This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A robust lower order mixed finite element method for a strain gradient elasticity model

Mingqing Chen School of Mathematical Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China mingqing_chen@sjtu.edu.cn Jianguo Huang School of Mathematical Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China jghuang@sjtu.edu.cn  and  Xuehai Huang School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, China huang.xuehai@sufe.edu.cn
Abstract.

A robust nonconforming mixed finite element method is developed for a strain gradient elasticity (SGE) model. In two and three dimensional cases, a lower order C0C^{0}-continuous H2H^{2}-nonconforming finite element is constructed for the displacement field through enriching the quadratic Lagrange element with bubble functions. This together with the linear Lagrange element is exploited to discretize a mixed formulation of the SGE model. The robust discrete inf-sup condition is established. The sharp and uniform error estimates with respect to both the small size parameter and the Lamé coefficient are achieved, which is also verified by numerical results. In addition, the uniform regularity of the SGE model is derived under two reasonable assumptions.

Key words and phrases:
Strain gradient elasticity model, nonconforming mixed finite element method, regularity, robustness
2020 Mathematics Subject Classification:
65N12; 65N15; 65N22; 65N30;
The work of J. Huang was partially supported by NSFC (Grant No. 12071289) and the Fundamental Research Funds for the Central Universities. The work of X. Huang was partially supported by NSFC (Grant Nos. 12171300, 12071289), and the Natural Science Foundation of Shanghai (Grant No. 21ZR1480500).

1. Introduction

Size effect of microstructures at the nanoscale has been observed in many experiments. In order to account for such phenomenon, higher-order continuum theory has begun to emerge even since the early twentieth century. Unlike the classic continuum theory, the corresponding constitutive relations contain additional parameters to characterize the size of materials, giving rise to various elastic mathematical models (cf. [17, 54, 39, 28, 38, 2, 5, 46]). Historically, Cosserat brothers propose in their celebrated work [17] a continuum model concerning the effect of couple-stresses. Later on, Mindlin [38] develops a more general linear elasticity theory, but the associated model contains quite a number of size parameters. To make the balance between effective prediction and computation cost, Aifantis and his collaborators introduce in [5, 46] only one size parameter to produce a strain gradient elasticity (SGE) model for material deformation at the micro/nano scale. This SGE model is well accepted in engineering areas to deal with elastic-plastic problems. We refer the reader to the survey papers [7, 44] for details along this line. It is worth noting that for a microarchitecture or microstructure, if its separation of scales is not fully valid, such as pantographic [45, 4], lattice [26, 55] and cellular [27] metamaterials, one requires to invoke higher-order theory with many size parameters for mechanical computation. Moreover, homogenization methods are actively used to determine generalized material parameters (cf. [56, 22]).

Let Ωd\Omega\subset\mathbb{R}^{d} (d=2, 3d=2,\,3) be a bounded domain with Lipschitz boundary. The SGE model given in [5, 46] can be described as follows.

(1.1) {div((𝑰ι2Δ)𝝈(𝒖))=𝒇 in Ω,𝒖=𝒏𝒖=𝟎 on Ω,\begin{cases}-\operatorname{div}\big{(}(\bm{I}-\iota^{2}\Delta)\bm{\sigma}(\bm{u})\big{)}=\bm{f}&\textrm{ in }\Omega,\\ \bm{u}=\partial_{\bm{n}}\bm{u}=\bm{0}&\textrm{ on }\partial\Omega,\end{cases}

where 𝒏\bm{n} is the unit outward normal to Ω\partial\Omega, 𝒖=(u1,,ud)\bm{u}=(u_{1},\ldots,u_{d})^{\intercal} is the displacement field, 𝒇\bm{f} is the applied force, 𝝈(𝒖)=2μ𝜺(𝒖)+λ(div𝒖)𝑰\bm{\sigma}(\bm{u})=2\mu\bm{\varepsilon}(\bm{u})+\lambda(\operatorname{div}\bm{u})\bm{I}, and 𝜺(𝒖)=(εij(𝒖))d×d\bm{\varepsilon}(\bm{u})=(\varepsilon_{ij}(\bm{u}))_{d\times d} is the strain tensor field with εij(𝒖)=1/2(iuj+jui).\varepsilon_{ij}(\bm{u})=1/2(\partial_{i}u_{j}+\partial_{j}u_{i}). Here λ\lambda and μ\mu are the Lamé constants, and 𝑰\bm{I} is the identity tensor field. The resulting stress field is given by 𝝈~(𝒖)=(𝑰ι2Δ)𝝈(𝒖)\tilde{\bm{\sigma}}(\bm{u})=(\bm{I}-\iota^{2}\Delta)\bm{\sigma}(\bm{u}), where ι(0,1)\iota\in(0,1) denotes the size parameter of the material under discussion. The SGE model (1.1) is a fourth order elliptic singular perturbation problem with small parameter ι\iota, which will reduce to a second-order linear elasticity model (3.15) when ι=0\iota=0. That means, the solution of the reduced problem would not meet one of the boundary conditions of problem (1.1), namely the value of the normal derivative on the boundary. This would lead to the phenomenon of boundary layer. Moreover, as λ\lambda goes to infinity, one can see from (3.21) that div𝒖20\|\operatorname{div}\bm{u}\|_{2}\to 0. In other words, with λ\lambda becoming very large, the elastic material becomes nearly incompressible, and this would deteriorate the approximation accuracy of the lower-order conforming finite element methods and lead to the locking phenomenon. Hence, it is a very challenging issue to develop a robust numerical method with respect to both size parameter ι\iota and Lamé constant λ\lambda.

Finite element method (FEM) is a well-known numerical method for solving elastic problems. For example, many C1C^{1}-conforming FEMs are used for solving strain gradient elasticity problems in two or three dimensions (cf. [3, 57, 58, 36, 42, 50, 52]). For avoiding higher order shape functions so as to alleviate the computational cost, many non-conforming FEMs are developed accordingly (cf. [49, 53, 59, 30, 31, 33, 32]). Another way is to use the mixed method, and in this case the displacement and stress fields can be approximated simultaneously (cf. [6, 11, 48, 43]).

More recently, the isogeometric analysis method has also been used for solving higher-order strain gradient models (cf. [8, 22, 25, 35, 40]). As far as we know, the method is first proposed by Hughes and his collaborators for solving various engineering problems (see [24, 19]), and the systematic error analysis is developed by Beirão da Veiga et al. in [9]. We mention that the optimal error estimates are obtained in some of the previous papers [8, 22, 40], but the parameter dependence is not considered theoretically there.

Now, let us review some existing results for error analysis of the SGE model (1.1). In [30, 31, 33, 32], Ming and his collaborators analyze several robust non-conforming FEMs with respect to the size parameter ι\iota under some specific assumptions, but not robust with respect to the Lamé constant λ\lambda. To fix this problem, as the Lamé system for the linear elasticity, they introduce a “pressure field” p=λdiv𝒖p=\lambda\operatorname{div}\bm{u} to reformulate (1.1) in the form [34]

(1.2) {div((𝑰ι2Δ)(2μ𝜺(𝒖)))((𝑰ι2Δ)p)=𝒇 in Ω,div𝒖1λp=0 in Ω,𝒖=𝒏𝒖=𝟎 on Ω.\begin{cases}-\operatorname{div}\big{(}(\bm{I}-\iota^{2}\Delta)(2\mu\bm{\varepsilon}(\bm{u}))\big{)}-\nabla\big{(}(\bm{I}-\iota^{2}\Delta)p\big{)}=\bm{f}&\textrm{ in }\Omega,\\ \operatorname{div}\bm{u}-\dfrac{1}{\lambda}p=0&\textrm{ in }\Omega,\\ \bm{u}=\partial_{\bm{n}}\bm{u}=\bm{0}&\textrm{ on }\partial\Omega.\end{cases}

And they propose lower order nonconforming finite element methods based on (1.2), and derived the robust error estimate of 𝒖0𝒖h\bm{u}_{0}-\bm{u}_{h} and p0php_{0}-p_{h} in energy norm, rather than 𝒖𝒖h\bm{u}-\bm{u}_{h} and pphp-p_{h}, with respect to both Lamé constant λ\lambda and size parameter ι\iota under the assumption ι\iota is much smaller than the mesh size hh. Here (𝒖0,p0)(\bm{u}_{0},p_{0}) is the solution of problem (1.2) with ι=0\iota=0, i.e. the Lamé system. It is rather involved to acquire robust error estimate of 𝒖𝒖h\bm{u}-\bm{u}_{h} and pphp-p_{h} with respect to both Lamé constant λ\lambda and size parameter ι\iota, which motivates this paper. Besides, based on some assumptions of weak continuity, in his PhD thesis [51] supervised by Prof. Jun Hu, Tian constructed a family of robust nonconforming finite element methods with the reduced integration technique for the primal formulation of SGE model (1.1) in two dimensions.

