This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A pure-jump mean-reverting short rate model

M.Markus Hesslabel=e1]Markus-Hess@gmx.net [ Independent
(2020; \sday23 4 2019; \sday27 3 2020; \sday27 3 2020)
Abstract

A new multi-factor short rate model is presented which is bounded from below by a real-valued function of time. The mean-reverting short rate process is modeled by a sum of pure-jump Ornstein–Uhlenbeck processes such that the related bond prices possess affine representations. Also the dynamics of the associated instantaneous forward rate is provided and a condition is derived under which the model can be market-consistently calibrated. The analytical tractability of this model is illustrated by the derivation of an explicit plain vanilla option price formula. With view on practical applications, suitable probability distributions are proposed for the driving jump processes. The paper is concluded by presenting a post-crisis extension of the proposed short and forward rate model.

Short rate,
forward rate,
zero-coupon bond,
option pricing,
market-consistent calibration,
post-crisis model,
Lévy process,
multi-factor model,
Ornstein–Uhlenbeck process,
stochastic differential equation,
91G30,
60G51,
60H10,
60H30,
91B30,
91B70,
G12,
D52,
doi:
10.15559/20-VMSTA152
keywords:
keywords:
[MSC2010]
keywords:
[JEL]
volume: 7issue: 2articletype: research-article
\aid

VMSTA152 \startlocaldefs \urlstylerm \allowdisplaybreaks \endlocaldefs

\pretitle

Research Article

\publishedonline\sday

20 4 2020

1 Introduction

Stochastic interest rate models play an important role in the modeling of financial markets. The literature essentially distinguishes between short rate models, forward rate models and market models. In the sequel, we give a brief survey on the different classes of term structure models. For more detailed information, the reader is referred to the respective research articles or the textbooks [7, 21] and [26].

Widely applied short rate models are for example the Vasicek model [38], the Hull–White model [29] or the Cox–Ingersoll–Ross (CIR) model [10]. In [38] and [29] the short rate process is modeled by a stochastic differential equation (SDE) of Ornstein–Uhlenbeck (OU) type driven by a Brownian motion (BM). As a consequence, the short rate process is normally distributed in these models and may become arbitrarily negative. Both features embody severe disadvantages with view on real-world market behavior, as the distribution of interest rate data frequently deviates from the normal distribution, while interest rates do not take arbitrarily large negative values in practice. In the recent years, there indeed appeared negative interest rates from time to time, but the negative values usually were small and stayed above some lower bound. However, in [10] the short rate is modeled by a so-called square-root process. This approach leads to a mean-reverting, strictly positive and chi-square distributed short rate process. In [6] the authors propose a time-homogeneous short rate model which is extended by a deterministic shift function in order to allow for negative rates and a perfect fit to the initially observed term structure. A very detailed overview on short rate models and their properties can be found in [7, 16] and [21]. In [26] and [33] short rate models in an extended multiple-curve framework are presented. The probably most famous forward rate model is the Heath–Jarrow–Morton (HJM) model proposed in [27]. Therein, the instantaneous forward rate process is modeled directly by an arithmetic SDE driven by a BM. In [4] the HJM model is extended to a jump-diffusion setup where the forward rate process is affected by both diffusion and random jump noise. HJM type models are also treated in [7] and Chapter 7 in [28]. In [12] and [26] HJM forward rate models in an extended multi-curve framework are discussed. The class of the so-called market models was introduced in [5]. For example, the popular LIBOR model belongs to this modeling class. In most cases, market models involve geometric SDEs such that the modeled interest rates usually turn out to be strictly positive. In order to allow the modeled rates also to take small negative values, shifted market model approaches have been proposed recently. Numerous properties of affine LIBOR models are provided in [31]. Market models are also presented in [7]. In [26] LIBOR models in an extended multi-curve framework are discussed. In [17] the authors propose a Lévy forward price model in a multi-curve setup which is able to generate negative interest rates. Term structure models which are driven by Lévy processes have also been proposed in [18, 19, 20].

In the present paper, we introduce a new pure-jump multi-factor short rate model which is bounded from below by a real-valued function of time which can be chosen arbitrarily. The short rate process is modeled by a deterministic function plus a sum of pure-jump zero-reverting Ornstein–Uhlenbeck processes. It turns out that the short rate is mean-reverting and that the related bond price formula possesses an affine representation. We also provide the dynamics of the related instantaneous forward rate, the latter being of HJM type. We further derive a condition under which the forward rate model can be market-consistently calibrated. The analytical tractability of our model is illustrated by the derivation of a plain-vanilla option price formula with Fourier transform methods. With view on practical applications, we make concrete assumptions on the distribution of the jump noises and show how explicit formulas can be deduced in these cases. We conclude the paper by presenting a post-crisis extension of our short and forward rate model.

The outline of the paper is as follows: In Section 2 we introduce our new pure-jump multi-factor short rate model which is bounded from below. Section 3 is dedicated to the derivation of related bond price and forward rate representations. Section 4 is devoted to option pricing. Section 5 contains guidelines for a practical application, while putting a special focus on possible distributional choices for the modeling of the involved jump noises. In Section 6 we consider a post-crisis extension of the proposed short and forward rate model.

2 A pure-jump multi-factor short rate model

Let (Ω,𝔽,=(t)t[0,T],)\left(\Omega,\mathbb{F},\mathcal{F}=\left(\mathcal{F}_{t}\right)_{t\in\left[0,T\right]},\mathbb{Q}\right) be a filtered probability space satisfying the usual hypotheses, i.e. t=t+:=s>ts\mathcal{F}_{t}=\mathcal{F}_{t+}:=\cap_{s>t}\mathcal{F}_{s} constitutes a right-continuous filtration and 𝔽\mathbb{F} denotes the sigma-algebra augmented by all \mathbb{Q}-null sets (cf. [30, 35]). Here, \mathbb{Q} is a risk-neutral probability measure and T>0T>0 denotes a fixed finite time horizon. In this setup, for arbitrary nn\in\mathbb{N} we define the stochastic short rate process r=(rt)t[0,T]r=\left(r_{t}\right)_{t\in\left[0,T\right]} via

rt:=μ(t)+k=1nXtkr_{t}:=\mu\left(t\right)+\sum_{k=1}^{n}X_{t}^{k} (2.1)

where μ(t)\mu\left(t\right) is a differentiable real-valued deterministic 1\mathcal{L}^{1}-function and XtkX_{t}^{k} constitute pure-jump zero-reverting Ornstein–Uhlenbeck (OU) processes satisfying the SDE

dXtk=λkXtkdt+σkdLtkdX_{t}^{k}=-\lambda_{k}X_{t}^{k}dt+\sigma_{k}dL_{t}^{k} (2.2)

with deterministic initial values X0k:=xk0X_{0}^{k}:=x_{k}\geq 0, constant mean-reversion velocities λk>0\lambda_{k}>0 and constant volatility coefficients σk>0\sigma_{k}>0. Herein, the independent, càdlàg, increasing, pure-jump, compound Poisson Lévy processes LtkL_{t}^{k} are defined by

Ltk:=0tDkz𝑑Nk(s,z)L_{t}^{k}:=\int_{0}^{t}\int_{D_{k}}zdN_{k}\left(s,z\right) (2.3)

where Dk+:=]0,[D_{k}\subseteq\mathbb{R}^{+}:=\left]0,\infty\right[\subset\mathbb{R} denote jump amplitude sets and NkN_{k} constitute Poisson random measures (PRMs). Note that the processes XtkX_{t}^{k} and LtkL_{t}^{k} always jump simultaneously, while XtkX_{t}^{k} decays exponentially between its jumps due to the dampening linear drift term appearing in (2.2). A typical trajectory of a Lévy-driven OU process is shown in Figure 15.1 in [9]. Further note that the background-driving time-homogeneous Lévy processes LtkL_{t}^{k} are increasing and thus, constitute so-called subordinators. Moreover, for all k{1,,n}k\in\left\{1,\dots,n\right\} and (s,z)[0,T]×Dk\left(s,z\right)\in\left[0,T\right]\times D_{k} we define the \mathbb{Q}-compensated PRMs

dN~k(s,z):=dNk(s,z)dνk(z)dsd\tilde{N}_{k}^{\mathbb{Q}}\left(s,z\right):=dN_{k}\left(s,z\right)-d\nu_{k}\left(z\right)ds (2.4)

which constitute (,)\left(\mathcal{F},\mathbb{Q}\right)-martingale integrators. Herein, the positive and σ\sigma-finite Lévy measures νk\nu_{k} satisfy the integrability conditions

Dk(1z)𝑑νk(z)<,z>1eϖz𝑑νk(z)<\int_{D_{k}}\left(1\wedge z\right)d\nu_{k}\left(z\right)<\infty,\qquad\int_{z>1}e^{\varpi z}d\nu_{k}\left(z\right)<\infty (2.5)

for an arbitrary constant ϖ\varpi\in\mathbb{R} (cf. [9, 17]). For all k{1,,n}k\in\left\{1,\dots,n\right\} and t[0,T]t\in\left[0,T\right] we obtain

𝔼[Ltk]=tDkz𝑑νk(z),\mathbhVar[Ltk]=tDkz2𝑑νk(z)\mathbb{E}_{\mathbb{Q}}\bigl{[}L_{t}^{k}\bigr{]}=t\int_{D_{k}}zd\nu_{k}\left(z\right),\qquad\mathbh{Var}_{\mathbb{Q}}\bigl{[}L_{t}^{k}\bigr{]}=t\int_{D_{k}}z^{2}d\nu_{k}\left(z\right)

both being finite entities due to (2.5) (cf. Section 1 in [17]). We remark that the currently proposed multi-factor short rate model (2.1) has been inspired by the electricity spot price model introduced in [2]. Arithmetic multi-factor models of this type have also been investigated in [28] and Section 3.2.2 in [3].

Remark 2.1.

(a) Since LtkL_{t}^{k} is increasing and XtkX_{t}^{k} is zero-reverting from above, the function μ(t)\mu\left(t\right) is the mean-reversion floor or lower bound of the short rate process rtr_{t}, i.e. it holds rtμ(t)r_{t}\geq\mu\left(t\right)\ \mathbb{Q}-a.s. for all t[0,T]t\in\left[0,T\right], while rtr_{t} is mean-reverting from above to μ(t)\mu\left(t\right). Also note that the presence of a Brownian motion (BM) as driving noise in one of the processes Xt1,,XtnX_{t}^{1},\dots,X_{t}^{n} would destroy the lower boundedness of rtr_{t}. In contrast to the presented pure-jump approach, it appears difficult to set up (lower-) bounded processes in arithmetic BM approaches. Moreover, we recall that negative rates have been observed in real-world post-crisis interest rate markets. Such scenarios can easily be captured by our model by choosing, e.g. μ(t)c\mu\left(t\right)\equiv c, where c<0c<0 is an arbitrary constant. (In practical applications, it may happen that the floor function μ(t)\mu\left(t\right) needs to be readjusted, if interest rates evolve lower than anticipated. This issue has been discussed in [1] in the context of the SABR model.)

(b) Our pure-jump model (2.1) is able to generate short rate trajectories which closely resemble those stemming from common Brownian motion approaches, if we allow for small jump sizes only, i.e. Dk=[ϵ1k,ϵ2k]D_{k}=\left[\epsilon_{1}^{k},\epsilon_{2}^{k}\right] with small constants 0<ϵ1k<ϵ2k0<\epsilon_{1}^{k}<\epsilon_{2}^{k}. In this context, we emphasize that the well-established pure-jump variance gamma model is likewise able to generate suitable price trajectories, although there is neither any diffusion component involved (cf. Section 2.6.3 in [3], Table 4.5 in [9], Section 5.3.7 in [37]). On top of that, our pure-jump model might even provide more flexibility concerning the modeling of distributional properties than common BM approaches, since we are able to implement tailor-made distributions via an appropriate choice of the Lévy measures νk\nu_{k} which fit the empirical behavior of the rates in a best possible manner. This topic is further discussed in Section 5 below. For instance, (generalized) inverse Gaussian, tempered stable or gamma distributions might embody suitable choices (recall Appendix B.1.2 on p. 151 in [37]). We finally recall that a model of the type (2.1) has been fitted to real market data in [2] (yet in an electricity market context).

For a time partition 0tsT0\leq t\leq s\leq T the solution of (2.2) under \mathbb{Q} can be expressed as

Xsk=Xtkeλk(st)+σktsDkeλk(su)z𝑑Nk(u,z)X_{s}^{k}=X_{t}^{k}e^{-\lambda_{k}\left(s-t\right)}+\sigma_{k}\int_{t}^{s}\int_{D_{k}}e^{-\lambda_{k}\left(s-u\right)}zdN_{k}\left(u,z\right) (2.6)

where we used (2.3). The representation (2.6) implies

Xtk=xkeλkt+σk0tDkeλk(ts)z𝑑Nk(s,z)X_{t}^{k}=x_{k}e^{-\lambda_{k}t}+\sigma_{k}\int_{0}^{t}\int_{D_{k}}e^{-\lambda_{k}\left(t-s\right)}zdN_{k}\left(s,z\right) (2.7)

where 0tT0\leq t\leq T. For all t[0,T]t\in\left[0,T\right] we next define the historical filtration

t:=σ{Ls1,,Lsn:0st}.\mathcal{F}_{t}:=\sigma\{L_{s}^{1},\dots,L_{s}^{n}:0\leq s\leq t\}.
Proposition 2.2

For 0utT0\leq u\leq t\leq T we have

𝔼(rt|u)=μ(t)+k=1n(Xukeλk(tu)+σk1eλk(tu)λkDkz𝑑νk(z)),\displaystyle\mathbb{E}_{\mathbb{Q}}\left(r_{t}|\mathcal{F}_{u}\right)=\mu\left(t\right)+\sum_{k=1}^{n}\left(X_{u}^{k}e^{-\lambda_{k}\left(t-u\right)}+\sigma_{k}\frac{1-e^{-\lambda_{k}\left(t-u\right)}}{\lambda_{k}}\int_{D_{k}}zd\nu_{k}\left(z\right)\right),
\mathbhVar(rt|u)=k=1nσk21e2λk(tu)2λkDkz2𝑑νk(z)\displaystyle\mathbh{Var}_{\mathbb{Q}}\left(r_{t}|\mathcal{F}_{u}\right)=\sum_{k=1}^{n}\sigma_{k}^{2}\frac{1-e^{-2\lambda_{k}\left(t-u\right)}}{2\lambda_{k}}\int_{D_{k}}z^{2}d\nu_{k}\left(z\right)

where the short rate process rtr_{t} satisfies (2.1). Both entities are finite due to (2.5).

