This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Note on the Maximum Principle-based Approach for ISS Analysis of Higher Dimensional Parabolic PDEs with Variable Coefficients

Jun Zheng1 zhengjun2014@aliyun.com    Guchuan Zhu2 guchuan.zhu@polymtl.ca 1School of Mathematics, Southwest Jiaotong University, Chengdu 611756, Sichuan, China
2Department of Electrical Engineering, Polytechnique Montréal, P.O. Box 6079, Station Centre-Ville, Montreal, QC, Canada H3T 1J4
Abstract

This paper presents a maximum principle-based approach in the establishment of input-to-state stability (ISS) for a class of nonlinear parabolic partial differential equations (PDEs) over higher dimensional domains with variable coefficients and different types of nonlinear boundary conditions. Technical development on ISS analysis of the considered systems is detailed, and an example of establishing ISS estimates for a nonlinear parabolic equation with, respectively, a nonlinear Robin boundary condition and a nonlinear Dirichlet boundary condition is provided to illustrate the application of the developed method.

keywords:
Input-to-state stability; boundary disturbance; weak maximum principle; nonlinear PDEs

, ,

1 Introduction

Since the last decade, the ISS theory for infinite dimensional systems governed by partial differential equations (PDEs) has drawn much attention in the literature of PDE control. A comprehensive survey on this topic is presented in [18]. It is worth noting that the extension of the notion of ISS for finite dimensional systems originally introduced by Sontag in the late 1980’s to infinite dimensional systems with distributed in-domain disturbances is somehow straightforward, while the investigation on the ISS properties with respect to (w.r.t.) boundary disturbances is much more challenging. In recent years, different methods have been developed for ISS analysis of PDE systems with boundary disturbances, including, e.g.:

  1. (i)

    the semigroup and admissibility methods for ISS of certain linear or nonlinear parabolic PDEs [3, 4, 5, 6, 7, 20];

  2. (ii)

    the approach of spectral decomposition and finite-difference scheme for ISS of PDEs governed by Sturm-Liouville operators [8, 9, 10, 11, 12];

  3. (iii)

    the Riesz-spectral approach for ISS of Riesz-spectral systems [15, 16];

  4. (iv)

    the monotonicity-based method for ISS of certain nonlinear PDEs with Dirichlet boundary disturbances [17];

  5. (v)

    the method of De Giorgi iteration for ISS of certain nonlinear PDEs with Dirichlet boundary disturbances [23, 25];

  6. (vi)

    the application of variations of Sobolev embedding inequalities for ISS of certain nonlinear PDEs with Robin or Neumann boundary disturbances [24, 25, 26];

  7. (vii)

    the maximum principle-based approach for ISS of certain nonlinear PDEs with different types of boundary conditions [27, 28].

Although a rapid progress on ISS theory has been obtained, it is still a challenging issue for ISS analysis of nonlinear PDE systems defined over higher dimensional domains with variable coefficients and different types of nonlinear boundary conditions. For example, the methods in (i) can be applied to certain linear or nonlienar PDEs, while it may be difficult to apply them to non-diagonal systems as the one given by, e.g., (2) and (3) of this paper. The methods in (ii) and (iii) are effective for ISS analysis of linear PDE systems over one dimensional domains. Whereas, these approaches may involve heavy computations for nonlinear PDEs or PDEs on multidimensional spatial domains. The methods in (iv)-(vi) are suitable for ISS analysis of parabolic PDEs with Dirichlet or Robin or Neumann boundary disturbances, while they cannot be used for PDEs with mixed boundary conditions.

It has been demonstrated in [27] and [28] that the method in (vii) is applicable for ISS analysis of certain nonlinear parabolic PDEs, with different types of boundary disturbances, or over higher dimensional domains. Therefore, the aim of this paper is put on the application of this approach to ISS analysis for a class of nonlinear parabolic PDEs defined over higher dimensional domains with variable coefficients under different types of nonlinear boundary conditions simultaneously.

The proposed method for achieving the ISS estimates of the solutions will be based on the the Lyapunov method and the maximum estimates for nonlinear parabolic PDEs with nonlinear boundary conditions. Specifically, we set up in the first step several maximum estimates of the solutions to the considered nonlinear parabolic PDEs with a nonlinear Robin or Dirichlet boundary condition by means of the weak maximum principle. In the second step, applying the technique of splitting as in [2, 23, 27, 28], we consider a nonlinear equation with the initial data free and establish the maximum estimate of the solution (denoted by vv) according to the result obtained in the first step. By denoting the solution of the target system by uu, then in the third step, we establish the L2L^{2}-estimate of uvu-v by the Lyapunov method. Finally, the ISS estimate of the target system in L2L^{2}-norm, i.e., the estimate of uu in L2L^{2}-norm, is guaranteed by the maximum estimate of vv and the L2L^{2}-estimate of uvu-v. It’s worthy noting that combining with other approaches or techniques, the Lyapunov method was also applied for the ISS analysis of PDE systems in [4] by constructing non-coercive Lyapunov functions based on ISS characterizations devised in [19], and in [20, 21] and the literature mentioned in (iv)-(vii) by constructing coercive Lyapunov functions.

In the rest of the paper, Section 2 presents the problem statement, the basic assumptions, and the main result. By the weak maximum principle, some maximum estimates for nonlinear parabolic PDEs with nonlinear Robin and Dirichlet boundary conditions are proved respectively in Section 3. ISS analysis of nonlinear parabolic PDEs with different boundary conditions are detailed in Section 4. In order to illustrate the application of the approach presented in this paper, an example of ISS estimates for a parabolic equation with respectively a nonlinear Robin boundary condition and a nonlinear Dirichlet boundary condition is provided in Section 5, followed by some concluding remarks given in Section 6.

Notations: In this paper, +\mathbb{R}_{+} denotes the set of positive real numbers and 0:={0}+\mathbb{R}_{\geq 0}:={}{\{0\}}\cup\mathbb{R}_{+}.

Let BRB_{R} be a ball in n(n1)\mathbb{R}^{n}(n\geq 1) with the centre at 0 and a radius R>0R>0, i.e., BR={xn||x|<R}B_{R}=\{x\in\mathbb{R}^{n}||x|<R\}. We denote by BR\partial B_{R} and B¯R\overline{B}_{R} the boundary and the closure of BRB_{R}, respectively. Denote by |BR||B_{R}| the nn-dimensional Lebesgue measure of BRB_{R}, i.e., |BR|=πn2Rnn2Γ(n2)|B_{R}|=\frac{\pi^{\frac{n}{2}}R^{n}}{\frac{n}{2}\Gamma(\frac{n}{2})} with the Gamma function Γ()\Gamma(\cdot) defined on \mathbb{R}. Denote by |BR||\partial B_{R}| the (n1)(n-1)-dimensional Lebesgue measure of BR\partial B_{R}, i.e., |BR|=2πn2Γ(n2)Rn1|\partial B_{R}|=\frac{2\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})}R^{n-1}.

For any T>0T>0, let QT=BR×(0,T)Q_{T}=B_{R}\times(0,T) and pQT=(BR×(0,T))(B¯R×{0})\partial_{p}Q_{T}=(\partial B_{R}\times(0,T))\cup(\overline{B}_{R}\times\{{}{0}\}).

We use \|\cdot\| to denote the norm L2(BR)\|\cdot\|_{L^{2}(B_{R})} in L2(BR)L^{2}(B_{R}).

