This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Reduction of the Fractional Calderón Problem to the Local Calderón Problem by Means of the Caffarelli-Silvestre Extension

Giovanni Covi Institute for Applied Mathematics, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany giovanni.covi@uni-bonn.de Tuhin Ghosh Department of Mathematics, University of Bielefeld tghosh@math.uni-bielefeld.de Angkana Rüland Institute for Applied Mathematics and Hausdorff Center for Mathematics, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany rueland@uni-bonn.de  and  Gunther Uhlmann Institute for Advanced Study, Hong Kong University of Science and Technology, and Department of Mathematics, University of Washington gunther@math.washington.edu
Abstract.

We relate the (anisotropic) variable coefficient local and nonlocal Calderón problems by means of the Caffarelli-Silvestre extension. In particular, we prove that (partial) Dirichlet-to-Neumann data for the fractional Calderón problem in three and higher dimensions determine the (full) Dirichlet-to-Neumann data for the local Calderón problem. As a consequence, any (variable coefficient) uniqueness result for the local problem also implies a uniqueness result for the nonlocal problem. Moreover, our approach is constructive and associated Tikhonov regularization schemes can be used to recover the data. Finally, we highlight obstructions for reversing this procedure, which essentially consist of two one-dimensional averaging processes.

1. Introduction

It is the objective of this article to study the relation between the fractional and the classical Calderón problems. This had been initiated in the work [GU21] where the solvability of the fractional Calderón problem (possibly with variable coefficient metric) is reduced to the solvability of the classical Calderón problem. In [GU21] this is achieved by using the relation between the fractional Laplacian and the heat extension as, for instance, highlighted in [ST10]. It is the main aim of this article to revisit the reduction of the fractional Calderón problem to the classical Calderón problem, adopting a slightly different perspective by relying on the Caffarelli-Silvestre extension [CS07] instead of the heat extension.

Let us first take a heuristic, non-rigorous perspective on this and recall the classical and fractional Calderón problems.

On the one hand, given a bounded, open, sufficiently regular domain Ωn\Omega\subset\mathbb{R}^{n} in the classical Calderón problem one seeks to recover an unknown, possibly anisotropic conductivity a:Ωsymn×na:\Omega\rightarrow\mathbb{R}^{n\times n}_{sym} which is positive definite, symmetric and of a suitable regularity from voltage-to-current measurements on the boundary. In other words, one seeks to reconstruct the matrix aa given the measurements

(1) Λ:H12(Ω)H12(Ω),fνau|Ω,\displaystyle\Lambda:H^{\frac{1}{2}}(\partial\Omega)\rightarrow H^{-\frac{1}{2}}(\partial\Omega),\ f\mapsto\nu\cdot a\nabla u|_{\partial\Omega},

where uu is a solution to the conductivity equation

(2) au=0 in Ω,u=f on Ω.\displaystyle\begin{split}\nabla\cdot a\nabla u&=0\mbox{ in }\Omega,\\ u&=f\mbox{ on }\partial\Omega.\end{split}

This problem has been studied intensively: For the isotropic setting landmark results are available, including the seminal results on uniqueness [SU87, HT13, CR16, Hab15], stability [Ale88] and recovery [Nac88]. In contrast, the anisotropic problem is still widely open and has only been solved under strong structural conditions [LU89, LU01, LTU03]. We refer to the survey article [Uhl09] for further references on the extensive literature on this.

In the fractional Calderón problem, on the other hand, given a domain Ωn\Omega\subset\mathbb{R}^{n} and a disjoint, sufficiently regular domain WnW\subset\mathbb{R}^{n} and s(0,1)s\in(0,1), one similarly seeks to recover an unknown conductivity a:nsymn×na:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n\times n}_{sym} which is positive definite, symmetric and of a suitable regularity class, however from the fractional measurements

(3) Λs:H~s(W)Hs(W),f(a)su|W,\displaystyle{\Lambda_{s}}:\tilde{H}^{s}(W)\rightarrow H^{-s}(W),\ f\mapsto{(-\nabla\cdot a\nabla)^{s}u|_{W}},

where uu is a solution to the fractional conductivity equation

(4) (a)su=0 in Ω,u=f on Ωe:=nΩ¯.\displaystyle\begin{split}(-\nabla\cdot a\nabla)^{s}u&=0\mbox{ in }\Omega,\\ u&=f\mbox{ on }\Omega_{e}:=\mathbb{R}^{n}\setminus\overline{\Omega}.\end{split}

Here (a)s(-\nabla\cdot a\nabla)^{s} can (equivalently) be understood spectrally, by means of an integral kernel, or also by means of a Caffarelli-Silvestre type extension [CS07, ST10].

In what follows, we will mainly adopt the Caffarelli-Silvestre extension perspective. More precisely, for s(0,1)s\in(0,1) the Caffarelli-Silvestre extension formulation for the Dirichlet problem (4) reads

(5) xn+112sa~(x)u~=0 in +n+1,limxn+10xn+112sn+1u~=0 on Ω×{0},u~=f on Ωe×{0}.\displaystyle\begin{split}\nabla\cdot x_{n+1}^{1-2s}\tilde{a}(x^{\prime})\nabla\tilde{u}&=0\mbox{ in }\mathbb{R}^{n+1}_{+},\\ \lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}\tilde{u}&=0\mbox{ on }\Omega\times\{0\},\\ \tilde{u}&=f\mbox{ on }\Omega_{e}\times\{0\}.\end{split}

Here, as above, Ω,Wn\Omega,W\subset\mathbb{R}^{n} are disjoint open bounded sets, fH~s(W)f\in\tilde{H}^{s}(W) and the solution u~H˙1(+n+1,xn+112s)\tilde{u}\in\dot{H}^{1}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}). The matrix-valued function a~C2(+n+1¯,(n+1)×(n+1))\tilde{a}\in C^{2}(\overline{\mathbb{R}^{n+1}_{+}},\mathbb{R}^{(n+1)\times(n+1)}) is of the form

(6) a~(x,xn+1):=a~(x):=(a(x)001),\displaystyle\tilde{a}(x^{\prime},x_{n+1}):=\tilde{a}(x^{\prime}):=\begin{pmatrix}a(x^{\prime})&0\\ 0&1\end{pmatrix},

where aC2(n,symn×n)a\in C^{2}(\mathbb{R}^{n},\mathbb{R}^{n\times n}_{sym}) is assumed to be uniformly elliptic. Solutions to problem (5) are understood in terms of the associated bilinear forms. Moreover, the fractional conductivity operator in (3) can then be expressed in terms of a local Dirichlet-to-Neumann map [CS07, ST10]:

(a)su=cslimxn+10xn+112sn+1u~(x,xn+1)H˙s(n),\displaystyle(-\nabla\cdot a\nabla)^{s}u=c_{s}\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}\tilde{u}(x^{\prime},x_{n+1})\in{\dot{H}^{-s}(\mathbb{R}^{n})},

with both objects understood in their weak forms. In particular, the fractional Calderón problem (4), (3) can be rephrased in terms of recovering the metric a~\tilde{a} by means of the weighted Dirichlet-to-Neumann data

Λs:H~s(W)Hs(W),fcslimxn+10xn+112sn+1u~(x,xn+1)|W.\displaystyle{\Lambda_{s}}:\tilde{H}^{s}(W)\rightarrow H^{-s}(W),\ f\mapsto{c_{s}\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}\tilde{u}(x^{\prime},x_{n+1})|_{W}}.

1.1. Main results

Given the outlined perspective on the fractional Calderón problem, we seek to relate the fractional Calderón problem in its Caffarelli-Silvestre extension formulation to the classical local Calderón problem given in (2), (1). This is achieved by considering the following function

(7) v(x)=0xn+112su~(x,xn+1)𝑑xn+1, for xΩ,\displaystyle\begin{split}v(x^{\prime})&=\int\limits_{0}^{\infty}x_{n+1}^{1-2s}\tilde{u}(x^{\prime},x_{n+1})dx_{n+1},\mbox{ for }x^{\prime}\in\Omega,\end{split}

which will be shown to be a solution to the classical Calderón problem with metric aa, given the nonlocal data for uu. As above this is understood in its weak form.

More precisely, as one of our main results, we obtain the following relation between the two Calderón type problems:

Theorem 1.

Let nn\in\mathbb{N}, n3n\geq 3. Let Ω,Wn\Omega,W\subset\mathbb{R}^{n} be bounded Lipschitz sets with Ω¯W¯=\overline{\Omega}\cap\overline{W}=\emptyset. Let s(0,1)s\in(0,1), let a~C2(+n+1¯,(n+1)×(n+1))\tilde{a}\in C^{2}(\overline{\mathbb{R}^{n+1}_{+}},\mathbb{R}^{(n+1)\times(n+1)}) be of the form a~(x)=(a(x)001)\tilde{a}(x^{\prime})=\begin{pmatrix}a(x^{\prime})&0\\ 0&1\end{pmatrix} where aC2(n,symn×n)a\in{C^{2}(\mathbb{R}^{n},\mathbb{R}^{n\times n}_{sym})} is uniformly elliptic and such that aIda\equiv Id in Ωe\Omega_{e}. Let u~\tilde{u} be a weak solution to (5). Then, we have that

(8) v(x):=0xn+112su~(x,xn+1)𝑑xn+1H1(Ω),\displaystyle v(x^{\prime}):=\int\limits_{0}^{\infty}x_{n+1}^{1-2s}\tilde{u}(x^{\prime},x_{n+1})dx_{n+1}\in H^{1}(\Omega),

and the function vv is a weak solution to (2). Moreover, the map

(9) Λs:H~s(W)Hs(W),flimxn+10xn+112sn+1u~|W\displaystyle\Lambda_{s}:\tilde{H}^{s}(W)\rightarrow H^{-s}(W),\ f\mapsto\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}\tilde{u}|_{W}

determines the map

(10) Λ:H12(Ω)H12(Ω),gνa~v|Ω.\displaystyle\Lambda:H^{\frac{1}{2}}(\partial\Omega)\rightarrow H^{-\frac{1}{2}}(\partial\Omega),\ g\mapsto\nu\cdot\tilde{a}\nabla v|_{\partial\Omega}.

As in [GU21] a direct consequence of Theorem 1 is the reduction of the nonlocal Calderón problem to the local one. Hence, uniqueness results for the local Calderón problem, e.g. for analytic manifolds or for the reconstruction of conformal factors in the presence of limiting Carleman weights, directly imply solvability of the nonlocal problem.

Theorem 2.

Let nn\in\mathbb{N}, n3n\geq 3. Let Ω,Wn\Omega,W\subset\mathbb{R}^{n} be bounded Lipschitz sets with Ω¯W¯=\overline{\Omega}\cap\overline{W}=\emptyset. Let s(0,1)s\in(0,1), and let a~C2(+n+1¯,(n+1)×(n+1))\tilde{a}\in C^{2}(\overline{\mathbb{R}^{n+1}_{+}},\mathbb{R}^{(n+1)\times(n+1)}) be of the form a~(x)=(a(x)001)\tilde{a}(x^{\prime})=\begin{pmatrix}a(x^{\prime})&0\\ 0&1\end{pmatrix} where aC2(n,symn×n)a\in{C^{2}(\mathbb{R}^{n},\mathbb{R}^{n\times n}_{sym})} is uniformly elliptic and such that aIda\equiv Id in Ωe\Omega_{e}. Assume that the local Dirichlet-to-Neumann map Λ:H12(Ω)H12(Ω)\Lambda:H^{\frac{1}{2}}(\partial\Omega)\rightarrow H^{-\frac{1}{2}}(\partial\Omega) uniquely determines the coefficients aa in the classical Calderón problem (2). Then the nonlocal Dirichlet-to-Neumann map Λs:H~s(W)Hs(W)\Lambda_{s}:\tilde{H}^{s}(W)\rightarrow H^{-s}(W) uniquely determines the coefficients aa in the fractional Calderón problem (4).

We further stress that it is also possible to apply analogous arguments to fractional Calderón type problems in which the operator

(a)s,s(0,1),\displaystyle(-\nabla\cdot a\nabla)^{s},\qquad s\in(0,1),

is replaced by operators of the form

(a(ib+ib)+c)s\displaystyle(-\nabla\cdot a\nabla-(ib\cdot\nabla+i\nabla\cdot b)+c)^{s}

for b:nnb:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n}, c:nc:\mathbb{R}^{n}\rightarrow\mathbb{R} sufficiently regular. In particular, uniqueness results for associated local Calderón type problems directly imply uniqueness results for the nonlocal analogue.

Moreover, the determination of the local data from the nonlocal ones is completely constructive. Indeed, the functions (u~,νu~)(\tilde{u},\partial_{\nu}\tilde{u}) can be obtained on Ω×+\partial\Omega\times\mathbb{R}_{+} by unique continuation from the data (f,Λsf)(f,\Lambda_{s}f). This then yields the functions (v,νv)(v,\partial_{\nu}v) by integration. The unique continuation result can, for instance, be formulated by means of the Tikhonov regularization procedure.

Proposition 1.1.

Let nn\in\mathbb{N}, n3n\geq 3. Let Ω,Wn\Omega,W\subset\mathbb{R}^{n} be bounded Lipschitz sets with Ω¯W¯=\overline{\Omega}\cap\overline{W}=\emptyset. Let s(0,1)s\in(0,1), ε>0\varepsilon>0, and assume that a~C2(+n+1¯,(n+1)×(n+1))\tilde{a}\in C^{2}(\overline{\mathbb{R}^{n+1}_{+}},\mathbb{R}^{(n+1)\times(n+1)}) is of the form a~(x)=(a(x)001)\tilde{a}(x^{\prime})=\begin{pmatrix}a(x^{\prime})&0\\ 0&1\end{pmatrix} where aC2(n,symn×n)a\in{C^{2}(\mathbb{R}^{n},\mathbb{R}^{n\times n}_{sym})} is uniformly elliptic and such that aIda\equiv Id in Ωe\Omega_{e}. Define the operator

A:\displaystyle A:\ 𝒱H~sϵ(W)×Hsϵ(W),\displaystyle\mathcal{V}\rightarrow\tilde{H}^{s-\epsilon}(W)\times H^{-s-\epsilon}(W),
u~(u~(,0),limxn+10xn+112sn+1u~),\displaystyle\tilde{u}\mapsto(\tilde{u}(\cdot,0),\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}\tilde{u}),

where

𝒱:={u~H˙1(Ωe×+,xn+112s):xn+112su~=0 in Ωe×+,supp(u~(,0))W¯}.\mathcal{V}:=\{\tilde{u}\in\dot{H}^{1}(\Omega_{e}\times\mathbb{R}_{+},x_{n+1}^{1-2s}):\;\nabla\cdot x_{n+1}^{1-2s}\nabla\tilde{u}=0\mbox{ in }\Omega_{e}\times\mathbb{R}_{+},\;\text{supp}(\tilde{u}(\cdot,0))\subset\overline{W}\}.

Finally, let (f,Λsf)H~s(W)×Hs(W)(f,\Lambda_{s}f)\in\tilde{H}^{s}(W)\times H^{-s}(W). Then for each α>0\alpha>0 there exists a unique minimizer u~α𝒱\tilde{u}_{\alpha}\in\mathcal{V} of the functional

Jα(u~):\displaystyle J_{\alpha}(\tilde{u}): =Au~(f,Λsf)Hsϵ(W)×Hsϵ(W)2+αxn+112s2u~L2(Ωe×+)2\displaystyle=\|A\tilde{u}-(f,\Lambda_{s}f)\|_{H^{s-\epsilon}(W)\times H^{-s-\epsilon}(W)}^{2}+\alpha\|x_{n+1}^{\frac{1-2s}{2}}\nabla\tilde{u}\|_{L^{2}(\Omega_{e}\times\mathbb{R}_{+})}^{2}
=u~(,0)fHsϵ(W)2+limxn+10xn+112sn+1u~ΛsfHsϵ(W)2+αxn+112s2u~L2(Ωe×+)2.\displaystyle=\|\tilde{u}(\cdot,0)-f\|_{H^{s-\epsilon}(W)}^{2}+\|\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}\tilde{u}-\Lambda_{s}f\|_{H^{-s-\epsilon}(W)}^{2}+\alpha\|x_{n+1}^{\frac{1-2s}{2}}\nabla\tilde{u}\|_{L^{2}(\Omega_{e}\times\mathbb{R}_{+})}^{2}.

In particular, for each (f,Λsf)H~s(W)×Hs(W)(f,\Lambda_{s}f)\in\tilde{H}^{s}(W)\times H^{-s}(W) it holds that Au~α(f,Λsf)A\tilde{u}_{\alpha}\rightarrow(f,\Lambda_{s}f) in H~sϵ(W)×Hsϵ(W)\tilde{H}^{s-\epsilon}(W)\times H^{-s-\epsilon}(W).

We expect that the described technique can also be made quantitative by invoking quantitative unique continuation results. We plan to address this in future work.

1.2. Obstructions on the reversal of the outlined procedure

The outlined procedure provides a clear relation between the local and fractional Calderón problems of the form described above. It allows to deduce uniqueness results for the fractional Calderón problem from possibly available uniqueness results for the local Calderón problem. A natural question deals with the reversibility of this procedure. Due to the different information content of the local versus the fractional Calderón problems – in that the Dirichlet-to-Neumann operator for the local problem formally determines 2n22n-2 degrees of freedom while the nonlocal one determines 2n2n degrees of freedom – it is not expected that this can be fully reversed. Our approach accounts precisely for this mismatch of formally determined degrees of freedom: In carrying out the integration procedure which allows to pass from the function u~\tilde{u} to the function vv and by restricting to the boundary of Ω\partial\Omega we lose exactly the given degrees of freedom that distinguish the local and fractional data. We reformulate this precisely:

Proposition 1.2.

Let nn\in\mathbb{N}, n3n\geq 3 and let s(0,1)s\in(0,1). Let Ω,Wn\Omega,W\subset\mathbb{R}^{n} be bounded Lipschitz sets with Ω¯W¯=\overline{\Omega}\cap\overline{W}=\emptyset. Let s(0,1)s\in(0,1), let a~C2(+n+1¯,(n+1)×(n+1))\tilde{a}\in C^{2}(\overline{\mathbb{R}^{n+1}_{+}},\mathbb{R}^{(n+1)\times(n+1)}) be of the form a~(x)=(a(x)001)\tilde{a}(x^{\prime})=\begin{pmatrix}a(x^{\prime})&0\\ 0&1\end{pmatrix} where aC2(n,symn×n)a\in{C^{2}(\mathbb{R}^{n},\mathbb{R}^{n\times n}_{sym})} is uniformly elliptic and such that aIda\equiv Id in Ωe\Omega_{e}. Let

𝒞s,a\displaystyle\mathcal{C}_{s,a} :={(f,Λs(f)):fH~s(W)}H~s(W)×Hs(W),\displaystyle:=\left\{(f,\Lambda_{s}(f)):\ f\in\tilde{H}^{s}(W)\right\}\subset\tilde{H}^{s}(W)\times H^{-s}(W),
𝒞a\displaystyle\mathcal{C}_{a} :={(f,Λ(f)):fH12(Ω)}H12(Ω)×H12(Ω).\displaystyle:=\left\{(f,\Lambda(f)):\ f\in{H}^{\frac{1}{2}}(\partial\Omega)\right\}\subset H^{\frac{1}{2}}(\partial\Omega)\times H^{-\frac{1}{2}}(\partial\Omega).

Then, there exists a bounded linear operator T:𝒞s,a𝒞aT:\mathcal{C}_{s,a}\rightarrow\mathcal{C}_{a} such that

T(𝒞s,a)¯H12(Ω)×H12(Ω)=𝒞a.\displaystyle\overline{T(\mathcal{C}_{s,a})}^{H^{\frac{1}{2}}(\partial\Omega)\times H^{-\frac{1}{2}}(\partial\Omega)}=\mathcal{C}_{a}.

Here the operator T:𝒞s,a𝒞sT:\mathcal{C}_{s,a}\rightarrow\mathcal{C}_{s} is given by

T(f,Λs(f)):=(v|Ω,νv|Ω),\displaystyle T(f,\Lambda_{s}(f)):=(v|_{\partial\Omega},\partial_{\nu}v|_{\partial\Omega}),

with ν\nu denoting the outer normal to Ω\partial\Omega and v(x):=0xn+112su~f(x,xn+1)𝑑xn+1v(x^{\prime}):=\int\limits_{0}^{\infty}x_{n+1}^{1-2s}\tilde{u}_{f}(x^{\prime},x_{n+1})dx_{n+1}; the function u~f\tilde{u}_{f} being the Caffarelli-Silvestre extension associated with the solution ufu_{f} of (4) with data ff.

The obstructions for reversing the procedure outlined in Theorem 1 thus exactly stem from inverting the bounded linear operator TT and the density result in Proposition 1.2 (instead of an onto mapping property). This obstruction can also be factored into two steps: The first consists of the obstruction of recovering

(xn+112su~|Ω×+,xn+112sνu~|Ω×+)\displaystyle(x_{n+1}^{1-2s}\tilde{u}|_{\partial\Omega\times\mathbb{R}_{+}},x_{n+1}^{1-2s}\partial_{\nu}\tilde{u}|_{\partial\Omega\times\mathbb{R}_{+}})

from the averaged data

(v|Ω,νv|Ω).\displaystyle(v|_{\partial\Omega},\partial_{\nu}v|_{\partial\Omega}).

The second obstruction is given by continuing the data (xn+112su~|Ω×+,xn+112sνu~|Ω×+)(x_{n+1}^{1-2s}\tilde{u}|_{\partial\Omega\times\mathbb{R}_{+}},x_{n+1}^{1-2s}\partial_{\nu}\tilde{u}|_{\partial\Omega\times\mathbb{R}_{+}}) to the data (f,Λs(f))(f,\Lambda_{s}(f)). The crucial difficulty here consists in the first obstruction. Indeed, while the second continuation step is certainly highly (i.e., logarithmically) unstable, it consists of a unique continuation argument (in an unbounded domain), which is comparably well-understood.

It is an interesting question to study the inversion properties of the operator TT and the associated obstructions to inverting the outlined reduction argument in more detail. We plan to explore this further in future work.

1.3. Outline of the proof

In concluding the introduction, let us give the formal, non-rigorous argument for the relation between u~\tilde{u} and vv: Integrating the equation xn+112sau~=0\nabla\cdot x_{n+1}^{1-2s}a\nabla\tilde{u}=0 with respect to the xn+1x_{n+1} variable yields

0=av+0n+1xn+112sn+1u~(x,xn+1)dxn+1=av,\displaystyle 0=\nabla^{\prime}\cdot a\nabla^{\prime}v+\int\limits_{0}^{\infty}\partial_{n+1}x_{n+1}^{1-2s}\partial_{n+1}\tilde{u}(x^{\prime},x_{n+1})dx_{n+1}=\nabla^{\prime}\cdot a\nabla^{\prime}v,

for xΩx^{\prime}\in\Omega, where we have used that 0n+1xn+112sn+1u~(x,xn+1)dxn+1=0\int\limits_{0}^{\infty}\partial_{n+1}x_{n+1}^{1-2s}\partial_{n+1}\tilde{u}(x^{\prime},x_{n+1})dx_{n+1}=0 holds by the boundary condition on Ω×{0}\Omega\times\{0\} and the decay of u~\tilde{u} (and its derivatives) at infinity.

Moreover, formally, the associated Dirichlet-to-Neumann map is given by

v(x):=0xn+112su~(x,xn+1)𝑑xn+1νv(x):=ν0xn+112su~(x,xn+1)𝑑xn+1 for xΩ.\displaystyle v(x^{\prime}):=\int\limits_{0}^{\infty}x_{n+1}^{1-2s}\tilde{u}(x^{\prime},x_{n+1})dx_{n+1}\mapsto\partial_{\nu}v(x^{\prime}):=\partial_{\nu}\int\limits_{0}^{\infty}x_{n+1}^{1-2s}\tilde{u}(x^{\prime},x_{n+1})dx_{n+1}\mbox{ for }x^{\prime}\in\partial\Omega.