(Here and in what follows, we omit all proofs which are straightforward.) Taking u=0u=0 in Proposition 2.2, we find for all t[0,T]t\in\left[0,T\right]

𝔼[rt]=μ(t)+k=1n(xkeλkt+σk1eλktλkDkz𝑑νk(z)),\displaystyle\mathbb{E}_{\mathbb{Q}}\left[r_{t}\right]=\mu\left(t\right)+\sum_{k=1}^{n}\left(x_{k}e^{-\lambda_{k}t}+\sigma_{k}\frac{1-e^{-\lambda_{k}t}}{\lambda_{k}}\int_{D_{k}}zd\nu_{k}\left(z\right)\right),
\mathbhVar[rt]=k=1nσk21e2λkt2λkDkz2𝑑νk(z).\displaystyle\mathbh{Var}_{\mathbb{Q}}\left[r_{t}\right]=\sum_{k=1}^{n}\sigma_{k}^{2}\frac{1-e^{-2\lambda_{k}t}}{2\lambda_{k}}\int_{D_{k}}z^{2}d\nu_{k}\left(z\right).

Note that it is possible to identify the entities 𝔼[Xtk]\mathbb{E}_{\mathbb{Q}}\left[X_{t}^{k}\right] and \mathbhVar[Xtk]\mathbh{Var}_{\mathbb{Q}}\left[X_{t}^{k}\right] inside the latter equations due to (2.1). Moreover, suppose that μ(t)μ~\mu\left(t\right)\rightarrow\tilde{\mu} for tt\rightarrow\infty where μ~\tilde{\mu}\in\mathbb{R} is a finite constant. Then we observe

limt𝔼[rt]=μ~+k=1nσkλkDkz𝑑νk(z),\displaystyle\lim_{t\rightarrow\infty}\mathbb{E}_{\mathbb{Q}}\left[r_{t}\right]=\tilde{\mu}+\sum_{k=1}^{n}\frac{\sigma_{k}}{\lambda_{k}}\int_{D_{k}}zd\nu_{k}\left(z\right),
limt\mathbhVar[rt]=k=1nσk22λkDkz2𝑑νk(z)\displaystyle\lim_{t\rightarrow\infty}\mathbh{Var}_{\mathbb{Q}}\left[r_{t}\right]=\sum_{k=1}^{n}\frac{\sigma_{k}^{2}}{2\lambda_{k}}\int_{D_{k}}z^{2}d\nu_{k}\left(z\right)

which both constitute finite constants. This limit behavior entirely stands in line with the requirements imposed on short rate models claimed on p. 46 in [7]. In the next step, we investigate the characteristic function of rtr_{t} which is defined via

Φrt(u):=𝔼[eiurt]\Phi_{r_{t}}\left(u\right):=\mathbb{E}_{\mathbb{Q}}\bigl{[}e^{iur_{t}}\bigr{]}

where uu\in\mathbb{R} and t[0,T]t\in\left[0,T\right].

Proposition 2.3

For k{1,,n}k\in\left\{1,\dots,n\right\} we define the deterministic functions

Λk(s,z):=σkeλk(ts)z,ψk(t,u):=iueλkt,\displaystyle\Lambda_{k}\left(s,z\right):=\sigma_{k}e^{-\lambda_{k}\left(t-s\right)}z,\qquad\psi_{k}\left(t,u\right):=iue^{-\lambda_{k}t},
ρk(t,u):=0tDk[eiuΛk(s,z)1]𝑑νk(z)𝑑s.\displaystyle\rho_{k}\left(t,u\right):=\int_{0}^{t}\int_{D_{k}}\bigl{[}e^{iu\Lambda_{k}\left(s,z\right)}-1\bigr{]}d\nu_{k}\left(z\right)ds.

Then for any uu\in\mathbb{R} and t[0,T]t\in\left[0,T\right] the characteristic function of rtr_{t} can be decomposed as

Φrt(u)=eiuμ(t)k=1nΦXtk(u)\Phi_{r_{t}}\left(u\right)=e^{iu\mu\left(t\right)}\prod_{k=1}^{n}\Phi_{X_{t}^{k}}\left(u\right)

where the characteristic function of XtkX_{t}^{k} is given by

ΦXtk(u)=eψk(t,u)xk+ρk(t,u)\Phi_{X_{t}^{k}}\left(u\right)=e^{\psi_{k}\left(t,u\right)x_{k}+\rho_{k}\left(t,u\right)}

with deterministic and affine characteristic exponent.

An immediate consequence of Proposition 2.3 is the subsequent affine representation

Φrt(u)=k=1neψk(t,u)xk+ϕk(t,u)\Phi_{r_{t}}\left(u\right)=\prod_{k=1}^{n}e^{\psi_{k}\left(t,u\right)x_{k}+\phi_{k}\left(t,u\right)} (2.8)

where we introduced the deterministic functions

ϕk(t,u):=ρk(t,u)+iuμ(t)/n.\phi_{k}\left(t,u\right):=\rho_{k}\left(t,u\right)+iu{\mu\left(t\right)}/{n}.

We emphasize that rtr_{t} is an affine function of the factors Xt1,,XtnX_{t}^{1},\dots,X_{t}^{n} such that our model turns out to be a special case of the affine short rate models considered in Section 3.3 in [14]. To read more on affine processes we refer to [7, 14, 16, 26] and [31]. We next define the moment generating function of rtr_{t} via

κrt(v):=𝔼[evrt]\kappa_{r_{t}}\left(v\right):=\mathbb{E}_{\mathbb{Q}}\left[e^{vr_{t}}\right] (2.9)

which implies the well-known equalities Φrt(u)=κrt(iu)\Phi_{r_{t}}\left(u\right)=\kappa_{r_{t}}\left(iu\right) and κrt(v)=Φrt(iv)\kappa_{r_{t}}\left(v\right)=\Phi_{r_{t}}\left(-iv\right). Note that the moment generating function κrt(v)\kappa_{r_{t}}\left(v\right) is well-defined due to (2.5). In the sequel, we derive the time dynamics of the short rate process.

Proposition 2.4

For all t[0,T]t\in\left[0,T\right] the short rate process follows the dynamics

drt=(μ(t)k=1nλkXtk)dt+k=1nσkDkz𝑑Nk(t,z).dr_{t}=\left(\mu^{\prime}\left(t\right)-\sum_{k=1}^{n}\lambda_{k}X_{t}^{k}\right)dt+\sum_{k=1}^{n}\sigma_{k}\int_{D_{k}}zdN_{k}\left(t,z\right). (2.10)
Remark 2.5.

We recall that our model constitutes an extension of the short rate model proposed in [6], whereas we work with multiple pure-jump processes Lt1,,LtnL_{t}^{1},\dots,L_{t}^{n} as driving noises instead of the single Brownian motion WtW_{t} appearing in Eq. (1) in [6]. Moreover, comparing Eq. (3) in [6] with Eq. (2.1) above, we see that xtx_{t} and φ(t;α)\varphi\left(t;\alpha\right) in [6] correspond in our setup to k=1nXtk\sum_{k=1}^{n}X_{t}^{k} and μ(t)\mu\left(t\right), respectively.

3 Bond prices and forward rates

In this section, we derive representations for zero-coupon bond prices, forward rates and the interest rate curve related to the short rate model introduced in Section 2. To begin with, we introduce a bank account with stochastic interest rate rtr_{t} satisfying

dβt=rtβtdtd\beta_{t}=r_{t}\beta_{t}dt (3.1)

with normalized initial capital β0=1\beta_{0}=1. The solution of (3.1) reads as

βt=exp{0trs𝑑s}\beta_{t}=\exp\left\{\int_{0}^{t}r_{s}ds\right\} (3.2)

where t[0,T]t\in\left[0,T\right]. In this setup, the (zero-coupon) bond price at time tTt\leq T with maturity TT is given by

P(t,T):=βt𝔼(βT1|t)=𝔼(exp{tTrs𝑑s}|t)P\left(t,T\right):=\beta_{t}\mathbb{E}_{\mathbb{Q}}\left(\beta_{T}^{-1}|\mathcal{F}_{t}\right)=\mathbb{E}_{\mathbb{Q}}\left(\exp\left\{-\int_{t}^{T}r_{s}ds\right\}\bigg{|}\mathcal{F}_{t}\right) (3.3)

where t[0,T]t\in\left[0,T\right] (cf. [6, 7, 26]). Note that P(t,T)>0P\left(t,T\right)>0\ \mathbb{Q}-a.s. t[0,T]\forall\ t\in\left[0,T\right] by construction. Since rtμ(t)r_{t}\geq\mu\left(t\right)\ \mathbb{Q}-a.s. t[0,T]\forall\ t\in\left[0,T\right] [recall Remark 2.1 (a)], we observe

P(t,T)Mt,T:=exp{tTμ(s)𝑑s}P\left(t,T\right)\leq M_{t,T}:=\exp\left\{-\int_{t}^{T}\mu\left(s\right)ds\right\} (3.4)

\mathbb{Q}-a.s. t[0,T]\forall\ t\in\left[0,T\right] due to (3.3) and the monotonicity of conditional expectations. The upper bound Mt,TM_{t,T} appearing in (3.4) is deterministic and strictly positive for all 0tT0\leq t\leq T. If μ(t)0\mu\left(t\right)\geq 0, then it holds P(t,T)1P\left(t,T\right)\leq 1\ \mathbb{Q}-a.s. t[0,T]\forall\ t\in\left[0,T\right] (similar to, e.g., the CIR model [10]; also see [7, 21]). On the other hand, if μ(t)<0\mu\left(t\right)<0, then we only know that Mt,T>1M_{t,T}>1.

Proposition 3.1

For k{1,,n}k\in\left\{1,\dots,n\right\} and t[0,T]t\in\left[0,T\right] we define the deterministic functions

Ak(t,T):=tT(μ(s)n+Dk[eσkBk(s,T)z1]𝑑νk(z))𝑑s,Bk(t,T):=eλk(Tt)1λk0.\begin{split}&A_{k}\left(t,T\right):=\int_{t}^{T}\left(-\frac{\mu\left(s\right)}{n}+\int_{D_{k}}\bigl{[}e^{\sigma_{k}B_{k}\left(s,T\right)z}-1\bigr{]}d\nu_{k}\left(z\right)\right)ds,\\ &B_{k}\left(t,T\right):=\frac{e^{-\lambda_{k}\left(T-t\right)}-1}{\lambda_{k}}\leq 0.\end{split} (3.5)

Then the bond price at time tTt\leq T with maturity TT possesses the affine representation

P(t,T)=k=1neAk(t,T)+Bk(t,T)XtkP\left(t,T\right)=\prod_{k=1}^{n}e^{A_{k}\left(t,T\right)+B_{k}\left(t,T\right)X_{t}^{k}} (3.6)

where the factors XtkX_{t}^{k} satisfy (2.7).

Proof.

First of all, we put (2.6) into (2.1) and obtain

rs=μ(s)+k=1nXtkeλk(st)+k=1ntsDkσkeλk(su)z𝑑Nk(u,z)r_{s}=\mu\left(s\right)+\sum_{k=1}^{n}X_{t}^{k}e^{-\lambda_{k}\left(s-t\right)}+\sum_{k=1}^{n}\int_{t}^{s}\int_{D_{k}}\sigma_{k}e^{-\lambda_{k}\left(s-u\right)}zdN_{k}\left(u,z\right)

where 0tsT0\leq t\leq s\leq T. We next substitute the latter equation into (3.3), hereafter apply Fubini’s theorem and identify the functions Bk(,T)B_{k}\left(\boldsymbol{\cdot},T\right). This procedure yields

P(t,T)\displaystyle P\left(t,T\right) =exp{tTμ(s)𝑑s+k=1nBk(t,T)Xtk}\displaystyle=\exp\left\{-\int_{t}^{T}\mu\left(s\right)ds+\sum_{k=1}^{n}B_{k}\left(t,T\right)X_{t}^{k}\right\}
×𝔼(exp{k=1ntTDkσkBk(s,T)z𝑑Nk(s,z)}|t).\displaystyle\quad\times\mathbb{E}_{\mathbb{Q}}\left(\exp\left\{\sum_{k=1}^{n}\int_{t}^{T}\int_{D_{k}}\sigma_{k}B_{k}\left(s,T\right)zdN_{k}\left(s,z\right)\right\}\bigg{|}\mathcal{F}_{t}\right).

