This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

aainstitutetext: CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, Chinabbinstitutetext: School of Physics Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

A pedagogical review on muon 𝒈𝟐g-2

Song Li a,b    Yang Xiao a,b    Jin Min Yang lisong@itp.ac.cn xiaoyang@itp.ac.cn jmyang@itp.ac.cn
Abstract

This note is a pedagogical mini review on the muon anomalous magnetic moment (g2g-2), translated and adapted from our article published in Modern Physics 4 (2021) 40-47. The contents include: (i) The magnetic moment of an electric-current coil; (ii) The magnetic moment of a charged lepton estimated as a classical charged ball with spin; (iii) The magnetic moment of a charged lepton from Dirac equation with electromagnetic interaction; (iv) The g2g-2 of a charged lepton from QED beyond tree level with effective couplings; (v) The measurement of muon g2g-2; (vi) The muon g2g-2 in low energy supersymmetric models. Finally, we give an outlook.

1 Introduction

Although the phenomenological success of the Standard Model (SM) is tremendous, especially the discovery of the Higgs boson completed the list of all particles predicted by the SM, there are still some unanswered questions, such as the asymmetry between matter and anti-matter, the hierarchy problem, and the dark matter mystery. Therefore, searching for new physics beyond the SM is the main theme in today’s particle physics.

Since particle physics is a discipline relying on experiments, the experimental crises or deviations from the current paradigm theory play a crucial role in the pursue of new physics. This April the Fermilab announced its first measurement result FNAL:gmuon on the muon anomalous magnetic dipole moment (g2g-2), which, combined with the BNL result BNL:gmuon , shows a 4.2σ4.2\sigma deviation from the SM prediction Aoyama:2020ynm . This greatly enhanced the confidence of particle physicists in probing new physics beyond the SM. Utilizing this result, we may know what new theories are favored or excluded. So such a muon g2g-2 anomaly is extremely important in particle physics.

Given the important role played by the muon g2g-2, we in this note give a pedagogical mini review to help those beginners to grasp those knowledge quickly. Starting from the magnetic moment of an electric-current coil and the estimation of the magnetic moment of a lepton as a classical charged ball with spin, we derive the magnetic moment of a lepton from Dirac equation with electromagnetic interaction. Then we dicusss the anomalous magnetic moment (g2g-2) of a lepton from QED beyond tree level with effective couplings. After describing the measurement of muon g2g-2, we discuss the explanation of the muon g2g-2 anomaly in low energy supersymmetric models. Finally, we give an outlook.

2 The g2g-2 of a charged lepton

In this section we will start from the original definition of magnetic moment of an electric-current coil in electromagnetism. For the magnetic moment (non-anomalous) of a charged lepton, we will first delineate it assuming the lepton as a classical charged rigid-body and then derive it from both the Dirac equation and the tree-level QED. Finally we derive the g2g-2 of a charged lepton from the QED beyond tree level.

2.1 The magnetic moment of an electric-current coil

Consider a rectangular electric-current coil in an uniform magnetic field, as shown in Fig.1. From Ampere’s law we know the net force on the coil is zero. But the moment of force on the coil is not zero, whose magnitude is given by

L=FBCa2sinθ+FDAa2sinθ=IabBsinθ.L=F_{BC}\frac{a}{2}\sin\theta+F_{DA}\frac{a}{2}\sin\theta=IabB\sin\theta. (1)

Considering the direction, the moment of force takes the form

L=IAen×B=M×B,\vec{L}=IA\vec{e}_{n}\times\vec{B}=\vec{M}\times\vec{B}, (2)

where AA is the coil area, en\vec{e}_{n} is the unit vector of the normal direction of the coil, and the magnetic moment M\vec{M} is defined as

M=IAen.\vec{M}=IA\vec{e}_{n}. (3)

It is proved in electromagnetism zhao2018ele that the above two formulas apply to planar coils of arbitrary shape.

Refer to caption
Figure 1: A rectangular electric-current coil in an uniform magnetic field.

2.2 The magnetic moment of a charged lepton as a classical rigid-body

If a charged lepton like a muon is regarded as a charged rigid body, and assuming that its charge density ρe\rho_{e} is proportional to the mass density ρm\rho_{m}, that is ρe=αρm\rho_{e}=\alpha\rho_{m}, and thus e=αme=\alpha m, where ee and mm are the charge and mass of the lepton, respectively. The spin that the lepton carries corresponds to a rotation in classical mechanics. If this charged rigid body rotates around the zz-axis with an angular velocity ω\omega, then its magnetic moment can be obtained by an integration:

M\displaystyle M =AdI\displaystyle=\int A\,{\rm d}I (4)
=π(x2+y2)ρe(r)dV2π/ω\displaystyle=\int\pi\left(x^{2}+y^{2}\right)\frac{\rho_{e}(\vec{r}~{}){\rm d}V}{2\pi/\omega}
=α2(ω(x2+y2)ρm(r)dV)\displaystyle=\frac{\alpha}{2}\left(\omega\int\left(x^{2}+y^{2}\right)\rho_{m}(\vec{r}~{}){\rm d}V\right)
=α2L=e2mL,\displaystyle=\frac{\alpha}{2}L=\frac{e}{2m}L,

where LL is the rotational angular momentum of this rigid body. Writing the above result in vector form, we obtain

M=e2mL.\vec{M}=\frac{e}{2m}\vec{L}. (5)

If this magnetic moment is intrinsic, then its magnitude will not change, and its potential energy in the magnetic field is

E=MB,E=-\vec{M}\cdot\vec{B}, (6)

where B\vec{B} is the magnetic induction intensity.

Of course, such a classical way cannot correctly describe the property of a charged lepton and Eq. (5) needs to be re-derived from Dirac equation with electromagnetic interaction or from QED.

2.3 The magnetic moment of a charged lepton from Dirac equation

In the following we derive such a potential in Eq.(6) from Dirac equation with electromagnetic interaction zeng2007quantum . A charged lepton is described by a Dirac spinor wave function ψ(x)\psi(x) which satisfies Dirac equation. With electromagnetic interaction, the Dirac equation takes the form

itψ=[α(PecA)+eϕ+mc2β]ψ,i\frac{\partial}{\partial t}\psi=\left[\vec{\alpha}\cdot\left(\vec{P}-\frac{e}{c}\vec{A}\right)+e\phi+mc^{2}\beta\right]\psi, (7)

where ϕ\phi is the electric potential and cc is the speed of light. We take =1\hbar=1 but keep cc for the convenience to make a non-relativistic approximation in the following derivation. For c=1c=1 the above equation can reduce to the form [iγμ(μ+ieAμ)m]ψ=0\left[i\gamma^{\mu}(\partial_{\mu}+ieA_{\mu})-m\right]\psi=0 in quantum field theory. The relationships between the matrices α\vec{\alpha}, β\beta and the Dirac γ\gamma are β=(γ0)1\beta=(\gamma^{0})^{-1} and αi=βγi\alpha^{i}=\beta\gamma^{i}. In Pauli-Dirac representation, we have

β=(I00I),αi=(0σiσi0).\displaystyle\beta=\begin{pmatrix}I&0\\ 0&-I\end{pmatrix},~{}~{}~{}~{}\alpha^{i}=\begin{pmatrix}0&\sigma^{i}\\ \sigma^{i}&0\end{pmatrix}. (8)

We express the four-component wave function as two two-component wave functions:

