This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Randomized Runge-Kutta Method for time-irregular delay differential equations

Fabio V. Difonzo Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/I, 70126 Bari, Italy fabiovito.difonzo@cnr.it Paweł Przybyłowicz AGH University of Krakow, Faculty of Applied Mathematics, Al. A. Mickiewicza 30, 30-059 Kraków, Poland pprzybyl@agh.edu.pl Yue Wu Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK yue.wu@strath.ac.uk, corresponding author  and  Xinheng Xie Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK xinheng.xie@strath.ac.uk
Abstract.

In this paper we investigate the existence, uniqueness and approximation of solutions of delay differential equations (DDEs) with the right-hand side functions f=f(t,x,z)f=f(t,x,z) that are Lipschitz continuous with respect to xx but only Hölder continuous with respect to (t,z)(t,z). We give a construction of the randomized two-stage Runge-Kutta scheme for DDEs and investigate its upper error bound in the Lp(Ω)L^{p}(\Omega)-norm for p[2,+)p\in[2,+\infty). Finally, we report on results of numerical experiments.

1. Introduction

We deal with approximation of solutions to the following delay differential equations (DDEs)

(1.1) {x(t)=f(t,x(t),x(tτ)),t[0,(n+1)τ],x(t)=φ(t),t[τ,0),\begin{cases}x^{\prime}(t)=f(t,x(t),x(t-\tau)),&t\in[0,(n+1)\tau],\\ x(t)=\varphi(t),&t\in[-\tau,0),\end{cases}

with a constant time-lag τ(0,+)\tau\in(0,+\infty), a fixed time horizon nn\in\mathbb{N}, a right-hand side function f:[0,(n+1)τ]×d×ddf:[0,(n+1)\tau]\times\mathbb{R}^{d}\times\mathbb{R}^{d}\mapsto\mathbb{R}^{d}, and initial-value function: φ(t):[τ,0)d\varphi(t):[-\tau,0)\mapsto\mathbb{R}^{d}.

We assume that the function f=f(t,x,z)f=f(t,x,z) is integrable with respect to tt and (at least) continuous with respect to (x,z)(x,z).

Building upon the concepts presented in [9], our objective in this paper is to introduce a Randomized Runge-Kutta scheme tailored specifically for time-irregular delay differential equations. This novel scheme differentiates itself from existing methods, including those analyzed in the literature.

The motivation behind exploring these Delay Differential Equations (DDEs) is multifaceted. One aspect stems from the need to model switching systems with memory, as expounded upon in [11] and [12]. Another facet is rooted in practical engineering applications, as evidenced by discussions in [7] and [6]. For instance, in scenarios like the phase change of metallic materials, a DDE becomes crucial due to the time delay in response to changes in processing conditions.

Additionally, inspiration is drawn from delayed differential equations involving rough paths, as represented by the form:

(1.2) {dU(t)=a(U(t),U(tτ))+dZ(t),t[0,(n+1)τ],U(t)=U0,t[τ,0),\begin{cases}\mathrm{d}U(t)=a(U(t),U(t-\tau))+\mathrm{d}Z(t),&t\in[0,(n+1)\tau],\\ U(t)=U_{0},&t\in[-\tau,0),\end{cases}

Here, ZZ symbolizes an integrable perturbation, potentially of stochastic nature, with paths that might exhibit discontinuities. Consequently, if x(t)=U(t)Z(t)x(t)=U(t)-Z(t), it satisfies the (possibly random) DDE (1.1) with f(t,x,z)=a(x+Z(t),z+Z(tτ))f(t,x,z)=a(x+Z(t),z+Z(t-\tau)), and x(t)=U0x(t)=U_{0}, assuming Z(t)=0Z(t)=0 for t[τ,0]t\in[-\tau,0]. In this context, the function ff inherits from ZZ its low smoothness concerning the variable tt. Noteworthy is the fact that equation (1.2) is a generalization of an ODE with rough paths discussed in [16].

When classical assumptions, such as CrC^{r}-regularity of f=f(t,x,z)f=f(t,x,z) concerning all variables t,x,zt,x,z, are imposed on the right-hand side function, errors for deterministic schemes have been documented in [2]. Furthermore, in [7], the error of the Euler scheme has been explored for a certain class of nonlinear DDEs under nonstandard assumptions like the one-side Lipschitz condition and local Hölder continuity. However, limited knowledge exists regarding the approximation of solutions for DDEs with less regular Carathéodory right-hand side functions.

For Carathéodory ODEs, deterministic algorithms encounter convergence issues, necessitating the use of randomized algorithms. In this context, we propose a randomized version of the Runge-Kutta scheme tailored for DDEs of the form (1.1).
In the landscape of existing literature, several relevant contributions are worth noting. [10] provides an analysis of multistep Runge-Kutta methods for delay differential equations, while [18] offers comprehensive insights into numerical methods for delay differential equations. The work by [5] introduces a general-purpose implicit-explicit Runge-Kutta integrator for delay differential equations, and [21] proposes a novel explicit two-stage Runge-Kutta method for delay differential equations with constant delay. Each of these works contributes valuable perspectives to the broader understanding of numerical methods for DDEs.

Despite the extensive exploration of randomized algorithms for ODEs in the literature (see, for instance, [4], [3], [8], [13], [14], [15], [16]), to the best of our knowledge, this paper represents a pioneering effort in defining a randomized Runge-Kutta scheme and rigorously investigating its error for Carathéodory-type DDEs.

The structure of the paper is as follows. In section 2 we give basic notions, definitions, and provide detailed construction and output of the randomized two-stage Runge-Kutta method. Section 3 is devoted to properties of solutions to CDDEs under assumptions stated in Section 2. Section 4 contains detailed error analysis of the randomized R-K method for CDDEs. Finally, details of the Python implementation together with extensive numerical experiments are reported in Section 5.

2. Preliminaries

By |||\cdot| we mean the Euclidean norm in d\mathbb{R}^{d}. We consider a complete probability space (Ω,Σ,)(\Omega,\Sigma,\mathbb{P}). For a random variable X:ΩX:\Omega\to\mathbb{R} we denote by Xp=(𝔼|X|p)1/p\|X\|_{p}=(\mathbb{E}|X|^{p})^{1/p}, where p[2,+)p\in[2,+\infty).

Let us fix the horizon parameter nn\in\mathbb{N}. On the right-hand side function ff and initial-value function: φ(t)\varphi(t), we impose the following assumptions:

  1. (A1)

    f(t,,)C(d×d;d)f(t,\cdot,\cdot)\in C(\mathbb{R}^{d}\times\mathbb{R}^{d};\mathbb{R}^{d}) for all t[0,(n+1)τ]t\in[0,(n+1)\tau] and φC([τ,0);d)\varphi\in C([-\tau,0);\mathbb{R}^{d}) for t[τ,0]t\in[-\tau,0].

  2. (A2)

    f(,x,z)f(\cdot,x,z) is Borel measurable for all (x,z)d×d(x,z)\in\mathbb{R}^{d}\times\mathbb{R}^{d},

  3. (A3)

    There exists K(0,)K\in(0,\infty) such that for all t[0,(n+1)τ]t\in[0,(n+1)\tau], x,zdx,z\in\mathbb{R}^{d}

    (2.1) |f(t,x,z)|K(1+|x|)(1+|z|),{|f(t,x,z)|\leq K(1+|x|)(1+|z|),}
  4. (A4)

    There exists L(0,)L\in(0,\infty) such that for all t[0,(n+1)τ]t\in[0,(n+1)\tau], x1,x2,zdx_{1},x_{2},z\in\mathbb{R}^{d}

    (2.2) |f(t,x1,z)f(t,x2,z)|L(1+|z|)|x1x2|,{|f(t,x_{1},z)-f(t,x_{2},z)|\leq L(1+|z|)|x_{1}-x_{2}|,}

In Section 3, under the assumptions (A1)-(A4), we investigate existence and uniqueness of solution for (1.1). Next, in Section 4 we investigate error of the randomized two-stage Runge-Kutta scheme under slightly stronger assumptions. Namely, we impose Hölder continuity assumptions on f=(t,x,z)f=(t,x,z) with respect to (t,z)(t,z).

The definition of the two-stage randomized Runge-Kutta method for DDEs goes as follows. (γkj)j0,k(\gamma_{k}^{j})_{j\in\mathbb{N}_{0},k\in\mathbb{N}} iid from 𝒰(0,1)\mathcal{U}(0,1), NN\in\mathbb{N}, h=τ/Nh=\tau/N, tkj=jτ+kht_{k}^{j}=j\tau+kh, θk+1j=tkj+hγk+1j\theta_{k+1}^{j}=t_{k}^{j}+h\gamma_{k+1}^{j} for k=0,1,,Nk=0,1,\ldots,N, j=1,0,1,,nj=-1,0,1,\ldots,n. Also let hk+1j:=hγk+1jh_{k+1}^{j}:=h\gamma_{k+1}^{j} and define yk1=φ(tk1)y_{k}^{-1}=\varphi(t_{k}^{-1}).

For j=0j=0, define

(2.3) y00=yN1,y~k+11,0=φ(tk1+hk+10)y~k+10=yk0+hk+10f(tk0,yk0,yk1),yk+10=yk0+hf(θk+10,y~k+10,y~k+11,0),\displaystyle\begin{split}&y_{0}^{0}=y_{N}^{-1},\\ &\tilde{y}_{k+1}^{-1,0}=\varphi(t_{k}^{-1}+h_{k+1}^{0})\\ &\tilde{y}_{k+1}^{0}=y_{k}^{0}+h_{k+1}^{0}\cdot f(t_{k}^{0},y_{k}^{0},y_{k}^{-1}),\\ &y_{k+1}^{0}=y_{k}^{0}+h\cdot f(\theta_{k+1}^{0},\tilde{y}_{k+1}^{0},\tilde{y}_{k+1}^{-1,0}),\end{split}

and for j1j\geq 1,

(2.4) y0j=yNj1,y~k+1j1,j=ykj1+hk+1jf(tkj1,ykj1,ykj2),y~k+1j=ykj+hk+1jf(tkj,ykj,ykj1),yk+1j=ykj+hf(θk+1j,y~k+1j,y~k+1j1,j).\displaystyle\begin{split}&y_{0}^{j}=y_{N}^{j-1},\\ &\tilde{y}_{k+1}^{j-1,j}=y_{k}^{j-1}+h_{k+1}^{j}\cdot f(t_{k}^{j-1},y_{k}^{j-1},y_{k}^{j-2}),\\ &\tilde{y}_{k+1}^{j}=y_{k}^{j}+h_{k+1}^{j}\cdot f(t_{k}^{j},y_{k}^{j},y_{k}^{j-1}),\\ &y_{k+1}^{j}=y_{k}^{j}+h\cdot f(\theta_{k+1}^{j},\tilde{y}_{k+1}^{j},\tilde{y}_{k+1}^{j-1,j}).\end{split}

Note that for j=1j=1, the delay term ykj2y^{j-2}_{k} in the second line of (2.4) is exactly the evaluation of the initial condition φ(tk1)\varphi(t^{-1}_{k}).