A key step in our argument for Theorem 1 will be the rigorous derivation of these equations together with the proof of the fact that the knowledge of the (partial) nonlocal Dirichlet-to-Neumann map (3) yields the (up to closure) full Dirichlet-to-Neumann map for the nonlocal problem. In this context we prove that the set of functions v(x)H12(Ω)v(x^{\prime})\in H^{\frac{1}{2}}(\partial\Omega) which are obtained by this procedure form a dense subset of H12(Ω)H^{\frac{1}{2}}(\partial\Omega). Hence, the full Dirichlet-to-Neumann map for the local problem is determined from the nonlocal one. In particular, if there is uniqueness on the level of the local problem for the matrix aa, then one also has uniqueness of the coefficients aa in the nonlocal problem. A key observation which will be relevant for our arguments consists of a duality principle which we will discuss in the next section.

In the remainder of the article, we make the above outlined arguments precise, and provide the density result and the argument for the constructive Tikhonov approximation of the Dirichlet-to-Neumann data.

1.4. Relation to the literature

Since the introduction and the derivation of partial data uniqueness results for the fractional Calderón problem in the seminal work [GSU20], there has been an intensive study of nonlocal inverse problems of Calderón type. This includes the investigation of low regularity partial data uniqueness [RS20], stability and instability results [RS20, RS18] and (single measurement) recovery results for potentials [GRSU20, Rül21, HL19, HL20], the analysis of Liouville type transforms as well as the study of lower order drift type contributions [Cov20b, Cov20a, CLR20, CMRU22, BGU21]. Further there is a, by now, broad literature on related nonlocal models and the associated techniques have also proved of relevance in local problems, see for instance [RS19a, GFRZ22, RS19b, Rül19, Li20, LO20, CdHS22, LLR20, Li21] and the references therein for a non-exhaustive list on the by now large field. Many of these results rely on the strong global unique continuation properties of the fractional Laplacian [FF14, Rül15]. We refer to the surveys [Sal17, Rül18] as well as to the literature in the above cited articles for further references.

Moreover, more recently, also the recovery of leading order contributions has been investigated in [Fei21, FGKU21] from source type data. Here a key ingredient consists of the heat kernel representation of the fractional Laplacian and Kannai type transforms. These allow to transfer the problem to a hyperbolic problem which can be addressed by means of the boundary control method.

Due to the very strong results for the fractional Calderón problem – of which many local counterparts are open problems – the relation between local and nonlocal Calderón type problems is a major question. In this context, in [CR21] a relation between the local Robin problem and fractional Calderón problems involving lower order potentials had been outlined. In [GU21] a first result on the relation of Calderón type problems as in the present article was established building on heat kernel representations of the fractional Laplacian. In this article, we complement this with a (degenerate) elliptic approach on the relation between these two problems. This in particular allows for completely constructive results and also to identify key obstructions on reversing this procedure (formulated in Proposition 1.2 above). We plan to study this further in future work.

1.5. Notation

Before turning to the main body of the text, we introduce some notation which will be frequently used in the remainder of the article:

  • Whenever an inequality (respectively, an identity) holds up to a positive constant whose exact value is not relevant for our arguments, we will use the symbols \lesssim and \gtrsim (respectively \approx).

  • We set +n+1:={(x,xn+1)n+1:xn+1>0}\mathbb{R}^{n+1}_{+}:=\{(x^{\prime},x_{n+1})\in\mathbb{R}^{n+1}:\ x_{n+1}>0\} and use the notation +n+1¯:={(x,xn+1)n+1:xn+10}\overline{\mathbb{R}^{n+1}_{+}}:=\{(x^{\prime},x_{n+1})\in\mathbb{R}^{n+1}:\ x_{n+1}\geq 0\}.

  • In order to denote the symmetric n×nn\times n matrices we write symn×n\mathbb{R}^{n\times n}_{sym}. In case that we seek to denote positive definiteness, we may also use the index ‘++’.

  • We also define the local operator L:=aL:=\nabla^{\prime}\cdot a\nabla^{\prime}. Here \nabla^{\prime} indicates the gradient in n\mathbb{R}^{n} (i.e., in the tangential directions), as opposed to the symbol \nabla, which for us indicates differentiation in +n+1\mathbb{R}^{n+1}_{+}.

  • Next, we define a number of function spaces on which our arguments will rely. Following [McL00, Section 3], for ss\in\mathbb{R} we define the inhomogeneous fractional Sobolev space

    Hs(n):={u𝒮(n):uHs(n):=(1+|ξ|2)s/2u^(ξ)L2(n)<},H^{s}(\mathbb{R}^{n}):=\{u\in\mathcal{S}^{\prime}(\mathbb{R}^{n}):\|u\|_{H^{s}(\mathbb{R}^{n})}:=\|(1+|\xi|^{2})^{s/2}\hat{u}(\xi)\|_{L^{2}(\mathbb{R}^{n})}<\infty\},

    and the homogeneous fractional Sobolev space

    H˙s(n):={u𝒮(n):uH˙s(n):=|ξ|su^(ξ)L2(n)<}.\dot{H}^{s}(\mathbb{R}^{n}):=\{u\in\mathcal{S}^{\prime}(\mathbb{R}^{n}):\|u\|_{\dot{H}^{s}(\mathbb{R}^{n})}:=\||\xi|^{s}\hat{u}(\xi)\|_{L^{2}(\mathbb{R}^{n})}<\infty\}.

    If Ωn\Omega\subset\mathbb{R}^{n} is open, bounded and has Lipschitz boundary, we also let

    Hs(Ω):={u|Ω,uHs(n)},H^{s}(\Omega):=\{u|_{\Omega},u\in H^{s}(\mathbb{R}^{n})\},

    equipped with the quotient norm uHs(Ω):=inf{UHs(n):U|Ω=u}.\|u\|_{H^{s}(\Omega)}:=\inf\{\|U\|_{H^{s}(\mathbb{R}^{n})}:U|_{\Omega}=u\}. Moreover, we define

    H~s(Ω):=Cc(Ω)¯Hs(n),HΩ¯s:={uHs(n):supp(u)Ω¯},\widetilde{H}^{s}(\Omega):=\overline{C^{\infty}_{c}(\Omega)}^{H^{s}(\mathbb{R}^{n})},\qquad H^{s}_{\overline{\Omega}}:=\{u\in H^{s}(\mathbb{R}^{n}):\text{supp}(u)\subseteq\overline{\Omega}\},

    and observe that H~s(Ω)=HΩ¯s\widetilde{H}^{s}(\Omega)=H^{s}_{\overline{\Omega}} holds under our regularity assumptions (which will always presuppose that Ω\Omega is Lipschitz). Further, we have

    (H~s(Ω))=Hs(Ω),and(Hs(Ω))=H~s(Ω).(\widetilde{H}^{s}(\Omega))^{*}=H^{-s}(\Omega),\qquad\mbox{and}\qquad(H^{s}(\Omega))^{*}=\widetilde{H}^{-s}(\Omega).

    The corresponding fractional Sobolev spaces of the homogeneous kind on a bounded set can be defined in an analogous way. We will also make use of the following weighted (inhomogeneous and homogeneous) Sobolev spaces, which we define for s(0,1)s\in(0,1):

    H1(+n+1,xn+112s)\displaystyle H^{1}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}) :={u:+n+1:xn+112s2uL2(n)+xn+112s2uL2(n)<},\displaystyle:=\{u:\mathbb{R}^{n+1}_{+}\rightarrow\mathbb{R}:\|x_{n+1}^{\frac{1-2s}{2}}u\|_{L^{2}(\mathbb{R}^{n})}+\|x_{n+1}^{\frac{1-2s}{2}}\nabla u\|_{L^{2}(\mathbb{R}^{n})}<\infty\},
    H˙1(+n+1,xn+112s)\displaystyle\dot{H}^{1}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}) :={u:+n+1:xn+112s2uL2(n)<}.\displaystyle:=\{u:\mathbb{R}^{n+1}_{+}\rightarrow\mathbb{R}:\|x_{n+1}^{\frac{1-2s}{2}}\nabla u\|_{L^{2}(\mathbb{R}^{n})}<\infty\}.

1.6. Organization of the article

The remainder of the article is organized as follows: In Section 2 we recall a duality principle which underlies our reduction of the fractional Calderón problem to its local counterpart. Here our key result is the converse of the usually used form of the duality which is encoded in Theorems 3 and 4. In this context, we presuppose the well-definedness of the function vv from (8). This requires a discussion of regularity and integrability properties of the Caffarelli-Silvestre extension. Due to its technical character, this is postponed to Section 6 below. Building on the results of Theorems 3, 4, in Section 3 we show that the local Dirichlet-to-Neumann map is determined by its nonlocal version. Here, due to the different dimensionalities of the Caffarelli-Silvestre extension (acting on +n+1\mathbb{R}^{n+1}_{+}) certain regularity and integrability questions are of relevance. Given the density result, in Sections 4 and 5 we present the proofs of Theorem 2 and of Proposition 1.1. Finally, in Section 6 we discuss the well-definedness and regularity of the function vv which is necessary for the above discussion.

2. A duality principle

In order to deduce the relation between the functions vv and u~\tilde{u}, we recall a general duality principle which was first formulated in [CS07, Section 2.3] (see also [CS14, Proposition 3.6]) for the constant coefficient setting. We state this for classical solutions to the variable coefficient problem. The central conclusion for weak solutions will be obtained in combination with the regularity results from Section 6 (see Theorems 3 and 4 below).

Proposition 2.1 (Duality).

Let s(0,1)s\in(0,1), nn\in\mathbb{N}, let a~C2(+n+1¯,(n+1)×(n+1))\tilde{a}\in C^{2}(\overline{\mathbb{R}^{n+1}_{+}},\mathbb{R}^{(n+1)\times(n+1)}) be of the form a~(x)=(a(x)001)\tilde{a}(x^{\prime})=\begin{pmatrix}a(x^{\prime})&0\\ 0&1\end{pmatrix} where aC2(n,symn×n)a\in{C^{2}(\mathbb{R}^{n},\mathbb{R}^{n\times n}_{sym})} is uniformly elliptic. Let hC0(n)h\in C^{0}(\mathbb{R}^{n}). Assume that u1C2(+n+1)u_{1}\in C^{2}(\mathbb{R}^{n+1}_{+}) with xn+12s1n+1u1C0(+n+1¯)x_{n+1}^{2s-1}\partial_{n+1}u_{1}\in C^{0}(\overline{\mathbb{R}^{n+1}_{+}}) is a classical solution to

(11) xn+12s1a~u1=0 in +n+1,limxn+10xn+12s1n+1u1=h on n×{0}.\begin{split}\nabla\cdot x_{n+1}^{2s-1}\tilde{a}\nabla u_{1}&=0\mbox{ in }\mathbb{R}^{n+1}_{+},\\ \lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{2s-1}\partial_{n+1}u_{1}&=h\mbox{ on }\mathbb{R}^{n}\times\{0\}.\end{split}

Then the function u2(x,xn+1):=xn+12s1n+1u1(x,xn+1)u_{2}(x^{\prime},x_{n+1}):=x_{n+1}^{2s-1}\partial_{n+1}u_{1}(x^{\prime},x_{n+1}) is a classical solution to

(12) xn+112sa~u2=0 in +n+1,u2=h on n×{0}.\begin{split}\nabla\cdot x_{n+1}^{1-2s}\tilde{a}\nabla u_{2}&=0\mbox{ in }\mathbb{R}^{n+1}_{+},\\ u_{2}&=h\mbox{ on }\mathbb{R}^{n}\times\{0\}.\end{split}

For completeness, we include the short proof for this result.

Proof.

We observe that for xn+1>0x_{n+1}>0 we have

xn+112su2\displaystyle\nabla\cdot x_{n+1}^{1-2s}\nabla u_{2} =xn+112sxn+12s1n+1u1\displaystyle=\nabla\cdot x_{n+1}^{1-2s}\nabla x_{n+1}^{2s-1}\partial_{n+1}u_{1}
=n+1au1+n+1xn+112s(n+1xn+12s1n+1u1)\displaystyle=\partial_{n+1}\nabla^{\prime}\cdot a\nabla^{\prime}u_{1}+\partial_{n+1}x_{n+1}^{1-2s}(\partial_{n+1}x_{n+1}^{{2s-1}}\partial_{n+1}u_{1})
=n+1xn+112s(xn+12s1a~u1)=0.\displaystyle=\partial_{n+1}x_{n+1}^{1-2s}(\nabla\cdot x_{n+1}^{{2s-1}}\tilde{a}\nabla u_{1})=0.

The identity at the boundary follows by definition and the regularity assumptions. ∎

In what follows we will be mainly interested in (suitable weak formulations of) the converse of the relation outlined in Proposition 2.1. Motivated by the discussion in the previous proposition, we therefore consider the function

(13) w(x,xn+1):=xn+1t12su~(x,t)𝑑t,xn+1>0,\displaystyle w(x^{\prime},x_{n+1}):=\int\limits_{x_{n+1}}^{\infty}t^{1-2s}\tilde{u}(x^{\prime},t)dt,\qquad x_{n+1}>0,

where u~H˙1(+n+1,xn+112s)\tilde{u}\in\dot{H}^{1}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}) is a solution to the equation (12) with hH~s(W)h\in\tilde{H}^{s}(W) and WnW\subset\mathbb{R}^{n} an open, bounded Lipschitz domain. Using kernel estimates, it can be shown that the integral defining ww is finite for each xn+1>0x_{n+1}>0 and that for every xn+1>0x_{n+1}>0 the function ww is as regular as the coefficient aa permits (e.g., CC^{\infty} if aa is smooth). Moreover, the more detailed regularity estimates in Section 6 even allow to conclude that the limit v(x):=w(x,0)v(x^{\prime}):=w(x^{\prime},0) is well-defined and that v(x)H1(Ω){v(x^{\prime})}\in H^{1}(\Omega). We refer to Proposition 6.1 in Section 6 for an analysis of this function.

Now, the relevance of the function ww stems from the fact that for classical solutions u~\tilde{u} with sufficient tangential and normal decay, it indeed reverses the relation formulated in Proposition 2.1. More precisely, for classical solutions one directly obtains from formal calculations that

(14) (a)1sv=u~(x,0)=u(x) for xn.\displaystyle(-\nabla^{\prime}\cdot a\nabla^{\prime})^{1-s}v=-\tilde{u}(x^{\prime},0)=-u(x^{\prime})\mbox{ for }x^{\prime}\in\mathbb{R}^{n}.

Here (a)1sv(-\nabla^{\prime}\cdot a\nabla^{\prime})^{1-s}v is defined in the sense of Caffarelli-Silvestre extensions, that is

(a)1sv:=c1slimxn+10xn+12s1n+1g~,(-\nabla^{\prime}\cdot a\nabla^{\prime})^{1-s}v:=c_{1-s}\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{2s-1}\partial_{n+1}{\tilde{g}},

where g~\tilde{g} is the classical, decaying solution of the Caffarelli-Silvestre extension problem

(15) xn+12s1a~g~=0 in +n+1,g~=v on n.\displaystyle\begin{split}\nabla\cdot x_{n+1}^{2s-1}\tilde{a}\nabla{\tilde{g}}&=0\mbox{ in }\mathbb{R}^{n+1}_{+},\\ {\tilde{g}}&=v\mbox{ on }\mathbb{R}^{n}.\end{split}

We note that by a short formal calculation, the function ww from (13) (see the argument below) satisfies this equation. Using the semi-group property of the fractional Laplacian, we (formally) immediately obtain that

(a)v=(a)su in n,\displaystyle(-\nabla^{\prime}\cdot a\nabla^{\prime})v=(-\nabla^{\prime}\cdot a\nabla^{\prime})^{s}u\mbox{ in }\mathbb{R}^{n},

and thus, in particular, (a)v=0(-\nabla^{\prime}\cdot a\nabla^{\prime})v=0 in Ω\Omega.

Indeed, let us first give a non-rigorous argument for these relations: To this end, let us first show that ww formally satisfies (15) (the rigorous derivation will be carried out in Theorem 3 below). Here it suffices to prove the bulk equation, since the boundary equation is formally valid by construction. For the bulk equation, we observe that

xn+12s1w\displaystyle\nabla\cdot x_{n+1}^{2s-1}\nabla w =xn+1t12sxn+12s1Δu~(x,t)𝑑txn+1u~(x,xn+1)\displaystyle=\int\limits_{x_{n+1}}^{\infty}t^{1-2s}x_{n+1}^{2s-1}\Delta^{\prime}\tilde{u}(x^{\prime},t)dt-\partial_{x_{n+1}}\tilde{u}(x^{\prime},x_{n+1})
=xn+1xn+12s1tt12stu~(x,t)dtxn+1u~(x,xn+1)\displaystyle=-\int\limits_{x_{n+1}}^{\infty}x_{n+1}^{2s-1}\partial_{t}t^{1-2s}\partial_{t}\tilde{u}(x^{\prime},t)dt-\partial_{x_{n+1}}\tilde{u}(x^{\prime},x_{n+1})
=xn+1u~(x,xn+1)xn+1u~(x,xn+1)=0.\displaystyle=\partial_{x_{n+1}}\tilde{u}(x^{\prime},x_{n+1})-\partial_{x_{n+1}}\tilde{u}(x^{\prime},x_{n+1})=0.

Finally, formally, the identity (14) follows by definition of ww:

limxn+10xn+12s1xn+1w(x,xn+1)=limxn+10u~(x,xn+1)=u(x).\displaystyle\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{2s-1}\partial_{x_{n+1}}w(x^{\prime},x_{n+1})=\lim\limits_{x_{n+1}\rightarrow 0}\tilde{u}(x^{\prime},x_{n+1})=u(x^{\prime}).

With this discussion in hand, a key ingredient in our argument will thus rely on making these formal computations rigorous, which is the content of the next results and of the regularity estimates in Section 6.

Theorem 3.

Let s(0,1)s\in(0,1), nn\in\mathbb{N}. Let a~C2(+n+1¯,(n+1)×(n+1))\tilde{a}\in C^{2}(\overline{\mathbb{R}^{n+1}_{+}},\mathbb{R}^{(n+1)\times(n+1)}) be of the form a~(x)=(a(x)001)\tilde{a}(x^{\prime})=\begin{pmatrix}a(x^{\prime})&0\\ 0&1\end{pmatrix} where aC2(n,symn×n)a\in{C^{2}(\mathbb{R}^{n},\mathbb{R}^{n\times n}_{sym})} is uniformly elliptic. Let u~H1(+n+1,xn+112s)\tilde{u}\in H^{1}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}) be the Caffarelli-Silvestre extension of uHs(n)u\in H^{s}(\mathbb{R}^{n}) with supp(u)n\text{supp}(u)\subset\mathbb{R}^{n} compact. Consider v(x):=0t12su~(x,t)𝑑tv(x^{\prime}):=\int_{0}^{\infty}t^{1-2s}\tilde{u}(x^{\prime},t)dt. Assume that vH1(Ω)v\in H^{1}(\Omega^{\prime}) for some Ωn\Omega^{\prime}\subset\mathbb{R}^{n} open, bounded, Lipschitz. Then, vv is a weak solution to

av=(a)su in Ω,\displaystyle\nabla^{\prime}\cdot a\nabla^{\prime}v=(-\nabla^{\prime}\cdot a\nabla^{\prime})^{s}u\mbox{ in }\Omega^{\prime},

i.e., the following identity holds:

Ωa(x)v(x)φ(x)𝑑x=nφ(x)limt0t12stu~(x,t)dx, for all φH01(Ω).\displaystyle\int\limits_{\Omega^{\prime}}a(x^{\prime})\nabla^{\prime}v(x^{\prime})\cdot\nabla^{\prime}\varphi(x^{\prime})dx^{\prime}=\int\limits_{\mathbb{R}^{n}}\varphi(x^{\prime})\lim\limits_{t\rightarrow 0}t^{1-2s}\partial_{t}\tilde{u}(x^{\prime},t)dx^{\prime},\ \mbox{ for all }\varphi\in H^{1}_{0}(\Omega^{\prime}).
Remark 2.2.

We note that the expression

nφ(x)limt0t12stu~(x,t)dx\displaystyle\int\limits_{\mathbb{R}^{n}}\varphi(x^{\prime})\lim\limits_{t\rightarrow 0}t^{1-2s}\partial_{t}\tilde{u}(x^{\prime},t)dx^{\prime}

is understood as an HsHsH^{-s}-H^{s} duality pairing, which is well-defined since limt0t12stu~(x,t)H˙s(n)\lim\limits_{t\rightarrow 0}t^{1-2s}\partial_{t}\tilde{u}(x^{\prime},t)\in\dot{H}^{-s}(\mathbb{R}^{n}) for solutions to the Caffarelli-Silvestre extension of Hs(n)H^{s}(\mathbb{R}^{n}) functions with compact support.

Proof.

We first note that, by density, it suffices to consider φCc(Ω)\varphi\in C_{c}^{\infty}(\Omega^{\prime}). Next, by construction of vv, we obtain

(16) Ωavφdx=navφdx=na0t12su~(x,t)𝑑tφ(x)𝑑x=limkna0t12su~(x,t)ηk(t)𝑑tφ(x)𝑑x.\displaystyle\begin{split}\int\limits_{\Omega^{\prime}}a\nabla^{\prime}v\cdot\nabla^{\prime}\varphi dx^{\prime}&=\int\limits_{\mathbb{R}^{n}}a\nabla^{\prime}v\cdot\nabla^{\prime}\varphi dx^{\prime}\\ &=\int\limits_{\mathbb{R}^{n}}a\nabla^{\prime}\int\limits_{0}^{\infty}t^{1-2s}\tilde{u}(x^{\prime},t)dt\cdot\nabla^{\prime}\varphi(x^{\prime})dx^{\prime}\\ &=\lim\limits_{k\rightarrow\infty}\int\limits_{\mathbb{R}^{n}}a\nabla^{\prime}\int\limits_{0}^{\infty}t^{1-2s}\tilde{u}(x^{\prime},t)\eta_{k}(t)dt\cdot\nabla^{\prime}\varphi(x^{\prime})dx^{\prime}.\end{split}

Here ηk(t)=η1(t/k)\eta_{k}(t)=\eta_{1}(t/k), where η1:[0,)\eta_{1}:[0,\infty)\rightarrow\mathbb{R} is a smooth function with η1(t)=1\eta_{1}(t)=1 for t[0,1)t\in[0,1) and η1(t)=0\eta_{1}(t)=0 for t2t\geq 2. The convergence in (16) follows from the fact that

0t12su~(x,t)ηk(t)𝑑t0t12su~(x,t)𝑑t in L2(Ω),\displaystyle\nabla^{\prime}\int\limits_{0}^{\infty}t^{1-2s}\tilde{u}(x^{\prime},t)\eta_{k}(t)dt\rightarrow\nabla^{\prime}\int\limits_{0}^{\infty}t^{1-2s}\tilde{u}(x^{\prime},t)dt\mbox{ in }L^{2}(\Omega),

since, by virtue of equation (31) in Lemma 6.2 we have that

0t12su~(x,t)(1ηk)(t)𝑑tL2(Ω)\displaystyle\left\|\nabla^{\prime}\int\limits_{0}^{\infty}t^{1-2s}\tilde{u}(x^{\prime},t)(1-\eta_{k})(t)dt\right\|_{L^{2}(\Omega)} k2kt12s|u~(x,t)|dtL2(Ω)\displaystyle\leq\left\|\int\limits_{k}^{2k}t^{1-2s}|\nabla^{\prime}\tilde{u}(x^{\prime},t)|dt\right\|_{L^{2}(\Omega)}
kn2su~(,0)L1(Ω)\displaystyle\lesssim k^{-n-2s}\|\tilde{u}(\cdot,0)\|_{L^{1}(\Omega)}
kn2su~(,0)L2(Ω).\displaystyle\lesssim k^{-n-2s}\|\tilde{u}(\cdot,0)\|_{L^{2}(\Omega)}.

