This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A refined uniqueness result of Leray’s problem in an infinite-long pipe with the Navier-slip boundary

Zijin Li, Ning Liu and Taoran Zhou
Abstract

We consider the generalized Leray’s problem with the Navier-slip boundary condition in an infinite pipe 𝒟=Σ×\mathcal{D}=\Sigma\times\mathbb{R}. We show that if the flux Φ\Phi of the solution is no larger than a critical value that is independent with the friction ratio of the Navier-slip boundary condition, the solution to the problem must be the parallel Poiseuille flow with the given flux. Compared with known related 3D results, this seems to be the first conclusion with the size of critical flux being uniform with the friction ratio α]0,]\alpha\in]0,\infty], and it is surprising since the prescribed uniqueness breaks down immediately when α=0\alpha=0, even if Φ=0\Phi=0.

Our proof relies primarily on a refined gradient estimate of the Poiseuille flow with the Navier-slip boundary condition. Additionally, we prove the critical flux Φ0π16\Phi_{0}\geq\frac{\pi}{16} provided that Σ\Sigma is a unit disk.

Keywords: stationary Navier-Stokes system, Navier-slip boundary condition, uniqueness

Mathematical Subject Classification 2020: 35Q35, 76D05

1  Introduction

The 3D stationary Navier-Stokes (NS) equations read:

{𝒖𝒖+πΔ𝒖=0,𝒖=0,in𝒟3.\left\{\begin{aligned} &\boldsymbol{u}\cdot\nabla\boldsymbol{u}+\nabla\mathcal{\pi}-\Delta\boldsymbol{u}=0,\\ &\nabla\cdot\boldsymbol{u}=0,\end{aligned}\right.\quad\text{in}\quad\mathcal{D}\subset{\mathbb{R}}^{3}. (1.1)

Here 𝒖(x)3\boldsymbol{u}(x)\in\mathbb{R}^{3}, π(x)\mathcal{\pi}(x)\in\mathbb{R} represent the velocity and the scalar pressure respectively. The domain 𝒟\mathcal{D} is an infinite long pipe: 𝒟=Σ×\mathcal{D}=\Sigma\times\mathbb{R}, where Σ\Sigma is a bounded smooth 2D domain in the xh=(x1,x2)x_{h}=(x_{1},x_{2}) direction.

Refer to caption
Figure 1: The infinite long pipe 𝒟=Σ×\mathcal{D}=\Sigma\times\mathbb{R}.

We impose the Navier-slip boundary condition to the velocity field 𝒖\boldsymbol{u} on 𝒟\partial\mathcal{D}:

{2(𝕊𝒖𝒏)tan+α𝒖tan=0,𝒖𝒏=0,on𝒟.\left\{\begin{aligned} &2(\mathbb{S}\boldsymbol{u}\cdot\boldsymbol{n})_{\mathrm{tan}}+\alpha\boldsymbol{u}_{\mathrm{tan}}=0,\\ &\boldsymbol{u}\cdot\boldsymbol{n}=0,\\ \end{aligned}\right.\quad\text{on}\quad\partial\mathcal{D}. (1.2)

Here 𝕊𝒖=12(𝒖+T𝒖)\mathbb{S}\boldsymbol{u}=\frac{1}{2}\left(\nabla\boldsymbol{u}+\nabla^{T}\boldsymbol{u}\right) is the stress tensor, where T𝒖\nabla^{T}\boldsymbol{u} stands for the transpose of the Jacobian matrix 𝒖\nabla\boldsymbol{u}, and 𝒏\boldsymbol{n} is the unit outer normal vector of 𝒟\partial\mathcal{D}. For a vector field 𝒗\boldsymbol{v}, its tangential part 𝒗tan\boldsymbol{v}_{\mathrm{tan}} is defined by

𝒗tan:=𝒗(𝒗𝒏)𝒏.\boldsymbol{v}_{\mathrm{tan}}:=\boldsymbol{v}-(\boldsymbol{v}\cdot\boldsymbol{n})\boldsymbol{n}.

The constant α>0\alpha>0 stands for the friction ratio, which may depend on the property of the boundary, the viscosity of the fluid, et cetera. We mention that when α0+\alpha\to 0_{+}, the boundary condition (1.2) turns to be the total Navier-slip boundary condition, while when α+\alpha\to+\infty, the boundary condition (1.2) degenerates into the no-slip boundary condition 𝒖|𝒟0\boldsymbol{u}\big{|}_{\partial\mathcal{D}}\equiv 0. In this paper, we consider the intermediate case 0<α<+0<\alpha<+\infty.

Let (𝒖,p)(\boldsymbol{u},p) be a smooth solution of the boundary value problem (1.1)–(1.2), we define

Φ=Σu3(xh,x3)𝑑xh,\Phi=\int_{\Sigma}u_{3}(x_{h},x_{3})dx_{h}, (1.3)

the flux of the flow. In this paper, we suppose Φ0\Phi\geq 0 without loss of generality. We mention that Φ\Phi is independent of x3x_{3}, owing to the divergence-free property and the impermeable boundary condition of 𝒖\boldsymbol{u}:

ddx3Σu3(xh,x3)𝑑xh=Σx3u3(xh,x3)dxh=Σ(x1u1(xh,x3)+x2u2(xh,x3))𝑑xh=Σ𝒖𝒏𝑑s=0.\begin{split}&\frac{d}{dx_{3}}\int_{\Sigma}u_{3}(x_{h},x_{3})dx_{h}=\int_{\Sigma}\partial_{x_{3}}u_{3}(x_{h},x_{3})dx_{h}\\ =&-\int_{\Sigma}\left(\partial_{x_{1}}u_{1}(x_{h},x_{3})+\partial_{x_{2}}u_{2}(x_{h},x_{3})\right)dx_{h}=-\int_{\partial\Sigma}\boldsymbol{u}\cdot\boldsymbol{n}ds=0\,.\end{split}

Given a flux Φ0\Phi\geq 0, we say 𝒖\boldsymbol{u} is a weak solution of (1.1)–(1.2)–(1.3), the generalized Leray’s problem with the Navier-slip boundary condition, if and only if the following (i) and (ii) hold:

  • (i)

    𝒖Hσ1(𝒟¯)\boldsymbol{u}\in H^{1}_{\sigma}(\overline{\mathcal{D}}) satisfies (1.1)–(1.2) weakly. That is, for any 𝝋Cc(𝒟¯)\boldsymbol{\varphi}\in C_{c}^{\infty}\left(\overline{\mathcal{D}}\right) with 𝝋=0\nabla\cdot\boldsymbol{\varphi}=0 and 𝝋𝒏|𝒟=0\boldsymbol{\varphi}\cdot\boldsymbol{n}\Big{|}_{\partial\mathcal{D}}=0, one has

    2𝒟𝕊𝒖:𝕊𝝋dx+α𝒟𝒖tan𝝋tan𝑑S𝒟𝒖𝝋𝒖dx=0;2\int_{\mathcal{D}}\mathbb{S}\boldsymbol{u}:\mathbb{S}\boldsymbol{\varphi}dx+\alpha\int_{\partial\mathcal{D}}\boldsymbol{u}_{\tan}\cdot\boldsymbol{\varphi}_{\tan}dS-\int_{\mathcal{D}}\boldsymbol{u}\cdot\nabla\boldsymbol{\varphi}\cdot\boldsymbol{u}dx=0\,;
  • (ii)

    𝒖\boldsymbol{u} satisfies (1.3) in the sense of trace.

We denote 𝝉\boldsymbol{\tau} and 𝒏\boldsymbol{n} the unit tangent vector and the unit outer normal vector of the cross-section Σ\Sigma, respectively. See Figure 1. Noticing that the coordinate vector 𝒆𝟑\boldsymbol{e_{3}} is always a tangent vector on 𝒟\partial\mathcal{D}, we can rewrite

𝒖=uτ𝝉+u3𝒆𝟑+un𝒏\boldsymbol{u}=u_{\tau}\boldsymbol{\tau}+u_{3}\boldsymbol{e_{3}}+u_{n}\boldsymbol{n} (1.4)

near the boundary. Under this curvilinear coordinate system, the Navier-slip boundary condition (1.2) can be rewritten as the following Robin-Dirichlet-mixed form:

{𝒏uτ=(κ(x)α)uτ,𝒏u3=αu3,un=0, on 𝒟.\left\{\begin{array}[]{l}\partial_{\boldsymbol{n}}u_{\tau}=\left(\kappa(x)-\alpha\right)u_{\tau},\\ \partial_{\boldsymbol{n}}u_{3}=-\alpha u_{3},\\ u_{n}=0,\end{array}\quad\text{ on }\partial\mathcal{D}.\right. (1.5)

Here κ\kappa is the curvature of Σ\partial\Sigma, which is uniformly bounded since Σ\Sigma is bounded and smooth. For the detailed derivation of (1.5), we refer readers to [26, Proposition 2.1 and Corollary 2.2] (also [17, Section 2.1]).

With the help of the representation (1.5), it is clear that the following Poiseuille flow is an exact solution to the problem (1.1)–(1.2)–(1.3):

{𝑷Φ=PΦ𝒆𝟑,ΔhPΦ(xh)=Constant,in Σ,PΦ𝒏¯=αPΦ,on Σ,ΣPΦ(xh)𝑑xh=Φ.\left\{\begin{aligned} &\boldsymbol{P}_{\Phi}=P_{\Phi}\boldsymbol{e_{3}},\\ &-\Delta_{h}P_{\Phi}(x_{h})=Constant,\quad\quad\quad\text{in }\Sigma,\\ &\frac{\partial P_{\Phi}}{\partial\bar{\boldsymbol{n}}}=-\alpha P_{\Phi},\hskip 54.06006pt\quad\quad\quad\text{on }\partial\Sigma,\\ &\int_{\Sigma}P_{\Phi}(x_{h})dx_{h}=\Phi.\\ \end{aligned}\right. (1.6)

Here 𝒏¯\bar{\boldsymbol{n}} is the unit outer normal vector of Σ\partial\Sigma, while PΦ:ΣP_{\Phi}:\Sigma\to\mathbb{R} is a scaler function. Its related pressure field reads:

πP=Constantx3,in Σ.\pi_{P}=-Constant\cdot x_{3},\quad\quad\quad\text{in }\Sigma\,.

Now a problem arises:

Is (1.6) the only solution to the problem (1.1)–(1.2)–(1.3)?

1.1 Main result

Our main result of the current paper states:

Theorem 1.1.

Let (𝒖,p)(\boldsymbol{u},p) be a weak solution of the boundary value problem (1.1)–(1.2), and

Φ=Σu3(xh,x3)𝑑xh.\Phi=\int_{\Sigma}u_{3}(x_{h},x_{3})dx_{h}\,.