ψ=(φχ)eimc2t,\psi=\begin{pmatrix}\varphi\\ \chi\end{pmatrix}{\rm e}^{-imc^{2}t}, (9)

where the static energy of the lepton has been separated. Substitute Eq. (9) into Eq. (7), we obtain

itφ\displaystyle i\frac{\partial}{\partial t}\varphi =cσ(PecA)χ+eϕφ,\displaystyle=c\vec{\sigma}\cdot\left(\vec{P}-\frac{e}{c}\vec{A}\right)\chi+e\phi\varphi, (10)
itχ\displaystyle i\frac{\partial}{\partial t}\chi =cσ(PecA)φ+eϕχ2mc2χ.\displaystyle=c\vec{\sigma}\cdot\left(\vec{P}-\frac{e}{c}\vec{A}\right)\varphi+e\phi\chi-2mc^{2}\chi. (11)

In the non-relativistic limit, the terms that do not contain cc in Eq. (11) can be ignored, and thus we have

χ12mcσ(PecA)φ.\chi\approx\frac{1}{2mc}\vec{\sigma}\cdot\left(\vec{P}-\frac{e}{c}\vec{A}\right)\varphi. (12)

Substituting this result into Eq. (10) and taking c=1c=1, we obtain

itφ=12m[σ(PeA)]2φ+eϕφ.i\frac{\partial}{\partial t}\varphi=\frac{1}{2m}\left[\vec{\sigma}\cdot\left(\vec{P}-e\vec{A}\right)\right]^{2}\varphi+e\phi\varphi. (13)

Using the relation

(σa)(σb)=ab+iσ(a×b),(\vec{\sigma}\cdot\vec{a})(\vec{\sigma}\cdot\vec{b})=\vec{a}\cdot\vec{b}+i\vec{\sigma}\cdot\left(\vec{a}\times\vec{b}\right), (14)

we can get

[σ(PeA)]2\displaystyle\left[\vec{\sigma}\cdot\left(\vec{P}-e\vec{A}\right)\right]^{2} =(PeA)2+iσ[(PeA)×(PeA)]\displaystyle=\left(\vec{P}-e\vec{A}\right)^{2}+i\vec{\sigma}\cdot\left[\left(\vec{P}-e\vec{A}\right)\times\left(\vec{P}-e\vec{A}\right)\right] (15)
=(PeA)2ieσ[P×A+A×P]\displaystyle=\left(\vec{P}-e\vec{A}\right)^{2}-ie\vec{\sigma}\cdot\left[\vec{P}\times\vec{A}+\vec{A}\times\vec{P}\right]
=(PeA)2eσ(×A)\displaystyle=\left(\vec{P}-e\vec{A}\right)^{2}-e\vec{\sigma}\cdot(\nabla\times\vec{A})
=(PeA)2eσB.\displaystyle=\left(\vec{P}-e\vec{A}\right)^{2}-e\vec{\sigma}\cdot\vec{B}.

Substituting Eq. (15) into Eq. (13), we have

itφ=[12m(PeA)2emσ2B+eϕ]φ,i\frac{\partial}{\partial t}\varphi=\left[\frac{1}{2m}\left(\vec{P}-e\vec{A}\right)^{2}-\frac{e}{m}\frac{\vec{\sigma}}{2}\cdot\vec{B}+e\phi\right]\varphi, (16)

where σ/2\vec{\sigma}/2 is the spin S\vec{S} of the lepton. Therefore, in non-relativistic approximation,

H=12m(PeA)2emSB+eϕ.H=\frac{1}{2m}\left(\vec{P}-e\vec{A}\right)^{2}-\frac{e}{m}\vec{S}\cdot\vec{B}+e\phi. (17)

Now comparing this result with Eq. (6), we obtain

M=emS=ge2mS(g=2),\vec{M}=\frac{e}{m}\vec{S}=g\frac{e}{2m}\vec{S}~{}~{}~{}~{}~{}~{}(g=2), (18)

where the factor gg is called the Landé gg factor.

2.4 The magnetic moment of a charged lepton from QED at tree level

The potential of a charged lepton with a magnetic moment M\vec{M} in magnetic field B\vec{B} takes a form in Eq.(6). So the magnetic moment of a charged lepton can be found out from such a potential.

In QED, as depicted in Fig.2, the electromagnetic interaction of a charged lepton takes a form at tree level

=eAμ(x)ψ¯(x)γμψ(x),{\cal H_{I}}=-eA_{\mu}(x)\bar{\psi}(x)\gamma^{\mu}\psi(x), (19)

where Aμ(x)A_{\mu}(x) is the four-vector potential of the electromagnetic field, ee is the magnitude of the electric charge of the charged lepton and γμ\gamma^{\mu} is the Dirac algebra representation matrix given by

γμ=(0σμσ¯μ0),\gamma^{\mu}=\left(\begin{array}[]{cc}0&\sigma^{\mu}\\ \bar{\sigma}^{\mu}&0\end{array}\right), (20)

with σμ\sigma^{\mu} being the Pauli matrices.

Refer to caption
Figure 2: The tree level Feynman diagram showing the interaction of a charged lepton with the electromagnetic field. The interaction vertex is eγμe\gamma^{\mu}.

Since we only consider the influence of the applied magnetic field, we have Aμ(x)=(0,A(x))A_{\mu}(x)=\left(0,-\vec{A}(\vec{x})\right) and

=eAi(x)ψ¯(x)γiψ(x).{\cal H_{I}}=eA^{i}(x)\bar{\psi}(x)\gamma^{i}\psi(x). (21)

In Weyl representation we obtain the free plane-wave solution of the Dirac equation of a charged lepton (we omit the plane-wave factor eipxe^{-ipx} for the time being) peskin2018introduction

u(p)=12Ep(pσξpσ¯ξ)12((1pσ/2m)ξ(1+pσ/2m)ξ)+𝒪(|p|2),u(p)=\frac{1}{\sqrt{2E_{p}}}\left(\begin{array}[]{c}\sqrt{p\cdot\sigma}\xi\\ \sqrt{p\cdot\bar{\sigma}}\xi\end{array}\right)\simeq\frac{1}{\sqrt{2}}\left(\begin{array}[]{c}(1-\vec{p}\cdot\vec{\sigma}/2m)\xi\\ (1+\vec{p}\cdot\vec{\sigma}/2m)\xi\end{array}\right)+{\cal O}(|\vec{p}|^{2}), (22)

where mm is the mass of the charged lepton, and the normalization constant 1/2Ep1/\sqrt{2E_{p}} is to make uu=1u^{\dagger}u=1. So we have

u¯(p)γiu(p)ξ(pσ2mσi+σipσ2m)ξ.\bar{u}(p^{\prime})\gamma^{i}u(p)\simeq\xi^{\prime\dagger}\left(\frac{\vec{p^{\prime}}\cdot\vec{\sigma}}{2m}\sigma^{i}+\sigma^{i}\frac{\vec{p}\cdot\vec{\sigma}}{2m}\right)\xi. (23)

From the property of the Pauli matrices

[σi,σj]=2iϵijkσk,\displaystyle\left[\sigma^{i},\sigma^{j}\right]=2i\epsilon^{ijk}\sigma_{k}, (24)
{σi,σj}=2δijI,\displaystyle\left\{\sigma^{i},\sigma^{j}\right\}=2\delta^{ij}I, (25)
2σiσj=[σi,σj]+{σi,σj},\displaystyle 2\sigma^{i}\sigma^{j}=\left[\sigma^{i},\sigma^{j}\right]+\left\{\sigma^{i},\sigma^{j}\right\}, (26)

we obtain

u¯(p)γiu(p)(p+p)i2mξξ+(imϵijkkj)ξσk2ξ,\bar{u}(p^{\prime})\gamma^{i}u(p)\simeq\frac{(p+p^{\prime})^{i}}{2m}\xi^{\prime\dagger}\xi+\left(\frac{-i}{m}\epsilon^{ijk}k^{j}\right)\xi^{\prime\dagger}\frac{\sigma^{k}}{2}\xi, (27)

where ki=pipik^{i}=p^{\prime i}-p^{i}. Herefater we will not consider the first term which does not contain σ\sigma matrices and thus is irrelevant to spin and magnetic moment. In the second term, ipiip^{\prime i} and ipi-ip^{i} come from iψ¯\partial^{i}\bar{\psi} and iψ\partial^{i}\psi, respectively. Retaining the plane-wave factor eipxe^{-ipx}, we have