In this paper we shall devise a robust nonconforming mixed finite element method based on (1.2) with respect to both the size parameter ι\iota and the Lamé constant λ\lambda. The well-posedness of problem (1.2) is related to the surjectivity of operator div:H01(Ω;d)ιH02(Ω;d)L02(Ω)ιH01(Ω)\operatorname{div}:H_{0}^{1}(\Omega;\mathbb{R}^{d})\cap\iota H_{0}^{2}(\Omega;\mathbb{R}^{d})\to L_{0}^{2}(\Omega)\cap\iota H_{0}^{1}(\Omega), which is equivalent to the inf-sup condition

(1.3) q0+ι|q|1sup𝒗H02(Ω;d)(div𝒗,q)+ι2(div𝒗,q)|𝒗|1+ι|𝒗|2qH01(Ω)L02(Ω).\|q\|_{0}+\iota|q|_{1}\lesssim\sup_{\bm{v}\in H_{0}^{2}(\Omega;\mathbb{R}^{d})}\frac{(\operatorname{div}\bm{v},q)+\iota^{2}(\nabla\operatorname{div}\bm{v},\nabla q)}{|\bm{v}|_{1}+\iota|\bm{v}|_{2}}\quad\forall~{}q\in H_{0}^{1}(\Omega)\cap L_{0}^{2}(\Omega).

Here, the symbol H01(Ω;d)ιH02(Ω;d)H_{0}^{1}(\Omega;\mathbb{R}^{d})\cap\iota H_{0}^{2}(\Omega;\mathbb{R}^{d}) denotes the space H02(Ω;d)H_{0}^{2}(\Omega;\mathbb{R}^{d}) equipped with norm |𝒗|1+ι|𝒗|2|\bm{v}|_{1}+\iota|\bm{v}|_{2}, while L02(Ω)ιH01(Ω)L_{0}^{2}(\Omega)\cap\iota H_{0}^{1}(\Omega) denotes the space H01(Ω)L02(Ω)H_{0}^{1}(\Omega)\cap L_{0}^{2}(\Omega) equipped with norm q0+ι|q|1\|q\|_{0}+\iota|q|_{1}. To develop robust finite element methods for problem (1.2), we need to find a pair of finite element spaces VhV_{h} and QhQ_{h} satisfying the discrete analogue of the inf-sup condition (1.3), where VhV_{h} and QhQ_{h} are used to discretize H02(Ω;d)H_{0}^{2}(\Omega;\mathbb{R}^{d}) and H01(Ω)L02(Ω)H_{0}^{1}(\Omega)\cap L_{0}^{2}(\Omega), respectively. The smooth finite element de Rham complexes in [23, 14, 16] will ensure the discrete inf-sup condition, but suffer from large number of degrees of freedom (DoFs) and supersmooth DoFs. To this end, we construct a lower order C0C^{0}-continuous H2H^{2}-nonconforming finite element in two and three dimensions for the displacement field 𝒖\bm{u}, and use the continuous linear element to discretize the pressure field pp. The DoFs of the H2H^{2}-nonconforming finite element involve

(div𝒗,q)Fq0(F),F(K),(\operatorname{div}\bm{v},q)_{F}\quad\forall~{}q\in\mathbb{P}_{0}(F),F\in\mathcal{F}(K),

which is vital to prove the robust discrete inf-sup condition with respect to the size parameter ι\iota. With finite element spaces VhV_{h} and QhQ_{h}, we propose a robust nonconforming finite element method for problem (1.2). After establishing the discrete inf-sup condition and some interpolation error estimates, we achieve the robust error estimate O(h1/2)O(h^{1/2}) of 𝒖𝒖h\bm{u}-\bm{u}_{h} and pphp-p_{h} with respect to both the size parameter ι\iota and the Lamé constant λ\lambda.

Another contribution of this work is building up the regularity of problem (1.1)

|𝒖𝒖0|1+ι𝒖2+ι2𝒖3+λdiv(𝒖𝒖0)0+λι|div𝒖|1+λι2div𝒖2ι1/2𝒇0,|\bm{u}-\bm{u}_{0}|_{1}+\iota\|\bm{u}\|_{2}+\iota^{2}\|\bm{u}\|_{3}+\lambda\|\operatorname{div}(\bm{u}-\bm{u}_{0})\|_{0}+\lambda\iota|\operatorname{div}\bm{u}|_{1}+\lambda\iota^{2}\|\operatorname{div}\bm{u}\|_{2}\lesssim\iota^{1/2}\|\bm{f}\|_{0},

under two reasonable assumptions. These assumptions are interesting problems in the field of partial differential equations. We prove the first assumption in two dimensions with the aid of the regularity of the triharmonic equation.

The rest of this paper is organized as follows. In Sect. 2, we recall some notations and existing results. Then the regularity result for SGE model is shown in Sect. 3. In Sect. 4, we construct a lower order H2H^{2}-nonconforming finite element, and propose a mixed finite element method for SGE model. In Sect. 5, we derive the robust error estimates with respect to Lamé parameter λ\lambda and size parameter ι\iota. Finally, numerical examples are provided in Sect. 6.

2. Preliminaries

2.1. Notation and some basic inequalities

Throughout this paper, let Ωd\Omega\subset\mathbb{R}^{d} (d=2, 3d=2,\,3) be a convex polytope, which is partitioned into a family of shape regular simplices 𝒯h={K}\mathcal{T}_{h}=\{K\}; hK=diam(K)h_{K}={\rm diam}(K) and h=maxK𝒯hhKh=\max_{K\in\mathcal{T}_{h}}h_{K}. Let 𝒱(𝒯h)\mathcal{V}(\mathcal{T}_{h}) and 𝒱i(𝒯h)\mathcal{V}^{i}(\mathcal{T}_{h}) be the sets of all and interior vertices of 𝒯h\mathcal{T}_{h}, respectively; denote by (𝒯h)\mathcal{E}(\mathcal{T}_{h}) and i(𝒯h)\mathcal{E}^{i}(\mathcal{T}_{h}) (resp. (𝒯h)\mathcal{F}(\mathcal{T}_{h}) and i(𝒯h)\mathcal{F}^{i}(\mathcal{T}_{h})) the sets of all and interior one-dimensional edges (resp. (d1)(d-1)-dimensional faces) of 𝒯h\mathcal{T}_{h}, respectively. When d=2d=2, it is evident that (𝒯h)=(𝒯h)\mathcal{F}(\mathcal{T}_{h})=\mathcal{E}(\mathcal{T}_{h}) and i(𝒯h)=i(𝒯h)\mathcal{F}^{i}(\mathcal{T}_{h})=\mathcal{E}^{i}(\mathcal{T}_{h}). We next introduce the following macro elements for later requirement. For vertex δ𝒱(𝒯h)\delta\in\mathcal{V}(\mathcal{T}_{h}), edge e(𝒯h)e\in\mathcal{E}(\mathcal{T}_{h}) and face F(𝒯h)F\in\mathcal{F}(\mathcal{T}_{h}), write ωδ\omega_{\delta}, ωe\omega_{e} and ωF\omega_{F} to be respectively the unions of all simplices in 𝒯δ\mathcal{T}_{\delta}, 𝒯e\mathcal{T}_{e} and 𝒯F\mathcal{T}_{F}, where 𝒯δ\mathcal{T}_{\delta}, 𝒯e\mathcal{T}_{e} and 𝒯F\mathcal{T}_{F} is the set of all simplices in 𝒯h\mathcal{T}_{h} sharing common vertex δ\delta, edge ee and face FF respectively. In addition, for a finite set AA, denote by #A\#A its cardinality. For all Fi(𝒯h)F\in\mathcal{F}^{i}(\mathcal{T}_{h}), which are shared by two simplices K+K^{+} and KK^{-} in 𝒯F\mathcal{T}_{F}, denote by 𝒏\bm{n} the unit outward normal to K+K^{+} and define the jump on FF as 𝒏𝒗|F𝒏𝒗|K+𝒏𝒗|K.\llbracket\partial_{\bm{n}}\bm{v}\rrbracket|_{F}\coloneqq\partial_{\bm{n}}\bm{v}|_{K_{+}}-\partial_{\bm{n}}\bm{v}|_{K_{-}}. We also write 𝒏𝒗|F𝒏𝒗|F\llbracket\partial_{\bm{n}}\bm{v}\rrbracket|_{F}\coloneqq\partial_{\bm{n}}\bm{v}|_{F} for all F(𝒯h):=(𝒯h)\i(𝒯h)F\in\mathcal{F}^{\partial}(\mathcal{T}_{h}):=\mathcal{F}(\mathcal{T}_{h})\backslash\mathcal{F}^{i}(\mathcal{T}_{h}).

