This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A point to set principle for finite-state dimension

Elvira Mayordomo Departamento de Informática e Ingeniería de Sistemas, Instituto de Investigación en Ingeniería de Aragón, Universidad de Zaragoza, Spain. Research supported in part by Spanish Ministry of Science and Innovation grant PID2019-104358RB-I00 and by the Science dept. of Aragon Government: Group Reference T64_\_20R (COSMOS research group).
Abstract

Effective dimension has proven very useful in geometric measure theory through the point-to-set principle [8] that characterizes Hausdorff dimension by relativized effective dimension. Finite-state dimension is the least demanding effectivization in this context [2] that among other results can be used to characterize Borel normality [1].

In this paper we prove a characterization of finite-state dimension in terms of information content of a real number at a certain precision. We then use this characterization to give a robust concept of relativized normality and prove a finite-state dimension point-to-set principle. We finish with an open question on the equidistribution properties of relativized normality.

1 Introduction

Effective dimension was introduced in [7, 6] as an effectivization of Hausdorff dimension. One of its generalizations is finite-state dimension [2] that is a robust notion that interacts with compression and characterizes Borel normality [1].

In [8]  Lutz and Lutz proved a point-to-set principle that characterizes Hausdorff dimension in terms of relativized effective dimension. This principle has already produced a number of interesting results in geometric fractal theory through computability based proofs (see [5, 9] and a number of more recent results such as [4]).

In this paper we provide a characterization of finite-state dimension on Euclidean space based on the finite-state information content of a real number at a certain precision, which also provides an alternative characterization of Borel normality. This new characterization gives rise to a natural and robust relativization of finite state dimension with the strong property of a finite-state dimension point-to-set principle. We finish with open questions on the equidistribution properties of the corresponding relativized normality.

2 Preliminaries

Let Σ\Sigma be a finite alphabet. We write Σ\Sigma^{*} for the set of all (finite) strings over Σ\Sigma and Σ\Sigma^{\infty} for the set of all (infinite) sequences over Σ\Sigma. We write |x||x| for the length of a string or sequence xx, and we write λ\lambda for the empty string, the string of length 0. For xΣΣx\in\Sigma^{*}\cup\Sigma^{\infty} and 0n<|x|0\leq n<|x|, we write xn=x[0..n1]x\upharpoonright n=x[0..n-1]. For wΣw\in\Sigma^{*} and xΣΣx\in\Sigma^{*}\cup\Sigma^{\infty}, we say that ww is a prefix of xx, and we write wxw\sqsubseteq x, if x|w|=wx\upharpoonright|w|=w.

A Σ\Sigma finite-state transducer (Σ\Sigma-FST) is a 4-tuple T=(Q,δ,ν,q0)T=(Q,\delta,\nu,q_{0}), where

  • QQ is a nonempty, finite set of states,

  • δ:Q×ΣQ{\delta}:{Q\times\Sigma}\to{Q} is the transition function,

  • ν:Q×ΣΣ{\nu}:{Q\times\Sigma}\to{\Sigma^{*}} is the output function, and

  • q0Qq_{0}\in Q is the initial state.

For qQq\in Q and wΣw\in\Sigma^{*}, we define the output from state qq on input ww to be the string ν(q,w)\nu(q,w) defined by the recursion

ν(q,λ)=λ,\displaystyle\nu(q,\lambda)=\lambda,
ν(q,wa)=ν(q,w)ν(δ(q,w),a)\displaystyle\nu(q,wa)=\nu(q,w)\nu(\delta(q,w),a)

for all wΣw\in\Sigma^{*} and aΣa\in\Sigma. We then define the output of TT on input wΣw\in\Sigma^{*} to be the string T(w)=ν(q0,w)T(w)=\nu(q_{0},w).

For each integer b1b\geq 1 we let Σb={0,1,,b1}\Sigma_{b}=\{0,1,\ldots,b-1\} be the alphabet of base-bb digits. We use infinite sequences over Σb\Sigma_{b} to represent real numbers in [0,1)[0,1). Each SΣbS\in\Sigma_{b}^{\infty} is associated the real number realb(S)=i=1S[i1]bi\operatorname{real}_{b}(S)=\sum\limits_{i=1}^{\infty}S[i-1]b^{-i} and for each x[0,1)x\in[0,1), seqb(x)\operatorname{seq}_{b}(x) is the infinite sequence SS that does not finish with infinitely many b1b-1 and such that x=realb(S)x=\operatorname{real}_{b}(S).

