. While logρABlogρA\log\rho_{AB}-\log\rho_{A} and logσBClogσC\log\sigma_{BC}-\log\sigma_{C} may have positive eigenvalues, their sum, after accounting for the tensor product with the identity, apparently cannot.

The proofs of these inequalities are based on a certain operator inequality involving marginal density matrices and the fact that f(t)=lntf(t)=\ln t is an operator monotone function [2, 3]. We remark that this operator inequality has some resemblance to an inequality known in the algebraic quantum field theory literature [4, 5]. However, as we discuss later in Section 3, there are important differences between the two.

Let us make some historical remarks. Since Lieb and Ruskai’s seminal proof of strong subadditivity [1], several strengthenings have appeared in the literature. Carlen and Lieb proved a strengthening which can become nontrivial for entangled quantum states [6]. One of us proved an operator extension [7, 8]. A strengthening that ensures a robust form of recoverability was proved in Ref. [9, 10, 11]. Our operator extension of weak monotonicity can be viewed as yet another strengthening of strong subadditivity. In particular, we reprove, using this new inequality, the operator extension of strong subadditivity [7]; see Corollary 1. Thus our new inequality is at least as strong as the operator extension of strong subadditivity.

Another perspective is that we provide an arguably simplest approach to prove strong subadditivity of entropy. Our key observation is that a nontrivial inequality can be obtained by combining Stinespring dilations [12] of the Accardi-Cecchini coarse graining operator [13]. The proof of this inequality is elementary, and once this inequality is obtained, the weak monotonicity follows from an elementary application of Löwner-Heinz’s theorem [2, 3] on matrix monotone functions. The strong subadditivity then follows by introducing a purifying system, a fact that is well-known in the literature. This observation suggests a possibility of deriving new matrix inequalities from dilations of channels.

The rest of the paper is organized as follows. The proofs of our claims (and their generalizations) are presented in Section 2. In Section 3, we comment on a relation between our inequalities and a similar inequality in quantum field theory. We end with a discussion in Section 4.

2 Proofs

Let us begin by first setting up the notation. Let \mathcal{H} be a finite-dimensional Hilbert space. We denote the set of density matrices on \mathcal{H} as 𝒮()\mathcal{S}\left(\mathcal{H}\right). The set of density matrices which are strictly positive is denoted as 𝒮()++\mathcal{S}\left(\mathcal{H}\right)_{++}. For simplicity, throughout the paper, we focus on the cases where the density matrices are strictly positive definite. We expect a generalization of our results for positive semi-definite density matrices would require a projection onto an appropriate subspace, which we leave for future work.

Given a density matrix, we shall denote its marginals by specifying the subsystem in the subscript. For instance, ρA\rho_{A} is a marginal of a density matrix ρ\rho on A\mathcal{H}_{A}. We shall denote the operator norm of MM as M\|M\| and the identity acting on X\mathcal{H}_{X} as IXI_{X}.

Here is the key lemma.

Lemma 1.

For any ρAB𝒮(AB)++\rho_{AB}\in\mathcal{S}\left(\mathcal{H}_{A}\otimes\mathcal{H}_{B}\right)_{++} and σBC𝒮(BC)++\sigma_{BC}\in\mathcal{S}\left(\mathcal{H}_{B}\otimes\mathcal{H}_{C}\right)_{++},

ρA1σBCρAB1σC.\rho_{A}^{-1}\otimes\sigma_{BC}\leq\rho_{AB}^{-1}\otimes\sigma_{C}. (4)
Proof.

Let ρAB𝒮(AB)++\rho_{AB}\in\mathcal{S}\left(\mathcal{H}_{A}\otimes\mathcal{H}_{B}\right)_{++}. Consider an operator VAABBρ:AABBV_{A\to ABB^{*}}^{\rho}:\mathcal{H}_{A}\to\mathcal{H}_{A}\otimes\mathcal{H}_{B}\otimes\mathcal{H}_{B^{*}} defined as follows:

VAABBρρAB12ρA12k|kB|kB,V_{A\to ABB^{*}}^{\rho}\coloneqq\rho_{AB}^{\frac{1}{2}}\rho_{A}^{-\frac{1}{2}}\sum_{k}|k\rangle_{B}|k\rangle_{B^{*}}, (5)

where B\mathcal{H}_{B^{*}} is an auxiliary Hilbert space such that dim(B)=dim(B)\dim\left(\mathcal{H}_{B}^{*}\right)=\dim\left(\mathcal{H}_{B}\right), and the summation is taken over a set of orthonormal basis for B\mathcal{H}_{B^{*}} and B\mathcal{H}_{B}. A straightforward calculation shows that VAABBρVAABBρ=TrB(ρA12ρABρA12)=IA{V_{A\to ABB^{*}}^{\rho}}^{\dagger}V_{A\to ABB^{*}}^{\rho}=\text{Tr}_{B}(\rho_{A}^{-\frac{1}{2}}\rho_{AB}\rho_{A}^{-\frac{1}{2}})=I_{A}. (We remark that, more generally, if XX is any operator on AB\mathcal{H}_{A}\otimes\mathcal{H}_{B} and X^\hat{X} is an operator acting on A\mathcal{H}_{A} such that X^|ψ=kX|ψ|kB|kB\hat{X}|\psi\rangle=\sum_{k}X|\psi\rangle\otimes|k\rangle_{B}\otimes|k\rangle_{B^{*}}, then X^X^=TrB(XX)\hat{X}^{\dagger}\hat{X}=\text{Tr}_{B}(X^{\dagger}X).) Thus, VAABBρV_{A\to ABB^{*}}^{\rho} is an isometry. Similarly, we can define

VCBBCσσBC12σC12k|kB|kB,V_{C\to BB^{*}C}^{\sigma}\coloneqq\sigma_{BC}^{\frac{1}{2}}\sigma_{C}^{-\frac{1}{2}}\sum_{k}|k\rangle_{B}|k\rangle_{B^{*}}, (6)

which is also an isometry.