Given a bounded domain DdD\subset\mathbb{R}^{d} and integers m,k0m,k\geq 0, denote by Hm(D)H^{m}(D) the standard Sobolev space on DD with norm m,D\|\cdot\|_{m,D} and semi-norm ||m,D|\cdot|_{m,D}, and H0m(D)H_{0}^{m}(D) the closure of C0(D)C_{0}^{\infty}(D) with respect to m,D\|\cdot\|_{m,D}. We abbreviate m,Ω\|\cdot\|_{m,\Omega} and ||m,Ω|\cdot|_{m,\Omega} as m\|\cdot\|_{m} and ||m|\cdot|_{m} respectively for D=ΩD=\Omega. The notation (,)D(\cdot,\,\cdot)_{D} symbolizes the standard L2L^{2} inner product on DD, and the subscript will be omitted when D=ΩD=\Omega. Let k(D)\mathbb{P}_{k}(D) be the set of all polynomials on DD with the total degree up to kk. For a natural number ss, set Hm(D;s):=Hm(D)sH^{m}(D;\mathbb{R}^{s}):=H^{m}(D)\otimes\mathbb{R}^{s}, H0m(D;s):=H0m(D)sH_{0}^{m}(D;\mathbb{R}^{s}):=H_{0}^{m}(D)\otimes\mathbb{R}^{s} and k(D;s):=k(D)s\mathbb{P}_{k}(D;\mathbb{R}^{s}):=\mathbb{P}_{k}(D)\otimes\mathbb{R}^{s}. Let L02(D)L^{2}_{0}(D) be the space of functions in L2(D)L^{2}(D) with vanishing integral average values.

For a scalar function ww and a vector valued function 𝒗=(v1,v2)\bm{v}=(v_{1},v_{2})^{\intercal} in two dimensions, introduce two usual differential operations curlw=(2w,1w)\operatorname{curl}w=(\partial_{2}w,-\partial_{1}w)^{\intercal} and rot𝒗=1v22v1.\operatorname*{rot}\bm{v}=\partial_{1}v_{2}-\partial_{2}v_{1}.

As usual, we use \lesssim to represent C\leq C, where CC may be a generic positive constant independent of the mesh size hh, the material parameter ι\iota and the Lamé coefficient λ\lambda. And aba\eqsim b indicates abaa\lesssim b\lesssim a. Assume Ω\Omega is a star-shaped domain [12]. To deal with strain tensors, we need the first Korn’s inequality [12, Corollary 11.2.25]

(2.1) 𝒗0𝜺(𝒗)0𝒗H01(Ω;d),\|\nabla\bm{v}\|_{0}\lesssim\|\bm{\varepsilon}(\bm{v})\|_{0}\quad\forall~{}\bm{v}\in H^{1}_{0}(\Omega;\mathbb{R}^{d}),

and the H2H^{2}-Korn’s inequality [32, Theorem 1]

(2.2) (11/2)|𝒗|22𝜺(𝒗)02𝒗H01(Ω;d)H2(Ω;d).(1-1/\sqrt{2})|\bm{v}|_{2}^{2}\leq\|\nabla\bm{\varepsilon}(\bm{v})\|_{0}^{2}\quad\forall~{}\bm{v}\in H^{1}_{0}(\Omega;\mathbb{R}^{d})\cap H^{2}(\Omega;\mathbb{R}^{d}).

Recall the continuity of the right inverse of the divergence operator in [18].

Lemma 2.1.

For pH0m(Ω)L02(Ω)p\in H_{0}^{m}(\Omega)\cap L_{0}^{2}(\Omega) with non-negative integer mm, there exists 𝐯H0m+1(Ω;d)\bm{v}\in H_{0}^{m+1}(\Omega;\mathbb{R}^{d}) such that div𝐯=p\operatorname{div}\bm{v}=p and

𝒗jpjforj=0,1,,m.\|\nabla\bm{v}\|_{j}\lesssim\|p\|_{j}\quad{\rm for}\;j=0,1,\ldots,m.

2.2. Mixed formulation

In order to solve the problem (1.1) with a mixed finite element method, we recall its mixed formulation in [34]. The variational formulation of (1.2) is to find 𝒖V:=H02(Ω;d)\bm{u}\in V:=H_{0}^{2}(\Omega;\mathbb{R}^{d}) and pQ:=H01(Ω)L02(Ω)p\in Q:=H_{0}^{1}(\Omega)\cap L^{2}_{0}(\Omega) such that

(2.3) {a(𝒖,𝒗)+b(𝒗,p)=(𝒇,𝒗)𝒗V,b(𝒖,q)c(p,q)=0qQ,\begin{cases}a(\bm{u},\bm{v})+b(\bm{v},p)=(\bm{f},\bm{v})&\forall~{}\bm{v}\in V,\\ b(\bm{u},q)-c(p,q)=0&\forall~{}q\in Q,\end{cases}

where

a(𝒖,𝒗)\displaystyle a(\bm{u},\bm{v}) :=2μ(𝜺(𝒖),𝜺(𝒗))ι=2μ((𝜺(𝒖),𝜺(𝒗))+ι2(𝜺(𝒖),𝜺(𝒗))),\displaystyle:=2\mu(\bm{\varepsilon}(\bm{u}),\bm{\varepsilon}(\bm{v}))_{\iota}=2\mu\big{(}(\bm{\varepsilon}(\bm{u}),\bm{\varepsilon}(\bm{v}))+\iota^{2}(\nabla\bm{\varepsilon}(\bm{u}),\nabla\bm{\varepsilon}(\bm{v}))\big{)},
b(𝒗,p)\displaystyle b(\bm{v},p) :=(div𝒗,p)ι=(div𝒗,p)+ι2(div𝒗,p),\displaystyle:=(\operatorname{div}\bm{v},p)_{\iota}=(\operatorname{div}\bm{v},p)+\iota^{2}(\nabla\operatorname{div}\bm{v},\nabla p),
c(p,q)\displaystyle c(p,q) :=(p,q)ι/λ=((p,q)+ι2(p,q))/λ\displaystyle:=(p,q)_{\iota}/\lambda=\big{(}(p,q)+\iota^{2}(\nabla p,\nabla q)\big{)}/\lambda

with a weighted H1H^{1} inner product (p,q)ι:=(p,q)+ι2(p,q)(p,q)_{\iota}:=(p,q)+\iota^{2}(\nabla p,\nabla q). To make the forthcoming discussion in a compact way, we further introduce the following weighted Sobolev norms over VV and QQ:

𝒗V:=(|𝒗|12+ι2|𝒗|22)1/2𝒗V;qQ:=(q02+ι2|q|12)1/2qQ.\|\bm{v}\|_{V}:=\left(|\bm{v}|_{1}^{2}+\iota^{2}|\bm{v}|_{2}^{2}\right)^{1/2}\quad\forall\;\bm{v}\in V;\quad\|q\|_{Q}:=\left(\|q\|_{0}^{2}+\iota^{2}|q|_{1}^{2}\right)^{1/2}\quad\forall\;q\in Q.