(imϵijkkj)ξσk2ξ\displaystyle\left(\frac{-i}{m}\epsilon^{ijk}k^{j}\right)\xi^{\prime\dagger}\frac{\sigma^{k}}{2}\xi
eAi(x)ϵijkm[j(ξeipx)σk2(ξeipx)+(ξeipx)σk2j(ξeipx)]\displaystyle\Rightarrow eA^{i}(x)\frac{-\epsilon^{ijk}}{m}\left[\partial^{j}(\xi^{\prime}e^{-ip^{\prime}x})^{\dagger}\frac{\sigma^{k}}{2}(\xi e^{-ipx})+(\xi^{\prime}e^{-ip^{\prime}x})^{\dagger}\frac{\sigma^{k}}{2}\partial^{j}(\xi e^{-ipx})\right]
=emAi(x)ϵijkj[(ξeipx)σk2(ξeipx)]\displaystyle=-\frac{e}{m}A^{i}(x)\epsilon^{ijk}\partial^{j}\left[(\xi^{\prime}e^{-ip^{\prime}x})^{\dagger}\frac{\sigma^{k}}{2}(\xi e^{-ipx})\right]
=emϵkjij(Ai(x))[(ξeipx)σk2(ξeipx)]+totalderivativeterm,\displaystyle=-\frac{e}{m}\epsilon^{kji}\partial^{j}\left(A^{i}(x)\right)\left[(\xi^{\prime}e^{-ip^{\prime}x})^{\dagger}\frac{\sigma^{k}}{2}(\xi e^{-ipx})\right]+{\rm total~{}derivative~{}term}, (28)

where the total derivative term can be neglected. Since the magnectic potential Ai(x)A^{i}(x) and the magnetic field Bi(x)B^{i}(x) are related as

Bk=ϵkjijAi,B^{k}=\epsilon^{kji}\partial^{j}A^{i}, (29)

then we have the spin-dependent (SD) interaction

(SD)=B(emS)=BM,{\cal H_{I}}(SD)=-\vec{B}\cdot\left(\frac{e}{m}\vec{S}\right)=-\vec{B}\cdot\vec{M}, (30)

with M\vec{M} being the magnetic moment of a charged lepton

M=emS=ge2mS(g=2),\vec{M}=\frac{e}{m}\vec{S}=g\frac{e}{2m}\vec{S}~{}~{}~{}~{}~{}~{}(g=2), (31)

and S\vec{S} being the spin of a charged lepton (see eq.(3.111) in peskin2018introduction )

S=(ξeipx)σ2(ξeipx).\vec{S}=(\xi^{\prime}e^{-ip^{\prime}x})^{\dagger}\frac{\vec{\sigma}}{2}(\xi e^{-ipx}). (32)

2.5 The g2g-2 of a charged lepton from QED beyond tree level

In QED beyond tree level, as shown in Fig.3, the interaction vertex of a charged lepton with electromagnetic field takes the effective form

ieϵμ(k)u¯(p)Γμu(p),-ie\epsilon_{\mu}(k)\bar{u}(p^{\prime})\Gamma^{\mu}u(p), (33)

where ϵμ(k)\epsilon_{\mu}(k) is the polarization vector of the electromagnetic field and Γμ\Gamma^{\mu} is an effective form invloving all Lorentz vectors in Fig.3.

Refer to caption
Figure 3: The Feynman diagram showing the interaction of a charged lepton with the electromagnetic field beyond tree level with an effective vertex.

The general form of Γμ\Gamma^{\mu} includes γμ\gamma^{\mu}, kμ=pμpμk^{\mu}=p^{\prime\mu}-p^{\mu}, Pμ=pμ+pμP^{\mu}=p^{\prime\mu}+p^{\mu}, and some contractions of the anti-symmetric tensor ϵμναβ\epsilon^{\mu\nu\alpha\beta} with the momentums. Utilizing the relations

ϵμναβ=iγ[μγνγαγβ]γ5,\displaystyle\epsilon^{\mu\nu\alpha\beta}=i\gamma^{[\mu}\gamma^{\nu}\gamma^{\alpha}\gamma^{\beta]}\gamma^{5}, (34)
γμpμu(p)=mu(p),\displaystyle\gamma^{\mu}p_{\mu}u(p)=mu(p), (35)
u¯(p)γμpμ=u¯(p)m,\displaystyle\bar{u}(p)\gamma^{\mu}p_{\mu}=\bar{u}(p)m, (36)
γμγν+γνγμ=2gμν,\displaystyle\gamma^{\mu}\gamma^{\nu}+\gamma^{\nu}\gamma^{\mu}=2g^{\mu\nu}, (37)

we can reform Γμ\Gamma^{\mu} not to contain the contrations of γ\gamma matrics or ϵμναβ\epsilon^{\mu\nu\alpha\beta} with the momentums. Finally, Γμ\Gamma^{\mu} takes a form

Γμ=γμA1+Pμ2mA2+ikμ2mA3+γμγ5A4+kμ2mγ5A5+iPμ2mγ5A6,\Gamma^{\mu}=\gamma^{\mu}A_{1}+\frac{P^{\mu}}{2m}A_{2}+i\frac{k^{\mu}}{2m}A_{3}+\gamma^{\mu}\gamma_{5}A_{4}+\frac{k^{\mu}}{2m}\gamma_{5}A_{5}+i\frac{P^{\mu}}{2m}\gamma_{5}A_{6}, (38)

where the factor 1/2m1/2m ensures the corresponding AsA^{\prime}s to be dimensionless, and the factor ii ensures the corresponding AsA^{\prime}s to be real so that ϵμ(k)u¯(p)Γμu(p)\epsilon_{\mu}(k)\bar{u}(p^{\prime})\Gamma^{\mu}u(p) is hermitian. As the functions of k2k^{2}, the coefficients AiA_{i} are Lorentz scalars.

Since u¯(p)Γμu(p)\bar{u}(p^{\prime})\Gamma^{\mu}u(p) is a conserved current in QED, we have

kμu¯(p)Γμu(p)=0,k_{\mu}\bar{u}(p^{\prime})\Gamma^{\mu}u(p)=0, (39)

which will further restrain the form of Γμ\Gamma^{\mu}. From the relations

kμPμ=0,\displaystyle k_{\mu}P^{\mu}=0, (40)
kμu¯(p)γμu(p)=0,\displaystyle k_{\mu}\bar{u}(p^{\prime})\gamma^{\mu}u(p)=0, (41)
kμu¯(p)γμγ5u(p)=2mu¯(p)γ5u(p),\displaystyle k_{\mu}\bar{u}(p^{\prime})\gamma^{\mu}\gamma_{5}u(p)=2m\bar{u}(p^{\prime})\gamma_{5}u(p), (42)

we have

kμu¯(p)Γμu(p)=u¯(p)(ikμkμ2mA3+2mγ5A4+kμkμ2mγ5A5)u(p)=0,k_{\mu}\bar{u}(p^{\prime})\Gamma^{\mu}u(p)=\bar{u}(p^{\prime})\left(i\frac{k^{\mu}k_{\mu}}{2m}A_{3}+2m\gamma_{5}A_{4}+\frac{k^{\mu}k_{\mu}}{2m}\gamma_{5}A_{5}\right)u(p)=0, (43)

which leads to A3=0A_{3}=0 and A5=A44m2/k2A_{5}=-A_{4}4m^{2}/k^{2}. Then Γμ\Gamma^{\mu} takes a form