Let us call y~k+1j1,j\tilde{y}_{k+1}^{j-1,j} and y~k+1j\tilde{y}_{k+1}^{j} the intermediate delay term and the intermediate term respectively. A key component here is the intermediate delay term y~k+1j1,j\tilde{y}_{k+1}^{j-1,j}: we do not recycle the intermediate term y~k+1j1\tilde{y}_{k+1}^{j-1} computed from preceding τ\tau-interval [(j1)τ,jτ][(j-1)\tau,j\tau] to replace y~k+1j1,j\tilde{y}_{k+1}^{j-1,j} for a simplified computation, because y~k+1j1\tilde{y}_{k+1}^{j-1} is generated on γk+1j1\gamma^{j-1}_{k+1}, a different random resource from γk+1j\gamma^{j}_{k+1}. It is easy to see that each random vector ykjy_{k}^{j}, j=0,1,,nj=0,1,\ldots,n, k=0,1,,Nk=0,1,\ldots,N, is measurable with respect to the σ\sigma-field generated by the following family of independent random variables

(2.5) {θ10,θN0,,θ1j1,,θNj1,θ1j,,θkj}.\Bigl{\{}\theta_{1}^{0}\ldots,\theta_{N}^{0},\ldots,\theta_{1}^{j-1},\ldots,\theta_{N}^{j-1},\theta_{1}^{j},\ldots,\theta_{k}^{j}\Bigr{\}}.

As the horizon parameter nn is fixed, the randomized two-stage Runge-Kutta scheme uses O(N)O(N) evaluations of ff (with a constant in the OO notation that only depends on nn but not on NN).

To help readers better understand the randomized RK method, we present two figures 1(a) and 1(b). Figure 1(a) depicts the scenario when j=0j=0, while Figure 1(b) showcases the situation for j1j\geq 1, using j=1j=1 as a specific example. Within these figures, different markers are employed to convey distinct meanings: dashed lines represent assignments; black solid lines and solid circles signify computation methods; colored solid circles indicate the values of different terms at the time tt; the black dots represent the value of time tt. For clarity, text is color-coded to match the terms they represent. Structurally, the figures are divided into two primary sections vertically along the coordinate axis. The upper section encompasses all computations excluding the generation of yi+1jy_{i+1}^{j}, while the lower section specifically illustrates the operations involved in generating yi+1jy_{i+1}^{j}. In both figures, for any ii in [0,1,,N1][0,1,\ldots,N-1], we aim to compute the value of yi+1jy_{i+1}^{j} at the time point ti+1jt_{i+1}^{j}. We assume that the values of yijy_{i}^{j} for all time points before ti+1jt_{i+1}^{j} are known. Utilizing these known values, we can calculate the value of yi+1jy_{i+1}^{j} at the time point ti+1jt_{i+1}^{j} using Eqn. (2.3) if j=0j=0 or Eqn. (2.4) if j1j\geq 1.

Refer to caption
(a) Scenario for j=0j=0
Refer to caption
(b) Scenario for j>0j>0 with j=1j=1 exemplified
Figure 1. Visual representation of Randomized RK method for different jj.

3. Properties of solutions to Carathéodory DDEs

In this section we investigate the issue of existence and uniqueness of the solution of (1.1) under the assumptions (A1)-(A4).

In the sequel we use the following equivalent representation of the solution of (1.1), that is very convenient when proving its properties and when estimating the error of the randomized RK scheme. For j=0,1,,nj=0,1,\ldots,n and t[0,τ]t\in[0,\tau] it holds

(3.1) x(t+jτ)=f(t+jτ,x(t+jτ),x(t+(j1)τ)).x^{\prime}(t+j\tau)=f(t+j\tau,x(t+j\tau),x(t+(j-1)\tau)).

Hence, we take ϕ1(t):=φ(tτ)\phi_{-1}(t):=\varphi(t-\tau), ϕj(t):=x(t+jτ)\phi_{j}(t)\mathrel{\mathop{:}}=x(t+j\tau) and for j=0,1,,nj=0,1,\ldots,n we consider the following sequence of initial-value problems

(3.2) {ϕj(t)=gj(t,ϕj(t)),t[0,τ],ϕj(0)=ϕj1(τ),\begin{cases}\phi_{j}^{\prime}(t)=g_{j}(t,\phi_{j}(t)),&t\in[0,\tau],\\ \phi_{j}(0)=\phi_{j-1}(\tau),\end{cases}

with gj(t,x)=f(t+jτ,x,ϕj1(t))g_{j}(t,x)=f(t+j\tau,x,\phi_{j-1}(t)), (t,x)[0,τ]×d(t,x)\in[0,\tau]\times\mathbb{R}^{d}. Then the solution of (1.1) can be written as

(3.3) x(t)=j=1nϕj(tjτ)𝟏[jτ,(j+1)τ](t),t[τ,(n+1)τ].x(t)=\sum\limits_{j=-1}^{n}\phi_{j}(t-j\tau)\cdot\mathbf{1}_{[j\tau,(j+1)\tau]}(t),\quad t\in[-\tau,(n+1)\tau].

We prove the following result about existence, uniqueness and Hölder regularity of the solution of the delay differential equation (1.1). We will use this theorem in the next section when proving error estimate for the randomized RK algorithm.

Theorem 3.1.

Let n{0}n\in\mathbb{N}\cup\{0\}, τ(0,+)\tau\in(0,+\infty), x0dx_{0}\in\mathbb{R}^{d} and let ff, φ\varphi satisfy the assumptions (A1)-(A4). Then there exists a unique absolutely continuous solution x=x(x0,f)x=x(x_{0},f) to (1.1) such that for j=0,1,,nj=0,1,\ldots,n we have

(3.4) sup0tτ|ϕj(t)|Kj\sup\limits_{0\leq t\leq\tau}|\phi_{j}(t)|\leq K_{j}

where K1:=maxt[τ,0]|φ(t)|K_{-1}:=\max_{t\in[-\tau,0]}|\varphi(t)| and

(3.5) Kj=(1+Kj1)(1+Kτ)exp((1+Kj1)Kτ).K_{j}=(1+K_{j-1})(1+K\tau)\cdot\exp\Bigl{(}(1+K_{j-1})K\tau\Bigr{)}.

then for all j=0,1,,nj=0,1,\ldots,n, t,s[0,τ]t,s\in[0,\tau] it holds

(3.6) |ϕj(t)ϕj(s)|(1+Kj1)(1+Kj)K|ts|.|\phi_{j}(t)-\phi_{j}(s)|\leq(1+K_{j-1})(1+K_{j})K|t-s|.

The proof of this theorem follows Theorem 3.1 from [9]. However, due to different initial conditions and assumptions, there are some subtle variations in the proof and conclusions. Specifically, the differences are as follows:

  1. (1)

    [9] considers a constant initial condition case, ie, φ(t)=x0\varphi(t)=x_{0} for t[τ,0]t\in[-\tau,0], while in our DDE, a general initial condition φ(t)\varphi(t) is taken, allowing the initial condition to vary with time.

  2. (2)

    Compared to [9, Assumptions A3 and A4], we impose stronger assumptions (A3) and (A4) on ff such that the coefficients of linear growth and Lipschitz condition are time-invariant.

Remark 3.2.

The change mentioned in (2) above results in a stronger regularity of the auxiliary ODEs (3.2): [9, Lemma 7.1] claims that the true solution is Hölder-continuous while, under our assumptions, the exact solution is Lipschitz as shown in (3.6).

Proof.

Follow the proof of Theorem 3.1 in [9], we proceed by induction. We start with the case when j=0j=0 and consider the following initial-value problem.

(3.7) {ϕ0(t)=g0(t,ϕ0(t)),t[0,τ],ϕ0(0)=φ(0),\begin{cases}\phi_{0}^{\prime}(t)=g_{0}(t,\phi_{0}(t)),&t\in[0,\tau],\\ {\phi_{0}(0)=\varphi(0)},\end{cases}

with g0(t,x)=f(t,x,ϕ1(t))=f(t,x,x0)g_{0}(t,x)=f(t,x,\phi_{-1}(t))=f(t,x,x_{0}). It is obvious that for all t[0,τ]t\in[0,\tau] the function g0(t,)g_{0}(t,\cdot) is continuous and for all xdx\in\mathbb{R}^{d} the function g0(,x)g_{0}(\cdot,x) is Borel measurable. Moreover, by (2.1) we have

|g0(t,x)|K(1+|φ(tτ)|)(1+|x|)K(1+K1)(1+|x|){|g_{0}(t,x)|\leq K(1+|\varphi(t-\tau)|)(1+|x|)\leq K(1+K_{-1})(1+|x|)}

for all (t,x)[0,τ]×d(t,x)\in[0,\tau]\times\mathbb{R}^{d}, and by (2.2) there exists L(0,)L\in(0,\infty) such that for all t[0,τ]t\in[0,\tau], x,ydx,y\in\mathbb{R}^{d} we have

(3.8) |g0(t,x)g0(t,y)|L(1+|φ(tτ)|)|xy|L(1+K1)|xy|.{|g_{0}(t,x)-g_{0}(t,y)|\leq L(1+|\varphi(t-\tau)|)|x-y|\leq L(1+K_{-1})|x-y|.}

Therefore, by Lemma 6.3 we have that there exists a unique absolutely continuous solution ϕ0:[0,τ]d\phi_{0}:[0,\tau]\to\mathbb{R}^{d} of (3.7) that satisfies (3.4) with j=0j=0. In addition, by Lemma 6.3 we obtain that ϕ0\phi_{0} satisfies (3.6) for j=0j=0. For the inductive step from jj to j+1j+1, we can simply follow the approach provided [9], since our assumptions (A3) and (A4) are stronger than [9, Assumptions A3 and A4]. It is crucial to note that [9, Eqn. (3.14)] will be modified to

|ϕj+1(t)ϕj+1(s)|(1+Kj)(1+Kj+1)K|ts|,|\phi_{j+1}(t)-\phi_{j+1}(s)|\leq(1+K_{j})(1+K_{j+1})K|t-s|,

due to the differences between our Lemma 6.3 and [9, Lemma 7.1]. This concludes the inductive proof. ∎

4. Error of the randomized RK scheme

In this section we perform detailed error analysis for the randomized RK scheme. As mentioned in Section 1, for the error analysis we impose global Lipschitz assumption on f=f(t,x,z)f=f(t,x,z) with respect to xx together with global Hölder condition with respect to zz. Namely, instead of (A3) and (A4), we assume

  1. (A3’)

    there exist K¯[0,+)\bar{K}\in[0,+\infty) such that for all t[0,(n+1)τ]t\in[0,(n+1)\tau],

    (4.1) |f(t,0,0)|K¯,|f(t,0,0)|\leq\bar{K},

    and there exist L[0,+)L\in[0,+\infty), α,γ(0,1]\alpha,\gamma\in(0,1] such that:
    1. for all t[0,(n+1)τ]t\in[0,(n+1)\tau], x1,x2,z1,z2dx_{1},x_{2},z_{1},z_{2}\in\mathbb{R}^{d},

    (4.2) |f(t,x1,z1)f(t,x2,z2)|L(|x1x2|+|z1z2|α),|f(t,x_{1},z_{1})-f(t,x_{2},z_{2})|\leq L\Bigl{(}|x_{1}-x_{2}|+|z_{1}-z_{2}|^{\alpha}\Bigr{)},

    2. for all t1,t2[0,(n+1)τ]t_{1},t_{2}\in[0,(n+1)\tau], x,zdx,z\in\mathbb{R}^{d},

    (4.3) |f(t1,x,z)f(t2,x,z)|L(1+|x|+|z|)|t1t2|γ.|f(t_{1},x,z)-f(t_{2},x,z)|\leq L(1+|x|+|z|)|t_{1}-t_{2}|^{\gamma}.