Taking the independent increment property of the (\mathbb{Q}-independent) Lévy processes L1,,LnL^{1},\dots,L^{n} into account, we obtain

𝔼(exp{k=1ntTDkσkBk(s,T)z𝑑Nk(s,z)}|t)\displaystyle\mathbb{E}_{\mathbb{Q}}\left(\exp\left\{\sum_{k=1}^{n}\int_{t}^{T}\int_{D_{k}}\sigma_{k}B_{k}\left(s,T\right)zdN_{k}\left(s,z\right)\right\}\bigg{|}\mathcal{F}_{t}\right)
=k=1n𝔼[exp{tTDkσkBk(s,T)z𝑑Nk(s,z)}]\displaystyle\quad=\prod_{k=1}^{n}\mathbb{E}_{\mathbb{Q}}\left[\exp\left\{\int_{t}^{T}\int_{D_{k}}\sigma_{k}B_{k}\left(s,T\right)zdN_{k}\left(s,z\right)\right\}\right]

where t[0,T]t\in\left[0,T\right]. The usual expectations appearing here can be handled by the Lévy–Khinchin formula for additive processes (see, e.g., [9, 30, 36]) which leads us to

𝔼[exp{tTDkσkBk(s,T)z𝑑Nk(s,z)}]\displaystyle\mathbb{E}_{\mathbb{Q}}\left[\exp\left\{\int_{t}^{T}\int_{D_{k}}\sigma_{k}B_{k}\left(s,T\right)zdN_{k}\left(s,z\right)\right\}\right]
=exp{tTDk[eσkBk(s,T)z1]𝑑νk(z)𝑑s}.\displaystyle\quad=\exp\left\{\int_{t}^{T}\int_{D_{k}}\bigl{[}e^{\sigma_{k}B_{k}\left(s,T\right)z}-1\bigr{]}d\nu_{k}\left(z\right)ds\right\}.

Putting the latter equations together and identifying the functions Ak(,T)A_{k}\left(\boldsymbol{\cdot},T\right), we end up with the asserted representation (3.6). ∎

Recall that the bond price in (3.6) is the product of exponential affine functions of the factors Xt1,,XtnX_{t}^{1},\dots,X_{t}^{n} (but not of rtr_{t}). Also note that for all k{1,,n}k\in\left\{1,\dots,n\right\} and t[0,T]t\in\left[0,T\right] it holds

Ak(t,t)=Bk(t,t)=0.A_{k}\left(t,t\right)=B_{k}\left(t,t\right)=0. (3.7)

We remark that the functions Bk(t,T)B_{k}\left(t,T\right) in (3.5) possess the same structure as the corresponding ones in the Vasicek model (cf. [38], or [7, 16, 21]). For all t[0,T]t\in\left[0,T\right] Eq. (3.6) can be rewritten as

P(t,T)=exp{k=1n[Ak(t,T)+Bk(t,T)Xtk]}P\left(t,T\right)=\exp\left\{\sum_{k=1}^{n}\left[A_{k}\left(t,T\right)+B_{k}\left(t,T\right)X_{t}^{k}\right]\right\} (3.8)

which implies P(T,T)=1P\left(T,T\right)=1 due to (3.7). Moreover, from (3.5) we infer the time derivatives

Ak(t,T)=μ(t)nDk[eσkBk(t,T)z1]𝑑νk(z),Bk(t,T)=eλk(Tt)>0A_{k}^{\prime}\left(t,T\right)=\frac{\mu\left(t\right)}{n}-\int_{D_{k}}\bigl{[}e^{\sigma_{k}B_{k}\left(t,T\right)z}-1\bigr{]}d\nu_{k}\left(z\right),\qquad B_{k}^{\prime}\left(t,T\right)=e^{-\lambda_{k}\left(T-t\right)}>0 (3.9)

where Ak:=tAkA_{k}^{\prime}:=\partial_{t}A_{k} and Bk:=tBkB_{k}^{\prime}:=\partial_{t}B_{k}. Hence, the functions Bk(t,T)0B_{k}\left(t,T\right)\leq 0 are strictly monotone increasing in tt. Also note that the formulas found in (3.9) entirely stand in line with those claimed in (4.4)–(4.5) in [31]. From (3.5), (3.7) and (3.9) we deduce the following system of ordinary differential equations (ODEs)

Ak(t,T)=tTAk(s,T)𝑑s,Bk(t,T)=1+λkBk(t,T),\displaystyle A_{k}\left(t,T\right)=-\int_{t}^{T}A_{k}^{\prime}\left(s,T\right)ds,\qquad B_{k}^{\prime}\left(t,T\right)=1+\lambda_{k}B_{k}\left(t,T\right),
Ak(T,T)=Bk(T,T)=0\displaystyle A_{k}\left(T,T\right)=B_{k}\left(T,T\right)=0

where t[0,T]t\in\left[0,T\right] and k{1,,n}k\in\left\{1,\dots,n\right\}. We are now prepared to derive the time dynamics of the bond price process (P(t,T))t[0,T]\left(P\left(t,T\right)\right)_{t\in\left[0,T\right]}.

Proposition 3.2

For k{1,,n}k\in\left\{1,\dots,n\right\}, t[0,T]t\in\left[0,T\right] and zDkz\in D_{k} we define the deterministic functions

ζk(t,T,z):=eσkBk(t,T)z1\zeta_{k}\left(t,T,z\right):=e^{\sigma_{k}B_{k}\left(t,T\right)z}-1 (3.10)

with Bk(t,T)B_{k}\left(t,T\right) as in (3.5). Then the bond price satisfies the tt-dynamics under \mathbb{Q}

dP(t,T)P(t,T)=rtdt+k=1nDkζk(t,T,z)𝑑N~k(t,z).\frac{dP\left(t,T\right)}{P\left(t-,T\right)}=r_{t}dt+\sum_{k=1}^{n}\int_{D_{k}}\zeta_{k}\left(t,T,z\right)d\tilde{N}_{k}^{\mathbb{Q}}\left(t,z\right). (3.11)

Recall that it holds ζk(t,T,z)0\zeta_{k}\left(t,T,z\right)\leq 0, since σkBk(t,T)z0\sigma_{k}\ B_{k}\left(t,T\right)\ z\leq 0 for all kk, tt and zz. We stress that (3.11) possesses the same structure as the corresponding Eq. (10.9) in [37], whereas the latter stems from a Brownian motion model without jumps. In the next step, we provide the solution of the SDE (3.11).

Proposition 3.3

For all t[0,T]t\in\left[0,T\right] the solution of (3.11) under \mathbb{Q} reads as

P(t,T)\displaystyle P\left(t,T\right) =P(0,T)exp{0trsdsk=1n0tDkζk(s,T,z)dνk(z)ds\displaystyle=P\left(0,T\right)\exp\Biggl{\{}\int_{0}^{t}r_{s}ds-\sum_{k=1}^{n}\int_{0}^{t}\int_{D_{k}}\zeta_{k}\left(s,T,z\right)d\nu_{k}\left(z\right)ds
+k=1n0tDkσkBk(s,T)zdNk(s,z)}\displaystyle\quad+\sum_{k=1}^{n}\int_{0}^{t}\int_{D_{k}}\sigma_{k}B_{k}\left(s,T\right)zdN_{k}\left(s,z\right)\Biggr{\}} (3.12)

where the initial value P(0,T)P\left(0,T\right) is deterministic and fulfills P(0,T)>0P\left(0,T\right)>0.

Furthermore, for all t[0,T]t\in\left[0,T\right] let us introduce the discontinuous Doléans-Dade exponential

Ξtk\displaystyle\Xi_{t}^{k} :=(hkN~k)t:=exp{0tDkhk(s,z)dN~k(s,z)\displaystyle:=\mathcal{E}\bigl{(}h_{k}*\tilde{N}_{k}^{\mathbb{Q}}\bigr{)}_{t}:=\exp\Biggl{\{}\int_{0}^{t}\int_{D_{k}}h_{k}\left(s,z\right)d\tilde{N}_{k}^{\mathbb{Q}}\left(s,z\right)
0tDk[ehk(s,z)1hk(s,z)]dνk(z)ds}\displaystyle\quad-\int_{0}^{t}\int_{D_{k}}\bigl{[}e^{h_{k}\left(s,z\right)}-1-h_{k}\left(s,z\right)\bigr{]}d\nu_{k}\left(z\right)ds\Biggr{\}} (3.13)

where hk(s,z)h_{k}\left(s,z\right) is an arbitrary integrable deterministic function (which may also depend on TT). We recall that Ξ0k=1\Xi_{0}^{k}=1 and that (Ξtk)t[0,T]\left(\Xi_{t}^{k}\right)_{t\in\left[0,T\right]} constitutes a local \mathbb{Q}-martingale. With definition (3) at hand, we can express Eq. (3.3) as follows.

Corollary 3.4

For all 0tT0\leq t\leq T the bond price satisfies

P(t,T)=P(0,T)βtk=1n(ξkN~k)tP\left(t,T\right)=P\left(0,T\right)\beta_{t}\prod_{k=1}^{n}\mathcal{E}\bigl{(}\xi_{k}*\tilde{N}_{k}^{\mathbb{Q}}\bigr{)}_{t} (3.14)

where βt\beta_{t} is the bank account process given in (3.2), \mathcal{E} denotes the Doleáns-Dade exponential defined in (3) and ξk(s,z):=σkBk(s,T)z=log(1+ζk(s,T,z))\xi_{k}\left(s,z\right):=\sigma_{k}\ B_{k}\left(s,T\right)\ z=\log\left(1+\zeta_{k}\left(s,T,z\right)\right) is a deterministic function.

Moreover, for all 0tT0\leq t\leq T we define the discounted bond price

P^(t,T):=P(t,T)βt\hat{P}\left(t,T\right):=\frac{P\left(t,T\right)}{\beta_{t}} (3.15)

where P^(0,T)=P(0,T)\hat{P}\left(0,T\right)=P\left(0,T\right). From (3.3) we deduce P^(t,T)=𝔼(βT1|t)\hat{P}\left(t,T\right)=\mathbb{E}_{\mathbb{Q}}(\beta_{T}^{-1}|\ \mathcal{F}_{t}) such that P^(t,T)\hat{P}\left(t,T\right) constitutes an t\mathcal{F}_{t}-adapted (true) martingale under \mathbb{Q}, as required by the risk-neutral pricing theory. Plugging (3.14) into (3.15), for all t[0,T]t\in\left[0,T\right] we obtain

P^(t,T)=P(0,T)k=1n(ξkN~k)t\hat{P}\left(t,T\right)=P\left(0,T\right)\prod_{k=1}^{n}\mathcal{E}\bigl{(}\xi_{k}*\tilde{N}_{k}^{\mathbb{Q}}\bigr{)}_{t} (3.16)

where P(0,T)P\left(0,T\right) is deterministic and ξk\xi_{k} is such as defined in Corollary 3.4. We obtain the following result.

Proposition 3.5

For all t[0,T]t\in\left[0,T\right] the discounted bond price satisfies the \mathbb{Q}-martingale dynamics

dP^(t,T)P^(t,T)=k=1nDkζk(t,T,z)𝑑N~k(t,z)\frac{d\hat{P}\left(t,T\right)}{\hat{P}\left(t-,T\right)}=\sum_{k=1}^{n}\int_{D_{k}}\zeta_{k}\left(t,T,z\right)d\tilde{N}_{k}^{\mathbb{Q}}\left(t,z\right)

where the deterministic functions ζk(t,T,z)\zeta_{k}\left(t,T,z\right) are such as defined in (3.10).

With reference to [7], we define the instantaneous forward rate at time tt with maturity TT via

f(t,T):=TlogP(t,T)f\left(t,T\right):=-\partial_{T}\log P\left(t,T\right) (3.17)

where t[0,T]t\in\left[0,T\right] and T\partial_{T} denotes the differential operator with respect to TT. Equation (3.17) is equivalent to the representation

P(t,T)=exp{tTf(t,u)𝑑u}.P\left(t,T\right)=\exp\left\{-\int_{t}^{T}f\left(t,u\right)du\right\}. (3.18)
Lemma 3.6

For all k{1,,n}k\in\left\{1,\dots,n\right\} and t[0,T]t\in\left[0,T\right] it holds

TAk(t,T)\displaystyle\partial_{T}A_{k}\left(t,T\right) =μ(T)nσktTDkzeσkBk(s,T)zλk(Ts)𝑑νk(z)𝑑s,\displaystyle=-\frac{\mu\left(T\right)}{n}-\sigma_{k}\int_{t}^{T}\int_{D_{k}}ze^{\sigma_{k}B_{k}\left(s,T\right)z-\lambda_{k}\left(T-s\right)}d\nu_{k}\left(z\right)ds,
TBk(t,T)\displaystyle\ \partial_{T}B_{k}\left(t,T\right) =eλk(Tt).\displaystyle=-e^{-\lambda_{k}\left(T-t\right)}.
Proof.

By the definition of Bk(t,T)B_{k}\left(t,T\right) claimed in (3.5) we find

TBk(t,T)=eλk(Tt)\partial_{T}B_{k}\left(t,T\right)=-e^{-\lambda_{k}\left(T-t\right)} (3.19)

so that the functions Bk(t,T)B_{k}\left(t,T\right) are strictly monotone decreasing in TT. From (3.5) and (3.10) we further deduce

TAk(t,T)=μ(T)n+T(tTDkζk(s,T,z)𝑑νk(z)𝑑s)\partial_{T}A_{k}\left(t,T\right)=-\frac{\mu\left(T\right)}{n}+\partial_{T}\left(\int_{t}^{T}\int_{D_{k}}\zeta_{k}\left(s,T,z\right)d\nu_{k}\left(z\right)ds\right)

whereas Fubini’s theorem (see, e.g., Theorem 2.2 in [3]) leads us to

T(tTDkζk(s,T,z)𝑑νk(z)𝑑s)=DkT(tTζk(s,T,z)𝑑s)dνk(z).\partial_{T}\left(\int_{t}^{T}\int_{D_{k}}\zeta_{k}\left(s,T,z\right)d\nu_{k}\left(z\right)ds\right)=\int_{D_{k}}\partial_{T}\left(\int_{t}^{T}\zeta_{k}\left(s,T,z\right)ds\right)d\nu_{k}\left(z\right).