Let VBB:BBV_{B\to B^{\prime}}:\mathcal{H}_{B}\to\mathcal{H}_{B^{\prime}} be an isometry, where B\mathcal{H}_{B^{\prime}} is an auxiliary Hilbert space we use in the following argument. Define VAABBρ:ACABBCV_{A\to AB^{\prime}B^{*}}^{\rho}:\mathcal{H}_{A}\otimes\mathcal{H}_{C}\to\mathcal{H}_{A}\otimes\mathcal{H}_{B^{\prime}}\otimes\mathcal{H}_{B^{*}}\otimes\mathcal{H}_{C} as follows:

VAABBρVBBVAABBρ.V_{A\to AB^{\prime}B^{*}}^{\rho}\coloneqq V_{B\to B^{\prime}}V_{A\to ABB^{*}}^{\rho}. (7)

Consider the operator (IAVBBIC)(IAIBVCBBCσ)(VAABBρIBIC):ABCABC(I_{A}\otimes V_{B\to B^{\prime}}^{\dagger}\otimes I_{C})(I_{A}\otimes I_{B^{\prime}}\otimes{V^{\sigma}_{C\to BB^{*}C}}^{\dagger})(V^{\rho}_{A\to AB^{\prime}B^{*}}\otimes I_{B}\otimes I_{C}):\mathcal{H}_{A}\otimes\mathcal{H}_{B}\otimes\mathcal{H}_{C}\to\mathcal{H}_{A}\otimes\mathcal{H}_{B}\otimes\mathcal{H}_{C}. Since the operator norm of an isometry is 11, we conclude

(IAVBBIC)(IAIBVCBBCσ)(VAABBρIBIC)1.\left\|(I_{A}\otimes V_{B\to B^{\prime}}^{\dagger}\otimes I_{C})(I_{A}\otimes I_{B^{\prime}}\otimes{V^{\sigma}_{C\to BB^{*}C}}^{\dagger})(V^{\rho}_{A\to AB^{\prime}B^{*}}\otimes I_{B}\otimes I_{C})\right\|\leq 1. (8)

A straightforward calculation shows that

(IAVBBIC)(IAIBVCBBCσ)(VAABBρIBIC)\displaystyle\phantom{{}={}}(I_{A}\otimes V_{B\to B^{\prime}}^{\dagger}\otimes I_{C})(I_{A}\otimes I_{B^{\prime}}\otimes{V^{\sigma}_{C\to BB^{*}C}}^{\dagger})(V^{\rho}_{A\to AB^{\prime}B^{*}}\otimes I_{B}\otimes I_{C}) (9)
=k,k,k′′,k′′′|k′′′Bk′′′|Bk′′|Bk′′|BσC12σBC12|kBk|BρAB12ρA12|kB|kB\displaystyle=\sum_{k,k^{\prime},k^{\prime\prime},k^{\prime\prime\prime}}|k^{\prime\prime\prime}\rangle_{B}\langle k^{\prime\prime\prime}|_{B^{\prime}}\langle k^{\prime\prime}|_{B}\langle k^{\prime\prime}|_{B^{*}}\sigma_{C}^{-\frac{1}{2}}\sigma_{BC}^{\frac{1}{2}}|k^{\prime}\rangle_{B^{\prime}}\langle k^{\prime}|_{B}\rho_{AB}^{\frac{1}{2}}\rho_{A}^{-\frac{1}{2}}|k\rangle_{B}|k\rangle_{B^{*}}
=k,k,k′′|kBk′′|Bk′′|BσC12σBC12k|BρAB12ρA12|kB|kB\displaystyle=\sum_{k,k^{\prime},k^{\prime\prime}}|k^{\prime}\rangle_{B}\langle k^{\prime\prime}|_{B}\langle k^{\prime\prime}|_{B^{*}}\sigma_{C}^{-\frac{1}{2}}\sigma_{BC}^{\frac{1}{2}}\langle k^{\prime}|_{B}\rho_{AB}^{\frac{1}{2}}\rho_{A}^{-\frac{1}{2}}|k\rangle_{B}|k\rangle_{B^{*}}
=k,k|kBk|BσC12σBC12k|BρAB12ρA12|kB\displaystyle=\sum_{k,k^{\prime}}|k^{\prime}\rangle_{B}\langle k|_{B}\sigma_{C}^{-\frac{1}{2}}\sigma_{BC}^{\frac{1}{2}}\langle k^{\prime}|_{B}\rho_{AB}^{\frac{1}{2}}\rho_{A}^{-\frac{1}{2}}|k\rangle_{B}
=(ρAB12σC12)(ρA12σBC12).\displaystyle=\left(\rho_{AB}^{\frac{1}{2}}\otimes\sigma_{C}^{-\frac{1}{2}}\right)\left(\rho_{A}^{-\frac{1}{2}}\otimes\sigma_{BC}^{\frac{1}{2}}\right).

We therefore obtain

(ρAB12σC12)(ρA12σBC12)1\left\|\left(\rho_{AB}^{\frac{1}{2}}\otimes\sigma_{C}^{-\frac{1}{2}}\right)\left(\rho_{A}^{-\frac{1}{2}}\otimes\sigma_{BC}^{\frac{1}{2}}\right)\right\|\leq 1 (10)

leading to

(ρA12σBC12)(ρABσC1)(ρA12σBC12)IABC,\left(\rho_{A}^{-\frac{1}{2}}\otimes\sigma_{BC}^{\frac{1}{2}}\right)\left(\rho_{AB}\otimes\sigma_{C}^{-1}\right)\left(\rho_{A}^{-\frac{1}{2}}\otimes\sigma_{BC}^{\frac{1}{2}}\right)\leq I_{ABC}, (11)

from which the main claim immediately follows. ∎

A crucial step of the proof is Eq. (9), and here we provide a diagrammatic version of this argument, in order to provide an intuition to the readers. We shall first denote VAABBρV_{A\to ABB^{*}}^{\rho} and VCBBCσV_{C\to BB^{*}C}^{\sigma} as follows:

VAABBρ=ρA12ρAB12AABBB,VCBBCσ=σC12σBC12CCBBB.V_{A\to ABB^{*}}^{\rho}=\leavevmode\hbox to99.82pt{\vbox to87.62pt{\pgfpicture\makeatletter\hbox{\hskip 23.08768pt\lower-42.87914pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{}{{{}{}}}{}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{}{{{}{}}}{}\pgfsys@moveto{0.0pt}{-21.33957pt}\pgfsys@moveto{0.0pt}{-21.33957pt}\pgfsys@lineto{0.0pt}{-42.67914pt}\pgfsys@lineto{21.33957pt}{-42.67914pt}\pgfsys@lineto{21.33957pt}{-21.33957pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{-42.67914pt}\pgfsys@moveto{32.00935pt}{10.66978pt}\pgfsys@moveto{32.00935pt}{10.66978pt}\pgfsys@lineto{32.00935pt}{-42.67914pt}\pgfsys@lineto{53.34892pt}{-42.67914pt}\pgfsys@lineto{53.34892pt}{10.66978pt}\pgfsys@closepath\pgfsys@moveto{53.34892pt}{-42.67914pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.98471pt}{-34.15657pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\rho_{A}^{-\frac{1}{2}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.72977pt}{-18.15189pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\rho_{AB}^{\frac{1}{2}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@eoruletrue\pgfsys@invoke{ } {}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@moveto{0.0pt}{-21.33957pt}\pgfsys@moveto{0.0pt}{-21.33957pt}\pgfsys@lineto{0.0pt}{-42.67914pt}\pgfsys@lineto{21.33957pt}{-42.67914pt}\pgfsys@lineto{21.33957pt}{-21.33957pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{-42.67914pt}\pgfsys@moveto{32.00935pt}{10.66978pt}\pgfsys@moveto{32.00935pt}{10.66978pt}\pgfsys@lineto{32.00935pt}{-42.67914pt}\pgfsys@lineto{53.34892pt}{-42.67914pt}\pgfsys@lineto{53.34892pt}{10.66978pt}\pgfsys@closepath\pgfsys@moveto{53.34892pt}{-42.67914pt}\pgfsys@moveto{-42.67914pt}{64.0187pt}\pgfsys@moveto{-42.67914pt}{64.0187pt}\pgfsys@lineto{-42.67914pt}{-64.0187pt}\pgfsys@lineto{96.02806pt}{-64.0187pt}\pgfsys@lineto{96.02806pt}{64.0187pt}\pgfsys@closepath\pgfsys@moveto{96.02806pt}{-64.0187pt}\pgfsys@clipnext\pgfsys@discardpath\pgfsys@invoke{ }{}{{}}{} {}{}{}{{}}{} {}{}{}\pgfsys@moveto{16.00467pt}{0.0pt}\pgfsys@lineto{74.68849pt}{0.0pt}\pgfsys@moveto{-21.33957pt}{-32.00935pt}\pgfsys@lineto{74.68849pt}{-32.00935pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{16.00467pt}{0.0pt}\pgfsys@curveto{3.52199pt}{0.0pt}{3.52199pt}{32.00935pt}{16.00467pt}{32.00935pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{16.00467pt}{32.00935pt}\pgfsys@lineto{74.68849pt}{32.00935pt}\pgfsys@stroke\pgfsys@invoke{ } \par{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}\pgfsys@moveto{-16.00467pt}{-26.67445pt}\pgfsys@moveto{69.35359pt}{-26.67445pt}\pgfsys@moveto{69.35359pt}{5.33488pt}\pgfsys@moveto{21.33957pt}{5.33488pt}\pgfsys@moveto{22.4066pt}{37.34424pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.75467pt}{-30.09111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$A$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{65.60359pt}{-30.09111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$A$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{65.3102pt}{1.91823pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$B$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.29617pt}{1.91823pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$B$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.9632pt}{33.2762pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$B^{*}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},\qquad\qquad V_{C\to BB^{*}C}^{\sigma}=\leavevmode\hbox to100pt{\vbox to78.17pt{\pgfpicture\makeatletter\hbox{\hskip 23.26892pt\lower-34.0755pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{}{{{}{}}}{}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{}{{{}{}}}{}\pgfsys@moveto{0.0pt}{21.33957pt}\pgfsys@moveto{0.0pt}{21.33957pt}\pgfsys@lineto{0.0pt}{42.67914pt}\pgfsys@lineto{21.33957pt}{42.67914pt}\pgfsys@lineto{21.33957pt}{21.33957pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{42.67914pt}\pgfsys@moveto{32.00935pt}{-10.66978pt}\pgfsys@moveto{32.00935pt}{-10.66978pt}\pgfsys@lineto{32.00935pt}{42.67914pt}\pgfsys@lineto{53.34892pt}{42.67914pt}\pgfsys@lineto{53.34892pt}{-10.66978pt}\pgfsys@closepath\pgfsys@moveto{53.34892pt}{42.67914pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.61124pt}{29.84659pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\sigma_{C}^{-\frac{1}{2}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.35628pt}{13.8419pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\sigma_{BC}^{\frac{1}{2}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@eoruletrue\pgfsys@invoke{ } {}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@moveto{0.0pt}{21.33957pt}\pgfsys@moveto{0.0pt}{21.33957pt}\pgfsys@lineto{0.0pt}{42.67914pt}\pgfsys@lineto{21.33957pt}{42.67914pt}\pgfsys@lineto{21.33957pt}{21.33957pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{42.67914pt}\pgfsys@moveto{32.00935pt}{-10.66978pt}\pgfsys@moveto{32.00935pt}{-10.66978pt}\pgfsys@lineto{32.00935pt}{42.67914pt}\pgfsys@lineto{53.34892pt}{42.67914pt}\pgfsys@lineto{53.34892pt}{-10.66978pt}\pgfsys@closepath\pgfsys@moveto{53.34892pt}{42.67914pt}\pgfsys@moveto{-42.67914pt}{-64.0187pt}\pgfsys@moveto{-42.67914pt}{-64.0187pt}\pgfsys@lineto{-42.67914pt}{64.0187pt}\pgfsys@lineto{96.02806pt}{64.0187pt}\pgfsys@lineto{96.02806pt}{-64.0187pt}\pgfsys@closepath\pgfsys@moveto{96.02806pt}{64.0187pt}\pgfsys@clipnext\pgfsys@discardpath\pgfsys@invoke{ }{}{{}}{} {}{}{}{{}}{} {}{}{}\pgfsys@moveto{16.00467pt}{0.0pt}\pgfsys@lineto{74.68849pt}{0.0pt}\pgfsys@moveto{-21.33957pt}{32.00935pt}\pgfsys@lineto{74.68849pt}{32.00935pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{16.00467pt}{0.0pt}\pgfsys@curveto{3.52199pt}{0.0pt}{3.52199pt}{-32.00935pt}{16.00467pt}{-32.00935pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{16.00467pt}{-32.00935pt}\pgfsys@lineto{74.68849pt}{-32.00935pt}\pgfsys@stroke\pgfsys@invoke{ } \par{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}\pgfsys@moveto{-16.00467pt}{37.34424pt}\pgfsys@moveto{69.35359pt}{37.34424pt}\pgfsys@moveto{69.35359pt}{5.33488pt}\pgfsys@moveto{22.4066pt}{-26.67445pt}\pgfsys@moveto{21.33957pt}{5.33488pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.93591pt}{33.92758pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$C$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{65.42235pt}{33.92758pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$C$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{65.3102pt}{1.91823pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$B$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.9632pt}{-30.7425pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$B^{*}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.29617pt}{1.91823pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$B$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}. (12)

In these diagrams, the input and the output of the maps lie on the left and the right side of the diagram, respectively. Each leg is labeled by the respective subsystem, and the curved leg connecting BB and BB^{*} represents k|kB|kB\sum_{k}|k\rangle_{B}|k\rangle_{B^{*}}.