Then there exists a critical flux Φ0>0\Phi_{0}>0, which is independent with the friction ratio α>0\alpha>0, that if ΦΦ0\Phi\leq\Phi_{0}, and

𝒖L2(Σ×]ζ,ζ[)=o(ζ3/2),forζ>>1,\|\nabla\boldsymbol{u}\|_{L^{2}(\Sigma\times\,]-\zeta,\zeta[\,)}=o(\zeta^{3/2}),\quad\text{for}\quad\zeta>>1\,, (1.7)

then 𝒖\boldsymbol{u} must be the Poiseuille flow 𝑷Φ\boldsymbol{P}_{\Phi} given in (1.6).

Remark 1.2.

Here the growth condition (1.7) is relatively mild since we mainly focus on bounded solutions. However, the uniform bound of the critical flux Φ0\Phi_{0} as α0+\alpha\to 0_{+} seems surprising. Indeed, other than the parallel flow (1.6), some parasitic solutions may exist in the total slip case. For example, if the cross section Σ\Sigma is a unit disk, the helical solution:

𝒖𝒉=Cr𝒆𝜽+Φπ𝒆𝟑,\boldsymbol{u_{h}}=Cr\boldsymbol{e_{\theta}}+\frac{\Phi}{\pi}\boldsymbol{e_{3}}\,,

solves (1.1)–(1.2)–(1.3) when α=0\alpha=0 for any CC\in\mathbb{R}. Here

𝒆𝜽=(x2x12+x22,x1x12+x22,0).\boldsymbol{e_{\theta}}=\Big{(}\frac{-x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}}},\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}},0\Big{)}\,.

This breaks down the desired uniqueness even when Φ=0\Phi=0.

Remark 1.3.

In Section 4.4, we show the critical flux Φ0π16\Phi_{0}\geq\frac{\pi}{16} when Σ\Sigma is a unit disk.

Remark 1.4.

Compared with the result in [17] which showed the uniqueness provided Φ\Phi is no bigger than a critical flux Φ0=C(α,𝒟)\Phi_{0}=C(\alpha,\mathcal{D}), Theorem 1.1 excludes the dependence of the friction ratio α\alpha for Φ0\Phi_{0}. Although the authors did not provide a specific expression of Φ0\Phi_{0} there, readers can verity Φ0𝒟α1+α\Phi_{0}\simeq_{\mathcal{D}}\frac{\alpha}{1+\alpha} by applying the method therein. Theorem 1.1 improves the result in [17] especially when α\alpha is small (close to the total slip Navier boundary condition).

1.2 Related works

We review some works related to the solvability of Leray’s problem. Originally, the study of Leray’s problem focuses on the existence, regularity, uniqueness, and asymptotic behavior of Systems (1.1)–(1.3) subject to no-slip boundary condition

𝒖=0,on 𝒟,\boldsymbol{u}=0,\quad\text{on }\partial\mathcal{D}\,,

as described by Ladyzhenskaya of her works [12, p. 77] and [13, p. 551]. Later in[14], Ladyzhenskaya and Solonnikov provided a comprehensive analysis of the existence, uniqueness, and asymptotic behavior of weak solutions to the Leray’s problem with the help of small-flux conditions. Amick [2, 3] made a significant initial contribution to solving Leray’s problem by reducing the issue to a variational problem, although the uniqueness of the solutions remains an open question. Further details on the decay, far-field asymptotic behavior, and well-posedness of solutions to Leray’s problem under the no-slip boundary condition are available in [4, 10, 22]. For a systematic exploration and analysis of this problem, readers may consult Chapter XIII of [9]. In recent research, Wang and Xie investigated the existence, uniqueness, and uniform structural stability of Poiseuille flows in a pipe, addressing the 3D axially symmetric inhomogeneous Navier-Stokes equations. See [23, 24] and some of their subsequent works.

The Naiver-slip boundary condition (1.2), which was initialed by Navier [20], allows fluid to slip along the boundary with a scale being proportional to its stress tensor. Due to the complexity of the Navier-slip boundary condition, new mathematical strategies are needed to study problems related to it. More and more studies on problems with Navier-slip boundary conditions emerged these years, see [1] and references therein. In [18, 19, 11], authors studied the solvability of the steady Navier-Stokes equations with the total Navier-slip condition (α=0\alpha=0). Wang and Xie [25] proved the uniqueness and uniform structural stability of the Poiseuille flow in an infinite straight long pipe with the Navier-slip boundary condition. Li, Pan and Yang [15] gave the characterization of bounded smooth solutions to the axisymmetric Navier-Stokes equations with the total Navier-slip boundary condition and the Navier-Hodge-Lions boundary condition in the infinitely long cylinder.

In the recent paper [17], authors proved the generalized Leray’s problem of stationary 3D Navier-Stokes equations (i.e. existence, uniqueness, together with the higher-order regularity and asymptotic behavior of the stationary 3D Navier-Stokes flow in a distorted infinite pipe with Navier-slip boundary condition) with the flux of flow being small enough, depending on the shape of the pipe and the friction ratio α\alpha of the Naiver-slip boundary condition. Meanwhile, the related 2D problem, which is studied in [16], presented an exact formula that measures the smallness of Φ\Phi with respect to α\alpha when considering the existence, regularity together with the asymptotic behavior problem:

ΦΦ0:=C(1+α)α,\Phi\leq\Phi_{0}:=\frac{C(1+\alpha)}{\alpha}\,, (1.8)

where C>0C>0 is a constant independent with α\alpha. Estimate (1.8) shows when α\alpha is small enough, the smallness restriction of the flux tends weaker, and for the total Navier-slip condition (α=0\alpha=0), the solution can be arbitrarily large.

1.3 Difficulties, the outline of proof, and the structure of paper

The cross section Σ\Sigma degenerates to an interval in the 2D case, and we assume Σ=]0,1[\Sigma=]0,1[ without loss of generality. Direct calculation shows

𝑷Φ=(0,6αΦ6+α(x12+x1)+6Φ6+α),(x1,x2)]0,1[×,\boldsymbol{P}_{\Phi}=\left(0\,\,,\,\,\frac{6\alpha\Phi}{6+\alpha}\left(-x^{2}_{1}+x_{1}\right)+\frac{6\Phi}{6+\alpha}\right),\quad(x_{1},x_{2})\in\,]0,1[\,\times\mathbb{R}\,, (1.9)

solves (1.6) (with 𝒆𝟑\boldsymbol{e_{3}} replaced by 𝒆𝟐\boldsymbol{e_{2}}). It is clear that

|𝑷Φ|CΦα1+α.|\nabla\boldsymbol{P}_{\Phi}|\leq\frac{C\Phi\alpha}{1+\alpha}\,. (1.10)

For the 3D case, the gradient bound (1.10) also holds when the cross-section Σ\Sigma is a unit disk. Indeed,

𝑷disk,Φ(x):=2(α+2)Φ(α+4)π(1αα+2|xh|2)𝒆𝟑,with its pressure πΦ(x)=8αΦ(α+4)πx3,\boldsymbol{P}_{\text{disk},\Phi}(x):=\frac{2(\alpha+2)\Phi}{(\alpha+4)\pi}\left(1-\frac{\alpha}{\alpha+2}|x_{h}|^{2}\right)\boldsymbol{e_{3}},\quad\text{with its pressure }\pi_{\Phi}(x)=-\frac{8\alpha\Phi}{(\alpha+4)\pi}x_{3}, (1.11)

which could be considered as a generalization of the Hagen-Poiseuille flow under the no-slip boundary condition (α=+\alpha=+\infty), solves the problem (1.6) provided Σ={xh2:|xh|<1}\Sigma=\{x_{h}\in\mathbb{R}^{2}:\,|x_{h}|<1\}. In this case, clearly

|𝑷disk,Φ|αΦ1+α|\nabla\boldsymbol{P}_{\text{disk},\Phi}|\lesssim\frac{\alpha\Phi}{1+\alpha} (1.12)

follows from direct calculations.

However, in general 3D cases, the topology of the cross section may rather complicated and one can hardly represent the formula of the solution as (1.9) or (1.11). Whether the gradient bound (1.10) still holds for 3D Poiseuille flow in a sufficiently regular pipe is an interesting question. In this paper, we give a positive answer to this question. With the help of this, we prove the Poiseuille flow given in (1.6) is the unique solution to the problem (1.1)–(1.2)–(1.3) provided Φ\Phi is no larger than a constant that is independent with the friction ratio α\alpha.

Now we outline the idea of proving the main result of the current paper. First and the most important is to prove the upper bound (1.12) holds for Poiseuille flow in the general smooth pipe 𝒟\mathcal{D}. To do this, we first rescale (1.6) to get

{Δhφα=Constantα,in Σ,φα𝒏¯+αφα=0,on Σ,Σφα𝑑xh=1.\left\{\begin{aligned} &-\Delta_{h}\varphi_{\alpha}=Constant_{\alpha},\quad\text{in }\Sigma\,,\\ &\frac{\partial\varphi_{\alpha}}{\partial\bar{\boldsymbol{n}}}+\alpha\varphi_{\alpha}=0,\quad\text{on }\partial\Sigma\,,\\ &\int_{\Sigma}\varphi_{\alpha}dx_{h}=1\,.\end{aligned}\right. (1.13)

To prove hφαL2(Σ)α\|\nabla_{h}\varphi_{\alpha}\|_{L^{2}(\Sigma)}\lesssim\alpha for α\alpha being sufficiently small, we expand φα\varphi_{\alpha} as:

φα(xh):=n=0αnϕn(xh),\varphi_{\alpha}(x_{h}):=\sum_{n=0}^{\infty}\alpha^{n}\phi_{n}(x_{h})\,, (1.14)

where ϕ0=|Σ|1\phi_{0}=|\Sigma|^{-1}, and ϕn\phi_{n} satisfies

{Δhϕn=Constn,in Σ;ϕn𝒏¯=ϕn1,on Σ;Σϕn𝑑xh=0,forn+.\left\{\begin{aligned} &-\Delta_{h}\phi_{n}=Const_{n},\quad\text{in }\Sigma\,;\\ &\frac{\partial\phi_{n}}{\partial\bar{\boldsymbol{n}}}=-\phi_{n-1},\quad\text{on }\partial\Sigma\,;\\ &\int_{\Sigma}\phi_{n}dx_{h}=0\,,\end{aligned}\right.\quad\text{for}\quad n\in\mathbb{Z}_{+}\,.

The key observation of this decomposition is the sequence (1.14) is convergent when α\alpha is small, and the zero-order term ϕ0\phi_{0} is a constant which makes no sense after taking the gradient. Meanwhile, the uniform boundedness of hφαL2(Σ)\|\nabla_{h}\varphi_{\alpha}\|_{L^{2}(\Sigma)} for sufficient large α\alpha is concluded by an energy estimate of system (1.13). After showing the estimate

PΦL2(Σ)CαΦ1+α,\|\nabla{P}_{\Phi}\|_{L^{2}(\Sigma)}\leq\frac{C\alpha\Phi}{1+\alpha}\,,

the uniqueness is proved by deriving a Saint-Venant type estimate that was first introduced by Ladyzhenskaya and Solonnikov in [14].