(We are able to apply Fubini’s theorem here, since the deterministic function ζk(s,T,z)\zeta_{k}(s,\!T,\!z) is measurable and square-integrable with respect to s[0,T]s\in\left[0,T\right] and zDkz\in D_{k}.) The Leibniz formula for parameter integrals (see Lemma 2.4.1 on p. 13 in [28]) yields

T(tTζk(s,T,z)𝑑s)\displaystyle\partial_{T}\left(\int_{t}^{T}\zeta_{k}\left(s,T,z\right)ds\right) =ζk(T,T,z)+tTTζk(s,T,z)ds\displaystyle=\zeta_{k}\left(T,T,z\right)+\int_{t}^{T}\partial_{T}\zeta_{k}\left(s,T,z\right)ds
=σktTzeσkBk(s,T)zλk(Ts)𝑑s\displaystyle=-\sigma_{k}\int_{t}^{T}ze^{\sigma_{k}B_{k}\left(s,T\right)z-\lambda_{k}\left(T-s\right)}ds

where we used (3.10), (3.7) and (3.19). Putting these formulas together, the proof is complete. ∎

Proposition 3.7

For all t[0,T]t\in\left[0,T\right] the instantaneous forward rate can be represented as

f(t,T)=μ(T)+k=1ntTDkσkzeσkBk(s,T)zλk(Ts)𝑑νk(z)𝑑s+k=1nXtkeλk(Tt)f\left(t,T\right)=\mu\left(T\right)+\sum_{k=1}^{n}\int_{t}^{T}\int_{D_{k}}\sigma_{k}ze^{\sigma_{k}B_{k}\left(s,T\right)z-\lambda_{k}\left(T-s\right)}d\nu_{k}\left(z\right)ds+\sum_{k=1}^{n}X_{t}^{k}e^{-\lambda_{k}\left(T-t\right)} (3.20)

where the factor processes XtkX_{t}^{k} satisfy (2.7) and Bk(s,T)B_{k}\left(s,T\right) is like defined in (3.5).

Proof.

We substitute (3.8) into (3.17) and obtain

f(t,T)=k=1n[TAk(t,T)+XtkTBk(t,T)].f\left(t,T\right)=-\sum_{k=1}^{n}\bigl{[}\partial_{T}A_{k}\left(t,T\right)+X_{t}^{k}\partial_{T}B_{k}\left(t,T\right)\bigr{]}.

Combining this equality with Lemma 3.6, we derive the claimed representation (3.20). ∎

Replacing TT by tt in (3.20), we immediately find f(t,t)=rtf\left(t,t\right)=r_{t} due to (2.1). This equality stands in line with the usual conventions in interest rate theory (see, e.g., [7, 16, 21]).

Proposition 3.8

For all t[0,T]t\in\left[0,T\right] the instantaneous forward rate fulfills the pure-jump multi-factor HJM type equation

f(t,T)=f(0,T)+k=1n0tDkσkzeλk(Ts){dNk(s,z)eσkBk(s,T)zdνk(z)ds}f\left(t,T\right)=f\left(0,T\right)+\sum_{k=1}^{n}\int_{0}^{t}\int_{D_{k}}\sigma_{k}ze^{-\lambda_{k}\left(T-s\right)}\bigl{\{}dN_{k}\left(s,z\right)-e^{\sigma_{k}B_{k}\left(s,T\right)z}d\nu_{k}\left(z\right)ds\bigr{\}} (3.21)

where the deterministic initial value is given by f(0,T)=TlogP(0,T)f\left(0,T\right)=-\partial_{T}\log P\left(0,T\right).

In what follows, we illustrate how our forward rate model can be fitted to the initially observed term structure. This procedure is often called market-consistent calibration in the literature. For this purpose, we denote by fM(0,T)f^{M}\left(0,T\right) the deterministic initial forward rate. If f(0,T)=fM(0,T)f\left(0,T\right)=f^{M}\left(0,T\right) and hence, if P(0,T)=PM(0,T)P\left(0,T\right)=P^{M}\left(0,T\right) for all maturity times T>0T>0, then the underlying model is called market-consistent.

Proposition 3.9

The forward rate model (3.20)–(3.21) can be market-consistently calibrated to a given term structure fM(0,T)f^{M}\left(0,T\right) by choosing the floor function μ()in\mu\left(\boldsymbol{\cdot}\right)\ in (3.20) according to

μ(T)=fM(0,T)k=1n(xkeλkT+0TDkσkzeσkBk(s,T)zλk(Ts)𝑑νk(z)𝑑s)\mu\left(T\right)=f^{M}\left(0,T\right)-\sum_{k=1}^{n}\left(x_{k}e^{-\lambda_{k}T}+\int_{0}^{T}\int_{D_{k}}\sigma_{k}ze^{\sigma_{k}B_{k}\left(s,T\right)z-\lambda_{k}\left(T-s\right)}d\nu_{k}\left(z\right)ds\right) (3.22)

for all maturity times T>0T>0.

Note that the floor function μ(t)\mu\left(t\right) for all t[0,T]t\in\left[0,T\right] can be obtained from (3.22) by replacing TT by tt therein. Moreover, we define the interest rate curve at time t<Tt<T with maturity TT via

R(t,T):=logP(t,T)tT.R\left(t,T\right):=\frac{\log P\left(t,T\right)}{t-T}. (3.23)

This object is called continuously-compounded spot rate on p. 60 in [7]. It obviously holds

P(t,T)=e(Tt)R(t,T)P\left(t,T\right)=e^{-\left(T-t\right)R\left(t,T\right)} (3.24)

where t[0,T[t\in\left[0,T\right[. Comparing the exponent in (3.24) with that in (3.8), we infer

R(t,T)=1tTk=1n[Ak(t,T)+Bk(t,T)Xtk]R\left(t,T\right)=\frac{1}{t-T}\sum_{k=1}^{n}\bigl{[}A_{k}\left(t,T\right)+B_{k}\left(t,T\right)X_{t}^{k}\bigr{]}

where AkA_{k} and BkB_{k} are such as defined in (3.5). Hence, it turns out that the interest rate curve R(t,T)R\left(t,T\right) can be represented as a sum of affine functions of the pure-jump OU factors Xt1,,XtnX_{t}^{1},\dots,X_{t}^{n}. In this sense, our short rate model possesses an affine term structure (cf. Section 3.2.4 in [7], or [14, 16, 21]). The latter observation entirely stands in line with (3.8).

Proposition 3.10

For all t[0,T[t\in\left[0,T\right[ the interest rate curve possesses the representation

R(t,T)\displaystyle R\left(t,T\right) =1tT(logP(0,T)+0trsdsk=1n0tDkζk(s,T,z)dνk(z)ds\displaystyle=\frac{1}{t-T}\Biggl{(}\log P\left(0,T\right)+\int_{0}^{t}r_{s}ds-\sum_{k=1}^{n}\int_{0}^{t}\int_{D_{k}}\zeta_{k}\left(s,T,z\right)d\nu_{k}\left(z\right)ds
+k=1n0tDkσkBk(s,T)zdNk(s,z))\displaystyle\quad+\sum_{k=1}^{n}\int_{0}^{t}\int_{D_{k}}\sigma_{k}B_{k}\left(s,T\right)zdN_{k}\left(s,z\right)\Biggr{)}

where ζk\zeta_{k} and BkB_{k} are such as defined in (3.10) and (3.5), respectively.

Proposition 3.11

For all t[0,T]t\in\left[0,T\right] the integrated short rate process can be represented as

It:=0trs𝑑s=0tμ(s)𝑑sk=1nxkBk(0,t)k=1n0tDkσkBk(s,t)z𝑑Nk(s,z)I_{t}:=\int_{0}^{t}r_{s}ds=\int_{0}^{t}\mu\left(s\right)ds-\sum_{k=1}^{n}x_{k}B_{k}\left(0,t\right)-\sum_{k=1}^{n}\int_{0}^{t}\int_{D_{k}}\sigma_{k}B_{k}\left(s,t\right)zdN_{k}\left(s,z\right) (3.25)

where the deterministic functions BkB_{k} are such as defined in (3.5).

Proof.

We substitute (2.1) and (2.7) into the definition of ItI_{t} and obtain

It=0tμ(s)𝑑sk=1nxkBk(0,t)+k=1n0t0sDkσkeλk(su)z𝑑Nk(u,z)𝑑sI_{t}=\int_{0}^{t}\mu\left(s\right)ds-\sum_{k=1}^{n}x_{k}B_{k}\left(0,t\right)+\sum_{k=1}^{n}\int_{0}^{t}\int_{0}^{s}\int_{D_{k}}\sigma_{k}e^{-\lambda_{k}\left(s-u\right)}zdN_{k}\left(u,z\right)ds

where BkB_{k} is like defined in (3.5). An application of Fubini’s theorem (see Theorem 2.2 in [3]) yields

0t0sDkσkeλk(su)z𝑑Nk(u,z)𝑑s=0tDkσkBk(u,t)z𝑑Nk(u,z),\int_{0}^{t}\int_{0}^{s}\int_{D_{k}}\sigma_{k}e^{-\lambda_{k}\left(s-u\right)}zdN_{k}\left(u,z\right)ds=-\int_{0}^{t}\int_{D_{k}}\sigma_{k}B_{k}\left(u,t\right)zdN_{k}\left(u,z\right),

so that the proof is complete. ∎

Recall that the last jump integral in (3.25) constitutes a so-called Volterra integral, as the time parameter tt appears both inside the integrand and inside the upper integration bound. Also note that it holds It=logβtI_{t}=\log\beta_{t} with I0=0I_{0}=0 due to (3.2).

4 Option pricing

In this section, we investigate the evaluation of a plain vanilla option written on the zero-coupon bond price P(,T)P\left(\boldsymbol{\cdot},T\right). With reference to the risk-neutral pricing theory, the price at time tτt\leq\tau of an option with payoff HτH_{\tau} at the maturity time τ\tau reads as

Ct=βt𝔼(βτ1Hτ|t)=𝔼(etτrs𝑑sHτ|t)C_{t}=\beta_{t}\mathbb{E}_{\mathbb{Q}}\bigl{(}\beta_{\tau}^{-1}H_{\tau}|\mathcal{F}_{t}\bigr{)}=\mathbb{E}_{\mathbb{Q}}\bigl{(}e^{-\int_{t}^{\tau}r_{s}ds}H_{\tau}|\mathcal{F}_{t}\bigr{)} (4.1)

where β\beta is the bank account process given in (3.2) and \mathbb{Q} denotes a risk-neutral pricing measure (cf. Eq. (3.1) in [7]). We now consider a call option written on the bond price P(,T)P\left(\boldsymbol{\cdot},T\right) with maturity time TT satisfying TτT\geq\tau. The payoff of the call option written on P(τ,T)P\left(\tau,T\right) with deterministic strike price K>0K>0 and maturity time τ\tau is then given by

Hτ=[P(τ,T)K]+:=max{0,P(τ,T)K}.H_{\tau}=\left[P\left(\tau,T\right)-K\right]^{+}:=\max\left\{0,P\left(\tau,T\right)-K\right\}. (4.2)

In what follows, we define the Fourier transform, respectively inverse Fourier transform, of a real-valued deterministic function p()1()p\left(\boldsymbol{\cdot}\right)\in\mathcal{L}^{1}\left(\mathbb{R}\right) via

p^(y):=12πp(u)eiyu𝑑u,p(u)=p^(y)eiyu𝑑y.\hat{p}\left(y\right):=\frac{1}{2\pi}\int_{\mathbb{R}}p\left(u\right)e^{-iyu}du,p\left(u\right)=\int_{\mathbb{R}}\hat{p}\left(y\right)e^{iyu}dy.
Proposition 4.1

[call option on bond price] For all 0tτT0\leq t\leq\tau\leq T the price of a call option with payoff HτH_{\tau} given in (4.2), strike price K>0K>0 and maturity time τ\tau can be expressed as

Ct\displaystyle C_{t} =q^(y)exp{It+θ(τ,y)+k=1nψ¯k(t,τ,y)\displaystyle=\int_{\mathbb{R}}\hat{q}\left(y\right)\exp\Biggl{\{}I_{t}+\theta\left(\tau,y\right)+\sum_{k=1}^{n}\overline{\psi}_{k}\left(t,\tau,y\right)
+k=1n0tDkηk(s,z,y)dNk(s,z)}dy\displaystyle\quad+\sum_{k=1}^{n}\int_{0}^{t}\int_{D_{k}}\eta_{k}\left(s,z,y\right)dN_{k}\left(s,z\right)\Biggr{\}}dy (4.3)

where the integrated short rate process ItI_{t} is such as defined in (3.25) and

ηk(s,z,y)\displaystyle\eta_{k}\left(s,z,y\right) :=ηk(s,z,T,τ,y)\displaystyle:=\eta_{k}\left(s,z,T,\tau,y\right)
:=σk[(a+iy)Bk(s,T)(a+iy1)Bk(s,τ)]z,\displaystyle:=\sigma_{k}\left[\left(a+iy\right)B_{k}\left(s,T\right)-\left(a+iy-1\right)B_{k}\left(s,\tau\right)\right]z,
q^(y)\displaystyle\hat{q}\left(y\right) :=P(0,T)a+iy2π(a+iy)(a+iy1)Ka+iy1,\displaystyle:=\frac{P\left(0,T\right)^{a+iy}}{2\pi\left(a+iy\right)\left(a+iy-1\right)K^{a+iy-1}},
ψ¯k(t,τ,y)\displaystyle\overline{\psi}_{k}\left(t,\tau,y\right) :=tτDk[eηk(s,z,y)1]𝑑νk(z)𝑑s,\displaystyle:=\int_{t}^{\tau}\int_{D_{k}}\bigl{[}e^{\eta_{k}\left(s,z,y\right)}-1\bigr{]}d\nu_{k}\left(z\right)ds, (4.4)
θ(τ,y)\displaystyle\theta\left(\tau,y\right) :=(a+iy1)(0τμ(s)𝑑sk=1nxkBk(0,τ))\displaystyle:=\left(a+iy-1\right)\left(\int_{0}^{\tau}\mu\left(s\right)ds-\sum_{k=1}^{n}x_{k}B_{k}\left(0,\tau\right)\right)
(a+iy)k=1n0τDkζk(s,T,z)𝑑νk(z)𝑑s\displaystyle\quad-\left(a+iy\right)\sum_{k=1}^{n}\int_{0}^{\tau}\int_{D_{k}}\zeta_{k}\left(s,T,z\right)d\nu_{k}\left(z\right)ds

constitute deterministic functions, while a>1a>1 is an arbitrary real-valued constant. Herein, the functions ζk\zeta_{k} and BkB_{k} are such as defined in (3.10) and (3.5), respectively, while P(0,T)P\left(0,T\right) denotes the deterministic initial bond price.