Γμ=γμA1+Pμ2mA2+(γμ2mkμk2)γ5A4+iPμ2mγ5A6.\Gamma^{\mu}=\gamma^{\mu}A_{1}+\frac{P^{\mu}}{2m}A_{2}+\left(\gamma^{\mu}-\frac{2mk^{\mu}}{k^{2}}\right)\gamma_{5}A_{4}+i\frac{P^{\mu}}{2m}\gamma_{5}A_{6}. (44)

Further, utilizing the Gordon identities

u¯(p)Pμ2mu(p)=u¯(p)(γμiσμνkν2m)u(p),\displaystyle\bar{u}(p^{\prime})\frac{P^{\mu}}{2m}u(p)=\bar{u}(p^{\prime})\left(\gamma^{\mu}-i\sigma^{\mu\nu}\frac{k_{\nu}}{2m}\right)u(p), (45)
u¯(p)Pμ2mγ5u(p)=u¯(p)(iσμνkν2mγ5)u(p),\displaystyle\bar{u}(p^{\prime})\frac{P^{\mu}}{2m}\gamma_{5}u(p)=\bar{u}(p^{\prime})\left(-i\sigma^{\mu\nu}\frac{k_{\nu}}{2m}\gamma_{5}\right)u(p), (46)

we have

Γμ=γμFE(k2)+(γμ2mkμk2)γ5FA(k2)+iσμνkν2mFM(k2)+σμνkν2mγ5FD(k2),\Gamma^{\mu}=\gamma^{\mu}F_{E}(k^{2})+\left(\gamma^{\mu}-\frac{2mk^{\mu}}{k^{2}}\right)\gamma_{5}F_{A}(k^{2})+i\sigma^{\mu\nu}\frac{k_{\nu}}{2m}F_{M}(k^{2})+\sigma^{\mu\nu}\frac{k_{\nu}}{2m}\gamma_{5}F_{D}(k^{2}), (47)

where the renamed FF coefficients are called form factors.

Since the parameter ee in the Hamiltonian density will be corrected by the FF form factors, it is no longer the measured electric charge which needs to be redefined. For this end, we take Aμ=(ϕ(x),0)A_{\mu}=(\phi(x),\vec{0}) and then only need to consider Γ0\Gamma^{0}. Taking the zero-momentum limit and utilizing

u(p)12(ξξ)+𝒪(p),u(p)\simeq\frac{1}{\sqrt{2}}\left(\begin{array}[]{c}\xi\\ \xi\end{array}\right)+{\cal O}(\vec{p}), (48)

and

γ0γ0=(1001),γ0γ0γ5=(1001),\gamma^{0}\gamma^{0}=\left(\begin{array}[]{cc}~{}~{}1{}{}&~{}~{}0{}{}\\ 0&1\end{array}\right),~{}~{}~{}~{}~{}~{}~{}\gamma^{0}\gamma^{0}\gamma_{5}=\left(\begin{array}[]{cc}~{}~{}-1{}{}&~{}~{}0{}{}\\ 0&1\end{array}\right), (49)

we obtain

u¯(p)Γ0u(p)FE(0)ξξ+𝒪(p,p),\bar{u}(p^{\prime})\Gamma^{0}u(p)\simeq F_{E}(0)\xi^{\dagger}\xi+{\cal O}(\vec{p},\vec{p^{\prime}}), (50)

which means we have a term in the Hamiltonian density:

eFE(0)ϕ(x)[(ξeipx)(ξeipx)].eF_{E}(0)\phi(x)\left[(\xi^{\prime}e^{-ip^{\prime}x})^{\dagger}(\xi e^{-ipx})\right]. (51)

This term is just the electric potential and thus eFE(0)eF_{E}(0) is the physical charge. So we need to redefine the electric charge to be ee, which means FE(0)=1F_{E}(0)=1. This is called the renormalization condition of the electric charge. Therefore, the first term of Γμ\Gamma^{\mu} is γμ+𝒪(k2)\gamma^{\mu}+{\cal O}(k^{2}).

Since we are concerned primarily with the magnetic moment, we focus on the FMF_{M} term. For simplicity we set Aμ=(0,A(x))A_{\mu}=\left(0,\vec{A}(\vec{x})\right). In the low energy limit kν=(0,k)k_{\nu}=(0,-\vec{k}), for σμν\sigma^{\mu\nu} only the spatial components σij\sigma^{ij} need to be considered. On the other hand, since the FMF_{M} term already contains the momentums to the first power, we can use the zero-momentum limit of u(p)u(p). Also noticing the relation

γ0σij=ϵijk(0σkσk0),\gamma^{0}\sigma^{ij}=\epsilon^{ijk}\left(\begin{array}[]{cc}~{}~{}0{}{}&~{}~{}\sigma^{k}{}{}\\ \sigma^{k}&0\end{array}\right), (52)

we have

u¯(p)iσiνkν2mFM(k2)u(p)(iFM(0)mϵijkkj)ξσk2ξ.\bar{u}(p^{\prime})i\sigma^{i\nu}\frac{k_{\nu}}{2m}F_{M}(k^{2})u(p)\simeq\left(\frac{-iF_{M}(0)}{m}\epsilon^{ijk}k^{j}\right)\xi^{\prime\dagger}\frac{\sigma^{k}}{2}\xi. (53)

Compared with eqs.(28-30), this leads to an additional term in the Hamiltonian

eFM(0)mB[(ξeipx)σ2(ξeipx)].-\frac{eF_{M}(0)}{m}\vec{B}\cdot\left[(\xi^{\prime}e^{-ip^{\prime}x})^{\dagger}\frac{\vec{\sigma}}{2}(\xi e^{-ipx})\right]. (54)

Compared with eq.(31), we have

M=ge2mS,\vec{M}=g\frac{e}{2m}\vec{S}, (55)

where

g=2+2FM(0),\displaystyle g=2+2F_{M}(0), (56)
ag22=FM(0).\displaystyle a\equiv\frac{g-2}{2}=F_{M}(0). (57)

In the calculation of FM(0)F_{M}(0), we usually need not to derive the whole Γμ\Gamma^{\mu}. We can use the γ\gamma algebra to construct a model-independent projection matrix PMP_{M} and then calculate tr(ΓμPM)tr(\Gamma^{\mu}P_{M}).

Before ending this section, we digress a little to discuss the form of electric dipole moment of a charged lepton. For this end, consider the FD(k2)F_{D}(k^{2}) term in eq.(47) in the low energy limit and set Aμ=(ϕ(x),0)A_{\mu}=\left(\phi(x),\vec{0}\right). Then for σμν\sigma^{\mu\nu} we only need to cosider σ0i\sigma^{0i}. Noticing the relation

