This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Probabilistic Model-Based Robust Waveform Design for MIMO Radar Detection

Xuyang Wang College of Electronic Engineering
National University of Defense Technology
Hefei, China
wangxuyang@nudt.edu.cn
   Bo Tang College of Electronic Engineering
National University of Defense Technology
Hefei, China
tangbo06@gmail.com
   Ming Zhang College of Electronic Engineering
National University of Defense Technology
Hefei, China
lgdxzm@sina.com
Abstract

This paper addresses robust waveform design for multiple-input-multiple-output (MIMO) radar detection. A probabilistic model is proposed to describe the target uncertainty. Considering that waveform design based on maximizing the probability of detection is intractable, the relative entropy between the distributions of the observations under two hypotheses (viz., the target is present/absent) is employed as the design metric. To tackle the resulting non-convex optimization problem, an efficient algorithm based on minorization-maximization (MM) is derived. Numerical results demonstrate that the waveform synthesized by the proposed algorithm is more robust to model mismatches.

Index Terms:
MIMO radar, robust waveform design, probabilistic model, minorization-maximization (MM), relative entropy.

I Introduction

In recent years, multiple-input-multiple-output (MIMO) radar has gained considerable attentions because of its superior performance [1]. Generally, MIMO radar can be divided into two categories. One is called statistical MIMO radar (or distributed MIMO radar), i.e., MIMO radar systems with widely separated antennas [2]. The spatial diversity provided by statistical MIMO radar allows to improve the detection performance of a fluctuating target. The other type is called colocated MIMO radar, whose antennas are closed to each other [3]. Different from the phased-array radar, the antennas of colocated MIMO radar can emit different waveforms. The additional waveform diversity of colocated MIMO radar enables better target detection performance in the presence of interference and improved parameter identifiability.

For both types of MIMO radar, it is important to design the waveforms appropriately. In the past years, many criteria have been adopted to design MIMO radar waveforms, including minimizing the auto-correlations and cross-correlations of the waveforms (see, e.g., [4, 5] and the references therein), maximizing the signal-to-interference-plus-noise ratio (SINR) [6, 7, 8, 9], maximizing the mutual information between the receive signals and the target response [10, 11, 12], to name just a few.

In this paper, we consider waveform design for MIMO radar detection. Different from the previous studies [11, 13, 14], we take account of the model uncertainty about the target (due to estimation errors, inaccurate prior knowledge, etc.). A probabilistic model is proposed to describe the target uncertainty. Then a hypothesis testing is established for the proposed target detection problem. Given that the optimization of waveforms based on maximizing the probability of detection is intractable, we resort to an information-theoretic approach to design the waveforms. We devise a minorization-maximization (MM) based algorithm to tackle the non-convex waveform design problem. Results are provided to show the robustness of the proposed algorithm.

II Problem Formulation

Consider a MIMO radar with NTN_{\textrm{T}} transmit antennas and NRN_{\textrm{R}} receive antennas. Let 𝐱m{\mathbf{x}}_{m} denote the waveform transmitted by the mmth transmitter and let LL denote its code length. Similar to [11, 13, 15], we consider a unified signal model, which can be written as

𝐘=𝐗𝐇+𝐍,{\mathbf{Y}}={\mathbf{X}}{\mathbf{H}}+{\mathbf{N}}, (1)

where 𝐘L×NR{\mathbf{Y}}\in\mathbb{C}^{L\times N_{\textrm{R}}} denotes the received signals, 𝐗=[𝐱1,𝐱2,,𝐱NT]L×NT{\mathbf{X}}=[{\mathbf{x}}_{1},{\mathbf{x}}_{2},\ldots,{\mathbf{x}}_{N_{\textrm{T}}}]\in\mathbb{C}^{L\times N_{\textrm{T}}} is the waveform matrix, 𝐇NT×NR{\mathbf{H}}\in\mathbb{C}^{N_{\textrm{T}}\times N_{\textrm{R}}} denotes the target response (the (m,n)(m,n)th element of 𝐇{\mathbf{H}} stands for the response from the mmth transmitter to the nnth receiver), and 𝐍{\mathbf{N}} is the receiver noise. As shown in [16], the signal model in (1) can be used for various types of MIMO radar, including the colocated MIMO radar and distributed MIMO radar. For example, if we consider a colocated MIMO radar, then the target response can be written as

𝐇=kαt,k𝐚(θt,k)𝐛(θt,k),{\mathbf{H}}=\sum\nolimits_{k}\alpha_{t,k}{\mathbf{a}}(\theta_{t,k}){\mathbf{b}}^{\top}(\theta_{t,k}), (2)

where αt,k\alpha_{t,k}, θt,k\theta_{t,k}, 𝐚(θt,k){\mathbf{a}}(\theta_{t,k}), and 𝐛(θt,k){\mathbf{b}}(\theta_{t,k}) are the amplitude, the direction of arrival (DOA), the transmit array steering vector, and the receive array steering vector of the kkth target, respectively.

In this paper, we focus on the design of waveforms to enhance the detection performance of MIMO radar systems. Note that the detection performance of radar systems is closely related to the signal-to-noise ratio (SNR), which can be defined as follows:

SNR=tr(𝐗𝐇𝐇𝐗)E(tr(𝐍𝐍)).\texttt{SNR}=\frac{{\textrm{{tr}}}({\mathbf{X}}{\mathbf{H}}{\mathbf{H}}^{\dagger}{\mathbf{X}}^{\dagger})}{\textrm{E}({\textrm{{tr}}}({\mathbf{N}}{\mathbf{N}}^{\dagger}))}. (3)