Proof.

We substitute (4.2) and (3.3) into (4.1) and obtain

Ct=𝔼(eItIτ[P(0,T)eGτK]+|t)C_{t}=\mathbb{E}_{\mathbb{Q}}\left(e^{I_{t}-I_{\tau}}\bigl{[}P\left(0,T\right)e^{G_{\tau}}-K\bigr{]}^{+}|\mathcal{F}_{t}\right)

where ItI_{t} denotes the integrated short rate process defined in (3.25) and

Gτ:=Iτk=1n0τDkζk(s,T,z)𝑑νk(z)𝑑s+k=1n0τDkσkBk(s,T)z𝑑Nk(s,z)G_{\tau}:=I_{\tau}-\sum_{k=1}^{n}\int_{0}^{\tau}\int_{D_{k}}\zeta_{k}\left(s,T,z\right)d\nu_{k}\left(z\right)ds+\sum_{k=1}^{n}\int_{0}^{\tau}\int_{D_{k}}\sigma_{k}B_{k}\left(s,T\right)zdN_{k}\left(s,z\right)

is a real-valued stochastic process. For uu\in\mathbb{R} we introduce the deterministic function

q(u):=eau[P(0,T)euK]+q\left(u\right):=e^{-au}\left[P\left(0,T\right)e^{u}-K\right]^{+}

where a>1a>1 is a constant real-valued dampening parameter ensuring the integrability of the payoff function. Indeed, it holds q()1()q\left(\boldsymbol{\cdot}\right)\in\mathcal{L}^{1}\left(\mathbb{R}\right). With the latter definition at hand, we obtain

Ct=𝔼(eItIτ+aGτq(Gτ)|t).C_{t}=\mathbb{E}_{\mathbb{Q}}\bigl{(}e^{I_{t}-I_{\tau}+aG_{\tau}}q\left(G_{\tau}\right)|\mathcal{F}_{t}\bigr{)}.

With reference to [8] (also see [18]), we apply the inverse Fourier transform on the latter equation and hereafter, use Fubini’s theorem which leads us to

Ct=q^(y)𝔼(eZt,τ|t)𝑑yC_{t}=\int_{\mathbb{R}}\hat{q}(y)\mathbb{E}_{\mathbb{Q}}\bigl{(}e^{Z_{t,\tau}}|\mathcal{F}_{t}\bigr{)}dy

where we have set

Zt,τ:=ItIτ+(a+iy)GτZ_{t,\tau}:=I_{t}-I_{\tau}+\left(a+iy\right)G_{\tau}

for all 0tτ0\leq t\leq\tau. By merging the definition of GτG_{\tau} and (3.25) into the definition of Zt,τZ_{t,\tau} we deduce

Zt,τ=It+θ(τ,y)+k=1n0τDkηk(s,z,y)𝑑Nk(s,z)Z_{t,\tau}=I_{t}+\theta\left(\tau,y\right)+\sum_{k=1}^{n}\int_{0}^{\tau}\int_{D_{k}}\eta_{k}\left(s,z,y\right)dN_{k}\left(s,z\right)

where we identified the deterministic functions θ(τ,y)\theta\left(\tau,y\right) and ηk(s,z,y)\eta_{k}\left(s,z,y\right) defined in (4.1). Hence,

𝔼(eZt,τ|t)\displaystyle\mathbb{E}_{\mathbb{Q}}\bigl{(}e^{Z_{t,\tau}}|\mathcal{F}_{t}\bigr{)} =exp{It+θ(τ,y)+k=1n0tDkηk(s,z,y)𝑑Nk(s,z)}\displaystyle=\exp\left\{I_{t}+\theta\left(\tau,y\right)+\sum_{k=1}^{n}\int_{0}^{t}\int_{D_{k}}\eta_{k}\left(s,z,y\right)dN_{k}\left(s,z\right)\right\}
×𝔼[exp{k=1ntτDkηk(s,z,y)𝑑Nk(s,z)}]\displaystyle\quad\times\mathbb{E}_{\mathbb{Q}}\left[\exp\left\{\sum_{k=1}^{n}\int_{t}^{\tau}\int_{D_{k}}\eta_{k}\left(s,z,y\right)dN_{k}\left(s,z\right)\right\}\right]

since ItI_{t} is t\mathcal{F}_{t}-adapted and θ(τ,y)\theta\left(\tau,y\right) is deterministic. In the derivation of the latter equation, we used the independent increment property under \mathbb{Q} of the involved pure-jump integrals. We next apply the Lévy–Khinchin formula for additive processes (see, e.g., [9, 30, 36]) and derive

𝔼[exp{k=1ntτDkηk(s,z,y)𝑑Nk(s,z)}]=exp{k=1nψ¯k(t,τ,y)}\mathbb{E}_{\mathbb{Q}}\left[\exp\left\{\sum_{k=1}^{n}\int_{t}^{\tau}\int_{D_{k}}\eta_{k}\left(s,z,y\right)dN_{k}\left(s,z\right)\right\}\right]=\exp\left\{\sum_{k=1}^{n}\overline{\psi}_{k}\left(t,\tau,y\right)\right\}

where the characteristic exponents ψ¯k(t,τ,y)\overline{\psi}_{k}\left(t,\tau,y\right) are such as defined in (4.1). Putting the latter equations together, we eventually end up with (4.1). The expression for the Fourier transform q^(y)\hat{q}\left(y\right) is obtained by straightforward calculations using the definition of the function q(u)q\left(u\right). ∎

Corollary 4.2

In the special case t=0t=0, the call option price formula (4.1) simplifies to

C0=q^(y)exp{θ(τ,y)+k=1nψ¯k(0,τ,y)}𝑑yC_{0}=\int_{\mathbb{R}}\hat{q}\left(y\right)\exp\left\{\theta\left(\tau,y\right)+\sum_{k=1}^{n}\overline{\psi}_{k}\left(0,\tau,y\right)\right\}dy

which is deterministic.

5 Practical applications

In this section, we show how the short rate model introduced in Section 2 can be implemented in practical applications. For this purpose, we now present more detailed expressions in order to prepare our model for a possible calibration of the involved parameters. First of all, let us recall that the increasing compound Poisson processes LtkL_{t}^{k} defined in (2.3) for every k{1,,n}k\in\left\{1,\dots,n\right\} and t[0,T]t\in\left[0,T\right] can be expressed as

Ltk=j=1NtkYjkL_{t}^{k}=\sum_{j=1}^{N_{t}^{k}}Y_{j}^{k} (5.1)

(cf. Section 5.3.2 in [37]) where NtkN_{t}^{k} constitutes a standard Poisson process under \mathbb{Q} with deterministic jump intensity αk>0\alpha_{k}>0. That is, NtkPoi(αkt)N_{t}^{k}\sim Poi\left(\alpha_{k}t\right) such that for all m0m\in\mathbb{N}_{0} it holds

(Ntk=m)=(αkt)mm!eαkt.\mathbb{Q}\bigl{(}N_{t}^{k}=m\bigr{)}=\frac{\left(\alpha_{k}t\right)^{m}}{m!}e^{-\alpha_{k}t}.

The strictly positive jump amplitudes of the Lévy process LtkL_{t}^{k} are modeled by the i.i.d. random variables Y1k,Y2k,Y_{1}^{k},Y_{2}^{k},\dots which take values in the set Dk]0,[D_{k}\subseteq\left]0,\infty\right[. We recall that the random variables Y1k,Y2k,Y_{1}^{k},Y_{2}^{k},\dots are independent of the Poisson processes Ntk¯N_{t}^{\overline{k}} for all combinations of indices k,k¯{1,,n}k,\overline{k}\in\left\{1,\dots,n\right\}. We further put ck:=𝔼[Y1k]Dkc_{k}:=\mathbb{E}_{\mathbb{Q}}[Y_{1}^{k}]\in D_{k} and recall that the compensated compound Poisson process (Ltkckαkt)t[0,T]\left(L_{t}^{k}-c_{k}\alpha_{k}t\right)_{t\in\left[0,T\right]} constitutes an (t,)\left(\mathcal{F}_{t},\mathbb{Q}\right)-martingale for each kk which implies

ckαk=Dkz𝑑νk(z)c_{k}\alpha_{k}=\int_{D_{k}}zd\nu_{k}\left(z\right)

due to (2.3) and (2.4). We stress that the Poisson processes NtkN_{t}^{k} shall not be mixed up with the Poisson random measures dNk(t,z)dN_{k}\left(t,z\right).

In the following, we propose a number of probability distributions living on the positive half-line (recall Section B.1.2 in [37]) which constitute suitable candidates for the modeling of the jump size distribution in our new short rate model. As a first example, we propose to work with the gamma distribution and thus, assume that each random variable YjkY_{j}^{k} is exponentially distributed under \mathbb{Q} with parameter εk>0\varepsilon_{k}>0 for all jj and kk. In this case, the related Lévy measure possesses the Lebesgue density

dνk(z)=αkεkeεkzdzd\nu_{k}\left(z\right)=\alpha_{k}\varepsilon_{k}e^{-\varepsilon_{k}z}dz (5.2)

where zDk=]0,[z\in D_{k}=\left]0,\infty\right[ and k{1,,n}k\in\left\{1,\dots,n\right\}. We find ck=1/εkc_{k}={1}/{\varepsilon_{k}} and YjkΓ(1,εk)Y_{j}^{k}\sim\Gamma\left(1,\varepsilon_{k}\right). Hence, following the notation used in Section 5.5.1 in [37], we state that we presently are in a Γ(αk,εk)\Gamma\left(\alpha_{k},\varepsilon_{k}\right)-Ornstein–Uhlenbeck process setup (also see Section 8.2 in [31] and Example 15.1 in [9] in this context).

Proposition 5.1

Suppose that the random variables YjkY_{j}^{k} in (5.1) are exponentially distributed (i.e. Γ(1,εk)\Gamma\left(1,\varepsilon_{k}\right)-distributed) under \mathbb{Q} with parameters εk>0\varepsilon_{k}>0 for all jj and kk. Then, for uu\in\mathbb{R} and t[0,T]t\in\left[0,T\right] the characteristic function of LtkL_{t}^{k} is given by

ΦLtk(u)=exp{iuαktεkiu}\Phi_{L_{t}^{k}}\left(u\right)=\exp\left\{\frac{iu\alpha_{k}t}{\varepsilon_{k}-iu}\right\}

where αk\alpha_{k} denotes the jump intensity of the standard Poisson process NtkN_{t}^{k} appearing in (5.1).

Proof.

Successively applying the definition of the characteristic function, (2.3), the Lévy–Khinchin formula and (5.2), for uu\in\mathbb{R} and t[0,T]t\in\left[0,T\right] we obtain

ΦLtk(u)=𝔼[eiuLtk]=exp{αkεkt0[eiuz1]eεkz𝑑z}.\Phi_{L_{t}^{k}}\left(u\right)=\mathbb{E}_{\mathbb{Q}}\bigl{[}e^{iuL_{t}^{k}}\bigr{]}=\exp\left\{\alpha_{k}\varepsilon_{k}t\int_{0}^{\infty}\bigl{[}e^{iuz}-1\bigr{]}e^{-\varepsilon_{k}z}dz\right\}.

We eventually perform the integration and end up with the asserted equality. ∎

An immediate consequence of Proposition 5.1 is the following representation for the moment generating function of LtkL_{t}^{k} being valid for all v{εk}v\in\mathbb{R}\setminus\left\{\varepsilon_{k}\right\}

κLtk(v)=ΦLtk(iv)=exp{vαktεkv}.\kappa_{L_{t}^{k}}\left(v\right)=\Phi_{L_{t}^{k}}\left(-iv\right)=\exp\left\{\frac{v\alpha_{k}t}{\varepsilon_{k}-v}\right\}.
Proposition 5.2

Assume that the random variables YjkY_{j}^{k} in (5.1) are exponentially distributed (i.e. Γ(1,εk)\Gamma\left(1,\varepsilon_{k}\right)-distributed) under \mathbb{Q} with parameters εk>0\varepsilon_{k}>0 for all jj and kk. Then, for all t[0,T]t\in\left[0,T\right], k{1,,n}k\in\left\{1,\dots,n\right\} and xx\in\mathbb{R} the probability density function of LtkL_{t}^{k} under \mathbb{Q} takes the form

fLtk(x)=12π0exp{iu(xαktεk+iu)}𝑑u.f_{L_{t}^{k}}\left(x\right)=\frac{1}{2\pi}\int_{0}^{\infty}\exp\left\{iu\left(x-\frac{\alpha_{k}t}{\varepsilon_{k}+iu}\right)\right\}du.
Proof.