γ0σ0iγ5=i(0σiσi0),\gamma^{0}\sigma^{0i}\gamma_{5}=i\left(\begin{array}[]{cc}~{}~{}0{}{}&~{}~{}\sigma^{i}{}{}\\ \sigma^{i}&0\end{array}\right), (58)

we have

u¯(p)σμνkν2mFD(k2)u(p)\displaystyle\bar{u}(p^{\prime})\sigma^{\mu\nu}\frac{k_{\nu}}{2m}F_{D}(k^{2})u(p) \displaystyle\simeq (iFD(0)mki)ξσi2ξ\displaystyle\left(\frac{-iF_{D}(0)}{m}k^{i}\right)\xi^{\prime\dagger}\frac{\sigma^{i}}{2}\xi (59)
\displaystyle\Rightarrow eϕ(x)(FD(0)m)iki[(ξeipx)σi2(ξeipx)]\displaystyle e\phi(x)\left(\frac{-F_{D}(0)}{m}\right)ik^{i}\left[\left(\xi^{\prime}e^{-ip^{\prime}x}\right)^{\dagger}\frac{\sigma^{i}}{2}\left(\xi e^{-ipx}\right)\right]
=\displaystyle= eFD(0)mϕ(x)i[(ξeipx)σi2(ξeipx)]\displaystyle-\frac{eF_{D}(0)}{m}\phi(x)\partial^{i}\left[\left(\xi^{\prime}e^{-ip^{\prime}x}\right)^{\dagger}\frac{\sigma^{i}}{2}\left(\xi e^{-ipx}\right)\right]
=\displaystyle= eFD(0)m(iϕ(x))[(ξeipx)σi2(ξeipx)]\displaystyle\frac{eF_{D}(0)}{m}\left(\partial^{i}\phi(x)\right)\left[\left(\xi^{\prime}e^{-ip^{\prime}x}\right)^{\dagger}\frac{\sigma^{i}}{2}\left(\xi e^{-ipx}\right)\right]
=\displaystyle= eFD(0)mES,\displaystyle\frac{eF_{D}(0)}{m}\vec{E}\cdot\vec{S},

where Ei=iϕE^{i}=\partial^{i}\phi. Compared with the potential of an electric dipole momemnt in an electric field V(x)=dEV(x)=-\vec{d}\cdot\vec{E}, we obtain the electric dipole moment of a charged lepton

d=eFD(0)mS.\vec{d}=-\frac{eF_{D}(0)}{m}\vec{S}. (60)

3 The measurement of muon g2g-2 at BNL and Fermilab

So far our discussions on magnetic moment and g2ag-2\equiv a_{\ell} are applicable to any charged lepton, which in the SM can be an electron, a muon or a tau. If new physics at some high energy scale Λ\Lambda contributes to aa_{\ell}, its contribution δa\delta a_{\ell} satisfies

δaa(mΛ)2.\frac{\delta a_{\ell}}{a_{\ell}}\sim\left(\frac{m_{\ell}}{\Lambda}\right)^{2}. (61)

This means that the g2g-2 of a heavier lepton is more sensitive to new physics. Although the tau lepton is heaviest, its liftime is too short and its g2g-2 is very hard to precisely measure. The electron is stable and can be copiously produced, but its mass is too small, about 1/2001/200 of the muon mass. Overall, among the leptons, the muon g2g-2 is the best probe of new physics.

3.1 A description of the measuring method

Due to its magnetic moment M\vec{M}, an electric-current coil in a magnetic field B\vec{B} may have a non-zero moment of force L=M×B\vec{L}=\vec{M}\times\vec{B} and hence rotate. For a muon, if assumed to be a uniformly charged ball, its spin may lead to a non-zero moment of force which make the spin rotate around the applied magnetic field:

dSdt=L=M×B=ge2mS×B.\frac{d\vec{S}}{dt}=\vec{L}=\vec{M}\times\vec{B}=g\frac{e}{2m}\vec{S}\times\vec{B}. (62)

This is called the Larmor precession of a muon, as shown in Fig.4. The angular velocity of the precession is

ω=ge2mB.\omega=g\frac{e}{2m}B. (63)

So we can obtain the value of gg from the measurement of the muon spin-change angle in a given period of time. The short lifetime (2.2 μs\mu s) of a muon can be prolonged by its high velocity from special theory of reletivity. On the other hand, technically the moving muons are easier to control than stationary muons. So in experiments the muons are produced in some way and then injected into a storage ring where the spin precessions are measured.

Refer to caption
Figure 4: The Larmor precession of a muon.

Of course, in experiments the spin changes of the muons are not measured directly. Instead, they are performed via the measurement of its decay products, i.e., the electrons. The technical details are beyond the scope of this review. However, we should note that the g2g-2 measurement mentioned above is discussed assuming the muons to be stationary. In real experiments, the muons are moving in a storage ring. So we need to perform a Lorentz transformation to obtain the formulas in the laboratory frame. The result in the the laboratory frame is given by book:Jegerlehner:2017

dSdt=(ωc+ωa)×S,\frac{d\vec{S}}{dt}=(\vec{\omega}_{c}+\vec{\omega}_{a})\times\vec{S}, (64)

where

ωc=eγm(B+γ2γ21E×vc2),\displaystyle\vec{\omega}_{c}=-\frac{e}{\gamma m}\left(\vec{B}+\frac{\gamma^{2}}{\gamma^{2}-1}\frac{\vec{E}\times\vec{v}}{c^{2}}\right), (65)
ωa=em[aBa(γγ+1vBc2)v+(a1γ21)E×vc2],\displaystyle\vec{\omega}_{a}=-\frac{e}{m}\left[a\vec{B}-a\left(\frac{\gamma}{\gamma+1}\frac{\vec{v}\cdot\vec{B}}{c^{2}}\right)\vec{v}+\left(a-\frac{1}{\gamma^{2}-1}\right)\frac{\vec{E}\times\vec{v}}{c^{2}}\right], (66)

where vv is the velocity of the muon and γ=1/1v2/c2\gamma=1/\sqrt{1-v^{2}/c^{2}}. If the magnetic field is precisely perpendicular to the storage ring and the velocity of the muon satisfies

a=1γ21,a=\frac{1}{\gamma^{2}-1}, (67)

then γ29.3\gamma\simeq 29.3 is called the magic γ\gamma-factor and ωa\vec{\omega}_{a} can be simplified as

ωa=aemB.\vec{\omega}_{a}=-a\frac{e}{m}\vec{B}. (68)

3.2 The results of the measurements

The BNL E821 result is BNL:gmuon

aμBNL=116592091(63)×1011.a^{\rm BNL}_{\mu}=116592091(63)\times 10^{-11}. (69)

The Fermilab result combined with the BNL result is FNAL:gmuon

aμExp=aμBNL+FNAL=116592061(41)×1011.a^{\rm Exp}_{\mu}=a^{\rm BNL+FNAL}_{\mu}=116592061(41)\times 10^{-11}. (70)

The SM predition

aμSM=116591810(43)×1011,a^{\rm SM}_{\mu}=116591810(43)\times 10^{-11}, (71)

consists of the following contributions Aoyama:2012wk ; Aoyama:2019ryr ; Czarnecki:2002nt ; Gnendiger:2013pva ; Davier:2017zfy ; Keshavarzi:2018mgv ; Colangelo:2018mtw ; Hoferichter:2019gzf ; Davier:2019can ; Keshavarzi:2019abf ; Kurz:2014wya ; Melnikov:2003xd ; Masjuan:2017tvw ; Colangelo:2017fiz ; Hoferichter:2018kwz ; Gerardin:2019vio ; Bijnens:2019ghy ; Colangelo:2019uex ; Blum:2019ugy ; Colangelo:2014qya

aμQED=116584718.9(1)×1011,\displaystyle a^{\rm QED}_{\mu}=116584718.9(1)\times 10^{-11}, (72)
aμEW=153.6(1)×1011,\displaystyle a^{\rm EW}_{\mu}=153.6(1)\times 10^{-11}, (73)
aμHVP,LO=6931(40)×1011,\displaystyle a^{\rm HVP,~{}LO}_{\mu}=6931(40)\times 10^{-11}, (74)
aμHVP,NLO=98.3(7)×1011,\displaystyle a^{\rm HVP,~{}NLO}_{\mu}=-98.3(7)\times 10^{-11}, (75)
aμHVP,NNLO=12.4(1)×1011,\displaystyle a^{\rm HVP,~{}NNLO}_{\mu}=12.4(1)\times 10^{-11}, (76)
aμHLBL+aμHLBL,NLO=92(18)×1011,\displaystyle a^{\rm HLBL}_{\mu}+a^{\rm HLBL,~{}NLO}_{\mu}=92(18)\times 10^{-11}, (77)

where the main uncertainties come from the hadronic contributions in HVP and HLBL. The deviation between the experiment and SM is

aμExpaμSM=251(59)×1011,a^{\rm Exp}_{\mu}-a^{\rm SM}_{\mu}=251(59)\times 10^{-11}, (78)

which is 4.2σ4.2\sigma. However, if the lattice simulation result of the hadronic contribution from the BMW group is taken, the deviation between the experiment and SM can be reduced to 1.5σ1.5\sigma gm2-lattice .