    3. for all s,t[τ,0]s,t\in[-\tau,0],

    (4.4) |φ(t)φ(s)|L|ts|,s,t[τ,0].|\varphi(t)-\varphi(s)|\leq L|t-s|,\quad s,t\in[-\tau,0].
Remark 4.1.

Note that the assumptions (A1), (A2), (A3’) are stronger than the assumptions (A1)-(A4). To see that note that if ff satisfies (A1), (A2), (A3’) then we get for all t[0,(n+1)τ]t\in[0,(n+1)\tau] and x,x1,x2,zdx,x_{1},x_{2},z\in\mathbb{R}^{d} that

(4.5) |f(t,x,z)|(K¯+L)(1+|x|)(1+|z|),|f(t,x,z)|\leq(\bar{K}+L)(1+|x|)(1+|z|),
(4.6) |f(t,x1,z)f(t,x2,z)|L|x1x2|,|f(t,x_{1},z)-f(t,x_{2},z)|\leq L|x_{1}-x_{2}|,

and

(4.7) |f(t1,x1,z1)f(t2,x2,z2)|L((1+|x|+|z|)|t1t2|γ+|x1x2|+|z1z2|α),|f(t_{1},x_{1},z_{1})-f(t_{2},x_{2},z_{2})|\leq L\big{(}(1+|x|+|z|)|t_{1}-t_{2}|^{\gamma}+|x_{1}-x_{2}|+|z_{1}-z_{2}|^{\alpha}\big{)},

since 1+|x|+|z|(1+|x|)(1+|z|)1+|x|+|z|\leq(1+|x|)(1+|z|) and |z|α1+|z||z|^{\alpha}\leq 1+|z| for all x,zdx,z\in\mathbb{R}^{d}. Hence, the assumptions (A1)-(A4) are satisfied with K=K¯+L<K=\bar{K}+L<\infty, and under the assumptions (A1), (A2), (A3’) the thesis of Theorem 3.1 holds.

Lemma 4.2.

The function [0,τ]tgj(t,ϕj(t))[0,\tau]\ni t\mapsto g_{j}(t,\phi_{j}(t)) is bounded in Lp([0,τ])L^{p}([0,\tau]) norm for each j{0}j\in\mathbb{N}\setminus\{0\}, and is min{γ,α}\min\{\gamma,\alpha\}-Hölder continuous.

In particular, if the initial condition φ(t)=x0\varphi(t)=x_{0} for t[τ,0]t\in[-\tau,0], then g0(,ϕ0())g_{0}(\cdot,\phi_{0}(\cdot)) is γ\gamma-Hölder continuous.

Proof.

Since the function [0,τ]tgj(t,ϕj(t))[0,\tau]\ni t\mapsto g_{j}(t,\phi_{j}(t)) is Borel measurable and by Theorem 3.1, (4.7), (3.4) and (3.6) we get

(4.8) gj(,ϕj())Lp([0,τ])(1+Kj1)(1+Kj)K<+,\|g_{j}(\cdot,\phi_{j}(\cdot))\|_{L^{p}([0,\tau])}\leq(1+K_{j-1})(1+K_{j})K<+\infty,

and

(4.9) |gj(s,ϕj(s))gj(t,ϕj(t))|\displaystyle\left|g_{j}(s,\phi_{j}(s))-g_{j}(t,\phi_{j}(t))\right|
L((1+|ϕj(s)|+|ϕj1(s)|)|st|γ+|ϕj(s)ϕj(t)|+|ϕj1(s)ϕj1(t)|α)\displaystyle\leq L((1+|\phi_{j}(s)|+|\phi_{j-1}(s)|)|s-t|^{\gamma}+|\phi_{j}(s)-\phi_{j}(t)|+|\phi_{j-1}(s)-\phi_{j-1}(t)|^{\alpha})
L((1+|Kj|+|Kj1|)|st|γ+|(1+Kj1)(1+Kj)K|ts|\displaystyle\leq L((1+|K_{j}|+|K_{j-1}|)|s-t|^{\gamma}+|(1+K_{j-1})(1+K_{j})K|t-s|
+|(1+Kj2)(1+Kj1)K|ts|α)\displaystyle+|(1+K_{j-2})(1+K_{j-1})K|t-s|^{\alpha})
(4.10) Cg,j|st|min{γ,α},\displaystyle\leq{C_{g,j}}|s-t|^{\min\{\gamma,\alpha\}},

where Cg,jC_{g,j} is a generic constant, for any s,t[0,τ]s,t\in[0,\tau] and jj\in\mathbb{N}. ∎

The main result of this section is as follows.

Theorem 4.3.

Let n{0}n\in\mathbb{N}\cup\{0\}, τ(0,+)\tau\in(0,+\infty), x0dx_{0}\in\mathbb{R}^{d}, and let ff, φ{\varphi} satisfy the assumptions (A1), (A2), (A3’) for some p[2,+)p\in[2,+\infty) and α,γ(0,1]\alpha,\gamma\in(0,1]. There exist Cp,0,Cp,1,,Cp,n(0,+){C_{p,0},C_{p,1},\ldots,C_{p,n}\in(0,+\infty)} such that for all NτN\geq\lceil\tau\rceil it holds

for j=0,1,,nj=0,1,\ldots,n,

(4.11) max0iN|x(tij)yij|pCp,jhαjρ,\Bigl{\|}\max\limits_{0\leq i\leq N}|x(t_{i}^{j})-y_{i}^{j}|\Bigl{\|}_{p}\leq{C_{p,j}}h^{\alpha^{j}\rho},

where ρ:=12+min{γ,α}\rho:=\frac{1}{2}+\min\{\gamma,\alpha\}.

Proof.

In the proof we use the following auxiliary notations: δk+1j=h(k+γk+1j)\delta_{k+1}^{j}=h(k+\gamma_{k+1}^{j}) and hk+1j=hγk+1jh_{k+1}^{j}=h\cdot\gamma_{k+1}^{j}. Then δk+1j\delta_{k+1}^{j} is uniformly distributed in (tk0,tk+10)(t_{k}^{0},t_{k+1}^{0}) and θk+1j=δk+1j+jτ\theta_{k+1}^{j}=\delta_{k+1}^{j}+j\tau is uniformly distributed in (tkj,tk+1j)(t_{k}^{j},t_{k+1}^{j}). The latter one hk+1jh_{k+1}^{j} is a random stepsize uniformly distributed in [0,h][0,h].

We start with j=0j=0 and consider the initial-vale problem (3.7). We define the auxiliary randomized Runge-Kutta (ARRK) scheme as

(4.12) y¯00=y00=yN1=φ(0),y¯k+10=y¯k0+hg0(θk+10,y¯k0+hk+10g0(tk0,yk0)),k=0,1,,N1.\displaystyle\begin{split}&\bar{y}_{0}^{0}=y^{0}_{0}=y^{-1}_{N}=\varphi(0),\\ &\bar{y}_{k+1}^{0}=\bar{y}_{k}^{0}+h\cdot g_{0}(\theta_{k+1}^{0},\bar{y}_{k}^{0}+h_{k+1}^{0}\cdot g_{0}(t_{k}^{0},y_{k}^{0})\big{)},\ k=0,1,\ldots,N-1.\end{split}

as g0(t,x)=f(t,x,φ(tτ))g_{0}(t,x)=f(t,x,\varphi(t-\tau)), for all k=0,,Nk=0,\ldots,N we have that y¯k0=yk0\bar{y}_{k}^{0}=y_{k}^{0}. That is to say, the ARRK scheme coincides with RRK scheme at j=0j=0.

From Lemma 4.2 it has been shown that g0g_{0} is min{γ,α}\min\{\gamma,\alpha\}-Hölder continuous in time. Moreover, by (A1), (A2) and (A3’) we have that g0g_{0} is Borel measurable, and for all t[0,τ]t\in[0,\tau] and x,ydx,y\in\mathbb{R}^{d}

(4.13) |g0(t,x)g0(t,y)|L|xy|.\displaystyle\begin{split}&|g_{0}(t,x)-g_{0}(t,y)|\leq L|x-y|.\end{split}

Hence, by Theorem 3.1 and by using analogous arguments as in the proof of Theorem 5.2 in [16], which guarantees (4.11), where Cp,0C_{p,0} does not depend on NN.

Let us now assume that there exists l{0,1,,n1}l\in\{0,1,\ldots,n-1\} for which there exists Cp,l(0,+)C_{p,l}\in(0,+\infty) such that for all NτN\geq\lceil\tau\rceil

(4.14) max0iN|ϕl(ti0)yil|pCp,lhαlρ.\Bigl{\|}\max\limits_{0\leq i\leq N}|\phi_{l}(t_{i}^{0})-y_{i}^{l}|\Bigl{\|}_{p}\leq{C_{p,l}}h^{\alpha^{l}\rho}.

We consider the following initial-value problem

(4.15) {ϕl+1(t)=gl+1(t,ϕl+1(t)),t[0,τ],ϕl+1(0)=ϕl(τ),\begin{cases}\phi_{l+1}^{\prime}(t)=g_{l+1}(t,\phi_{l+1}(t)),&t\in[0,\tau],\\ \phi_{l+1}(0)=\phi_{l}({\tau}),\end{cases}

with gl+1(t,x)=f(t+(l+1)τ,x,ϕl(t))g_{l+1}(t,x)=f(t+(l+1)\tau,x,\phi_{l}(t)). From Lemma 4.2 we know that gl+1(,ϕl+1())g_{l+1}(\cdot,\phi_{l+1}(\cdot)) is min{γ,α}\min\{\gamma,\alpha\}-Hölder continuous.