First, note that it holds

ΦLtk(u)=0eiuxfLtk(x)𝑑x=2πf^Ltk(u)\Phi_{L_{t}^{k}}\left(-u\right)=\int_{0}^{\infty}e^{-iux}f_{L_{t}^{k}}\left(x\right)dx=2\pi\hat{f}_{L_{t}^{k}}\left(u\right)

due to the definitions of the characteristic function and the Fourier transform claimed in the sequel of (4.2). We next apply the inverse Fourier transform which yields the density function

fLtk(x)=12π0ΦLtk(u)eiux𝑑u.f_{L_{t}^{k}}\left(x\right)=\frac{1}{2\pi}\int_{0}^{\infty}\Phi_{L_{t}^{k}}\left(-u\right)e^{iux}du.

We finally plug the result of Proposition 5.1 into the latter equation which completes the proof. ∎

We stress that Eq. (5.2) can be substituted into the corresponding formulas appearing in the previous Propositions 2.2, 2.3, 3.1, 3.3, 3.73.10 and 4.1 yielding more explicit expressions for the involved entities, yet associated with gamma-distributed jump amplitudes in the underlying short rate model. We illustrate this statement by an application of Eq. (5.2) on Proposition 2.3. The precise result reads as follows.

Proposition 5.3

Suppose that the random variables YjkinY_{j}^{k}\ in (5.1) are exponentially distributed (i.e. Γ(1,εk)\Gamma\left(1,\varepsilon_{k}\right)-distributed) under \mathbb{Q} with parameters εk>0\varepsilon_{k}>0 for all jj and kk. Let σk>0\sigma_{k}>0 be the constant volatility coefficients introduced in (2.2). Then, for all t[0,T]t\in\left[0,T\right] and vv\in\mathbb{R} with v<mink{εk/σk}v<\min_{k}\left\{{\varepsilon_{k}}/{\sigma_{k}}\right\}, k{1,,n}k\in\left\{1,\dots,n\right\}, the moment generating function under \mathbb{Q} of the short rate process rtr_{t} reads as

κrt(v)=Φrt(iv)=exp{vμ(t)+k=1nρk(t,iv)+k=1nψk(t,iv)xk}\kappa_{r_{t}}\left(v\right)=\Phi_{r_{t}}\left(-iv\right)=\exp\left\{v\mu\left(t\right)+\sum_{k=1}^{n}\rho_{k}\left(t,-iv\right)+\sum_{k=1}^{n}\psi_{k}\left(t,-iv\right)x_{k}\right\}

with deterministic functions

ψk(t,iv)=veλkt,ρk(t,iv)=αkλklog|εkvσkeλktεkvσk|.\psi_{k}\left(t,-iv\right)=ve^{-\lambda_{k}t},\qquad\rho_{k}\left(t,-iv\right)=\frac{\alpha_{k}}{\lambda_{k}}\log\left|\frac{\varepsilon_{k}-v\sigma_{k}e^{-\lambda_{k}t}}{\varepsilon_{k}-v\sigma_{k}}\right|.
Proof.

For each k{1,,n}k\in\left\{1,\dots,n\right\} we define the deterministic functions bk(s,v):=vσkeλk(ts)εkb_{k}\left(s,v\right):=v\ \sigma_{k}\ e^{-\lambda_{k}\left(t-s\right)}-\varepsilon_{k} which satisfy bk(s,v)<0b_{k}\left(s,v\right)<0 whenever s[0,t]s\in\left[0,t\right] and v<mink{εk/σk}v<\min_{k}\left\{{\varepsilon_{k}}/{\sigma_{k}}\right\}. In this setting, we combine Eq. (5.2) with the definitions of ρk\rho_{k} and Λk\Lambda_{k} given in Proposition 2.3 and obtain

ρk(t,iv)=αk0tεk+bk(s,v)bk(s,v)𝑑s.\rho_{k}\left(t,-iv\right)=-\alpha_{k}\int_{0}^{t}\frac{\varepsilon_{k}+b_{k}\left(s,v\right)}{b_{k}\left(s,v\right)}ds.

We perform the integration and obtain the formula for ρk\rho_{k} claimed in the proposition. The representation for the moment generating function κrt(v)\kappa_{r_{t}}\left(v\right) finally follows from Proposition 2.3. ∎

Other distributional choices for the random variables YjkY_{j}^{k} modeling the jump amplitudes would be, for example, the inverse Gaussian distribution (see Section 5.5.2 in [37]), the generalized inverse Gaussian distribution (see Section 5.3.5 in [37]) or the tempered stable distribution (see Section 5.3.6 in [37]). The related formulas for the Lebesgue density of the Lévy measure dνk(z)d\nu_{k}\left(z\right) corresponding to Eq. (5.2) can be found in [37].

Remark 5.4.

We recall that the time-homogeneous compound Poisson processes LtkL_{t}^{k} introduced in (2.3) can be simulated according to Algorithms 6.1 and 6.2 in [9]. Further, in our model it is easily possible to calculate the moments of XtkX_{t}^{k} and rtr_{t} (see the sequel of Proposition 2.2) so that our model can be fitted to any yield curve observed in the market by using the moment estimation method described in Section 7.2.2 in [9]. This procedure is also called moment matching, as the underlying idea is to make the empirical moments match with the theoretical moments of the model by finding a suitable parameter set.

6 A post-crisis model extension

In this section, we propose a post-crisis extension of the pure-jump lower-bounded short rate model introduced in Section 2. (To read more on post-crisis interest rate models, the reader is referred to [11, 12, 13, 14, 17, 22, 23, 24, 25, 26, 32, 33, 34].) Inspired by the modeling setups presented in [33] and Chapter 2 in [26], for all t[0,T]t\in\left[0,T\right] we define the short rate spread under \mathbb{Q} by the stochastic process

st:=μ(t)+k=n+1lXtks_{t}:=\mu^{*}\left(t\right)+\sum_{k=n+1}^{l}X_{t}^{k}

showing a similar structure as (2.1). Herein, μ(t)0\mu^{*}\left(t\right)\geq 0 constitutes an integrable real-valued deterministic function and the factors XtkX_{t}^{k} satisfy the SDE (2.2), but presently for indices k{n+1,,l}k\in\left\{n+1,\dots,l\right\} where ll\in\mathbb{N} with l>nl>n. Note that it holds stμ(t)s_{t}\geq\mu^{*}\left(t\right)\ \mathbb{Q}-a.s. for all t[0,T]t\in\left[0,T\right] such that the short rate spread is bounded from below – similar to the short rate itself [recall Remark 2.1 (a)]. We interpret sts_{t} as an additive spread and therefore set for all t[0,T]t\in\left[0,T\right]

r¯t:=rt+st\overline{r}_{t}:=r_{t}+s_{t} (6.1)

(cf. [12, 33]) where rtr_{t} denotes the short rate process and r¯t\overline{r}_{t} is called fictitious short rate, similarly to [26]. With reference to p. 46 in [26], we recall that the short rate spread sts_{t} not only incorporates credit risks, but also various other risks in the interbank sector which affect the evolution of the LIBOR rates. Let us moreover mention that the short rate rtr_{t} defined in (2.1) and the short rate spread sts_{t} can be ‘correlated’ by allowing for (at least) one common factor in their respective definitions. More precisely, if the sum in the definition of sts_{t} started running from k=nk=n (instead of k=n+1k=n+1), then the factor XtnX_{t}^{n} would appear both in the definition of rtr_{t} and in the definition of sts_{t} such that the two latter stochastic processes would no longer be independent.

We next substitute (2.1) as well as the definition of sts_{t} into (6.1) and deduce

r¯t=μ¯(t)+k=1lXtk\overline{r}_{t}=\overline{\mu}\left(t\right)+\sum_{k=1}^{l}X_{t}^{k} (6.2)

where we introduced the real-valued deterministic function μ¯(t):=μ(t)+μ(t)\overline{\mu}\left(t\right):=\mu\left(t\right)+\mu^{*}\left(t\right). It obviously holds r¯tμ¯(t)\overline{r}_{t}\geq\overline{\mu}\left(t\right)\ \mathbb{Q}-a.s. for all t[0,T]t\in\left[0,T\right]. In accordance to Section 3.4.1 in [14], Eq. (2.35) in [26] and Section 1 in [33], we define the fictitious bond price in our post-crisis short rate model via

P¯(t,T):=𝔼(exp{tTr¯u𝑑u}|t)\overline{P}\left(t,T\right):=\mathbb{E}_{\mathbb{Q}}\left(\exp\left\{-\int_{t}^{T}\overline{r}_{u}du\right\}\bigg{|}\mathcal{F}_{t}\right) (6.3)

where t[0,T]t\in\left[0,T\right]. The object P¯(t,T)\overline{P}\left(t,T\right) is sometimes called artificial bond price in the literature, as it is not physically traded in the market. Evidently, P¯(T,T)=1\overline{P}\left(T,T\right)=1. Comparing (6.2) with (2.1) and (6.3) with (3.3), we see that all our single-curve results presented in the previous sections carry over to the currently considered post-crisis case. More precisely, the entities μ(t)\mu\left(t\right), rtr_{t}, P(t,T)P\left(t,T\right) and nn emerging in the previous single-curve equations presently have to be replaced by μ¯(t)\overline{\mu}\left(t\right), r¯t\overline{r}_{t}, P¯(t,T)\overline{P}\left(t,T\right) and ll, respectively. Moreover, in the present case, we observe \mathbb{Q}-a.s. for all t[0,T]t\in\left[0,T\right]

0<P¯(t,T)exp{tTμ¯(u)𝑑u}0<\overline{P}\left(t,T\right)\leq\exp\left\{-\int_{t}^{T}\overline{\mu}\left(u\right)du\right\}

due to (6.3), the lower boundedness of r¯t\overline{r}_{t} and the monotonicity of conditional expectations.

Proposition 6.1

It holds \mathbb{Q}-a.s. for all t[0,T]t\in\left[0,T\right]

P¯(t,T)P(t,T)\overline{P}\left(t,T\right)\leq P\left(t,T\right) (6.4)

where P¯(t,T)\overline{P}\left(t,T\right) constitutes the bond price defined in (6.3) and P(t,T)P\left(t,T\right) is given in (3.3).

Proof.

Note that taking μ(t)0t[0,T]\mu^{*}\left(t\right)\geq 0\ \forall\ t\in\left[0,T\right] implies st0s_{t}\geq 0\ \mathbb{Q}-a.s. for all t[0,T]t\in\left[0,T\right]. In this case, we deduce r¯trt\overline{r}_{t}\geq r_{t}\ \mathbb{Q}-a.s. for all t[0,T]t\in\left[0,T\right] due to (6.1). Hence, we find

exp{tTr¯u𝑑u}exp{tTru𝑑u}\exp\left\{-\int_{t}^{T}\overline{r}_{u}du\right\}\leq\exp\left\{-\int_{t}^{T}r_{u}du\right\}

\mathbb{Q}-a.s. for all t[0,T]t\in\left[0,T\right]. We next take conditional expectations with respect to t\mathcal{F}_{t} and \mathbb{Q} in the latter inequality, hereafter apply the monotonicity of conditional expectations and finally identify (6.3) and (3.3) in the resulting inequality. ∎

The result obtained in Proposition 6.1 possesses the following economical interpretation: The inequality (6.4) shows that nontraded bonds are cheaper than their nonfictitious counterparts which are physically traded in the market. This feature appears economically reasonable and stands in accordance with the modeling assumptions and statements in [12], Section 2.1.3 in [26] and Section 2.1 in [33]. Moreover, combining (6.3) and (3.18), we obtain (parallel to [12])

P¯(t,T)=exp{tTf¯(t,u)𝑑u}\overline{P}\left(t,T\right)=\exp\left\{-\int_{t}^{T}\overline{f}\left(t,u\right)du\right\}

where f¯\overline{f} is sometimes called fictitious/artificial forward rate in the literature. It holds f¯(t,t)=r¯t\overline{f}\left(t,t\right)=\overline{r}_{t} for all t[0,T]t\in\left[0,T\right]. With reference to [11] and [12], for all t[0,T]t\in\left[0,T\right] we introduce the forward rate spread via

g(t,T):=f¯(t,T)f(t,T)g\left(t,T\right):=\overline{f}\left(t,T\right)-f\left(t,T\right)

so that we have not only set up a new pure-jump post-crisis short rate model, but simultaneously a new pure-jump post-crisis forward rate model of HJM-type in the current section. Recall that (6.4) is equivalent to f(t,u)f¯(t,u)f\left(t,u\right)\leq\overline{f}\left(t,u\right)\ \mathbb{Q}-a.s. for all 0tuT0\leq t\leq u\leq T. From this, we conclude that g(t,T)0g\left(t,T\right)\geq 0\ \mathbb{Q}-a.s. for all t[0,T]t\in\left[0,T\right]. It further holds g(t,t)=stg\left(t,t\right)=s_{t} for all t[0,T]t\in\left[0,T\right] due to (6.1).