Assume that the receiver noise is white, then E(tr(𝐍𝐍))=LNRσ2\textrm{E}({\textrm{{tr}}}({\mathbf{N}}{\mathbf{N}}^{\dagger}))=LN_{\textrm{R}}\sigma^{2}, where σ2\sigma^{2} is the power of the noise. Therefore, to improve the target detection performance, we can maximize the SNR via the design of waveforms. The associated waveform design problem can be formulated as

max𝐗tr(𝐗𝐇𝐇𝐗),s.t.tr(𝐗𝐗)Pt,\max_{{\mathbf{X}}}{\textrm{{tr}}}({\mathbf{X}}{\mathbf{H}}{\mathbf{H}}^{\dagger}{\mathbf{X}}^{\dagger}),\textrm{s.t.}\ \textrm{tr}({\mathbf{X}}{\mathbf{X}}^{\dagger})\leq P_{t}, (4)

where PtP_{t} denotes the total available transmit energy. It is well-known that the optimization problem in (4) admits a closed-form solution (see, e.g., [15] for the details):

𝐗=Pt𝐮x𝐯d,1,{\mathbf{X}}=\sqrt{P_{t}}{\mathbf{u}}_{x}{\mathbf{v}}_{d,1}^{\dagger}, (5)

where 𝐮xL×1{\mathbf{u}}_{x}\in\mathbb{C}^{L\times 1} is an arbitrary normalized vector, 𝐯d,1NT×1{\mathbf{v}}_{d,1}\in\mathbb{C}^{N_{\textrm{T}}\times 1} is the eigenvector associated with the largest eigenvalue of 𝐑t=𝐇𝐇{\mathbf{R}}_{t}={\mathbf{H}}{\mathbf{H}}^{\dagger}. Note that to obtain the optimal solution in (5), the target response matrix 𝐇{\mathbf{H}} should be known a priori. However, due to estimation errors, the estimated target response might be inaccurate. As a result, when the transmit waveforms are designed based on (5), the performance of MIMO radar system might degrade.

To improve the target detection performance in the presence of estimation errors, we consider the robust design of waveforms. To this end, we define 𝐡=vec(𝐇){\mathbf{h}}={\textrm{vec}}({\mathbf{H}}). We consider a probabilistic model for 𝐡{\mathbf{h}} and assume that 𝐡{\mathbf{h}} is circularly-symmetric Gaussian, with mean 𝐡d{\mathbf{h}}_{d} and covariance matrix 𝐑H{\mathbf{R}}_{\textrm{H}}, respectively. It is worth noting that 𝐡d{\mathbf{h}}_{d} can be obtained by the available prior knowledge 𝐇{\mathbf{H}}, and 𝐑H{\mathbf{R}}_{\textrm{H}}, which is used to rule the uncertainty, can be obtained by the data from previous scans or specified by the user.

Next we establish the following binary hypothesis test for the target detection problem:

{0:𝐲=𝐧,1:𝐲=𝐗~𝐡+𝐧,\left\{\begin{aligned} \mathcal{H}_{0}:&{\mathbf{y}}={\mathbf{n}},\\ \mathcal{H}_{1}:&{\mathbf{y}}=\widetilde{{\mathbf{X}}}{\mathbf{h}}+{\mathbf{n}},\end{aligned}\right. (6)

where 𝐲=vec(𝐘){\mathbf{y}}={\textrm{vec}}({\mathbf{Y}}), 𝐧=vec(𝐍){\mathbf{n}}={\textrm{vec}}({\mathbf{N}}), 𝐗~=(𝐈NR𝐗)\widetilde{{\mathbf{X}}}=({\mathbf{I}}_{N_{\textrm{R}}}\otimes{\mathbf{X}}), and we have used the fact that vec(𝐀𝐁𝐂)=(𝐂𝐀)vec(𝐁){\textrm{vec}}({\mathbf{A}}{\mathbf{B}}{\mathbf{C}})=({\mathbf{C}}^{\top}\otimes{\mathbf{A}}){\textrm{vec}}({\mathbf{B}}).

Note that the probability density function (PDF) of 𝐲{\mathbf{y}} under 0\mathcal{H}_{0} is given by

P0(𝐲)=1πLNRσ2LNRexp(𝐲𝐲/σ2),P_{0}({\mathbf{y}})=\frac{1}{\pi^{LN_{\textrm{R}}}\sigma^{2LN_{\textrm{R}}}}\exp(-{\mathbf{y}}^{\dagger}{\mathbf{y}}/\sigma^{2}),

and under 1\mathcal{H}_{1}, the PDF of 𝐲{\mathbf{y}} is given by

P1(𝐲)=1πNRLdet(𝐑1)exp[(𝐲𝐗~𝐡d)𝐑11(𝐲𝐗~𝐡d)],\displaystyle P_{1}({\mathbf{y}})=\frac{1}{\pi^{N_{\textrm{RL}}}\det({\mathbf{R}}_{1})}\exp[-({\mathbf{y}}-\widetilde{{\mathbf{X}}}{\mathbf{h}}_{d})^{\dagger}{\mathbf{R}}_{1}^{-1}({\mathbf{y}}-\widetilde{{\mathbf{X}}}{\mathbf{h}}_{d})],

where

𝐑1=𝐗~𝐑H𝐗~+σ2𝐈NRL,{\mathbf{R}}_{1}=\widetilde{{\mathbf{X}}}{\mathbf{R}}_{\textrm{H}}\widetilde{{\mathbf{X}}}^{\dagger}+\sigma^{2}{\mathbf{I}}_{N_{\textrm{RL}}}, (7)

and NRL=LNRN_{\textrm{RL}}=LN_{\textrm{R}}. Therefore, the Neyman-Pearson (NP) detector[17] decides 1\mathcal{H}_{1} if

𝐲(𝐈σ2𝐑11)𝐲+2σ2Re(𝐲𝐑11𝐗~𝐡d)>γ,\displaystyle{\mathbf{y}}^{\dagger}({\mathbf{I}}-\sigma^{2}{\mathbf{R}}_{1}^{-1}){\mathbf{y}}+2\sigma^{2}{\textrm{Re}}({\mathbf{y}}^{\dagger}{\mathbf{R}}_{1}^{-1}\widetilde{{\mathbf{X}}}{\mathbf{h}}_{d})>\gamma, (8)

where γ\gamma is the detection threshold.