A set of real numbers A[0,1)A\subseteq[0,1) is represented by the set

seqb(A)={seqb(α)αA}\operatorname{seq}_{b}(A)=\{\operatorname{seq}_{b}(\alpha)\mid\alpha\in A\}

of sequences. If XΣbX\subseteq\Sigma_{b}^{\infty} then

realb(X)={realb(x)xX}.\operatorname{real}_{b}(X)=\{\operatorname{real}_{b}(x)\mid x\in X\}.

We will denote with 𝒟b{\mathcal{D}}_{b} the set of rational numbers that have finite representation in base bb, that is,

𝒟b={q|seqb(q)=w0,wΣb}.{\mathcal{D}}_{b}=\left\{q\left|\,\operatorname{seq}_{b}(q)=w0^{\infty},w\in\Sigma_{b}^{*}\right.\right\}.

We will write realb(w)\operatorname{real}_{b}(w) for realb(w0)\operatorname{real}_{b}(w0^{\infty}) when wΣbw\in\Sigma_{b}^{*}.

3 An euclidean characterization of finite-state dimension and Borel normality

Finite-state dimension was introduced in [2] on the space of infinite sequences over a finite alphabet. The original definition in terms of gambling was proven robust by several characterizations in terms of information lossless compression [2] and several versions of entropy [1].

Here we present an alternative definition on the Euclidean space and then prove its equivalence with [2].

Definition. Let TT be a Σ\Sigma-FST and let wΣw\in\Sigma^{*}. The TT-information content of ww is

KT(w)=min{|π||T(π)=w}.{\mathrm{K}}^{T}(w)=\min\left\{|\pi|\left|\,T(\pi)=w\right.\right\}.

Definition. Let TT be a Σb\Sigma_{b}-FST, δ>0\delta>0 and x[0,1)x\in[0,1). The base-bb TT-information content of xx at precision δ\delta is

KδT(x)=min{KT(w)|realb(w)x|<δ}.{\mathrm{K}}^{T}_{\delta}(x)=\min\left\{{\mathrm{K}}^{T}(w)\left|\,|\operatorname{real}_{b}(w)-x|<\delta\right.\right\}.

We next define the finite-state dimension of points and sets.

Definition. Let b1b\geq 1. Let x[0,1)x\in[0,1) and A[0,1)A\subseteq[0,1). The base-bb finite-state dimension of xx is

dimFSb(x)=infTΣbFSTlim infδ>0KδT(x)logb(1/δ),\mathrm{dim}_{\mathrm{FS}}^{b}(x)=\inf_{T\Sigma_{b}-\mathrm{FST}}\liminf_{\delta>0}\frac{{\mathrm{K}}^{T}_{\delta}(x)}{\log_{b}(1/\delta)},

the base-bb finite-state dimension of AA is

dimFSb(A)=infTΣbFSTsupxAlim infδ>0KδT(x)logb(1/δ).\mathrm{dim}_{\mathrm{FS}}^{b}(A)=\inf_{T\Sigma_{b}-\mathrm{FST}}\sup_{x\in A}\liminf_{\delta>0}\frac{{\mathrm{K}}^{T}_{\delta}(x)}{\log_{b}(1/\delta)}.
Observation 3.1

dimFSb(x)=infTΣbFSTlim infnKbnT(x)n\mathrm{dim}_{\mathrm{FS}}^{b}(x)=\inf_{T\Sigma_{b}-\mathrm{FST}}\liminf_{n}\frac{{\mathrm{K}}^{T}_{b^{-n}}(x)}{n}.

The definition of finite-state dimension from [2] is usually done in a space of infinite sequences, while identifying [0,1)[0,1) and Σb\Sigma_{b}^{\infty} through seqb\operatorname{seq}_{b} or base-bb representation.

Doty and Moser [3] proved that finite dimension on sequences can be characterized in terms of finite-state transducers.