Let 𝒦={γ:00|γ(0)=0,γ\mathcal{K}=\{\gamma:\mathbb{R}_{\geq 0}\rightarrow\mathbb{R}_{\geq 0}|\ \gamma(0)=0,\gamma is continuous, strictly increasing}\}; 𝒦={θ𝒦|limsθ(s)=}\mathcal{K}_{\infty}=\{\theta\in\mathcal{K}|\ \lim\limits_{s\rightarrow\infty}\theta(s)=\infty\}; ={γ:00|γ\mathcal{L}=\{\gamma:\mathbb{R}_{\geq 0}\rightarrow\mathbb{R}_{\geq 0}|\ \gamma is continuous, strictly decreasing, limsγ(s)=0}\lim\limits_{s\rightarrow\infty}\gamma(s)=0\}; 𝒦={μ:0×00|μ𝒦,t0\mathcal{K}\mathcal{L}=\{\mu:\mathbb{R}_{\geq 0}\times\mathbb{R}_{\geq 0}\rightarrow\mathbb{R}_{\geq 0}|\ \mu\in\mathcal{K},\forall t\in\mathbb{R}_{\geq 0}, and μ(s,),s+}\mu(s,\cdot)\in\mathcal{L},\forall s\in{\mathbb{R}_{+}}\}.

2 Problem Setting and Main Result

Given the following functions:

a,cC2(B¯R×0;+),\displaystyle a,c\in C^{2}(\overline{B}_{R}\times\mathbb{R}_{\geq 0};\mathbb{R}_{+}), (1a)
biC2(B¯R×0;),i=1,2,,n,\displaystyle b_{i}\in C^{2}(\overline{B}_{R}\times\mathbb{R}_{\geq 0};\mathbb{R}),i=1,2,...,n, (1b)
hC2(B¯R×0×;),ψC2(;),\displaystyle h\in C^{2}(\overline{B}_{R}\times\mathbb{R}_{\geq 0}\times\mathbb{R};\mathbb{R}),\psi\in C^{2}(\mathbb{R};\mathbb{R}), (1c)
f,dC2(B¯R×0;),ϕC2(B¯R;),\displaystyle f,d\in C^{2}(\overline{B}_{R}\times\mathbb{R}_{\geq 0};\mathbb{R}),\phi\in C^{2}(\overline{B}_{R};\mathbb{R}), (1d)

we consider the following nonlinear parabolic equation with variable coefficients:

Lt[u](x,t)+N[u](x,t)\displaystyle L_{t}[u](x,t)+N[u](x,t) =f(x,t),(x,t)BR×+,\displaystyle=f(x,t),(x,t)\in B_{R}\times\mathbb{R}_{+}, (2a)
[u](x,t)\displaystyle\mathscr{B}[u](x,t) =d(x,t),(x,t)BR×+,\displaystyle=d(x,t),(x,t)\in\partial B_{R}\times\mathbb{R}_{+}, (2b)
u(x,0)\displaystyle u(x,0) =ϕ(x),xBR,\displaystyle=\phi(x),x\in B_{R}, (2c)

where Lt[u]:=utdiv(au)+bu+cuL_{t}[u]:=u_{t}-\text{div}\ (a\nabla u)+\textbf{b}\cdot\nabla u+cu with b:=(b1,b2,,bn)\textbf{b}:=(b_{1},b_{2},\ldots,b_{n}), N[u]:=h(,,u)N[u]:=h(\cdot,\cdot,u) is the nonlinear term of the equation, [u]\mathscr{B}[u] is given by:

[u]:=u𝝂+ψ(u),\displaystyle\mathscr{B}[u]:=\frac{\partial u}{\partial\bm{\nu}}+\psi(u), (3)

or

[u]:=ψ(u𝝂),\displaystyle\mathscr{B}[u]:=\psi\bigg{(}\frac{\partial u}{\partial\bm{\nu}}\bigg{)}, (4)

or

[u]:=ψ(u),\displaystyle\mathscr{B}[u]:=\psi(u), (5)

with 𝝂=1Rx=1R(x1,x2,,xn)\bm{\nu}=\frac{1}{R}x=\frac{1}{R}(x_{1},x_{2},\ldots,x_{n}), which is the unit outer normal vector at the point xBRx\in\partial B_{R}.

In general, ff and dd represents the distributed in-domain disturbance and boundary disturbance, respectively. (3), (4) and (5) represent the nonlinear Robin, Neumann and Dirichlet boundary condition, respectively.

Throughout this paper, without special statements, we always denote by x,tx,t respectively the first and second variable (if any) of the functions a,bi(i=1,2,,n),c,h,f,d,ϕa,b_{i}\ (i=1,2,\ldots,n),c,h,f,d,\phi. Moreover, we always assume that a,bi(i=1,2,,n),c,h,ψ,f,d,ϕa,b_{i}\ (i=1,2,\ldots,n),c,h,\psi,f,d,\phi are given by (1) and satisfy for some a¯,a¯,b¯,b¯,c¯+\underline{a},\overline{a},\underline{b},\overline{b},\underline{c}\in\mathbb{R}_{+}:

0<a¯aa¯and|a|a¯inBR×+,\displaystyle 0<\underline{a}\leq{}{a\leq\overline{a}\ \text{and}\ |\nabla a|\leq\overline{a}\ \text{in}\ {B}_{R}\times\mathbb{R}_{+}}, (6a)
0b¯|b|+|divb|b¯inBR×+,\displaystyle 0\leq\underline{b}\leq|\textbf{b}|+|\text{div}\ \textbf{b}|\leq\overline{b}{}{\ \text{in}\ {B}_{R}\times\mathbb{R}_{+},} (6b)
0<c¯cinBR×+,\displaystyle 0<\underline{c}\leq c{}{\ \text{in}\ {B}_{R}\times\mathbb{R}_{+},} (6c)
b¯(1+2CTrace2)<2c¯,b¯CTrace2<a¯,\displaystyle\overline{b}\left(1+2C^{2}_{\text{Trace}}\right)<2\underline{c},\ \overline{b}C^{2}_{\text{Trace}}<\underline{a}, (6d)

where CTraceC_{\text{Trace}} is the best constant of the trace embedding inequality given by the Trace Theorem in the appendix, and

N[u](x,t)<N[v](x,t),N[w](x,t)+N[w](x,t)0andN[0](x,t)=0,\displaystyle N[u](x,t)<N[v](x,t),N[w](x,t)+N[-w](x,t)\geq 0\ \text{and}\ N[0](x,t)=0, (7a)
ψ(u)<ψ(v),ψ(w)+ψ(w)0andψ(0)=0,\displaystyle\psi(u)<\psi(v),\psi(w)+\psi(-w)\geq 0\ \text{and}\ \psi(0)=0, (7b)

for all (x,t)BR×+(x,t)\in B_{R}\times\mathbb{R}_{+} and all u,v,wu,v,w\in\mathbb{R} with u<vu<v.