3.3 The implication for low energy supersymmetry

The deviation between the experiment and the SM prediction for the muon g2g-2 may be a harpinger of new physics beyond the SM. Among the new physics theories, the low energy supersymmetry (SUSY) is the most popular candidate. In SUSY the smuons or muon sneutrino plus electroweakinos (electroweak gauginos and higgsinos) contribute to muon g2g-2 at one loop level, the same level as the SM. For a common sparticle mass MSUSYM_{SUSY}, the SUSY contribution to muon g2g-2 can be approximated as Moroi:1995yh

δaμSUSYtanβ(100GeVMSUSY)21010,\delta a^{\rm SUSY}_{\mu}\sim\tan\beta\left(\frac{100{\rm GeV}}{M_{SUSY}}\right)^{2}10^{-10}, (79)

where tanβ\tan\beta is the ratio of the vacuum expectation values of the two Higgs doublets. Clearly, to generate the required contribution to explain the muon g2g-2 deviation, a low SUSY mass and a large tanβ\tan\beta are favored. Combined with other experimental constraints, such as the dark matter detections and the LHC searches of sparticles, the favored parameter space of SUSY can be specified, which can be of some guidance for the future search of spartilces at the HL-LHC.

In the low energy effective minimal SUSY model(MSSM) or called phenomenological MSSM(pMSSM). the masses of bino (M1M_{1}), winos (M2M_{2}), higgsinos (μ\mu) and smuons/sneutrino (M~M_{\tilde{\ell}}) are all independent parameters. As shown in Fig. 5 gm2-gutsusy-01 , considering other constraints including the dark matter relic density, the dark matter direct detection, the vacuum stability and the LHC search for sleptons, the survived MSSM parameter space can allow for the explanation of the muon g2g-2 at 2σ2\sigma level gm2-gutsusy-01 ; gm2-mssm-01 ; gm2-mssm-02 ; gm2-mssm-03 ; gm2-mssm-04 ; gm2-mssm-05 ; gm2-mssm-06 ; Iwamoto:2021aaf ; Gu:2021mjd ; Cox:2021gqq .

Refer to caption
Figure 5: The MSSM parameter space to explain the muon g2g-2 at 2σ2\sigma level gm2-gutsusy-01 . The dark green region and the region expanded by the orange part can explain the FNAL+BNL and BNL results at 2σ2\sigma level, respectively. The black region is excluded by Xenon-1T 90%90\% CL limits. The region to the right of blue dash lines spoils stability of the electroweak vacuum. The grey region gives an over-abundance for dark matter. The region between the ATLAS upper and lower lines is excluded by 13 TeV LHC search of slepton pair production at 95%95\% CL.

The SUSY explanation of the muon g2g-2 at 2σ2\sigma level requires light electroweakinos and sleptons, which can be most covered at the HL-LHC gm2-mssm-01 ; Aboubrahim:2021ily . For example, in the scenario where the dark matter is bino-like with bino-wino coannihilation to achieve the correct dark matter relic density, the muon g2g-2 at 2σ2\sigma level requires light bino and winos, whose pair production at the LHC can be well probed, as shown in Fig.6.

Refer to caption
Figure 6: The observability of the MSSM light bino-wino-slepton scenario for the explanation of the muon g2g-2 at 2σ2\sigma level gm2-mssm-01 .

While the muon g2g-2 anomaly can be readily explained in the low energy effective MSSM due to its large number of free soft SUSY-breaking parameters, the explanation is rather challenging in the constrained models with given SUSY breaking mediation mechanisms  gm2-gutsusy-01 ; gm2-gutsusy-02 ; gm2-gutsusy-03 ; Han:2020exx ; Lamborn:2021snt ; Yin:2021mls , such as mSUGRA/CMSSM, GMSB and AMSB. In these fancy models we have boundary conditions for the soft SUSY-breaking terms at some high energy scale, e.g., the GUT scale in mSUGRA/CMSSM. Due to the boundary conditions, the soft masses at the weak scale are correlated. To give a 125 GeV SM-like Higgs boson mass, the stop masses must be above TeV scale and the correlated slepton masses cannot be as light as required by the explanation of the muon g2g-2 anomaly. For the mSUGRA/CMSSM, the tension between the 125 GeV SM-like Higgs boson mass and the muon g2g-2 is shown in Fig.7. In order to accomodate a 125 GeV SM-like Higgs boson mass and the muon g2g-2 at 2σ2\sigma level, these models need to improved or extended. For example, one can make colored sparticles much heavier than uncolored sparticles gm2-SUGRA-ext-01 ; gm2-SUGRA-ext-02 ; gm2-SUGRA-ext-03 ; gm2-SUGRA-ext-04 ; gm2-GMSB-AMSB-ext-01 ; gm2-GMSB-AMSB-ext-02 (so stops can be much heavier than sleptons and gluino can be much heavier than electroweakinos at weak scale) or couple the messengers with the Higgs doublets (so the 125 GeV SM-like Higgs boson mass can be achieved without too heavy stops) GMSB-yukawa-higgs .

Refer to caption
Figure 7: The result of a global fit of the mSUGRA/CMSSM, showing the tension between the 125 GeV SM-like Higgs boson mass and the muon g2g-2 cmssm-fit .

If we go beyond the minimal framework of SUSY, the accomodation of the 125 GeV SM-like Higgs boson mass and the muon g2g-2 at 2σ2\sigma level may becomes easy. For example, in the next-to-minimal SUSY model (NMSSM) a singlet Higgs field is introduced and hence the 125 GeV SM-like Higgs boson mass can be obtained at tree level without the large effects of heavy stops (the relatively light stops make this model more natural than the MSSM nmssm-mssm ). The explanation of the muon g2g-2 can be achieved in the NMSSM gm2-nmssm-01 ; gm2-nmssm-02 ; gm2-nmssm-03 .

Noe that there have been some attempts to explain the muon g2g-2 together with other physical problems (e.g. the proton radius puzzle Zhu:2021vlz ). Especially, if the value of the fine structure constant measured by the Berkeley experiment berkeley is used, the electron g2g-2 predicted by the SM will also deviate from the experimental value Aoyama:2019ryr ; Hanneke:2008tm . A joint explanation of such an electron g2g-2 anomaly and the muon g2g-2 anomaly is shown to be feasible in SUSY joint-01 ; joint-02 ; joint-03 ; joint-04 ; joint-05 ; Yang:2020bmh . If we further consider the correlation between muon g2g-2 and electron EDM, the CP-phases in SUSY can be stringently constrained cp-phase-01 ; cp-phase-02 . In this review we do not cover various non-SUSY explanations of the g2g-2 or EDM in miscellaneous extensions of the SM, say the 2HDM (see, e.g., Keus:2017ioh ; Wang:2016ggf ; Wang:2018hnw ), the 3-3-1 model (see, e.g., Hue:2021zyw ; Li:2021poy ) and flavor models (see, e.g., Calibbi:2020emz ; Han:2020dwo ; Yin:2021yqy ).

4 Outlook

Since the muon g2g-2 may be sensitive to new physics beyond the SM, it will continue playing an important role in the probe of new physics. So the Fermilab experiment on the measurement of the muon g2g-2 has been and will continue to be a focus point in particle physics. So far the result reported by the Fermilab is rather preliminary and only used 6%6\% data of its planned ultimate yield, as shown in Fig.8. In the coming years, Fermilab will continue updating its result amd finally achieve a measuement 4 times as precise as the BNL. If the central measured value and the SM prediction are not changing much, the deviation shown from the final Fermilab result would reach the 5σ5\sigma level. The forthcoming updated results on both the experimental value and the SM calculation improvement (especially from the lattice groups) will bring a huge impact on new physics like the low energy supersymmetry. We just continue to monitor the developments on this front.