We can similarly represent VAABBρV_{A\to AB^{\prime}B^{*}}^{\rho} as follows:

VAABBρ=ρA12ρAB12AABBBB,V_{A\to AB^{\prime}B^{*}}^{\rho}=\leavevmode\hbox to121.93pt{\vbox to87.62pt{\pgfpicture\makeatletter\hbox{\hskip 23.08768pt\lower-42.87914pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{}{{{}{}}}{}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{}{{{}{}}}{}\pgfsys@moveto{0.0pt}{-21.33957pt}\pgfsys@moveto{0.0pt}{-21.33957pt}\pgfsys@lineto{0.0pt}{-42.67914pt}\pgfsys@lineto{21.33957pt}{-42.67914pt}\pgfsys@lineto{21.33957pt}{-21.33957pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{-42.67914pt}\pgfsys@moveto{32.00935pt}{10.66978pt}\pgfsys@moveto{32.00935pt}{10.66978pt}\pgfsys@lineto{32.00935pt}{-42.67914pt}\pgfsys@lineto{53.34892pt}{-42.67914pt}\pgfsys@lineto{53.34892pt}{10.66978pt}\pgfsys@closepath\pgfsys@moveto{53.34892pt}{-42.67914pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.98471pt}{-34.15657pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\rho_{A}^{-\frac{1}{2}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.72977pt}{-18.15189pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\rho_{AB}^{\frac{1}{2}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@eoruletrue\pgfsys@invoke{ } {}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@moveto{0.0pt}{-21.33957pt}\pgfsys@moveto{0.0pt}{-21.33957pt}\pgfsys@lineto{0.0pt}{-42.67914pt}\pgfsys@lineto{21.33957pt}{-42.67914pt}\pgfsys@lineto{21.33957pt}{-21.33957pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{-42.67914pt}\pgfsys@moveto{32.00935pt}{10.66978pt}\pgfsys@moveto{32.00935pt}{10.66978pt}\pgfsys@lineto{32.00935pt}{-42.67914pt}\pgfsys@lineto{53.34892pt}{-42.67914pt}\pgfsys@lineto{53.34892pt}{10.66978pt}\pgfsys@closepath\pgfsys@moveto{53.34892pt}{-42.67914pt}\pgfsys@moveto{-42.67914pt}{64.0187pt}\pgfsys@moveto{-42.67914pt}{64.0187pt}\pgfsys@lineto{-42.67914pt}{-64.0187pt}\pgfsys@lineto{96.02806pt}{-64.0187pt}\pgfsys@lineto{96.02806pt}{64.0187pt}\pgfsys@closepath\pgfsys@moveto{96.02806pt}{-64.0187pt}\pgfsys@clipnext\pgfsys@discardpath\pgfsys@invoke{ }{}{{}}{} {}{}{}{{}}{} {}{}{}\pgfsys@moveto{16.00467pt}{0.0pt}\pgfsys@lineto{96.02806pt}{0.0pt}\pgfsys@moveto{-21.33957pt}{-32.00935pt}\pgfsys@lineto{96.02806pt}{-32.00935pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{16.00467pt}{0.0pt}\pgfsys@curveto{3.52199pt}{0.0pt}{3.52199pt}{32.00935pt}{16.00467pt}{32.00935pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{16.00467pt}{32.00935pt}\pgfsys@lineto{96.02806pt}{32.00935pt}\pgfsys@stroke\pgfsys@invoke{ } \par{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}\pgfsys@moveto{-16.00467pt}{-26.67445pt}\pgfsys@moveto{90.69316pt}{-26.67445pt}\pgfsys@moveto{69.35359pt}{5.33488pt}\pgfsys@moveto{21.33957pt}{5.33488pt}\pgfsys@moveto{22.4066pt}{37.34424pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.75467pt}{-30.09111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$A$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{86.94316pt}{-30.09111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$A$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{65.3102pt}{1.91823pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$B$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.29617pt}{1.91823pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$B$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.9632pt}{33.2762pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$B^{*}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{}{{}}{}{{}}{}\pgfsys@moveto{90.69316pt}{6.40192pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{85.87976pt}{2.20749pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$B^{\prime}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{}{}{}{}{}{}{{}}{}{{}{}}{{}{}}{}{{}{}}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{85.00261pt}{0.0pt}\pgfsys@lineto{77.53377pt}{4.31215pt}\pgfsys@lineto{77.53377pt}{-4.31215pt}\pgfsys@closepath\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{80.02338pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}, (13)

where the triangle corresponds to VBBV_{B\to B^{\prime}} and the curved leg connecting BB and BB^{*} is now kk|Bk|B\sum_{k}\langle k|_{B}\langle k|_{B^{*}}. We can thus obtain