One straightforward way to design the robust waveform is to analyze the probability of detection for the NP detector in (8) first (given the probability of false alarm), and optimize the waveform based on maximizing the probability of detection. However, the probability of detection associated with (8) is too complex to be used as a design metric. Alternatively, we resort to relative entropy to design the waveforms. Indeed, Stein’s lemma states that a larger relative entropy can result in a higher probability of detection asymptotically. Therefore, to improve the target detection performance of MIMO radar systems, we aim to design waveforms to maximize the relative entropy.

The relative entropy between P0(𝐲)P_{0}{({\mathbf{y}}}) and P1(𝐲)P_{1}{({\mathbf{y}}}) is given by

D(P0||P1)=\displaystyle\textrm{D}(P_{0}||P_{1})= P0(𝐲)logP0(𝐲)P1(𝐲)d𝐲\displaystyle\int P_{0}({\mathbf{y}})\log\frac{P_{0}{({\mathbf{y}}})}{P_{1}{({\mathbf{y}}})}d{\mathbf{y}}
=\displaystyle= logdet(𝐑1)+tr(𝐑11(𝐗~𝐡d𝐡d𝐗~+σ2𝐈NRL))\displaystyle\log\det({\mathbf{R}}_{1})+{\textrm{{tr}}}({\mathbf{R}}_{1}^{-1}(\widetilde{{\mathbf{X}}}{\mathbf{h}}_{d}{\mathbf{h}}_{d}^{\dagger}\widetilde{{\mathbf{X}}}^{\dagger}+\sigma^{2}{\mathbf{I}}_{N_{\textrm{RL}}}))
LNR(1+logσ2).\displaystyle-LN_{\textrm{R}}(1+\log\sigma^{2}). (9)

Then the waveform design problem based on maximizing relative entropy can be formulated by

max𝐗\displaystyle\max\limits_{{\mathbf{X}}} logdet(𝐑1)+tr(𝐑11(𝐗~𝐡d𝐡d𝐗~+σ2𝐈NRL))\displaystyle\ \log\det({\mathbf{R}}_{1})+{\textrm{{tr}}}({\mathbf{R}}_{1}^{-1}(\widetilde{{\mathbf{X}}}{\mathbf{h}}_{d}{\mathbf{h}}_{d}^{\dagger}\widetilde{{\mathbf{X}}}^{\dagger}+\sigma^{2}{\mathbf{I}}_{N_{\textrm{RL}}}))
s.t. tr(𝐗𝐗)Pt.\displaystyle\ \textrm{tr}({\mathbf{X}}{\mathbf{X}}^{\dagger})\leq P_{t}. (10)

It can be checked that the optimization problem is non-convex and difficult to solve. In the following, we develop an efficient algorithm based on MM to tackle the optimization problem in (II).

III Algorithm Design

For simplicity we assume that the power of noise is σ2=1\sigma^{2}=1. Let 𝐑X=𝐗𝐗{\mathbf{R}}_{X}={\mathbf{X}}^{\dagger}{\mathbf{X}} denote the waveform covariance matrix, and 𝐑~X=𝐗~𝐗~=𝐈NR𝐑X\widetilde{{\mathbf{R}}}_{X}=\widetilde{{\mathbf{X}}}^{\dagger}\widetilde{{\mathbf{X}}}={\mathbf{I}}_{N_{\textrm{R}}}\otimes{\mathbf{R}}_{X}. Using the standard property of matrix determinant that det(𝐈+𝐀𝐁)=det(𝐈+𝐁𝐀)\det({\mathbf{I}}+{\mathbf{A}}{\mathbf{B}})=\det({\mathbf{I}}+{\mathbf{B}}{\mathbf{A}}), we can rewrite logdet(𝐑1)\log\det({\mathbf{R}}_{1}) as

logdet(𝐑1)=logdet(𝐑H12𝐑~X𝐑H12+𝐈).\log\det({\mathbf{R}}_{1})=\log\det({\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}\widetilde{{\mathbf{R}}}_{X}{\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}+{\mathbf{I}}).

Then the objective of (II) can be divided into three parts:

f(𝐗)=\displaystyle f({\mathbf{X}})= logdet(𝐑H12𝐑~X𝐑H12+𝐈)Part I+tr(𝐑11𝐗~𝐡d𝐡d𝐗~)Part II\displaystyle\underbrace{\log\det({\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}\widetilde{{\mathbf{R}}}_{X}{\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}+{\mathbf{I}})}_{\textrm{Part I}}+\underbrace{\textrm{tr}({\mathbf{R}}_{1}^{-1}\widetilde{{\mathbf{X}}}{\mathbf{h}}_{d}{\mathbf{h}}_{d}^{\dagger}\widetilde{{\mathbf{X}}}^{\dagger})}_{\textrm{Part II}}
+tr(𝐑11)Part III.\displaystyle+\underbrace{\textrm{tr}({\mathbf{R}}_{1}^{-1})}_{\textrm{Part III}}. (11)

The key step of MM methods is to find a surrogate function (i.e., a minorizer) Q(𝐗;𝐗k)Q({\mathbf{X}};{\mathbf{X}}_{k}), which satisfies:

Q(𝐗;𝐗k)\displaystyle Q({\mathbf{X}};{\mathbf{X}}_{k}) f(𝐗),\displaystyle\leq f({\mathbf{X}}), (12a)
Q(𝐗k;𝐗k)\displaystyle Q({\mathbf{X}}_{k};{\mathbf{X}}_{k}) =f(𝐗k).\displaystyle=f({\mathbf{X}}_{k}). (12b)

To this purpose, next we construct minorizers for each part of (III), respectively.

III-A Minorizing Part I

By using the standard property of matrix determinant, we have

logdet(𝐑H12𝐑~X𝐑H12+𝐈)=logdet(𝐑H12𝐑~X𝐑H12+𝐈)1.\log\det({\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}\widetilde{{\mathbf{R}}}_{X}{\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}+{\mathbf{I}})=-\log\det({\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}\widetilde{{\mathbf{R}}}_{X}{\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}+{\mathbf{I}})^{-1}.