Furthermore, we impose the following compatibility condition:

[ϕ](x,0)=d(x,0)=0,xBR.\displaystyle\mathscr{B}[\phi](x,0)=d(x,0)=0,x\in\partial B_{R}. (8)

Let 𝕐:=C2(B¯R×0;)\mathbb{Y}:=C^{2}(\overline{B}_{R}\times\mathbb{R}_{\geq 0};\mathbb{R}), 𝔻0:={d𝕐|d(,0)=0onBR}\mathbb{D}_{0}:=\{d\in\mathbb{Y}|d(\cdot,0)=0\ \text{on}\ \partial B_{R}\} and 𝕌0:={u𝕐|[u](,0)=d(,0)onBRford𝔻0}\mathbb{U}_{0}:=\{u\in\mathbb{Y}|\mathscr{B}[u](\cdot,0)=d(\cdot,0)\ \text{on}\ \partial B_{R}\ \text{for}\ d\in\mathbb{D}_{0}\}.

Definition 1.

System (2) is said to be input-to-state stable (ISS) in L2L^{2}-norm w.r.t. the boundary disturbance d𝔻0d\in\mathbb{D}_{0}, the in-domain disturbance f𝕐f\in\mathbb{Y} and the states in 𝕌0\mathbb{U}_{0}, if there exist functions β𝒦\beta\in\mathcal{K}\mathcal{L} and γ0,γ1𝒦\gamma_{0},\gamma_{1}\in\mathcal{K} such that the solution of (2) satisfies for any T>0T>0:

u(,T)\displaystyle\|u(\cdot,T)\|\leq β(ϕ,T)+γ0(dL(BR×(0,T)))+γ1(fL(QT)).\displaystyle\beta(\|\phi\|,T)+\gamma_{0}\left(\|d\|_{L^{\infty}(\partial B_{R}\times(0,T))}\right)+\gamma_{1}\left(\|f\|_{L^{\infty}(Q_{T})}\right). (9)

Moreover, System (2) is said to be exponential input-to-state stable (EISS) in L2L^{2}-norm w.r.t. the boundary disturbance d𝔻0d\in\mathbb{D}_{0}, the in-domain disturbance f𝕐f\in\mathbb{Y} and the states in 𝕌0\mathbb{U}_{0}, if β(ϕ,T)\beta(\|\phi\|,T) can be chosen as M0\eλTϕM_{0}\e^{-\lambda T}\|\phi\| with certain constants M0,λ>0M_{0},\lambda>0 in (9).

The main result of this paper is stated in the following theorem.

Theorem 1.

System (2) with (3) (or (4), or (5)) is EISS w.r.t. the boundary disturbance d𝔻0d\in\mathbb{D}_{0}, the in-domain disturbance f𝕐f\in\mathbb{Y} and the states in 𝕌0\mathbb{U}_{0} having the estimate given in (12) (or (15), or (16)).

Remark 1.
  1. (i)

    As pointed out in [14], for a heat conduction problem the nonlinear boundary conditions can be seen as a nonlinear radiation law prescribed on the boundary of the material body.

  2. (ii)

    By [13, Theorem 6.1 and 7.4, Chapter V], system (2) admits a unique solution uC2,1(Q¯T){}{u\in C^{2,1}(\overline{Q}_{T})} for any T>0T>0. Moreover, every system appearing in this paper admits a unique solution belonging to C2,1(Q¯T)C^{2,1}(\overline{Q}_{T}).

Remark 2.
  1. (i)

    As ψ\psi is invertible, the nonlinear boundary conditions (4) and (5) are equivalent to the linear boundary coditions: u𝝂=ψ1(d)\frac{\partial u}{\partial\bm{\nu}}=\psi^{-1}(d) and u=ψ1(d)u=\psi^{-1}(d), respectively. Thus we can conduct ISS estimates for the considered systems as in [28] by the sppliting technique combined with the penalty method (see [28, Remark 5]).

  2. (ii)

    The requirement on the smoothness of these functions in (1) and the compatibility condition (8) are only for establishing the existence and regularity of a classical solution of the considered PDEs, and can be weakened for the ISS analysis if weak solutions are considered (see also [28, Remark 3].

  3. (iii)

    Indeed, we can weaken the condition (6c) to be “c0inBR×+c\geq 0\ \text{in}\ {B}_{R}\times\mathbb{R}_{+}”. For example, we consider (2) with the Robin boundary condition (3). Noting that there always exists ρC2(B¯R;+)\rho\in C^{2}(\overline{B}_{R};\mathbb{R}_{+}) such that

    div(aρ)+𝒃ρc0\displaystyle-\text{div}\ (a\nabla\rho)+\bm{b}\cdot\nabla\rho\geq c_{0} >0inBR×+,\displaystyle>0\ \text{in}\ B_{R}\times\mathbb{R}_{+},
    ρ𝝂\displaystyle\frac{\partial\rho}{\partial\bm{\nu}} 0onBR×+,\displaystyle\geq 0\ \text{on}\ \partial B_{R}\times\mathbb{R}_{+},

    where c0c_{0} is a positive constant depending on ρ\rho. Using u=wρu=w\rho, we can transform the uu-system (2) into ww-system with the coefficient of ww, denoted by c^\widehat{c}, satisfying

    c^=c+1ρ𝒃ρ1ρdiv(aρ)c0maxB¯Rρ>0.\displaystyle\widehat{c}=c+\frac{1}{\rho}\bm{b}\cdot\nabla\rho-\frac{1}{\rho}\text{div}\ (a\nabla\rho)\geq\frac{c_{0}}{\max\limits_{\overline{B}_{R}}\rho}>0.

    Moreover, the ww-system has the structural conditions as (6), (7a) and (7b). Then we can prove the ISS of the ww-system, which results in the ISS of uu-system. Due to the spacial limitation, we omit the details.

  4. (iv)

    It should be mentioned that proceeding as in this paper and with more specific computations, one may establish ISS estimates for (2) over any bounded domain Ωn\Omega\in\mathbb{R}^{n} with a smooth enough boundary.

3 Maximum Estimate for Parabolic PDEs

3.1 Weak maximum principle

Lemma 2.

Assume that c0c\geq 0 is bounded in QTQ_{T} and uC2,1(Q¯T){}{u\in C^{2,1}(\overline{Q}_{T})} satisfies Lt[u]+N[u]=f0{}{L_{t}[u]+N[u]}=f\leq 0 (resp. 0\geq 0) in QTQ_{T}, then

maxQ¯TumaxpQTu+(resp. minQ¯TuminpQTu),\displaystyle\max\limits_{\overline{Q}_{T}}u\leq\max\limits_{\partial_{p}Q_{T}}{}{u_{+}}\ \ \bigg{(}\text{resp. }\min_{\overline{Q}_{T}}{}{u_{-}}\geq\min_{\partial_{p}Q_{T}}u\bigg{)},

where u+=max{0,u}u_{+}=\max\{0,u\} and u=min{0,u}u_{-}=\min\{0,u\}.

It seems that the result given in Lemma 2 is trivial. Nevertheless, for the completeness, we provide a proof by following a similar way given in [22, page 237].

{pf*}

Proof We first show the claim when f0f\leq 0 by contradiction. Indeed, if the claim were false, then there would exist a point (x0,t0)Q¯TpQT(x_{0},t_{0})\in\overline{Q}_{T}\setminus\partial_{p}Q_{T} such that u(x0,t0)=maxQ¯Tu>0.u(x_{0},t_{0})=\max_{\overline{Q}_{T}}u>0. Thus

ut|(x0,t0)0,(u)|(x0,t0)=𝟎,(div(au))|(x0,t0)=(aΔu)|(x0,t0)0,c(x0,t0)u(x0,t0)0,\displaystyle u_{t}|_{(x_{0},t_{0})}\geq 0,(\nabla u)|_{(x_{0},t_{0})}=\bm{0},(\text{div}(a\nabla u))|_{(x_{0},t_{0})}=(a\Delta u)|_{(x_{0},t_{0})}\leq 0,c(x_{0},t_{0})u(x_{0},t_{0})\geq 0,

and h(x0,t0,u(x0,t0))>h(x0,t0,0)=0h(x_{0},t_{0},u(x_{0},t_{0}))>h(x_{0},t_{0},0)=0 due to (7a).