The rest of this paper is organized as follows. Section 2 contains the preliminary work of the proof, in which some useful lemmas are presented. Section 3 is devoted to deriving the key estimate of the Poiseuille flow (1.6). In Section 4, we finish the proof of the uniqueness of the solution, and prove the critical flux Φ0\Phi_{0} in no smaller than π16\frac{\pi}{16} if the cross section of the pipe is a unit disk.

1.4 Notations

We finish this section with a list of notations that will appear throughout the paper.

  • Ca,b,C_{a,b,...} denotes a positive constant depending on a,b,a,\,b,\,... which may be different from line to line. ABA\lesssim B means ACBA\leq CB, and Aa,b,BA\lesssim_{a,b,...}B denotes ACa,b,BA\leq C_{a,b,...}B. Meanwhile, ABA\simeq B means both ABA\lesssim B and BAB\lesssim A, in other words, AA and BB can be controlled by each other.

  • In the standard Euclidean coordinates framework 𝒆𝟏,𝒆𝟐\boldsymbol{e_{1}},\ \boldsymbol{e_{2}} and 𝒆𝟑\boldsymbol{e_{3}}, for a 3D vector field 𝒘\boldsymbol{w}, we denote 𝒘=w1𝒆𝟏+w2𝒆𝟐+w3𝒆𝟑\boldsymbol{w}=w_{1}\boldsymbol{e_{1}}+w_{2}\boldsymbol{e_{2}}+w_{3}\boldsymbol{e_{3}}.

  • We set 𝒏=(n1,n2,0)\boldsymbol{n}=(n_{1},n_{2},0) is the unit outer normal vector on 𝒟=Σ×\partial\mathcal{D}=\partial\Sigma\times\mathbb{R}, where 𝒏¯=(n1,n2)\bar{\boldsymbol{n}}=(n_{1},n_{2}) is the unit outer normal vector on Σ\partial\Sigma. Meanwhile, 𝝉=(τ1,τ2,0)\boldsymbol{\tau}=(\tau_{1},\tau_{2},0) is the unit tangent vector on Σ×\partial\Sigma\times\mathbb{R} that is orthogonal to 𝒆𝟑\boldsymbol{e_{3}}, and (𝝉,𝒆𝟑,𝒏)(\boldsymbol{\tau},\boldsymbol{e_{3}},\boldsymbol{n}) form a right-hand coordinate system. See Figure 1.

  • \mathfrak{H} stands for a multi-index such that =(h1,h2,h3)\mathfrak{H}=(h_{1},h_{2},h_{3}) where h1,h2,h3{0}h_{1},h_{2},h_{3}\in\mathbb{N}\cup\{0\} and ||=h1+h2+h3|\mathfrak{H}|=h_{1}+h_{2}+h_{3}, =x1h1x2h2x3h3\nabla^{\mathfrak{H}}=\partial_{x_{1}}^{h_{1}}\partial_{x_{2}}^{h_{2}}\partial_{x_{3}}^{h_{3}}.

  • We use standard notations for Lebesgue and Sobolev functional spaces in 3\mathbb{R}^{3}: For 1p1\leq p\leq\infty and kk\in\mathbb{N}, LpL^{p} denotes the Lebesgue space with norm

    fLp:={(3|f(x)|p𝑑x)1/p,1p<,esssupx3|f(x)|,p=.\|f\|_{L^{p}}:=\left\{\begin{aligned} &\left(\int_{\mathbb{R}^{3}}|f(x)|^{p}dx\right)^{1/p},\quad 1\leq p<\infty,\\ &\mathop{esssup}_{x\in\mathbb{R}^{3}}|f(x)|,\quad\quad\quad\quad p=\infty.\\ \end{aligned}\right.
  • HmH^{m} denotes the L2L^{2}-based Sobolev space with its norm

    fHm:=0||mfL2.\begin{split}\|f\|_{H^{m}}:=&\sum_{0\leq|\mathfrak{H}|\leq m}\|\nabla^{\mathfrak{H}}f\|_{L^{2}}\,.\\ \end{split}
  • For any ζ>1\zeta>1, we define

    𝒟ζ:={x𝒟:ζ<x3<ζ}\mathcal{D}_{\zeta}:=\left\{x\in\mathcal{D}:-\zeta<x_{3}<\zeta\right\}

    the truncated pipe with the length equals to 2ζ2\zeta. Meanwhile, Ωζ±\Omega^{\pm}_{\zeta} are defined by

    Ωζ+:=(𝒟ζ𝒟ζ1){x𝒟:x3>0},Ωζ:=(𝒟ζ𝒟ζ1){x𝒟:x3<0},\Omega_{\zeta}^{+}:=\left(\mathcal{D}_{\zeta}-\mathcal{D}_{\zeta-1}\right)\cap\left\{x\in\mathcal{D}:x_{3}>0\right\},\quad\Omega_{\zeta}^{-}:=\left(\mathcal{D}_{\zeta}-\mathcal{D}_{\zeta-1}\right)\cap\left\{x\in\mathcal{D}:x_{3}<0\right\}\,,

    respectively.

2  Preliminaries

The following two lemmas are Poincaré inequalities of a vector 𝒗\boldsymbol{v} with only the normal part vanishes on the boundary. Detailed proof could be found in [17, Lemma 2.5].

Lemma 2.1.

Let 𝒗=v1𝒆𝟏+v2𝒆𝟐+v3𝒆𝟑\boldsymbol{v}=v_{1}\boldsymbol{e_{1}}+v_{2}\boldsymbol{e_{2}}+v_{3}\boldsymbol{e_{3}} be a H1H^{1} vector field in Σ×I\Sigma\times I, where II\subset\mathbb{R} is an interval. If 𝒗\boldsymbol{v} is divergence-free which satisfies 𝒖𝒏=0\boldsymbol{u}\cdot\boldsymbol{n}=0 and

Σv3(xh,x3)𝑑xh=0,\int_{\Sigma}v_{3}(x_{h},x_{3})dx_{h}=0\,,

then we have

𝒗L2(Σ×I)Ch𝒗L2(Σ×I),\|\boldsymbol{v}\|_{L^{2}(\Sigma\times I)}\leq C\|\nabla_{h}\boldsymbol{v}\|_{L^{2}(\Sigma\times I)},

where CC is an absolute positive constant.

To estimate the pressure field in the Navier-Stokes equations, we need the following lemma for the divergence equation 𝑽=f\nabla\cdot\boldsymbol{V}=f in a truncated pipe. The detailed proof could be found in [5, 6], also [9, Chapter III].

Lemma 2.2.

Let D=Σ×[0,1]D=\Sigma\times[0,1], fL2(D)f\in L^{2}(D) with

Df𝑑x=0,\int_{D}fdx=0,

then there exists a vector valued function 𝑽:D3\boldsymbol{V}:\,D\to\mathbb{R}^{3} belongs to H01(D)H^{1}_{0}(D) such that

𝑽=f,and𝑽L2(D)CfL2(D).\nabla\cdot\boldsymbol{V}=f,\quad\text{and}\quad\|\nabla\boldsymbol{V}\|_{L^{2}(D)}\leq C\|f\|_{L^{2}(D)}. (2.15)

Here C>0C>0 is an absolute constant.

The following asymptotic estimate of a function that satisfies an ordinary differential inequality will be applied at the end of the proof. It was originally derived by Ladyzhenskaya and Solonnikov [14]. We also refer readers to [17, Lemma 2.7] for a proof written in a relatively recent format.

Lemma 2.3.

Let Y(ζ)0Y(\zeta)\not\equiv 0 be a nondecreasing nonnegative differentiable function satisfying

Y(ζ)Ψ(Y(ζ)),ζ>0.Y(\zeta)\leqslant\Psi\left(Y^{\prime}(\zeta)\right),\quad\forall\zeta>0.

Here, Ψ:[0,)[0,)\Psi:[0,\infty)\rightarrow[0,\infty) is a monotonically increasing function with Ψ(0)=0\Psi(0)=0, and there exist C,τ1>0C,\tau_{1}>0 and m>1m>1 such that

Ψ(τ)Cτm,τ>τ1.\Psi(\tau)\leqslant C\tau^{m},\quad\forall\tau>\tau_{1}.

Then

lim infζ+ζmm1Y(ζ)>0.\liminf_{\zeta\rightarrow+\infty}\zeta^{-\frac{m}{m-1}}Y(\zeta)>0\,.

3  Asymptotic property of the Poiseuille flow with respect to α\alpha

In this section, we consider the Poiseuille flow (1.6) in 𝒟=Σ×\mathcal{D}=\Sigma\times\mathbb{R}. We show that the gradient bound for the Hagen-Poiseuille flow (1.12) remains valid for this general case. Here is the proposition:

Proposition 3.1.

Given Φ0\Phi\geq 0 be the flux, and let α0\alpha\geq 0 be the friction ratio in (1.2). The Poiseuille flow defined in (1.6) satisfies the following estimate:

PΦL2(Σ)CαΦ1+α.\|\nabla{P}_{\Phi}\|_{L^{2}(\Sigma)}\leq\frac{C\alpha\Phi}{1+\alpha}\,. (3.16)

Here C>0C>0 is a uniform constant which is independent with Φ\Phi or α\alpha.