According to the matrix inversion lemma [18], we obtain

(𝐑H12𝐑~X𝐑H12+𝐈)1=𝐈𝐑H12𝐗~𝐑11𝐗~𝐑H12,\displaystyle({\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}\widetilde{{\mathbf{R}}}_{X}{\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}+{\mathbf{I}})^{-1}={\mathbf{I}}-{\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}\widetilde{{\mathbf{X}}}^{\dagger}{\mathbf{R}}_{1}^{-1}\widetilde{{\mathbf{X}}}{\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}, (13)

We can rewrite (13) into the following form by using the block matrix inversion lemma [18]:

𝐈𝐑H12𝐗~𝐑11𝐗~𝐑H12=(𝐄A𝐂A1𝐄A)1,{\mathbf{I}}-{\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}\widetilde{{\mathbf{X}}}^{\dagger}{\mathbf{R}}_{1}^{-1}\widetilde{{\mathbf{X}}}{\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}=({\mathbf{E}}_{A}{\mathbf{C}}_{A}^{-1}{\mathbf{E}}_{A}^{\dagger})^{-1},

where 𝐄A=[𝐈NTR,0NTR×NRL]{\mathbf{E}}_{A}=[{\mathbf{I}}_{N_{\textrm{TR}}},\textbf{0}_{N_{\textrm{TR}}\times N_{\textrm{RL}}}],

𝐂A=[𝐈NTR𝐑H12𝐗~𝐗~𝐑H12𝐑1],{\mathbf{C}}_{A}=\begin{bmatrix}{\mathbf{I}}_{N_{\textrm{TR}}}&{\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}\widetilde{{\mathbf{X}}}^{\dagger}\\ \widetilde{{\mathbf{X}}}{\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}&{\mathbf{R}}_{1}\end{bmatrix}, (14)

and NTR=NTNRN_{\textrm{TR}}=N_{\textrm{T}}N_{\textrm{R}}.

Thus, Part I of the objective function can be rewritten as:

logdet(𝐑H12𝐑~X𝐑H12+𝐈)=logdet(𝐄A𝐂A1𝐄A).\log\det({\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}\widetilde{{\mathbf{R}}}_{X}{\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}+{\mathbf{I}})=\log\det({\mathbf{E}}_{A}{\mathbf{C}}_{A}^{-1}{\mathbf{E}}_{A}^{\dagger}). (15)

Noting that 𝐄A{\mathbf{E}}_{A} has full row rank, we can verify that logdet(𝐄A𝐂A1𝐄A)\log\det({\mathbf{E}}_{A}{\mathbf{C}}_{A}^{-1}{\mathbf{E}}_{A}^{\dagger}) is convex with respect to (w.r.t.) 𝐂A{\mathbf{C}}_{A}[19]. In addition, since convex functions are minorized by their supporting hyperplanes [20], we have

logdet(𝐄A𝐂A1𝐄A)\displaystyle\log\det({\mathbf{E}}_{A}{\mathbf{C}}_{A}^{-1}{\mathbf{E}}_{A}^{\dagger})\geq logdet(𝐄A(𝐂A,k)1𝐄A)\displaystyle\log\det({\mathbf{E}}_{A}({\mathbf{C}}_{A,k})^{-1}{\mathbf{E}}_{A}^{\dagger})
+tr[𝐓k(𝐂A𝐂A,k)],\displaystyle+\textrm{tr}[{\mathbf{T}}_{k}({\mathbf{C}}_{A}-{\mathbf{C}}_{A,k})], (16)

where 𝐓k=𝐂A,k1𝐄A(𝐄A𝐂A,k1𝐄A)1𝐄A𝐂A,k1{\mathbf{T}}_{k}=-{\mathbf{C}}_{A,k}^{-1}{\mathbf{E}}_{A}^{\dagger}({\mathbf{E}}_{A}{\mathbf{C}}_{A,k}^{-1}{\mathbf{E}}_{A}^{\dagger})^{-1}{\mathbf{E}}_{A}{\mathbf{C}}_{A,k}^{-1} is the gradient of logdet(𝐄A𝐂A1𝐄A)\log\det({\mathbf{E}}_{A}{\mathbf{C}}_{A}^{-1}{\mathbf{E}}_{A}^{\dagger}) at 𝐂A,k{\mathbf{C}}_{A,k} [21]. Then we let 𝐓k{\mathbf{T}}_{k} be partitioned as

𝐓k=[𝐓k11𝐓k12(𝐓k12)𝐓k22],{\mathbf{T}}_{k}=\begin{bmatrix}{\mathbf{T}}_{k}^{11}&{\mathbf{T}}_{k}^{12}\\ ({\mathbf{T}}_{k}^{12})^{\dagger}&{\mathbf{T}}_{k}^{22}\end{bmatrix}, (17)

where 𝐓k11NTR×NTR{\mathbf{T}}_{k}^{11}\in\mathbb{C}^{N_{\textrm{TR}}\times N_{\textrm{TR}}}, 𝐓k12NTR×NRL{\mathbf{T}}_{k}^{12}\in\mathbb{C}^{N_{\textrm{TR}}\times N_{\textrm{RL}}}, and 𝐓k22NRL×NRL{\mathbf{T}}_{k}^{22}\in\mathbb{C}^{N_{\textrm{RL}}\times N_{\textrm{RL}}}. Then tr(𝐓k𝐂A)({\mathbf{T}}_{k}{\mathbf{C}}_{A}) can be written as

tr(𝐓k𝐂A)=\displaystyle\textrm{tr}({\mathbf{T}}_{k}{\mathbf{C}}_{A})= c0,k+2Re[tr(𝐗~𝐑H12𝐓k12)]+tr(𝐓k22𝐗~𝐑H𝐗~),\displaystyle c_{0,k}+2{\textrm{Re}}[\textrm{tr}(\widetilde{{\mathbf{X}}}{\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}{\mathbf{T}}_{k}^{12})]+\textrm{tr}({\mathbf{T}}_{k}^{22}\widetilde{{\mathbf{X}}}{\mathbf{R}}_{\textrm{H}}\widetilde{{\mathbf{X}}}^{\dagger}),

where c0,k=tr(𝐓k11+𝐓k22)c_{0,k}=\textrm{tr}({\mathbf{T}}_{k}^{11}+{\mathbf{T}}_{k}^{22}) is a constant not depending on 𝐗{\mathbf{X}}.