Theorem 3.2 ([3])

Let SΣS\in\Sigma^{\infty},

dimFS(S)=infTΣFSTlim infnKT(Sn)n.\mathrm{dim}_{\mathrm{FS}}(S)=\inf_{T\Sigma-\mathrm{FST}}\liminf_{n}\frac{{\mathrm{K}}^{T}(S\upharpoonright n)}{n}.

We next show that the notion of information content at a certain precision characterizes finite-state dimension.

Theorem 3.3

For each b1b\geq 1, x[0,1)x\in[0,1), and A[0,1)A\subseteq[0,1)

dimFSb(x)=dimFS(seqb(x)),\mathrm{dim}_{\mathrm{FS}}^{b}(x)=\mathrm{dim}_{\mathrm{FS}}(\operatorname{seq}_{b}(x)),
dimFSb(A)=dimFS(seqb(A)).\mathrm{dim}_{\mathrm{FS}}^{b}(A)=\mathrm{dim}_{\mathrm{FS}}(\operatorname{seq}_{b}(A)).

Proof. Let x[0,1)x\in[0,1), let S=seqb(x)S=\operatorname{seq}_{b}(x). Then for every nn\in\mathbb{N} and TT Σb\Sigma_{b}-FST, KbnT(x)KT(S(n+1)){\mathrm{K}}^{T}_{b^{-n}}(x)\leq{\mathrm{K}}^{T}(S\upharpoonright(n+1)) and therefore dimFSb(x)dimFS(S)\mathrm{dim}_{\mathrm{FS}}^{b}(x)\leq\mathrm{dim}_{\mathrm{FS}}(S).

For each wΣbΣbw\in\Sigma_{b}^{*}\cup\Sigma_{b}^{\infty}, let comp(w)comp(w) be the complementary of ww, that is, comp(w)[i]=b1w[i]comp(w)[i]=b-1-w[i] for 0i<|w|0\leq i<|w|.

Claim 3.4

dimFS(S)=dimFS(comp(S))\mathrm{dim}_{\mathrm{FS}}(S)=\mathrm{dim}_{\mathrm{FS}}(comp(S)). dimFSb(x)=dimFSb(realb(comp(seqb(x))))\mathrm{dim}_{\mathrm{FS}}^{b}(x)=\mathrm{dim}_{\mathrm{FS}}^{b}(\operatorname{real}_{b}(comp(\operatorname{seq}_{b}(x)))).

Claim 3.5

dimFS(S)dimFSb(x)\mathrm{dim}_{\mathrm{FS}}(S)\leq\mathrm{dim}_{\mathrm{FS}}^{b}(x).

To prove this claim, notice that dimFSb(x)\mathrm{dim}_{\mathrm{FS}}^{b}(x) needs to be witnessed either by approximations from above or for approximations from below and that tighter approximations can be delayed.

That is, for every FST TT there exist and infinitely many nin_{i} such that

limiKbniT(x)ni=lim infnKbnT(x)n.\lim_{i}\frac{{\mathrm{K}}^{T}_{b^{-n_{i}}}(x)}{n_{i}}=\liminf_{n}\frac{{\mathrm{K}}^{T}_{b^{-n}}(x)}{n}.

For each ii let wiw_{i} be such that KT(wi)=KbniT(x){\mathrm{K}}^{T}(w_{i})={\mathrm{K}}^{T}_{b^{-n_{i}}}(x) and |xrealb(wi)|<bni|x-\operatorname{real}_{b}(w_{i})|<b^{-n_{i}}. Let mim_{i} be such that bmi1|xrealb(wi)|<bmibnib^{-m_{i}-1}\leq|x-\operatorname{real}_{b}(w_{i})|<b^{-m_{i}}\leq b^{-n_{i}}. Then KbmiT(x)miKbniT(x)ni\frac{{\mathrm{K}}^{T}_{b^{-m_{i}}}(x)}{m_{i}}\leq\frac{{\mathrm{K}}^{T}_{b^{-n_{i}}}(x)}{n_{i}}, and for T(π)=comp(T(π))T^{\prime}(\pi)=comp(T(\pi)), either

lim infnKT(Sn)nlimiKbmiT(x)mi\liminf_{n}\frac{{\mathrm{K}}^{T}(S\upharpoonright n)}{n}\leq\lim_{i}\frac{{\mathrm{K}}^{T}_{b^{-m_{i}}}(x)}{m_{i}}

or

lim infnKT(comp(S)n)nlimiKbmiT(x)mi.\liminf_{n}\frac{{\mathrm{K}}^{T^{\prime}}(comp(S)\upharpoonright n)}{n}\leq\lim_{i}\frac{{\mathrm{K}}^{T}_{b^{-m_{i}}}(x)}{m_{i}}.