(IAIBVCBBCσ)(VAABBρIBIC)\displaystyle(I_{A}\otimes I_{B^{\prime}}\otimes{V^{\sigma}_{C\to BB^{*}C}}^{\dagger})(V^{\rho}_{A\to AB^{\prime}B^{*}}\otimes I_{B}\otimes I_{C}) =ρA12ρAB12AABBBBσC12σBC12CCBBB\displaystyle=\leavevmode\hbox to217.07pt{\vbox to150.99pt{\pgfpicture\makeatletter\hbox{\hskip 23.08768pt\lower-42.87914pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{}{{{}{}}}{}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{}{{{}{}}}{}\pgfsys@moveto{0.0pt}{-21.33957pt}\pgfsys@moveto{0.0pt}{-21.33957pt}\pgfsys@lineto{0.0pt}{-42.67914pt}\pgfsys@lineto{21.33957pt}{-42.67914pt}\pgfsys@lineto{21.33957pt}{-21.33957pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{-42.67914pt}\pgfsys@moveto{32.00935pt}{10.66978pt}\pgfsys@moveto{32.00935pt}{10.66978pt}\pgfsys@lineto{32.00935pt}{-42.67914pt}\pgfsys@lineto{53.34892pt}{-42.67914pt}\pgfsys@lineto{53.34892pt}{10.66978pt}\pgfsys@closepath\pgfsys@moveto{53.34892pt}{-42.67914pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.98471pt}{-34.15657pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\rho_{A}^{-\frac{1}{2}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.72977pt}{-18.15189pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\rho_{AB}^{\frac{1}{2}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@eoruletrue\pgfsys@invoke{ } {}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@moveto{0.0pt}{-21.33957pt}\pgfsys@moveto{0.0pt}{-21.33957pt}\pgfsys@lineto{0.0pt}{-42.67914pt}\pgfsys@lineto{21.33957pt}{-42.67914pt}\pgfsys@lineto{21.33957pt}{-21.33957pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{-42.67914pt}\pgfsys@moveto{32.00935pt}{10.66978pt}\pgfsys@moveto{32.00935pt}{10.66978pt}\pgfsys@lineto{32.00935pt}{-42.67914pt}\pgfsys@lineto{53.34892pt}{-42.67914pt}\pgfsys@lineto{53.34892pt}{10.66978pt}\pgfsys@closepath\pgfsys@moveto{53.34892pt}{-42.67914pt}\pgfsys@moveto{-42.67914pt}{64.0187pt}\pgfsys@moveto{-42.67914pt}{64.0187pt}\pgfsys@lineto{-42.67914pt}{-64.0187pt}\pgfsys@lineto{96.02806pt}{-64.0187pt}\pgfsys@lineto{96.02806pt}{64.0187pt}\pgfsys@closepath\pgfsys@moveto{96.02806pt}{-64.0187pt}\pgfsys@clipnext\pgfsys@discardpath\pgfsys@invoke{ }{}{{}}{} {}{}{}{{}}{} {}{}{}\pgfsys@moveto{16.00467pt}{0.0pt}\pgfsys@lineto{96.02806pt}{0.0pt}\pgfsys@moveto{-21.33957pt}{-32.00935pt}\pgfsys@lineto{96.02806pt}{-32.00935pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{16.00467pt}{0.0pt}\pgfsys@curveto{3.52199pt}{0.0pt}{3.52199pt}{32.00935pt}{16.00467pt}{32.00935pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{16.00467pt}{32.00935pt}\pgfsys@lineto{96.02806pt}{32.00935pt}\pgfsys@stroke\pgfsys@invoke{ } \par{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}\pgfsys@moveto{-16.00467pt}{-26.67445pt}\pgfsys@moveto{90.69316pt}{-26.67445pt}\pgfsys@moveto{69.35359pt}{5.33488pt}\pgfsys@moveto{21.33957pt}{5.33488pt}\pgfsys@moveto{23.47365pt}{37.34424pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.75467pt}{-30.09111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$A$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{86.94316pt}{-30.09111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$A$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{65.3102pt}{1.91823pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$B$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{17.29617pt}{1.91823pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$B$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.03024pt}{33.2762pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$B^{*}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par{}{{}}{}{{}}{}\pgfsys@moveto{90.69316pt}{6.40192pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{85.87976pt}{2.20749pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$B^{\prime}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{}{}{}{}{{}}{}{{}{}}{{}{}}{}{{}{}}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{85.00261pt}{0.0pt}\pgfsys@lineto{77.53377pt}{4.31215pt}\pgfsys@lineto{77.53377pt}{-4.31215pt}\pgfsys@closepath\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{80.02338pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@beginscope\pgfsys@invoke{ }{{}}{{}}{{}} {}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{}{{{}{}}}{}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{}{{{}{}}}{}\pgfsys@moveto{170.71654pt}{85.35828pt}\pgfsys@moveto{170.71654pt}{85.35828pt}\pgfsys@lineto{170.71654pt}{106.69785pt}\pgfsys@lineto{149.37697pt}{106.69785pt}\pgfsys@lineto{149.37697pt}{85.35828pt}\pgfsys@closepath\pgfsys@moveto{149.37697pt}{106.69785pt}\pgfsys@moveto{138.70718pt}{53.34892pt}\pgfsys@moveto{138.70718pt}{53.34892pt}\pgfsys@lineto{138.70718pt}{106.69785pt}\pgfsys@lineto{117.36761pt}{106.69785pt}\pgfsys@lineto{117.36761pt}{53.34892pt}\pgfsys@closepath\pgfsys@moveto{117.36761pt}{106.69785pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{154.9882pt}{93.8653pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\sigma_{C}^{-\frac{1}{2}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{120.71454pt}{77.86061pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\sigma_{BC}^{\frac{1}{2}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@eoruletrue\pgfsys@invoke{ } {}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@moveto{170.71654pt}{85.35828pt}\pgfsys@moveto{170.71654pt}{85.35828pt}\pgfsys@lineto{170.71654pt}{106.69785pt}\pgfsys@lineto{149.37697pt}{106.69785pt}\pgfsys@lineto{149.37697pt}{85.35828pt}\pgfsys@closepath\pgfsys@moveto{149.37697pt}{106.69785pt}\pgfsys@moveto{138.70718pt}{53.34892pt}\pgfsys@moveto{138.70718pt}{53.34892pt}\pgfsys@lineto{138.70718pt}{106.69785pt}\pgfsys@lineto{117.36761pt}{106.69785pt}\pgfsys@lineto{117.36761pt}{53.34892pt}\pgfsys@closepath\pgfsys@moveto{117.36761pt}{106.69785pt}\pgfsys@moveto{213.39568pt}{0.0pt}\pgfsys@moveto{213.39568pt}{0.0pt}\pgfsys@lineto{213.39568pt}{128.03741pt}\pgfsys@lineto{74.68848pt}{128.03741pt}\pgfsys@lineto{74.68848pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{74.68848pt}{128.03741pt}\pgfsys@clipnext\pgfsys@discardpath\pgfsys@invoke{ }{}{{}}{} {}{}{}{{}}{} {}{}{}\pgfsys@moveto{154.71187pt}{64.0187pt}\pgfsys@lineto{96.02805pt}{64.0187pt}\pgfsys@moveto{192.0561pt}{96.02806pt}\pgfsys@lineto{96.02805pt}{96.02806pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{154.71187pt}{64.0187pt}\pgfsys@curveto{167.19455pt}{64.0187pt}{167.19455pt}{32.00935pt}{154.71187pt}{32.00935pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{154.71187pt}{32.00935pt}\pgfsys@lineto{96.02805pt}{32.00935pt}\pgfsys@stroke\pgfsys@invoke{ } \par{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}\pgfsys@moveto{186.7212pt}{101.36295pt}\pgfsys@moveto{101.36295pt}{101.36295pt}\pgfsys@moveto{101.36295pt}{69.35359pt}\pgfsys@moveto{150.44402pt}{37.34425pt}\pgfsys@moveto{149.37697pt}{69.35359pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{182.78996pt}{97.94629pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$C$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{97.4317pt}{97.94629pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$C$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{97.31955pt}{65.93694pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$B$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{145.00061pt}{33.27621pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$B^{*}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{145.33357pt}{65.93694pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$B$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}} (14)
=ABCABCBσBC12σC12ρA12ρAB12,\displaystyle=\leavevmode\hbox to119.61pt{\vbox to86.97pt{\pgfpicture\makeatletter\hbox{\hskip 23.38107pt\lower-42.87914pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {{}}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }{{}{}{}{}{}{{}}{}{{}{}}{{}{}}{}{{}{}}{}{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\pgfsys@moveto{79.66772pt}{0.0pt}\pgfsys@lineto{72.19888pt}{4.31215pt}\pgfsys@lineto{72.19888pt}{-4.31215pt}\pgfsys@closepath\pgfsys@fill\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{74.68849pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}\pgfsys@moveto{-16.00467pt}{-26.67445pt}\pgfsys@moveto{-16.00467pt}{5.33488pt}\pgfsys@moveto{-16.00467pt}{37.34424pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.75467pt}{-30.09111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$A$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-20.04807pt}{1.91823pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$B$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-19.93591pt}{33.92758pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$C$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}{{}}{}\pgfsys@moveto{64.0187pt}{-26.67445pt}\pgfsys@moveto{64.0187pt}{5.33488pt}\pgfsys@moveto{64.0187pt}{37.34424pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{60.2687pt}{-30.09111pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$A$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{59.97531pt}{1.91823pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$B$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{60.08746pt}{33.92758pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$C$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{}}{}\pgfsys@moveto{85.35828pt}{5.76176pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{80.54488pt}{1.56734pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$B^{\prime}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{} {{}{}}{}{}\pgfsys@moveto{-21.33957pt}{32.00935pt}\pgfsys@lineto{96.02806pt}{32.00935pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {{}{}}{}{}\pgfsys@moveto{-21.33957pt}{0.0pt}\pgfsys@lineto{96.02806pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {{}{}}{}{}\pgfsys@moveto{-21.33957pt}{-32.00935pt}\pgfsys@lineto{96.02806pt}{-32.00935pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{42.67914pt}\pgfsys@moveto{0.0pt}{42.67914pt}\pgfsys@lineto{0.0pt}{-10.66978pt}\pgfsys@lineto{21.33957pt}{-10.66978pt}\pgfsys@lineto{21.33957pt}{42.67914pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{-10.66978pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{32.00935pt}{42.67914pt}\pgfsys@moveto{32.00935pt}{42.67914pt}\pgfsys@lineto{32.00935pt}{21.33957pt}\pgfsys@lineto{53.34892pt}{21.33957pt}\pgfsys@lineto{53.34892pt}{42.67914pt}\pgfsys@closepath\pgfsys@moveto{53.34892pt}{21.33957pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{-21.33957pt}\pgfsys@moveto{0.0pt}{-21.33957pt}\pgfsys@lineto{0.0pt}{-42.67914pt}\pgfsys@lineto{21.33957pt}{-42.67914pt}\pgfsys@lineto{21.33957pt}{-21.33957pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{-42.67914pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{{}}{}{}{}{}{{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{32.00935pt}{10.66978pt}\pgfsys@moveto{32.00935pt}{10.66978pt}\pgfsys@lineto{32.00935pt}{-42.67914pt}\pgfsys@lineto{53.34892pt}{-42.67914pt}\pgfsys@lineto{53.34892pt}{10.66978pt}\pgfsys@closepath\pgfsys@moveto{53.34892pt}{-42.67914pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{}{{{}{}}}{}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{}{{{}{}}}{}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{}{{{}{}}}{}{{}}{} {}{{}}{}{}{}{}{{}}{}{}{}{{{}{}}}{}\pgfsys@moveto{0.0pt}{42.67914pt}\pgfsys@moveto{0.0pt}{42.67914pt}\pgfsys@lineto{0.0pt}{-10.66978pt}\pgfsys@lineto{21.33957pt}{-10.66978pt}\pgfsys@lineto{21.33957pt}{42.67914pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{-10.66978pt}\pgfsys@moveto{32.00935pt}{42.67914pt}\pgfsys@moveto{32.00935pt}{42.67914pt}\pgfsys@lineto{32.00935pt}{21.33957pt}\pgfsys@lineto{53.34892pt}{21.33957pt}\pgfsys@lineto{53.34892pt}{42.67914pt}\pgfsys@closepath\pgfsys@moveto{53.34892pt}{21.33957pt}\pgfsys@moveto{0.0pt}{-21.33957pt}\pgfsys@moveto{0.0pt}{-21.33957pt}\pgfsys@lineto{0.0pt}{-42.67914pt}\pgfsys@lineto{21.33957pt}{-42.67914pt}\pgfsys@lineto{21.33957pt}{-21.33957pt}\pgfsys@closepath\pgfsys@moveto{21.33957pt}{-42.67914pt}\pgfsys@moveto{32.00935pt}{10.66978pt}\pgfsys@moveto{32.00935pt}{10.66978pt}\pgfsys@lineto{32.00935pt}{-42.67914pt}\pgfsys@lineto{53.34892pt}{-42.67914pt}\pgfsys@lineto{53.34892pt}{10.66978pt}\pgfsys@closepath\pgfsys@moveto{53.34892pt}{-42.67914pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{\hbox{\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{3.34692pt}{13.8419pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\sigma_{BC}^{\frac{1}{2}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{37.62059pt}{29.84659pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\sigma_{C}^{-\frac{1}{2}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.98471pt}{-34.15657pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\rho_{A}^{-\frac{1}{2}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{35.72977pt}{-18.15189pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\rho_{AB}^{\frac{1}{2}}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \par \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},