Therefore, a minorizer of logdet(𝐑H12𝐑~X𝐑H12+𝐈)\log\det({\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}\widetilde{{\mathbf{R}}}_{X}{\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}+{\mathbf{I}}) is given by

c1,k+2Re[tr(𝐗~𝐑H12𝐓k12)]+tr(𝐓k22𝐗~𝐑H𝐗~),c_{1,k}+2{\textrm{Re}}[\textrm{tr}(\widetilde{{\mathbf{X}}}{\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}{\mathbf{T}}_{k}^{12})]+\textrm{tr}({\mathbf{T}}_{k}^{22}\widetilde{{\mathbf{X}}}{\mathbf{R}}_{\textrm{H}}\widetilde{{\mathbf{X}}}^{\dagger}), (18)

where c1,k=c0,k+logdet(𝐄A𝐂A,k1𝐄A)tr(𝐓k𝐂A,k)c_{1,k}=c_{0,k}+\log\det({\mathbf{E}}_{A}{\mathbf{C}}_{A,k}^{-1}{\mathbf{E}}_{A}^{\dagger})-\textrm{tr}({\mathbf{T}}_{k}{\mathbf{C}}_{A,k}).

III-B Minorizing Part II

Note that

tr(𝐑11𝐗~𝐡d𝐡d𝐗~)=tr[(𝐗~𝐡d)𝐑11𝐗~𝐡d],\displaystyle\textrm{tr}({\mathbf{R}}_{1}^{-1}\widetilde{{\mathbf{X}}}{\mathbf{h}}_{d}{\mathbf{h}}_{d}^{\dagger}\widetilde{{\mathbf{X}}}^{\dagger})=\textrm{tr}[(\widetilde{{\mathbf{X}}}{\mathbf{h}}_{d})^{\dagger}{\mathbf{R}}_{1}^{-1}\widetilde{{\mathbf{X}}}{\mathbf{h}}_{d}], (19)

where 𝐑10{\mathbf{R}}_{1}\succ\textbf{0}. According to [22, Lemma 1], tr(𝐀𝐁1𝐀){\textrm{{tr}}}({\mathbf{A}}^{\dagger}{\mathbf{B}}^{-1}{\mathbf{A}}) is jointly convex w.r.t. 𝐀{\mathbf{A}} and 𝐁{\mathbf{B}}. Using the property of convex functions, we can obtain

tr[(𝐗~𝐡d)𝐑11𝐗~𝐡d]\displaystyle\textrm{tr}[(\widetilde{{\mathbf{X}}}{\mathbf{h}}_{d})^{\dagger}{\mathbf{R}}_{1}^{-1}\widetilde{{\mathbf{X}}}{\mathbf{h}}_{d}]\geq 2Re[tr((𝐗~k𝐡d)𝐑1,k1𝐗~𝐡d)]\displaystyle 2\textrm{Re}[\textrm{tr}((\widetilde{{\mathbf{X}}}_{k}{\mathbf{h}}_{d})^{\dagger}{\mathbf{R}}_{1,k}^{-1}\widetilde{{\mathbf{X}}}{\mathbf{h}}_{d})]
tr[(𝐑1,k1(𝐗~k𝐡d)(𝐗~k𝐡d)𝐑1,k1𝐑1],\displaystyle-\textrm{tr}[({\mathbf{R}}_{1,k}^{-1}(\widetilde{{\mathbf{X}}}_{k}{\mathbf{h}}_{d})(\widetilde{{\mathbf{X}}}_{k}{\mathbf{h}}_{d})^{\dagger}{\mathbf{R}}_{1,k}^{-1}{\mathbf{R}}_{1}],

where 𝐑1,k=𝐗~k𝐑H𝐗~k+σ2𝐈{\mathbf{R}}_{1,k}=\widetilde{{\mathbf{X}}}_{k}{\mathbf{R}}_{\textrm{H}}\widetilde{{\mathbf{X}}}_{k}^{\dagger}+\sigma^{2}{\mathbf{I}}.

As a result, a minorizer of Part II of the objective is given by

c2,k+tr(𝐙k𝐗~𝐑H𝐗~)+2Re[tr(𝐗~𝐖k)],c_{2,k}+\textrm{tr}({\mathbf{Z}}_{k}\widetilde{{\mathbf{X}}}{\mathbf{R}}_{\textrm{H}}\widetilde{{\mathbf{X}}}^{\dagger})+2\textrm{Re}[\textrm{tr}(\widetilde{{\mathbf{X}}}^{\dagger}{\mathbf{W}}_{k})], (20)

where c2,k=tr(𝐙k)c_{2,k}=-\textrm{tr}({\mathbf{Z}}_{k}), 𝐙k=𝐑1,k1(𝐗~k𝐡d)(𝐗~k𝐡d)𝐑1,k1{\mathbf{Z}}_{k}={\mathbf{R}}_{1,k}^{-1}(\widetilde{{\mathbf{X}}}_{k}{\mathbf{h}}_{d})(\widetilde{{\mathbf{X}}}_{k}{\mathbf{h}}_{d})^{\dagger}{\mathbf{R}}_{1,k}^{-1}, and 𝐖k=𝐑1,k1(𝐗~k𝐡d)𝐡d{\mathbf{W}}_{k}={\mathbf{R}}_{1,k}^{-1}(\widetilde{{\mathbf{X}}}_{k}{\mathbf{h}}_{d}){\mathbf{h}}_{d}^{\dagger}.