By the regularity of u~\tilde{u}, we compute that

na0t12su~(x,t)ηk(t)𝑑tφ(x)𝑑x=0nat12su~(x,t)(φ(x)ηk(t))dxdt.\displaystyle\int\limits_{\mathbb{R}^{n}}a\nabla^{\prime}\int\limits_{0}^{\infty}t^{1-2s}\tilde{u}(x^{\prime},t)\eta_{k}(t)dt\cdot\nabla^{\prime}\varphi(x^{\prime})dx^{\prime}=\int\limits_{0}^{\infty}\int\limits_{\mathbb{R}^{n}}at^{1-2s}\nabla^{\prime}\tilde{u}(x^{\prime},t)\cdot\nabla^{\prime}(\varphi(x^{\prime})\eta_{k}(t))dx^{\prime}dt.

This equality can be obtained by expressing the tangential derivative as a limit of difference quotients, and then using dominated convergence and Fubini’s theorem.

Invoking the equation for u~\tilde{u} then implies that

limk0nt12sau~(x,t)(φ(x)ηk(t))dxdt\displaystyle\lim\limits_{k\rightarrow\infty}\int\limits_{0}^{\infty}\int\limits_{\mathbb{R}^{n}}t^{1-2s}a\nabla^{\prime}\tilde{u}(x^{\prime},t)\cdot\nabla^{\prime}(\varphi(x^{\prime})\eta_{k}(t))dx^{\prime}dt
=limk0nt12stu~(x,t)t(φ(x)ηk(t))dxdt+nlimt0t12stu~(x,t)φ(x)dx.\displaystyle=-\lim\limits_{k\rightarrow\infty}\int\limits_{0}^{\infty}\int\limits_{\mathbb{R}^{n}}t^{1-2s}\partial_{t}\tilde{u}(x^{\prime},t)\partial_{t}(\varphi(x^{\prime})\eta_{k}(t))dx^{\prime}dt+\int\limits_{\mathbb{R}^{n}}\lim\limits_{t\rightarrow 0}t^{1-2s}\partial_{t}\tilde{u}(x^{\prime},t)\varphi(x^{\prime})dx^{\prime}.

It remains to argue that

limk0nt12stu~(x,t)t(φ(x)ηk(t))dxdt=0.\displaystyle\lim\limits_{k\rightarrow\infty}\int\limits_{0}^{\infty}\int\limits_{\mathbb{R}^{n}}t^{1-2s}\partial_{t}\tilde{u}(x^{\prime},t)\partial_{t}(\varphi(x^{\prime})\eta_{k}(t))dx^{\prime}dt=0.

Indeed, we have

limk0nt12stu~(x,t)φ(x)tηk(t)dxdt=0,\displaystyle\lim\limits_{k\rightarrow\infty}\int\limits_{0}^{\infty}\int\limits_{\mathbb{R}^{n}}t^{1-2s}\partial_{t}\tilde{u}(x^{\prime},t)\varphi(x^{\prime})\partial_{t}\eta_{k}(t)dx^{\prime}dt=0,

which is a consequence of the fact that |tu~(x,t)|kn1|\partial_{t}\tilde{u}(x^{\prime},t)|\lesssim k^{-n-1} and |tηk(t)|Ck1|\partial_{t}\eta_{k}(t)|\leq Ck^{-1} for t(k,2k)t\in(k,2k) (see Lemma 6.2 in Section 6) and the compact support condition for φ\varphi and η1\eta_{1}. ∎

Combining the above result with the regularity for vv which is deduced in Proposition 6.1 in Section 6 we conclude that the function vv satisfies the following equation:

Theorem 4.

Let s(0,1)s\in(0,1), nn\in\mathbb{N}. Let a~C2(+n+1¯,(n+1)×(n+1))\tilde{a}\in C^{2}(\overline{\mathbb{R}^{n+1}_{+}},\mathbb{R}^{(n+1)\times(n+1)}) be of the form a~(x)=(a(x)001)\tilde{a}(x^{\prime})=\begin{pmatrix}a(x^{\prime})&0\\ 0&1\end{pmatrix} where aC2(n,symn×n)a\in{C^{2}(\mathbb{R}^{n},\mathbb{R}^{n\times n}_{sym})} is uniformly elliptic. Assume that Ω,Wn\Omega,W\subset\mathbb{R}^{n} are non-empty, bounded and open Lipschitz sets such that Ω¯W¯=\overline{\Omega}\cap\overline{W}=\emptyset. Let ufHs(n)u_{f}\in H^{s}(\mathbb{R}^{n}) be the unique solution of (4) with exterior value fH~s(W)f\in\tilde{H}^{s}(W), and let u~H1(+n+1,xn+112s)\tilde{u}\in H^{1}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}) be the Caffarelli-Silvestre extension of ufu_{f}. Consider v(x):=0t12su~(x,t)𝑑tv(x^{\prime}):=\int_{0}^{\infty}t^{1-2s}\tilde{u}(x^{\prime},t)dt. Then, vH1(Ω)v\in H^{1}(\Omega) and vv is a weak solution to

av=0 in Ω,\displaystyle\nabla^{\prime}\cdot a\nabla^{\prime}v=0\mbox{ in }\Omega,

i.e., the following identity holds:

Ωavφdx=0, for all φH01(Ω).\displaystyle\int\limits_{\Omega}a\nabla^{\prime}v\cdot\nabla^{\prime}\varphi dx^{\prime}=0,\ \mbox{ for all }\varphi\in H^{1}_{0}(\Omega).
Proof.

The result follows immediately from Theorem 3 and by the assumptions on u~\tilde{u} and ufu_{f}, since vH1(Ω)v\in H^{1}(\Omega) by Proposition 6.1. ∎

3. Density argument for s(0,1)s\in(0,1)

Given the results on the equation for vv in the interior of Ω\Omega, we seek to prove that the resulting Cauchy data which are inherited from the nonlocal Calderón problem form a dense set in the set of Cauchy data for the local problem. The key observation here will be the following density result:

Proposition 3.1.

Let n3n\geq 3 and s(0,1)s\in(0,1). Further suppose that Ω,Wn\Omega,W\subset\mathbb{R}^{n} are open, bounded Lipschitz domains with Ω¯W¯=\overline{\Omega}\cap\overline{W}=\emptyset. Let a~C2(n+1¯+,(n+1)×(n+1))\tilde{a}\in C^{2}(\overline{\mathbb{R}^{n+1}}_{+},\mathbb{R}^{(n+1)\times(n+1)}) be of the form a~(x)=(a(x)001)\tilde{a}(x^{\prime})=\begin{pmatrix}a(x^{\prime})&0\\ 0&1\end{pmatrix} where aC2(n,symn×n)a\in{C^{2}(\mathbb{R}^{n},\mathbb{R}^{n\times n}_{sym})} is uniformly elliptic and such that aIda\equiv Id in Ωe\Omega_{e}. Let ufH˙1(+n+1,xn+112s)u_{f}\in\dot{H}^{1}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}) be the unique weak solution of the equation

xn+112sa~uf\displaystyle\nabla\cdot x_{n+1}^{1-2s}\tilde{a}\nabla u_{f} =0 in +n+1,\displaystyle=0\mbox{ in }\mathbb{R}^{n+1}_{+},
uf\displaystyle u_{f} =f in Ωe×{0},\displaystyle=f\mbox{ in }\Omega_{e}\times\{0\},
limxn+10xn+112sn+1uf\displaystyle\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}u_{f} =0 in Ω,\displaystyle=0\mbox{ in }\Omega,

with fCc(W×{0})f\in C_{c}^{\infty}(W\times\{0\}). Moreover, define the sets VH1(Ω)V\subset H^{1}(\Omega) and VH12(Ω)V^{\prime}\subset H^{\frac{1}{2}}(\partial\Omega) as

V:={vf(x):=0t12suf(x,t)𝑑t,fCc(W)},V:={v|Ω,vV}.\displaystyle V:=\left\{v_{f}(x^{\prime}):=\int\limits_{0}^{\infty}t^{1-2s}u_{f}(x^{\prime},t)dt,\ f\in{C_{c}^{\infty}(W)}\right\},\qquad V^{\prime}:=\{v|_{\partial\Omega},v\in V\}.

Then, V¯=H12(Ω)\overline{V^{\prime}}=H^{\frac{1}{2}}(\partial\Omega).

3.1. A formal, non-rigorous argument for the density result

Before turning to the rigorous proof of Proposition 3.1, we give an informal outline of its proof only pointing out necessary modifications for a rigorous argument but without discussing the details necessary for the rigorous implementation of the result. A full proof, including the necessary limiting and cut-off arguments is then given in the next subsection. In order to avoid all technical details and to focus on the main idea, in the present heuristic section we present the argument only for the case a=Ida=Id and s=12s=\frac{1}{2}. The rigorous proof in Section 3.2 then provides the precise argument for the general case.

Sketch of proof of Proposition 3.1 (for a=Id,s=12a=Id,s=\frac{1}{2}).

We argue in three steps:
Step 1. We start by proving the density of VH1(Ω)V\subset H^{1}(\Omega) in SS, where

S:={vH1(Ω):Δv=0 in Ω}.S:=\{v\in H^{1}(\Omega):\Delta^{\prime}v=0\mbox{ in }\Omega\}.

By the Hahn-Banach theorem, it suffices to show that if ψH~1(Ω)\psi\in\tilde{H}^{-1}(\Omega) is such that ψ(vf)=0\psi(v_{f})=0 for all fCc(W)f\in C_{c}^{\infty}(W), then also ψ(v)=0\psi(v)=0 for all vSv\in S. Here we use the notation vf,ufv_{f},u_{f} as introduced in the formulation of the proposition.

In order to approach the density result, for ψH~1(Ω)\psi\in\tilde{H}^{-1}(\Omega) we introduce an auxiliary problem, which we will refer to as the adjoint problem:

(17) Δw=ψ in +n+1,w=0 in Ωe×{0},n+1w=0 in Ω×{0}.\displaystyle\begin{split}\Delta w&=\psi\mbox{ in }\mathbb{R}^{n+1}_{+},\\ w&=0\mbox{ in }\Omega_{e}\times\{0\},\\ \partial_{n+1}w&=0\mbox{ in }\Omega\times\{0\}.\end{split}

We will discuss its (weak) solvability in Lemma 3.2 below. Due to the lack of decay of ψ\psi in the normal variable this will rely on an “explicit” construction instead of a direct energy argument. With such a function ww given, we compute

(18) 0=ψ(vf)=ψ,0uf(,t)𝑑tH~1(Ω),H1(Ω)=nuftw(x,0)dxn0ufwdtdx=Wftw(x,0)dx+nw(x,0)tuf(x,0)dx=Wftw(x,0)dx,\begin{split}0&=\psi(v_{f})=\langle\psi,\int_{0}^{\infty}u_{f}(\cdot,t)dt\rangle_{\tilde{H}^{-1}(\Omega),H^{1}(\Omega)}\\ &=\int_{\mathbb{R}^{n}}u_{f}\partial_{t}w(x^{\prime},0)dx^{\prime}-\int_{\mathbb{R}^{n}}\int_{0}^{\infty}\nabla u_{f}\cdot\nabla wdtdx^{\prime}\\ &=\int\limits_{W}f\partial_{t}w(x^{\prime},0)dx^{\prime}+\int\limits_{\mathbb{R}^{n}}w(x^{\prime},0)\partial_{t}u_{f}(x^{\prime},0)dx^{\prime}\\ &=\int\limits_{W}f\partial_{t}w(x^{\prime},0)dx^{\prime},\end{split}

since ufu_{f} is a weak solution and because of the boundary conditions satisfied by vfv_{f} and ufu_{f}. We remark that on a rigorous level, we will have to insert suitable cut-off functions in order to make use of the equation satisfied by ww.

Step 2. By the arbitrary choice of fCc(W)f\in C^{\infty}_{c}(W) we now have tw=0\partial_{t}w=0 in W×{0}W\times\{0\}. By virtue of the unique continuation property, it then follows that w0w\equiv 0 in Ωe×+\Omega_{e}\times\mathbb{R}_{+}. In particular, both w|Ω×+w|_{\partial\Omega\times\mathbb{R}_{+}} and νw|Ω×+\partial_{\nu}w|_{\partial\Omega\times\mathbb{R}_{+}} vanish. We use this to conclude the Hahn-Banach argument. Let vSH1(Ω)v\in S\subset H^{1}(\Omega) and β1Cc((0,))\beta_{1}\in C_{c}^{\infty}((0,\infty)) such that 0β1(t)𝑑t=1\int\limits_{0}^{\infty}\beta_{1}(t)dt=1, β10\beta_{1}\geq 0 and supp(β1)(1,2)\text{supp}(\beta_{1})\subset(1,2). Assume further that βk(t)=k1β1(t/k)\beta_{k}(t)=k^{-1}\beta_{1}(t/k). By formula (22), the support assumptions on ψ\psi and ww, and using the fact that vSv\in S, we have

ψ(v)\displaystyle-\psi(v) =ψ(0βk(t)v𝑑t)=limkψ(0βk(t)v𝑑t)\displaystyle=-\psi\left(\int\limits_{0}^{\infty}\beta_{k}(t)vdt\right)=-\lim\limits_{k\rightarrow\infty}\psi\left(\int\limits_{0}^{\infty}\beta_{k}(t)vdt\right)
=limk(Ω0(vβk)wdtdx(Ω×+)vβkνwdtdx)\displaystyle=\lim\limits_{k\rightarrow\infty}\left(\int_{\Omega}\int_{0}^{\infty}\nabla(v\beta_{k})\cdot\nabla wdtdx^{\prime}-\int_{\partial(\Omega\times\mathbb{R}_{+})}v\beta_{k}\partial_{\nu}wdtdx^{\prime}\right)
=limk(Ωv(0βkw𝑑t)dx+Ω0vtβktwdtdx)\displaystyle=\lim\limits_{k\rightarrow\infty}\left(\int_{\Omega}\nabla^{\prime}v\cdot\nabla^{\prime}\left(\int_{0}^{\infty}\beta_{k}wdt\right)dx^{\prime}+\int\limits_{\Omega}\int\limits_{0}^{\infty}v\partial_{t}\beta_{k}\partial_{t}wdtdx^{\prime}\right)
=limk(Ω(vν)(0βkw𝑑t)𝑑x+Ω0vtβktwdtdx)\displaystyle=\lim\limits_{k\rightarrow\infty}\left(\int_{\partial\Omega}(\nabla^{\prime}v\cdot\nu^{\prime})\left(\int_{0}^{\infty}\beta_{k}wdt\right)dx^{\prime}+\int\limits_{\Omega}\int\limits_{0}^{\infty}v\partial_{t}\beta_{k}\partial_{t}wdtdx^{\prime}\right)
=limkΩ0vtβktwdtdx.\displaystyle=\lim\limits_{k\rightarrow\infty}\int\limits_{\Omega}\int\limits_{0}^{\infty}v\partial_{t}\beta_{k}\partial_{t}wdtdx^{\prime}.

It thus remains to show that

limkΩ0vtβktwdtdx=0.\displaystyle\lim\limits_{k\rightarrow\infty}\int\limits_{\Omega}\int\limits_{0}^{\infty}v\partial_{t}\beta_{k}\partial_{t}wdtdx^{\prime}=0.

This follows from the definition of βk\beta_{k}:

limkΩ0vtβktwdtdx=limkk2Ω(k,2k)vtβ1twdtdx=0.\displaystyle\lim\limits_{k\rightarrow\infty}\int\limits_{\Omega}\int\limits_{0}^{\infty}v\partial_{t}\beta_{k}\partial_{t}wdtdx^{\prime}=\lim\limits_{k\rightarrow\infty}k^{-2}\int\limits_{\Omega}\int\limits_{(k,2k)}v\partial_{t}\beta_{1}\partial_{t}wdtdx^{\prime}=0.

This formally proves the density of VH1(Ω)V\subset H^{1}(\Omega) in SS. As above, due to the absence of decay, on a rigorous level we need to use bounds for ww in order to deduce the claimed limit from above. Moreover, in what follows below, in order to deal with the case s(0,1)s\in(0,1) in a unified way, we will introduce slightly different vertical cut-off functions βk\beta_{k}. Hence in the rigorous proof below we will use suitable, more careful limiting arguments.

Step 3. The density result for VV^{\prime} then follows by trace estimates. ∎

In the next section we make these arguments rigorous and generalize them to s(0,1)s\in(0,1) and to variable coefficient, uniformly elliptic metrics aa as defined in the introduction. This includes proving the solvability for (17). In the rigorous implementation of Step 1 this will then necessitate various cut-off and limiting arguments which we present in detail below.

3.2. A “local” proof of the density result of Proposition 3.1

In this section, we present a first rigorous proof of Proposition 3.1. To this end, we begin by considering an auxiliary problem, which we will rely on in defining and discussing the adjoint equation in the density proof of Proposition 3.1.

Lemma 3.2 (Solvability of the adjoint problem).

Let s(0,1)s\in(0,1), n3n\geq 3. Let a~C2(+n+1¯,(n+1)×(n+1))\tilde{a}\in C^{2}(\overline{\mathbb{R}^{n+1}_{+}},\mathbb{R}^{(n+1)\times(n+1)}) be of the form a~(x)=(a(x)001)\tilde{a}(x^{\prime})=\begin{pmatrix}a(x^{\prime})&0\\ 0&1\end{pmatrix} where aC2(n,symn×n)a\in{C^{2}(\mathbb{R}^{n},\mathbb{R}^{n\times n}_{sym})} is uniformly elliptic. Let ψH~1(Ω)\psi\in\tilde{H}^{-1}(\Omega), and consider the problem

(19) xn+112sa~w=xn+112sψ in +n+1,w=0 in Ωe×{0},limxn+10xn+112sn+1w=0 in Ω.\displaystyle\begin{split}\nabla\cdot x_{n+1}^{1-2s}\tilde{a}\nabla w&=x_{n+1}^{1-2s}\psi\mbox{ in }\mathbb{R}^{n+1}_{+},\\ w&=0\mbox{ in }\Omega_{e}\times\{0\},\\ \lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}w&=0\mbox{ in }\Omega.\end{split}

The problem (19) is solvable in H˙loc,01(+n+1,xn+112s)\dot{H}^{1}_{loc,0}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}), that is, there exists wH˙loc1(+n+1,xn+112s)w\in\dot{H}^{1}_{loc}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}) whose trace vanishes in Ωe×{0}\Omega_{e}\times\{0\} and such that

+n+1xn+112sφa~wdx=ψ,0xn+112sφ(,xn+1)𝑑xn+1H~1(Ω),H1(Ω)\int\limits_{\mathbb{R}^{n+1}_{+}}x_{n+1}^{1-2s}\nabla\varphi\cdot\tilde{a}\nabla wdx=-\langle\psi,\int\limits_{0}^{\infty}x_{n+1}^{1-2s}\varphi(\cdot,x_{n+1})dx_{n+1}\rangle_{\tilde{H}^{-1}(\Omega),H^{1}(\Omega)}

for all

φHc,01(+n+1,xn+112s):={vH1(+n+1,xn+112s):v has compact support in +n+1¯,v|Ωe×{0}=0}.\displaystyle\varphi\in H^{1}_{c,0}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}):=\{v\in H^{1}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}):\ v\mbox{ has compact support in }\overline{\mathbb{R}^{n+1}_{+}},\ v|_{\Omega_{e}\times{\{0\}}}=0\}.
Remark 3.3.

By the regularity of ww, we may in particular define the (weighted) normal boundary data as a distribution in H˙locs(n)\dot{H}^{-s}_{loc}(\mathbb{R}^{n}): Indeed, for ww as in Lemma 3.2 and

φHc1(+n+1,xn+112s):={φH1(+n+1,xn+112s):φ has compact support in +n+1¯},\displaystyle\varphi\in H^{1}_{c}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}):=\{\varphi\in H^{1}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}):\ \varphi\mbox{ has compact support in }\overline{\mathbb{R}^{n+1}_{+}}\},

we set

nφ(x,0)limxn+10xn+112sn+1wdx\displaystyle\int_{\mathbb{R}^{n}}\varphi(x^{\prime},0)\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}wdx^{\prime} :=+n+1xn+112sφa~wdx\displaystyle:=\int_{\mathbb{R}^{n+1}_{+}}x_{n+1}^{1-2s}\nabla\varphi\cdot\tilde{a}\nabla wdx
+ψ,0xn+112sφ(,xn+1)𝑑xn+1H~1(Ω),H1(Ω),\displaystyle\quad+\langle\psi,\int\limits_{0}^{\infty}x_{n+1}^{1-2s}\varphi(\cdot,x_{n+1})dx_{n+1}\rangle_{\tilde{H}^{-1}(\Omega),H^{1}(\Omega)},

and note that by the assumptions on φ\varphi and the mapping properties of ww this indeed yields that limxn+10xn+112sn+1wH˙locs(n)\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}w\in\dot{H}^{-s}_{loc}(\mathbb{R}^{n}). Using this definition, in the proof of Proposition 3.1, for suitable choices of φ,v\varphi,v (which will be built from ww), we will often consider the following bilinear form:

B(v,φ):=+n+1xn+112sφa~vdx+nφ(x,0)limxn+10xn+112sn+1vdx.B(v,\varphi):=-\int_{\mathbb{R}^{n+1}_{+}}x_{n+1}^{1-2s}\nabla\varphi\cdot\tilde{a}\nabla vdx+\int_{\mathbb{R}^{n}}\varphi(x^{\prime},0)\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}vdx^{\prime}.
Proof of Lemma 3.2.

We start by observing that for n3n\geq 3 the nn-dimensional problem

au1\displaystyle\nabla^{\prime}\cdot a\nabla^{\prime}u_{1} =ψ in n\displaystyle=\psi\mbox{ in }\mathbb{R}^{n}

is solvable in the space L2nn2(n)H˙1(n)L^{\frac{2n}{n-2}}(\mathbb{R}^{n})\cap\dot{H}^{1}(\mathbb{R}^{n}) via standard energy estimates. We define the function u~1L(,L2nn2(n))L(,H˙1(n))\tilde{u}_{1}\in L^{\infty}(\mathbb{R},L^{\frac{2n}{n-2}}(\mathbb{R}^{n}))\cap L^{\infty}(\mathbb{R},\dot{H}^{1}(\mathbb{R}^{n})) to be constant in the vertical direction, i.e., u~1(x,xn+1):=u1(x)\tilde{u}_{1}(x^{\prime},x_{n+1}):=u_{1}(x^{\prime}). Building on this, we next consider the problem

(20) xn+112sa~u2=0 in +n+1,u2=0 on Ωe×{0},limxn+10xn+112sn+1u2=limxn+10xn+112sn+1Psu1 on Ω,\displaystyle\begin{split}\nabla\cdot x_{n+1}^{1-2s}\tilde{a}\nabla u_{2}&=0\mbox{ in }\mathbb{R}^{n+1}_{+},\\ u_{2}&=0\mbox{ on }\Omega_{e}\times\{0\},\\ \lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}u_{2}&=\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}P_{s}u_{1}\mbox{ on }\Omega,\end{split}

where PsP_{s} denotes the Caffarelli-Silvestre extension operator (c.f. [ST10] and (32)) extending functions from n\mathbb{R}^{n} to +n+1\mathbb{R}^{n+1}_{+} corresponding to the operator xn+112sa~\nabla\cdot x_{n+1}^{1-2s}\tilde{a}\nabla.