Now, it is easy to check that the linear forms a(,)a(\cdot,\cdot), b(,)b(\cdot,\cdot) and c(,)c(\cdot,\cdot) are bounded on V×VV\times V, V×QV\times Q and Q×QQ\times Q, respectively. The coercivity of the linear form a(,)a(\cdot,\cdot) on V×VV\times V results from Korn’s inequalities (2.1)-(2.2). And the inf-sup condition

qQsup𝒗Vb(𝒗,q)𝒗VqQ\|q\|_{Q}\lesssim\sup\limits_{\bm{v}\in V}\frac{b(\bm{v},q)}{\|\bm{v}\|_{V}}\quad\forall~{}q\in Q

holds from Lemma 2.1. Applying the Babuška-Brezzi theory [10], we have the stability

𝒖V+pQsup𝒗V,qQa(𝒖,𝒗)+b(𝒗,p)b(𝒖,q)+c(p,q)𝒗V+qQ𝒖V,pQ.\|\bm{u}\|_{V}+\|p\|_{Q}\lesssim\sup_{\bm{v}\in V,\,q\in Q}\frac{a(\bm{u},\bm{v})+b(\bm{v},p)-b(\bm{u},q)+c(p,q)}{\|\bm{v}\|_{V}+\|q\|_{Q}}\quad\forall~{}\bm{u}\in V,p\in Q.

Therefore, the mixed formulation (2.3) is well-posed.

3. Some regularity estimates

In order to derive the robust error estimates for the proposed mixed finite element method in the next section, we require to develop a series of regularity estimates for the underlying (system of) partial differential equations. In fact, these results are interesting themselves.

Lemma 3.1.

If 𝐟H2(Ω;d)\bm{f}\in H^{-2}(\Omega;\mathbb{R}^{d}), then the following problem

(3.1) {Δ2ϕ+Δp=𝒇inΩ,Δdivϕ=0inΩ,ϕ=𝒏ϕ=𝟎onΩ,\begin{cases}\Delta^{2}\bm{\phi}+\nabla\Delta p=\bm{f}&{\rm in}\;\Omega,\\ \Delta\operatorname{div}\bm{\phi}=0&{\rm in}\;\Omega,\\ \bm{\phi}=\partial_{\bm{n}}\bm{\phi}=\bm{0}&{\rm on}\;\partial\Omega,\end{cases}

has a unique solution (ϕ,p)H02(Ω;d)×(H01(Ω)L02(Ω))(\bm{\phi},p)\in H_{0}^{2}(\Omega;\mathbb{R}^{d})\times(H_{0}^{1}(\Omega)\cap L_{0}^{2}(\Omega)) such that

(3.2) ϕ2+p1𝒇2.\|\bm{\phi}\|_{2}+\|p\|_{1}\lesssim\|\bm{f}\|_{-2}.
Proof.

It is routine that the weak formulation of problem (3.1) is to find (ϕ,p)H02(Ω;d)×(H01(Ω)L02(Ω))(\bm{\phi},p)\in H_{0}^{2}(\Omega;\mathbb{R}^{d})\times(H_{0}^{1}(\Omega)\cap L_{0}^{2}(\Omega)) such that

(3.3) {(2ϕ,2𝝍)+(div𝝍,p)=𝒇,𝝍𝝍H02(Ω;d),(divϕ,q)=0qH01(Ω)L02(Ω).\begin{cases}(\nabla^{2}\bm{\phi},\nabla^{2}\bm{\psi})+(\nabla\operatorname{div}\bm{\psi},\nabla p)=\langle\bm{f},\bm{\psi}\rangle&\forall~{}\bm{\psi}\in H_{0}^{2}(\Omega;\mathbb{R}^{d}),\\ (\nabla\operatorname{div}\bm{\phi},\nabla q)=0&\forall~{}q\in H_{0}^{1}(\Omega)\cap L_{0}^{2}(\Omega).\end{cases}

Clearly, the bilinear form (2,2)(\nabla^{2}\cdot,\nabla^{2}\cdot) is uniformly coercive over H02(Ω;d)H_{0}^{2}(\Omega;\mathbb{R}^{d}). On the other hand, thanks to Lemma 2.1, for every qH01(Ω)L02(Ω)q\in H_{0}^{1}(\Omega)\cap L_{0}^{2}(\Omega), there exists a 𝝌H02(Ω;d)\bm{\chi}\in H_{0}^{2}(\Omega;\mathbb{R}^{d}) such that q=div𝝌q=\operatorname{div}\bm{\chi} which admits the estimate 𝝌1q1\|\nabla\bm{\chi}\|_{1}\lesssim\|q\|_{1}. Hence,

q1\displaystyle\|q\|_{1} (q,q)/q0(div𝝌,q)/𝝌1sup𝝍H02(Ω;d)(div𝝍,q)𝝍2.\displaystyle\lesssim(\nabla q,\nabla q)/\|\nabla q\|_{0}\lesssim(\nabla\operatorname{div}\bm{\chi},\nabla q)/\|\nabla\bm{\chi}\|_{1}\lesssim\sup_{\bm{\psi}\in H_{0}^{2}(\Omega;\mathbb{R}^{d})}\frac{(\nabla\operatorname{div}\bm{\psi},\nabla q)}{\|\bm{\psi}\|_{2}}.

Thus, we conclude the desired result from the Babuška-Brezzi theory [10]. ∎

Next, we need to introduce two assumptions on the two auxiliary problems, which are the basis to develop subtle estimates for problem (1.1).

Assumption 3.1.

Assume that 𝐟H1(Ω;d)\bm{f}\in H^{-1}(\Omega;\mathbb{R}^{d}). Let (ϕ,p)H02(Ω;d)×(H01(Ω)L02(Ω))(\bm{\phi},p)\in H_{0}^{2}(\Omega;\mathbb{R}^{d})\times(H_{0}^{1}(\Omega)\cap L_{0}^{2}(\Omega)) be the solution of problem (3.1). Then ϕH3(Ω;d)\bm{\phi}\in H^{3}(\Omega;\mathbb{R}^{d}) and pH2(Ω)p\in H^{2}(\Omega) which admit the estimate

(3.4) ϕ3+p2𝒇1.\|\bm{\phi}\|_{3}+\|p\|_{2}\lesssim\|\bm{f}\|_{-1}.

We will prove Assumption 3.1 holds for a convex polygon in Section 3.1. Since the solution ϕ\bm{\phi} of (3.3) is zero when 𝒇L2(Ω)\bm{f}\in\nabla L^{2}(\Omega), by replacing 𝒇\bm{f} in problem (3.1) with 𝒇+q\bm{f}+\nabla q, we have from (3.4) that

(3.5) ϕ3infqL2(Ω)𝒇+q1.\|\bm{\phi}\|_{3}\lesssim\inf_{q\in L^{2}(\Omega)}\|\bm{f}+\nabla q\|_{-1}.
Assumption 3.2.

Assume that 𝐟H1(Ω;d)\bm{f}\in H^{-1}(\Omega;\mathbb{R}^{d}). Let 𝐮H02(Ω;d)\bm{u}\in H_{0}^{2}(\Omega;\mathbb{R}^{d}) be the solution of the following problem:

{Δ(𝒖)=𝒇inΩ,𝒖=𝒏𝒖=𝟎onΩ,\begin{cases}\Delta(\mathcal{L}\bm{u})=\bm{f}&{\rm in}\;\Omega,\\ \bm{u}=\partial_{\bm{n}}\bm{u}=\bm{0}&{\rm on}\;\partial\Omega,\end{cases}

where 𝐮=μΔ𝐮+(λ+μ)(div𝐮)\mathcal{L}\bm{u}=\mu\Delta\bm{u}+(\lambda+\mu)\nabla(\operatorname{div}\bm{u}) is the usual Lamé operator, with λ[0,Λ]\lambda\in[0,\Lambda] and μ[μ0,μ1]\mu\in[\mu_{0},\mu_{1}] being the Lamé constants. Then 𝐮H3(Ω;d)\bm{u}\in H^{3}(\Omega;\mathbb{R}^{d}) and it admits the estimate

𝒖3𝒇1,\|\bm{u}\|_{3}\lesssim\|\bm{f}\|_{-1},

where the hidden constant may depend on Λ\Lambda, μ0\mu_{0} and μ1\mu_{1}.