III-C Minorizing Part III

Since tr(𝐑11)\textrm{tr}({\mathbf{R}}_{1}^{-1}) is convex w.r.t. 𝐑1{\mathbf{R}}_{1}, we can obtain

tr(𝐑1)\displaystyle\textrm{tr}({\mathbf{R}}_{1})\geq tr(𝐑1,k1)+tr[𝐑1,k2(𝐗~𝐑H𝐗~𝐗~k𝐑H𝐗~k)].\displaystyle\textrm{tr}({\mathbf{R}}_{1,k}^{-1})+\textrm{tr}[-{\mathbf{R}}_{1,k}^{-2}(\widetilde{{\mathbf{X}}}{\mathbf{R}}_{\textrm{H}}\widetilde{{\mathbf{X}}}^{{\dagger}}-\widetilde{{\mathbf{X}}}_{k}{\mathbf{R}}_{\textrm{H}}\widetilde{{\mathbf{X}}}_{k}^{{\dagger}})].

Thus, a minorizer of tr(𝐑11)\textrm{tr}({\mathbf{R}}_{1}^{-1}) (i.e., Part III of the objective) is given by

c3,ktr(𝐑1,k2𝐗~𝐑H𝐗~),c_{3,k}-\textrm{tr}({\mathbf{R}}_{1,k}^{-2}\widetilde{{\mathbf{X}}}{\mathbf{R}}_{\textrm{H}}\widetilde{{\mathbf{X}}}^{\dagger}), (21)

where c3,k=tr(𝐑1,k1)+tr(𝐑1,k2𝐗~k𝐑H𝐗~k)c_{3,k}=\textrm{tr}({\mathbf{R}}_{1,k}^{-1})+\textrm{tr}({\mathbf{R}}_{1,k}^{-2}\widetilde{{\mathbf{X}}}_{k}{\mathbf{R}}_{\textrm{H}}\widetilde{{\mathbf{X}}}_{k}^{{\dagger}}).

III-D The Minorized Problem at the kkth Iteration

With the results in (18), (20), and (21), the minorized problem at the kkth iteration can be formulated as

max𝐗\displaystyle\max_{\mathbf{X}}\ 2Re[tr(𝐗~𝐏k)]+tr(𝐐k𝐗~𝐑H𝐗~)\displaystyle 2{\textrm{Re}}[\textrm{tr}(\widetilde{{\mathbf{X}}}^{\dagger}{\mathbf{P}}_{k})]+\textrm{tr}({\mathbf{Q}}_{k}\widetilde{{\mathbf{X}}}{\mathbf{R}}_{\textrm{H}}\widetilde{{\mathbf{X}}}^{\dagger})
s.t. tr(𝐗𝐗)Pt,\displaystyle\ \textrm{tr}({\mathbf{X}}{\mathbf{X}}^{\dagger})\leq P_{t}, (22)

where 𝐏k=(𝐓k12)𝐑H12+𝐖k{\mathbf{P}}_{k}=({\mathbf{T}}_{k}^{12})^{\dagger}{\mathbf{R}}_{\textrm{H}}^{\frac{1}{2}}+{\mathbf{W}}_{k}, 𝐐k=𝐓k22𝐙k𝐑1,k2{\mathbf{Q}}_{k}={\mathbf{T}}^{22}_{k}-{\mathbf{Z}}_{k}-{\mathbf{R}}_{1,k}^{-2}, and we have ignored the constant terms.

By using the identities that tr(𝐀𝐁)=vec(𝐀)vec(𝐁)\textrm{tr}({\mathbf{A}}^{\top}{\mathbf{B}})=\textrm{vec}^{\top}({\mathbf{A}})\textrm{vec}({\mathbf{B}}) and tr(𝐀𝐁𝐂𝐃)=vec(𝐃)(𝐀𝐂)vec(𝐁)\textrm{tr}({\mathbf{A}}{\mathbf{B}}{\mathbf{C}}{\mathbf{D}})=\textrm{vec}^{\top}({\mathbf{D}})({\mathbf{A}}\otimes{\mathbf{C}}^{\top})\textrm{vec}({\mathbf{B}}^{\top})[23], we can rewrite the objective of (III-D) as

𝐱~𝐌~k𝐱~+2Re(𝐱~𝐦~k),\widetilde{{\mathbf{x}}}^{\dagger}\widetilde{{\mathbf{M}}}_{k}\widetilde{{\mathbf{x}}}+2\textrm{Re}(\widetilde{{\mathbf{x}}}^{\dagger}\widetilde{{\mathbf{m}}}_{k}), (23)

where 𝐱~=vec(𝐗~)\widetilde{{\mathbf{x}}}=\textrm{vec}(\widetilde{{\mathbf{X}}}),

𝐌~k=𝐑H𝐏k,𝐦~k=vec(𝐐k).\widetilde{{\mathbf{M}}}_{k}={\mathbf{R}}_{\textrm{H}}^{*}\otimes{\mathbf{P}}_{k},\widetilde{{\mathbf{m}}}_{k}=\textrm{vec}({\mathbf{Q}}_{k}). (24)

According to [16], 𝐱~\widetilde{{\mathbf{x}}} is a linear function of 𝐱=vec(𝐗){\mathbf{x}}={\textrm{vec}}({\mathbf{X}}), which can be written as 𝐱~=𝐁s𝐱\widetilde{{\mathbf{x}}}={\mathbf{B}}_{s}{\mathbf{x}}, where 𝐁s=𝐄s𝐈L{\mathbf{B}}_{s}={\mathbf{E}}_{s}\otimes{\mathbf{I}}_{\textrm{L}}, 𝐄s=[𝐄1,𝐄2,,𝐄NTR]{\mathbf{E}}_{s}=[{\mathbf{E}}_{1},{\mathbf{E}}_{2},\cdots,{\mathbf{E}}_{N_{\textrm{TR}}}]^{\top}, with 𝐄i,i=1,2,,NTR{\mathbf{E}}_{i},i=1,2,\cdots,N_{\textrm{TR}}, denoting an NT×NRN_{\textrm{T}}\times N_{\textrm{R}} elementary matrix which has a unity in the (ir,ic)(i_{r},i_{c})-th element and zeros in all other positions, ir=1+mod(i1,NT)i_{r}=1+\textrm{mod}(i-1,N_{\textrm{T}}), and ic=iNTi_{c}=\lceil\frac{i}{N_{\textrm{T}}}\rceil. Then we can reformulate the optimization problem in (III-D) as