We define the ARRK scheme as follows

(4.16) y¯0l+1=y0l+1=yNl,y¯k+1l+1=y¯kl+1+hgl+1(δk+1l+1,y¯kl+1+hk+1l+1gl+1(tk0,y¯kl+1)),k=0,1,,N1.\displaystyle\begin{split}&\bar{y}_{0}^{l+1}=y^{l+1}_{0}=y^{l}_{N},\\ &\bar{y}_{k+1}^{l+1}=\bar{y}_{k}^{l+1}+h\cdot g_{l+1}\big{(}\delta_{k+1}^{l+1},\bar{y}_{k}^{l+1}+h_{k+1}^{l+1}\cdot g_{l+1}(t^{0}_{k},\bar{y}_{k}^{l+1})\big{)},\ k=0,1,\ldots,N-1.\end{split}

From the definition it follows that y¯kj\bar{y}_{k}^{j}, j=0,1,,nj=0,1,\ldots,n, k=0,1,,Nk=0,1,\ldots,N, is measurable with respect to the σ\sigma-field generated by (2.5), as well as is ykjy_{k}^{j}. Moreover, y¯il+1\bar{y}^{l+1}_{i} approximates ϕl+1\phi_{l+1} at ti0t_{i}^{0}, despite {y¯il+1}i=0,1,,N\{\bar{y}_{i}^{l+1}\}_{i=0,1,\ldots,N} is not implementable. We use y¯il+1\bar{y}^{l+1}_{i} only in order to estimate the error (4.11) of yil+1y^{l+1}_{i}, since it holds

(4.17) max0iN|ϕl+1(ti0)yil+1|p\displaystyle\Bigl{\|}\max\limits_{0\leq i\leq N}|\phi_{l+1}(t_{i}^{0})-y_{i}^{l+1}|\Bigl{\|}_{p} max0iN|ϕl+1(ti0)y¯il+1|p\displaystyle\leq\Bigl{\|}\max\limits_{0\leq i\leq N}|\phi_{l+1}(t_{i}^{0})-\bar{y}_{i}^{l+1}|\Bigl{\|}_{p}
+max0iN|y¯il+1yil+1|p.\displaystyle\quad+\Bigl{\|}\max\limits_{0\leq i\leq N}|\bar{y}_{i}^{l+1}-y_{i}^{l+1}|\Bigl{\|}_{p}.

Firstly, we estimate max0iN|y¯il+1yil+1|p\displaystyle{\Bigl{\|}\max\limits_{0\leq i\leq N}|\bar{y}_{i}^{l+1}-y_{i}^{l+1}|\Bigl{\|}_{p}}. For k{1,,N}k\in\{1,\ldots,N\} we get

y¯kl+1ykl+1\displaystyle\bar{y}^{l+1}_{k}-y^{l+1}_{k}
=j=1k(y¯jl+1y¯j1l+1)j=1k(yjl+1yj1l+1)\displaystyle=\sum\limits_{j=1}^{k}(\bar{y}^{l+1}_{j}-\bar{y}^{l+1}_{j-1})-\sum\limits_{j=1}^{k}(y^{l+1}_{j}-y^{l+1}_{j-1})
=hj=1k(f(θjl+1,y¯j1l+1+hjl+1f(tj1l+1,y¯j1l+1,ϕl(tj10)),ϕl(δj1l+1))\displaystyle=h\sum\limits_{j=1}^{k}\Bigl{(}f\big{(}\theta_{j}^{l+1},{\bar{y}_{j-1}^{l+1}+h_{j}^{l+1}f(t^{l+1}_{j-1},\bar{y}_{j-1}^{l+1},\phi_{l}(t^{0}_{j-1}))},\phi_{l}(\delta_{j-1}^{l+1})\big{)}
f(θjl+1,yj1l+1+hjl+1f(tj1l+1,yj1l+1,yj1l),yj1l+hjl+1f(tj1l,yj1l,yj1l1))),\displaystyle\quad-f\big{(}\theta_{j}^{l+1},{y_{j-1}^{l+1}+h_{j}^{l+1}f(t^{l+1}_{j-1},y_{j-1}^{l+1},y_{j-1}^{l}),y_{j-1}^{l}+h_{j}^{l+1}f(t^{l}_{j-1},y_{j-1}^{l},y_{j-1}^{l-1})}\big{)}\Bigr{)},

which, by using (4.2) twice, gives

|y¯kl+1ykl+1|\displaystyle|\bar{y}^{l+1}_{k}-y^{l+1}_{k}|
hLj=1k((1+hL)|y¯j1l+1yj1l+1|+hL|ϕl(tj10)yj1l|α)\displaystyle\leq hL\sum\limits_{j=1}^{k}\big{(}(1+hL)|\bar{y}^{l+1}_{j-1}-y^{l+1}_{j-1}|+hL|\phi_{l}(t^{0}_{j-1})-y_{j-1}^{l}|^{\alpha}\big{)}
+hLj=1k|ϕl(δj1l+1)yj1lhjl+1f(tj1l,yj1l,yj1l1)|α\displaystyle\quad+hL\sum\limits_{j=1}^{k}|\phi_{l}(\delta_{j-1}^{l+1})-y^{l}_{j-1}-h_{j}^{l+1}f(t^{l}_{j-1},y_{j-1}^{l},y_{j-1}^{l-1})|^{\alpha}
hL(1+L)j=1k|y¯j1l+1yj1l+1|+h2L2j=1k|ϕl(tj10)yj1l|α\displaystyle\leq hL(1+L)\sum\limits_{j=1}^{k}|\bar{y}^{l+1}_{j-1}-y^{l+1}_{j-1}|+h^{2}L^{2}\sum\limits_{j=1}^{k}|\phi_{l}(t_{j-1}^{0})-y_{j-1}^{l}|^{\alpha}
+hLj=1k|ϕl(tj10)yj1l\displaystyle\quad+hL\sum\limits_{j=1}^{k}\Big{|}\phi_{l}(t^{0}_{j-1})-y^{l}_{j-1}
+tj1ltj1l+hjl+1(f(s,ϕl(slτ),ϕl1(slτ))f(tj1l,yj1l,yj1l1))ds|α,\displaystyle\qquad\qquad+\int_{t_{j-1}^{l}}^{t_{j-1}^{l}+h_{j}^{l+1}}\big{(}f(s,\phi_{l}(s-l\tau),\phi_{l-1}(s-l\tau))-f(t^{l}_{j-1},y_{j-1}^{l},y_{j-1}^{l-1})\big{)}\mathrm{d}s\Big{|}^{\alpha},

where for the last term we use the expression of the initial-value problem (4.15). Note that |a+b|α|a|α+|b|α|a+b|^{\alpha}\leq|a|^{\alpha}+|b|^{\alpha} for α(0,1]\alpha\in(0,1]. Now using (4.2), [regularity of f wrt time], and Theorem 3.1 to estimate the last term, one can obtain that

(4.18) |ϕl(tj10)yj1l+tj1ltj1l+hjl+1(f(s,ϕl(slτ),ϕl1(slτ))f(tj1l,yj1l,yj1l1))ds|α|ϕl(tj10)yj1l|α+hα|f(tj1l,ϕl(tj10),ϕl1(tj10))f(tj1l,yj1l,yj1l1)|α+|tj1ltj1l+hjl+1(f(s,ϕl(slτ),ϕl1(slτ))f(tj1l,ϕl(tj10),ϕl1(tj10))ds|α|ϕl(tj10)yj1l|α+Lαhα(|ϕl(tj10)yj1l|α+|ϕl1(tj10)yj1l1|α2)+Lαhα((1+Kl+Kl1)αhγα+Kα(1+Kl)α(1+Kl1)αhα+Kα2(1+Kl1)α2(1+Kl2)α2hα2).\begin{split}&\Big{|}\phi_{l}(t^{0}_{j-1})-y^{l}_{j-1}+\int_{t_{j-1}^{l}}^{t_{j-1}^{l}+h_{j}^{l+1}}\big{(}f(s,\phi_{l}(s-l\tau),\phi_{l-1}(s-l\tau))-f(t^{l}_{j-1},y_{j-1}^{l},y_{j-1}^{l-1})\big{)}\mathrm{d}s\Big{|}^{\alpha}\\ &\leq|\phi_{l}(t^{0}_{j-1})-y^{l}_{j-1}|^{\alpha}+h^{\alpha}\big{|}f(t^{l}_{j-1},\phi_{l}(t^{0}_{j-1}),\phi_{l-1}(t^{0}_{j-1}))-f(t^{l}_{j-1},y_{j-1}^{l},y_{j-1}^{l-1})\big{|}^{\alpha}\\ &\quad+\Big{|}\int_{t_{j-1}^{l}}^{t_{j-1}^{l}+h_{j}^{l+1}}\big{(}f(s,\phi_{l}(s-l\tau),\phi_{l-1}(s-l\tau))-f(t^{l}_{j-1},\phi_{l}(t^{0}_{j-1}),\phi_{l-1}(t^{0}_{j-1})\big{)}\mathrm{d}s\Big{|}^{\alpha}\\ &\leq|\phi_{l}(t^{0}_{j-1})-y^{l}_{j-1}|^{\alpha}+L^{\alpha}h^{\alpha}\big{(}|\phi_{l}(t^{0}_{j-1})-y_{j-1}^{l}|^{\alpha}+|\phi_{l-1}(t^{0}_{j-1})-y_{j-1}^{l-1}|^{\alpha^{2}}\big{)}\\ &\quad+L^{\alpha}h^{\alpha}\big{(}(1+K_{l}+K_{l-1})^{\alpha}h^{\gamma\alpha}+K^{\alpha}(1+K_{l})^{\alpha}(1+K_{l-1})^{\alpha}h^{\alpha}\\ &\qquad\qquad\qquad+K^{\alpha^{2}}(1+K_{l-1})^{\alpha^{2}}(1+K_{l-2})^{\alpha^{2}}h^{\alpha^{2}}\big{)}.\end{split}