where the second line is obtained by simply “straigtening out” the curved leg. At this point, it is straightforward to see that (ρAB12σC12)(ρA12σBC12)\left(\rho_{AB}^{\frac{1}{2}}\otimes\sigma_{C}^{-\frac{1}{2}}\right)\left(\rho_{A}^{-\frac{1}{2}}\otimes\sigma_{BC}^{\frac{1}{2}}\right) can be obtained by applying the inverse of VBBV_{B\to B^{\prime}}^{\dagger}, which completes the argument.

Remark 1.

The isometry VAABBρV^{\rho}_{A\to ABB^{*}} is the Stinespring dilation [12] of the Accardi-Cecchini coarse graining operator [13].

By the Löwner-Heinz theorem [2, 3], f(t)=logtf(t)=\log t is operator monotone. Thus, we immediately obtain the following result.

Theorem 2.

For any ρAB𝒮(AB)++\rho_{AB}\in\mathcal{S}\left(\mathcal{H}_{A}\otimes\mathcal{H}_{B}\right)_{++} and σBC𝒮(BC)++\sigma_{BC}\in\mathcal{S}\left(\mathcal{H}_{B}\otimes\mathcal{H}_{C}\right)_{++},

logρABlogρA+logσBClogσC0.\log\rho_{AB}-\log\rho_{A}+\log\sigma_{BC}-\log\sigma_{C}\leq 0. (15)

We remark that, by taking ρAB\rho_{AB} and σBC\sigma_{BC} as the marginal density matrices of ρABC\rho_{ABC}, Eq. (2) follows. Moreover, by taking an expectation value with respect to ρABC\rho_{ABC}, weak monotonicity, and subsequently, the strong subadditivity of entropy [1] follows as well.