Refer to caption
Figure 8: The Fermilab experiment plan on the muon g2g-2 fnal-data-plan .
Acknowledgements.
This work was supported by the National Natural Science Foundation of China (NNSFC) under grant Nos.11821505 and 12075300, by Peng-Huan-Wu Theoretical Physics Innovation Center (12047503), by the CAS Center for Excellence in Particle Physics (CCEPP), by the CAS Key Research Program of Frontier Sciences, and by a Key R&D Program of Ministry of Science and Technology of China under number 2017YFA0402204.

References

  • (1) Muon g2g-2 Collaboration collaboration, B. Abi, T. Albahri, S. Al-Kilani, D. Allspach, L. P. Alonzi, A. Anastasi et al., Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126 (Apr, 2021) 141801.
  • (2) Muon g-2 collaboration, G. W. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003, [hep-ex/0602035].
  • (3) T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rept. 887 (2020) 1–166, [2006.04822].
  • (4) K. Zhao and X. Chen, Electromagnetism. Higher Education Press, 4th ed., 2018.
  • (5) J. Zeng, Quantum mechanics. Science Press, 4th ed., 2007.
  • (6) M. E. Peskin, An introduction to quantum field theory. CRC press, 2018, https://doi.org/10.1201/9780429503559.
  • (7) F. Jegerlehner, The Anomalous Magnetic Moment of the Muon. Springer Tracts in Modern Physics volume 274. Springer, second ed., 2017, 10.1007/978-3-319-63577-4.
  • (8) T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete Tenth-Order QED Contribution to the Muon g2g-2, Phys. Rev. Lett. 109 (2012) 111808, [1205.5370].
  • (9) T. Aoyama, T. Kinoshita and M. Nio, Theory of the Anomalous Magnetic Moment of the Electron, Atoms 7 (2019) 28.
  • (10) A. Czarnecki, W. J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D67 (2003) 073006, [hep-ph/0212229].
  • (11) C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to (g2)μ(g-2)_{\mu} after the Higgs boson mass measurement, Phys. Rev. D88 (2013) 053005, [1306.5546].
  • (12) M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g2g-2 and α(mZ2){\alpha(m_{Z}^{2})} using newest hadronic cross-section data, Eur. Phys. J. C77 (2017) 827, [1706.09436].
  • (13) A. Keshavarzi, D. Nomura and T. Teubner, Muon g2g-2 and α(MZ2)\alpha(M_{Z}^{2}): a new data-based analysis, Phys. Rev. D97 (2018) 114025, [1802.02995].
  • (14) G. Colangelo, M. Hoferichter and P. Stoffer, Two-pion contribution to hadronic vacuum polarization, JHEP 02 (2019) 006, [1810.00007].
  • (15) M. Hoferichter, B.-L. Hoid and B. Kubis, Three-pion contribution to hadronic vacuum polarization, JHEP 08 (2019) 137, [1907.01556].
  • (16) M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to 𝛂(𝐦𝐙𝟐)\mathbf{\boldsymbol{\alpha}(m_{Z}^{2})}, Eur. Phys. J. C80 (2020) 241, [1908.00921].
  • (17) A. Keshavarzi, D. Nomura and T. Teubner, The g2g-2 of charged leptons, α(MZ2)\alpha(M_{Z}^{2}) and the hyperfine splitting of muonium, Phys. Rev. D101 (2020) 014029, [1911.00367].
  • (18) A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order, Phys. Lett. B734 (2014) 144–147, [1403.6400].
  • (19) K. Melnikov and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev. D70 (2004) 113006, [hep-ph/0312226].
  • (20) P. Masjuan and P. Sánchez-Puertas, Pseudoscalar-pole contribution to the (gμ2)(g_{\mu}-2): a rational approach, Phys. Rev. D95 (2017) 054026, [1701.05829].
  • (21) G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersion relation for hadronic light-by-light scattering: two-pion contributions, JHEP 04 (2017) 161, [1702.07347].
  • (22) M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold and S. P. Schneider, Dispersion relation for hadronic light-by-light scattering: pion pole, JHEP 10 (2018) 141, [1808.04823].
  • (23) A. Gérardin, H. B. Meyer and A. Nyffeler, Lattice calculation of the pion transition form factor with Nf=2+1N_{f}=2+1 Wilson quarks, Phys. Rev. D100 (2019) 034520, [1903.09471].
  • (24) J. Bijnens, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Short-distance constraints for the HLbL contribution to the muon anomalous magnetic moment, Phys. Lett. B798 (2019) 134994, [1908.03331].
  • (25) G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub and P. Stoffer, Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g2)μ(g-2)_{\mu} with large-NcN_{c} Regge models, JHEP 03 (2020) 101, [1910.13432].
  • (26) T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C. Jung et al., The hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD, Phys. Rev. Lett. 124 (2020) 132002, [1911.08123].
  • (27) G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera and P. Stoffer, Remarks on higher-order hadronic corrections to the muon g2g-2, Phys. Lett. B735 (2014) 90–91, [1403.7512].
  • (28) S. Borsanyi et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593 (2021) 51–55, [2002.12347].
  • (29) T. Moroi, The Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 6565–6575, [hep-ph/9512396].
  • (30) F. Wang, L. Wu, Y. Xiao, J. M. Yang and Y. Zhang, GUT-scale constrained SUSY in light of new muon g-2 measurement, Nucl. Phys. B 970 (2021) 115486, [2104.03262].
  • (31) M. Abdughani, K.-I. Hikasa, L. Wu, J. M. Yang and J. Zhao, Testing electroweak SUSY for muon gg - 2 and dark matter at the LHC and beyond, JHEP 11 (2019) 095, [1909.07792].
  • (32) P. Cox, C. Han and T. T. Yanagida, Muon g2g-2 and dark matter in the minimal supersymmetric standard model, Phys. Rev. D 98 (2018) 055015, [1805.02802].
  • (33) P. Athron, C. Balázs, D. H. Jacob, W. Kotlarski, D. Stöckinger and H. Stöckinger-Kim, New physics explanations of aμa_{\mu} in light of the FNAL muon g2g-2 measurement, 2104.03691.
  • (34) H. Baer, V. Barger and H. Serce, Anomalous muon magnetic moment, supersymmetry, naturalness, LHC search limits and the landscape, Phys. Lett. B 820 (2021) 136480, [2104.07597].
  • (35) W. Altmannshofer, S. A. Gadam, S. Gori and N. Hamer, Explaining (g2)μ(g-2)_{\mu} with Multi-TeV Sleptons, 2104.08293.
  • (36) A. Kobakhidze, M. Talia and L. Wu, Probing the MSSM explanation of the muon g-2 anomaly in dark matter experiments and at a 100 TeV pppp collider, Phys. Rev. D 95 (2017) 055023, [1608.03641].
  • (37) S. Iwamoto, T. T. Yanagida and N. Yokozaki, Wino-Higgsino dark matter in the MSSM from the g2g-2 anomaly, 2104.03223.