Therefore either dimFS(S)dimFSb(x)\mathrm{dim}_{\mathrm{FS}}(S)\leq\mathrm{dim}_{\mathrm{FS}}^{b}(x) or dimFS(comp(S))dimFSb(x)\mathrm{dim}_{\mathrm{FS}}(comp(S))\leq\mathrm{dim}_{\mathrm{FS}}^{b}(x) and the claim follows.

\Box

Since finite-state dimension in the space of sequences characterizes Borel normality [1], we have an alternative characterization of normality in terms of finite-state dimension in the Euclidean space.

Corollary 3.6

Let b1b\geq 1, x[0,1)x\in[0,1). xx is bb-normal if and only if dimFSb(x)=1\mathrm{dim}_{\mathrm{FS}}^{b}(x)=1, that is,

infTΣbFSTlim infδ>0KδT(x)logb(1/δ)=1.\inf_{T\Sigma_{b}-\mathrm{FST}}\liminf_{\delta>0}\frac{{\mathrm{K}}^{T}_{\delta}(x)}{\log_{b}(1/\delta)}=1.

4 Point to set principle for finite-state dimension

We denote as separator a set S[0,1)S\subseteq[0,1) such that SS is countable and dense in [0,1].

Definition. A separator enumerator (SE) is a function f:Σ[0,1)f:\Sigma^{*}\to[0,1) such that Im(f)\mathrm{Im}(f) is a separator.

For each separator enumerator ff we can define information content in [0,1)[0,1) relative to ff.

Definition. Let f:Σ[0,1)f:\Sigma^{*}\to[0,1) be a SE. Let TT be a Σ\Sigma-FST, δ>0\delta>0 and x[0,1)x\in[0,1). The ff-TT-information content of xx at precision δ\delta is

KδT,f(x)=min{KT(w)|f(w)x|<δ}.{\mathrm{K}}^{T,f}_{\delta}(x)=\min\left\{{\mathrm{K}}^{T}(w)\left|\,|f(w)-x|<\delta\right.\right\}.

Definition. Let f:Σ[0,1)f:\Sigma^{*}\to[0,1) be a SE. Let x[0,1)x\in[0,1) and A[0,1)A\subseteq[0,1). The ff-enumerator finite-state dimension of xx is

dimFSf(x)=infTΣFSTlim infδ>0KδT,f(x)log|Σ|(1/δ),\mathrm{dim}_{\mathrm{FS}}^{f}(x)=\inf_{T\Sigma-\mathrm{FST}}\liminf_{\delta>0}\frac{{\mathrm{K}}^{T,f}_{\delta}(x)}{\log_{|\Sigma|}(1/\delta)},

the ff-enumerator finite-state dimension of AA is

dimFSf(A)=infTΣFSTsupxAlim infδ>0KδT,f(x)log|Σ|(1/δ).\mathrm{dim}_{\mathrm{FS}}^{f}(A)=\inf_{T\Sigma-\mathrm{FST}}\sup_{x\in A}\liminf_{\delta>0}\frac{{\mathrm{K}}^{T,f}_{\delta}(x)}{\log_{|\Sigma|}(1/\delta)}.

We can generalize Borel normality through the same relativization.

Definition. Let f:Σ[0,1)f:\Sigma^{*}\to[0,1) be a SE, let x[0,1)x\in[0,1). xx is ff-normal if dimFSf(x)=1\mathrm{dim}_{\mathrm{FS}}^{f}(x)=1.

Given this natural relativization of finite-state dimension we next prove a point-to-set principle stating that for every set AA there exists an SE ff such that classical Hausdorff dimension of AA is exactly ff-finite-state dimension. This implies that classical geometrical measure theory results can be obtained using only finite-state dimension.