We have then

0f(x0,t0)=Lt[u]|(x0,t0)+h(x0,t0,u(x0,t0))>0,\displaystyle 0\geq f(x_{0},t_{0})={}{L_{t}[u]|_{(x_{0},t_{0})}}+h(x_{0},t_{0},u(x_{0},t_{0}))>0,

which is a contradiction and hence, the claim is valid for f0f\leq 0. For the case of f0f\geq 0, one can proceed in the same way to complete the proof.

3.2 Maximum estimate for parabolic PDEs with a nonlinear Robin boundary condition

Proposition 3.

Let uC2,1(Q¯T){}{u\in C^{2,1}(\overline{Q}_{T})} be the solution of the following parabolic equation:

Lt[u]+N[u]\displaystyle{}{L_{t}[u]+N[u]} =finQT,\displaystyle={}{f\ \text{in}}\ Q_{T},
u𝝂+ψ(u)\displaystyle\frac{\partial u}{\partial\bm{\nu}}+\psi(u) =donBR×(0,T),\displaystyle={}{d\ \text{on}}\ \partial B_{R}\times(0,T),
u(,0)\displaystyle u{}{(\cdot,0)} =ϕinBR.\displaystyle={}{\phi\ \text{in}}\ B_{R}.

Then

maxQ¯T|u|pR2+q,\displaystyle\max\limits_{\overline{Q}_{T}}|u|\leq pR^{2}+q,

where p=12RsupBR×(0,T)|d|p=\frac{1}{2R}\sup\limits_{\partial B_{R}\times(0,T)}|d|, and q=max{1c¯(supQT|f|+2p(a¯n+Ra¯+Rb¯)),supBR|ϕ|}.q=\max\bigg{\{}\frac{1}{\underline{c}}\bigg{(}\sup\limits_{Q_{T}}|f|+2p(\overline{a}n+R\overline{a}+R\overline{b})\bigg{)},\sup\limits_{B_{R}}|\phi|\bigg{\}}.

{pf*}

Proof For (x,t)Q¯T(x,t)\in\overline{Q}_{T}, let M(x)=p|x|2+qM(x)=p|x|^{2}+q and v(x,t)=M(x)±u(x,t)v(x,t)=M(x)\pm u(x,t). By (7a), (6a), (6b) and (6c), it follows that

Lt[v]+N[v]=\displaystyle{}{L_{t}[v]+N[v]}= Lt[M]±(Lt[u]+N[u])+N[v]N[u]\displaystyle{}{L_{t}[M]\pm(L_{t}[u]+N[u])+N[v]\mp N[u]}
=\displaystyle= 2p(an+ax)+2pbx+cp|x|2+cq±f+N[M±u]N[u]\displaystyle-2p(an+\nabla a\cdot x)+2p\textbf{b}\cdot x+cp|x|^{2}+cq{}{\pm f}{}{+N[M\pm u]\mp N[u]}
\displaystyle\geq 2p(an+R|a|+R|b|)+cq±f+(N[±u]N[u])\displaystyle-2p\big{(}an+R|\nabla a|+R|\textbf{b}|\big{)}+cq{}{{\pm f}}{}{+(N[\pm u]\mp N[u])}
\displaystyle\geq 2p(a¯n+Ra¯+Rb¯)+c¯q±finQT.\displaystyle-2p\big{(}\overline{a}n+R\overline{a}+R\overline{b}\big{)}+{}{\underline{c}q\pm f\ \text{in}\ Q_{T}}.

Noting that c¯qsupQT|f|+2p(a¯n+Ra¯+Rb¯)\underline{c}q\geq\sup\limits_{Q_{T}}|f|+2p\big{(}\overline{a}n+R\overline{a}+R\overline{b}\big{)}, we get

Lt[v]+N[v]0inQT.\displaystyle{}{L_{t}[v]+N[v]\geq 0\ \text{in}\ Q_{T}}.

By Lemma 2, if vv has a negative minimum, then vv attains the negative minimum on the parabolic boundary pQT\partial_{p}Q_{T}. On the other hand, noting that v(x,0)=M(x)±ϕ(x)0v(x,0)=M(x)\pm\phi(x)\geq 0 in BRB_{R}, then vv attains the negative minimum on BR×(0,T)\partial B_{R}\times(0,T), i.e., there exists a point (x0,t0)BR×(0,T)(x_{0},t_{0})\in\partial B_{R}\times(0,T), such that v(x0,t0)v(x_{0},t_{0}) is the negative minimum. Thus, v𝝂|(x0,t0)0\frac{\partial v}{\partial\bm{\nu}}\big{|}_{(x_{0},t_{0})}\leq 0. Then, at the point (x0,t0)(x_{0},t_{0}), we get by (7b)

0\displaystyle 0\geq v𝝂+ψ(0)\displaystyle\frac{\partial v}{\partial\bm{\nu}}+\psi(0)
>\displaystyle> v𝝂+ψ(v)\displaystyle\frac{\partial v}{\partial\bm{\nu}}+\psi(v)
=\displaystyle= M𝝂+ψ(M±u)ψ(u)±(u𝝂+ψ(u))\displaystyle\frac{\partial M}{\partial\bm{\nu}}+\psi(M\pm u)\mp\psi(u)\pm\bigg{(}\frac{\partial u}{\partial\bm{\nu}}+\psi(u)\bigg{)}
=\displaystyle= 2pR+(ψ(M±u)ψ(u))±d\displaystyle 2p{R}+(\psi(M\pm u){}{\mp\psi(u)})\pm d
\displaystyle\geq 2pR+(ψ(±u)ψ(u))±d\displaystyle{}{2p{R}+\big{(}\psi(\pm u)\mp\psi(u)}\big{)}\pm d
\displaystyle\geq 2pR±d\displaystyle{2p}{R}\pm d
=\displaystyle= supBR×(0,T)|d|±d\displaystyle\sup\limits_{\partial B_{R}\times(0,T)}|d|\pm d
\displaystyle\geq 0,\displaystyle 0,

which is a contradiction. Therefore, there must be v0v\geq 0 in Q¯T\overline{Q}_{T}, which follows that |u|MpR2+q|u|\leq M\leq pR^{2}+q in Q¯T\overline{Q}_{T}.

3.3 Maximum estimate for parabolic PDEs with a nonlinear Dirichlet boundary condition

Proposition 4.