Remark 3.2.

If ΩC\partial\Omega\in C^{\infty}, Assumption 3.2 holds in terms of the mathematical theory in [1]. However, if Ω\Omega is a polytope domain, as shown in [29], one should first figure out the operator pencil of the underlying problem and then discover the spectrum distribution in order to determine under which conditions Assumption 3.2 holds. Such study is rather involved, and we cannot ensure this assumption holds even for convex polygons until now.

3.1. Regularity results for triharmonic equations in two dimensions and applications

In this subsection, in view of the mathematical theory in [20, 29], we are going to develop the regularity theory for triharmonic equations with homogeneous boundary conditions over convex polygons. As far as we know, this result is new. It has its interest itself and will also be used to show Assumption 3.1 holds for a convex polygon in combination with some results in [18].

Before introducing and proving our regularity estimates, let us recall some existing results in [20]. As shown in Fig. 1, let Ω\Omega be a convex polygon with XX as a generic vertex which has an interior angle α(0,π)\alpha\in(0,\pi). Let LL be a strongly elliptic 2m2m-order differential operator defined on Ω¯\overline{\Omega} with constant coefficients, where mm is any given positive integer. Consider the following homogeneous Dirichlet boundary problem

(3.6) {Lu=fin Ω,u=𝒏u==𝒏m1u=0on Ω,\begin{cases}Lu=f&\text{in }\Omega,\\ u=\partial_{\bm{n}}u=\cdots=\partial_{\bm{n}}^{m-1}u=0&\text{on }\partial\Omega,\end{cases}

which induces the following operators for each positive real number ss:

L(s):H0m(Ω)Hs+m(Ω)\displaystyle L^{(s)}:H_{0}^{m}(\Omega)\cap H^{s+m}(\Omega) Hsm(Ω),\displaystyle\,\,\rightarrow\,\,H^{s-m}(\Omega),
u\displaystyle u{\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} Lu.\displaystyle\,\,\rightarrow\,\,Lu.

A key problem is to determine the regularity property of L(s)L^{(s)} for s>0s>0.

Refer to caption
Figure 1. The schema of a polygonal vertex.

As a matter of fact, the problem can be answered locally. As shown in Fig. 1, for any given vertex XX, we might assume the unit circle SXS_{X} centered at XX has intersection with each of two edges of Ω\Omega which share the vertex XX, and then write ΩX=ΩSX\Omega_{X}=\Omega\cap S_{X}. Let LXL_{X} be the principal part of LL. We introduce a polar coordinate system (r,θ)(r,\theta) with XX as the origin. Then the differential operator LXL_{X} can be expressed as

LX(D𝒙)=r2mX(θ;rr,Dθ),L_{X}(D_{\bm{x}})=r^{-2m}\mathcal{L}_{X}(\theta;r\partial_{r},D_{\theta}),

where D𝒙=1i𝒙D_{\bm{x}}=\frac{1}{{\rm i}}\partial_{\bm{x}}, Dθ=1iθD_{\theta}=\frac{1}{{\rm i}}\partial_{\theta}. Next, we replace rrr\partial_{r} by a complex variable λ\lambda\in\mathbb{C}, so as to get a holomorphic operator X(λ)=X(θ;λ,Dθ)\mathcal{L}_{X}(\lambda)=\mathcal{L}_{X}(\theta;\lambda,D_{\theta}) which acts from H0m(ΩX)Hs+m(ΩX)H^{m}_{0}(\Omega_{X})\cap H^{s+m}(\Omega_{X}) into Hsm(ΩX)H^{s-m}(\Omega_{X}). X(λ)\mathcal{L}_{X}(\lambda) is simply written as (λ)\mathcal{L}(\lambda) when there is no confusion caused.

As shown in [20], the angle singularities of solution of elliptic equations have very close relationship with spectrum properties of (λ)\mathcal{L}(\lambda). Recall that a point λ0\lambda_{0}\in\mathbb{C} is said to be regular if the operator (λ0)\mathcal{L}(\lambda_{0}) is invertible. The set of all non-regular points is called the spectrum of the operator. Then, by the well-known Peetre’s theorem and the main theorem in [20, p. 10] we can have a simplified result from [20], described as follows.

Theorem 3.3 (Dauge).

Let Ω\Omega be a convex polygon and let LL be a strongly elliptic 2m2m-order differential operator defined on Ω¯\overline{\Omega} with constant coefficients. Assume that the boundary value problem (3.6) has a unique solution uH0m(Ω)u\in H^{m}_{0}(\Omega). Moreover, s0s\geq 0 and s{12,32,,m12}s\not=\{\frac{1}{2},\frac{3}{2},\cdots,m-\frac{1}{2}\}. If any λ\lambda\in\mathbb{C} with Reλ[m1,s+m1]{\rm Re}\lambda\in[m-1,s+m-1] is not spectrum of (λ)\mathcal{L}(\lambda) and fHsm(Ω)f\in H^{s-m}(\Omega), then uHs+m(Ω)u\in H^{s+m}(\Omega), and it holds the estimate

us+mfsm.\|u\|_{s+m}\lesssim\|f\|_{s-m}.

On the other hand, it is rather involved to figure out the closed-form of (λ)\mathcal{L}(\lambda) and analyze its spectrum distribution. However, it is very lucky that for the differential operator L=(Δ)mL=(-\Delta)^{m}, we have from [29, Chapter 8] that

(λ)=(1)mj=0m1(θ2+(λ2j)2),\mathcal{L}(\lambda)=(-1)^{m}\prod\limits_{j=0}^{m-1}(\partial_{\theta}^{2}+(\lambda-2j)^{2}),

and the following result holds.

Lemma 3.4.

[29, Chapter 8] If Ω\Omega is a convex polygon, and L=(Δ)mL=(-\Delta)^{m} for a positive integer mm, then we have

  1. (1)

    the spectrum of (λ)\mathcal{L}(\lambda) does not contain the points m,m+1,,2m1m,\,m+1,\,\cdots\,,2m-1;

  2. (2)

    the strip m2Reλmm-2\leq{\rm Re}\lambda\leq m does not contain any eigenvalues of (λ)\mathcal{L}(\lambda).

Making use of the above two results, we can derive the regularity theory for the triharmonic equation given below.

Theorem 3.5.

Assume Ω\Omega is a convex polygon. Let wH03(Ω)w\in H^{3}_{0}(\Omega) satisfy

(3.7) Δ3w=fH2(Ω).-\Delta^{3}w=f\in H^{-2}(\Omega).

Then wH4(Ω)w\in H^{4}(\Omega) and it admits the estimate

w4f2.\|w\|_{4}\lesssim\|f\|_{-2}.
Proof.

The weak formulation of problem (3.7) is to find wH03(Ω)w\in H_{0}^{3}(\Omega) such that

Ω3w:3vdx=f,vvH03(Ω).\int_{\Omega}\nabla^{3}w:\nabla^{3}v\,{\rm d}x=\langle f,v\rangle\quad\forall\;v\in H_{0}^{3}(\Omega).

Here, for any two third-order tensors 𝑨\bm{A} and 𝑩\bm{B}, 𝑨:𝑩=ijkAijkBijk\bm{A}:\bm{B}=\sum_{ijk}A_{ijk}B_{ijk}, and ,\langle\cdot,\cdot\rangle denotes the duality pair between H3(Ω)H^{-3}(\Omega) and H03(Ω)H_{0}^{3}(\Omega). Hence, by the Poincaré inequality and the Lax-Milgram theorem, the last problem has a unique solution wH03(Ω)w\in H_{0}^{3}(\Omega). In other words, the boundary value problem (3.7) has a unique solution wH03(Ω)w\in H_{0}^{3}(\Omega) for all fH3(Ω)f\in H^{-3}(\Omega). According to Lemma 3.4 with m=3m=3, (λ)\mathcal{L}(\lambda) does not have a spectrum point in the strip 1Reλ31\leq{\rm Re}\lambda\leq 3. Hence, we can conclude the desired result from Theorem 3.3 with s=1s=1. ∎

With the help of the above theorem, we can obtain the following result.