Furthermore, in the present post-crisis setting, for a time partition 0tT1<T20\leq t\leq T_{1}<T_{2} we define the (forward) overnight indexed swap (OIS) rate via

F(t,T1,T2):=1δ(P(t,T1)P(t,T2)1)F\left(t,T_{1},T_{2}\right):=\frac{1}{\delta}\left(\frac{P\left(t,T_{1}\right)}{P\left(t,T_{2}\right)}-1\right)

(cf. Eq. (4.1) in [26]) where PP denotes the zero-coupon bond price defined in (3.3) and δ:=δ(T1,T2)\delta:=\delta\left(T_{1},T_{2}\right) is the year fraction with expiry date T1T_{1} and maturity date T2T_{2}. With reference to [12], for 0tT1<T20\leq t\leq T_{1}<T_{2} we define the forward LIBOR rate via

L(t,T1,T2):=1δ(P¯(t,T1)P¯(t,T2)1)L\left(t,T_{1},T_{2}\right):=\frac{1}{\delta}\left(\frac{\overline{P}\left(t,T_{1}\right)}{\overline{P}\left(t,T_{2}\right)}-1\right)

where δ\delta is the year fraction and P¯\overline{P} denotes the bond price introduced in (6.3). Note that the LIBOR rate L(t,T1,T2)L\left(t,T_{1},T_{2}\right) shall not be mixed up with the Lévy processes LtkL_{t}^{k} defined in (2.3). In a pre-crisis single-curve approach, it holds P¯(t,T)=P(t,T)\overline{P}\left(t,T\right)=P\left(t,T\right) which implies F(t,T1,T2)=L(t,T1,T2)F\left(t,T_{1},T_{2}\right)=L\left(t,T_{1},T_{2}\right)\ \mathbb{Q}-a.s. for all tt.

We are now prepared to derive the dynamics of the short rate spread sts_{t}, the fictitious short rate r¯t\overline{r}_{t}, the bond price P¯(t,T)\overline{P}\left(t,T\right), the forward rate f¯(t,T)\overline{f}\left(t,T\right), the forward rate spread g(t,T)g\left(t,T\right) and the LIBOR rate L(t,T1,T2)L\left(t,T_{1},T_{2}\right). The associated computations can be accomplished by similar techniques as presented in Sections 2 and 3 and thus, are not worked out explicitly. We provide as an example two results without proofs in the sequel. For all t[0,T]t\in\left[0,T\right] it holds

dP¯(t,T)P¯(t,T)=r¯tdt+k=1lDkζk(t,T,z)𝑑N~k(t,z)\frac{d\overline{P}\left(t,T\right)}{\overline{P}\left(t-,T\right)}=\overline{r}_{t}dt+\sum_{k=1}^{l}\int_{D_{k}}\zeta_{k}\left(t,T,z\right)d\tilde{N}_{k}^{\mathbb{Q}}\left(t,z\right)

where the functions ζk\zeta_{k} are such as claimed in (3.10). We further obtain in the post-crisis case

L(t,T1,T2)\displaystyle L\left(t,T_{1},T_{2}\right) =1δ(P¯(0,T1)P¯(0,T2)×k=1lexp{0tDkΨk(s,z)dνk(z)ds\displaystyle=\frac{1}{\delta}\Biggl{(}\frac{\overline{P}\left(0,T_{1}\right)}{\overline{P}\left(0,T_{2}\right)}\times\prod_{k=1}^{l}\exp\Biggl{\{}\int_{0}^{t}\int_{D_{k}}\Psi_{k}\left(s,z\right)d\nu_{k}\left(z\right)ds
+0tDkΣk(s,z)dNk(s,z)}1)\displaystyle\quad+\int_{0}^{t}\int_{D_{k}}\Sigma_{k}\left(s,z\right)dN_{k}\left(s,z\right)\Biggr{\}}-1\Biggr{)}

with deterministic functions

Ψk(s,z)\displaystyle\Psi_{k}\left(s,z\right) :=eσkBk(s,T2)zeσkBk(s,T1)z<0,\displaystyle:=e^{\sigma_{k}B_{k}\left(s,T_{2}\right)z}-e^{\sigma_{k}B_{k}\left(s,T_{1}\right)z}<0,
Σk(s,z)\displaystyle\Sigma_{k}\left(s,z\right) :=σk[Bk(s,T1)Bk(s,T2)]z>0.\displaystyle:=\sigma_{k}\left[B_{k}\left(s,T_{1}\right)-B_{k}\left(s,T_{2}\right)\right]z>0.