Let uC2,1(Q¯T){}{u\in C^{2,1}(\overline{Q}_{T})} be the solution of the following parabolic equation:

Lt[u]+N[u]\displaystyle{}{L_{t}[u]+N[u]} =finQT,\displaystyle={}{f\ \text{in}}\ Q_{T}, (10a)
ψ(u)\displaystyle\psi(u) =donBR×(0,T),\displaystyle={}{d\ \text{on}}\ \partial B_{R}\times(0,T), (10b)
u(,0)\displaystyle{}{u(\cdot,0)} =ϕinBR.\displaystyle={}{\phi\ \text{in}}\ B_{R}. (10c)

Then

maxQ¯T|u|max{1c¯supQT|f|,ψ1(supBR×(0,T)|d|),supBR|ϕ|}.\displaystyle\max\limits_{\overline{Q}_{T}}|u|\leq\max\bigg{\{}\frac{1}{\underline{c}}\sup\limits_{Q_{T}}|f|,{\psi}^{-1}\bigg{(}\sup\limits_{\partial B_{R}\times(0,T)}|d|\bigg{)},\sup\limits_{B_{R}}|\phi|\bigg{\}}.
{pf*}

For (x,t)Q¯T(x,t)\in\overline{Q}_{T}, let v(x,t)=M±u(x,t)v(x,t)=M\pm u(x,t) with M=max{1c¯supQT|f|,ψ1(supBR×(0,T)|d|),supBR|ϕ|}M=\max\bigg{\{}\frac{1}{\underline{c}}\sup\limits_{Q_{T}}|f|,{\psi}^{-1}\bigg{(}\sup\limits_{\partial B_{R}\times(0,T)}|d|\bigg{)},\sup\limits_{B_{R}}|\phi|\bigg{\}}.

Proceeding as in the proof of Proposition 3, we have

Lt[v]+N[v]0inQT.\displaystyle{}{L_{t}[v]+N[v]\geq 0\ \text{in}\ Q_{T}}.

Then it suffices to show that if v(x0,t0)v(x_{0},t_{0}) is the negative minimum at some point (x0,t0)BR×(0,T)(x_{0},t_{0})\in\partial B_{R}\times(0,T), we will obtain a contradiction. Indeed, noting that

ψ(u(x0,t0))=d(x0,t0)supBR×(0,T)|d|,\displaystyle\psi(u(x_{0},t_{0}))=d(x_{0},t_{0})\leq\sup\limits_{\partial B_{R}\times(0,T)}|d|,

it follows that

u(x0,t0)ψ1(supBR×(0,T)|d|)M.\displaystyle u(x_{0},t_{0})\leq{\psi}^{-1}\bigg{(}\sup\limits_{\partial B_{R}\times(0,T)}|d|\bigg{)}\leq M.

Then we have 0>v(x0,t0)=M±u(x0,t0)0,0>v(x_{0},t_{0})=M\pm u(x_{0},t_{0})\geq 0, which is actually a contradiction.

4 EISS Estimates for Parabolic PDEs with Different Types of Nonlinear Boundary Conditions

{pf*}

Proof of Theorem 1 We proceed on the proof in the following 3 steps.

(i) We establish an EISS estimate of the solution to (2) with the nonlinear Robin boundary condition (3).

Let vC2,1(Q¯T)v\in{}{C^{2,1}(\overline{Q}_{T})} be the unique solution of the following parabolic equation:

Lt[v]+N[v]\displaystyle{}{L_{t}[v]+N[v]} =finQT,\displaystyle={}{f\ \text{in}}\ Q_{T},
v𝝂+ψ(v)\displaystyle\frac{\partial v}{\partial\bm{\nu}}+\psi(v) =donBR×(0,T),\displaystyle={}{d\ \text{on}}\ \partial B_{R}\times(0,T),
v(,0)\displaystyle{}{v(\cdot,0)} =0inBR.\displaystyle=0{}{\ \text{in}}\ B_{R}.

According to Proposition 3, we have

maxQ¯T|v|R0supBR×(0,T)|d|+1c¯supQT|f|,\displaystyle\max\limits_{\overline{Q}_{T}}|v|\leq{}{R_{0}}\sup\limits_{\partial B_{R}\times(0,T)}|d|+\frac{1}{\underline{c}}\sup\limits_{Q_{T}}|f|,

where R0=R2+1c¯R(a¯n+Ra¯+Rb¯)R_{0}=\frac{R}{2}+\frac{1}{\underline{c}R}(\overline{a}n+R\overline{a}+R\overline{b}).

Let w=uvw=u-v. It is obvious that ww satisfies:

Lt[w]+N[u]N[v]\displaystyle{}{L_{t}[w]+N[u]-N[v]} =0inQT,\displaystyle=0\ {}{\text{in}}\ Q_{T}, (11a)
w𝝂+ψ(u)ψ(v)\displaystyle\frac{\partial w}{\partial\bm{\nu}}+\psi(u)-\psi(v) =0onBR×(0,T),\displaystyle=0\ {}{\text{on}}\ \partial B_{R}\times(0,T), (11b)
w(,0)\displaystyle{}{w(\cdot,0)} =ϕinBR.\displaystyle={}{\phi\ \text{in}}\ B_{R}. (11c)

Multiplying (11) with ww and integrating by parts, we have

12ddtw2+aw2\displaystyle\frac{1}{2}\frac{\text{d}}{\text{d}t}\|w\|^{2}+\|\sqrt{a}\nabla w\|^{2}
=\displaystyle= BRcw2dxBR(bw)wdx+BRaww𝝂dS+BR(N[v](x,t)N[u](x,t))(uv)dx.\displaystyle-\int_{B_{R}}cw^{2}\text{d}x-\int_{B_{R}}(\textbf{b}\cdot\nabla w)w\text{d}x+\int_{\partial B_{R}}aw\nabla w\cdot\bm{\nu}\text{d}S+\int_{B_{R}}{}{(N[v](x,t)-N[u](x,t))}(u-v)\text{d}x.

Applying the formula of integration by parts, the Trace Theorem (see the appendix) and by (6b), we have

BR(bw)wdx=\displaystyle-\int_{B_{R}}(\textbf{b}\cdot\nabla w)w\text{d}x= 12BR(div𝒃)w2dx12BRw2(b𝝂)dS\displaystyle\frac{1}{2}\int_{B_{R}}(\text{div}\ \bm{b})w^{2}\text{d}x-\frac{1}{2}\int_{\partial B_{R}}w^{2}(\textbf{b}\cdot\bm{\nu})\text{d}S
\displaystyle\leq b¯2(BRw2dx+BRw2dS)\displaystyle\frac{\overline{b}}{2}\left(\int_{B_{R}}w^{2}\text{d}x+\int_{\partial B_{R}}w^{2}\text{d}S\right)
\displaystyle\leq b¯2(w2+CTrace2(w+w)2)\displaystyle\frac{\overline{b}}{2}\left(\|w\|^{2}+C^{2}_{\text{Trace}}(\|w\|+\|\nabla w\|)^{2}\right)
\displaystyle\leq b¯2((1+2CTrace2)w2+2CTrace2w2).\displaystyle\frac{\overline{b}}{2}\left((1+2C^{2}_{\text{Trace}})\|w\|^{2}+2C^{2}_{\text{Trace}}\|\nabla w\|^{2}\right).

By (7b) and (7a), we always have

BRaww𝝂dS=BRa(ψ(v)ψ(u))(uv)dS0,\displaystyle\int_{\partial B_{R}}aw\nabla w\cdot\bm{\nu}\text{d}S=\int_{\partial B_{R}}a(\psi(v)-\psi(u))(u-v)\text{d}S\leq 0,
BR(N[v](x,t)N[u](x,t))(uv)dx0.\displaystyle\int_{B_{R}}{}{(N[v](x,t)-N[u](x,t))}(u-v)\text{d}x\leq 0.