Proof.   The existence and uniqueness of the scaler function PΦP_{\Phi} in (1.6) could be derived by routine methods of elliptic equations in a bounded smooth domain with the Robin boundary condition, here we omit the details. We only prove (3.16) by showing the existence of C~Σ>0\tilde{C}_{\Sigma}>0, such that

{PΦL2(Σ)CαΦ, for0<α<C~Σ;PΦL2(Σ)CΦ, forαC~Σ.\left\{\begin{aligned} \|\nabla{P}_{\Phi}\|_{L^{2}(\Sigma)}\leq{C\alpha\Phi},\quad&\text{ for}\quad 0<\alpha<\tilde{C}_{\Sigma}\,;\\[2.84526pt] \|\nabla{P}_{\Phi}\|_{L^{2}(\Sigma)}\leq{C\Phi},\quad&\text{ for}\quad\alpha\geq\tilde{C}_{\Sigma}\,.\end{aligned}\right. (3.17)

We assume Φ>0\Phi>0 since the remaining case is trivial. For simplicity, we denote φα:=PΦΦ\varphi_{\alpha}:=\frac{P_{\Phi}}{\Phi}. This implies

{Δhφα=Constantα,in Σ;φα𝒏¯+αφα=0,on Σ;Σφα𝑑xh=1.\left\{\begin{aligned} &-\Delta_{h}\varphi_{\alpha}=Constant_{\alpha},\quad\text{in }\Sigma\,;\\ &\frac{\partial\varphi_{\alpha}}{\partial\bar{\boldsymbol{n}}}+\alpha\varphi_{\alpha}=0,\quad\text{on }\partial\Sigma\,;\\ &\int_{\Sigma}\varphi_{\alpha}dx_{h}=1\,.\end{aligned}\right. (3.18)

To prove (3.17)1, we formally split

φα(xh):=n=0αnϕn(xh),\varphi_{\alpha}(x_{h}):=\sum_{n=0}^{\infty}\alpha^{n}\phi_{n}(x_{h})\,, (3.19)

where ϕ0=|Σ|1\phi_{0}=|\Sigma|^{-1} that satisfies

{Δhϕ0=Const0,in Σ;ϕ0𝒏¯=0,on Σ;Σϕ0𝑑xh=1.\left\{\begin{aligned} &-\Delta_{h}\phi_{0}=Const_{0},\quad\text{in }\Sigma\,;\\ &\frac{\partial\phi_{0}}{\partial\bar{\boldsymbol{n}}}=0,\quad\text{on }\partial\Sigma\,;\\ &\int_{\Sigma}\phi_{0}dx_{h}=1\,.\end{aligned}\right. (3.20)

Meanwhile, for n=1,2,3,n=1,2,3,..., the function ϕn\phi_{n} satisfies

{Δhϕn=Constn,in Σ;ϕn𝒏¯=ϕn1,on Σ;Σϕn𝑑xh=0.\left\{\begin{aligned} &-\Delta_{h}\phi_{n}=Const_{n},\quad\text{in }\Sigma\,;\\ &\frac{\partial\phi_{n}}{\partial\bar{\boldsymbol{n}}}=-\phi_{n-1},\quad\text{on }\partial\Sigma\,;\\ &\int_{\Sigma}\phi_{n}dx_{h}=0\,.\end{aligned}\right. (3.21)

Formally, one can verify φα\varphi_{\alpha} satisfies (3.18) by summing over (3.20) and (3.21) for nn\in\mathbb{N}. Since the solvability of (3.21) is indeed classical, it remains to show the convergence of series (3.19) provided that α\alpha is sufficiently small. Integrating (3.21)1 over Σ\Sigma and using the Neumann-type boundary condition (3.21)2, one derives

|Constn||Σ|=|ΣΔhϕn𝑑xh|=|Σϕn𝒏¯𝑑Sh|=|Σϕn1𝑑Sh||Σ|1/2ϕn1L2(Σ).|Const_{n}|\cdot|\Sigma|=\Big{|}\int_{\Sigma}\Delta_{h}\phi_{n}dx_{h}\Big{|}=\Big{|}\int_{\partial\Sigma}\frac{\partial\phi_{n}}{\partial\bar{\boldsymbol{n}}}dS_{h}\Big{|}=\Big{|}\int_{\partial\Sigma}\phi_{n-1}dS_{h}\Big{|}\leq|\partial\Sigma|^{1/2}\|\phi_{n-1}\|_{L^{2}(\partial\Sigma)}\,.

Using the trace theorem (see e.g. [7, Theorem 1 in Section 5.5]), one arrives that

|Constn|C~Σϕn1H1(Σ),|Const_{n}|\leq\tilde{C}_{\Sigma}\|\phi_{n-1}\|_{H^{1}(\Sigma)}\,, (3.22)

which indicates

|Constn|C~Σn|Const_{n}|\leq\tilde{C}^{n}_{\Sigma} (3.23)

by an induction with (3.22). Now multiplying ϕn\phi_{n} on both sides of (3.21)1 and integration over Σ\Sigma, one deduces

Σ|hϕn|2𝑑xh=Σϕnϕn1𝑑Sh.-\int_{\Sigma}|\nabla_{h}\phi_{n}|^{2}dx_{h}=\int_{\partial\Sigma}\phi_{n}\phi_{n-1}dS_{h}\,.

Here we have applied the integration by parts and (3.21)2,3. This, together with the Poincaré inequality, the Young inequality and the trace theorem, indicates that

ϕnH1(Σ)2CΣΣ|hϕn|2𝑑xhCΣϕnL2(Σ)ϕn1L2(Σ)12ϕnH1(Σ)2+C~Σ22ϕn1H1(Σ)2,\|\phi_{n}\|_{H^{1}(\Sigma)}^{2}\leq C_{\Sigma}\int_{\Sigma}|\nabla_{h}\phi_{n}|^{2}dx_{h}\leq C_{\Sigma}\|\phi_{n}\|_{L^{2}(\partial\Sigma)}\|\phi_{n-1}\|_{L^{2}(\partial\Sigma)}\leq\frac{1}{2}\|\phi_{n}\|_{H^{1}(\Sigma)}^{2}+\frac{\tilde{C}_{\Sigma}^{2}}{2}\|\phi_{n-1}\|_{H^{1}(\Sigma)}^{2}\,,

which indicates

ϕnH1(Σ)C~Σϕn1H1(Σ)C~Σn.\|\phi_{n}\|_{H^{1}(\Sigma)}\leq\tilde{C}_{\Sigma}\|\phi_{n-1}\|_{H^{1}(\Sigma)}\leq\,...\,\leq\tilde{C}_{\Sigma}^{n}\,. (3.24)

Without loss of generality, we may assume constants C~Σ\tilde{C}_{\Sigma} on the far right of (3.23) and (3.24) are identical. Therefore, recalling (3.19)–(3.21) and (3.23), if α<C~Σ1\alpha<\tilde{C}_{\Sigma}^{-1}, one has φα\varphi_{\alpha} satisfies

{Δhφα=n=0αnConstn:=Constantα<,in Σ;φα𝒏¯+αφα=0,on Σ;Σφα𝑑xh=1.\left\{\begin{aligned} &-\Delta_{h}\varphi_{\alpha}=\sum_{n=0}^{\infty}\alpha^{n}Const_{n}:=Constant_{\alpha}<\infty,\quad\text{in }\Sigma\,;\\ &\frac{\partial\varphi_{\alpha}}{\partial\bar{\boldsymbol{n}}}+\alpha\varphi_{\alpha}=0,\quad\text{on }\partial\Sigma\,;\\ &\int_{\Sigma}\varphi_{\alpha}dx_{h}=1\,.\end{aligned}\right.

And by (3.24), one has

φαH1(Σ)n=0αnϕnH1n=0(αC~Σ)n<.\|\varphi_{\alpha}\|_{H^{1}(\Sigma)}\leq\sum_{n=0}^{\infty}\alpha^{n}\|\phi_{n}\|_{H^{1}}\leq\sum_{n=0}^{\infty}(\alpha\tilde{C}_{\Sigma})^{n}<\infty\,.

This indicates the validity of series (3.19). Noticing that ϕ0=|Σ|1\phi_{0}=|\Sigma|^{-1} is a constant, one concludes

hφαL2(Σ)n=1αnhϕnL2(Σ)Σα,\|\nabla_{h}\varphi_{\alpha}\|_{L^{2}(\Sigma)}\leq\sum_{n=1}^{\infty}\alpha^{n}\|\nabla_{h}\phi_{n}\|_{L^{2}(\Sigma)}\lesssim_{\Sigma}\alpha\,,

which proves the case (3.17)1.

Now it remains to show φαL2(Σ)Σ1\|\nabla\varphi_{\alpha}\|_{L^{2}(\Sigma)}\lesssim_{\Sigma}1 for any α>C~Σ\alpha>\tilde{C}_{\Sigma}. In fact, one only needs to show

φαL2(Σ)Σ1\|\nabla\varphi_{\alpha}\|_{L^{2}(\Sigma)}\lesssim_{\Sigma}1 (3.25)

for sufficient large α\alpha since the intermediate case is concluded by classical elliptic theory (see e.g. [8]). Thus (3.25) can be verified by showing

hφαhφ,in L2(Σ),as α+,\nabla_{h}\varphi_{\alpha}\to\nabla_{h}\varphi_{\infty},\quad\text{in }L^{2}(\Sigma),\quad\text{as }\alpha\to+\infty\,, (3.26)

where φ\varphi_{\infty} satisfies

{Δhφ=Constant,in Σ;φ=0,on Σ;Σφ𝑑xh=1.\left\{\begin{aligned} &-\Delta_{h}\varphi_{\infty}=Constant_{\infty},\quad\text{in }\Sigma\,;\\ &\varphi_{\infty}=0,\quad\text{on }\partial\Sigma\,;\\ &\int_{\Sigma}\varphi_{\infty}dx_{h}=1\,.\end{aligned}\right.

Denoting ηα:=φαφ\eta_{\alpha}:=\varphi_{\alpha}-\varphi_{\infty}, one derives

0=(ConstantαConstant)Σηα𝑑xh=ΣηαΔhηα𝑑xh=Σ|hηα|2𝑑xh+αΣηα2𝑑Sh+Σηαφ𝒏¯𝑑Sh.\begin{split}0&=(Constant_{\alpha}-Constant_{\infty})\int_{\Sigma}\eta_{\alpha}dx_{h}=-\int_{\Sigma}\eta_{\alpha}\Delta_{h}\eta_{\alpha}dx_{h}\\ &=\int_{\Sigma}|\nabla_{h}\eta_{\alpha}|^{2}dx_{h}+\alpha\int_{\partial\Sigma}\eta_{\alpha}^{2}dS_{h}+\int_{\partial\Sigma}\eta_{\alpha}\frac{\partial\varphi_{\infty}}{\partial\bar{\boldsymbol{n}}}dS_{h}\,.\end{split}

Using the Young inequality, this indicates

Σ|hηα|2𝑑xh+α2Σηα2𝑑Sh12αΣ(φ𝒏¯)2𝑑Sh,\int_{\Sigma}|\nabla_{h}\eta_{\alpha}|^{2}dx_{h}+\frac{\alpha}{2}\int_{\partial\Sigma}\eta_{\alpha}^{2}dS_{h}\leq\frac{1}{2\alpha}\int_{\partial\Sigma}\big{(}\frac{\partial\varphi_{\infty}}{\partial\bar{\boldsymbol{n}}}\big{)}^{2}dS_{h}\,,

which concludes (3.26). This completes the proof of the proposition.

4  Uniqueness

In this section, we give the proof of the main result: the uniqueness of the Poiseuille flow provided the flux Φ\Phi is smaller than a given constant which is independent with the friction ration α\alpha.

4.1 Estimate of the pressure difference

Below, the proposition shows an L2L^{2} estimate related to the pressure in the truncated pipe ΩZ+\Omega_{Z}^{+} or ΩZ\Omega_{Z}^{-} could be bounded by L2L^{2} norm of 𝒖\nabla\boldsymbol{u}.

Proposition 4.1.