Thus, overall,

|y¯kl+1ykl+1|\displaystyle|\bar{y}^{l+1}_{k}-y^{l+1}_{k}|
hL(1+L)j=1k|y¯j1l+1yj1l+1|+Lh(1+Lαhα+Lh)j=1k|ϕl(tj10)yj1l|α\displaystyle\leq hL(1+L)\sum\limits_{j=1}^{k}|\bar{y}^{l+1}_{j-1}-y^{l+1}_{j-1}|+Lh(1+L^{\alpha}h^{\alpha}+Lh)\sum\limits_{j=1}^{k}|\phi_{l}(t^{0}_{j-1})-y_{j-1}^{l}|^{\alpha}
+L1+αh1+αj=1k|ϕl1(tj10)yj1l1|α2\displaystyle\quad+L^{1+\alpha}h^{1+\alpha}\sum\limits_{j=1}^{k}|\phi_{l-1}(t^{0}_{j-1})-y_{j-1}^{l-1}|^{\alpha^{2}}
+L1+αh1+α(1+K)α(m=l2l(1+Km)α)j=1k(hγα+hα+hα2)\displaystyle\quad+L^{1+\alpha}h^{1+\alpha}(1+K)^{\alpha}\Big{(}\prod_{m=l-2}^{l}(1+K_{m})^{\alpha}\Big{)}\sum\limits_{j=1}^{k}\big{(}h^{\gamma\alpha}+h^{\alpha}+h^{\alpha^{2}})
hL(1+L)j=1kmax0ij1|y¯il+1yil+1|+Lτ(1+2L)max0iN|ϕl(ti0)yil|α\displaystyle\leq hL(1+L)\sum\limits_{j=1}^{k}\max\limits_{0\leq i\leq j-1}|\bar{y}^{l+1}_{i}-y^{l+1}_{i}|+L\tau(1+2L)\max\limits_{0\leq i\leq N}|\phi_{l}(t_{i}^{0})-y_{i}^{l}|^{\alpha}
+L1+ατhαmax0iN|ϕl1(ti0)yil1|α2\displaystyle\quad+L^{1+\alpha}\tau h^{\alpha}\max\limits_{0\leq i\leq N}|\phi_{l-1}(t_{i}^{0})-y_{i}^{l-1}|^{\alpha^{2}}
+3L1+ατ(1+K)α(m=l2l(1+Km)α)hα(min{γ,α}+1).\displaystyle\quad+3L^{1+\alpha}\tau(1+K)^{\alpha}\Big{(}\prod_{m=l-2}^{l}(1+K_{m})^{\alpha}\Big{)}{h^{\alpha(\min\{\gamma,\alpha\}+1)}}.

Taking the LpL_{p}-norm on both sides gives that

(4.19) 𝔼(max0ik|y¯il+1yil+1|p)cphpLp𝔼(j=1kmax0ij1|y¯il+1yil+1|)p+cpLpτp(1+2L)p𝔼[max0iN|ϕl(ti0)yil|αp]+cpL(1+α)pτphαp𝔼[max0iN|ϕl1(ti0)yil1|α2p]+cp3pL(1+α)pτp(1+K)αp(m=l2l(1+Km)α)phα(min{γ,α}+1)p.\displaystyle\begin{split}&\mathbb{E}\Bigl{(}\max\limits_{0\leq i\leq k}|\bar{y}^{l+1}_{i}-y^{l+1}_{i}|^{p}\Bigr{)}\leq c_{p}h^{p}L^{p}\mathbb{E}\Bigl{(}\sum\limits_{j=1}^{k}\max\limits_{0\leq i\leq j-1}|\bar{y}^{l+1}_{i}-y^{l+1}_{i}|\Bigr{)}^{p}\\ &\qquad+c_{p}L^{p}\tau^{p}(1+2L)^{p}\mathbb{E}\Bigl{[}\max\limits_{0\leq i\leq N}|\phi_{l}(t_{i}^{0})-y_{i}^{l}|^{\alpha p}\Bigr{]}\\ &\qquad+c_{p}L^{(1+\alpha)p}\tau^{p}h^{\alpha p}\mathbb{E}\Bigl{[}\max\limits_{0\leq i\leq N}|\phi_{l-1}(t_{i}^{0})-y_{i}^{l-1}|^{\alpha^{2}p}\Bigr{]}\\ &\qquad+c_{p}{3^{p}}L^{(1+\alpha)p}\tau^{p}(1+K)^{\alpha p}\Big{(}\prod_{m=l-2}^{l}(1+K_{m})^{\alpha}\Big{)}^{p}{h^{\alpha(\min\{\gamma,\alpha\}+1)p}}.\end{split}

By Jensen inequality and (4.14) we have

𝔼[max0iN|ϕl(ti0)yil|αp](𝔼[max0iN|ϕl(ti0)yil|p])αCp,lαphαl+1ρp,\mathbb{E}\Bigl{[}\max\limits_{0\leq i\leq N}|\phi_{l}(t_{i}^{0})-y_{i}^{l}|^{\alpha p}\Bigr{]}\leq\Biggl{(}\mathbb{E}\Bigl{[}\max\limits_{0\leq i\leq N}|\phi_{l}(t_{i}^{0})-y_{i}^{l}|^{p}\Bigr{]}\Biggr{)}^{\alpha}\leq{C_{p,l}^{\alpha p}}h^{\alpha^{l+1}\rho p},

and

𝔼[max0iN|ϕl1(ti0)yil1|α2p]Cp,l1α2phαl+1ρp.\mathbb{E}\Bigl{[}\max\limits_{0\leq i\leq N}|\phi_{l-1}(t_{i}^{0})-y_{i}^{l-1}|^{\alpha^{2}p}\Bigr{]}\leq{C_{p,l-1}^{\alpha^{2}p}}h^{\alpha^{l+1}\rho p}.

Note that via the Hölder inequality we get, for k=1,2,,Nk=1,2,\ldots,N and all positive numbers a1,a2,,aka_{1},a_{2},\ldots,a_{k}, that

(4.20) hp(j=1kak)pτp1hj=1kajp,h^{p}\Bigl{(}\sum\limits_{j=1}^{k}a_{k}\Bigr{)}^{p}\leq\tau^{p-1}h\sum\limits_{j=1}^{k}a_{j}^{p},

and hence

(4.21) hp𝔼[j=1kmax0ij1|y¯il+1yil+1|]pτp1hj=1k𝔼[max0ij1|y¯il+1yil+1|p].h^{p}\mathbb{E}\Bigl{[}\sum\limits_{j=1}^{k}\max\limits_{0\leq i\leq j-1}|\bar{y}^{l+1}_{i}-y^{l+1}_{i}|\Bigr{]}^{p}\leq\tau^{p-1}h\sum\limits_{j=1}^{k}\mathbb{E}\Bigl{[}\max\limits_{0\leq i\leq j-1}|\bar{y}_{i}^{l+1}-y_{i}^{l+1}|^{p}\Bigr{]}.

Finally, substituting all the estimates above into (4.19) gives

(4.22) 𝔼(max0ik|y¯il+1yil+1|p)cpτp1Lphj=1k𝔼[max0ij1|y¯il+1yil+1|p]+C¯1,p,l+1hαl+1ρp.\displaystyle\begin{split}&\mathbb{E}\Bigl{(}\max\limits_{0\leq i\leq k}|\bar{y}^{l+1}_{i}-y^{l+1}_{i}|^{p}\Bigr{)}\\ &\leq c_{p}\tau^{p-1}L^{p}h\sum\limits_{j=1}^{k}\mathbb{E}\Bigl{[}\max\limits_{0\leq i\leq j-1}|\bar{y}_{i}^{l+1}-y_{i}^{l+1}|^{p}\Bigr{]}+{\bar{C}_{1,p,l+1}}h^{\alpha^{l+1}\rho p}.\end{split}

where C¯1,p,l+1\bar{C}_{1,p,l+1} is a generic constant, for any l{0,1,,n1},p[2,)l\in\{0,1,\ldots,n-1\},p\in[2,\infty).
Now applying Gronwall inequality to (4.22) gives that

(4.23) 𝔼(max0ik|y¯il+1yil+1|p)C1,p,l+1hαl+1ρp.\mathbb{E}\Bigl{(}\max\limits_{0\leq i\leq k}|\bar{y}^{l+1}_{i}-y^{l+1}_{i}|^{p}\Bigr{)}\leq{C_{1,p,l+1}}h^{\alpha^{l+1}\rho p}.

We now establish an upper bound on max0iN|ϕl+1(ti0)y¯il+1|p\displaystyle{\Bigl{\|}\max\limits_{0\leq i\leq N}|\phi_{l+1}(t_{i}^{0})-\bar{y}_{i}^{l+1}|\Bigl{\|}_{p}}. For k{1,2,,N}k\in\{1,2,\ldots,N\} we have

(4.24) ϕl+1(tk0)y¯kl+1=ϕl+1(0)y¯0l+1+(ϕl+1(tk0)ϕl+1(t00))(y¯kl+1y¯0l+1)=(ϕl(tN0)yNl)+j=1k(ϕl+1(tj0)ϕl+1(tj10))j=1k(y¯jl+1y¯j1l+1)=(ϕl(tN0)yNl)+j=1k(tj10tj0gl+1(s,ϕl+1(s))dshgl+1(δjl+1,y¯j1l+1+hjl+1gl+1(tj10,y¯j1l+1)))=(ϕl(tN0)yNl)+S1,l+1k+S2,l+1k+S3,l+1k,\displaystyle\begin{split}&\phi_{l+1}(t_{k}^{0})-\bar{y}^{l+1}_{k}\\ =&\phi_{l+1}(0)-\bar{y}_{0}^{l+1}+(\phi_{l+1}(t_{k}^{0})-\phi_{l+1}(t_{0}^{0}))-(\bar{y}^{l+1}_{k}-\bar{y}^{l+1}_{0})\\ =&(\phi_{l}(t_{N}^{0})-y_{N}^{l})+\sum\limits_{j=1}^{k}(\phi_{l+1}(t_{j}^{0})-\phi_{l+1}(t_{j-1}^{0}))-\sum\limits_{j=1}^{k}(\bar{y}^{l+1}_{j}-\bar{y}^{l+1}_{j-1})\\ =&(\phi_{l}(t_{N}^{0})-y_{N}^{l})+\sum\limits_{j=1}^{k}\Bigl{(}\int\limits_{t_{j-1}^{0}}^{t_{j}^{0}}g_{l+1}(s,\phi_{l+1}(s))\mathrm{d}s\\ &\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ -h\cdot g_{l+1}\big{(}\delta_{j}^{l+1},\bar{y}_{j-1}^{l+1}+h_{j}^{l+1}\cdot g_{l+1}(t^{0}_{j-1},\bar{y}_{j-1}^{l+1})\big{)}\Bigr{)}\\ =&(\phi_{l}(t_{N}^{0})-y_{N}^{l})+S^{k}_{1,l+1}+S^{k}_{2,l+1}+S^{k}_{3,l+1},\end{split}