Thus, we obtain by (6a), (6c) and (6d)

ddtw2\displaystyle\frac{d}{dt}\|w\|^{2}\leq 2aw22cw2+b¯((1+2CTrace2)w2+2CTrace2w2)\displaystyle-2\|\sqrt{a}\nabla w\|^{2}-2\|\sqrt{c}w\|^{2}+\overline{b}\left((1+2C^{2}_{\text{Trace}})\|w\|^{2}+2C^{2}_{\text{Trace}}\|\nabla w\|^{2}\right)
\displaystyle\leq (2c¯b¯(1+2CTrace2))w2+2(b¯CTrace2a¯)w2\displaystyle-\left(2\underline{c}-\overline{b}(1+2C^{2}_{\text{Trace}})\right)\|w\|^{2}+2(\overline{b}C^{2}_{\text{Trace}}-\underline{a})\|\nabla w\|^{2}
\displaystyle\leq (2c¯b¯(1+2CTrace2))w2,\displaystyle-\left(2\underline{c}-\overline{b}(1+2C^{2}_{\text{Trace}})\right)\|w\|^{2},

which gives w(,T)2ϕ2\e(2c¯b¯(1+2CTrace2))T.\|w(\cdot,T)\|^{2}\leq\|\phi\|^{2}\e^{-\big{(}2\underline{c}-\overline{b}\left(1+2C^{2}_{\text{Trace}}\right)\big{)}T}.

Finally, we have

u(,T)\displaystyle\|u(\cdot,T)\|\leq w(,T)+v(,T)\displaystyle\|w(\cdot,T)\|+\|v(\cdot,T)\|
\displaystyle\leq ϕ\e(c¯2b¯(1+2CTrace2))T+R0|BR|supBR×(0,T)|d|+1c¯|BR|supQT|f|,T>0.\displaystyle\|\phi\|\e^{-\big{(}\underline{c}-2\overline{b}\left(1+2C^{2}_{\text{Trace}}\right)\big{)}T}+{}{R_{0}}\sqrt{|B_{R}|}\sup\limits_{\partial B_{R}\times(0,T)}|d|+\frac{1}{\underline{c}}\sqrt{|B_{R}|}\sup\limits_{Q_{T}}|f|,\ \ \forall T>0. (12)

(ii) We establish an EISS estimate of the solution to (2) with the nonlinear Neumann boundary condition (4). Let vC2,1(Q¯T)v\in{}{C^{2,1}(\overline{Q}_{T})} be the unique solution of the following parabolic equation:

Lt[v]+N[v]\displaystyle{}{L_{t}[v]+N[v]} =finQT,\displaystyle={}{f\ \text{in}}\ Q_{T},
v𝝂+v\displaystyle\frac{\partial v}{\partial\bm{\nu}}+v =ψ1(d)onBR×(0,T),\displaystyle=\psi^{-1}(d)\ {}{\text{on}}\ \partial B_{R}\times(0,T),
v(,0)\displaystyle{}{v(\cdot,0)} =0inBR.\displaystyle=0\ {}{\text{in}}\ B_{R}.

According to Proposition 3, we have

maxQ¯T|v|\displaystyle\max\limits_{\overline{Q}_{T}}|v|\leq R0supBR×(0,T)|ψ1(d)|+1c¯supQT|f|\displaystyle{}{R_{0}}\sup\limits_{\partial B_{R}\times(0,T)}|\psi^{-1}(d)|+\frac{1}{\underline{c}}\sup\limits_{Q_{T}}|f|
\displaystyle\leq R0ψ1(supBR×(0,T)|d|)+1c¯supQT|f|,\displaystyle{}{R_{0}}\psi^{-1}\bigg{(}\sup\limits_{\partial B_{R}\times(0,T)}|d|\bigg{)}+\frac{1}{\underline{c}}\sup\limits_{Q_{T}}|f|, (13)

where R0=R2+1c¯R(a¯n+Ra¯+Rb¯)R_{0}=\frac{R}{2}+\frac{1}{\underline{c}R}(\overline{a}n+R\overline{a}+R\overline{b}).

Let w=uvw=u-v, which satisfies:

Lt[w]+N[u]N[v]\displaystyle{}{L_{t}[w]+N[u]-N[v]} =0inQT,\displaystyle=0\ {}{\text{in}}\ Q_{T},
w𝝂v\displaystyle\frac{\partial w}{\partial\bm{\nu}}-v =0onBR×(0,T),\displaystyle=0\ {}{\text{on}}\ \partial B_{R}\times(0,T),
w(,0)\displaystyle{}{w(\cdot,0)} =ϕinBR.\displaystyle={}{\phi\ \text{in}}\ B_{R}.

By Young’s inequality, the Trace Theorem and (6a), it follows that

BRaww𝝂dS=\displaystyle\int_{\partial B_{R}}aw\nabla w\cdot\bm{\nu}\text{d}S= BRawvdS\displaystyle\int_{\partial B_{R}}awv\text{d}S
\displaystyle\leq ε2BRw2dS+12εBRa2v2dS,\displaystyle\frac{\varepsilon}{2}\int_{\partial B_{R}}w^{2}\text{d}S+\frac{1}{2\varepsilon}\int_{\partial B_{R}}a^{2}v^{2}\text{d}S,
\displaystyle\leq εCTrace2(w2+w2)+12εa¯2|BR|maxBR|v|2.\displaystyle\varepsilon C^{2}_{\text{Trace}}\left(\|w\|^{2}+\|\nabla w\|^{2}\right)+\frac{1}{2\varepsilon}\overline{a}^{2}|\partial B_{R}|\max\limits_{{}{\partial B_{R}}}|v|^{2}.

Proceeding in the same way as in (i), we get

ddtw2\displaystyle\frac{\text{d}}{\text{d}t}\|w\|^{2}\leq (2c¯b¯(1+2CTrace2)2εCTrace2)w2+2(b¯CTrace2a¯εCTrace2)w2+1εa¯2|BR|maxBR|v|2\displaystyle-\left(2\underline{c}-\overline{b}(1+2C^{2}_{\text{Trace}})-2\varepsilon C^{2}_{\text{Trace}}\right)\|w\|^{2}+2\left(\overline{b}C^{2}_{\text{Trace}}-\underline{a}-\varepsilon C^{2}_{\text{Trace}}\right)\|\nabla w\|^{2}+\frac{1}{\varepsilon}\overline{a}^{2}|\partial B_{R}|\max\limits_{{}{{}{\partial B_{R}}}}|v|^{2}
\displaystyle\leq (2c¯b¯(1+2CTrace2)2εCTrace2)w2+1εa¯2|BR|maxB¯R|v|2\displaystyle-\left(2\underline{c}-\overline{b}(1+2C^{2}_{\text{Trace}})-2\varepsilon C^{2}_{\text{Trace}}\right)\|w\|^{2}+\frac{1}{\varepsilon}\overline{a}^{2}|\partial B_{R}|\max\limits_{\overline{B}_{R}}|v|^{2}
:=\displaystyle:= λw2+V(t),\displaystyle-\lambda\|w\|^{2}+V(t),

where we choose ε>0\varepsilon>0 small enough such that λ=2c¯b¯(1+2CTrace2)2εCTrace2>0\lambda=2\underline{c}-\overline{b}(1+2C^{2}_{\text{Trace}})-2\varepsilon C^{2}_{\text{Trace}}>0 and b¯CTrace2a¯εCTrace2>0\overline{b}C^{2}_{\text{Trace}}-\underline{a}-\varepsilon C^{2}_{\text{Trace}}>0 due to (6d).