Moreover, Theorem 2 implies the operator extension of strong subadditivity [7, 8].

Corollary 1.

For any ρABC𝒮(ABC)++\rho_{ABC}\in\mathcal{S}\left(\mathcal{H}_{A}\otimes\mathcal{H}_{B}\otimes\mathcal{H}_{C}\right)_{++},

TrBC(ρABC(logρABC+logρBlogρABlogρBC))0.\textnormal{Tr}_{BC}\left(\rho_{ABC}(\log\rho_{ABC}+\log\rho_{B}-\log\rho_{AB}-\log\rho_{BC})\right)\geq 0. (16)
Proof.

Consider a purification of ρABC\rho_{ABC}, denoted as |ρABCD|\rho\rangle_{ABCD}, where DD is the purifying space. By Theorem 2,

logρBClogρB+logρCDlogρD0.\log\rho_{BC}-\log\rho_{B}+\log\rho_{CD}-\log\rho_{D}\leq 0. (17)

For any MAM_{A} acting on A\mathcal{H}_{A},

ρ|(MAIBCD)(logρBC+logρCDlogρBlogρD)(MAIBCD)|ρ0.\langle\rho|(M_{A}^{\dagger}\otimes I_{BCD})(\log\rho_{BC}+\log\rho_{CD}-\log\rho_{B}-\log\rho_{D})(M_{A}\otimes I_{BCD})|\rho\rangle\leq 0. (18)

Since logρCD|ρ=logρAB|ρ\log\rho_{CD}|\rho\rangle=\log\rho_{AB}|\rho\rangle and logρD|ρ=logρABC|ρ\log\rho_{D}|\rho\rangle=\log\rho_{ABC}|\rho\rangle, we get

TrA(MAMATrBC(ρABC(logρABC+logρBlogρABlogρBC)))0,\text{Tr}_{A}\left(M_{A}^{\dagger}M_{A}\text{Tr}_{BC}\left(\rho_{ABC}(\log\rho_{ABC}+\log\rho_{B}-\log\rho_{AB}-\log\rho_{BC})\right)\right)\geq 0, (19)

which implies the claim. ∎

The Löwner-Heinz theorem also implies that f(t)=tαf(t)=t^{\alpha} is operator monotone for α[0,1]\alpha\in[0,1]. Thus, the following theorem also follows, which can be viewed as a Rényi generalization of Theorem 2.

Theorem 3.

For any ρAB𝒮(AB)++\rho_{AB}\in\mathcal{S}\left(\mathcal{H}_{A}\otimes\mathcal{H}_{B}\right)_{++} and σBC𝒮(BC)++\sigma_{BC}\in\mathcal{S}\left(\mathcal{H}_{B}\otimes\mathcal{H}_{C}\right)_{++},

ρAασBCαρABασCα,\rho_{A}^{-\alpha}\otimes\sigma_{BC}^{\alpha}\leq\rho_{AB}^{-\alpha}\otimes\sigma_{C}^{\alpha}, (20)

for α[0,1]\alpha\in[0,1].

3 A related inequality from algebraic quantum field theory

We remark that there is a known result in the algebraic quantum field theory literature [4] which appears similar to Lemma 4. This result dates back to the work of Petz [14], which was used to prove the data processing inequality. Here we introduce this result and comment on this similarity. (An introduction to von Neumann algebra and related concepts can be found in Ref. [5].) Let \mathcal{H} be a Hilbert space. Let |Ψ|\Psi\rangle\in\mathcal{H} be a cyclic and separating vector for a von Neumann algebra 𝒜\mathcal{A} on \mathcal{H}. Let |Ψ,|Φ|\Psi\rangle,|\Phi\rangle\in\mathcal{H} be vectors for a von Neumann algebra 𝒜\mathcal{A} on \mathcal{H} where |Ψ|\Psi\rangle is cyclic and separating over 𝒜\mathcal{A}. Then we can define a relative modular operator [15] as ΔΨ|Φ;𝒜=SΨ|Φ;𝒜SΨ|Φ;𝒜\Delta_{\Psi|\Phi;\mathcal{A}}=S_{\Psi|\Phi;\mathcal{A}}S_{\Psi|\Phi;\mathcal{A}}^{\dagger}, where SΨ|ΦS_{\Psi|\Phi} is an anti-linear operator such that for any 𝖺𝒜\mathsf{a}\in\mathcal{A},

SΨ|Φ;𝒜𝖺|Ψ=𝖺|Φ.S_{\Psi|\Phi;\mathcal{A}}\mathsf{a}|\Psi\rangle=\mathsf{a}^{\dagger}|\Phi\rangle. (21)

Let 𝒜1\mathcal{A}_{1} be an algebra. It is known that, for any algebra 𝒜2𝒜1\mathcal{A}_{2}\subset\mathcal{A}_{1}, the following inequality holds:

ΔΨ|Φ;𝒜2ΔΨ|Φ;𝒜1,\Delta_{\Psi|\Phi;\mathcal{A}_{2}}\geq\Delta_{\Psi|\Phi;\mathcal{A}_{1}}, (22)

which can be found in  [4, Equation (2.1.3)], and more recently, [5, Equation (3.36)]. This inequality makes sense only if both sides are well-defined, which requires Ψ\Psi to be cyclic and separating for both 𝒜1\mathcal{A}_{1} and 𝒜2\mathcal{A}_{2}.

To show the similarity and the difference between Eq. (22) and Lemma 4, let us consider the following plausible but incorrect argument to prove Theorem 2. Let |Ψ,|ΦABCD|\Psi\rangle,|\Phi\rangle\in\mathcal{H}_{A}\otimes\mathcal{H}_{B}\otimes\mathcal{H}_{C}\otimes\mathcal{H}_{D}, where A,B,C\mathcal{H}_{A},\mathcal{H}_{B},\mathcal{H}_{C}, and D\mathcal{H}_{D} are finite-dimensional Hilbert spaces. Let |Ψ|\Psi\rangle be a purification of ρAB\rho_{AB} and |Φ|\Phi\rangle be a purification of σBC\sigma_{BC}, both assumed to be of full rank. Define the following algebras:

𝒜1\displaystyle\mathcal{A}_{1} ={IAMBCD:MBCD(BCD)},\displaystyle=\{I_{A}\otimes M_{BCD}:M_{BCD}\in\mathcal{B}(\mathcal{H}_{B}\otimes\mathcal{H}_{C}\otimes\mathcal{H}_{D})\}, (23)
𝒜2\displaystyle\mathcal{A}_{2} ={IABMCD:MCD(CD)},\displaystyle=\{I_{AB}\otimes M_{CD}:M_{CD}\in\mathcal{B}(\mathcal{H}_{C}\otimes\mathcal{H}_{D})\},

where ()\mathcal{B}(\mathcal{H}) is the space of bounded operators acting on \mathcal{H}.