  • (38) Y. Gu, N. Liu, L. Su and D. Wang, Heavy bino and slepton for muon g2g-2 anomaly, Nucl. Phys. B 969 (2021) 115481, [2104.03239].
  • (39) P. Cox, C. Han and T. T. Yanagida, Muon g2g-2 and Co-annihilating Dark Matter in the MSSM, 2104.03290.
  • (40) A. Aboubrahim, M. Klasen, P. Nath and R. M. Syed, Future searches for susy at the lhc post fermilab (g2)μ(g-2)_{\mu}, 7, 2021, 2107.06021.
  • (41) M. Chakraborti, L. Roszkowski and S. Trojanowski, GUT-constrained supersymmetry and dark matter in light of the new (g2)μ(g-2)_{\mu} determination, JHEP 05 (2021) 252, [2104.04458].
  • (42) A. Aboubrahim, P. Nath and R. M. Syed, Yukawa coupling unification in an SO(10) model consistent with Fermilab (g2)μ(g-2)_{\mu} result, JHEP 06 (2021) 002, [2104.10114].
  • (43) C. Han, M. L. López-Ibáñez, A. Melis, O. Vives, L. Wu and J. M. Yang, LFV and (g-2) in non-universal SUSY models with light higgsinos, JHEP 05 (2020) 102, [2003.06187].
  • (44) J. L. Lamborn, T. Li, J. A. Maxin and D. V. Nanopoulos, Resolving the (g2)μ(g-2)_{\mu} Discrepancy with \mathcal{F}-SUSU(5) Intersecting D-branes, 2108.08084.
  • (45) W. Yin, Muon g2g-2 anomaly in anomaly mediation, JHEP 06 (2021) 029, [2104.03259].
  • (46) S. Akula and P. Nath, Gluino-driven radiative breaking, Higgs boson mass, muon g-2, and the Higgs diphoton decay in supergravity unification, Phys. Rev. D 87 (2013) 115022, [1304.5526].
  • (47) Z. Li, G.-L. Liu, F. Wang, J. M. Yang and Y. Zhang, Gluino-SUGRA scenarios in light of FNAL muon g-2 anomaly, 2106.04466.
  • (48) F. Wang, W. Wang and J. M. Yang, Reconcile muon g-2 anomaly with LHC data in SUGRA with generalized gravity mediation, JHEP 06 (2015) 079, [1504.00505].
  • (49) F. Wang, K. Wang, J. M. Yang and J. Zhu, Solving the muon g-2 anomaly in CMSSM extension with non-universal gaugino masses, JHEP 12 (2018) 041, [1808.10851].
  • (50) F. Wang, W. Wang, J. M. Yang and Y. Zhang, Heavy colored SUSY partners from deflected anomaly mediation, JHEP 07 (2015) 138, [1505.02785].
  • (51) F. Wang, J. M. Yang and Y. Zhang, Radiative natural SUSY spectrum from deflected AMSB scenario with messenger-matter interactions, JHEP 04 (2016) 177, [1602.01699].
  • (52) Z. Kang, T. Li, T. Liu, C. Tong and J. M. Yang, A Heavy SM-like Higgs and a Light Stop from Yukawa-Deflected Gauge Mediation, Phys. Rev. D 86 (2012) 095020, [1203.2336].
  • (53) C. Han, K.-i. Hikasa, L. Wu, J. M. Yang and Y. Zhang, Status of CMSSM in light of current LHC Run-2 and LUX data, Phys. Lett. B 769 (2017) 470–476, [1612.02296].
  • (54) J.-J. Cao, Z.-X. Heng, J. M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086, [1202.5821].
  • (55) X. Ning and F. Wang, Solving the muon g-2 anomaly within the NMSSM from generalized deflected AMSB, JHEP 08 (2017) 089, [1704.05079].
  • (56) M. Abdughani, Y.-Z. Fan, L. Feng, Y.-L. S. Tsai, L. Wu and Q. Yuan, A common origin of muon g-2 anomaly, Galaxy Center GeV excess and AMS-02 anti-proton excess in the NMSSM, Sci. Bull. 66 (2021) 1545, [2104.03274].
  • (57) J. Cao, J. Lian, Y. Pan, D. Zhang and P. Zhu, Improved (g2)μ(g-2)_{\mu} measurement and singlino dark matter in μ\mu-term extended 3\mathbb{Z}_{3}-NMSSM, 2104.03284.
  • (58) B. Zhu and X. Liu, Probing the flavor-specific scalar mediator for the muon (g2)(g-2) deviation, the proton radius puzzle and the light dark matter production, 2104.03238.
  • (59) R. H. Parker, C. Yu, W. Zhong, B. Estey and H. Müller, Measurement of the fine-structure constant as a test of the Standard Model, Science 360 (2018) 191, [1812.04130].
  • (60) D. Hanneke, S. Fogwell and G. Gabrielse, New Measurement of the Electron Magnetic Moment and the Fine Structure Constant, Phys. Rev. Lett. 100 (2008) 120801, [0801.1134].
  • (61) S. Li, Y. Xiao and J. M. Yang, Can electron and muon g2g-2 anomalies be jointly explained in SUSY?, 2107.04962.
  • (62) B. Dutta and Y. Mimura, Electron g2g-2 with flavor violation in MSSM, Phys. Lett. B 790 (2019) 563–567, [1811.10209].
  • (63) M. Badziak and K. Sakurai, Explanation of electron and muon g - 2 anomalies in the MSSM, JHEP 10 (2019) 024, [1908.03607].
  • (64) M. Endo and W. Yin, Explaining electron and muon g2g-2 anomaly in SUSY without lepton-flavor mixings, JHEP 08 (2019) 122, [1906.08768].
  • (65) J. Cao, Y. He, J. Lian, D. Zhang and P. Zhu, Electron and muon anomalous magnetic moments in the inverse seesaw extended NMSSM, Phys. Rev. D 104 (2021) 055009, [2102.11355].
  • (66) J.-L. Yang, T.-F. Feng and H.-B. Zhang, Electron and muon (g2)(g-2) in the B-LSSM, J. Phys. G 47 (2020) 055004, [2003.09781].
  • (67) S. Li, Y. Xiao and J. M. Yang, Constraining CP-phases in SUSY: an interplay of muon/electron g2g-2 and electron EDM, 2108.00359.
  • (68) C. Han, Muon g-2 and CP violation in MSSM, 2104.03292.
  • (69) V. Keus, N. Koivunen and K. Tuominen, Singlet scalar and 2HDM extensions of the Standard Model: CP-violation and constraints from (g2)μ(g-2)_{\mu} and eeEDM, JHEP 09 (2018) 059, [1712.09613].
  • (70) L. Wang, J. M. Yang and Y. Zhang, Probing a pseudoscalar at the LHC in light of R(D())R(D^{(*)}) and muon g-2 excesses, Nucl. Phys. B 924 (2017) 47–62, [1610.05681].
  • (71) L. Wang, J. M. Yang, M. Zhang and Y. Zhang, Revisiting lepton-specific 2HDM in light of muon g2g-2 anomaly, Phys. Lett. B 788 (2019) 519–529, [1809.05857].
  • (72) L. T. Hue, K. H. Phan, T. P. Nguyen, H. N. Long and H. T. Hung, An explanation of experimental data of (g2)e,μ(g-2)_{e,\mu} in 3-3-1 models with inverse seesaw neutrinos, 2109.06089.
  • (73) T. Li, J. Pei and W. Zhang, Muon Anomalous Magnetic Moment and Higgs Potential Stability in the 331 Model from SU(6)SU(6), 2104.03334.
  • (74) L. Calibbi, M. L. López-Ibáñez, A. Melis and O. Vives, Muon and electron g2g-2 and lepton masses in flavor models, JHEP 06 (2020) 087, [2003.06633].
  • (75) C. Han, M. L. López-Ibáñez, A. Melis, O. Vives and J. M. Yang, Anomaly-free leptophilic axionlike particle and its flavor violating tests, Phys. Rev. D 103 (2021) 035028, [2007.08834].
  • (76) W. Yin, Radiative lepton mass and muon g2g-2 with suppressed lepton flavor and CP violations, 2103.14234.
  • (77) Fermilab, “Fermilab Muon g2g-2.” https://muon-g-2.fnal.gov/.