In order to deduce the existence of an H˙1(+n+1,xn+112s)\dot{H}^{1}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}) solution to (20), we next show that limxn+10xn+112sn+1Psu1Hs(Ω)\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}P_{s}u_{1}\in H^{-s}(\Omega). Indeed, this follows from the fact that u1H˙1(n)L2nn2(n)u_{1}\in\dot{H}^{1}(\mathbb{R}^{n})\cap L^{\frac{2n}{n-2}}(\mathbb{R}^{n}): We consider the splitting

(21) u1=ηBRu1+(1ηBR)mh(D)u1+(1ηBR)m(D)u1,\displaystyle u_{1}=\eta_{B_{R}}u_{1}+(1-\eta_{B_{R}})m_{h}(D)u_{1}+(1-\eta_{B_{R}})m_{\ell}(D)u_{1},

where R>0R>0 is such that Ω¯BR\overline{\Omega}\subset B_{R}, and ηBR\eta_{B_{R}} is a smooth cut-off function supported in B2RB_{2R} which equals one in BRB_{R}. The functions m(D)m_{\ell}(D) and mh(D)m_{h}(D) are a low and a high frequency projection, i.e., for f𝒮(n)f\in\mathcal{S}^{\prime}(\mathbb{R}^{n}) we set

m(D)f=1(χB2f),mh(D)f=1((1χB2)f),m_{\ell}(D)f=\operatorname{\mathcal{F}}^{-1}(\chi_{B_{2}}\operatorname{\mathcal{F}}f),\qquad m_{h}(D)f=\operatorname{\mathcal{F}}^{-1}((1-\chi_{B_{2}})\operatorname{\mathcal{F}}f),

where χB2\chi_{B_{2}} is a smooth cut-off function supported in B4B_{4} which equals one in B2B_{2}. Let gg indicate either ηBRu1\eta_{B_{R}}u_{1} or (1ηBR)mh(D)u1(1-\eta_{B_{R}})m_{h}(D)u_{1}. Since u1H˙1(n)L2nn2(n)u_{1}\in\dot{H}^{1}(\mathbb{R}^{n})\cap L^{\frac{2n}{n-2}}(\mathbb{R}^{n}), we immediately obtain that gH1(n)g\in H^{1}(\mathbb{R}^{n}), and thus gHs(n)g\in H^{s}(\mathbb{R}^{n}). As a consequence, by the trace estimate H˙1(+n+1,xn+112s)H˙s(n)\dot{H}^{1}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s})\hookrightarrow\dot{H}^{s}(\mathbb{R}^{n}) and by energy estimates, PsgH˙1(+n+1,xn+112s)P_{s}g\in\dot{H}^{1}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}). Thus, limxn+10xn+112sn+1PsgH˙s(n)\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}P_{s}g\in\dot{H}^{-s}(\mathbb{R}^{n}), and in particular limxn+10xn+112sn+1PsgHs(Ω)\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}P_{s}g\in H^{-s}(\Omega). For the remaining contribution on the right hand side of (21), we use Lemma 6.4 and the fact that m(D)m_{\ell}(D) is a Fourier multiplier mapping LpL^{p} into itself for all p(1,)p\in(1,\infty) in order to deduce that limxn+10xn+112sn+1Ps((1ηBR)m(D)u1)L2(Ω)\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}P_{s}((1-\eta_{B_{R}})m_{\ell}(D)u_{1})\in L^{2}(\Omega). This eventually implies the claim limxn+10xn+112sn+1Psu1Hs(Ω)\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}P_{s}u_{1}\in H^{-s}(\Omega).

We use this fact to discuss the solvability of (20). By the trace estimate H˙1(+n+1,xn+112s)H˙s(n)\dot{H}^{1}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s})\hookrightarrow\dot{H}^{s}(\mathbb{R}^{n}) the functional

H˙1(+n+1,xn+112s)φΩφlimxn+10xn+112sn+1Psu1dx\displaystyle\dot{H}^{1}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s})\ni\varphi\mapsto\int\limits_{\Omega}\varphi\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}P_{s}u_{1}dx^{\prime}

is bounded, and problem (20) has a unique solution u2H˙1(+n+1,xn+112s)u_{2}\in\dot{H}^{1}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}) satisfying the required vanishing exterior data by standard energy estimates. Moreover, by the Sobolev-trace inequality, we obtain that u2(,0)L2nn2s(n)u_{2}(\cdot,0)\in L^{\frac{2n}{n-2s}}(\mathbb{R}^{n}). The function u2u_{2} can hence also be viewed as Ps(u2(,0))P_{s}(u_{2}(\cdot,0)), that is as the extension of the L2nn2s(n)L^{\frac{2n}{n-2s}}(\mathbb{R}^{n}) function u2(,0)u_{2}(\cdot,0) with respect to the operator xn+112sa~\nabla\cdot x_{n+1}^{1-2s}\tilde{a}\nabla in +n+1\mathbb{R}^{n+1}_{+}.

We will now show that w:=u~1Psu1+u2w:=\tilde{u}_{1}-P_{s}u_{1}+u_{2} is a H˙loc,01(+n+1,xn+112s)\dot{H}^{1}_{loc,0}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}) solution of problem (19). To this end, we observe that for any φHc,01(+n+1,xn+112s)\varphi\in H^{1}_{c,0}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}) it holds

+n+1φxn+112sa~Psu1dx\displaystyle\int_{\mathbb{R}^{n+1}_{+}}\nabla\varphi\cdot x_{n+1}^{1-2s}\tilde{a}\nabla P_{s}u_{1}dx =nφ(x,0)limxn+10xn+112sn+1Psu1dx,\displaystyle=\int_{\mathbb{R}^{n}}\varphi(x^{\prime},0)\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}P_{s}u_{1}dx^{\prime},
+n+1φxn+112sa~u2dx\displaystyle\int_{\mathbb{R}^{n+1}_{+}}\nabla\varphi\cdot x_{n+1}^{1-2s}\tilde{a}\nabla u_{2}dx =Ωφ(x,0)limxn+10xn+112sn+1Psu1dx\displaystyle=\int_{\Omega}\varphi(x^{\prime},0)\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}P_{s}u_{1}dx^{\prime}
+Ωeφ(x,0)limxn+10xn+112sn+1u2dx.\displaystyle\quad+\int_{\Omega_{e}}\varphi(x^{\prime},0)\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}u_{2}dx^{\prime}.

Moreover, we have

+n+1φxn+112sa~u~1dx\displaystyle\int_{\mathbb{R}^{n+1}_{+}}\nabla\varphi\cdot x_{n+1}^{1-2s}\tilde{a}\nabla\tilde{u}_{1}dx =+n+1xn+112sφa(x)u1dx\displaystyle=\int_{\mathbb{R}^{n+1}_{+}}x_{n+1}^{1-2s}\nabla^{\prime}\varphi\cdot a(x^{\prime})\nabla^{\prime}u_{1}dx
=n(0xn+112sφ𝑑xn+1)a(x)u1dx\displaystyle=\int_{\mathbb{R}^{n}}\nabla^{\prime}\left(\int_{0}^{\infty}x_{n+1}^{1-2s}\varphi dx_{n+1}\right)\cdot a(x^{\prime})\nabla^{\prime}u_{1}dx^{\prime}
=ψ,0xn+112sφ(,xn+1)𝑑xn+1H~1(Ω),H1(Ω).\displaystyle=-\langle\psi,\int_{0}^{\infty}x_{n+1}^{1-2s}\varphi(\cdot,x_{n+1})dx_{n+1}\rangle_{\tilde{H}^{-1}(\Omega),H^{1}(\Omega)}.

Here we have used that 0xn+112sφ(,xn+1)𝑑xn+1H1(n)\int_{0}^{\infty}x_{n+1}^{1-2s}\varphi(\cdot,x_{n+1})dx_{n+1}\in H^{1}(\mathbb{R}^{n}) since, by the compactness of the support of φ\varphi, for M>0M>0 large enough it holds

0xn+112sφ(,xn+1)𝑑xn+1H˙1(n)2\displaystyle\left\|\int_{0}^{\infty}x_{n+1}^{1-2s}\varphi(\cdot,x_{n+1})dx_{n+1}\right\|^{2}_{\dot{H}^{1}(\mathbb{R}^{n})} =n|(0xn+112sφ𝑑xn+1)|2𝑑x\displaystyle=\int_{\mathbb{R}^{n}}\left|\nabla^{\prime}\left(\int_{0}^{\infty}x_{n+1}^{1-2s}\varphi dx_{n+1}\right)\right|^{2}dx^{\prime}
n|0Mxn+112sφdxn+1|2𝑑x\displaystyle\leq\int_{\mathbb{R}^{n}}\left|\int_{0}^{M}x_{n+1}^{1-2s}\nabla^{\prime}\varphi dx_{n+1}\right|^{2}dx^{\prime}
n(0Mxn+112s𝑑xn+1)(0Mxn+112s|φ|2𝑑xn+1)𝑑x\displaystyle\leq\int_{\mathbb{R}^{n}}\left(\int_{0}^{M}x_{n+1}^{1-2s}dx_{n+1}\right)\left(\int_{0}^{M}x_{n+1}^{1-2s}|\nabla^{\prime}\varphi|^{2}dx_{n+1}\right)dx^{\prime}
M22s22s+n+1xn+112s|φ|2𝑑x\displaystyle\leq\frac{M^{2-2s}}{2-2s}\int_{\mathbb{R}^{n+1}_{+}}x_{n+1}^{1-2s}|\nabla^{\prime}\varphi|^{2}dx
φH1(+n+1,xn+112s)2<,\displaystyle\lesssim\|\varphi\|^{2}_{H^{1}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s})}<\infty,

and similarly for the L2(n)L^{2}(\mathbb{R}^{n}) norm. The desired result now follows by combining the above computations for the components u~1,Psu1\tilde{u}_{1},P_{s}u_{1} and u2u_{2} of the candidate solution ww. ∎

Having fixed the ideas of our first proof of Proposition 3.1 in Section 3.1, we now turn to making them rigorous. To this end, in what follows we will carry out the relevant approximation and cut-off steps in detail.

Proof of Proposition 3.1.

We start by proving the density of VH1(Ω)V\subset H^{1}(\Omega) in SS, where

S:={vH1(Ω):av=0 in Ω}.S:=\{v\in H^{1}(\Omega):\nabla^{\prime}\cdot a\nabla^{\prime}v=0\mbox{ in }\Omega\}.

By the Hahn-Banach theorem, it suffices to show that if ψH~1(Ω)\psi\in\tilde{H}^{-1}(\Omega) is such that ψ(vf)=0\psi(v_{f})=0 for all fCc(W)f\in C_{c}^{\infty}(W), then also ψ(v)=0\psi(v)=0 for all vSv\in S. Here we use the notations vf,ufv_{f},u_{f} as introduced in the formulation of the proposition.

Step 1a: Setting up the duality argument. In order to approach the density result, we consider the auxiliary problem (19), which is solvable by virtue of Lemma 3.2. In order to make use of it, we have to consider test functions with compact support. To this end, in what follows we first introduce two cut-off functions, one for the vertical, one for the tangential directions. Let ηk(t):=η1(t/k)\eta_{k}(t):=\eta_{1}(t/k), where η1Cc([0,2])\eta_{1}\in C^{\infty}_{c}([0,2]) is a smooth cut-off function satisfying η11\eta_{1}\equiv 1 in a neighbourhood of t=0t=0 and 0t12sη1𝑑t=1\int\limits_{0}^{\infty}t^{1-2s}\eta_{1}dt=1. Observe that in particular

(22) k2s20t12sηk(t)𝑑t=k2s20t12sη1(t/k)𝑑t=0t12sη1(t)𝑑t=1.k^{2s-2}\int\limits_{0}^{\infty}t^{1-2s}\eta_{k}(t)dt=k^{2s-2}\int\limits_{0}^{\infty}t^{1-2s}\eta_{1}(t/k)dt=\int\limits_{0}^{\infty}t^{1-2s}\eta_{1}(t)dt=1.

Moreover, if R>0R>0 is so large that Ω¯W¯BR\overline{\Omega}\cup\overline{W}\subset B_{R}, let σk(x):=σ1(x/k)\sigma_{k}(x^{\prime}):=\sigma_{1}(x^{\prime}/k), where σ1Cc(B2R)\sigma_{1}\in C^{\infty}_{c}(B_{2R}) is a smooth and radial cut-off function satisfying σ11\sigma_{1}\equiv 1 in BRB_{R}. Observe that for all fCc(W)f\in C^{\infty}_{c}(W), the function uf,k(x):=uf(x)σk(x)ηk(xn+1)u_{f,k}(x):=u_{f}(x)\sigma_{k}(x^{\prime})\eta_{k}(x_{n+1}) belongs to H˙c1(+n+1,xn+112s)\dot{H}^{1}_{c}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}), and is thus an admissible test function for the adjoint problem (19) (see Remark 3.3). Therefore, using the notation from the proof of Lemma 3.2 and denoting by w:=u~1Psu1+u2w:=\tilde{u}_{1}-P_{s}u_{1}+u_{2} the solution constructed in Lemma 3.2, we infer

(23) 0=ψ(vf)=limkψ,0t12suf,k(,t)𝑑tH~1(Ω),H1(Ω)=limkB(w,uf,k)=limk(nuf,klimt0t12stwdxn0t12suf,ka~wdtdx)=Wflimt0(t12stw)dx+limkIk,\begin{split}0&=\psi(v_{f})=\lim\limits_{k\rightarrow\infty}\langle\psi,\int_{0}^{\infty}t^{1-2s}u_{f,k}(\cdot,t)dt\rangle_{\tilde{H}^{-1}(\Omega),H^{1}(\Omega)}=\lim\limits_{k\rightarrow\infty}B(w,u_{f,k})\\ &=\lim\limits_{k\rightarrow\infty}\left(\int_{\mathbb{R}^{n}}u_{f,k}\lim\limits_{t\rightarrow 0}t^{1-2s}\partial_{t}wdx^{\prime}-\int_{\mathbb{R}^{n}}\int_{0}^{\infty}t^{1-2s}\nabla u_{f,k}\cdot\tilde{a}\nabla wdtdx^{\prime}\right)\\ &=\int\limits_{W}f\lim\limits_{t\rightarrow 0}(t^{1-2s}\partial_{t}w)dx^{\prime}+\lim\limits_{k\rightarrow\infty}I_{k},\end{split}

where the bulk contributions IkI_{k} are given by

(24) Ik:\displaystyle I_{k}: =n0t12s(σkηkw)a~ufdtdxn0t12suf(σkηk)a~wdtdx.\displaystyle=-\int\limits_{\mathbb{R}^{n}}\int\limits_{0}^{\infty}t^{1-2s}(\sigma_{k}\eta_{k}\nabla w)\cdot\tilde{a}\nabla u_{f}dtdx^{\prime}-\int\limits_{\mathbb{R}^{n}}\int\limits_{0}^{\infty}t^{1-2s}u_{f}\nabla(\sigma_{k}\eta_{k})\cdot{\tilde{a}}\nabla wdtdx^{\prime}.

The second equality in formula (23) holds by the H~1(Ω)H1(Ω)\tilde{H}^{-1}(\Omega)-H^{1}(\Omega) duality and by the fact that

0t12sσk(x)ηk(t)uf(x,t)𝑑t0t12suf(x,t)𝑑t in H1(Ω) as k.\displaystyle\int\limits_{0}^{\infty}t^{1-2s}\sigma_{k}(x^{\prime})\eta_{k}(t)u_{f}(x^{\prime},t)dt\rightarrow\int\limits_{0}^{\infty}t^{1-2s}u_{f}(x^{\prime},t)dt\mbox{ in }H^{1}(\Omega)\quad\mbox{ as }k\rightarrow\infty.

Indeed, it holds that

0t12sσk(x)ηk(t)uf(x,t)𝑑t0t12suf(x,t)𝑑tH1(Ω)\displaystyle\left\|\int\limits_{0}^{\infty}t^{1-2s}\sigma_{k}(x^{\prime})\eta_{k}(t)u_{f}(x^{\prime},t)dt-\int\limits_{0}^{\infty}t^{1-2s}u_{f}(x^{\prime},t)dt\right\|_{H^{1}(\Omega)}
k2kt12s(|uf(,t)|+|uf(,t)|)𝑑tL2(Ω)\displaystyle\leq\left\|\int\limits_{k}^{2k}t^{1-2s}(|u_{f}(\cdot,t)|+|\nabla u_{f}(\cdot,t)|)dt\right\|_{L^{2}(\Omega)}
k2kt12snuf(,0)L1(n)𝑑tk12snfL2(Ω)0 as k.\displaystyle\leq\int\limits_{k}^{2k}t^{1-2s-n}\|u_{f}(\cdot,0)\|_{L^{1}(\mathbb{R}^{n})}dt\lesssim k^{1-2s-n}\|f\|_{L^{2}(\Omega)}\rightarrow 0\mbox{ as }k\rightarrow\infty.

In the above estimate, we used formula (30) from Lemma 6.2, the fact that uf(,0)u_{f}(\cdot,0) has compact support, and the assumption n3n\geq 3.

Step 1b: Decay estimates for the error contributions. Next, we seek to show that Ik0I_{k}\rightarrow 0 as kk\rightarrow\infty. Integrating by parts the second term on the right hand side in the definition (24) of IkI_{k}, and using the fact that ufu_{f} is a weak solution, we get

Ik\displaystyle I_{k} =n0t12s(σkηkw)a~ufdtdx+n0t12sw(σkηk)a~ufdtdx\displaystyle=-\int\limits_{\mathbb{R}^{n}}\int\limits_{0}^{\infty}t^{1-2s}\nabla(\sigma_{k}\eta_{k}w)\cdot\tilde{a}\nabla u_{f}dtdx^{\prime}+\int\limits_{\mathbb{R}^{n}}\int\limits_{0}^{\infty}t^{1-2s}w\nabla(\sigma_{k}\eta_{k})\cdot\tilde{a}\nabla u_{f}dtdx^{\prime}
+n0w(a~t12suf(σkηk))𝑑t𝑑x\displaystyle\quad+\int\limits_{\mathbb{R}^{n}}\int\limits_{0}^{\infty}w\nabla\cdot({\tilde{a}}t^{1-2s}u_{f}\nabla(\sigma_{k}\eta_{k}))dtdx^{\prime}
=nσkw(x,0)limt0t12stufdx+2n0wt12s(σkηk)a~ufdtdx\displaystyle=\int\limits_{\mathbb{R}^{n}}\sigma_{k}w(x^{\prime},0)\lim\limits_{t\rightarrow 0}t^{1-2s}\partial_{t}u_{f}dx^{\prime}+2\int\limits_{\mathbb{R}^{n}}\int\limits_{0}^{\infty}wt^{1-2s}\nabla(\sigma_{k}\eta_{k})\cdot{\tilde{a}}\nabla u_{f}dtdx^{\prime}
+n0wt12sufL~(σkηk)𝑑t𝑑x+(12s)n0wt2sufσktηkdtdx\displaystyle\quad+\int\limits_{\mathbb{R}^{n}}\int\limits_{0}^{\infty}wt^{1-2s}u_{f}{\tilde{L}}(\sigma_{k}\eta_{k})dtdx^{\prime}+(1-2s)\int\limits_{\mathbb{R}^{n}}\int\limits_{0}^{\infty}wt^{-2s}u_{f}\sigma_{k}\partial_{t}\eta_{k}dtdx^{\prime}
=B2Rk02kwt12s(2(σkηk)a~uf+(L~(σkηk)+12stσktηk)uf)𝑑t𝑑x.\displaystyle=\int\limits_{B_{2Rk}}\int\limits_{0}^{2k}wt^{1-2s}\left(2\nabla(\sigma_{k}\eta_{k})\cdot\tilde{a}\nabla u_{f}+\left({\tilde{L}}(\sigma_{k}\eta_{k})+\frac{1-2s}{t}\sigma_{k}\partial_{t}\eta_{k}\right)u_{f}\right)dtdx^{\prime}.

Here we have used the notation L~:=a~\tilde{L}:=\nabla\cdot\tilde{a}\nabla. The boundary term in the second step of the above computation is well-defined and vanishes, since by Lemma 3.2 the supports of w(x,0)w(x^{\prime},0), limt0(t12stuf)\lim\limits_{t\rightarrow 0}(t^{1-2s}\partial_{t}u_{f}) are disjoint and, moreover,

|nσkw(x,0)limt0(t12stuf)dx|\displaystyle\left|\int\limits_{\mathbb{R}^{n}}\sigma_{k}w(x^{\prime},0)\lim\limits_{t\rightarrow 0}(t^{1-2s}\partial_{t}u_{f})dx^{\prime}\right| (a)suf(,0)Hs(Ω)w(,0)Hs(Ω)<.\displaystyle\lesssim\|(\nabla^{\prime}\cdot a\nabla^{\prime})^{s}u_{f}(\cdot,0)\|_{H^{-s}(\Omega)}\|w(\cdot,0)\|_{H^{s}(\Omega)}<\infty.

Here we have used that w(x,0)=u~1(x)Psu1(x,0)+u2(x,0)w(x^{\prime},0)=\tilde{u}_{1}(x^{\prime})-P_{s}u_{1}(x^{\prime},0)+u_{2}(x^{\prime},0), with u~1H˙1(n)L2nn2(n)\tilde{u}_{1}\in\dot{H}^{1}(\mathbb{R}^{n})\cap L^{\frac{2n}{n-2}}(\mathbb{R}^{n}) and Psu1(,0),u2(,0)Hlocs(n)L2nn2s(n)P_{s}u_{1}(\cdot,0),u_{2}(\cdot,0)\in H^{s}_{loc}(\mathbb{R}^{n})\cap L^{\frac{2n}{n-2s}}(\mathbb{R}^{n}).

We are now ready to estimate the bulk terms IkI_{k}. Let Ak:=B2RkBRkA_{k}:=B_{2Rk}\setminus B_{Rk}, where R>0R>0 denotes the radius from Step 1a. Using the boundedness of a~,a~\tilde{a},\nabla\tilde{a}, we compute

|Ik|\displaystyle|I_{k}| B2Rk02kt12s|w|(|(σkηk)||uf|+(|L~(σkηk)|+t1|σk||tηk|)|uf|)𝑑t𝑑x\displaystyle\lesssim\int\limits_{B_{2Rk}}\int\limits_{0}^{2k}t^{1-2s}|w|\left(|\nabla(\sigma_{k}\eta_{k})|\,|\nabla u_{f}|+\left(|{\tilde{L}}(\sigma_{k}\eta_{k})|+t^{-1}|\sigma_{k}|\,|\partial_{t}\eta_{k}|\right)|u_{f}|\right)dtdx^{\prime}
B2Rk02kt12s|w|((|σk|+|tηk|)|uf|+(|L~σk|+|t2ηk|+t1|tηk|)|uf|)𝑑t𝑑x\displaystyle\lesssim\int\limits_{B_{2Rk}}\int\limits_{0}^{2k}t^{1-2s}|w|\left((|\nabla^{\prime}\sigma_{k}|+|\partial_{t}\eta_{k}|)\,|\nabla u_{f}|+\left(|{\tilde{L}}\sigma_{k}|+|\partial_{t}^{2}\eta_{k}|+t^{-1}|\partial_{t}\eta_{k}|\right)|u_{f}|\right)dtdx^{\prime}
k1nk2kt12s|w|(|uf|+|uf|k)𝑑t𝑑x+k1Ak02kt12s|w|(|uf|+|uf|k)𝑑t𝑑x\displaystyle\lesssim k^{-1}\int\limits_{\mathbb{R}^{n}}\int\limits_{k}^{2k}t^{1-2s}|w|\left(|\nabla u_{f}|+\frac{|u_{f}|}{k}\right)dtdx^{\prime}+k^{-1}\int\limits_{A_{k}}\int\limits_{0}^{2k}t^{1-2s}|w|\left(|\nabla u_{f}|+\frac{|u_{f}|}{k}\right)dtdx^{\prime}
=:I1,k(w)+I2,k(w).\displaystyle=:I_{1,k}(w)+I_{2,k}(w).

We estimate the contributions in I1,k(w)I_{1,k}(w) and I2,k(w)I_{2,k}(w) separately.