If we can find |Ψ|\Psi\rangle which is cyclic and separating for both 𝒜1\mathcal{A}_{1} and 𝒜2\mathcal{A}_{2}, following [5, Sec. 4], the relative modular operators become

ΔΨ|Φ;𝒜2=ρAB1σCD,ΔΨ|Φ;𝒜1=ρA1σBCD.\Delta_{\Psi|\Phi;\mathcal{A}_{2}}=\rho_{AB}^{-1}\otimes\sigma_{CD},\qquad\Delta_{\Psi|\Phi;\mathcal{A}_{1}}=\rho_{A}^{-1}\otimes\sigma_{BCD}. (24)

If Eq. (24) is correct, we could use Eq. (22) and take a partial trace on DD over both sides, obtaining

ρAB1σCρA1σBC,\rho_{AB}^{-1}\otimes\sigma_{C}\geq\rho_{A}^{-1}\otimes\sigma_{BC}, (25)

which is exactly Lemma 4.

Unfortunately, such |Ψ|\Psi\rangle does not exist in general when the Hilbert spaces are finite-dimensional. This is because dimA=dim(BCD)\dim\mathcal{H}_{A}=\dim(\mathcal{H}_{B}\otimes\mathcal{H}_{C}\otimes\mathcal{H}_{D}) when |Ψ|\Psi\rangle is cyclic and separating for 𝒜1\mathcal{A}_{1} and dim(AB)=dim(CD)\dim(\mathcal{H}_{A}\otimes\mathcal{H}_{B})=\dim(\mathcal{H}_{C}\otimes\mathcal{H}_{D}) when |Ψ|\Psi\rangle is cyclic and separating for 𝒜2\mathcal{A}_{2}. The two conditions cannot simultaneously hold in general for finite-dimensional Hilbert spaces unless dimB=1\dim\mathcal{H}_{B}=1. Interestingly, this issue does not arise in certain states of quantum field theory. For instance, any vacuum state is both cyclic and separating for any field algebra associated to an open set of the Minkowski space, thanks to the Reeh-Schlieder theorem [5, 16]. One may hope to circumvent this issue of cyclic and separating condition by considering a more general definition of relative modular operators that does not require the state to be cyclic or separating [17, Appendix A]. However, it is then not obvious if Eq. (22) is true because under such definition, it is not clear if SΨ|Φ;𝒜1S_{\Psi|\Phi;\mathcal{A}_{1}} is an extension of SΨ|Φ;𝒜2S_{\Psi|\Phi;\mathcal{A}_{2}}.

4 Discussion

In this paper, we proved an operator extension of weak monotonicity. It is interesting to note that our argument also leads to yet another proof of strong subadditivity [1]. What is notable about this new proof is that the strong subadditivity is proved by first proving the weak monotonicity, not the other way around. The key observation was Lemma 4, which followed immediately from constructions of certain isometries. We leave it as an open problem to explore the consequences of this simple but powerful observation.

Acknowledgement

IK thanks Mark Wilde for helpful discussions. MHH thanks Marco Tomamichel for helpful discussions. TCL thanks John McGreevy, Bowen Shi, and Xiang Li for helpful discussions. We thank Geoff Penington for pointing out Ref. [17] and Andreas Winter for helpful comments. We thank the anonymous reviewers for their helpful comments and corrections to the citations.

References

  • [1] Elliott H. Lieb and Mary Beth Ruskai. Proof of the strong subadditivity of quantum‐mechanical entropy. Journal of Mathematical Physics, 14(12):1938–1941, 1973.
  • [2] Karl Löwner. Über monotone matrixfunktionen. Mathematische Zeitschrift, 38(1):177–216, Dec 1934.
  • [3] Eric Carlen. Trace inequalities and quantum entropy: an introductory course. Entropy and the quantum, 529:73–140, 2010.
  • [4] H. J. Borchers. On revolutionizing quantum field theory with tomita’s modular theory. Journal of Mathematical Physics, 41(6):3604–3673, 2000.
  • [5] Edward Witten. Aps medal for exceptional achievement in research: Invited article on entanglement properties of quantum field theory. Reviews of Modern Physics, 90(4):045003, 2018.
  • [6] Eric A. Carlen and Elliott H. Lieb. Bounds for entanglement via an extension of strong subadditivity of entropy. Letters in Mathematical Physics, 101(1):1–11, Jul 2012.
  • [7] Isaac H Kim. Operator extension of strong subadditivity of entropy. Journal of mathematical physics, 53(12):122204, 2012.
  • [8] Mary Beth Ruskai. Remarks on kim’s strong subadditivity matrix inequality: Extensions and equality conditions. Journal of Mathematical Physics, 54(10):102202, 2013.
  • [9] Omar Fawzi and Renato Renner. Quantum conditional mutual information and approximate markov chains. Communications in Mathematical Physics, 340(2):575–611, Dec 2015.
  • [10] Mark M. Wilde. Recoverability in quantum information theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2182):20150338, 2015.
  • [11] Marius Junge, Renato Renner, David Sutter, Mark M. Wilde, and Andreas Winter. Universal recovery maps and approximate sufficiency of quantum relative entropy. Annales Henri Poincaré, 19(10):2955–2978, Oct 2018.
  • [12] William F. Stinespring. Positive functions on *-algebras. 1955.
  • [13] Luigi Accardi, Carlo Cecchini, et al. Conditional expectations in von neumann algebras and a theorem of takesaki. Journal of Functional Analysis, 45(2):245–273, 1982.
  • [14] Dénes Petz. Quasi-entropies for finite quantum systems. Reports on mathematical physics, 23(1):57–65, 1986.
  • [15] M. Takesaki. Tomita’s Theory of Modular Hilbert Algebras and Its Applications, volume 128 of Lecture Notes in Mathematics. Springer, Berlin, Heidelberg, 1970.
  • [16] Helmut Reeh and Siegfried Schlieder. Bemerkungen zur unitäräquivalenz von lorentzinvarianten feldern. Il Nuovo Cimento (1955-1965), 22(5):1051–1068, 1961.
  • [17] Fikret Ceyhan and Thomas Faulkner. Recovering the qnec from the anec. Communications in Mathematical Physics, 377(2):999–1045, 2020.