Let (𝒗,π~)({\boldsymbol{v}},{\tilde{\pi}}) be an alternative weak solution of (1.1) in the pipe 𝒟\mathcal{D}, subject to the Navier-slip boundary condition (1.2). If the total flux

𝒟{x3=z}𝒗(xh,z)𝒆𝟑𝑑xh=Φ,for any z,\int_{\mathcal{D}\cap\{x_{3}=z\}}{\boldsymbol{v}}(x_{h},z)\cdot\boldsymbol{e_{3}}dx_{h}=\Phi,\quad\text{for any }z\in\mathbb{R},

then the following estimate the pressure difference holds:

|ΩK±(π~πP)w3𝑑x|C𝒟(𝑷ΦL4(ΩK±)𝒘L2(ΩK±)2+𝒘L2(ΩK±)2+𝒘L2(ΩK±)3),K,\left|\int_{\Omega^{\pm}_{K}}\big{(}{\tilde{\pi}}-\pi_{P}\big{)}w_{3}dx\right|\leq C_{\mathcal{D}}\left(\|\boldsymbol{P}_{\Phi}\|_{L^{4}(\Omega^{\pm}_{K})}\|\nabla\boldsymbol{w}\|^{2}_{L^{2}(\Omega^{\pm}_{K})}+\|\nabla\boldsymbol{w}\|_{L^{2}(\Omega^{\pm}_{K})}^{2}+\|\nabla\boldsymbol{w}\|_{L^{2}(\Omega^{\pm}_{K})}^{3}\right),\forall K\in\mathbb{R},

where 𝒘:=𝒗𝑷Φ\boldsymbol{w}:={\boldsymbol{v}}-{\boldsymbol{P}_{\Phi}}, and C𝒟>0C_{\mathcal{D}}>0 is a constant independent of KK.

Proof.   In the following, the upper index “±\pm” of the domain and the tilde above the pressure will be canceled for simplicity. Noticing

𝒟{x3=z}w3(xh,z)𝑑xh0,z,\int_{\mathcal{D}\cap\{x_{3}=z\}}w_{3}(x_{h},z)dx_{h}\equiv 0,\quad\forall z\in\mathbb{R},

integrating over z[K1,K]z\in[K-1,K], we deduce that

ΩKw3𝑑x=0,K>1.\int_{\Omega_{K}}w_{3}dx=0,\quad\forall K>1.

Using Lemma 2.2, one derives that there exists a vector field 𝑽\boldsymbol{V} satisfying (2.15) with f=w3f=w_{3}. By the stationary Navier-Stokes equations, one derives

ΩK(ππP)w3𝑑x=ΩK(ππP)𝑽𝑑x=ΩK(𝒘𝒘+𝑷Φ𝒘+𝒘𝑷ΦΔ𝒘)𝑽𝑑x.\int_{\Omega_{K}}\big{(}{\pi}-\pi_{P}\big{)}w_{3}dx=-\int_{\Omega_{K}}\nabla\big{(}{\pi}-\pi_{P}\big{)}\cdot\boldsymbol{V}dx=\int_{\Omega_{K}}\left(\boldsymbol{w}\cdot\nabla\boldsymbol{w}+\boldsymbol{P}_{\Phi}\cdot\nabla\boldsymbol{w}+\boldsymbol{w}\cdot\nabla\boldsymbol{P}_{\Phi}-\Delta\boldsymbol{w}\right)\cdot\boldsymbol{V}dx.

This indicates

ΩK(ππP)w3𝑑x=i,j=13ΩK(xiwjwiwj)xiVjdxi=13ΩKPΦ(wix3Vi+wixiV3)𝑑x.\int_{\Omega_{K}}\big{(}{\pi}-\pi_{P}\big{)}w_{3}dx=\sum_{i,j=1}^{3}\int_{\Omega_{K}}(\partial_{x_{i}}w_{j}-w_{i}w_{j})\partial_{x_{i}}V_{j}dx-\sum_{i=1}^{3}\int_{\Omega_{K}}P_{\Phi}(w_{i}\partial_{x_{3}}V_{i}+w_{i}\partial_{x_{i}}V_{3})dx.

By applying Hölder’s inequality and (2.15) in Lemma 2.2, one deduces that

|ΩK(ππP)w3𝑑x|C(𝒘L2(ΩK)+𝒘L4(ΩK)2+𝑷ΦL(ΩK)𝒘L2(ΩK))w3L2(ΩK).\left|\int_{\Omega_{K}}\big{(}{\pi}-\pi_{P}\big{)}w_{3}dx\right|\leq C\left(\|\nabla\boldsymbol{w}\|_{L^{2}(\Omega_{K})}+\|\boldsymbol{w}\|_{L^{4}(\Omega_{K})}^{2}+\|\boldsymbol{P}_{\Phi}\|_{L^{\infty}(\Omega_{K})}\|\boldsymbol{w}\|_{L^{2}(\Omega_{K})}\right)\|w_{3}\|_{L^{2}(\Omega_{K})}. (4.27)

Since w3w_{3} has a zero mean value on each cross-section Σ\Sigma, and (𝒘w3𝒆𝟑)(\boldsymbol{w}-w_{3}\boldsymbol{e_{3}}) satisfies

(𝒘w3𝒆𝟑)𝒏=0,for any x𝒟ΩK,(\boldsymbol{w}-w_{3}\boldsymbol{e_{3}})\cdot\boldsymbol{n}=0,\quad\text{for any }x\in\partial\mathcal{D}\cap\partial\Omega_{K},

the vector 𝒘\boldsymbol{w} enjoys the Poincaré inequality

𝒘L2(ΩK)C𝒟h𝒘L2(ΩK).\|\boldsymbol{w}\|_{L^{2}(\Omega_{K})}\leq C_{\mathcal{D}}\|\nabla_{h}\boldsymbol{w}\|_{L^{2}(\Omega_{K})}. (4.28)

Applying (4.28) and the Gagliardo-Nirenberg interpolation, one concludes the following estimate from (4.27):

|ΩK(ππP)w3𝑑x|C𝒟(𝑷ΦL(ΩK)𝒘L2(ΩK)2+𝒘L2(ΩK)2+𝒘L2(ΩK)3).\left|\int_{\Omega_{K}}\big{(}{\pi}-\pi_{P}\big{)}w_{3}dx\right|\leq C_{\mathcal{D}}\left(\|\boldsymbol{P}_{\Phi}\|_{L^{\infty}(\Omega_{K})}\|\nabla\boldsymbol{w}\|^{2}_{L^{2}(\Omega_{K})}+\|\nabla\boldsymbol{w}\|_{L^{2}(\Omega_{K})}^{2}+\|\nabla\boldsymbol{w}\|_{L^{2}(\Omega_{K})}^{3}\right).

4.2 Main estimates

Noticing 𝑷Φ\boldsymbol{P}_{\Phi} is an exact solution of (1.1), by subtracting the equation of 𝑷Φ\boldsymbol{P}_{\Phi} from the equation of 𝒗{\boldsymbol{v}}, one finds

𝒘𝒘+𝑷Φ𝒘+𝒘𝑷Φ+(ππP)Δ𝒘=0.\boldsymbol{w}\cdot\nabla\boldsymbol{w}+\boldsymbol{P}_{\Phi}\cdot\nabla\boldsymbol{w}+\boldsymbol{w}\cdot\nabla\boldsymbol{P}_{\Phi}+\nabla\big{(}{\pi}-\pi_{P}\big{)}-\Delta\boldsymbol{w}=0. (4.29)

Multiplying 𝒘\boldsymbol{w} on both sides of (4.29), and integrating on 𝒟ζ\mathcal{D}_{\zeta}, one derives

𝒟ζ𝒘Δ𝒘𝑑x=𝒟ζ𝒘(𝒘𝒘+𝑷Φ𝒘+𝒘𝑷Φ+(ππP))𝑑x.\int_{\mathcal{D}_{\zeta}}\boldsymbol{w}\cdot\Delta\boldsymbol{w}dx=\int_{\mathcal{D}_{\zeta}}\boldsymbol{w}\cdot\big{(}\boldsymbol{w}\cdot\nabla\boldsymbol{w}+\boldsymbol{P}_{\Phi}\cdot\nabla\boldsymbol{w}+\boldsymbol{w}\cdot\nabla\boldsymbol{P}_{\Phi}+\nabla\big{(}{\pi}-\pi_{P}\big{)}\big{)}dx. (4.30)

Using the divergence-free property and the Navier-slip boundary condition of 𝒗\boldsymbol{v} and 𝑷Φ{\boldsymbol{P}_{\Phi}}, one deduces

𝒟ζ𝒘Δ𝒘𝑑x=𝒟ζwixj(xjwi+xiwj)dx=i,j=13𝒟ζxjwi(xjwi+xiwj)dx+i,j=13𝒟ζwinj(xjwi+xiwj)𝑑x=2𝒟ζ|𝕊𝒘|2𝑑xα𝒟ζ𝒟(|wτ|2+|w3|2)𝑑S+i=13Σ×{x3=ζ}wi(x3wi+xiw3)𝑑xhi=13Σ×{x3=ζ}wi(x3wi+xiw3)𝑑xh.\begin{split}\int_{\mathcal{D}_{\zeta}}\boldsymbol{w}\cdot\Delta\boldsymbol{w}dx&=\int_{\mathcal{D}_{\zeta}}w_{i}\partial_{x_{j}}(\partial_{x_{j}}w_{i}+\partial_{x_{i}}w_{j})dx\\ &=-\sum_{i,j=1}^{3}\int_{\mathcal{D}_{\zeta}}\partial_{x_{j}}w_{i}(\partial_{x_{j}}w_{i}+\partial_{x_{i}}w_{j})dx+\sum_{i,j=1}^{3}\int_{\partial\mathcal{D}_{\zeta}}w_{i}n_{j}(\partial_{x_{j}}w_{i}+\partial_{x_{i}}w_{j})dx\\ &=-2\int_{\mathcal{D}_{\zeta}}|\mathbb{S}\boldsymbol{w}|^{2}dx-\alpha\int_{\partial\mathcal{D}_{\zeta}\cap\partial\mathcal{D}}\left(|w_{\tau}|^{2}+|w_{3}|^{2}\right)dS\\ &\hskip 28.45274pt+\sum_{i=1}^{3}\int_{\Sigma\times\{x_{3}=\zeta\}}w_{i}(\partial_{x_{3}}w_{i}+\partial_{x_{i}}w_{3})dx_{h}-\sum_{i=1}^{3}\int_{\Sigma\times\{x_{3}=-\zeta\}}w_{i}(\partial_{x_{3}}w_{i}+\partial_{x_{i}}w_{3})dx_{h}.\end{split} (4.31)

Here 𝒏=(n1,n2,n3)\boldsymbol{n}=(n_{1},n_{2},n_{3}) is the unit outer normal vector on 𝒟\partial\mathcal{D}.