Step 1 b(i): Estimate for I1,k(w)I_{1,k}(w). We begin by considering the term I1,k(w)I_{1,k}(w). Using the triangle inequality, we first deduce bounds for the expression

n|w~(x,t)||juf(x,t)|𝑑x,\displaystyle\int\limits_{\mathbb{R}^{n}}|\tilde{w}(x^{\prime},t)||\nabla^{j}u_{f}(x^{\prime},t)|dx^{\prime},

where w~\tilde{w} denotes any of the functions u1,Psu1,u2u_{1},P_{s}u_{1},u_{2}. As the functions Psu1,u2P_{s}u_{1},u_{2} have decay in the vertical direction, while the function u1u_{1} does not have such decay, we split the proof again into two parts, discussing first the case w~=u1\tilde{w}=u_{1} and then the cases w~=Psu1,u2\tilde{w}=P_{s}u_{1},u_{2}.

The case w~=u1\tilde{w}=u_{1}. Let us first denote by w~\tilde{w} the function u1u_{1}, and assume j{0,1}j\in\{0,1\}. Then by formula (31)

n|w~(x,t)||juf(x,t)|𝑑x\displaystyle\int\limits_{\mathbb{R}^{n}}|\tilde{w}(x^{\prime},t)||\nabla^{j}u_{f}(x^{\prime},t)|dx^{\prime} w~Lr1(n)juf(,t)Lr2(n)\displaystyle\leq\|\tilde{w}\|_{L^{r_{1}}(\mathbb{R}^{n})}\|\nabla^{j}u_{f}(\cdot,t)\|_{L^{r_{2}}(\mathbb{R}^{n})}
tn(1p21)jw~Lr1(n)uf(,0)Lq2(n),\displaystyle\lesssim t^{n(\frac{1}{p_{2}}-1)-j}\|\tilde{w}\|_{L^{r_{1}}(\mathbb{R}^{n})}\|u_{f}(\cdot,0)\|_{L^{q_{2}}(\mathbb{R}^{n})},

where

(25) 1r1+1r2=1, and 1+1r2=1p2+1q2.\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}}=1,\qquad\mbox{ and }\qquad 1+\frac{1}{r_{2}}=\frac{1}{p_{2}}+\frac{1}{q_{2}}.

Using that u1L2nn2(n)u_{1}\in L^{\frac{2n}{n-2}}(\mathbb{R}^{n}), we choose r1=2nn2r_{1}=\frac{2n}{n-2} and r2=2nn+2r_{2}=\frac{2n}{n+2}. In order to obtain the maximal possible decay, we then choose q2=1q_{2}=1 (for which we use that uf(,0)H~s(ΩW)L1(ΩW)u_{f}(\cdot,0)\in\tilde{H}^{s}(\Omega\cup W)\subset L^{1}(\Omega\cup W) by Hölder’s inequality). As a consequence,

|I1,k(w~)|k1w~Lr1(n)fHs(W)k2kt2s+n(1p21)𝑑tk2s+n(1p21)w~Lr1(n)fHs(W).\begin{split}|I_{1,k}(\tilde{w})|&\lesssim k^{-1}\|\tilde{w}\|_{L^{r_{1}}(\mathbb{R}^{n})}\|f\|_{H^{s}(W)}\int\limits_{k}^{2k}t^{-2s+n(\frac{1}{p_{2}}-1)}dt\\ &\leq k^{-2s+n(\frac{1}{p_{2}}-1)}\|\tilde{w}\|_{L^{r_{1}}(\mathbb{R}^{n})}\|f\|_{H^{s}(W)}.\end{split}

Since 1p210\frac{1}{p_{2}}-1\leq 0, we thus infer that I1,k(w~)I_{1,k}(\tilde{w}) vanishes as kk\rightarrow\infty.

The case w~=Psu1,u2\tilde{w}=P_{s}u_{1},u_{2}. Let us next denote by w~\tilde{w} any of the functions Psu1,u2P_{s}u_{1},u_{2}, and assume j{0,1}j\in\{0,1\}. Then by formula (31)

n|w~(x,t)||juf(x,t)|𝑑x\displaystyle\int\limits_{\mathbb{R}^{n}}|\tilde{w}(x^{\prime},t)||\nabla^{j}u_{f}(x^{\prime},t)|dx^{\prime} w~(,t)Lr1(n)juf(,t)Lr2(n)\displaystyle\leq\|\tilde{w}(\cdot,t)\|_{L^{r_{1}}(\mathbb{R}^{n})}\|\nabla^{j}u_{f}(\cdot,t)\|_{L^{r_{2}}(\mathbb{R}^{n})}
tn(1p11)tn(1p21)jw~(,0)Lq1(n)uf(,0)Lq2(n)\displaystyle\lesssim t^{n(\frac{1}{p_{1}}-1)}t^{n(\frac{1}{p_{2}}-1)-j}\|\tilde{w}(\cdot,0)\|_{L^{q_{1}}(\mathbb{R}^{n})}\|u_{f}(\cdot,0)\|_{L^{q_{2}}(\mathbb{R}^{n})}
=tn(11q11q2)jw~(,0)Lq1(n)uf(,0)Lq2(n),\displaystyle=t^{n(1-\frac{1}{q_{1}}-\frac{1}{q_{2}})-j}\|\tilde{w}(\cdot,0)\|_{L^{q_{1}}(\mathbb{R}^{n})}\|u_{f}(\cdot,0)\|_{L^{q_{2}}(\mathbb{R}^{n})},

where

(26) 1r1+1r2=1, and 1+1ri=1pi+1qi for i{1,2}.\displaystyle\frac{1}{r_{1}}+\frac{1}{r_{2}}=1,\qquad\mbox{ and }\qquad 1+\frac{1}{r_{i}}=\frac{1}{p_{i}}+\frac{1}{q_{i}}\quad\mbox{ for }i\in\{1,2\}.

In order to obtain the maximal possible decay, we again choose q2=1q_{2}=1. This yields decay of the form tn/q1jt^{-n/q_{1}-j}, and thus

|I1,k(w~)|k1w~(,0)Lq1(n)fHs(W)k2kt2sn/q1𝑑tk2sn/q1w~(,0)Lq1(n)fHs(W).\begin{split}|I_{1,k}(\tilde{w})|&\lesssim k^{-1}\|\tilde{w}(\cdot,0)\|_{L^{q_{1}}(\mathbb{R}^{n})}\|f\|_{H^{s}(W)}\int\limits_{k}^{2k}t^{-2s-n/q_{1}}dt\leq k^{-2s-n/q_{1}}\|\tilde{w}(\cdot,0)\|_{L^{q_{1}}(\mathbb{R}^{n})}\|f\|_{H^{s}(W)}.\end{split}

By choosing q1=2nn2sq_{1}=\frac{2n}{n-2s} or q1=2nn2q_{1}=\frac{2n}{n-2}, respectively, we ensure that w~(,0)Lq1(n)<\|\tilde{w}(\cdot,0)\|_{L^{q_{1}}(\mathbb{R}^{n})}<\infty (for u2,Psu1u_{2},P_{s}u_{1}, respectively), and thus I1,k(w~)I_{1,k}(\tilde{w}) vanishes as kk\rightarrow\infty. As a result of the last two estimates, we have obtained that I1,k(w)I_{1,k}(w) itself vanishes as kk\rightarrow\infty.

Step 1b(ii): Estimate for I2,k(w)I_{2,k}(w). In order to estimate the last term I2,k(w)I_{2,k}(w), we compute as in Lemma 6.2 (borrowing the kernel notation K0,t(x):=t2s(|x|2+t2)n2+sK_{0,t}(x^{\prime}):=\frac{t^{2s}}{(|x^{\prime}|^{2}+t^{2})^{\frac{n}{2}+s}} from there)

uf(,t)Lr(Ak)r\displaystyle\|u_{f}(\cdot,t)\|^{r}_{L^{r}(A_{k})} Ak|(|uf(,0)|K0,t)(x)|r𝑑x\displaystyle\lesssim\int\limits_{A_{k}}|(|u_{f}(\cdot,0)|\ast K_{0,t})(x^{\prime})|^{r}dx^{\prime}
t2srAk(ΩW|uf(z,0)|(|xz|2+t2)n2+s𝑑z)r𝑑x\displaystyle\lesssim t^{2sr}\int\limits_{A_{k}}\left(\int\limits_{\Omega\cup W}\frac{|u_{f}(z,0)|}{(|x^{\prime}-z|^{2}+t^{2})^{\frac{n}{2}+s}}dz\right)^{r}dx^{\prime}
t2srkn(k2+t2)r(n2+s)uf(,0)L1(n)r,\displaystyle\lesssim\frac{t^{2sr}k^{n}}{(k^{2}+t^{2})^{r(\frac{n}{2}+s)}}\|u_{f}(\cdot,0)\|^{r}_{L^{1}(\mathbb{R}^{n})},

and similarly

uf(,t)Lr(Ak)rt(2s1)rkn(k2+t2)r(n2+s)uf(,0)L1(n)r.\displaystyle\|\nabla u_{f}(\cdot,t)\|^{r}_{L^{r}(A_{k})}\lesssim\frac{t^{(2s-1)r}k^{n}}{(k^{2}+t^{2})^{r(\frac{n}{2}+s)}}\|u_{f}(\cdot,0)\|_{L^{1}(\mathbb{R}^{n})}^{r}.

We now again split the discussion of the estimate into two cases by the triangle inequality.

The case w~=u1\tilde{w}=u_{1}. In the case that w~=u1\tilde{w}=u_{1}, by the above computation, we have for j{0,1}j\in\{0,1\} and r1=2nn2r_{1}=\frac{2n}{n-2}

Ak|w~(x,t)||juf(x,t)|𝑑x\displaystyle\int\limits_{A_{k}}|\tilde{w}(x^{\prime},t)||\nabla^{j}u_{f}(x^{\prime},t)|dx^{\prime} w~Lr1(n)juf(,t)Lr2(Ak)\displaystyle\leq\|\tilde{w}\|_{L^{r_{1}}(\mathbb{R}^{n})}\|\nabla^{j}u_{f}(\cdot,t)\|_{L^{r_{2}}(A_{k})}
t2sjkn/r2(k2+t2)n2+sw~Lr1(n)uf(,0)L1(n),\displaystyle\lesssim\frac{t^{2s-j}k^{n/r_{2}}}{(k^{2}+t^{2})^{\frac{n}{2}+s}}\|\tilde{w}\|_{L^{r_{1}}(\mathbb{R}^{n})}\|u_{f}(\cdot,0)\|_{L^{1}(\mathbb{R}^{n})},

which leads to

kj2Ak02kt12s|w~(x,t)||juf(x,t)|𝑑t𝑑x\displaystyle k^{j-2}\int\limits_{A_{k}}\int\limits_{0}^{2k}t^{1-2s}|\tilde{w}(x^{\prime},t)||\nabla^{j}u_{f}(x^{\prime},t)|dtdx^{\prime}
u1Lr1(n)uf(,0)L1(n)kj2+nr202kt1j(k2+t2)n2+s𝑑t\displaystyle\lesssim\|u_{1}\|_{L^{r_{1}}(\mathbb{R}^{n})}\|u_{f}(\cdot,0)\|_{L^{1}(\mathbb{R}^{n})}k^{j-2+\frac{n}{r_{2}}}\int\limits_{0}^{2k}\frac{t^{1-j}}{(k^{2}+t^{2})^{\frac{n}{2}+s}}dt
u1Lr1(n)fHs(W)kn2s+nr202τ1j(1+τ2)n2+s𝑑τ.\displaystyle\lesssim\|u_{1}\|_{L^{r_{1}}(\mathbb{R}^{n})}\|f\|_{H^{s}(W)}k^{-n-2s+\frac{n}{r_{2}}}\int\limits_{0}^{2}\frac{\tau^{1-j}}{(1+\tau^{2})^{\frac{n}{2}+s}}d\tau.

Using that r1,r2r_{1},r_{2} are dual exponents and, hence, r2=2nn+2r_{2}=\frac{2n}{n+2}, we observe that the above term is finite for all k>0k>0, and has a decay of the form k2s+1n2k^{-2s+1-\frac{n}{2}}. Since 2s+1n2<0-2s+1-\frac{n}{2}<0 for n3n\geq 3, the contribution I2,k(w~)I_{2,k}(\tilde{w}) vanishes as kk\rightarrow\infty.

The case w~=Psu1,u2\tilde{w}=P_{s}u_{1},u_{2}. As above, by the decay estimates from (31), we have for j{0,1}j\in\{0,1\}

Ak|w~(x,t)||juf(x,t)|𝑑x\displaystyle\int\limits_{A_{k}}|\tilde{w}(x^{\prime},t)||\nabla^{j}u_{f}(x^{\prime},t)|dx^{\prime} w~(,t)Lr1(n)juf(,t)Lr2(Ak)\displaystyle\leq\|\tilde{w}(\cdot,t)\|_{L^{r_{1}}(\mathbb{R}^{n})}\|\nabla^{j}u_{f}(\cdot,t)\|_{L^{r_{2}}(A_{k})}
tn(1p11)t2sjkn/r2(k2+t2)n2+sw~(,0)Lq1(n)uf(,0)L1(n),\displaystyle\lesssim t^{n(\frac{1}{p_{1}}-1)}\frac{t^{2s-j}k^{n/r_{2}}}{(k^{2}+t^{2})^{\frac{n}{2}+s}}\|\tilde{w}(\cdot,0)\|_{L^{q_{1}}(\mathbb{R}^{n})}\|u_{f}(\cdot,0)\|_{L^{1}(\mathbb{R}^{n})},

which leads to

kj2Ak02kt12s|w~(x,t)||juf(x,t)|𝑑t𝑑x\displaystyle k^{j-2}\int\limits_{A_{k}}\int\limits_{0}^{2k}t^{1-2s}|\tilde{w}(x^{\prime},t)||\nabla^{j}u_{f}(x^{\prime},t)|dtdx^{\prime}
w~(,0)Lq1(n)uf(,0)L1(n)kj2+nr202ktn(1p11)+1j(k2+t2)n2+s𝑑t\displaystyle\lesssim\|\tilde{w}(\cdot,0)\|_{L^{q_{1}}(\mathbb{R}^{n})}\|u_{f}(\cdot,0)\|_{L^{1}(\mathbb{R}^{n})}k^{j-2+\frac{n}{r_{2}}}\int\limits_{0}^{2k}\frac{t^{n(\frac{1}{p_{1}}-1)+1-j}}{(k^{2}+t^{2})^{\frac{n}{2}+s}}dt
w~(,0)Lq1(n)fHs(W)knq12s02τn(1p11)+1j(1+τ2)n2+s𝑑τ.\displaystyle\lesssim\|\tilde{w}(\cdot,0)\|_{L^{q_{1}}(\mathbb{R}^{n})}\|f\|_{H^{s}(W)}k^{-\frac{n}{q_{1}}-2s}\int\limits_{0}^{2}\frac{\tau^{n(\frac{1}{p_{1}}-1)+1-j}}{(1+\tau^{2})^{\frac{n}{2}+s}}d\tau.

Recalling that the exponents r1,r2,p1,p2,q1,q2r_{1},r_{2},p_{1},p_{2},q_{1},q_{2} satisfy the same constraints as in (25) above, and by choosing p1=1p_{1}=1, and q1q_{1} as for I1,kI_{1,k}, we observe that the above term is finite for all k>0k>0, and has a decay of the form knq12sk^{-\frac{n}{q_{1}}-2s}. Thus I2,k(w)I_{2,k}(w) vanishes as kk\rightarrow\infty.

Step 2: Unique continuation and conclusion of the Hahn-Banach argument. We are now left with Wflimt0(t12stw)dx=0\int\limits_{W}f\lim\limits_{t\rightarrow 0}(t^{1-2s}\partial_{t}w)dx^{\prime}=0, which by the arbitrary choice of fCc(W)f\in C^{\infty}_{c}(W) gives limt0t12stw=0\lim\limits_{t\rightarrow 0}t^{1-2s}\partial_{t}w=0 in W×{0}W\times\{0\}. Since also w=0w=0 in W×{0}W\times\{0\}, by virtue of the unique continuation property, it then follows that w0w\equiv 0 in Ωe×+\Omega_{e}\times\mathbb{R}_{+}. In particular, both w|Ω×+w|_{\partial\Omega\times\mathbb{R}_{+}} and νw|Ω×+\partial_{\nu}w|_{\partial\Omega\times\mathbb{R}_{+}} vanish as distributions, and limxn+10xn+112sn+1w0\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}w\equiv 0 in n\mathbb{R}^{n}.

We use this to conclude the Hahn-Banach argument. Let vSH1(Ω)v\in S\subset H^{1}(\Omega), and fix an extension EvH1(n)Ev\in H^{1}(\mathbb{R}^{n}) whose support is contained in a bounded open set ΩΩ\Omega^{\prime}\supset\Omega. In order to avoid dealing with boundary terms on n×{0}\mathbb{R}^{n}\times\{0\}, we introduce a further cut-off function. Given b(0,1)b\in{(0,1)}, consider a smooth function γb:+(0,b)\gamma_{b}:\mathbb{R}_{+}\rightarrow{(0,b)} such that supp(γb)[0,2b1b](\gamma_{b})\subseteq[0,\frac{2-b}{1-b}] and γb(t)b\gamma_{b}(t)\equiv b for t[1,11b]t\in[1,\frac{1}{1-b}]. It is easily shown that one can assume 0γb(t)𝑑t=b1b\int_{0}^{\infty}\gamma_{b}(t)dt=\frac{b}{1-b} and |γb|C|\nabla^{\ell}\gamma_{b}|\leq C, where {0,1,2}\ell\in\{0,1,2\} and C>1C>1 is independent of bb. Observe that for all kk\in\mathbb{N}

Ib,k:=0t12sγb(tk)𝑑t=02b1b(t+k)12sγb(t)𝑑t,I_{b,k}:=\int_{0}^{\infty}t^{1-2s}\gamma_{b}(t-k)dt=\int_{0}^{\frac{2-b}{1-b}}(t+k)^{1-2s}\gamma_{b}(t)dt,

where Ib,kI_{b,k} depends continuously on the parameter bb, and therefore

Ib,k{bk12s1b(1,(1+2bk(1b))12s),if s(0,12],bk12s1b((1+2bk(1b))12s,1),if s(12,1).I_{b,k}\in\begin{cases}\frac{b\,k^{1-2s}}{1-b}\left(1,\left(1+\frac{2-b}{k(1-b)}\right)^{1-2s}\right),&\text{if $s\in(0,\frac{1}{2}]$},\\ \frac{b\,k^{1-2s}}{1-b}\left(\left(1+\frac{2-b}{k(1-b)}\right)^{1-2s},1\right),&\text{if $s\in(\frac{1}{2},1)$}.\end{cases}

In both cases we see that for b(0,1)b\in{(0,1)} the values reached by Ib,kI_{b,k} can get both arbitrarily large and arbitrarily close to 0. Thus by continuity for all kk\in\mathbb{N} we can find bk,s(0,1)b_{k,s}\in(0,1) such that Ibk,s,k=1I_{b_{k,s},k}=1. Let now βk(t):=γbk,s(tk)\beta_{k}(t):=\gamma_{b_{k,s}}(t-k) and Rk,s:=k+11bk,sR_{k,s}:=k+\frac{1}{1-b_{k,s}}. By the above construction, βk:(0,)[0,1]\beta_{k}:(0,\infty)\rightarrow[0,1] verifies

supp(βk)(k,Rk,s+1),\displaystyle\mbox{supp}(\beta_{k})\subseteq(k,R_{k,s}+1),
βk(t)=bk,s for t(k+1,Rk,s),\displaystyle\beta_{k}(t)=b_{k,s}\mbox{ for }t\in(k+1,R_{k,s}),
|βk(t)|C,\displaystyle|\nabla^{\ell}\beta_{k}(t)|\leq C,
0t12sβk(t)𝑑t=1,\displaystyle\int\limits_{0}^{\infty}t^{1-2s}\beta_{k}(t)dt=1,

where {0,1,2}\ell\in\{0,1,2\} and the constant C>1C>1 is independent of kk.

By formula (22) and the support assumption on ψ\psi, for all kk\in\mathbb{N} we have

ψ(v)=ψ,v0t12sβk𝑑tH~1(Ω),H1(Ω)=ψ,0t12sβk(t)Ev()𝑑tH~1(Ω),H1(Ω).\psi(v)=\langle\psi,v\int_{0}^{\infty}t^{1-2s}\beta_{k}dt\rangle_{\tilde{H}^{-1}(\Omega),H^{1}(\Omega)}=\langle\psi,\int_{0}^{\infty}t^{1-2s}\beta_{k}(t)\,Ev(\cdot)dt\rangle_{\tilde{H}^{-1}(\Omega),H^{1}(\Omega)}.

Since βkEvH˙c1(+n+1,xn+112s)\beta_{k}\,Ev\in\dot{H}^{1}_{c}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}), we further deduce ψ(v)=B(w,βkEv)\psi(v)=B(w,\beta_{k}\,Ev). Therefore, using the support information on ww and observing that the boundary conditions on n×{0}\mathbb{R}^{n}\times\{0\} vanish due to the support conditions for βk\beta_{k}, we obtain

ψ(v)\displaystyle\psi(v) =n0t12s(βkEv)a~wdtdx\displaystyle=-\int_{\mathbb{R}^{n}}\int_{0}^{\infty}t^{1-2s}\nabla(\beta_{k}\,Ev)\cdot\tilde{a}\nabla wdtdx^{\prime}
=(n0t12sEvtβktwdtdx+na(Ev)(0t12sβkw𝑑t)dx)\displaystyle=-\left(\int_{\mathbb{R}^{n}}\int_{0}^{\infty}t^{1-2s}Ev\,\partial_{t}\beta_{k}\partial_{t}wdtdx^{\prime}+\int_{\mathbb{R}^{n}}a\nabla^{\prime}(Ev)\cdot\nabla^{\prime}\left(\int_{0}^{\infty}t^{1-2s}\beta_{k}wdt\right)dx^{\prime}\right)
=(Ω0t12svtβktwdtdx+Ωav(0t12sβkw𝑑t)dx).\displaystyle=-\left(\int_{\Omega}\int_{0}^{\infty}t^{1-2s}v\partial_{t}\beta_{k}\partial_{t}wdtdx^{\prime}+\int_{\Omega}a\nabla^{\prime}v\cdot\nabla^{\prime}\left(\int_{0}^{\infty}t^{1-2s}\beta_{k}wdt\right)dx^{\prime}\right).

Next, we seek to argue that the second contribution vanishes by making use of the equation satisfied by vv. To this end, we need to validate that the function 0t12sβkw𝑑t\int_{0}^{\infty}t^{1-2s}\beta_{k}wdt is an admissible test function in this equation. To this end, we observe that

0t12sβkw𝑑tH˙1(Ω)2\displaystyle\left\|\int_{0}^{\infty}t^{1-2s}\beta_{k}wdt\right\|_{\dot{H}^{1}(\Omega)}^{2} =Ω(02kt12sβkwdt)2𝑑x\displaystyle=\int_{\Omega}\left(\int_{0}^{2k}t^{1-2s}\beta_{k}\nabla^{\prime}wdt\right)^{2}dx^{\prime}
Ω(02kt12sβk2𝑑t)(02kt12s|w|2𝑑t)𝑑x\displaystyle\leq\int_{\Omega}\left(\int_{0}^{2k}t^{1-2s}\beta_{k}^{2}dt\right)\left(\int_{0}^{2k}t^{1-2s}|\nabla^{\prime}w|^{2}dt\right)dx^{\prime}
wH˙1(xn+112s,Ω×(0,2k))2<.\displaystyle\lesssim\left\|w\right\|_{\dot{H}^{1}(x_{n+1}^{1-2s},\Omega\times(0,2k))}^{2}<\infty.