where

S1,l+1k\displaystyle S^{k}_{1,l+1} :=j=1k(tj10tj0gl+1(s,ϕl+1(s))dshgl+1(δjl+1,ϕl+1(δjl+1))),\displaystyle\mathrel{\mathop{:}}=\sum\limits_{j=1}^{k}\left(\int\limits_{t_{j-1}^{0}}^{t_{j}^{0}}g_{l+1}(s,\phi_{l+1}(s))\mathrm{d}s-h\cdot g_{l+1}(\delta_{j}^{l+1},\phi_{l+1}(\delta_{j}^{l+1}))\right),
S2,l+1k\displaystyle S^{k}_{2,l+1} :=hj=1k(gl+1(δjl+1,ϕl+1(δjl+1))\displaystyle\mathrel{\mathop{:}}=h\sum\limits_{j=1}^{k}\Bigl{(}g_{l+1}(\delta_{j}^{l+1},\phi_{l+1}(\delta_{j}^{l+1}))
gl+1(δjl+1,ϕl+1(tj10)+hjl+1gl+1(tj10,ϕl+1(tj10)))),\displaystyle\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ -g_{l+1}(\delta_{j}^{l+1},\phi_{l+1}(t^{0}_{j-1})+h_{j}^{l+1}g_{l+1}(t^{0}_{j-1},\phi_{l+1}(t^{0}_{j-1})))\Bigr{)},
S3,l+1k\displaystyle S^{k}_{3,l+1} :=hj=1k(gl+1(δjl+1,ϕl+1(tj10)+hjl+1gl+1(tj10,ϕl+1(tj10)))\displaystyle\mathrel{\mathop{:}}=h\sum\limits_{j=1}^{k}\Bigl{(}g_{l+1}(\delta_{j}^{l+1},\phi_{l+1}(t^{0}_{j-1})+h_{j}^{l+1}g_{l+1}(t^{0}_{j-1},\phi_{l+1}(t^{0}_{j-1})))
gl+1(δjl+1,y¯j1l+1+hjl+1gl+1(tj10,y¯j1l+1))).\displaystyle\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ -g_{l+1}(\delta_{j}^{l+1},\bar{y}_{j-1}^{l+1}+h_{j}^{l+1}g_{l+1}(t_{j-1}^{0},\bar{y}_{j-1}^{l+1}))\Bigr{)}.

Since gl+1(,ϕl+1())g_{l+1}(\cdot,\phi_{l+1}(\cdot)) is min{γ,α}\min\{\gamma,\alpha\}-Hölder continuous from Lemma 4.2 and by (4.8) and (4.9) we get that

(4.25) max1kN|S1,l+1k|pcpτgl+1(,ϕ1())Cmin{γ,α}([0,τ])hρ=:CS1,l+1hρ.\Bigl{\|}\max\limits_{1\leq k\leq N}|S^{k}_{1,l+1}|\Bigl{\|}_{p}\leq c_{p}\sqrt{\tau}\|g_{l+1}(\cdot,\phi_{1}(\cdot))\|_{C^{\min\{\gamma,\alpha\}}([0,\tau])}{h^{\rho}}=:{C_{S_{1},l+1}}{h^{\rho}}.

Then, by above inequity and Theorem 3.1 we get

|S2,l+1k|\displaystyle|S^{k}_{2,l+1}| Lhj=1k|ϕl+1(δjl+1)ϕl+1(tj10)hjl+1gl+1(tj10,ϕl+1(tj10))|\displaystyle\leq Lh\sum\limits_{j=1}^{k}\Bigl{|}\phi_{l+1}(\delta_{j}^{l+1})-\phi_{l+1}(t_{j-1}^{0})-h_{j}^{l+1}g_{l+1}(t^{0}_{j-1},\phi_{l+1}(t^{0}_{j-1}))\Bigr{|}
Lhj=1ktj10tj10+hjl+1|gl+1(s,ϕl+1(s))gl+1(tj10,ϕl+1(tj10))|ds\displaystyle\leq Lh\sum\limits_{j=1}^{k}\int^{t^{0}_{j-1}+h_{j}^{l+1}}_{t^{0}_{j-1}}\Bigl{|}g_{l+1}(s,\phi_{l+1}(s))-g_{l+1}(t^{0}_{j-1},\phi_{l+1}(t^{0}_{j-1}))\Bigr{|}\mathrm{d}s
Lhj=1ktj10tj10+hjl+1|Cg(),l+1|stj10|min{γ,α}|ds\displaystyle\leq Lh\sum\limits_{j=1}^{k}\int^{t^{0}_{j-1}+h_{j}^{l+1}}_{t^{0}_{j-1}}\Bigl{|}C_{g(\cdot),{l+1}}|s-t^{0}_{j-1}|^{\min\{\gamma,\alpha\}}\Bigr{|}\mathrm{d}s
Cg(),l+1Lhj=1kmin{γ,α}1(hjl+1)min{γ,α}+1\displaystyle\leq C_{g(\cdot),{l+1}}Lh\sum\limits_{j=1}^{k}{\min\{\gamma,\alpha\}}^{-1}\cdot(h_{j}^{l+1})^{\min\{\gamma,\alpha\}+1}
Cg(),l+1min{γ,α}1LhNhmin{γ,α}+1\displaystyle\leq C_{g(\cdot),{l+1}}{\min\{\gamma,\alpha\}}^{-1}LhNh^{\min\{\gamma,\alpha\}+1}
(4.26) =:CS2,l+1hmin{γ,α}+1.\displaystyle{=:C_{S_{2},l+1}}h^{\min\{\gamma,\alpha\}+1}.

Moreover, for the last term S3,l+1kS^{k}_{3,l+1}, by using (4.7) , we get

(4.27) S3,l+1k\displaystyle S^{k}_{3,l+1} hLj=1k(ϕl+1(tj10)+hjl+1gl+1(tj10,ϕl+1(tj10))y¯j1l+1hjl+1gl+1(tj10,y¯j1l+1))\displaystyle\leq hL\sum\limits_{j=1}^{k}\Bigl{(}\phi_{l+1}(t^{0}_{j-1})+h_{j}^{l+1}g_{l+1}(t^{0}_{j-1},\phi_{l+1}(t^{0}_{j-1}))-\bar{y}_{j-1}^{l+1}-h_{j}^{l+1}g_{l+1}(t_{j-1}^{0},\bar{y}_{j-1}^{l+1})\Bigr{)}
hLj=1k(ϕl+1(tj10)y¯j1l+1+hjl+1L(ϕl+1(tj10)y¯j1l+1))\displaystyle\leq hL\sum\limits_{j=1}^{k}\Bigl{(}\phi_{l+1}(t^{0}_{j-1})-\bar{y}_{j-1}^{l+1}+h_{j}^{l+1}L(\phi_{l+1}(t^{0}_{j-1})-\bar{y}_{j-1}^{l+1})\Bigr{)}
hLj=1k((hjl+1L+1)(ϕl+1(tj10)y¯j1l+1))\displaystyle\leq hL\sum\limits_{j=1}^{k}\Bigl{(}(h_{j}^{l+1}L+1)(\phi_{l+1}(t^{0}_{j-1})-\bar{y}_{j-1}^{l+1})\Bigr{)}
hL(L+1)j=1k((ϕl+1(tj10)y¯j1l+1))\displaystyle\leq hL(L+1)\sum\limits_{j=1}^{k}\Bigl{(}(\phi_{l+1}(t^{0}_{j-1})-\bar{y}_{j-1}^{l+1})\Bigr{)}

Therefore, for all k{1,2,,N}k\in\{1,2,\ldots,N\} the following inequality holds

𝔼[max0ik|ϕl+1(ti0)y¯il+1|p]\displaystyle\mathbb{E}\Bigl{[}\max\limits_{0\leq i\leq k}|\phi_{l+1}(t_{i}^{0})-\bar{y}^{l+1}_{i}|^{p}\Bigr{]} 𝔼[max0ik|(ϕl(tN0)yNl)+S1,l+1k+S2,l+1k+S3,l+1k|p]\displaystyle\leq\mathbb{E}\Bigl{[}\max\limits_{0\leq i\leq k}|(\phi_{l}(t_{N}^{0})-y_{N}^{l})+S^{k}_{1,l+1}+S^{k}_{2,l+1}+S^{k}_{3,l+1}|^{p}]
cp(𝔼|ϕl(tN0)yNl|p+𝔼[max1kN|S1,l+1k|p]+𝔼[max1kN|S2,l+1k|p])\displaystyle\leq{c_{p}}\Bigl{(}\mathbb{E}|\phi_{l}(t_{N}^{0})-y_{N}^{l}|^{p}+\mathbb{E}\Bigl{[}\max\limits_{1\leq k\leq N}|S^{k}_{1,l+1}|^{p}\Bigr{]}+\mathbb{E}\Bigl{[}\max\limits_{1\leq k\leq N}|S^{k}_{2,l+1}|^{p}\Bigr{]}\Bigr{)}
+cp𝔼[max1kN|S3,l+1k|p]\displaystyle+c_{p}\mathbb{E}\Bigl{[}\max\limits_{1\leq k\leq N}|S^{k}_{3,l+1}|^{p}\Bigr{]}
cp(Cp,lphαlρp+CS1,l+1phpρ+CS2,l+1php(min{γ,α}+1))\displaystyle\leq{c_{p}}\Bigl{(}{C_{p,l}^{p}}h^{\alpha^{l}\rho p}+{C_{S_{1},l+1}^{p}h^{p\rho}}+{C_{S_{2},l+1}^{p}h^{p(\min\{\gamma,\alpha\}+1)}}\Bigr{)}
(4.28) +cp𝔼[(hL(L+1)j=1k|ϕl+1(tj10)y¯j1l+1|)p]\displaystyle+{c_{p}}\mathbb{E}\Bigl{[}(hL(L+1)\sum\limits_{j=1}^{k}|\phi_{l+1}(t_{j-1}^{0})-\bar{y}^{l+1}_{j-1}|)^{p}\Bigr{]}
(4.29) C¯2,p,l+1hαlρp+cpl+1Lp(L+1)pτp1hj=1k𝔼[|ϕl+1(tj10)y¯j1l+1|p].,\displaystyle\leq{\bar{C}_{2,p,l+1}}h^{\alpha^{l}\rho p}+c_{p}^{l+1}L^{p}(L+1)^{p}\tau^{p-1}h\sum\limits_{j=1}^{k}\mathbb{E}\Bigl{[}|\phi_{l+1}(t_{j-1}^{0})-\bar{y}^{l+1}_{j-1}|^{p}\Bigr{]}.,

where C¯2,p,l+1\bar{C}_{2,p,l+1} is a generic constant, for any l{0,1,,n1},p[2,)l\in\{0,1,\ldots,n-1\},p\in[2,\infty).
In inequality (4.28), we utilize (4.14), (4.25), (4.26), and (4.27). Then, in inequality (4.29), we obtain the result by invoking (4.20). By using Gronwall’s lemma, we get for all k{1,2,,N}k\in\{1,2,\ldots,N\}

𝔼[max0ik|ϕl+1(ti0)y¯il+1|p]\displaystyle\mathbb{E}\Bigl{[}\max\limits_{0\leq i\leq k}|\phi_{l+1}(t_{i}^{0})-\bar{y}^{l+1}_{i}|^{p}\Bigr{]} C¯2,p,l+1hαlρpexp(cpLp(L+1)pτp1hN)\displaystyle\leq{\bar{C}_{2,p,l+1}}h^{\alpha^{l}\rho p}\exp(c_{p}L^{p}(L+1)^{p}\tau^{p-1}hN)
C¯2,p,l+1hαlρpexp(cpLp(L+1)pτp),\displaystyle\leq{\bar{C}_{2,p,l+1}}h^{\alpha^{l}\rho p}\exp(c_{p}L^{p}(L+1)^{p}\tau^{p}),

which gives

(4.30) max0iN|ϕl+1(ti0)y¯il+1|pC2,p,l+1hαlρ.\Bigl{\|}\max\limits_{0\leq i\leq N}|\phi_{l+1}(t_{i}^{0})-\bar{y}_{i}^{l+1}|\Bigl{\|}_{p}\leq{C_{2,p,l+1}}h^{\alpha^{l}\rho}.