By Gronwall’s inequality, we have

w(,T)2\displaystyle\|w(\cdot,T)\|^{2}\leq ϕ2\eλT+maxt[0,T]V(t)0T\eλ(Tt)dt\displaystyle\|\phi\|^{2}\e^{-\lambda T}+\max\limits_{t\in[0,T]}V(t)\cdot\int_{0}^{T}\e^{-\lambda(T-t)}\text{d}t
\displaystyle\leq ϕ2\eλT+1λmaxt[0,T]V(t)\displaystyle\|\phi\|^{2}\e^{-\lambda T}+\frac{1}{\lambda}\max\limits_{t\in[0,T]}V(t)
\displaystyle\leq ϕ2\eλT+a¯2ελ|BR|maxQ¯T|v|2.\displaystyle\|\phi\|^{2}\e^{-\lambda T}+\frac{\overline{a}^{2}}{\varepsilon\lambda}|\partial B_{R}|\max\limits_{{\overline{Q}_{T}}}|v|^{2}. (14)

Finally, by u(,T)w(,T)+v(,T)\|u(\cdot,T)\|\leq\|w(\cdot,T)\|+\|v(\cdot,T)\|, (13) and (14), for any T>0T>0, it follows that

u(,T)\displaystyle\|u(\cdot,T)\|\leq ϕ\eλ2T+R0(1+a¯ελ)|BR|ψ1(supBR×(0,T)|d|)+1c¯(1+a¯ελ)|BR|supQT|f|.\displaystyle\|\phi\|\e^{-\frac{\lambda}{2}T}+{}{R_{0}}\bigg{(}1+\frac{\overline{a}}{\sqrt{\varepsilon\lambda}}\bigg{)}\sqrt{|\partial B_{R}|}\psi^{-1}\bigg{(}\sup\limits_{\partial B_{R}\times(0,T)}|d|\bigg{)}+\frac{1}{\underline{c}}\bigg{(}1+\frac{\overline{a}}{\sqrt{\varepsilon\lambda}}\bigg{)}\sqrt{|\partial B_{R}|}\sup\limits_{Q_{T}}|f|. (15)

(iii) For the EISS estimate of the solution to (2) with the nonlinear Dirichlet boundary condition (5), it suffices to estimate the solutions of the following parabolic equations:

Lt[v]+N[v]\displaystyle{}{L_{t}[v]+N[v]} =finQT,\displaystyle={}{f\ \text{in}}\ Q_{T},
v\displaystyle v =ψ1(d)onBR×(0,T),\displaystyle=\psi^{-1}(d)\ {}{\text{on}}\ \partial B_{R}\times(0,T),
v(,0)\displaystyle{}{v(\cdot,0)} =0inBR,\displaystyle=0\ {}{\text{in}}\ B_{R},

and

Lt[w]+N[u]N[v]\displaystyle{}{L_{t}[w]+N[u]-N[v]} =0inQT,\displaystyle=0\ {}{\text{in}}\ Q_{T},
w\displaystyle w =0onBR×(0,T),\displaystyle=0\ {}{\text{on}}\ \partial B_{R}\times(0,T),
w(,0)\displaystyle{}{w(\cdot,0)} =ϕinBR,\displaystyle={}{\phi\ \text{in}}\ B_{R},

where w=uvw=u-v.

Indeed, by Proposition 4, we have

maxQ¯T|v|max{1c¯supQT|f|,ψ1(supBR×(0,T)|d|)}.\displaystyle\max\limits_{\overline{Q}_{T}}|v|\leq\max\bigg{\{}\frac{1}{\underline{c}}\sup\limits_{Q_{T}}|f|,{\psi}^{-1}\bigg{(}\sup\limits_{\partial B_{R}\times(0,T)}|d|\bigg{)}\bigg{\}}.

Proceeding as in (i), we get

w(,T)\e12(2c¯b¯)Tϕ,T>0.\displaystyle\|w(\cdot,T)\|\leq\e^{-\frac{1}{2}\left(2\underline{c}-\overline{b}\right)T}\|\phi\|,\ \ \forall T>0.

Finally, for any T>0T>0, it follows that

u(,T)ϕ\e12(2c¯b¯)T+|BR|max{1c¯supQT|f|,ψ1(supBR×(0,T)|d|)}.\displaystyle\|u(\cdot,T)\|\leq\|\phi\|\e^{-\frac{1}{2}\left(2\underline{c}-\overline{b}\right)T}+\sqrt{|B_{R}|}\max\bigg{\{}\frac{1}{\underline{c}}\sup\limits_{Q_{T}}|f|,{\psi}^{-1}\bigg{(}\sup\limits_{\partial B_{R}\times(0,T)}|d|\bigg{)}\bigg{\}}. (16)

5 An Illustrative Example

We consider the following super-linear parabolic equation:

utdiv(au)+cu+uln(1+u2)=finBR×+,\displaystyle u_{t}-\text{div}\ (a\nabla u)+cu+u\ln(1+u^{2})=f\ \text{in}\ B_{R}\times\mathbb{R}_{+},\ (17)

coupled with the nonlinear Robin boundary condition:

u𝝂+u+u3=donBR×+,\displaystyle\frac{\partial u}{\partial\bm{\nu}}+u+u^{3}=d\ \ \text{on}\ \partial B_{R}\times\mathbb{R}_{+}, (18)

or the nonlinear Dirichlet boundary condition:

u+u3=donBR×+.\displaystyle u+u^{3}=d\ \ \text{on}\ \partial B_{R}\times\mathbb{R}_{+}. (19)

The initial value condition is given by:

u(,0)=ϕ()inBR.\displaystyle u{}{(\cdot,0)=\phi(\cdot)}\ \ \text{in}\ B_{R}.

Note that N[u](x,t)=h(x,t,u)uln(1+u2)N[u](x,t)=h(x,t,u)\equiv u\ln(1+u^{2}) and ψ(u)=u+u3\psi(u)=u+u^{3}, both of which are C2C^{2}-continuous, odd and strictly increasing in uu. Thus (7a) and (7b) are satisfied.

If we assume that aa, cc, ff, dd, and ϕ\phi satisfy (1), (6) and (8), then according to Theorem 1, system (17) with (18), or (19), is EISS, having the following estimate for any T>0T>0:

u(,T)ϕ\ec¯T+|BR|G(supQT|f|,supBR×(0,T)|d|),\displaystyle\|u(\cdot,T)\|\leq\|\phi\|\e^{-\underline{c}T}+\sqrt{|B_{R}|}G\bigg{(}\sup\limits_{Q_{T}}|f|,\sup\limits_{\partial B_{R}\times(0,T)}|d|\bigg{)},

where G(y,z)=1c¯y+(R2+a¯c¯(n+R))z,G(y,z)=\frac{1}{\underline{c}}y+\left(\frac{R}{2}+\frac{\overline{a}}{\underline{c}}(n+R)\right)z, or G(y,z)=max{1c¯y,ψ1(z)}.G(y,z)=\max\left\{\frac{1}{\underline{c}}y,{\psi}^{-1}(z)\right\}.

6 Concluding Remarks

This paper presented an application of the maximum principle-based approach proposed in [27, 28] to the establishment of ISS properties w.r.t. in-domain and boundary disturbances for certain nonlinear parabolic PDEs over higher dimensional domains with different types of nonlinear boundary conditions. The proposed scheme for achieving the ISS estimates of the solution is based on the the Lyapunov method and the maximum estimates for parabolic PDEs with nonlinear boundary conditions. An ISS analysis for a parabolic PDE with a super-linear term and nonlinear boundary conditions has been carried out, which demonstrated the effectiveness of the developed approach.