Since by the unique continuation property ww vanishes on Ω×+\partial\Omega\times\mathbb{R}_{+}, we see that 0t12sβkw𝑑t\int_{0}^{\infty}t^{1-2s}\beta_{k}wdt vanishes on Ω\partial\Omega, and thus 0t12sβkw𝑑t\int_{0}^{\infty}t^{1-2s}\beta_{k}wdt belongs to H˙01(Ω)\dot{H}^{1}_{0}(\Omega). Moreover, by the Poincaré inequality and the boundedness of Ω\Omega it holds that H01(Ω)=H˙01(Ω)H^{1}_{0}(\Omega)=\dot{H}^{1}_{0}(\Omega) with equivalent norms, and thus 0t12sβkw𝑑tH01(Ω)H1(Ω)\int_{0}^{\infty}t^{1-2s}\beta_{k}wdt\in H^{1}_{0}(\Omega)\subset H^{1}(\Omega). This allows us to compute

Ωav(0t12sβkw𝑑t)dx=Ωavν(0t12sβkw𝑑t)𝑑x=0,\displaystyle\int_{\Omega}a\nabla^{\prime}v\cdot\nabla^{\prime}\left(\int_{0}^{\infty}t^{1-2s}\beta_{k}wdt\right)dx^{\prime}=\int_{\partial\Omega}a\nabla^{\prime}v\cdot\nu^{\prime}\left(\int_{0}^{\infty}t^{1-2s}\beta_{k}wdt\right)dx^{\prime}=0,

since vSv\in S and w=0w=0 in Ω×+\partial\Omega\times\mathbb{R}_{+}. Thus we are left with

ψ(v)\displaystyle\psi(v) =Ω0t12svtβktwdtdx.\displaystyle=-\int_{\Omega}\int_{0}^{\infty}t^{1-2s}v\partial_{t}\beta_{k}\partial_{t}wdtdx^{\prime}.

Now, the desired result ψ(v)=0\psi(v)=0 follows by passing to the limit in kk\rightarrow\infty. In fact, to this end, we first note that tw=tPsu1+tu2\partial_{t}w=-\partial_{t}P_{s}u_{1}+\partial_{t}u_{2}. Hence, if w~\tilde{w} is any of the functions Psu1,u2P_{s}u_{1},u_{2}, we can estimate as in Step 1b

kk+1Ω|vtw~|𝑑x𝑑t\displaystyle\int\limits_{k}^{k+1}\int\limits_{\Omega}|v\partial_{t}\tilde{w}|dx^{\prime}dt kk+1vLr2(Ω)tw~(,t)Lr1(n)𝑑t\displaystyle\leq\int\limits_{k}^{k+1}\|v\|_{L^{r_{2}}(\Omega)}\|\partial_{t}\tilde{w}(\cdot,t)\|_{L^{r_{1}}(\mathbb{R}^{n})}dt
vLr2(Ω)w~(,0)Lq1(n)kk+1tn(1/r11/q1)1𝑑t\displaystyle\leq\|v\|_{L^{r_{2}}(\Omega)}\|\tilde{w}(\cdot,0)\|_{L^{q_{1}}(\mathbb{R}^{n})}\int\limits_{k}^{k+1}t^{n(1/r_{1}-1/q_{1})-1}dt
vLr2(Ω)w~(,0)Lq1(n)kn(1/r11/q1)1.\displaystyle\lesssim\|v\|_{L^{r_{2}}(\Omega)}\|\tilde{w}(\cdot,0)\|_{L^{q_{1}}(\mathbb{R}^{n})}k^{n(1/r_{1}-1/q_{1})-1}.

As a consequence,

(k,k+1)(Rk,s,Rk,s+1)t12s|tβk|Ω|vtw~|𝑑x𝑑t\displaystyle\int\limits_{(k,k+1)\cup(R_{k,s},R_{k,s}+1)}t^{1-2s}|\partial_{t}\beta_{k}|\int\limits_{\Omega}|v\partial_{t}\tilde{w}|dx^{\prime}dt
k12skk+1Ω|vtw~|𝑑x𝑑t+Rk,s12sRk,sRk,s+1Ω|vtw~|𝑑x𝑑t\displaystyle\lesssim{k^{1-2s}}\int\limits_{k}^{k+1}\int\limits_{\Omega}|v\partial_{t}\tilde{w}|dx^{\prime}dt+{R_{k,s}^{1-2s}}\int\limits_{R_{k,s}}^{R_{k,s}+1}\int\limits_{\Omega}|v\partial_{t}\tilde{w}|dx^{\prime}dt
(kn/r1n/q12s+Rk,sn/r1n/q12s)vLr2(Ω)w~(,0)Lq1(n).\displaystyle\lesssim(k^{n/r_{1}-n/q_{1}-2s}+R_{k,s}^{n/r_{1}-n/q_{1}-2s})\|v\|_{L^{r_{2}}(\Omega)}\|\tilde{w}(\cdot,0)\|_{L^{q_{1}}(\mathbb{R}^{n})}.

Let us choose r1=r_{1}=\infty, r2=1r_{2}=1 and q1=2nn2q_{1}=\frac{2n}{n-2} (for w~=Psu1)\tilde{w}=P_{s}u_{1}), and q1=2nn2sq_{1}=\frac{2n}{n-2s} (for w~=u2\tilde{w}=u_{2}). We note that for both choices of q1q_{1} it holds that n/r1n/q12s<0n/r_{1}-n/q_{1}-2s<0 since n3n\geq 3 and that vL1(Ω)vL2(Ω)<\|v\|_{L^{1}(\Omega)}\leq\|v\|_{L^{2}(\Omega)}<\infty by the bounded domain assumption. As a consequence, passing to the limit kk\rightarrow\infty implies that

ψ(v)\displaystyle\psi(v) =limkΩ0t12svtβktwdtdx=0.\displaystyle=-\lim\limits_{k\rightarrow\infty}\int_{\Omega}\int_{0}^{\infty}t^{1-2s}v\partial_{t}\beta_{k}\partial_{t}wdtdx^{\prime}=0.

Eventually, we have hence obtained that if ψH~1(Ω)\psi\in\tilde{H}^{-1}(\Omega) is such that ψ(vf)=0\psi(v_{f})=0 for all fCc(W)f\in C_{c}^{\infty}(W), then also ψ(v)=0\psi(v)=0 for all vSv\in S. It now follows by the Hahn-Banach theorem that VH1(Ω)V\subset H^{1}(\Omega) is dense in SS.

Step 3: Trace estimates. The last step of our proof will be a trace argument. Let gH12(Ω)g\in H^{\frac{1}{2}}(\partial\Omega), and consider the unique solution uH1(Ω)u\in H^{1}(\Omega) to the problem

au=0 in Ω,u=g in Ω.\displaystyle\begin{split}\nabla^{\prime}\cdot a\nabla^{\prime}u&=0\mbox{ in }\Omega,\\ u&=g\mbox{ in }\partial\Omega.\end{split}

We have uSu\in S by definition, and thus for all ϵ>0\epsilon>0 it is possible to find vϵVv_{\epsilon}\in V such that uvϵH1(Ω)ϵ\|u-v_{\epsilon}\|_{H^{1}(\Omega)}\leq\epsilon. Since we have the trace estimate

gvϵ|ΩH12(Ω)uvϵH1(Ω)ϵ,\|g-v_{\epsilon}|_{\partial\Omega}\|_{H^{\frac{1}{2}}(\partial\Omega)}\lesssim\|u-v_{\epsilon}\|_{H^{1}(\Omega)}\leq\epsilon,

we see that vϵ|ΩVv_{\epsilon}|_{\partial\Omega}\in V^{\prime} approximates gg in the norm of H12(Ω)H^{\frac{1}{2}}(\partial\Omega). Thus we obtain the final result V¯=H12(Ω)\overline{V^{\prime}}=H^{\frac{1}{2}}(\partial\Omega). ∎

3.3. A nonlocal proof of the density argument

Relying on the local variant of the proof of the density result from above, we translate this into a second, completely nonlocal proof. Since in this section we follow a nonlocal approach in n\mathbb{R}^{n}, the operator Ls=(a)sL^{s}=(-\nabla^{\prime}\cdot a\nabla^{\prime})^{s} should be understood in a spectral or, equivalently, in a kernel representation sense. Under sufficient regularity, this interpretation is however equivalent to the previous one obtained by means of the Caffarelli-Silvestre extension, as proved in [CS07, ST10]. As this only complements our result, for simplicity of presentation we only give the rigorous proof for n5n\geq 5 in which case for any s(0,1)s\in(0,1) the problem can be treated purely with Hilbert space methods.

A nonlocal proof of Proposition 3.1.

Let n5n\geq 5. We again argue by the Hahn-Banach theorem. Using the notation from Section 3.2, it suffices to prove that if for some ψH~1(Ω)\psi\in\tilde{H}^{-1}(\Omega) it holds that ψ(vf)=0\psi(v_{f})=0 for all fCc(W)f\in C_{c}^{\infty}(W), then also ψ(v)=0\psi(v)=0 for all vSv\in S.

To this end, we fix ψH~1(Ω)\psi\in\tilde{H}^{-1}(\Omega) satisfying the Hahn-Banach assumption, and then define w1H˙1(n)L2nn2(n)w_{1}\in\dot{H}^{1}(\mathbb{R}^{n})\cap L^{\frac{2n}{n-2}}(\mathbb{R}^{n}) to be the weak solution to Lw1=ψLw_{1}=\psi in n\mathbb{R}^{n}, i.e., we assume that

naw1φdx=ψ(φ) for all φH˙1(n).\displaystyle\int\limits_{\mathbb{R}^{n}}a\nabla w_{1}\cdot\nabla\varphi dx=\psi(\varphi)\qquad\mbox{ for all }\varphi\in\dot{H}^{1}(\mathbb{R}^{n}).

We observe that since ψH~1(Ω)\psi\in\tilde{H}^{-1}(\Omega) is compactly supported and since, by assumption, n5n\geq 5, the decay of the fundamental solution implies that w1H1(n)w_{1}\in H^{1}(\mathbb{R}^{n}). In particular, we also obtain that w1Hs(n)w_{1}\in H^{s}(\mathbb{R}^{n}) for any s(0,1)s\in(0,1). Further, we let u1Hs(n)u_{1}\in H^{s}(\mathbb{R}^{n}) be the unique solution of

Lsu1\displaystyle L^{s}u_{1} =0 in Ω,\displaystyle=0\mbox{ in }\Omega,
u1\displaystyle u_{1} =w1 in Ωe,\displaystyle=w_{1}\mbox{ in }\Omega_{e},

which is a well-posed problem in light of the fact that w1Hs(n)w_{1}\in H^{s}(\mathbb{R}^{n}).

Step 1: With the above notation and the decay and regularity properties, we obtain

(27) 0\displaystyle 0 =ψ(vf)=vf,ψH1(Ω),H~1(Ω)=vf,ψH1(n),H1(n)=navfw1dx.\displaystyle=\psi(v_{f})=\langle v_{f},\psi\rangle_{H^{1}(\Omega),\tilde{H}^{-1}(\Omega)}=\langle v_{f},\psi\rangle_{H^{1}(\mathbb{R}^{n}),H^{-1}(\mathbb{R}^{n})}=\int\limits_{\mathbb{R}^{n}}a\nabla v_{f}\cdot\nabla w_{1}dx.

Next, we seek to show that

navfw1dx=(Ls/2uf,Ls/2w1)L2(n).\displaystyle\int\limits_{\mathbb{R}^{n}}a\nabla v_{f}\cdot\nabla w_{1}dx=(L^{s/2}u_{f},L^{s/2}w_{1})_{L^{2}(\mathbb{R}^{n})}.

To this end, we use two approximation arguments: Firstly, we observe that Lvf=LsufLv_{f}=L^{s}u_{f} holds in a weak sense in n\mathbb{R}^{n} by Lemma 6.3 and a density argument. Indeed, if φCc(n)\varphi\in C^{\infty}_{c}(\mathbb{R}^{n}) and {uf,k}kCc(n)\{u_{f,k}\}_{k}\subset C^{\infty}_{c}(\mathbb{R}^{n}) is a sequence of smooth functions such that uf,kufHs(n)1/k\|u_{f,k}-u_{f}\|_{H^{s}(\mathbb{R}^{n})}\leq 1/k for all kk\in\mathbb{N}, then by the definition of vf,k:=Ls1uf,kv_{f,k}:=L^{s-1}u_{f,k} we have

(avf,k,φ)L2(n)=(Ls/2uf,k,Ls/2φ)L2(n),(a\nabla v_{f,k},\nabla\varphi)_{L^{2}(\mathbb{R}^{n})}=(L^{s/2}u_{f,k},L^{s/2}\varphi)_{L^{2}(\mathbb{R}^{n})},

with

(vfvf,k)L2(n)ufuf,kHs(n)1/k\|\nabla(v_{f}-v_{f,k})\|_{L^{2}(\mathbb{R}^{n})}\lesssim\|u_{f}-u_{f,k}\|_{H^{s}(\mathbb{R}^{n})}\leq 1/k

and

Ls/2(ufuf,k)L2(n)ufuf,kHs(n)1/k.\|L^{s/2}(u_{f}-u_{f,k})\|_{L^{2}(\mathbb{R}^{n})}\lesssim\|u_{f}-u_{f,k}\|_{H^{s}(\mathbb{R}^{n})}\leq 1/k.

Secondly, by a similar approximation argument we have

(Ls/2uf,Ls/2w1,k)L2(n)=(avf,w1,k)L2(n),(L^{s/2}u_{f},L^{s/2}w_{1,k})_{L^{2}(\mathbb{R}^{n})}=(a\nabla v_{f},\nabla w_{1,k})_{L^{2}(\mathbb{R}^{n})},

with

(w1w1,k)L2(n)\displaystyle\|\nabla(w_{1}-w_{1,k})\|_{L^{2}(\mathbb{R}^{n})} w1w1,kH1(n)1/k,\displaystyle\leq\|w_{1}-w_{1,k}\|_{H^{1}(\mathbb{R}^{n})}\leq 1/k,
Ls/2(w1w1,k)L2(n)\displaystyle\|L^{s/2}(w_{1}-w_{1,k})\|_{L^{2}(\mathbb{R}^{n})} w1w1,kHs(n)w1w1,kH1(n)1/k.\displaystyle\leq\|w_{1}-w_{1,k}\|_{H^{s}(\mathbb{R}^{n})}\leq\|w_{1}-w_{1,k}\|_{H^{1}(\mathbb{R}^{n})}\leq 1/k.

Thus, by (27) and passing to the limit in the above two approximation arguments, we obtain

(28) 0=(avf,w1)L2(n)=(Ls/2uf,Ls/2w1)L2(n).\displaystyle 0=(a\nabla v_{f},\nabla w_{1})_{L^{2}(\mathbb{R}^{n})}=(L^{s/2}u_{f},L^{s/2}w_{1})_{L^{2}(\mathbb{R}^{n})}.

Moreover, since w1u1w_{1}-u_{1} and uffu_{f}-f both belong to H~s(Ω)\tilde{H}^{s}(\Omega), using the weak form of the equations satisfied by ufu_{f} and u1u_{1} we have

(29) (Ls/2uf,Ls/2w1)L2(n)(Ls/2f,Ls/2u1)L2(n)=(Ls/2uf,Ls/2(w1u1))L2(n)+(Ls/2(uff),Ls/2u1)L2(n)=0.\displaystyle\begin{split}(L^{s/2}u_{f},L^{s/2}w_{1})_{L^{2}(\mathbb{R}^{n})}&-(L^{s/2}f,L^{s/2}u_{1})_{L^{2}(\mathbb{R}^{n})}\\ &=(L^{s/2}u_{f},L^{s/2}(w_{1}-u_{1}))_{L^{2}(\mathbb{R}^{n})}+(L^{s/2}(u_{f}-f),L^{s/2}u_{1})_{L^{2}(\mathbb{R}^{n})}=0.\end{split}

Therefore, combining (28), (29), we infer that

f,Lsu1Hs(n),Hs(n)=(Ls/2f,Ls/2u1)L2(n)=0.\displaystyle\langle f,L^{s}u_{1}\rangle_{H^{s}(\mathbb{R}^{n}),H^{-s}(\mathbb{R}^{n})}=(L^{s/2}f,L^{s/2}u_{1})_{L^{2}(\mathbb{R}^{n})}=0.

Since this holds for all fCc(W)f\in C_{c}^{\infty}(W), we obtain that Lsu1=0L^{s}u_{1}=0 in WW. As u1=w1u_{1}=w_{1} in WW and since LL is a local operator, by recalling the equation for w1w_{1} we also have Lu1=0Lu_{1}=0 in WW. As a consequence, we infer that for v1:=Lsu1Hs(n)v_{1}:=L^{s}u_{1}\in H^{-s}(\mathbb{R}^{n}) it holds that

v1=0,L1sv1=0 in W.\displaystyle v_{1}=0,\ L^{1-s}v_{1}=0\mbox{ in }W.

By the global unique continuation property for the fractional elliptic operator L1sL^{1-s} [Rül15, GSU20, GRSU20], we hence deduce that v1=0v_{1}=0 in n\mathbb{R}^{n}. As a consequence, Lsu1=0L^{s}u_{1}=0 in n\mathbb{R}^{n}. By virtue of the fact that u1Hs(n)u_{1}\in H^{s}(\mathbb{R}^{n}), we therefore conclude that u1=0u_{1}=0 in n\mathbb{R}^{n}. As u1=w1u_{1}=w_{1} in Ωe\Omega_{e}, this also implies that w1=0w_{1}=0 in Ωe\Omega_{e}.

Step 2: We conclude the density argument similarly as above by noting that for vSv\in S we have

ψ(v)=Ωaw1vdx=w1,νavΩνaw1,vΩ=0.\displaystyle\psi(v)=-\int\limits_{\Omega}a\nabla^{\prime}w_{1}\cdot\nabla^{\prime}vdx=\langle w_{1},\nu\cdot a\nabla^{\prime}v\rangle_{\partial\Omega}-\langle\nu\cdot a\nabla^{\prime}w_{1},v\rangle_{\partial\Omega}=0.

Here we first noted that w1=0w_{1}=0 in Ωe\Omega_{e} and then, in the last step, we used the fact that on Ω\partial\Omega it holds (in an H12(Ω)H^{\frac{1}{2}}(\partial\Omega) and H12(Ω)H^{-\frac{1}{2}}(\partial\Omega) sense, respectively) w1=0=νaw1w_{1}=0=\nu\cdot a\nabla^{\prime}w_{1} by Step 1. ∎

3.4. Proof of Theorem 1

With the density result of Proposition 3.1 in hand, we turn to the proofs of Theorem 1 and Proposition 1.2:

Proof of Theorem 1 and Proposition 1.2.

By Proposition 3.1, the operator

T1:H~s(W)fvf(x)|Ω:=0t12suf(x,t)𝑑t|ΩH12(Ω)\displaystyle{T_{1}}:\tilde{H}^{s}(W)\ni f\mapsto v_{f}(x^{\prime})|_{\partial\Omega}:=\int\limits_{0}^{\infty}t^{1-2s}u_{f}(x^{\prime},t)dt|_{\partial\Omega}\in H^{\frac{1}{2}}(\partial\Omega)

is linear, bounded and has a dense image. Due to the continuity of the map Λ:H12(Ω)H12(Ω)\Lambda:H^{\frac{1}{2}}(\partial\Omega)\rightarrow H^{-\frac{1}{2}}(\partial\Omega), this then implies that

T(𝒞s,a)¯H12(Ω)×H12(Ω)=𝒞a\displaystyle\overline{T(\mathcal{C}_{s,a})}^{H^{\frac{1}{2}}(\partial\Omega)\times H^{-\frac{1}{2}}(\partial\Omega)}=\mathcal{C}_{a}

as claimed in Proposition 1.2. Next, by unique continuation, (f|W,(Δ)suf|W)(f|_{W},(-\Delta)^{s}u_{f}|_{W}) determines (xn+112suf|Ω×+,xn+112sνuf|Ω×+)(x_{n+1}^{1-2s}u_{f}|_{\partial\Omega\times\mathbb{R}_{+}},x_{n+1}^{1-2s}\partial_{\nu}u_{f}|_{\partial\Omega\times\mathbb{R}_{+}}) and thus also (vf|Ω,νvf|Ω)(v_{f}|_{\partial\Omega},\partial_{\nu}v_{f}|_{\partial\Omega}). Combined with the density result, this proves that Λs\Lambda_{s} determines Λ\Lambda. ∎

4. Proof of Theorem 2

In this section, for completeness, we outline how the results of Theorem 1 imply the ones from Theorem 2. This follows without any changes along the same lines as the argument from [GU21] and is only included for the convenience of the reader.

Proof.

Let a1,a2n×na_{1},a_{2}\in\mathbb{R}^{n\times n} be as in the statement of the theorem. Consider the fractional and classical Calderón problems having aja_{j} as coefficients, i.e.,

(aj)su=0 in Ω,u=f on Ωe,\displaystyle\begin{split}(\nabla\cdot a_{j}\nabla)^{s}u&=0\mbox{ in }\Omega,\\ u&=f\mbox{ on }\Omega_{e},\end{split}

and

ajv=0 in Ω,v=g on Ω,\displaystyle\begin{split}\nabla\cdot a_{j}\nabla v&=0\mbox{ in }\Omega,\\ v&=g\mbox{ on }\partial\Omega,\end{split}

for j=1,2j=1,2. Here the Dirichlet data f,gf,g are such that fHs(n)f\in H^{s}(\mathbb{R}^{n}) and gH12(Ω)g\in H^{\frac{1}{2}}(\partial\Omega), while the unique solutions u,vu,v are such that uHs(n)u\in H^{s}(\mathbb{R}^{n}) and vH1(Ω)v\in H^{1}(\Omega). Assume that the nonlocal Dirichlet-to-Neumann maps Λs,1,Λs,2\Lambda_{s,1},\Lambda_{s,2}, which correspond to a1,a2a_{1},a_{2} respectively, coincide. By Theorem 1, this implies that the local Dirichlet-to-Neumann maps Λ1,Λ2\Lambda_{1},\Lambda_{2}, which correspond to a1,a2a_{1},a_{2} respectively, themselves coincide, since they are uniquely determined by Λs,1,Λs,2\Lambda_{s,1},\Lambda_{s,2}, respectively. Since by assumption the local Dirichlet-to-Neumann map Λj\Lambda_{j} uniquely determines the coefficient aja_{j} in the classical Calderón problem for j=1,2j=1,2, we deduce that a1=a2a_{1}=a_{2} holds. This proves the theorem. ∎

5. Tikhonov regularization

In this section we outline that the procedure of reconstructing the Dirichlet-to-Neumann data for the local problem from the nonlocal data is completely constructive. To this end we present the argument for Proposition 1.1.

Proof.

The proof is based on the results contained in [CK19, Chapter 4]. We start by observing that the linear operator AA is injective by unique continuation. In fact, if u~𝒱\tilde{u}\in\mathcal{V} is such that Au~=0A\tilde{u}=0, then u~(x,0)=limt0t12stu~(x,t)=0\tilde{u}(x^{\prime},0)=\lim\limits_{t\rightarrow 0}t^{1-2s}\partial_{t}\tilde{u}(x^{\prime},t)=0 on WW, which implies u~0\tilde{u}\equiv 0 on Ωe×+\Omega_{e}\times\mathbb{R}_{+}. As a result of the mapping property A:𝒱Hs(W)×Hs(W)A:\mathcal{V}\mapsto H^{s}(W)\times H^{-s}(W), the compact inclusions Hs(W)Hsϵ(W)H^{s}(W)\hookrightarrow H^{s-\epsilon}(W) and Hs(W)Hsϵ(W)H^{-s}(W)\hookrightarrow H^{-s-\epsilon}(W) as well as the injectivity of AA and [CK19, Theorem 4.13], we have that the operator Rα:=(αI+AA)1AR_{\alpha}:=(\alpha I+A^{*}A)^{-1}A^{*} is well-defined and a regularization scheme for AA, which means that

limα0RαAφφH˙1(xn+112s,Ωe×+)=0, for all φ𝒱.\lim\limits_{\alpha\rightarrow 0}\|R_{\alpha}A\varphi-\varphi\|_{\dot{H}^{1}(x_{n+1}^{1-2s},\Omega_{e}\times\mathbb{R}_{+})}=0,\qquad\mbox{ for all }\varphi\in\mathcal{V}.