max𝐱𝐱𝐌k𝐱+2Re(𝐱𝐦k),s.t.𝐱𝐱Pt,\max_{\mathbf{x}}{\mathbf{x}}^{\dagger}{\mathbf{M}}_{k}{\mathbf{x}}+2\textrm{Re}({\mathbf{x}}^{\dagger}{\mathbf{m}}_{k}),\textrm{s.t.}\ {\mathbf{x}}^{\dagger}{\mathbf{x}}\leq P_{t}, (25)

where 𝐌k=𝐁s𝐌~k𝐁s{\mathbf{M}}_{k}={\mathbf{B}}_{s}^{\dagger}\widetilde{{\mathbf{M}}}_{k}{\mathbf{B}}_{s}, 𝐦k=𝐁s𝐦~k{\mathbf{m}}_{k}={\mathbf{B}}_{s}^{\dagger}\widetilde{{\mathbf{m}}}_{k}, and we have used the fact that tr(𝐗𝐗)=𝐱𝐱\textrm{tr}({\mathbf{X}}{\mathbf{X}}^{\dagger})={\mathbf{x}}^{\dagger}{\mathbf{x}}.

It can be proved that (25) is a hidden convex problem [24] and can be solved via the Lagrange multipliers method. Specifically, the associated Lagrangian is given by

L(𝐱,ν)=𝐱𝐌k𝐱+2Re(𝐱𝐦k)+ν(𝐱𝐱Pt),L({\mathbf{x}},\nu)={\mathbf{x}}^{\dagger}{\mathbf{M}}_{k}{\mathbf{x}}+2\textrm{Re}({\mathbf{x}}^{\dagger}{\mathbf{m}}_{k})+\nu({\mathbf{x}}^{\dagger}{\mathbf{x}}-P_{t}), (26)

where ν\nu is the Lagrange multiplier associated with the constrained set. The maximizer can be obtained by differentiating (26) w.r.t 𝐱{\mathbf{x}} and setting the differentiation to zero:

𝐱k+1=(𝐌k+νk+1𝐈NRL)1𝐦k,{\mathbf{x}}_{k+1}=-({\mathbf{M}}_{k}+\nu_{k+1}{\mathbf{I}}_{N_{\textrm{RL}}})^{-1}{\mathbf{m}}_{k}, (27)

where νk+1\nu_{k+1} is the solution to the following equation:

(𝐦k)(𝐌k+ν𝐈NRL)2𝐦k=Pt.({\mathbf{m}}_{k})^{\dagger}({\mathbf{M}}_{k}+\nu{\mathbf{I}}_{N_{\textrm{RL}}})^{-2}{\mathbf{m}}_{k}=P_{t}. (28)

IV Numerical Examples

In this section, we provide numerical examples to verify the performance of the proposed algorithm. We consider a colocated MIMO radar with NT=6N_{\textrm{T}}=6 transmitters and NR=6N_{\textrm{R}}=6 receivers. The inter-element spacings of the transmit array and the receive array are dT=2λd_{\textrm{T}}=2\lambda and dR=λ/2d_{\textrm{R}}=\lambda/2, respectively (λ\lambda is the wavelength). The code length is L=20L=20. We assume that the nominal DOA of the target is θd=15\theta_{d}=15^{\circ} (i.e., the prior knowledge). 𝐡d=αd𝐚(θd)𝐛(θd){\mathbf{h}}_{d}=\alpha_{d}{\mathbf{a}}(\theta_{d})\otimes{\mathbf{b}}(\theta_{d}) with αd=3/2\alpha_{d}=\sqrt{3/2} denoting the target amplitude. We model 𝐑H{\mathbf{R}}_{\textrm{H}} by 𝐑H=kσr2(𝐛(θk)𝐛(θk))(𝐚(θk)𝐚(θk)){\mathbf{R}}_{\textrm{H}}=\sum_{k}\nolimits\sigma^{2}_{r}({\mathbf{b}}(\theta_{k}){\mathbf{b}}(\theta_{k})^{\dagger})\otimes({\mathbf{a}}(\theta_{k}){\mathbf{a}}(\theta_{k})^{\dagger}), where σr2=0.05\sigma^{2}_{r}=0.05, and θk\theta_{k} are uniformly distributed from 60-60^{\circ} to 5656^{\circ}. We initialize the proposed algorithm with randomly generated quasi-orthogonal waveforms. Finally, the proposed algorithm terminates if |DkDk1|/Dk<ϵ=104|D_{k}-D_{k-1}|/D_{k}<\epsilon=10^{-4}.

Now we compare the performance of the waveforms synthesized by the proposed algorithm with that of the waveforms synthesized by (5). Note that to design the waveforms by (5), we replace 𝐇{\mathbf{H}} by the nominal target response matrix 𝐇d{\mathbf{H}}_{d}, and vec(𝐇d)=𝐡d{\textrm{vec}}({\mathbf{H}}_{d})={\mathbf{h}}_{d}. Fig. 1 shows the relative entropy of the synthesized waveforms versus different transmit energy, where the DOA of the true target is θt=25\theta_{t}=25^{\circ} (i.e., a 1010^{\circ} mismatch between the nominal DOA and the true DOA). We can observe that the waveforms synthesized by the proposed algorithm always have a larger relative entropy. Fig. 2 shows the probabilities of detection associated with Fig. 1, where the NP detector in (8) is used to analyze the detection performance, the probability of false alarm is Pfa=103P_{fa}=10^{-3}, and 10510^{5} Monte Carlo trials are conducted to obtain the threshold and the probability of detection, respectively. We can find that the results in Fig. 2 are consistent with Fig. 1, showing the robustness of the proposed waveforms against the angle mismatch.

Fig. 3 compares the detection probability of the proposed algorithm with that of the nominal design, where we assume that the true DOA of the target is fixed to be 2525^{\circ}, the nominal DOA of the target varies from 1010^{\circ} to 4040^{\circ}, and the transmit energy is Pt=1.25P_{t}=1.25. The results demonstrate that when the angle mismatch is larger than 66^{\circ}, the proposed algorithm exhibits better robustness.