References

  • [1] {botherref} \oauthor\bsnmAntonov, \binitsA., \oauthor\bsnmKonikov, \binitsM., \oauthor\bsnmSpector, \binitsM.: The free boundary SABR: natural extension to negative rates. Risk Magazine (September 2015). \OrigBibTextAntonov, A., Konikov, M., Spector, M. (2015) The free boundary SABR: natural extension to negative rates, Risk Magazine, September 2015 \endOrigBibText\bptokstructpyb \endbibitem
  • [2] {barticle} \bauthor\bsnmBenth, \binitsF., \bauthor\bsnmKallsen, \binitsJ., \bauthor\bsnmMeyer-Brandis, \binitsT.: \batitleA non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing. \bjtitleAppl. Math. Finance \bvolume14(\bissue2), \bfpage153–\blpage169 (\byear2006). \biddoi=10.1080/13504860600725031, mr=2323278 \OrigBibTextBenth, F., Kallsen, J., Meyer-Brandis, T. (2006) A non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing, Applied Mathematical Finance, Vol. 14 (2), 153-169 \endOrigBibText\bptokstructpyb \endbibitem
  • [3] {bbook} \bauthor\bsnmBenth, \binitsF., \bauthor\bsnmSaltyte-Benth, \binitsJ., \bauthor\bsnmKoekebakker, \binitsS.: \bbtitleStochastic Modeling of Electricity and Related Markets, \bedition1st edn. \bpublisherWorld Scientific, (\byear2008). \biddoi=10.1142/
    9789812812315, mr=2416686 \OrigBibTextBenth, F., Saltyte-Benth, J., Koekebakker, S. (2008) Stochastic Modeling of Electricity and Related Markets, First Edition, World Scientific \endOrigBibText\bptokstructpyb \endbibitem
  • [4] {barticle} \bauthor\bsnmBjörk, \binitsT., \bauthor\bsnmKabanov, \binitsY., \bauthor\bsnmRunggaldier, \binitsW.: \batitleBond market structure in the presence of marked point processes. \bjtitleMath. Finance \bvolume7, \bfpage211–\blpage239 (\byear1997). \biddoi=10.1111/
    1467-9965.00031, mr=1446647 \OrigBibTextBjörk, T., Kabanov, Y., Runggaldier, W. (1997) Bond market structure in the presence of marked point processes, Mathematical Finance, Vol. 7, 211-239 \endOrigBibText\bptokstructpyb \endbibitem
  • [5] {barticle} \bauthor\bsnmBrace, \binitsA., \bauthor\bsnmGatarek, \binitsD., \bauthor\bsnmMusiela, \binitsM.: \batitleThe market model of interest rate dynamics. \bjtitleMath. Finance \bvolume7, \bfpage127–\blpage155 (\byear1997). \biddoi=10.1111/1467-9965.00028, mr=1446645 \OrigBibTextBrace, A., Gatarek, D., Musiela, M. (1997) The market model of interest rate dynamics, Mathematical Finance, Vol. 7, 127-155 \endOrigBibText\bptokstructpyb \endbibitem
  • [6] {barticle} \bauthor\bsnmBrigo, \binitsD., \bauthor\bsnmMercurio, \binitsF.: \batitleA deterministic-shift extension of analytically-tractable and time-homogeneous short-rate models. \bjtitleFinance Stoch. \bvolume5(\bissue3), \bfpage369–\blpage387 (\byear2001). \biddoi=10.1007/PL00013541, mr=1849427 \OrigBibTextBrigo, D., Mercurio, F. (2001) A deterministic-shift extension of analytically-tractable and time-homogeneous short-rate models, Finance and Stochastics, Vol. 5 (3), 369-387 \endOrigBibText\bptokstructpyb \endbibitem
  • [7] {bbook} \bauthor\bsnmBrigo, \binitsD., \bauthor\bsnmMercurio, \binitsF.: \bbtitleInterest Rate Models – Theory and Practice, \bedition1st edn. \bpublisherSpringer, (\byear2001). \biddoi=10.1007/978-3-662-04553-4, mr=1846525 \OrigBibTextBrigo, D., Mercurio, F. (2001) Interest Rate Models – Theory and Practice, First Edition, Springer \endOrigBibText\bptokstructpyb \endbibitem
  • [8] {barticle} \bauthor\bsnmCarr, \binitsP., \bauthor\bsnmMadan, \binitsD.: \batitleOption valuation using the fast Fourier transform. \bjtitleJ. Comput. Finance \bvolume2(\bissue4), \bfpage61–\blpage73 (\byear1999). \biddoi=10.21314/JCF.1999.043 \OrigBibTextCarr, P., Madan, D. (1999) Option valuation using the fast Fourier transform, Journal of Computational Finance, Vol. 2 (4), 61-73 \endOrigBibText\bptokstructpyb \endbibitem
  • [9] {bbook} \bauthor\bsnmCont, \binitsR., \bauthor\bsnmTankov, \binitsP.: \bbtitleFinancial Modeling with Jump Processes, \bedition1st edn. \bpublisherChapman & Hall/CRC, (\byear2004). \bidmr=2042661 \OrigBibTextCont, R., Tankov, P. (2004) Financial Modeling with Jump Processes, First Edition, Chapman & Hall/CRC \endOrigBibText\bptokstructpyb \endbibitem
  • [10] {barticle} \bauthor\bsnmCox, \binitsJ., \bauthor\bsnmIngersoll, \binitsJ., \bauthor\bsnmRoss, \binitsS.: \batitleA theory of the term structure of interest rates. \bjtitleEconometrica \bvolume53, \bfpage385–\blpage407 (\byear1985). \biddoi=10.2307/1911242, mr=0785475 \OrigBibTextCox, J., Ingersoll, J., Ross, S. (1985) A theory of the term structure of interest rates, Econometrica, Vol. 53, 385-407 \endOrigBibText\bptokstructpyb \endbibitem
  • [11] {barticle} \bauthor\bsnmCrépey, \binitsS., \bauthor\bsnmGrbac, \binitsZ., \bauthor\bsnmNgor, \binitsN., \bauthor\bsnmSkovmand, \binitsD.: \batitleA Lévy HJM multiple-curve model with application to CVA computation. \bjtitleQuant. Finance \bvolume15(\bissue3), \bfpage401–\blpage419 (\byear2015). \biddoi=10.1080/14697688.2014.942232, mr=3313198 \OrigBibTextCrépey, S., Grbac, Z., Ngor, N., Skovmand, D. (2015) A Lévy HJM multiple-curve model with application to CVA computation, Quantitative Finance, Vol. 15 (3), 401-419 \endOrigBibText\bptokstructpyb \endbibitem
  • [12] {barticle} \bauthor\bsnmCrépey, \binitsS., \bauthor\bsnmGrbac, \binitsZ., \bauthor\bsnmNguyen, \binitsH.: \batitleA multiple-curve HJM model of interbank risk. \bjtitleMath. Financ. Econ. \bvolume6, \bfpage155–\blpage190 (\byear2013). \biddoi=10.1007/
    s11579-012-0083-4, mr=2966729 \OrigBibTextCrépey, S., Grbac, Z., Nguyen, H. (2013) A multiple-curve HJM model of interbank risk, Mathematics and Financial Economics, Vol. 6, 155-190 \endOrigBibText\bptokstructpyb \endbibitem
  • [13] {barticle} \bauthor\bsnmCuchiero, \binitsC., \bauthor\bsnmFontana, \binitsC., \bauthor\bsnmGnoatto, \binitsA.: \batitleA General HJM Framework for Multiple Yield Curve Modeling. \bjtitleFinance Stoch. \bvolume20(\bissue2), \bfpage267–\blpage320 (\byear2016). \biddoi=10.
    1007/s00780-016-0291-5, mr=3479323 \OrigBibTextCuchiero, C., Fontana, C., Gnoatto, A. (2016) A General HJM Framework for Multiple Yield Curve Modeling, Finance and Stochastics, Vol. 20 (2), 267-320 \endOrigBibText\bptokstructpyb \endbibitem
  • [14] {barticle} \bauthor\bsnmCuchiero, \binitsC., \bauthor\bsnmFontana, \binitsC., \bauthor\bsnmGnoatto, \binitsA.: \batitleAffine Multiple Yield Curve Models. \bjtitleMath. Finance \bvolume29(\bissue2), \bfpage568–\blpage611 (\byear2019). \bcommentpreprint: \arxivurlarXiv:1603.00527v2. \biddoi=10.1111/mafi.12183, mr=3925431 \OrigBibTextCuchiero, C., Fontana, C., Gnoatto, A. (2019) Affine Multiple Yield Curve Models, Mathematical Finance, Vol. 29 (2), 568-611, preprint: arXiv:1603.00527v2 \endOrigBibText\bptokstructpyb \endbibitem
  • [15] {bbook} \bauthor\bparticleDi \bsnmNunno, \binitsG., \bauthor\bsnmØksendal, \binitsB., \bauthor\bsnmProske, \binitsF.: \bbtitleMalliavin Calculus for Lévy Processes with Applications to Finance, \bedition1st edn. \bpublisherSpringer, (\byear2009). \biddoi=10.1007/
    978-3-540-78572-9, mr=2460554 \OrigBibTextDi Nunno, G., Øksendal, B., Proske, F. (2009) Malliavin Calculus for Lévy Processes with Applications to Finance, First Edition, Springer \endOrigBibText\bptokstructpyb \endbibitem
  • [16] {barticle} \bauthor\bsnmDuffie, \binitsD., \bauthor\bsnmFilipovic, \binitsD., \bauthor\bsnmSchachermayer, \binitsW.: \batitleAffine Processes and Applications in Finance. \bjtitleAnn. Appl. Probab. \bvolume13, \bfpage984–\blpage1053 (\byear2003). \biddoi=10.1214/
    aoap/1060202833, mr=1994043 \OrigBibTextDuffie, D., Filipovic, D., Schachermayer, W. (2003) Affine Processes and Applications in Finance, Annals of Applied Probability, Vol. 13, 984-1053 \endOrigBibText\bptokstructpyb \endbibitem
  • [17] {botherref} \oauthor\bsnmEberlein, \binitsE., \oauthor\bsnmGerhart, \binitsC., \oauthor\bsnmGrbac, \binitsZ.: Multiple curve Lévy forward price model allowing for negative interest rates. Mathematical Finance (2019). forthcoming, preprint: \arxivurlarXiv:1805.02605v1. \biddoi=10.1007/978-3-030-26106-1 \OrigBibTextEberlein, E., Gerhart, C., Grbac, Z. (2019) Multiple curve Lévy forward price model allowing for negative interest rates, Mathematical Finance, forthcoming, preprint: arXiv:1805.02605v1 \endOrigBibText\bptokstructpyb \endbibitem
  • [18] {barticle} \bauthor\bsnmEberlein, \binitsE., \bauthor\bsnmKluge, \binitsW.: \batitleExact pricing formulae for caps and swaptions in a Lévy term structure model. \bjtitleJ. Comput. Finance \bvolume9(\bissue2), \bfpage99–\blpage125 (\byear2006). \biddoi=10.1007/978-0-8176-4545-8_9, doi=10.21314/JCF.2005.158, mr=2359367 \OrigBibTextEberlein, E., Kluge, W. (2006) Exact pricing formulae for caps and swaptions in a Lévy term structure model, Journal of Computational Finance, Vol. 9 (2), 99-125 \endOrigBibText\bptokstructpyb \endbibitem
  • [19] {barticle} \bauthor\bsnmEberlein, \binitsE., \bauthor\bsnmKluge, \binitsW.: \batitleValuation of floating range notes in Lévy term structure models. \bjtitleMath. Finance \bvolume16, \bfpage237–\blpage254 (\byear2006). \biddoi=10.1111/
    j.1467-9965.2006.00270.x, mr=2212265 \OrigBibTextEberlein, E., Kluge, W. (2006) Valuation of floating range notes in Lévy term structure models, Mathematical Finance, Vol. 16, 237-254 \endOrigBibText\bptokstructpyb \endbibitem
  • [20] {barticle} \bauthor\bsnmEberlein, \binitsE., \bauthor\bsnmKluge, \binitsW., \bauthor\bsnmPapapantoleon, \binitsA.: \batitleSymmetries in Lévy Term Structure Models. \bjtitleInt. J. Theor. Appl. Finance \bvolume9(\bissue6), \bfpage967–\blpage986 (\byear2006). \biddoi=10.1142/
    S0219024906003809, mr=2260054 \OrigBibTextEberlein, E., Kluge, W., Papapantoleon, A. (2006) Symmetries in Lévy Term Structure Models, International Journal of Theoretical and Applied Finance, Vol. 9 (6), 967-986 \endOrigBibText\bptokstructpyb \endbibitem
  • [21] {bbook} \bauthor\bsnmFilipovic, \binitsD.: \bbtitleTerm-Structure Models. \bsertitleSpringer Finance, \bpublisherSpringer, (\byear2009). \biddoi=10.1007/978-3-540-68015-4, mr=2553163 \OrigBibTextFilipovic, D. (2009) Term-Structure Models, Springer Finance, Springer \endOrigBibText\bptokstructpyb \endbibitem
  • [22] {barticle} \bauthor\bsnmFilipovic, \binitsD., \bauthor\bsnmTrolle, \binitsA.: \batitleThe Term Structure of Interbank Risk. \bjtitleJ. Financ. Econ. \bvolume109(\bissue3), \bfpage707–\blpage733 (\byear2013). \biddoi=10.1016/j.jfineco.2013.03.014 \OrigBibTextFilipovic, D., Trolle, A. (2013) The Term Structure of Interbank Risk, Journal of Financial Economics, Vol. 109 (3), 707-733 \endOrigBibText\bptokstructpyb \endbibitem
  • [23] {barticle} \bauthor\bsnmGallitschke, \binitsJ., \bauthor\bsnmSeifried, \binitsS., \bauthor\bsnmSeifried, \binitsF.: \batitlePost-crisis Interest Rates: Xibor Mechanics and Basis Spreads. \bjtitleJ. Bank. Finance \bvolume78, \bfpage142–\blpage152 (\byear2017). \biddoi=10.1016/j.jbankfin.
    2017.01.002 \OrigBibTextGallitschke, J., Seifried, S., Seifried, F. (2017) Post-crisis Interest Rates: Xibor Mechanics and Basis Spreads, Journal of Banking and Finance, Vol. 78, 142-152 \endOrigBibText\bptokstructpyb \endbibitem
  • [24] {barticle} \bauthor\bsnmGrasselli, \binitsM., \bauthor\bsnmMiglietta, \binitsG.: \batitleA Flexible Spot Multiple-curve Model. \bjtitleQuant. Finance \bvolume6(\bissue10), \bfpage1465–\blpage1477 (\byear2016). \biddoi=10.1080/14697688.2015.1108521, mr=3564921 \OrigBibTextGrasselli, M., Miglietta, G. (2016) A Flexible Spot Multiple-curve Model, Quantitative Finance, Vol. 6 (10), 1465-1477 \endOrigBibText\bptokstructpyb \endbibitem
  • [25] {barticle} \bauthor\bsnmGrbac, \binitsZ., \bauthor\bsnmPapapantoleon, \binitsA., \bauthor\bsnmSchoenmakers, \binitsJ., \bauthor\bsnmSkovmand, \binitsD.: \batitleAffine LIBOR Models with Multiple Curves: Theory, Examples and Calibration. \bjtitleSIAM J. Financ. Math. \bvolume6(\bissue1), \bfpage984–\blpage1025 (\byear2015). \biddoi=10.1137/15M1011731, mr=3413586 \OrigBibTextGrbac, Z., Papapantoleon, A., Schoenmakers, J., Skovmand, D. (2015) Affine LIBOR Models with Multiple Curves: Theory, Examples and Calibration, SIAM Journal on Financial Mathematics, Vol. 6 (1), 984-1025 \endOrigBibText\bptokstructpyb \endbibitem
  • [26] {bbook} \bauthor\bsnmGrbac, \binitsZ., \bauthor\bsnmRunggaldier, \binitsW.: \bbtitleInterest Rate Modeling: Post-Crisis Challenges and Approaches, \bsertitleSpringer Briefs in Quantitative Finance, \bedition1st edn. \bpublisherSpringer, (\byear2015). \biddoi=10.1007/978-3-319-25385-5, mr=3467166 \OrigBibTextGrbac, Z., Runggaldier, W. (2015) Interest Rate Modeling: Post-Crisis Challenges and Approaches, Springer Briefs in Quantitative Finance, First Edition, Springer \endOrigBibText\bptokstructpyb \endbibitem
  • [27] {barticle} \bauthor\bsnmHeath, \binitsD., \bauthor\bsnmJarrow, \binitsR., \bauthor\bsnmMorton, \binitsA.: \batitleBond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. \bjtitleEconometrica \bvolume60, \bfpage77–\blpage105 (\byear1992). \biddoi=10.2307/2951677 \OrigBibTextHeath, D., Jarrow, R., Morton, A. (1992) Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation, Econometrica, Vol. 60, 77-105 \endOrigBibText\bptokstructpyb \endbibitem
  • [28] {botherref} \oauthor\bsnmHess, \binitsM.: Pricing Energy, Weather and Emission Derivatives under Future Information. PhD Dissertation, University Duisburg-Essen, Germany (2013). \urlhttp://duepublico.uni-duisburg-essen.de/servlets/DocumentServlet?id=31060 \OrigBibTextHess, M. (2013) Pricing Energy, Weather and Emission Derivatives under Future Information, PhD Dissertation, University Duisburg-Essen, Germany, http://duepublico.uni-duisburg-essen.de/servlets/DocumentServlet?id=31060 \endOrigBibText\bptokstructpyb \endbibitem
  • [29] {barticle} \bauthor\bsnmHull, \binitsJ., \bauthor\bsnmWhite, \binitsA.: \batitlePricing interest-rate-derivative securities. \bjtitleRev. Financ. Stud. \bvolume3(\bissue4), \bfpage573–\blpage592 (\byear1990). \biddoi=10.1093/rfs/3.4.573 \OrigBibTextHull, J., White, A. (1990) Pricing interest-rate-derivative securities, Review of Financial Studies, Vol. 3 (4), 573-592 \endOrigBibText\bptokstructpyb \endbibitem
  • [30] {bbook} \bauthor\bsnmJacod, \binitsJ., \bauthor\bsnmShiryaev, \binitsA.: \bbtitleLimit Theorems for Stochastic Processes, \bedition2nd edn. \bpublisherSpringer, (\byear2003). \biddoi=10.1007/978-3-662-05265-5, mr=1943877 \OrigBibTextJacod, J., Shiryaev, A. (2003) Limit Theorems for Stochastic Processes, Second Edition, Springer \endOrigBibText\bptokstructpyb \endbibitem
  • [31] {barticle} \bauthor\bsnmKeller-Ressel, \binitsM., \bauthor\bsnmPapapantoleon, \binitsA., \bauthor\bsnmTeichmann, \binitsJ.: \batitleThe Affine LIBOR Models. \bjtitleMath. Finance \bvolume23(\bissue4), \bfpage627–\blpage658 (\byear2013). \biddoi=10.1111/j.1467-9965.2012.
    00531.x, mr=3094715 \OrigBibTextKeller-Ressel, M., Papapantoleon, A., Teichmann, J. (2013) The Affine LIBOR Models, Mathematical Finance, Vol. 23 (4), 627-658 \endOrigBibText\bptokstructpyb \endbibitem
  • [32] {botherref} \oauthor\bsnmMercurio, \binitsF.: A LIBOR Market Model with a Stochastic Basis, Risk, pp. 96–101 (December 2013) \OrigBibTextMercurio, F. (2013) A LIBOR Market Model with a Stochastic Basis, Risk, December, 96-101 \endOrigBibText\bptokstructpyb \endbibitem
  • [33] {bchapter} \bauthor\bsnmMorino, \binitsL., \bauthor\bsnmRunggaldier, \binitsW.: \bctitleOn multicurve models for the term structure. In: \bbtitleNonlinear Economic Dynamics and Financial Modeling, pp. \bfpage275–\blpage290. \bpublisherSpringer, (\byear2014). \bidmr=3329961 \OrigBibTextMorino, L., Runggaldier, W. (2014) On multicurve models for the term structure, in Nonlinear Economic Dynamics and Financial Modeling, Springer, 275-290 \endOrigBibText\bptokstructpyb \endbibitem
  • [34] {barticle} \bauthor\bsnmNguyen, \binitsT., \bauthor\bsnmSeifried, \binitsF.: \batitleThe Multi-curve Potential Model. \bjtitleInt. J. Theor. Appl. Finance \bvolume18(\bissue7), \bnumber1550049 (\byear2015). \biddoi=10.1142/S0219024915500491, mr=3423186 \OrigBibTextNguyen, T., Seifried, F. (2015) The Multi-curve Potential Model, International Journal of Theoretical and Applied Finance, Vol. 18 (7), 1550049 \endOrigBibText\bptokstructpyb \endbibitem
  • [35] {bbook} \bauthor\bsnmProtter, \binitsP.: \bbtitleStochastic Integration and Differential Equations, \bedition2nd edn. \bpublisherSpringer, (\byear2005). \bidmr=2020294 \OrigBibTextProtter, P. (2005) Stochastic Integration and Differential Equations, Second Edition, Springer \endOrigBibText\bptokstructpyb \endbibitem
  • [36] {bbook} \bauthor\bsnmSato, \binitsK.: \bbtitleLévy Processes and Infinitely Divisible Distributions. \bsertitleCambridge studies in advanced mathematics, vol. \bseriesno68 (\byear1999). \bidmr=1739520 \OrigBibTextSato, K. (1999) Lévy Processes and Infinitely Divisible Distributions, Cambridge studies in advanced mathematics, No. 68 \endOrigBibText\bptokstructpyb \endbibitem
  • [37] {bbook} \bauthor\bsnmSchoutens, \binitsW.: \bbtitleLévy Processes in Finance: Pricing Financial Derivatives. \bpublisherJohn Wiley & Sons, Ltd., (\byear2003) \OrigBibTextSchoutens, W. (2003) Lévy Processes in Finance: Pricing Financial Derivatives, John Wiley & Sons, Ltd. \endOrigBibText\bptokstructpyb \endbibitem
  • [38] {barticle} \bauthor\bsnmVasicek, \binitsO.: \batitleAn equilibrium characterization of the term structure. \bjtitleJ. Financ. Econ. \bvolume5(\bissue2), \bfpage177–\blpage188 (\byear1977). \biddoi=10.1016/0304-405X(77)90016-2 \OrigBibTextVasicek, O. (1977) An equilibrium characterization of the term structure, Journal of Financial Economics, Vol. 5 (2), 177-188 \endOrigBibText\bptokstructpyb \endbibitem