Moreover, since Hs(W)×Hs(W)H^{s}(W)\times H^{-s}(W) is compactly embedded in Hsϵ(W)×Hsϵ(W)H^{s-\epsilon}(W)\times H^{-s-\epsilon}(W) for any ϵ>0\epsilon>0, we deduce that AA is compact. Using this and [CK19, Theorem 4.14], we obtain that u~α:=Rα((f,Λsf))\tilde{u}_{\alpha}:=R_{\alpha}((f,\Lambda_{s}f)) is the unique minimizer in 𝒱\mathcal{V} of the energy functional JαJ_{\alpha} corresponding to (f,Λsf)Hs(W)×Hs(W)(f,\Lambda_{s}f)\in H^{s}(W)\times H^{-s}(W). ∎

6. Regularity estimates

In this section we prove that the function v(x):=0t12su~(x,t)𝑑tv(x^{\prime}):=\int_{0}^{\infty}t^{1-2s}\tilde{u}(x^{\prime},t)dt, which was introduced in (8) and was extensively used in the arguments above, satisfies the following regularity properties which were used in our arguments in the previous sections.

Proposition 6.1.

Let Ω,Wn\Omega,W\subset\mathbb{R}^{n} be bounded, open Lipschitz sets with Ω¯W¯=\overline{\Omega}\cap\overline{W}=\emptyset. Let n3n\geq 3, uHs(n)u\in H^{s}(\mathbb{R}^{n}) with compact support in W¯Ω¯\overline{W}\cup\overline{\Omega} and u~H1(+n+1,xn+112s)\tilde{u}\in H^{1}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}) be the associated Caffarelli-Silvestre extension with coefficient matrix a~\tilde{a} as in the introduction. Let w:+n+1w:{\mathbb{R}^{n+1}_{+}}\rightarrow\mathbb{R} be given by

w(x,xn+1):=xn+1t12su~(x,t)𝑑t.\displaystyle w(x^{\prime},x_{n+1}):=\int\limits_{x_{n+1}}^{\infty}t^{1-2s}\tilde{u}(x^{\prime},t)dt.

Then, for xn+1>0x_{n+1}>0 the function ww is bounded and the limit w(x,0)w(x,0) exists with w(,0)Hloc1(n)w(\cdot,0)\in H^{1}_{loc}(\mathbb{R}^{n}).

Before turning to the proof of Proposition 6.1, we show some decay estimates in the vertical direction for the Caffarelli-Silvestre extension. In order to simplify the notation, in what follows we will frequently make use of the abbreviation L:=aL:=\nabla^{\prime}\cdot a\nabla^{\prime}.

Lemma 6.2.

Let nn\in\mathbb{N} and uHs(n)u\in H^{s}(\mathbb{R}^{n}), and denote by u~H˙1(+n+1,xn+112s)\tilde{u}\in\dot{H}^{1}(\mathbb{R}^{n+1}_{+},x_{n+1}^{1-2s}) its associated Caffarelli-Silvestre extension with coefficient matrix a~\tilde{a} as in the introduction. Then, for y>0y>0 the function u~\tilde{u} satisfies the following bounds

(30) |u~(x,y)|ynuL1(n),|u~(x,y)|yn1uL1(n).|\tilde{u}(x^{\prime},y)|\lesssim y^{-n}\|u\|_{L^{1}(\mathbb{R}^{n})},\qquad|\nabla^{\prime}\tilde{u}(x^{\prime},y)|\lesssim y^{-n-1}\|u\|_{L^{1}(\mathbb{R}^{n})}.

Moreover, if 1r,p,q1\leq r,p,q\leq\infty are such that 1+1r=1p+1q1+\frac{1}{r}=\frac{1}{p}+\frac{1}{q}, then u~\tilde{u} also satisfies the estimates

(31) u~(,y)Lr(n)yn/pnuLq(n),(u~)(,y)Lr(n)yn/pn1uLq(n).\|\tilde{u}(\cdot,y)\|_{L^{r}(\mathbb{R}^{n})}\lesssim y^{n/p-n}\|u\|_{L^{q}(\mathbb{R}^{n})},\qquad\|(\nabla\tilde{u})(\cdot,y)\|_{L^{r}(\mathbb{R}^{n})}\lesssim y^{n/p-n-1}\|u\|_{L^{q}(\mathbb{R}^{n})}.
Proof.

Throughout the proof we will consider the situation that y>0y>0. In order to infer the desired results, we use the heat kernel representation of the Poisson formula for the Caffarelli-Silvestre extension [ST10, Theorem 2.1]

(32) u~(x,y)=csy2sn0Kt(x,z)ey24tdtt1+su(z)𝑑z.\tilde{u}(x^{\prime},y)=c_{s}y^{2s}\int\limits_{\mathbb{R}^{n}}\int\limits_{0}^{\infty}K_{t}(x^{\prime},z)e^{-\frac{y^{2}}{4t}}\frac{dt}{t^{1+s}}u(z)dz.

Here KtK_{t} denotes the heat kernel, which for t>0t>0 verifies tKt(x,z)=LKt(x,z)\partial_{t}K_{t}(x,z)=LK_{t}(x,z) and the following estimates (see [ST10] for the case k=0k=0, and [CJKS20] for the case k=1k=1):

(33) |DxkKt(x,z)|tn+k2ec|xz|2t,k{0,1}.|D_{x^{\prime}}^{k}K_{t}(x^{\prime},z)|\lesssim t^{-\frac{n+k}{2}}e^{-c\frac{|x^{\prime}-z|^{2}}{t}},\qquad k\in\{0,1\}.

Using that

(34) 0eA/4ttn/2+σ+1𝑑tAn/2σ,\displaystyle\int_{0}^{\infty}\frac{e^{-A/4t}}{t^{n/2+\sigma+1}}dt\approx A^{-n/2-\sigma},

(see, for instance, the argument on p.2104 in [ST10]), we compute for k{0,1}k\in\{0,1\}

|Dxku~(x,y)|y2sn0|DxkKt(x,z)|ey24tdtt1+s|u(z)|𝑑zy2sn|u(z)|0t(n+k2+1+s)e(c|xz|2t+y24t)𝑑t𝑑zy2sn|u(z)|(|xz|2+y2)n2+s+k2𝑑z=(|u|Kk/2,y)(x),\begin{split}|D_{x^{\prime}}^{k}\tilde{u}(x^{\prime},y)|&\lesssim y^{2s}\int\limits_{\mathbb{R}^{n}}\int\limits_{0}^{\infty}|D_{x^{\prime}}^{k}K_{t}(x^{\prime},z)|e^{-\frac{y^{2}}{4t}}\frac{dt}{t^{1+s}}|u(z)|dz\\ &\lesssim y^{2s}\int\limits_{\mathbb{R}^{n}}|u(z)|\int\limits_{0}^{\infty}t^{-(\frac{n+k}{2}+1+s)}e^{-(c\frac{|x^{\prime}-z|^{2}}{t}+\frac{y^{2}}{4t})}dtdz\\ &\lesssim y^{2s}\int\limits_{\mathbb{R}^{n}}\frac{|u(z)|}{(|x^{\prime}-z|^{2}+y^{2})^{\frac{n}{2}+s+\frac{k}{2}}}dz\\ &=(|u|\ast K_{k/2,y})(x^{\prime}),\end{split}

where Kρ,y(x):=y2s(|x|2+y2)n2+s+ρK_{\rho,y}(x^{\prime}):=\frac{y^{2s}}{(|x^{\prime}|^{2}+y^{2})^{\frac{n}{2}+s+\rho}}. In particular, by Young’s convolution inequality, this implies the estimate

|Dxku~(x,y)|ynkuL1(n),k{0,1}.|D_{x^{\prime}}^{k}\tilde{u}(x^{\prime},y)|\lesssim y^{-n-k}\|u\|_{L^{1}(\mathbb{R}^{n})},\ {k\in\{0,1\}}.

Similarly, we can compute

|yu~(x,y)|y2s1n0|Kt(x,z)|ey24tdtt1+s|u(z)|𝑑z+y2s+1n0|Kt(x,z)|ey24tdtt2+s|u(z)|𝑑zy1(|u|K0,y)(x)+y(|u|K1,y)(x).\begin{split}|\partial_{y}\tilde{u}(x^{\prime},y)|&\lesssim y^{2s-1}\int\limits_{\mathbb{R}^{n}}\int\limits_{0}^{\infty}|K_{t}(x^{\prime},z)|e^{-\frac{y^{2}}{4t}}\frac{dt}{t^{1+s}}|u(z)|dz+y^{2s+1}\int\limits_{\mathbb{R}^{n}}\int\limits_{0}^{\infty}|K_{t}(x^{\prime},z)|e^{-\frac{y^{2}}{4t}}\frac{dt}{t^{2+s}}|u(z)|dz\\ &\lesssim y^{-1}(|u|\ast K_{0,y})(x^{\prime})+y(|u|\ast K_{1,y})(x^{\prime}).\end{split}

Therefore, by Young’s convolution inequality we deduce that

u~(,y)Lr(n)\displaystyle\|\tilde{u}(\cdot,y)\|_{L^{r}(\mathbb{R}^{n})} K0,y()Lp(n)uLq(n),\displaystyle\lesssim\|K_{0,y}(\cdot)\|_{L^{p}(\mathbb{R}^{n})}\|u\|_{L^{q}(\mathbb{R}^{n})},
(u~)(,y)Lr(n)\displaystyle\|(\nabla\tilde{u})(\cdot,y)\|_{L^{r}(\mathbb{R}^{n})} (K1/2,y()Lp(n)+y1K0,y()Lp(n)+yK1,y()Lp(n))uLq(n),\displaystyle\lesssim\left(\|K_{1/2,y}(\cdot)\|_{L^{p}(\mathbb{R}^{n})}+y^{-1}\|K_{0,y}(\cdot)\|_{L^{p}(\mathbb{R}^{n})}+y\|K_{1,y}(\cdot)\|_{L^{p}(\mathbb{R}^{n})}\right)\|u\|_{L^{q}(\mathbb{R}^{n})},

where 1+1r=1p+1q1+\frac{1}{r}=\frac{1}{p}+\frac{1}{q}. By changing variables, we obtain

Kρ,y()Lp(n)p\displaystyle\|K_{\rho,y}(\cdot)\|^{p}_{L^{p}(\mathbb{R}^{n})} 0y2sprn1(r2+y2)p(n2+s+ρ)𝑑r=0ynpn2ρpτn1(τ2+1)p(n2+s+ρ)𝑑τynpn2ρp,\displaystyle\approx\int\limits_{0}^{\infty}\frac{y^{2sp}r^{n-1}}{(r^{2}+y^{2})^{p(\frac{n}{2}+s+\rho)}}dr=\int\limits_{0}^{\infty}\frac{y^{n-pn-2\rho p}\tau^{n-1}}{(\tau^{2}+1)^{p(\frac{n}{2}+s+\rho)}}d\tau\lesssim y^{n-pn-2\rho p},

and thus

u~(,y)Lr(n)yn/pnuLq(n),(u~)(,y)Lr(n)yn/pn1uLq(n).\|\tilde{u}(\cdot,y)\|_{L^{r}(\mathbb{R}^{n})}\lesssim y^{n/p-n}\|u\|_{L^{q}(\mathbb{R}^{n})},\qquad\|(\nabla\tilde{u})(\cdot,y)\|_{L^{r}(\mathbb{R}^{n})}\lesssim y^{n/p-n-1}\|u\|_{L^{q}(\mathbb{R}^{n})}.

With this auxiliary result in hand, we now turn to the proof of Proposition 6.1.

Proof of Proposition 6.1.

In deducing the desired result, we argue in three steps.

Step 1: Well-definedness of the function ww for xn+1>0x_{n+1}>0, i.e., convergence of the integral defining it. Inequality (30) immediately implies the following estimate for ww and y>0y>0:

(35) |Dxkw(x,y)|yt12s|Dxku~(x,t)|𝑑ty22snkuL1(n),k{0,1}.\begin{split}|D_{x^{\prime}}^{k}w(x^{\prime},y)|&\leq\int\limits_{y}^{\infty}t^{1-2s}|D_{x^{\prime}}^{k}\tilde{u}(x^{\prime},t)|dt\lesssim y^{2-2s-n-k}\|u\|_{L^{1}(\mathbb{R}^{n})},\qquad k\in\{0,1\}.\end{split}

Given that supp(u)\text{supp}(u) is compact and uL2(n)u\in L^{2}(\mathbb{R}^{n}), we have uL1(n)u\in L^{1}(\mathbb{R}^{n}), and thus the above expression is finite for a.e. x=(x,xn+1)+n+1x=(x^{\prime},x_{n+1})\in\mathbb{R}^{n+1}_{+}. In particular, ww is well-defined.

Step 2: The local L2L^{2} estimate for v(x):=w(x,0)v(x^{\prime}):=w(x^{\prime},0). We further seek to prove that v(x):=w(x,0)L2(Ω)v(x^{\prime}):=w(x^{\prime},0)\in L^{2}(\Omega^{\prime}) for any Ωn\Omega^{\prime}\subset\mathbb{R}^{n} bounded and open. To this end, we aim at upgrading the right hand side of estimate (35) to be independent of the vertical variable. By virtue of estimate (35), we may apply Fubini’s theorem and infer for k{0,1}k\in\{0,1\} and y>0y>0

(36) |Dxkw(x,y)|ynt|u(z)|(|xz|2+t2)n+k2+s𝑑z𝑑tn|u(x+z)|0t(|z|2+t2)n+k2+s𝑑t𝑑zBR|u(x+z)||z|n+k+2s2𝑑z,\begin{split}|D_{x^{\prime}}^{k}w(x^{\prime},y)|&\lesssim\int\limits_{y}^{\infty}\int\limits_{\mathbb{R}^{n}}\frac{t|u(z)|}{(|x^{\prime}-z|^{2}+t^{2})^{\frac{n+k}{2}+s}}dzdt\\ &\leq\int\limits_{\mathbb{R}^{n}}|u(x^{\prime}+z)|\int\limits_{0}^{\infty}\frac{t}{(|z|^{2}+t^{2})^{\frac{n+k}{2}+s}}dtdz\\ &\approx\int\limits_{B_{R}}\frac{|u(x^{\prime}+z)|}{|z|^{n+k+2s-2}}dz,\end{split}

for some R>0R>0 large enough, depending on the support of uu. We note that all the estimates from above are independent of y(0,)y\in(0,\infty), hence, the estimate transfers to the limit vv of w(,y)w(\cdot,y) as y0y\rightarrow 0. Since ||(n+2s2)|\cdot|^{-(n+2s-2)} is locally integrable, supp(u)Ω¯W¯\text{supp}(u)\subset\overline{\Omega}\cup\overline{W}, and Ω\Omega^{\prime} is bounded, for some large r>0r>0 we obtain

v()L2(Ω)2\displaystyle\|v(\cdot)\|_{L^{2}(\Omega^{\prime})}^{2} CsΩ|n|u(z)||xz|n+2s2𝑑z|2𝑑x\displaystyle\leq C_{s}\int\limits_{\Omega^{\prime}}\left|\int\limits_{\mathbb{R}^{n}}\frac{|u(z)|}{|x^{\prime}-z|^{n+2s-2}}dz\right|^{2}dx^{\prime}
Csn|n|u(z)|χBr(zx)|zx|n+2s2𝑑z|2𝑑x\displaystyle\leq C_{s}\int\limits_{\mathbb{R}^{n}}\left|\int\limits_{\mathbb{R}^{n}}\frac{|u(z)|\chi_{B_{r}}(z-x^{\prime})}{|z-x^{\prime}|^{n+2s-2}}dz\right|^{2}dx^{\prime}
=Csu(χBr||n2s+2)L2(n)2\displaystyle=C_{s}\left\|u\ast(\chi_{B_{r}}|\cdot|^{-n-2s+2})\right\|_{L^{2}(\mathbb{R}^{n})}^{2}
CsχBr()||n2s+2L1(n)2uL2(n)2\displaystyle\leq C_{s}\|\chi_{B_{r}}(\cdot)|\cdot|^{-n-2s+2}\|_{L^{1}(\mathbb{R}^{n})}^{2}\|u\|_{L^{2}(\mathbb{R}^{n})}^{2}
Cn,suL2(n)2.\displaystyle\leq C_{n,s}\|u\|_{L^{2}(\mathbb{R}^{n})}^{2}.

Here we have used Young’s convolution inequality in the last line together with the integrability of χBr()||n2s+2\chi_{B_{r}}(\cdot)|\cdot|^{-n-2s+2}.

Step 3: The gradient estimate for v(x)v(x^{\prime}), xΩx^{\prime}\in\Omega^{\prime}. It remains to argue that we have vH1(Ω)v\in H^{1}(\Omega^{\prime}). For s(0,12)s\in(0,\frac{1}{2}) this essentially follows from the argument in Step 2. For s[12,1)s\in[\frac{1}{2},1), the analysis in the previous step is not detailed enough (as the kernel then is not integrable at zero). We thus need to perform a more accurate analysis. To this end, let 0<r<R0<r<R with supp(u)Br\text{supp}(u)\subseteq B_{r}, and assume that gCc(BR)g\in C^{\infty}_{c}(B_{R}) takes values in [0,1][0,1] and verifies g=1g=1 in BrB_{r}. We denote the Caffarelli-Silvestre extension of gg by g~\tilde{g}. Then, as in the proof of Lemma 6.2 and as in formula (36), we compute for xn+1>0x_{n+1}>0

|xw(x,xn+1)\displaystyle|\nabla_{x^{\prime}}w(x^{\prime},x_{n+1}) x[xn+1y12sg~(x,y)𝑑y]u(x)|=\displaystyle-\nabla_{x^{\prime}}\left[\int_{x_{n+1}}^{\infty}y^{1-2s}\tilde{g}(x^{\prime},y)dy\right]u(x^{\prime})|=
=cs|xn+1yn0xKt(x,z)ey24tdtt1+s(u(z)g(z)u(x))𝑑z𝑑y|\displaystyle=c_{s}\left|\int_{x_{n+1}}^{\infty}y\int_{\mathbb{R}^{n}}\int_{0}^{\infty}\nabla_{x^{\prime}}K_{t}(x^{\prime},z)e^{-\frac{y^{2}}{4t}}\frac{dt}{t^{1+s}}(u(z)-g(z)u(x^{\prime}))dzdy\right|
xn+1ny|u(z)g(z)u(x)|(|xz|2+y2)n+12+s𝑑z𝑑y\displaystyle\lesssim\int\limits_{x_{n+1}}^{\infty}\int\limits_{\mathbb{R}^{n}}\frac{y|u(z)-g(z)u(x^{\prime})|}{(|x^{\prime}-z|^{2}+y^{2})^{\frac{n+1}{2}+s}}dzdy
n|u(z)g(z)u(x)||xz|n+2s1𝑑z.\displaystyle\lesssim\int_{\mathbb{R}^{n}}\frac{|u(z)-g(z)u(x^{\prime})|}{|x^{\prime}-z|^{n+2s-1}}dz.

Using the support condition of gg and uu, we now obtain

|xw(x,xn+1)x[xn+1y12sg~(x,y)𝑑y]u(x)|\displaystyle|\nabla_{x^{\prime}}w(x^{\prime},x_{n+1})-\nabla_{x^{\prime}}\left[\int_{x_{n+1}}^{\infty}y^{1-2s}\tilde{g}(x^{\prime},y)dy\right]u(x^{\prime})| BR|u(z)u(x)||xz|n+2s1𝑑z,\displaystyle\lesssim\int_{B_{R}}\frac{|u(z)-u(x^{\prime})|}{|x^{\prime}-z|^{n+2s-1}}dz,

and therefore

xw(x,0)x\displaystyle\|\nabla_{x^{\prime}}w(x^{\prime},0)-\nabla_{x^{\prime}} [0y12sg~(x,y)𝑑y]u(x)L2(Ω)2Ω(BR|u(z)u(x)||xz|n+2s1𝑑z)2𝑑x\displaystyle\left[\int_{0}^{\infty}y^{1-2s}\tilde{g}(x^{\prime},y)dy\right]u(x^{\prime})\|_{L^{2}(\Omega^{\prime})}^{2}\lesssim\int_{\Omega^{\prime}}\left(\int_{B_{R}}\frac{|u(z)-u(x^{\prime})|}{|x^{\prime}-z|^{n+2s-1}}dz\right)^{2}dx^{\prime}
Ω(BR|u(z)u(x)|2|xz|n+2s𝑑z)(BR1|xz|n+2s2𝑑z)𝑑x\displaystyle\leq\int_{\Omega^{\prime}}\left(\int_{B_{R}}\frac{|u(z)-u(x^{\prime})|^{2}}{|x^{\prime}-z|^{n+2s}}dz\right)\left(\int_{B_{R}}\frac{1}{|x^{\prime}-z|^{n+2s-2}}dz\right)dx^{\prime}
ΩBR|u(z)u(x)|2|xz|n+2s𝑑z𝑑x\displaystyle\lesssim\int_{\Omega^{\prime}}\int_{B_{R}}\frac{|u(z)-u(x^{\prime})|^{2}}{|x^{\prime}-z|^{n+2s}}dzdx^{\prime}
uHs(n)2.\displaystyle\leq\|u\|_{H^{s}(\mathbb{R}^{n})}^{2}.

Here we used that Hs(n)=Ws,2(n)H^{s}(\mathbb{R}^{n})=W^{s,2}(\mathbb{R}^{n}) (see [McL00, Theorem 3.16]).

Since we are eventually interested in xw(x,0)L2(Ω)\|\nabla_{x^{\prime}}w(x^{\prime},0)\|_{L^{2}(\Omega^{\prime})}, and as also

x[0y12sg~(x,y)𝑑y]u(x)L2(Ω)uL2(Ω)x0y12sg~(x,y)𝑑yL(Ω),\left\|\nabla_{x^{\prime}}\left[\int_{0}^{\infty}y^{1-2s}\tilde{g}(x^{\prime},y)dy\right]u(x^{\prime})\right\|_{L^{2}(\Omega^{\prime})}\leq\|u\|_{L^{2}(\Omega^{\prime})}\left\|\nabla_{x^{\prime}}\int_{0}^{\infty}y^{1-2s}\tilde{g}(x^{\prime},y)dy\right\|_{L^{\infty}(\Omega^{\prime})},

we next seek to show that

|x0y12sg~(x,y)𝑑y|<C< for all xΩ¯.\displaystyle|\nabla_{x^{\prime}}\int_{0}^{\infty}y^{1-2s}\tilde{g}(x^{\prime},y)dy|<{C<\infty\mbox{ for all }x^{\prime}\in\overline{\Omega^{\prime}}.}

In other words, we aim to show that

|x0n0Kt(x,z)yey24tdtt1+sg(z)𝑑z𝑑y|<C<,\left|\nabla_{x^{\prime}}\int_{0}^{\infty}\int\limits_{\mathbb{R}^{n}}\int\limits_{0}^{\infty}K_{t}(x^{\prime},z)ye^{-\frac{y^{2}}{4t}}\frac{dt}{t^{1+s}}g(z)dzdy\right|<{C<}\infty,

or equivalently,

(37) |xBRg(z)0tsKt(x,z)𝑑t𝑑z|<C<,\displaystyle\left|\nabla_{x^{\prime}}\int_{B_{R}}g(z)\int_{0}^{\infty}t^{-s}K_{t}(x^{\prime},z)dtdz\right|{<C<}\infty,

uniformly in xΩx^{\prime}\in\Omega^{\prime}.