7 Appendix: Trace Theorem

Let H1(BR):={u:BRis locally summable|uL2(BR),u(L2(BR))n}H^{1}(B_{R}):=\{u:B_{R}\rightarrow\mathbb{R}\ \text{is\ locally\ summable}|u\in L^{2}(B_{R}),\nabla u\in(L^{2}(B_{R}))^{n}\} endowed with the norm uH1(BR):=uL2(BR)+uL2(BR)\|u\|_{H^{1}(B_{R})}:=\|u\|_{L^{2}(B_{R})}+\|\nabla u\|_{L^{2}(B_{R})}.

Theorem 5.

(Trace Theorem [1, Chapter 5]) There exists a bounded linear operator 𝒯:H1(BR)L2(BR)\mathcal{T}:H^{1}(B_{R})\rightarrow L^{2}(\partial B_{R}) such that

  • (i)

    𝒯u=u|BR\mathcal{T}u=u|_{\partial B_{R}} if uH1(BR)C(B¯R)u\in H^{1}(B_{R})\cap C(\overline{B}_{R}), and

  • (ii)

    𝒯uL2(BR)CTraceuH1(BR)\|\mathcal{T}u\|_{L^{2}(\partial B_{R})}\leq C_{\text{Trace}}\|u\|_{H^{1}(B_{R})} for each uH1(BR)u\in H^{1}(B_{R}), with the constant CTraceC_{\text{Trace}} depending only on BRB_{R}.

References

  • [1] L. C. Evans, Partial Differential Equations.   American Mathematical Society, Providence, Rhode Island, 2010.
  • [2] C. Fabre, J. P. Puel, and E. Zuazua, “Approximate controllability of the semilinear heat equation,” Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol. 125, no. 1, p. 31¨C61, 1995.
  • [3] B. Jacob, A. Mironchenko, J. R. Partington, and F. Wirth, “Remarks on input-to-state stability and non-coercive lyapunov functions,” in IEEE Conference on Decision and Control, Miami Beach, USA, Dec. 2018, pp. 4803–4808.
  • [4] ——, “Non-coercive lyapunov functions for input-to-state stability of infinite-dimensional systems,” 2019, arXiv:1911.01327.
  • [5] B. Jacob, R. Nabiullin, J. R. Partington, and F. L. Schwenninger, “On input-to-state-stability and integral input-to-state-stability for parabolic boundary control systems,” in IEEE Conference on Decision and Control, Las Vegas, USA, Dec. 2016, pp. 2265–226.
  • [6] ——, “Infinite-dimensional input-to-state stability and Orlicz spaces,” SIAM J. Control Optim., vol. 56, no. 2, pp. 868–889, 2018.
  • [7] B. Jacob, F. L. Schwenninger, and H. Zwart, “On continuity of solutions for parabolic control systems and input-to-state stability,” J. Differential Equations, vol. 266, no. 10, pp. 6284–6306, 2018.
  • [8] I. Karafyllis and M. Krstic, “On the relation of delay equations to first-order hyperbolic partial differential equations,” ESAIM Control, Opt. & Cal. of Var., vol. 20, no. 3, pp. 894–923, 2014.
  • [9] ——, “Input-to-state stability with respect to boundary disturbances for the 1-D heat equation,” in the IEEE 55th Conference on Decision and Control, Las Vegas, USA, Dec. 2016, pp. 2247–2252.
  • [10] ——, “ISS with respect to boundary disturbances for 1-D parabolic PDEs,” IEEE Trans. Autom. Control, vol. 61, no. 12, pp. 3712–3724, Dec. 2016.
  • [11] ——, “ISS in different norms for 1-D parabolic PDEs with boundary disturbances,” SIAM J. Control Optim., vol. 55, no. 3, pp. 1716–1751, 2017.
  • [12] ——, “Sampled-data boundary feedback control of 1-D parabolic PDEs,” Automatica, vol. 87, pp. 226–237, 2018.
  • [13] O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Uralceva, Linear and Quasi-linear Equations of Parabolic Type.   Providence, RI: American Mathematical Society, 1968.
  • [14] H. A. Levine and L. E. Payne, “Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time,” Journal of Differential Equations, vol. 16, pp. 319–334, 1974.
  • [15] H. Lhachemi, D. Saussié, G. Zhu, and R. Shorten, “Input-to-state stability of a clamped-free damped string in the presence of distributed and boundary disturbances,” IEEE Trans. Autom. Control, vol. 65, no. 3, pp. 1248–1255, Mar. 2020.
  • [16] H. Lhachemi and R. Shorten, “ISS property with respect to boundary disturbances for a class of riesz-spectral boundary control systems,” Automatica, vol. 109, 2019, 108504.
  • [17] A. Mironchenko, I. Karafyllis, and M. Krstic, “Monotonicity methods for input-to-state stability of nonlinear parabolic PDEs with boundary disturbances,” SIAM J. Control Optim., vol. 57, no. 1, pp. 510–532, 2019.
  • [18] A. Mironchenko and C. Prieur, “Input-to-state stability of infinite-dimensional systems: recent results and open questions,” SIAM Rev., 2019, arXiv:1910.01714.
  • [19] A. Mironchenko and F. Wirth, “Characterizations of input-to-state stability for infinite-dimensional systems,” IEEE Trans. Autom. Control, vol. 63, no. 6, pp. 1692 – 1707, 2018.
  • [20] F. Schwenninger, “Input-to-state stability for parabolic boundary control: Linear and semi-linear systems,” arXiv:1908.08317.
  • [21] A. Tanwani, C. Prieur, and S. Tarbouriech, “Disturbance-to-state stabilization and quantized control for linear hyperbolic systems,” 2017, arXiv:1703.00302.
  • [22] Z. Wu, J. Yin, and C. Wan, Elliptic & Parabolic Equations.   Singapore: World Scientic Publishing, 2006.
  • [23] J. Zheng and G. Zhu, “A De Giorgi iteration-based approach for the establishment of ISS properties of a class of semi-linear parabolic PDEs with boundary and in-domain disturbances,” IEEE Trans. on Automatic Control, vol. 64, no. 8, pp. 3476–3483, Aug. 2018.
  • [24] ——, “Input-to-state stability with respect to boundary disturbances for a class of semi-linear parabolic equations,” Automatica, vol. 97, pp. 271–277, 2018.
  • [25] ——, “Input-to-state stability with respect to different boundary disturbances for Burgers’ equation,” in 23rd International Symposium on Mathematical Theory of Networks and Systems, Hong Kong, China, July 2018, pp. 562–569.
  • [26] ——, “ISS with respect to in-domain and boundary disturbances for a generalized Burgers’ equation,” in 57th IEEE Conference on Decision and Control, Miami Beach, FL, USA, Dec. 2018, pp. 3758–3764.
  • [27] ——, “A maximum principle-based approach for input-to-state stability analysis of parabolic equations with boundary disturbances,” in 58th IEEE Conference on Decision and Control, Nice, France, December 2019, pp. 4977–4983.
  • [28] ——, “A weak maximum principle-based approach for input-to-state stability of nonlinear parabolic PDEs with boundary disturbances,” 2019, arXiv:1908.00335.