On the other hand, using integration by parts, we may derive alternatively:

𝒟ζ𝒘Δ𝒘𝑑x=𝒟ζ|𝒘|2𝑑x+12𝒟ζ|𝒘|2𝒏dSI1,\begin{split}\int_{\mathcal{D}_{\zeta}}\boldsymbol{w}\cdot\Delta\boldsymbol{w}dx=-\int_{\mathcal{D}_{\zeta}}|\nabla\boldsymbol{w}|^{2}dx+\underbrace{\frac{1}{2}\int_{\partial\mathcal{D}_{\zeta}}\nabla|\boldsymbol{w}|^{2}\cdot\boldsymbol{n}dS}_{I_{1}},\end{split} (4.32)

where

I1=12𝒟ζ𝒟|𝒘|2𝒏dSI2+12(𝒟{x3=ζ}x3|𝒘|2(xh,ζ)dxh𝒟{x3=ζ}x3|𝒘|2(xh,ζ)dxh).\begin{split}I_{1}=&\underbrace{\frac{1}{2}\int_{\partial\mathcal{D}_{\zeta}\cap\partial\mathcal{D}}\nabla|\boldsymbol{w}|^{2}\cdot\boldsymbol{n}dS}_{I_{2}}+\frac{1}{2}\left(\int_{\mathcal{D}\cap\{x_{3}=\zeta\}}\partial_{x_{3}}|\boldsymbol{w}|^{2}(x_{h},\zeta)dx_{h}-\int_{\mathcal{D}\cap\{x_{3}=-\zeta\}}\partial_{x_{3}}|\boldsymbol{w}|^{2}(x_{h},-\zeta)dx_{h}\right).\end{split}

Using the global natural coordinates (1.4), one writes

|𝒘|2=𝝉|𝒘|2𝝉+x3|𝒘|2𝒆𝟑+𝒏|𝒘|2𝒏,on 𝒟ζ𝒟.\nabla|\boldsymbol{w}|^{2}=\partial_{\boldsymbol{\tau}}|\boldsymbol{w}|^{2}\boldsymbol{\tau}+\partial_{x_{3}}|\boldsymbol{w}|^{2}\boldsymbol{e_{3}}+\partial_{\boldsymbol{n}}|\boldsymbol{w}|^{2}\boldsymbol{n},\quad\text{on }\partial\mathcal{D}_{\zeta}\cap\partial{\mathcal{D}}.

Thus by (1.5), one has I2I_{2} satisfies

|I2||𝒟ζ𝒟(wτ(ακ(x))wτ+α|w3|2)𝑑S|(α+κL(𝒟))𝒟ζ𝒟|𝒘tan|2𝑑S.|I_{2}|\leq\left|\int_{\partial\mathcal{D}_{\zeta}\cap\partial{\mathcal{D}}}\big{(}w_{\tau}\left(\alpha-\kappa(x)\right)w_{\tau}+\alpha|w_{3}|^{2}\big{)}dS\right|\leq\left(\alpha+\|\kappa\|_{L^{\infty}(\partial\mathcal{D})}\right)\int_{\partial\mathcal{D}_{\zeta}\cap\partial{\mathcal{D}}}|\boldsymbol{w}_{\mathrm{tan}}|^{2}dS.\\ (4.33)

Substituting (4.33) in (4.32), one concludes that

𝒟ζ𝒘Δ𝒘𝑑x𝒟ζ|𝒘|2𝑑x+(α+κL(𝒟))𝒟ζ𝒟|𝒘tan|2𝑑S+C𝒟{x3=±ζ}|𝒘||𝒘|𝑑xh.\int_{\mathcal{D}_{\zeta}}\boldsymbol{w}\cdot\Delta\boldsymbol{w}dx\leq-\int_{\mathcal{D}_{\zeta}}|\nabla\boldsymbol{w}|^{2}dx+\left(\alpha+\|\kappa\|_{L^{\infty}(\partial\mathcal{D})}\right)\int_{\partial\mathcal{D}_{\zeta}\cap\partial\mathcal{D}}|\boldsymbol{w}_{\mathrm{tan}}|^{2}dS+C\int_{\mathcal{D}\cap\{x_{3}=\pm\zeta\}}|\boldsymbol{w}||\nabla\boldsymbol{w}|dx_{h}. (4.34)

Now we combine estimates (4.31) and (4.34) by calculating

(4.31)×(α+κL(𝒟))+(4.34)×α,\eqref{Maint1}\times\left(\alpha+\|\kappa\|_{L^{\infty}(\partial\mathcal{D})}\right)+\eqref{Maint2}\times\alpha,

and derive that

(2α+κL(𝒟))𝒟ζ𝒘Δ𝒘𝑑x2(α+κL(𝒟))𝒟ζ|𝕊𝒘|2𝑑xα𝒟ζ|𝒘|2𝑑x+Cα,κ𝒟{x3=±ζ}|𝒘||𝒘|𝑑xh.\begin{split}\left(2\alpha+\|\kappa\|_{L^{\infty}(\partial\mathcal{D})}\right)\int_{\mathcal{D}_{\zeta}}\boldsymbol{w}\cdot\Delta\boldsymbol{w}dx\leq&-2\left(\alpha+\|\kappa\|_{L^{\infty}(\partial\mathcal{D})}\right)\int_{\mathcal{D}_{\zeta}}|\mathbb{S}\boldsymbol{w}|^{2}dx-\alpha\int_{\mathcal{D}_{\zeta}}|\nabla\boldsymbol{w}|^{2}dx\\ &+C_{\alpha,\kappa}\int_{\mathcal{D}\cap\{x_{3}=\pm\zeta\}}|\boldsymbol{w}||\nabla\boldsymbol{w}|dx_{h}\,.\end{split} (4.35)

It remains to estimate the right-hand side of (4.30). Applying integration by parts, one derives

𝒟ζ𝒘(𝒘𝒘+(ππP))𝑑x=𝒟{x3=ζ}w3(12|𝒘|2+(ππP))𝑑x𝒟{x3=ζ}w3(12|𝒘|2+(ππP))𝑑x.\begin{split}\int_{\mathcal{D}_{\zeta}}\boldsymbol{w}\cdot\big{(}\boldsymbol{w}\cdot\nabla\boldsymbol{w}+\nabla\big{(}{\pi}-\pi_{P}\big{)}\big{)}dx=&\int_{\mathcal{D}\cap\{x_{3}=\zeta\}}w_{3}\left(\frac{1}{2}|\boldsymbol{w}|^{2}+\big{(}{\pi}-\pi_{P}\big{)}\right)dx\\ &-\int_{\mathcal{D}\cap\{x_{3}=-\zeta\}}w_{3}\left(\frac{1}{2}|\boldsymbol{w}|^{2}+\big{(}{\pi}-\pi_{P}\big{)}\right)dx.\end{split} (4.36)

Using integration by parts, one derives

𝒟ζ𝑷Φ𝒘𝒘dx=12𝒟ζdiv(𝑷Φ|𝒘|2)𝑑x=12𝒟{x3=ζ}PΦ|𝒘|2𝑑xh12𝒟{x3=ζ}PΦ|𝒘|2𝑑xh.\int_{\mathcal{D}_{\zeta}}\boldsymbol{P}_{\Phi}\cdot\nabla\boldsymbol{w}\cdot\boldsymbol{w}dx=\frac{1}{2}\int_{\mathcal{D}_{\zeta}}\mathrm{div}(\boldsymbol{P}_{\Phi}|\boldsymbol{w}|^{2})dx=\frac{1}{2}\int_{\mathcal{D}\cap\{x_{3}=\zeta\}}P_{\Phi}|\boldsymbol{w}|^{2}dx_{h}-\frac{1}{2}\int_{\mathcal{D}\cap\{x_{3}=-\zeta\}}P_{\Phi}|\boldsymbol{w}|^{2}dx_{h}. (4.37)

Finally, applying Hölder’s inequality, one derives

|𝒟ζ𝒘𝑷Φ𝒘dx|=|ζζΣ𝒘hhPΦw3dxhdx3|PΦL2(Σ)ζζ𝒘(,x3)L4(Σ)2𝑑x3.\begin{split}\left|\int_{\mathcal{D}_{\zeta}}\boldsymbol{w}\cdot\nabla\boldsymbol{P}_{\Phi}\cdot\boldsymbol{w}dx\right|=&\left|\int_{-\zeta}^{\zeta}\int_{\Sigma}\boldsymbol{w}_{h}\cdot\nabla_{h}P_{\Phi}w_{3}dx_{h}dx_{3}\right|\leq\|\nabla P_{\Phi}\|_{L^{2}(\Sigma)}\int_{-\zeta}^{\zeta}\|\boldsymbol{w}(\cdot,x_{3})\|_{L^{4}(\Sigma)}^{2}dx_{3}\,.\end{split}

Using the result in Proposition 3.1 and the Gagliardo-Nirenberg interpolation, one derives

|𝒟ζ𝒘𝑷Φ𝒘dx|CΦα1+αζζ𝒘(,x3)L2(Σ)(h𝒘(,x3)L2(Σ)+𝒘(,x3)L2(Σ))𝑑x3CΦα1+α𝒟ζ|𝒘|2𝑑x.\begin{split}\left|\int_{\mathcal{D}_{\zeta}}\boldsymbol{w}\cdot\nabla\boldsymbol{P}_{\Phi}\cdot\boldsymbol{w}dx\right|&\leq\frac{C\Phi\alpha}{1+\alpha}\int_{-\zeta}^{\zeta}\|\boldsymbol{w}(\cdot,x_{3})\|_{L^{2}(\Sigma)}\left(\|\nabla_{h}\boldsymbol{w}(\cdot,x_{3})\|_{L^{2}(\Sigma)}+\|\boldsymbol{w}(\cdot,x_{3})\|_{L^{2}(\Sigma)}\right)dx_{3}\\ &\leq\frac{C\Phi\alpha}{1+\alpha}\int_{\mathcal{D}_{\zeta}}|\nabla\boldsymbol{w}|^{2}dx\,.\end{split} (4.38)

Here in the second inequality, we have applied Poincaré inequality Lemma 2.1 and the Cauchy-Schwarz inequality for integration on x3x_{3} direction. Substituting (4.35), (4.36), (4.37) and (4.38) in (4.30), one derives