Theorem 3.6.

Assumption 3.1 holds whenever Ω\Omega is a convex polygon and 𝐟H1(Ω;2)\bm{f}\in H^{-1}(\Omega;\mathbb{R}^{2}).

Proof.

Step 1: According to the second and third equations in (3.1), divϕH01(Ω)\operatorname{div}\bm{\phi}\in H_{0}^{1}(\Omega) satisfies the Laplace equation, and hence divϕ=0\operatorname{div}\bm{\phi}=0. Since ϕH02(Ω;2)\bm{\phi}\in H_{0}^{2}(\Omega;\mathbb{R}^{2}), there exists a scalar function wH03(Ω)w\in H^{3}_{0}(\Omega) [18] such that ϕ=curlw\bm{\phi}=\operatorname{curl}w. Then apply the rot\operatorname*{rot} operator to the first equality of (3.1) to get

Δ3w=rot(Δ2curlw)=rot(Δ2ϕ)=rot(Δ2ϕ+Δp)=rot𝒇.-\Delta^{3}w=\operatorname*{rot}(\Delta^{2}\operatorname{curl}w)=\operatorname*{rot}(\Delta^{2}\bm{\phi})=\operatorname*{rot}(\Delta^{2}\bm{\phi}+\nabla\Delta p)=\operatorname*{rot}\bm{f}.

Due to Theorem 3.5, we know that wH4(Ω)w\in H^{4}({\Omega}) admits the estimate

w4rot𝒇2𝒇1.\|w\|_{4}\lesssim\|\operatorname*{rot}\bm{f}\|_{-2}\lesssim\|\bm{f}\|_{-1}.

By the relation ϕ=curlw\bm{\phi}=\operatorname{curl}w, we immediately have ϕH3(Ω;2)\bm{\phi}\in H^{3}(\Omega;\mathbb{R}^{2}) and

(3.8) ϕ3𝒇1.\|\bm{\phi}\|_{3}\lesssim\|\bm{f}\|_{-1}.

Step 2: Rewrite the first equation in (3.1) as Δp=𝒇Δ2ϕ.\nabla\Delta p=\bm{f}-\Delta^{2}\bm{\phi}. Since 𝒇Δ2ϕH1(Ω;2)\bm{f}-\Delta^{2}\bm{\phi}\in H^{-1}(\Omega;\mathbb{R}^{2}) and ΔpH1(Ω)\Delta p\in H^{-1}(\Omega), apply Theorem 2.2 in [21] to get ΔpL2(Ω)\Delta p\in L^{2}(\Omega) and

Δp0Δp1+𝒇Δ2ϕ1p1+𝒇Δ2ϕ1,\|\Delta p\|_{0}\lesssim\|\Delta p\|_{-1}+\|\bm{f}-\Delta^{2}\bm{\phi}\|_{-1}\lesssim\|p\|_{1}+\|\bm{f}-\Delta^{2}\bm{\phi}\|_{-1},

which combined with (3.2) and (3.8) yields

Δp0𝒇1.\|\Delta p\|_{0}\lesssim\|\bm{f}\|_{-1}.

Noting that Ω\Omega is convex, by the regularity of Poisson’s equation,

p2Δp0𝒇1.\|p\|_{2}\lesssim\|\Delta p\|_{0}\lesssim\|\bm{f}\|_{-1}.

Now combining (3.8) and the last inequality gives (3.4). ∎

3.2. Regularity of the SGE model

Now we are ready to show the regularity results of the SGE model. From now on we always suppose Assumptions 3.1-3.2 hold.

Lemma 3.7.

Let 𝐰H02(Ω;d)\bm{w}\in H_{0}^{2}(\Omega;\mathbb{R}^{d}) be the solution of

(3.9) {divΔ(2μ𝜺(𝒘)+λ(div𝒘)𝑰)=𝒇inΩ,𝒘=𝒏𝒘=𝟎onΩ\begin{cases}\operatorname{div}\Delta\big{(}2\mu\bm{\varepsilon}(\bm{w})+\lambda(\operatorname{div}\bm{w})\bm{I}\big{)}=\bm{f}&{\rm in}\;\Omega,\\ \bm{w}=\partial_{\bm{n}}\bm{w}=\bm{0}&{\rm on}\;\partial\Omega\end{cases}

with 𝐟H1(Ω;d)\bm{f}\in H^{-1}(\Omega;\mathbb{R}^{d}). Suppose Assumptions 3.1-3.2 hold. We have

(3.10) 𝒘2+j+λdiv𝒘1+j𝒇j2 for j=0,1,\displaystyle\|\bm{w}\|_{2+j}+\lambda\|\operatorname{div}\bm{w}\|_{1+j}\lesssim\|\bm{f}\|_{j-2}\quad\textrm{ for }j=0,1,
(3.11) 𝒘3infqL2(Ω)𝒇+q1+1λ𝒇1.\displaystyle\|\bm{w}\|_{3}\lesssim\inf_{q\in L^{2}(\Omega)}\|\bm{f}+\nabla q\|_{-1}+\frac{1}{\lambda}\|\bm{f}\|_{-1}.
Proof.

We follow the argument of Lemma 2.2 in [13] to prove (3.10). The weak formulation of (3.9) is

(3.12) 2μ(𝜺(𝒘),𝜺(𝒗))+λ(div𝒘,div𝒗)=(𝒇,𝒗)𝒗H02(Ω;d),2\mu(\nabla\bm{\varepsilon}(\bm{w}),\nabla\bm{\varepsilon}(\bm{v}))+\lambda(\nabla\operatorname{div}\bm{w},\nabla\operatorname{div}\bm{v})=(\bm{f},\bm{v})\quad\forall~{}\bm{v}\in H_{0}^{2}(\Omega;\mathbb{R}^{d}),

which is well-posed by the H2H^{2}-Korn’s inequality (2.2), and it holds 𝒘2𝒇2.\|\bm{w}\|_{2}\lesssim\|\bm{f}\|_{-2}. By Lemma 2.1, there exists 𝒘~H02(Ω;d)\widetilde{\bm{w}}\in H_{0}^{2}(\Omega;\mathbb{R}^{d}) such that div𝒘~=div𝒘\operatorname{div}\widetilde{\bm{w}}=\operatorname{div}\bm{w} and 𝒘~2div𝒘1.\|\widetilde{\bm{w}}\|_{2}\lesssim\|\operatorname{div}\bm{w}\|_{1}. Taking 𝒗=𝒘~\bm{v}=\widetilde{\bm{w}} in (3.12), it follows that

λ|div𝒘|12=(𝒇,𝒘~)2μ(𝜺(𝒘),𝜺(𝒘~))𝒇2𝒘~2+𝒘2𝒘~2,\lambda|\operatorname{div}\bm{w}|_{1}^{2}=(\bm{f},\widetilde{\bm{w}})-2\mu(\nabla\bm{\varepsilon}(\bm{w}),\nabla\bm{\varepsilon}(\widetilde{\bm{w}}))\lesssim\|\bm{f}\|_{-2}\|\widetilde{\bm{w}}\|_{2}+\|\bm{w}\|_{2}\|\widetilde{\bm{w}}\|_{2},

which gives (3.10) for j=0j=0.

Next we prove (3.10) for j=1j=1. The first equation in (3.9) can be rewritten as

Δ2𝒘+μ+λμΔdiv𝒘=1μ𝒇 in Ω.\Delta^{2}\bm{w}+\frac{\mu+\lambda}{\mu}\nabla\Delta\operatorname{div}\bm{w}=\frac{1}{\mu}\bm{f}\quad\textrm{ in }\Omega.