Combining (4.17), (4.23), and (4.30) we finally obtain

(4.31) max0iN|ϕl+1(ti0)yil+1|pCp,l+1hαl+1ρ,\Bigl{\|}\max\limits_{0\leq i\leq N}|\phi_{l+1}(t_{i}^{0})-y_{i}^{l+1}|\Bigl{\|}_{p}\leq{C_{p,l+1}}h^{\alpha^{l+1}\rho},

which ends the inductive part of the proof. Finally, ϕl+1(ti0)=ϕl+1(ih)=x(ih+(l+1)τ)=x(til+1)\phi_{l+1}(t_{i}^{0})=\phi_{l+1}(ih)=x(ih+(l+1)\tau)=x(t_{i}^{l+1}) and the proof of (4.11) is finished. ∎

5. Numerical experiments

5.1. The implementation

The implementation of the randomized Runge-Kutta method is not straightforward. To evaluate the solution at time point tij=ih+jτt^{j}_{i}=ih+j\tau within the interval [jτ,(j+1)τ][j\tau,(j+1)\tau] for j1j\geq 1, we need four steps:

Step (j1): First simulate γ𝒰(0,1)\gamma\sim\mathcal{U}(0,1) and set a random stepsize γh[0,h]\gamma h\in[0,h] and a random time point ti1j+γh[ti1j,tij]t^{j}_{i-1}+\gamma h\in[t^{j}_{i-1},t^{j}_{i}].

Step (j2): Following the second line of (2.4), compute the intermediate delay term y~ij1,j\tilde{y}_{i}^{j-1,j} via the random stepsize, the time grid point and evaluations from the preceding τ\tau-intervals, namely, ti1j1t^{j-1}_{i-1} and yi1j1y_{i-1}^{j-1} over [(j1)τ,jτ][(j-1)\tau,j\tau], and yi1j2y_{i-1}^{j-2} within [(j2)τ,(j1)τ][(j-2)\tau,(j-1)\tau].

Step (j3): Following the third line of (2.4), compute the intermediate term y~ij\tilde{y}_{i}^{j} via the random stepsize, the time grid point and previous evaluations from the preceding or the current τ\tau-interval, namely, ti1jt^{j}_{i-1} and yi1jy_{i-1}^{j} within [jτ,(j+1)τ][j\tau,(j+1)\tau], and yi1j1y_{i-1}^{j-1} over [(j1)τ,jτ][(j-1)\tau,j\tau].

Step (j4): Following the last line of (2.4), compute evaluation yijy_{i}^{j} via the random time point, the preceding evaluation yi1jy_{i-1}^{j}, the intermediate term y~ij\tilde{y}_{i}^{j} and the intermediate delay term y~ij1,j\tilde{y}_{i}^{j-1,j} from Step (j1)-Step (j3).

1import numpy as np
2
3def f(t,x,z):
4 return […]
5
6def randEM_full(tau, initial_func, h, f,n_taus):
7 # input: delay lag tau, the initial function over [-tau, 0],
8 # stepsize h, drift function f,
9 # number of intervals of length tau n_taus
10 # output:
11 # one trajectory of the randomized Runge-Kutta method
12
13 ###to get numerical evaluation:
14
15 #number of steps within one interval with length tau
16 N=int(tau/h)
17
18 #Initiate the solution ’matrix’, where the first column
19 #corresponds to the delay conditions over [-tau, 0]
20 sol = np.zeros((N+ 1,n_taus+1))
21
22 #setting the initial conditions on grid point over [-tau, 0]
23 grid_delay = - tau + h *np.arange(0, N)
24 sol[:,0] = np.array([initial_func(grid_delay[i])\
25 for i in range(len(grid_delay))])
26
27 #for each interval [(j-1)*tau, j*tau]
28 for j in range(1, n_taus+1):
29
30 # collect the grid points over [(j-1)*tau, j*tau]
31 grid = (j-1)* tau + h *np.arange(0, N)
32
33 sol[0,j] = sol[-1,j-1]
34
35 if j-1==0:
36 for i in range(1,N+1):
37
38 # step (j1):
39 gamma=np.random.rand()
40 rand_time=grid[i-1]+gamma*h
41 rand_h=gamma*h
42
43 # step (j2):
44 sol_delay_inter=initial_func(rand_time-tau)
45
46 # step (j3):
47 drift_inter=rand_h*f(grid[i-1], sol[i-1,j],\
48 initial_func(grid[i-1]-tau))
49 sol_inter = sol[i-1,j]+drift_inter
50
51 # step (j4):
52 drift=h*f(rand_time, sol_inter, sol_delay_inter)
53 sol[i,j] = sol[i-1,j]+drift
54 else:
55 for i in range(1,N+1):
56
57 # step (j1):
58 gamma=np.random.rand()
59 rand_time=grid[i-1]+gamma*h
60 rand_h=gamma*h
61
62 # step (j2):
63 drift_delay=rand_h*f(grid[i-1]-tau, sol[i-1,j-1],\
64 sol[i-1,j-2])
65 sol_delay_inter = sol[i-1,j-1]+drift_delay
66
67 # step (j3):
68 drift_inter=rand_h*f(grid[i-1], sol[i-1,j],\
69 sol[i-1,j-1])
70 sol_inter = sol[i-1,j]+drift_inter
71
72 # step (j4):
73 drift=h*f(rand_time, sol_inter, sol_delay_inter)
74 sol[i,j] = sol[i-1,j]+drift
75 return sol
Listing 1: A sample implementation of (2.3) and (2.4) in Python

5.2. Example 1

We modify [17, Example 6.2] as follows:

(5.1) {u˙(t)=g(t)(u(t)+(1+|u(tτ)|)α),t[0,3τ],u(t)=1,t[τ,0],\displaystyle\begin{split}\begin{cases}\dot{u}(t)&=g(t)\cdot\big{(}u(t)+(1+|u(t-\tau)|)^{\alpha}\big{)},\quad t\in[0,3\tau],\\ u(t)&=1,\quad t\in[-\tau,0],\end{cases}\end{split}

where g(t):=[110sgn(14Tt)15sgn(12Tt)710sgn(34Tt)]g(t):=\left[-\frac{1}{10}\mbox{sgn}(\frac{1}{4}T-t)-\frac{1}{5}\mbox{sgn}(\frac{1}{2}T-t)-\frac{7}{10}\mbox{sgn}(\frac{3}{4}T-t)\right] and

(5.2) sgn(t):={1,if t<0,0,if t=0,1,if t>0.\displaystyle\mbox{sgn}(t):=\begin{split}\begin{cases}-1,&\ \mbox{if\ }t<0,\\ 0,&\ \mbox{if\ }t=0,\\ 1,&\ \mbox{if\ }t>0.\end{cases}\end{split}

Here we have three jump points at t=14Tt=\frac{1}{4}T, t=12Tt=\frac{1}{2}T and t=34Tt=\frac{3}{4}T. Note that when α=0\alpha=0, our proposed method can recover the performance shown in [17, Example 6.2], with an order of convergence roughly 1.51.5.

In this example, we choose α=0.5\alpha=0.5 and investigate the performance of our proposed method randomized Runge-Kutta method for solving such time-irregular DDE. The performance is further compared with the one of the randomized Euler method proposed in [9], which is known to efficiently handle Carathéodory DDEs, in terms of convergence rate, accuracy, and computational efficiency. The reference solution is computed through the randomized Runge-Kutta method at stepsize href=215h_{\text{ref}}=2^{-15}. We test the performance via 10001000 experiments for each h=2lh=2^{l}, l=2,,7l=2,\ldots,7, and record the mean-square error (MSE) and time cost against MSE for both methods respectively in Figure 2.

It can be observed from Figure 2(a) and Figure 2(b) that the randomized Runge-Kutta method outperforms consistently over all intervals in terms of accuracy and the order of convergence. Clearly, due to the additional computation of y~k+1j\tilde{y}_{k+1}^{j} and y~k+1j,j1\tilde{y}_{k+1}^{j,j-1} in (2.4), the randomized Runge-Kutta method is approximately three times as expensive as the randomized Runge-Kutta method with the same step size. But due to its better accuracy, the randomized Runge-Kutta method is superior for all the step sizes smaller than 232^{-3}.

Refer to caption
(a) MSE of randomized Runge-Kutta.
Refer to caption
(b) MSE of randomized Euler.
Refer to caption
(c) Time cost against MSE over [τ,2τ][\tau,2\tau].
Refer to caption
(d) Time cost against MSE over [2τ,3τ][2\tau,3\tau].
Figure 2. The performance of solving DDE (5.1) via randomized Runge-Kutta and randomised Euler.

5.3. Example 2

To verify (4.11) in Theorem 4.3, we test the sensitivity of the performance of the randomized Runge-Kutta method with respect to parameters α,γ(0,1]\alpha,\gamma\in(0,1] on the following DDE:

(5.3) {u˙(t)=u(t)|u(tτ)|α+|t|γ,t[0,3τ],u(t)=t+τ,t[τ,0].\displaystyle\begin{split}\begin{cases}\dot{u}(t)&=u(t)-|u(t-\tau)|^{\alpha}+|t|^{\gamma},\quad t\in[0,3\tau],\\ u(t)&=t+\tau,\quad t\in[-\tau,0].\end{cases}\end{split}

Clearly DDE (5.3) satisfies all the assumptions of Theorem 4.3. We choose the combinations

(α,γ){(0.1,0.1),(0.1,0.5),(0.5,0.1),(0.5,0.5),(0.5,1),(1,0.5)}(\alpha,\gamma)\in\{(0.1,0.1),(0.1,0.5),(0.5,0.1),(0.5,0.5),(0.5,1),(1,0.5)\}

For each pair, the reference solution is computed through the randomized Runge-Kutta method at stepsize href=216h_{\text{ref}}=2^{-16}. We test the performance via 10001000 experiments for each h=2lh=2^{l}, l=5,,10l=5,\ldots,10, and record the mean-square error (MSE) and the negative MSE slope in Figure 3 and Table 1 respectively. One can observe from Table 1 that for each pair of (α,γ)(\alpha,\gamma), the order of convergence over [jτ,(j+1)τ][j\tau,(j+1)\tau] is consistently higher than the theoretical one for j=0,1,2j=0,1,2, where the latter one is (12+(γα))αj\Big{(}\frac{1}{2}+(\gamma\wedge\alpha)\Big{)}\alpha^{j} in (4.11). Particularly, it can been seen from Figure 3(a), Figure 3(b) and Figure 3(c) that, though orders of convergence from the three cases are similar over [0,τ][0,\tau], the ones over [τ,2τ][\tau,2\tau] and [2τ,3τ][2\tau,3\tau] of Figure 3(b) are slightly higher than the other two, due to the larger value of α\alpha. The result coincides with Theorem 4.3.