(1C(2α+κL(𝒟))Φ1+α)𝒟ζ|𝒘|2𝑑xCα,κ(𝒟{x3=±ζ}(|𝒘|(|𝒘|+|𝒘|2)+|PΦ||𝒘|2)dxh𝒟{x3=ζ}w3(ππP)dxh+𝒟{x3=ζ}w3(ππP)dxh).\begin{split}&\left(1-\frac{C\left(2\alpha+\|\kappa\|_{L^{\infty}(\partial\mathcal{D})}\right)\Phi}{1+\alpha}\right)\int_{\mathcal{D}_{\zeta}}|\nabla\boldsymbol{w}|^{2}dx\\ \leq&C_{\alpha,\kappa}\left(\int_{\mathcal{D}\cap\{x_{3}=\pm\zeta\}}\big{(}|\boldsymbol{w}|(|\nabla\boldsymbol{w}|+|\boldsymbol{w}|^{2})+|P_{\Phi}||\boldsymbol{w}|^{2}\big{)}dx_{h}\right.\\ &\left.-\int_{\mathcal{D}\cap\{x_{3}=\zeta\}}w_{3}\big{(}{\pi}-\pi_{P}\big{)}dx_{h}+\int_{\mathcal{D}\cap\{x_{3}=-\zeta\}}w_{3}\big{(}{\pi}-\pi_{P}\big{)}dx_{h}\right).\end{split}

Here the constant CC on the left is independent with α\alpha and Φ\Phi. Now if Φ<<1\Phi<<1 being small enough such that CΦ12(2+κL(𝒟))1C\Phi\leq\frac{1}{2}(2+\|\kappa\|_{L^{\infty}(\partial\mathcal{D})})^{-1}, we have

1C(2α+κL(𝒟))Φ1+α1CΦ(2+κL(𝒟))12,1-\frac{C\left(2\alpha+\|\kappa\|_{L^{\infty}(\partial\mathcal{D})}\right)\Phi}{1+\alpha}\geq 1-C\Phi\left(2+\|\kappa\|_{L^{\infty}(\partial\mathcal{D})}\right)\geq\frac{1}{2}\,,

which indicates

𝒟ζ|𝒘|2𝑑xCα,κ(𝒟{x3=±ζ}(|𝒘|(|𝒘|+|𝒘|2)+|PΦ||𝒘|2)dxh𝒟{x3=ζ}w3(ππP)dxh+𝒟{x3=ζ}w3(ππP)dxh).\begin{split}\int_{\mathcal{D}_{\zeta}}|\nabla\boldsymbol{w}|^{2}dx\leq{C}_{\alpha,\kappa}&\left(\int_{\mathcal{D}\cap\{x_{3}=\pm\zeta\}}\big{(}|\boldsymbol{w}|(|\nabla\boldsymbol{w}|+|\boldsymbol{w}|^{2})+|P_{\Phi}||\boldsymbol{w}|^{2}\big{)}dx_{h}\right.\\ &\left.-\int_{\mathcal{D}\cap\{x_{3}=\zeta\}}w_{3}\big{(}{\pi}-\pi_{P}\big{)}dx_{h}+\int_{\mathcal{D}\cap\{x_{3}=-\zeta\}}w_{3}\big{(}{\pi}-\pi_{P}\big{)}dx_{h}\right).\end{split}

Integrating with ζ\zeta over [K1,K][K-1,K], one derives

K1K𝒟ζ|𝒘|2𝑑x𝑑ζCα,κ(ΩK+ΩK(|𝒘|(|𝒘|+|𝒘|2)+|PΦ||𝒘|2)𝑑x+|ΩK+ΩKw3(ππP)𝑑x|).\int_{K-1}^{K}\int_{\mathcal{D}_{\zeta}}|\nabla\boldsymbol{w}|^{2}dxd\zeta\leq{C}_{\alpha,\kappa}\Bigg{(}\int_{\Omega_{K}^{+}\cup\Omega_{K}^{-}}\big{(}|\boldsymbol{w}|(|\nabla\boldsymbol{w}|+|\boldsymbol{w}|^{2})+|P_{\Phi}||\boldsymbol{w}|^{2}\big{)}dx+\Big{|}\int_{\Omega_{K}^{+}\cup\Omega_{K}^{-}}w_{3}\big{(}{\pi}-\pi_{P}\big{)}dx\Big{|}\Bigg{)}. (4.39)

Now we only handle integrations on ΩK+\Omega_{K}^{+} since the cases of ΩK\Omega_{K}^{-} are similar. Using the Cauchy-Schwarz inequality and the Poincaré inequality Lemma 2.1, one has

ΩK+|𝒘||𝒘|𝑑x𝒘L2(ΩK+)𝒘L2(ΩK+)C𝒘L2(ΩK+)2.\int_{\Omega_{K}^{+}}|\boldsymbol{w}||\nabla\boldsymbol{w}|dx\leq\|\boldsymbol{w}\|_{L^{2}(\Omega_{K}^{+})}\|\nabla\boldsymbol{w}\|_{L^{2}(\Omega_{K}^{+})}\leq C\|\nabla\boldsymbol{w}\|^{2}_{L^{2}(\Omega_{K}^{+})}. (4.40)

Moreover, by Hölder’s inequality and the Gagliardo-Nirenberg inequality, one writes

ΩK+|𝒘|3𝑑xC𝒟(𝒘L2(ΩK+)3/2𝒘L2(ΩK+)3/2+𝒘L2(ΩK+)3),\int_{\Omega_{K}^{+}}|\boldsymbol{w}|^{3}dx\leq C_{\mathcal{D}}\left(\|\boldsymbol{w}\|_{L^{2}(\Omega_{K}^{+})}^{3/2}\|\nabla\boldsymbol{w}\|_{L^{2}(\Omega_{K}^{+})}^{3/2}+\|\boldsymbol{w}\|_{L^{2}(\Omega_{K}^{+})}^{3}\right),

which follows by the Poincaré inequality that

ΩK+|𝒘|3𝑑xC𝒘L2(ΩK+)3.\int_{\Omega_{K}^{+}}|\boldsymbol{w}|^{3}dx\leq C\|\nabla\boldsymbol{w}\|_{L^{2}(\Omega_{K}^{+})}^{3}.

Meanwhile, by the Poincaré inequality and Proposition 3.1, one deduces

ΩK+|PΦ||𝒘|2𝑑xPΦL𝒘L2(ΩK+)2CαΦ𝒘L2(ΩK+)2.\int_{\Omega_{K}^{+}}|P_{\Phi}||\boldsymbol{w}|^{2}dx\leq\|P_{\Phi}\|_{L^{\infty}}\|\boldsymbol{w}\|_{L^{2}(\Omega_{K}^{+})}^{2}\leq C_{\alpha}\Phi\|\nabla\boldsymbol{w}\|_{L^{2}(\Omega_{K}^{+})}^{2}\,.

Recalling the estimate of pressure difference in Proposition 4.1, one has

|ΩK+(ππP)w3𝑑x|C𝒟(𝑷ΦL(ΩK+)𝒘L2(ΩK+)2+𝒘L2(ΩK+)2+𝒘L2(ΩK+)3).\left|\int_{\Omega^{+}_{K}}\big{(}{\pi}-\pi_{P}\big{)}w_{3}dx\right|\leq C_{\mathcal{D}}\left(\|\boldsymbol{P}_{\Phi}\|_{L^{\infty}(\Omega^{+}_{K})}\|\nabla\boldsymbol{w}\|^{2}_{L^{2}(\Omega^{+}_{K})}+\|\nabla\boldsymbol{w}\|_{L^{2}(\Omega^{+}_{K})}^{2}+\|\nabla\boldsymbol{w}\|_{L^{2}(\Omega^{+}_{K})}^{3}\right)\,. (4.41)

For estimates (4.40)–(4.41) above, related inequalities on domain ΩK\Omega_{K}^{-} could also be derived by the same approach. Substituting them in (4.39), one concludes

K1K𝒟ζ|𝒘|2𝑑x𝑑ζCα,Φ,𝒟(𝒘L2(ΩK+ΩK)2+𝒘L2(ΩK+ΩK)3).\int_{K-1}^{K}\int_{\mathcal{D}_{\zeta}}|\nabla\boldsymbol{w}|^{2}dxd\zeta\leq C_{\alpha,\Phi,\mathcal{D}}\left(\|\nabla\boldsymbol{w}\|_{L^{2}(\Omega_{K}^{+}\cup\Omega_{K}^{-})}^{2}+\|\nabla\boldsymbol{w}\|_{L^{2}(\Omega_{K}^{+}\cup\Omega_{K}^{-})}^{3}\right). (4.42)

4.3 End of proof

Finally, one concludes the uniqueness by the ordinary differential inequality Lemma 2.3. Defining

Y(K):=K1K𝒟ζ|𝒘|2𝑑x𝑑ζ,Y(K):=\int_{K-1}^{K}\int_{\mathcal{D}_{\zeta}}|\nabla\boldsymbol{w}|^{2}dxd\zeta,

(4.42) indicates

Y(K)Cα,Φ,𝒟(Y(K)+(Y(K))3/2),K1.Y(K)\leq C_{\alpha,\Phi,\mathcal{D}}\left(Y^{\prime}(K)+\left(Y^{\prime}(K)\right)^{3/2}\right),\quad\forall K\geq 1.

Thus by Lemma 2.3, we derive

lim infζK3Y(K)>0,\liminf_{\zeta\to\infty}K^{-3}Y(K)>0,

that is, there exists C0>0C_{0}>0 such that

K1K𝒟ζ|𝒘|2𝑑x𝑑ζC0K3.\int_{K-1}^{K}\int_{\mathcal{D}_{\zeta}}|\nabla\boldsymbol{w}|^{2}dxd\zeta\geq C_{0}K^{3}.

However, this leads to a paradox with the condition (1.7). Thus, Y(K)0Y(K)\equiv 0 for all K1K\geq 1, which proves 𝒗𝑷Φ\boldsymbol{v}\equiv\boldsymbol{P}_{\Phi}.