Theorem 4.1

Let A[0,1)A\subseteq[0,1).

dimH(A)=minfSEdimFSf(A),\mathrm{dim}_{\mathrm{H}}(A)=\min_{f\mathrm{SE}}\mathrm{dim}_{\mathrm{FS}}^{f}(A),
dimH(A)=minf:{0,1}𝒟2dimFSf(A).\mathrm{dim}_{\mathrm{H}}(A)=\min_{f:\{0,1\}^{*}\to{\mathcal{D}}_{2}}\mathrm{dim}_{\mathrm{FS}}^{f}(A).

Proof. Let CC be such that dimH(A)=dimC(A)\mathrm{dim}_{\mathrm{H}}(A)={\mathrm{dim}}^{C}(A) from the point-to-set principle in [8]. Le UU be the universal oracle Turing Machine used in the definition of Kolmogorov Complexity for effective dimension dim{\mathrm{dim}}. Let h:{0,1}{0,1}h:\{0,1\}^{*}\to\{0,1\}^{*} be such that h(w)=UC(w)h(w)=U^{C}(w) when UC(w)U^{C}(w) is defined, and UC(w)=0U^{C}(w)=0 otherwise. Then f(w)=real2(h(w))f(w)=\operatorname{real}_{2}(h(w)) is the required SE. \Box

Notice that the previous theorem holds even when fixing a particular countable dense set. In terms of Borel normality, it shows that reordering the set 𝒟b{\mathcal{D}}_{b} of base-bb finite representation numbers is enough to obtain normality for any other base.

5 Conclusions and open questions

We expect that our main theorem will prove new lower bounds on Hausdorff dimension in different settings. Notice that the result can be directly translated into any separable metric space and any reasonable gauge family.

Our result helps clarify the oracle role in the point to set principles. The next step would be to classify the different enumerations of a countable dense set.

We believe that the notion of ff-normal sequence can be of independent interest with robustness properties inherited from those of the original concept, for instance from the fact that xx is bb-normal exactly when the sequence (bnx)n(b^{n}x)_{n} is equidistributed modulo 1.

Open question. Let f:Σ[0,1)f:\Sigma^{*}\to[0,1) be a SE, let x[0,1)x\in[0,1). For each nn\in\mathbb{N}, let an(x)=f(w)a_{n}(x)=f(w) for |w|n|w|\leq n such that f(w)xf(w)\leq x and xf(w)x-f(w) is minimum. Can we characterize ff-normality in terms of the equidistribution properties of (|Σ|nan(x))(|\Sigma|^{n}a_{n}(x))?

References

  • [1] C. Bourke, J. M. Hitchcock, and N. V. Vinodchandran. Entropy rates and finite-state dimension. Theoretical Computer Science, 349(3):392–406, 2005.
  • [2] J. J. Dai, J. I. Lathrop, J. H. Lutz, and E. Mayordomo. Finite-state dimension. Theoretical Computer Science, 310:1–33, 2004.
  • [3] D. Doty and P. Moser. Finite-state dimension and lossy decompressors. Technical Report CoRR abs/cs/0609096, Arxiv, 2006.
  • [4] D. S. Jacob B. Fiedler. Pinned distances of planar sets with low dimension. Technical Report arXiv:2408.00889 [math.CA], arXiv.org, 2024.
  • [5] J. Lutz and N. Lutz. Who asked us? how the theory of computing answers questions about analysis. In Complexity and Approximation: In Memory of Ker-I Ko, pages 48–56. Springer, Ding-Zhu Du and Jie Wang (eds.) edition, 2020.
  • [6] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32(5):1236–1259, 2003.
  • [7] J. H. Lutz. The dimensions of individual strings and sequences. Information and Computation, 187(1):49–79, 2003.
  • [8] J. H. Lutz and N. Lutz. Algorithmic information, plane Kakeya sets, and conditional dimension. ACM Transactions on Computation Theory, 10, 2018. Article 7.
  • [9] J. H. Lutz and E. Mayordomo. Algorithmic fractal dimensions in geometric measure theory. In V. Brattka and P. Hertling, editors, Handbook of Computability and Complexity in Analysis, pages 271–302. Springer-Verlag, 2021.