Clearly 𝒘H3(Ω;d)\bm{w}\in H^{3}(\Omega;\mathbb{R}^{d}) under Assumption 3.2. Employing lemma 2.1 again, there exists 𝒘~H3(Ω;d)H02(Ω;d)\widetilde{\bm{w}}\in H^{3}(\Omega;\mathbb{R}^{d})\cap H_{0}^{2}(\Omega;\mathbb{R}^{d}) such that div𝒘~=div𝒘\operatorname{div}\widetilde{\bm{w}}=\operatorname{div}\bm{w} and 𝒘~3div𝒘2.\|\widetilde{\bm{w}}\|_{3}\lesssim\|\operatorname{div}\bm{w}\|_{2}. With the help of 𝒘~\widetilde{\bm{w}}, we have

{Δ2ϕ+Δp=1μ𝒇Δ2𝒘~ in Ω,Δdivϕ=0 in Ω,ϕ=𝒏ϕ=𝟎 on Ω,\begin{cases}\Delta^{2}\bm{\phi}+\nabla\Delta p=\frac{1}{\mu}\bm{f}-\Delta^{2}\widetilde{\bm{w}}&\textrm{ in }\Omega,\\ \Delta\operatorname{div}\bm{\phi}=0&\textrm{ in }\Omega,\\ \bm{\phi}=\partial_{\bm{n}}\bm{\phi}=\bm{0}&\textrm{ on }\partial\Omega,\end{cases}

where ϕ=𝒘𝒘~\bm{\phi}=\bm{w}-\widetilde{\bm{w}} and p=μ+λμdiv𝒘p=\frac{\mu+\lambda}{\mu}\operatorname{div}\bm{w}. By (3.4)-(3.5),

(3.13) 𝒘𝒘~3+μ+λμdiv𝒘2\displaystyle\|\bm{w}-\widetilde{\bm{w}}\|_{3}+\frac{\mu+\lambda}{\mu}\|\operatorname{div}\bm{w}\|_{2} 𝒇1+𝒘~3,\displaystyle\lesssim\|\bm{f}\|_{-1}+\|\widetilde{\bm{w}}\|_{3},
(3.14) 𝒘𝒘~3\displaystyle\|\bm{w}-\widetilde{\bm{w}}\|_{3} infqL2(Ω)𝒇+q1+𝒘~3.\displaystyle\lesssim\inf_{q\in L^{2}(\Omega)}\|\bm{f}+\nabla q\|_{-1}+\|\widetilde{\bm{w}}\|_{3}.

By (3.13), there exists a constant C>0C>0 such that

𝒘3+μ+λμdiv𝒘2C(𝒇1+div𝒘2).\|\bm{w}\|_{3}+\frac{\mu+\lambda}{\mu}\|\operatorname{div}\bm{w}\|_{2}\leq C(\|\bm{f}\|_{-1}+\|\operatorname{div}\bm{w}\|_{2}).

When λ>2μC\lambda>2\mu C, i.e. C<λ2μC<\frac{\lambda}{2\mu}, we get

𝒘3+2μ+λ2μdiv𝒘2C𝒇1.\|\bm{w}\|_{3}+\frac{2\mu+\lambda}{2\mu}\|\operatorname{div}\bm{w}\|_{2}\leq C\|\bm{f}\|_{-1}.

Thus, (3.10) holds for j=1j=1. When 0<λ2μC0<\lambda\leq 2\mu C, (3.10) for j=1j=1 is guaranteed by Assumption 3.2.

It follows from (3.14) that

𝒘3infqL2(Ω)𝒇+q1+𝒘~3infqL2(Ω)𝒇+q1+div𝒘2,\|\bm{w}\|_{3}\lesssim\inf_{q\in L^{2}(\Omega)}\|\bm{f}+\nabla q\|_{-1}+\|\widetilde{\bm{w}}\|_{3}\lesssim\inf_{q\in L^{2}(\Omega)}\|\bm{f}+\nabla q\|_{-1}+\|\operatorname{div}\bm{w}\|_{2},

which together with (3.10) yields (3.11). ∎

Taking ι=0\iota=0, problem (1.1) becomes the linear elasticity model. Let 𝒖0H01(Ω;d)\bm{u}_{0}\in H_{0}^{1}(\Omega;\mathbb{R}^{d}) be the solution of the linear elasticity problem

(3.15) {μΔ𝒖0(λ+μ)div𝒖0=𝒇 in Ω,𝒖0=𝟎 on Ω.\begin{cases}-\mu\Delta\bm{u}_{0}-(\lambda+\mu)\nabla\operatorname{div}\bm{u}_{0}=\bm{f}&\textrm{ in }\Omega,\\ \bm{u}_{0}=\bm{0}&\textrm{ on }\partial\Omega.\end{cases}

According to [13, 37], it holds

(3.16) 𝒖02+λdiv𝒖01𝒇0.\|\bm{u}_{0}\|_{2}+\lambda\|\operatorname{div}\bm{u}_{0}\|_{1}\lesssim\|\bm{f}\|_{0}.
Lemma 3.8.

With the same assumptions as Lemma 3.7, let 𝐮H02(Ω;d)\bm{u}\in H_{0}^{2}(\Omega;\mathbb{R}^{d}) be the solution of problem (1.1), and 𝐮0H01(Ω;d)\bm{u}_{0}\in H_{0}^{1}(\Omega;\mathbb{R}^{d}) satisfy the linear elasticity problem (3.15). It holds

(3.17) |𝒖𝒖0|1+ι𝒖2+ι2𝒖3ι1/2𝒇0.|\bm{u}-\bm{u}_{0}|_{1}+\iota\|\bm{u}\|_{2}+\iota^{2}\|\bm{u}\|_{3}\lesssim\iota^{1/2}\|\bm{f}\|_{0}.
Proof.

By (1.1) and (3.15), we have

(3.18) divΔ𝝈(𝒖)=ι2div𝝈(𝒖𝒖0).\operatorname{div}\Delta\bm{\sigma}(\bm{u})=\iota^{-2}\operatorname{div}\bm{\sigma}(\bm{u}-\bm{u}_{0}).

Then it follows from (3.11) that

ι2𝒖3\displaystyle\iota^{2}\|\bm{u}\|_{3} infqL2(Ω)div𝝈(𝒖𝒖0)+q1+1λdiv𝝈(𝒖𝒖0)1\displaystyle\lesssim\inf_{q\in L^{2}(\Omega)}\|\operatorname{div}\bm{\sigma}(\bm{u}-\bm{u}_{0})+\nabla q\|_{-1}+\frac{1}{\lambda}\|\operatorname{div}\bm{\sigma}(\bm{u}-\bm{u}_{0})\|_{-1}
(3.19) |𝒖𝒖0|1+1λ|𝒖𝒖0|1+div(𝒖𝒖0)0|𝒖𝒖0|1.\displaystyle\lesssim|\bm{u}-\bm{u}_{0}|_{1}+\frac{1}{\lambda}|\bm{u}-\bm{u}_{0}|_{1}+\|\operatorname{div}(\bm{u}-\bm{u}_{0})\|_{0}\lesssim|\bm{u}-\bm{u}_{0}|_{1}.

Multiply (3.18) by 𝒖𝒖0H2(Ω;d)H01(Ω;d)\bm{u}-\bm{u}_{0}\in H^{2}(\Omega;\mathbb{R}^{d})\cap H_{0}^{1}(\Omega;\mathbb{R}^{d}) and apply the integration by parts to get

ι2(𝝈(𝒖),𝜺(𝒖))+(𝝈(𝒖𝒖0),𝜺(𝒖𝒖0))\displaystyle\quad\iota^{2}(\nabla\bm{\sigma}(\bm{u}),\nabla\bm{\varepsilon}(\bm{u}))+(\bm{\sigma}(\bm{u}-\bm{u}_{0}),\bm{\varepsilon}(\bm{u}-\bm{u}_{0}))
(3.20) =ι2(𝝈(𝒖),𝜺(𝒖0))ι2(𝒏𝝈(𝒖),𝜺(𝒖0))Ω.\displaystyle=\iota^{2}(\nabla\bm{\sigma}(\bm{u}),\nabla\bm{\varepsilon}(\bm{u}_{0}))-\iota^{2}(\partial_{\bm{n}}\bm{\sigma}(\bm{u}),\bm{\varepsilon}(\bm{u}_{0}))_{\partial\Omega}.