4.4 An exact lower bound of the critical flux for cylindrical pipe

In the case that 𝒟\mathcal{D} is a unit cylindrical pipe, the solution of (1.6) is the generalized Hagen-Poiseuille flow given in (1.11). Here let us give an exact lower bound of critical flux Φ0\Phi_{0} that guarantees the uniqueness. In this case, direct calculation shows

|𝑷disk,Φ(x)|4αΦ(α+4)π.|\nabla\boldsymbol{P}_{\text{disk},\Phi}(x)|\leq\frac{4\alpha\Phi}{(\alpha+4)\pi}\,. (4.43)

Indeed, the Poincaré inequality applied in (4.38) consists of two parts: the 𝒘h:=(w1,w2)\boldsymbol{w}_{h}:=(w_{1},w_{2}) part follows from Lemma 2.1 and the last component w3w_{3} follows from the Poincaré inequality for functions with vanishing mean value. In the case of Σ=D:={xh2:|xh|<1}\Sigma=D:=\{x_{h}\in\mathbb{R}^{2}:\,|x_{h}|<1\}, we first claim that

𝒘hL2(D×I)22(h𝒘hL2(D×I)2+x3w3L2(D×I)2).\|\boldsymbol{w}_{h}\|^{2}_{L^{2}(D\times I)}\leq 2\left(\|\nabla_{h}\boldsymbol{w}_{h}\|^{2}_{L^{2}(D\times I)}+\|\partial_{x_{3}}w_{3}\|^{2}_{L^{2}(D\times I)}\right)\,. (4.44)

Here goes the reason. Integrating the identity

i,j=12[xi(wixjwj)xiwixjwj|𝒘h|2wixjxiwj]=0\sum_{i,j=1}^{2}\left[\partial_{x_{i}}\left(w_{i}x_{j}w_{j}\right)-\partial_{x_{i}}w_{i}x_{j}w_{j}-|\boldsymbol{w}_{h}|^{2}-w_{i}x_{j}\partial_{x_{i}}w_{j}\right]=0

on xhDx_{h}\in D, one deduces

D|𝒘h|2𝑑xh=i,j=12Dxi(wixjwj)dxhi,j=12Dxiwixjwjdxhi,j=12Dxiwjxjwidxh.\int_{D}|\boldsymbol{w}_{h}|^{2}dx_{h}=\sum_{i,j=1}^{2}\int_{D}\partial_{x_{i}}\left(w_{i}x_{j}w_{j}\right)dx_{h}-\sum_{i,j=1}^{2}\int_{D}\partial_{x_{i}}w_{i}x_{j}w_{j}dx_{h}-\sum_{i,j=1}^{2}\int_{D}\partial_{x_{i}}w_{j}x_{j}w_{i}dx_{h}\,. (4.45)

The first term on the right hand side vanishes since 𝒘𝒏=0\boldsymbol{w}\cdot{\boldsymbol{n}}=0 on D\partial D. Noticing div𝒘=0\mathrm{div}\,\boldsymbol{w}=0 and using the Cauchy-Schwarz inequality, one has

|i,j=12xiwixjwj||x3w3||x1w1+x2w2||3w3||𝒘h|,\Big{|}\sum_{i,j=1}^{2}\partial_{x_{i}}w_{i}x_{j}w_{j}\Big{|}\leq|\partial_{x_{3}}w_{3}|\cdot|x_{1}w_{1}+x_{2}w_{2}|\leq|\partial_{3}w_{3}||\boldsymbol{w}_{h}|\,, (4.46)

and

|i,j=12xiwjxjwi|(i,j=12|xiwj|2)1/2(i,j=12|wj|2|xi|2)1/2|h𝒘h||𝒘h|.\Big{|}\sum_{i,j=1}^{2}\partial_{x_{i}}w_{j}x_{j}w_{i}\Big{|}\leq\Big{(}\sum_{i,j=1}^{2}|\partial_{x_{i}}w_{j}|^{2}\Big{)}^{1/2}\Big{(}\sum_{i,j=1}^{2}|w_{j}|^{2}|x_{i}|^{2}\Big{)}^{1/2}\leq|\nabla_{h}\boldsymbol{w}_{h}||\boldsymbol{w}_{h}|\,. (4.47)

Substituting (4.46) and (4.47) in (4.45), and applying the Young inequality, one deduces

D|𝒘h|2𝑑xh12D|𝒘h|2𝑑xh+(D|h𝒘h|2𝑑xh+D|3w3|2𝑑xh).\int_{D}|\boldsymbol{w}_{h}|^{2}dx_{h}\leq\frac{1}{2}\int_{D}|\boldsymbol{w}_{h}|^{2}dx_{h}+\left(\int_{D}|\nabla_{h}\boldsymbol{w}_{h}|^{2}dx_{h}+\int_{D}|\partial_{3}w_{3}|^{2}dx_{h}\right)\,.

Thus one concludes (4.44) by integrating with x3x_{3} variable over II. This proves the claim.

For the component w3w_{3}, using the Poincaré inequality with vanishing mean value ([21, Section 3]) and also integrating over II for the third component, one arrives at

w3L2(D×I)24π2hw3L2(D×I)2.\|w_{3}\|^{2}_{L^{2}(D\times I)}\leq\frac{4}{\pi^{2}}\|\nabla_{h}w_{3}\|^{2}_{L^{2}(D\times I)}\,. (4.48)

Thus by adding (4.44) and (4.48), one concludes

𝒘L2(D×I)22𝒘L2(D×I)2.\|\boldsymbol{w}\|^{2}_{L^{2}(D\times I)}\leq 2\|\nabla\boldsymbol{w}\|^{2}_{L^{2}(D\times I)}\,.

Recalling (4.43), the estimate (4.38) in the proof of Theorem 1.1 could be refined as

|𝒟ζ𝒘𝑷disk,Φ𝒘dx|8αΦ(α+4)π𝒟ζ|𝒘|2𝑑x\left|\int_{\mathcal{D}_{\zeta}}\boldsymbol{w}\cdot\nabla\boldsymbol{P}_{\text{disk},\Phi}\cdot\boldsymbol{w}dx\right|\leq\frac{8\alpha\Phi}{(\alpha+4)\pi}\int_{\mathcal{D}_{\zeta}}|\nabla\boldsymbol{w}|^{2}dx

in the case Σ=D\Sigma=D. According to the proof of Theorem 1.1 before, noticing that κ1\kappa\equiv 1 in this case, one only needs

18(2α+1)Φ(α+4)π>01-\frac{8\left(2\alpha+1\right)\Phi}{(\alpha+4)\pi}>0

to ensure the uniqueness of the generalized Hagen-Poiseuille flow. This indicates that the critical flux for generalized Hagen-Poiseuille flow satisfies

Φdisk,0π160.2.\Phi_{\text{disk},0}\geq\frac{\pi}{16}\thickapprox 0.2\,.

Acknowledgments

Z. Li is supported by National Natural Science Foundation of China (No. 12001285) and Natural Science Foundation of Jiangsu Province (No. BK20200803).

References

  • [1] T. Acevedo, C. Amrouche, C. Conca and A. Ghosh: Stokes and Navier-Stokes equations with Navier boundary conditions, J. Differential Equations, 285 (2021), 258–320.
  • [2] J. Amick: Steady solutions of the Navier-Stokes equations in unbounded channels and pipes, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4 (1977), 473–513.
  • [3] J. Amick: Properties of steady Navier-Stokes solutions for certain unbounded channels and pipes, Nonlinear Anal., 2 (1978), 689–720.
  • [4] K. Ames and L. Payne: Decay estimates in steady pipe flow, SIAM J. Math. Anal., 20 (1989), 789–815.
  • [5] M. Bogovskiĭ: Solution of the first boundary value problem for an equation of continuity of an incompressible medium, (Russian) Dokl. Akad. Nauk SSSR, 248 (1979), 1037–1040.
  • [6] M. Bogovskiĭ: Solutions of some problems of vector analysis, associated with the operators div and grad, (Russian) Theory of cubature formulas and the application of functional analysis to problems of mathematical physics, pp. 5–40, 149, Trudy Sem. S. L. Soboleva, No. 1, 1980, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, 1980.
  • [7] L. Evans: Partial differential equations, Graduate Studies in Mathematics, Second edition. American Mathematical Society, Rhode Island, 2010.
  • [8] D. Gilbarg and N. Trudinger: Elliptic Partial Differential Equations of Second Order. Second edition. Berlin-Heidelberg: Springer, (2001).
  • [9] G. Galdi: An introduction to the mathematical theory of the Navier-Stokes equations: Steady-state problems, Second edition. Springer Monographs in Mathematics. Springer, New York, 2011.
  • [10] C. Horgan and L. Wheeler: Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow, SIAM J. Appl. Math., 35 (1978), 97–116.
  • [11] P. Konieczny: On a steady flow in a three-dimensional infinite pipe. Colloq. Math. 104 (2006), no. 1, 33–56.
  • [12] O. Ladyzhenskaya: Investigation of the Navier-Stokes equation for stationary motion of an incompressible fluid,(Russian) Uspehi Mat. Nauk., 14 (1959), 75–97.
  • [13] O. Ladyzhenskaya: Stationary motion of viscous incompressible fluids in pipes, Soviet Physics Dokl., 124/4 (1959), 68–70 (551–553 Dokl. Akad. Nauk SSSR).
  • [14] O. Ladyzhenskaya and V. Solonnikov: Determination of the solutions of boundary value problems for stationary Stokes and Navier-Stokes equations having an unbounded Dirichlet integral, J. Soviet Math., 21 (1983), 728–761.
  • [15] Z. Li, X. Pan and J. Yang: Characterization of smooth solutions to the Navier-Stokes equations in a pipe with two types of slip boundary conditons, arXiv:2110.02445v3, (2022).
  • [16] Z. Li, X. Pan and J. Yang: Constrained large solutions to Leray’s problem in a distorted strip with the Navier-slip boundary condition, J. Differential Equations, 377 (2023), 221–270.
  • [17] Z. Li, X. Pan and J. Yang: On Leray’s problem in an infinite-long pipe with the Navier-slip boundary condition, SCIENCE CHINA Mathematics, 67 (2024), 819–854.
  • [18] P. Mucha: On Navier-Stokes equations with silp boundary conditions in an infinite pipe. Acta Appl. Math. 76 (2003), 1–15.
  • [19] P. Mucha: Asymptotic behavior of a steady flow in a two-dimensional pipe. Studia Math. 158 (2003), no. 1, 39–58.
  • [20] C. Navier: Sur les lois du mouvement des fuides. Mem. Acad. R. Sci. Inst. France, 6, (1823), 389–440.
  • [21] L. Payne and H. Weinberger: An optimal Poincaré inequality for convex domains, Arch. Ration. Mech. Anal., 5 (1960), 286–292.
  • [22] K. Piletskas: On the asymptotic behavior of solutions of a stationary system of Navier-Stokes equations in a domain of layer type, (Russian) Mat. Sb., 193 (2002), 69–104.
  • [23] Y. Wang and C. Xie: Uniform structural stability of Hagen-Poiseuille flows in a pipe, Comm. Math. Phys., 393 (2022),1347–1410.
  • [24] Y. Wang and C. Xie: Existence and asymptotic behavior of large axisymmetric solutions for steady Navier-Stokes system in a pipe, Arch. Ration. Mech. Anal., 243 (2022), 1325–1360.
  • [25] Y. Wang and C. Xie: Uniqueness and uniform structural stability of Poiseuille flows in an infinitely long pipe with Navier boundary conditions, J. Differential Equations, 360 (2023), 1–50.
  • [26] J. Watanabe: On incompressible viscous fluid flows with slip boundary conditions, J. Comput. Appl. Math., 159 (2003), 161–172.

Z. Li: School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China, and Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100190, China

E-mail address: zijinli@nuist.edu.cn

N. Liu: Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100190, China

E-mail address: liuning16@mails.ucas.ac.cn

T. Zhou: School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China

E-mail address: zhoutaoran@nuist.edu.cn