Refer to caption


Figure 1: The relative entropy of the synthesized waveforms against transmit energy. The DOA of the target is θt=25\theta_{t}=25^{\circ}.

Refer to caption

Figure 2: The probability of detection of the synthesized waveforms against transmit energy. The DOA of the target is θt=25\theta_{t}=25^{\circ}.

Refer to caption

Figure 3: The probability of detection of the synthesized waveforms versus the nominal target DOA.

V Conclusion

This paper considered robust waveform design for MIMO radar target detection. A probabilistic model was proposed to describe the target uncertainty, and the relative entropy between the PDF of the observations under two hypotheses was employed as the waveform design metric. To tackle the non-convex waveform design problem, an efficient optimization algorithm based on MM was developed. Numerical results show that the waveforms synthesized by the proposed algorithm are more robust to the target mismatches.

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China under Grant 62171450 and 61671453, the Anhui Provincial Natural Science Foundation under Grant 2108085J30, and the Young Elite Scientist Sponsorship Program of CAST under Grant 17-JCJQ-QT-041.

References

  • [1] J. Li and P. Stoica, MIMO Radar Signal Processing.   Hoboken, NJ, USA: Wiley, 2008.
  • [2] A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with widely separated antennas,” IEEE Signal Processing Magazine, vol. 25, no. 1, pp. 116–129, 2008.
  • [3] J. Li and P. Stoica, “MIMO radar with colocated antennas,” IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 106–114, 2007.
  • [4] H. He, P. Stoica, and J. Li, “Designing unimodular sequence sets with good correlations-including an application to MIMO radar,” IEEE Transactions on Signal Processing, vol. 57, no. 11, pp. 4391–4405, 2009.
  • [5] H. He, J. Li, and P. Stoica, Waveform Design for Active Sensing Systems: A Computational Approach.   Cambridge, U.K.: Cambridge Univ. Press, 2012.
  • [6] C. Chen and P. P. Vaidyanathan, “MIMO radar waveform optimization with prior information of the extended target and clutter,” IEEE Transactions on Signal Processing, vol. 57, no. 9, pp. 3533–3544, 2009.
  • [7] B. Tang and J. Tang, “Joint design of transmit waveforms and receive filters for MIMO radar space-time adaptive processing,” IEEE Transactions on Signal Processing, vol. 64, no. 18, pp. 4707–4722, 2016.
  • [8] G. Cui, X. Yu, V. Carotenuto, and L. Kong, “Space-time transmit code and receive filter design for colocated MIMO radar,” IEEE Transactions on Signal Processing, vol. 65, no. 5, pp. 1116–1129, 2017.
  • [9] B. Tang, J. Tuck, and P. Stoica, “Polyphase waveform design for MIMO radar space time adaptive processing,” IEEE Transactions on Signal Processing, vol. 68, pp. 2143–2154, 2020.
  • [10] A. D. Maio and M. Lops, “Design principles of MIMO radar detectors,” IEEE Transactions on Aerospace and Electronic Systems, vol. 43, no. 3, pp. 886–898, 2007.
  • [11] B. Tang, J. Tang, and Y. Peng, “MIMO radar waveform design in colored noise based on information theory,” IEEE Transactions on Signal Processing, vol. 58, no. 9, pp. 4684–4697, 2010.
  • [12] B. Tang and J. Li, “Spectrally constrained MIMO radar waveform design based on mutual information,” IEEE Transactions on Signal Processing, vol. 67, no. 3, pp. 821–834, 2019.
  • [13] B. Tang, M. M. Naghsh, and J. Tang, “Relative entropy-based waveform design for MIMO radar detection in the presence of clutter and interference,” IEEE Transactions on Signal Processing, vol. 63, no. 14, pp. 3783–3796, 2015.
  • [14] B. Tang and P. Stoica, “Information-theoretic waveform design for MIMO radar detection in range-spread clutter,” Signal Processing, vol. 182, p. 107961, 2021.
  • [15] B. Tang, J. Tang, and Y. Zhang, “Design of multiple-input-multiple-output radar waveforms for Rician target detection,” IET Radar, Sonar & Navigation, vol. 10, no. 9, pp. 1583–1593, 2016.
  • [16] B. Tang, Y. Zhang, and J. Tang, “An efficient minorization maximization approach for MIMO radar waveform optimization via relative entropy,” IEEE Transactions on Signal Processing, vol. 66, no. 2, pp. 400–411, 2018.
  • [17] S. M. Kay, Fundamentals of statistical signal processing, vol. ii: detection theory, Prentice-Hall, Upper Saddle River, Newer Jersey, 1998.
  • [18] R. A. Horn and C. R. Jonson, Matrix Analysis.   Cambridge, U.K: Cambridge Univ. Press, 1990.
  • [19] M. M. Naghsh, M. Modarres-Hashemi, M. A. Kerahroodi, and E. H. M. Alian, “An information theoretic approach to robust constrained code design for MIMO radars,” IEEE Transactions on Signal Processing, vol. 65, no. 14, pp. 3647–3661, 2017.
  • [20] S. Boyd and L. Vandenberghe, Convex Optimization.   Cambridge, U.K: Combridge Univ. Press, 2004.
  • [21] A. Hjorungnes and D. Gesbert, “Complex-valued matrix differentiation: Techniques and key results,” IEEE Transactions on Signal Processing, vol. 55, no. 6, pp. 2740–2746, 2007.
  • [22] B. Tang, J. Liu, H. Wang, and Y. Hu, “Constrained radar waveform design for range profiling,” IEEE Transactions on Signal Processing, vol. 69, pp. 1924–1937, 2021.
  • [23] D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas.   Princeton, NJ, USA: Princeton Univ. Press, 2009.
  • [24] A. Ben-Tal and M. Teboulle, “Hidden convexity in some nonconvex quadratically constrained quadratic programming,” Math. Program., vol. 72, no. 1, pp. 52–63, 1996.