Refer to caption
(a) (α,γ)=(0.1,0.1)(\alpha,\gamma)=(0.1,0.1)
Refer to caption
(b) (α,γ)=(0.5,0.1)(\alpha,\gamma)=(0.5,0.1).
Refer to caption
(c) (α,γ)=(0.1,0.5)(\alpha,\gamma)=(0.1,0.5).
Refer to caption
(d) (α,γ)=(0.5,0.5)(\alpha,\gamma)=(0.5,0.5).
Refer to caption
(e) (α,γ)=(0.5,1)(\alpha,\gamma)=(0.5,1).
Refer to caption
(f) (α,γ)=(1,0.5)(\alpha,\gamma)=(1,0.5).
Figure 3. The performance of solving DDE (5.3) via randomized Runge-Kutta.
Table 1. Performance of solving DDE (5.3) using randomized Runge-Kutta: negative MSE slopes for varying α\alpha and γ\gamma.
α\alpha γ\gamma [0,τ][0,\tau] [1τ,2τ][1\tau,2\tau] [2τ,3τ][2\tau,3\tau] Figure
0.1 0.1 0.86 0.83 0.84 Figure 3(a)
0.5 0.1 0.87 0.93 0.95 Figure 3(b)
0.1 0.5 0.85 0.82 0.82 Figure 3(c)
0.5 0.5 1.16 0.97 1.01 Figure 3(d)
0.5 1 1.34 1.01 1.30 Figure 3(e)
1 0.5 1.36 1.15 1.03 Figure 3(f)

6. Appendix

For the proof of the following continuous version of Gronwall’s lemma [20, pag. 22] see, for example, [19, pag. 580].

Lemma 6.1.

Let f:[t0,T][0,)f:[t_{0},T]\to[0,\infty) be an integrable function, α,β:[t0,T]\alpha,\beta:[t_{0},T]\to\mathbb{R} be continuous on [t0,T][t_{0},T], and let β\beta be non-decreasing. If for all t[t0,T]t\in[t_{0},T]

(6.1) α(t)β(t)+t0tf(s)α(s)𝑑s,\alpha(t)\leq\beta(t)+\int\limits_{t_{0}}^{t}f(s)\alpha(s)ds,

then

(6.2) α(t)β(t)exp(t0tf(s)𝑑s).\alpha(t)\leq\beta(t)\exp\Bigl{(}\int\limits_{t_{0}}^{t}f(s)ds\Bigr{)}.

We also use the following weighted discrete version of Gronwall’s inequality, see Lemma 2.1 in [16].

Lemma 6.2.

Consider two nonnegative sequences (un)n(u_{n})_{n\in\mathbb{N}} and (wn)n(w_{n})_{n\in\mathbb{N}} which for some given a[0,)a\in[0,\infty) satisfy

(6.3) una+j=1n1wjuj,for alln,u_{n}\leq a+\sum\limits_{j=1}^{n-1}w_{j}u_{j},\quad\hbox{for all}\ n\in\mathbb{N},

then for all nn\in\mathbb{N} it also holds true that

(6.4) unaexp(j=1n1wj).u_{n}\leq a\exp\Bigl{(}\sum\limits_{j=1}^{n-1}w_{j}\Bigr{)}.

We use the following result concerning properties of solutions of Carathéodory ODEs. It follows from [1, Theorem 2.12] (compare also with [16, Proposition 4.2]).

Lemma 6.3.

Let us consider the following ODE

(6.5) z(t)=g(t,z(t)),t[a,b],z(a)=ξ,z^{\prime}(t)=g(t,z(t)),\quad t\in[a,b],\quad z(a)=\xi,

where <a<b<+-\infty<a<b<+\infty, ξd\xi\in\mathbb{R}^{d} and g:[a,b]×ddg:[a,b]\times\mathbb{R}^{d}\to\mathbb{R}^{d} satisfies the following conditions

  1. (G1)

    for all t[a,b]t\in[a,b] the function g(t,):ddg(t,\cdot):\mathbb{R}^{d}\to\mathbb{R}^{d} is continuous,

  2. (G2)

    for all ydy\in\mathbb{R}^{d} the function g(,y):[a,b]dg(\cdot,y):[a,b]\to\mathbb{R}^{d} is Borel measurable,

  3. (G3)

    there exists K(0,)K\in(0,\infty) such that for all t[a,b]t\in[a,b], ydy\in{\mathbb{R}^{d}}

    |g(t,y)|K(1+|y|),{|g(t,y)|\leq K(1+|y|),}
  4. (G4)

    there exists L(0,)L\in(0,\infty) such that for all t[a,b]t\in[a,b], x,ydx,y\in{\mathbb{R}^{d}}

    |g(t,x)g(t,y)|L|xy|.{|g(t,x)-g(t,y)|\leq L|x-y|.}

Then (6.5) has a unique absolutely continuous solution z:[a,b]dz:[a,b]\to\mathbb{R}^{d} such that

(6.6) supt[a,b]|z(t)|(|ξ|+K(ba))eK(ba).{\sup\limits_{t\in[a,b]}|z(t)|\leq(|\xi|+K(b-a))e^{K{(b-a)}}.}

Moreover, for all t,s[a,b]t,s\in[a,b]

(6.7) |z(t)z(s)|K¯|ts|,|z(t)-z(s)|\leq\bar{K}|t-s|,

where K¯=K(1+(|ξ|+K(ba))eK(ba))\bar{K}=K\cdot\Bigl{(}1+(|\xi|+K(b-a))e^{K(b-a)}\Bigr{)}.

Proof.

The proof for our proposition follows the approach outlined in Lemma 7.1 of [9]. This is feasible because our assumptions (G3) and (G4) are stronger than [9, Assumptions (G3) and (G4)]. Particularly, [9, Eqn. (7.8) and Eqn. (7.9)] will undergo modifications as follows due to the strengthened conditions:

(6.8) |z(t)z(s)|K(1+supatb|z(t)|)|ts|.\displaystyle\begin{split}|z(t)-z(s)|\leq K(1+\sup\limits_{a\leq t\leq b}|z(t)|)|t-s|.\end{split}

Consequently, this gives rise to our refined conclusions. ∎

References

  • [1] J. Andres and L. Górniewicz. Topological Fixed Point Principles for Boundary Value Problems, vol. I. Springer Science+Business Media Dordrecht, 2003.
  • [2] A. Bellen and M. Zennaro. Numerical methods for delay differential equations. Oxford, New York, 2003.
  • [3] T. Bochacik, M. Goćwin, P. M. Morkisz, and P. Przybyłowicz. Randomized Runge-Kutta method–Stability and convergence under inexact information. J. Complex., 65:101554, 2021.
  • [4] T. Bochacik and P. Przybyłowicz. On the randomized Euler schemes for ODEs under inexact information. Numer. Algor., 91:1205–1229, 2022.
  • [5] H. Brunner and E. Hairer. A general-purpose implicit-explicit Runge-Kutta integrator for delay differential equations. BIT Numerical Mathematics, 52(2):293–314, 2012.
  • [6] N. Czyżewska, P. Morkisz, J. Kusiak, P. Oprocha, M. Pietrzyk, P. Przybyłowicz, Ł. Rauch, and D. Szeliga. On mathematical aspects of evolution of dislocation density in metallic materials. IEEE Access, 10:86793–86811, 2022.
  • [7] N. Czyżewska, P. M. Morkisz, and P. Przybyłowicz. Approximation of solutions of DDEs under nonstandard assumptions via Euler scheme. Numer. Algor., 91:1829–1854, 2022.
  • [8] T. Daun. On the randomized solution of initial value problems. J. Complex., 27:300–311, 2011.
  • [9] Fabio V. Difonzo, Paweł Przybyłowicz, and Yue Wu. Existence, uniqueness and approximation of solutions to Carathéodory delay differential equations. Journal of Computational and Applied Mathematics, 436:115411, 2024.
  • [10] C. A. Eulalia and C. Lubich. An analysis of multistep Runge-Kutta methods for delay differential equations. Mathematical and Computer Modelling, 34(10-11):1197–1213, 2001.
  • [11] J. K. Hale. Theory of Functional Differential Equations. Applied Mathematical Sciences. Springer New York, 1977.
  • [12] J. K. Hale and S. M. V. Lunel. Introduction to Functional Differential Equations. Springer-Verlag, New York, 1993.
  • [13] S. Heinrich and B. Milla. The randomized complexity of initial value problems. J. Complex., 24:77–88, 2008.
  • [14] A. Jentzen and A. Neuenkirch. A random Euler scheme for Carathéodory differential equations. J. Comp. Appl. Math., 224:346–359, 2009.
  • [15] B. Kacewicz. Almost optimal solution of initial-value problems by randomized and quantum algorithms. J. Complex., 22:676–690, 2006.
  • [16] R. Kruse and Y. Wu. Error analysis of randomized Runge–Kutta methods for differential equations with time-irregular coefficients. Comput. Methods Appl. Math., 17:479–498, 2017.
  • [17] Raphael Kruse and Yue Wu. A randomized milstein method for stochastic differential equations with non-differentiable drift coefficients. arXiv preprint arXiv:1706.09964, 2017.
  • [18] J. Kuehn. Numerical methods for delay differential equations. World Scientific Publishing Company, 2004.
  • [19] E. Pardoux and A. Rascanu. Stochastic Differential Equations, Backward SDEs, Partial Differential Equations. Stochastic Modelling and Applied Probability. Springer International Publishing Switzerland, 2014.
  • [20] E. Platen and N. Bruti-Liberati. Numerical Solution of Stochastic Differential Equations with Jumps in Finance. Stochastic Modelling and Applied Probability. Springer–Verlag Berlin Heidelberg, 2010.
  • [21] Y. Song and X. Yang. A novel explicit two-stage Runge-Kutta method for delay differential equations with constant delay. Applied Mathematics and Computation, 272:317–322, 2015.