In order to obtain such bounds, we first study the auxiliary function BRg(z)0tsKt(x,z)𝑑t𝑑z\int_{B_{R}}g(z)\int_{0}^{\infty}t^{-s}K_{t}(x^{\prime},z)dtdz. Here we observe that ts=t(t1s)1st^{-s}=\frac{\partial_{t}(t^{1-s})}{1-s}. Hence, integrating by parts in tt, we obtain

(38) BRg(z)εtsKt(x,z)dtdzBRg(z)εt(t1s)Kt(x,z)dtdz=ε1sBRg(z)Kε(x,z)𝑑zBRg(z)limtt1sKt(x,z)dz+BRg(z)εt1stKt(x,z)dtdz=ε1sBRg(z)Kε(x,z)𝑑z+BRg(z)εt1stKt(x,z)dtdz,\displaystyle\begin{split}-\int_{B_{R}}g(z)\int_{\varepsilon}^{\infty}t^{-s}K_{t}(x^{\prime},z)&dtdz\approx-\int_{B_{R}}g(z)\int_{\varepsilon}^{\infty}\partial_{t}(t^{1-s})K_{t}(x^{\prime},z)dtdz\\ &=\varepsilon^{1-s}\int_{B_{R}}g(z)K_{\varepsilon}(x^{\prime},z)dz-\int_{B_{R}}g(z)\lim\limits_{t\rightarrow\infty}t^{1-s}K_{t}(x^{\prime},z)dz\\ &\quad+\int_{B_{R}}g(z)\int_{\varepsilon}^{\infty}t^{1-s}\partial_{t}K_{t}(x^{\prime},z)dtdz\\ &=\varepsilon^{1-s}\int_{B_{R}}g(z)K_{\varepsilon}(x^{\prime},z)dz+\int_{B_{R}}g(z)\int_{\varepsilon}^{\infty}t^{1-s}\partial_{t}K_{t}(x^{\prime},z)dtdz,\end{split}

where the second boundary term vanishes in light of the fact that for n3n\geq 3 we have

|limtt1sKt(x,z)|limtt1sn2ec|xz|2t=0.|\lim\limits_{t\rightarrow\infty}t^{1-s}K_{t}(x^{\prime},z)|\lesssim\lim\limits_{t\rightarrow\infty}t^{1-s-\frac{n}{2}}e^{-c\frac{|x^{\prime}-z|^{2}}{t}}=0.

We next focus on the second contribution on the right hand side of (38): By the properties of the heat kernel, a double integration by parts in zz gives

BRg(z)εt1stKt(x,z)dtdz\displaystyle\int_{B_{R}}g(z)\int_{\varepsilon}^{\infty}t^{1-s}\partial_{t}K_{t}(x^{\prime},z)dtdz =BRg(z)εt1sLzKt(x,z)𝑑t𝑑z\displaystyle=\int_{B_{R}}g(z)\int_{\varepsilon}^{\infty}t^{1-s}L_{z}K_{t}(x^{\prime},z)dtdz
=BRg(z)Lzεt1sKt(x,z)𝑑t𝑑z\displaystyle=\int_{B_{R}}g(z)L_{z}\int_{\varepsilon}^{\infty}t^{1-s}K_{t}(x^{\prime},z)dtdz
=BRBrLg(z)εt1sKt(x,z)𝑑t𝑑z.\displaystyle=\int_{B_{R}\setminus B_{r}}Lg(z)\int_{\varepsilon}^{\infty}t^{1-s}K_{t}(x^{\prime},z)dtdz.

Here we note that the dominated convergence theorem is applicable, since by [Gri95, equation (0.6)] we have the bound |tKt(x,z)|1tn/2+1ec|xz|2t|\partial_{t}K_{t}(x^{\prime},z)|\lesssim\frac{1}{t^{n/2+1}}e^{-c\frac{|x^{\prime}-z|^{2}}{t}}, and thus

t1s|LzKt(x,z)|1tn/2+sec|xz|2t1tn/2+s,t^{1-s}|L_{z}K_{t}(x^{\prime},z)|\lesssim\frac{1}{t^{n/2+s}}e^{-c\frac{|x^{\prime}-z|^{2}}{t}}\leq\frac{1}{t^{n/2+s}},

which is integrable for t>εt>\varepsilon. Returning the the first expression in (38), we note that since for ϵ0\epsilon\rightarrow 0

BRg(z)Kε(x,z)𝑑zg(x) for xn,\displaystyle\int_{B_{R}}g(z)K_{\varepsilon}(x^{\prime},z)dz\rightarrow g(x^{\prime})\mbox{ for }x^{\prime}\in\mathbb{R}^{n},

we obtain that ε1sBRg(z)Kε(x,z)𝑑z0\varepsilon^{1-s}\int_{B_{R}}g(z)K_{\varepsilon}(x^{\prime},z)dz\rightarrow 0 for ϵ0\epsilon\rightarrow 0. We further observe that, for almost every zBRz\in B_{R}, we have

|Lg(z)||εt1sKt(x,z)𝑑t||Lg(z)|εt1sn/2ec|xz|2t𝑑t|Lg(z)||xz|n+2s4,|Lg(z)|\left|\int_{\varepsilon}^{\infty}t^{1-s}K_{t}(x^{\prime},z)dt\right|\lesssim|Lg(z)|\int_{\varepsilon}^{\infty}t^{1-s-n/2}e^{-c\frac{|x^{\prime}-z|^{2}}{t}}dt\lesssim\frac{|Lg(z)|}{|x^{\prime}-z|^{n+2s-4}},
g(z)|εtsKt(x,z)𝑑t|g(z)εtsn/2ec|xz|2t𝑑tg(z)|xz|n+2s2,g(z)\left|\int_{\varepsilon}^{\infty}t^{-s}K_{t}(x^{\prime},z)dt\right|\lesssim g(z)\int_{\varepsilon}^{\infty}t^{-s-n/2}e^{-c\frac{|x^{\prime}-z|^{2}}{t}}dt\lesssim\frac{g(z)}{|x^{\prime}-z|^{n+2s-2}},

where the right hand sides are all integrable functions of zz due to the support condition on gg. Therefore, returning to the expression in (38), by dominated convergence we deduce

BRg(z)0tsKt(x,z)𝑑t𝑑zBRBrLg(z)0t1sKt(x,z)𝑑t𝑑z.\int_{B_{R}}g(z)\int_{0}^{\infty}t^{-s}K_{t}(x^{\prime},z)dtdz\approx\int_{B_{R}\setminus B_{r}}Lg(z)\int_{0}^{\infty}t^{1-s}K_{t}(x^{\prime},z)dtdz.

With this in hand, we study the tangential gradient of the above expression and thus bound the quantity from (37). To this end, we note that there exists a constant δ>0\delta>0 such that |xz|>δ|x^{\prime}-z|>\delta for all zBRBrz\in B_{R}\setminus B_{r}. Thus,

|Lg(z)t1sxKt(x,z)||Lg(z)|tsn/2|xz|ec|xz|2t|Lg(z)|tsn/2ecδ2t,\left|Lg(z)t^{1-s}\nabla_{x^{\prime}}K_{t}(x^{\prime},z)\right|\lesssim|Lg(z)|t^{-s-n/2}|x^{\prime}-z|e^{-c\frac{|x^{\prime}-z|^{2}}{t}}\lesssim|Lg(z)|t^{-s-n/2}e^{-\frac{c\delta^{2}}{t}},

with

BRBr0|Lg(z)|tsn/2ecδ2t𝑑t𝑑zBRBr|Lg(z)|𝑑z<.\int_{B_{R}\setminus B_{r}}\int_{0}^{\infty}|Lg(z)|t^{-s-n/2}e^{-\frac{c\delta^{2}}{t}}dtdz\lesssim\int_{B_{R}\setminus B_{r}}|Lg(z)|dz<\infty.

As a consequence, it is clear that

|xng(z)0tsKt(x,z)𝑑t𝑑z|\displaystyle\left|\nabla_{x^{\prime}}\int_{\mathbb{R}^{n}}g(z)\int_{0}^{\infty}t^{-s}K_{t}(x^{\prime},z)dtdz\right| BRBr|Lg(z)|0t1s|xKt(x,z)|𝑑t𝑑z<.\displaystyle\lesssim\int_{B_{R}\setminus B_{r}}|Lg(z)|\int_{0}^{\infty}t^{1-s}|\nabla_{x^{\prime}}K_{t}(x^{\prime},z)|dtdz<\infty.

In the next short lemma we further observe that vf:=Ls1ufH˙1(n)v_{f}:=L^{s-1}u_{f}\in\dot{H}^{1}(\mathbb{R}^{n}) if ufHs(n)u_{f}\in H^{s}(\mathbb{R}^{n}) is compactly supported.

Lemma 6.3.

Let ufHs(n)u_{f}\in H^{s}(\mathbb{R}^{n}) with supp(uf)n\text{supp}(u_{f})\subset\mathbb{R}^{n} compact. Then, vf:=Ls1ufH˙1(n)v_{f}:=L^{s-1}u_{f}\in\dot{H}^{1}(\mathbb{R}^{n}) and vfL2(n)CufHs(n)\|\nabla v_{f}\|_{L^{2}(\mathbb{R}^{n})}\leq C\|u_{f}\|_{H^{s}(\mathbb{R}^{n})}. In particular, if uf,kufu_{f,k}\rightarrow u_{f} in Hs(n)H^{s}(\mathbb{R}^{n}), then vf,k:=Ls1uf,kvf:=Ls1ufv_{f,k}:=L^{s-1}u_{f,k}\rightarrow v_{f}:=L^{s-1}u_{f} in H˙1(n)\dot{H}^{1}(\mathbb{R}^{n}).

Proof.

Let RR\in\mathbb{R} be such that supp(uf)BR\text{supp}(u_{f})\subseteq B_{R}. By the argument in Proposition 6.1 we obtain the local estimate vfL2(B2R)ufHs(n)\|\nabla v_{f}\|_{L^{2}(B_{2R})}\lesssim\|u_{f}\|_{H^{s}(\mathbb{R}^{n})}. We then use the compact support of ufu_{f} and Lemma 6.2 to compute

vfL2(nB2R)2\displaystyle\|\nabla v_{f}\|_{L^{2}(\mathbb{R}^{n}\setminus B_{2R})}^{2} nB2R|BR|uf(z)||xz|n+2s1𝑑z|2𝑑x\displaystyle\lesssim\int_{\mathbb{R}^{n}\setminus B_{2R}}\left|\int_{B_{R}}\frac{|u_{f}(z)|}{|x^{\prime}-z|^{n+2s-1}}dz\right|^{2}dx^{\prime}
nB2R|BR|uf(z)||x|n+2s1𝑑z|2𝑑x\displaystyle\lesssim\int_{\mathbb{R}^{n}\setminus B_{2R}}\left|\int_{B_{R}}\frac{|u_{f}(z)|}{|x^{\prime}|^{n+2s-1}}dz\right|^{2}dx^{\prime}
ufL2(n)2,\displaystyle\lesssim\|u_{f}\|_{L^{2}(\mathbb{R}^{n})}^{2},

where we used that n+4s>2n+4s>2. Together with the argument in Proposition 6.1 this proves the desired global estimate. ∎

Finally, we prove one more auxiliary Lemma, which was used in the proof of Lemma 3.2.

Lemma 6.4.

Let n3n\geq 3, s(0,1)s\in(0,1), q(1,)q\in(1,\infty), R>0R>0, and assume that ΩBRn\Omega\Subset B_{R}\subset\mathbb{R}^{n} is a bounded open set. If uL2nn2(n)u\in L^{\frac{2n}{n-2}}(\mathbb{R}^{n}) is supported in the complement of BRB_{R}, then

limxn+10xn+112sn+1u~L2(Ω),\lim\limits_{x_{n+1}\rightarrow 0}x_{n+1}^{1-2s}\partial_{n+1}\tilde{u}\in L^{2}(\Omega),

where u~\tilde{u} is the Caffarelli-Silvestre extension of uu corresponding to the operator L:=aL:=\nabla^{\prime}\cdot a\nabla^{\prime}.

Proof.

Let q:=2nn2q:=\frac{2n}{n-2}. We start by observing that since uLq(n)u\in L^{q}(\mathbb{R}^{n}) and [ST10, Theorem 2.1] holds, the extension u~\tilde{u} is well-defined. As in the proof of Lemma 6.2 we get

|yu~(x,y)|y1(|u|K0,y)(x)+y(|u|K1,y)(x),|\partial_{y}\tilde{u}(x^{\prime},y)|\lesssim y^{-1}(|u|\ast K_{0,y})(x^{\prime})+y(|u|\ast K_{1,y})(x^{\prime}),

and therefore by Hölder’s inequality

limy0\displaystyle\|\lim\limits_{y\rightarrow 0} y12syu~(,y)L2(Ω)limy0(y2s(|u|K0,y)+y22s(|u|K1,y))L2(Ω)\displaystyle y^{1-2s}\partial_{y}\tilde{u}(\cdot,y)\|_{L^{2}(\Omega)}\lesssim\|\lim\limits_{y\rightarrow 0}(y^{-2s}(|u|\ast K_{0,y})+y^{2-2s}(|u|\ast K_{1,y}))\|_{L^{2}(\Omega)}
=limy0(nBR+r|u(z)|(|xz|2+y2)n/2+s𝑑z+nBR+r|u(z)|y2(|xz|2+y2)n/2+s+1𝑑z)L2(Ω)\displaystyle=\left\|\lim\limits_{y\rightarrow 0}\left(\int_{\mathbb{R}^{n}\setminus B_{R+r}}\frac{|u(z)|}{(|x^{\prime}-z|^{2}+y^{2})^{n/2+s}}dz+\int_{\mathbb{R}^{n}\setminus B_{R+r}}\frac{|u(z)|y^{2}}{(|x^{\prime}-z|^{2}+y^{2})^{n/2+s+1}}dz\right)\right\|_{L^{2}(\Omega)}
limy0nBR+r|u(z)|(|xz|2+y2)n/2+s𝑑zL2(Ω)\displaystyle\lesssim\left\|\lim\limits_{y\rightarrow 0}\int_{\mathbb{R}^{n}\setminus B_{R+r}}\frac{|u(z)|}{(|x^{\prime}-z|^{2}+y^{2})^{n/2+s}}dz\right\|_{L^{2}(\Omega)}
uLq(n)limy0(nBR+rdz(|xz|2+y2)p(n/2+s))1/pL2(Ω)\displaystyle\leq\|u\|_{L^{q}(\mathbb{R}^{n})}\left\|\lim\limits_{y\rightarrow 0}\left(\int_{\mathbb{R}^{n}\setminus B_{R+r}}\frac{dz}{(|x^{\prime}-z|^{2}+y^{2})^{p(n/2+s)}}\right)^{1/p}\right\|_{L^{2}(\Omega)}
uLq(n)(nBR+rdz|xz|p(n+2s))1/pL2(Ω)\displaystyle\leq\|u\|_{L^{q}(\mathbb{R}^{n})}\left\|\left(\int_{\mathbb{R}^{n}\setminus B_{R+r}}\frac{dz}{|x^{\prime}-z|^{p(n+2s)}}\right)^{1/p}\right\|_{L^{2}(\Omega)}
uLq(n)(nBrdz|z|p(n+2s))1/p,\displaystyle\leq\|u\|_{L^{q}(\mathbb{R}^{n})}\left(\int_{\mathbb{R}^{n}\setminus B_{r}}\frac{dz}{|z|^{p(n+2s)}}\right)^{1/p},

where p:=2nn+2p:=\frac{2n}{n+2} is the conjugated exponent of qq. Since the last integral is finite, the proof is complete. ∎

Acknowledgements

Giovanni Covi was supported by an Alexander-von-Humboldt postdoctoral fellowship. The research of Tuhin Ghosh was supported by the Collaborative Research Center 1283, Universität Bielefeld. Angkana Rüland was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the Hausdorff Center for Mathematics under Germany’s Excellence Strategy - EXC-2047/1 - 390685813. Gunther Uhlmann was partly supported by NSF and a Robert R. and Elaine F. Phelps Endowed Professorship.

References

  • [Ale88] Giovanni Alessandrini. Stable determination of conductivity by boundary measurements. Appl. Anal., 27(1-3):153–172, 1988.
  • [BGU21] Sombuddha Bhattacharyya, Tuhin Ghosh, and Gunther Uhlmann. Inverse problems for the fractional-laplacian with lower order non-local perturbations. Transactions of the American Mathematical Society, 374(5):3053–3075, 2021.
  • [CdHS22] Giovanni Covi, Maarten de Hoop, and Mikko Salo. Uniqueness in an inverse problem of fractional elasticity. arXiv preprint arXiv:2209.15316, 2022.
  • [CJKS20] T. Coulhon, R. Jiang, P. Koskela, and A. Sikora. Gradient estimates for heat kernels and harmonic functions. Journal of Functional Analysis, 278(8), 2020.
  • [CK19] David Colton and Rainer Kress. Inverse acoustic and electromagnetic scattering theory, volume 93 of Applied Mathematical Sciences. Springer, Cham, [2019] ©2019. Fourth edition of [ MR1183732].
  • [CLR20] Mihajlo Cekić, Yi-Hsuan Lin, and Angkana Rüland. The Calderón problem for the fractional Schrödinger equation with drift. Calculus of Variations and Partial Differential Equations, 59(3):91, 2020.
  • [CMRU22] Giovanni Covi, Keijo Mönkkönen, Jesse Railo, and Gunther Uhlmann. The higher order fractional Calderón problem for linear local operators: uniqueness. Adv. Math., 399:Paper No. 108246, 29, 2022.
  • [Cov20a] Giovanni Covi. An inverse problem for the fractional Schrödinger equation in a magnetic field. Inverse Problems, 36(4):045004, 2020.
  • [Cov20b] Giovanni Covi. Inverse problems for a fractional conductivity equation. Nonlinear Analysis, 193:111418, 2020.
  • [CR16] Pedro Caro and Keith M Rogers. Global uniqueness for the Calderón problem with Lipschitz conductivities. In Forum of Mathematics, Pi, volume 4, page e2. Cambridge University Press, 2016.
  • [CR21] Giovanni Covi and Angkana Rüland. On some partial data Calderón type problems with mixed boundary conditions. Journal of Differential Equations, 288:141–203, 2021.
  • [CS07] Luis Caffarelli and Luis Silvestre. An extension problem related to the fractional Laplacian. Communications in partial differential equations, 32(8):1245–1260, 2007.
  • [CS14] Xavier Cabré and Yannick Sire. Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates. In Annales de l’Institut Henri Poincare (C) Non Linear Analysis, volume 31, pages 23–53. Elsevier, 2014.
  • [Fei21] Ali Feizmohammadi. Fractional Calderón problem on a closed Riemannian manifold. arXiv preprint arXiv:2110.07500, 2021.
  • [FF14] Mouhamed Moustapha Fall and Veronica Felli. Unique continuation property and local asymptotics of solutions to fractional elliptic equations. Communications in Partial Differential Equations, 39(2):354–397, 2014.
  • [FGKU21] Ali Feizmohammadi, Tuhin Ghosh, Katya Krupchyk, and Gunther Uhlmann. Fractional anisotropic Calderón problem on closed Riemannian manifolds. arXiv preprint arXiv:2112.03480, 2021.
  • [GFRZ22] María Ángeles García-Ferrero, Angkana Rüland, and Wiktoria Zatoń. Runge approximation and stability improvement for a partial data Calderón problem for the acoustic Helmholtz equation. Inverse Problems and Imaging, 16(1):251–281, 2022.
  • [Gri95] A. Grigor’yan. Upper bounds of derivatives of the heat kernel on an arbitrary complete manifold. J. Funct. Anal., 127(2):363–389, 1995.
  • [GRSU20] Tuhin Ghosh, Angkana Rüland, Mikko Salo, and Gunther Uhlmann. Uniqueness and reconstruction for the fractional Calderón problem with a single measurement. Journal of Functional Analysis, 279(1):108505, 2020.
  • [GSU20] Tuhin Ghosh, Mikko Salo, and Gunther Uhlmann. The Calderón problem for the fractional Schrödinger equation. Analysis & PDE, 13(2):455–475, 2020.
  • [GU21] Tuhin Ghosh and Gunther Uhlmann. The Calderón problem for nonlocal operators. arXiv preprint arXiv:2110.09265, 2021.
  • [Hab15] Boaz Haberman. Uniqueness in Calderón’s problem for conductivities with unbounded gradient. Communications in Mathematical Physics, 340:639–659, 2015.
  • [HL19] Bastian Harrach and Yi-Hsuan Lin. Monotonicity-based inversion of the fractional Schrödinger equation I. Positive potentials. SIAM Journal on Mathematical Analysis, 51(4):3092–3111, 2019.
  • [HL20] Bastian Harrach and Yi-Hsuan Lin. Monotonicity-based inversion of the fractional Schrödinger equation II. General potentials and stability. SIAM Journal on Mathematical Analysis, 52(1):402–436, 2020.
  • [HT13] Boaz Haberman and Daniel Tataru. Uniqueness in Calderón’s problem with Lipschitz conductivities. Duke Mathematical Journal, 162(3), feb 2013.
  • [Li20] Li Li. The Calderón problem for the fractional magnetic operator. Inverse Problems, 36(7):075003, 2020.
  • [Li21] Li Li. Determining the magnetic potential in the fractional magnetic Calderón problem. Communications in Partial Differential Equations, 46(6):1017–1026, 2021.
  • [LLR20] Ru-Yu Lai, Yi-Hsuan Lin, and Angkana Rüland. The Calderón problem for a space-time fractional parabolic equation. SIAM Journal on Mathematical Analysis, 52(3):2655–2688, 2020.
  • [LO20] Ru-Yu Lai and Laurel Ohm. Inverse problems for the fractional Laplace equation with lower order nonlinear perturbations. arXiv preprint arXiv:2009.07883, 2020.
  • [LTU03] Matti Lassas, Michael Taylor, and Gunther Uhlmann. The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary. Communications in Analysis and Geometry, 11(2):207–221, 2003.
  • [LU89] John M Lee and Gunther Uhlmann. Determining anisotropic real-analytic conductivities by boundary measurements. Communications on Pure and Applied Mathematics, 42(8):1097–1112, 1989.
  • [LU01] Matti Lassas and Gunther Uhlmann. On determining a Riemannian manifold from the Dirichlet-to-Neumann map. In Annales scientifiques de l’Ecole normale supérieure, volume 34, pages 771–787, 2001.
  • [McL00] William McLean. Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge, 2000.
  • [Nac88] Adrian I Nachman. Reconstructions from boundary measurements. Annals of Mathematics, 128(3):531–576, 1988.
  • [RS18] Angkana Rüland and Mikko Salo. Exponential instability in the fractional Calderón problem. Inverse Problems, 34(4):045003, 2018.
  • [RS19a] Angkana Rüland and Mikko Salo. Quantitative Runge approximation and inverse problems. International Mathematics Research Notices, 2019(20):6216–6234, 2019.
  • [RS19b] Angkana Rüland and Eva Sincich. Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data. Inverse Problems & Imaging, 13(5), 2019.
  • [RS20] Angkana Rüland and Mikko Salo. The fractional Calderón problem: low regularity and stability. Nonlinear Analysis, 193:111529, 2020.
  • [Rül15] Angkana Rüland. Unique continuation for fractional Schrödinger equations with rough potentials. Communications in Partial Differential Equations, 40(1):77–114, 2015.
  • [Rül18] Angkana Rüland. Unique continuation, Runge approximation and the fractional Calderón problem. Journées équations aux dérivées partielles, pages 1–10, 2018.
  • [Rül19] Angkana Rüland. Quantitative invertibility and approximation for the truncated Hilbert and Riesz transforms. Revista Matemática Iberoamericana, 35(7):1997–2024, 2019.
  • [Rül21] Angkana Rüland. On single measurement stability for the fractional Calderón problem. SIAM Journal on Mathematical Analysis, 53(5):5094–5113, 2021.
  • [Sal17] Mikko Salo. The fractional Calderón problem. Journées équations aux dérivées partielles, pages 1–8, 2017.
  • [ST10] Pablo Raúl Stinga and José Luis Torrea. Extension problem and Harnack’s inequality for some fractional operators. Communications in Partial Differential Equations, 35(11):2092–2122, 2010.
  • [SU87] John Sylvester and Gunther Uhlmann. A global uniqueness theorem for an inverse boundary value problem. Ann. of Math., 125(1):153–169, 1987.
  • [Uhl09] Gunther Uhlmann. Electrical impedance tomography and Calderón’s problem. Inverse Problems, 25(12):123011, 2009.