By (3.16),

(𝝈(𝒖),𝜺(𝒖0))\displaystyle(\nabla\bm{\sigma}(\bm{u}),\nabla\bm{\varepsilon}(\bm{u}_{0})) =2μ(𝜺(𝒖),𝜺(𝒖0))+λ(div𝒖,div𝒖0)\displaystyle=2\mu(\nabla\bm{\varepsilon}(\bm{u}),\nabla\bm{\varepsilon}(\bm{u}_{0}))+\lambda(\nabla\operatorname{div}\bm{u},\nabla\operatorname{div}\bm{u}_{0})
|𝒖|2(|𝒖0|2+λ|div𝒖0|1)|𝒖|2𝒇0.\displaystyle\lesssim|\bm{u}|_{2}(|\bm{u}_{0}|_{2}+\lambda|\operatorname{div}\bm{u}_{0}|_{1})\lesssim|\bm{u}|_{2}\|\bm{f}\|_{0}.

Applying the multiplicative trace inequality, (3.16) and (3.19),

(𝒏𝝈(𝒖),𝜺(𝒖0))Ω\displaystyle-(\partial_{\bm{n}}\bm{\sigma}(\bm{u}),\bm{\varepsilon}(\bm{u}_{0}))_{\partial\Omega} =2μ(𝒏𝜺(𝒖),𝜺(𝒖0))Ωλ(𝒏div𝒖,div𝒖0)Ω\displaystyle=-2\mu(\partial_{\bm{n}}\bm{\varepsilon}(\bm{u}),\bm{\varepsilon}(\bm{u}_{0}))_{\partial\Omega}-\lambda(\partial_{\bm{n}}\operatorname{div}\bm{u},\operatorname{div}\bm{u}_{0})_{\partial\Omega}
𝒏𝜺(𝒖)0,Ω𝜺(𝒖0)0,Ω+λ𝒏div𝒖0,Ωdiv𝒖00,Ω\displaystyle\lesssim\|\partial_{\bm{n}}\bm{\varepsilon}(\bm{u})\|_{0,\partial\Omega}\|\bm{\varepsilon}(\bm{u}_{0})\|_{0,\partial\Omega}+\lambda\|\partial_{\bm{n}}\operatorname{div}\bm{u}\|_{0,\partial\Omega}\|\operatorname{div}\bm{u}_{0}\|_{0,\partial\Omega}
𝒖21/2𝒖31/2(𝒖02+λdiv𝒖01)𝒖21/2𝒖31/2𝒇0\displaystyle\lesssim\|\bm{u}\|_{2}^{1/2}\|\bm{u}\|_{3}^{1/2}(\|\bm{u}_{0}\|_{2}+\lambda\|\operatorname{div}\bm{u}_{0}\|_{1})\lesssim\|\bm{u}\|_{2}^{1/2}\|\bm{u}\|_{3}^{1/2}\|\bm{f}\|_{0}
ι1𝒖21/2𝒇0|𝒖𝒖0|11/2.\displaystyle\lesssim\iota^{-1}\|\bm{u}\|_{2}^{1/2}\|\bm{f}\|_{0}|\bm{u}-\bm{u}_{0}|_{1}^{1/2}.

Combining the last two inequalities and (3.20) yields

ι2(𝝈(𝒖),𝜺(𝒖))+(𝝈(𝒖𝒖0),𝜺(𝒖𝒖0))\displaystyle\quad\iota^{2}(\nabla\bm{\sigma}(\bm{u}),\nabla\bm{\varepsilon}(\bm{u}))+(\bm{\sigma}(\bm{u}-\bm{u}_{0}),\bm{\varepsilon}(\bm{u}-\bm{u}_{0}))
(ι3/2|𝒖|2+ι1/2𝒖21/2|𝒖𝒖0|11/2)ι1/2𝒇0(ι𝒖2+|𝒖𝒖0|1)ι1/2𝒇0,\displaystyle\lesssim\left(\iota^{3/2}|\bm{u}|_{2}+\iota^{1/2}\|\bm{u}\|_{2}^{1/2}|\bm{u}-\bm{u}_{0}|_{1}^{1/2}\right)\iota^{1/2}\|\bm{f}\|_{0}\lesssim\left(\iota\|\bm{u}\|_{2}+|\bm{u}-\bm{u}_{0}|_{1}\right)\iota^{1/2}\|\bm{f}\|_{0},

which implies

ι𝒖2+|𝒖𝒖0|1+λ1/2div(𝒖𝒖0)0+λ1/2ι|div𝒖|1ι1/2𝒇0.\iota\|\bm{u}\|_{2}+|\bm{u}-\bm{u}_{0}|_{1}+\lambda^{1/2}\|\operatorname{div}(\bm{u}-\bm{u}_{0})\|_{0}+\lambda^{1/2}\iota|\operatorname{div}\bm{u}|_{1}\lesssim\iota^{1/2}\|\bm{f}\|_{0}.

Finally, we get (3.17) from (3.19). ∎

Theorem 3.9.

Let 𝐮H02(Ω;d)\bm{u}\in H_{0}^{2}(\Omega;\mathbb{R}^{d}) be the solution of problem (1.1), and 𝐮0H01(Ω;d)\bm{u}_{0}\in H_{0}^{1}(\Omega;\mathbb{R}^{d}) satisfy the linear elasticity problem (3.15). Under the same assumptions as Lemma 3.7, it holds

(3.21) λdiv(𝒖𝒖0)0+λι|div𝒖|1+λι2div𝒖2ι1/2𝒇0.\lambda\|\operatorname{div}(\bm{u}-\bm{u}_{0})\|_{0}+\lambda\iota|\operatorname{div}\bm{u}|_{1}+\lambda\iota^{2}\|\operatorname{div}\bm{u}\|_{2}\lesssim\iota^{1/2}\|\bm{f}\|_{0}.
Proof.

Applying Lemma 3.7 to (3.18), we obtain from (3.10) and (3.17) that

λι2div𝒖2\displaystyle\lambda\iota^{2}\|\operatorname{div}\bm{u}\|_{2} div𝝈(𝒖𝒖0)1𝝈(𝒖𝒖0)0|𝒖𝒖0|1+λdiv(𝒖𝒖0)0\displaystyle\lesssim\|\operatorname{div}\bm{\sigma}(\bm{u}-\bm{u}_{0})\|_{-1}\lesssim\|\bm{\sigma}(\bm{u}-\bm{u}_{0})\|_{0}\lesssim|\bm{u}-\bm{u}_{0}|_{1}+\lambda\|\operatorname{div}(\bm{u}-\bm{u}_{0})\|_{0}
(3.22) ι1/2𝒇0+λdiv(𝒖𝒖0)0.\displaystyle\lesssim\iota^{1/2}\|\bm{f}\|_{0}+\lambda\|\operatorname{div}(\bm{u}-\bm{u}_{0})\|_{0}.

Hence it suffices to prove

(3.23) λdiv(𝒖𝒖0)0+λι|div𝒖|1ι1/2𝒇0.\lambda\|\operatorname{div}(\bm{u}-\bm{u}_{0})\|_{0}+\lambda\iota|\operatorname{div}\bm{u}|_{1}\lesssim\iota^{1/2}\|\bm{f}\|_{0}.

Thanks to Lemma 2.1, there exists 𝒗H2(Ω;d)H01(Ω;d)\bm{v}\in H^{2}(\Omega;\mathbb{R}^{d})\cap H_{0}^{1}(\Omega;\mathbb{R}^{d}) such that

(3.24) div𝒗=div(𝒖𝒖0),𝒗1div(𝒖𝒖0)0.\operatorname{div}\bm{v}=\operatorname{div}(\bm{u}-\bm{u}_{0}),\quad\|\bm{v}\|_{1}\lesssim\|\operatorname{div}(\bm{u}-\bm{u}_{0})\|_{0}.

Multiply (3.18) by 𝒗\bm{v} and apply the integration by parts to get

λdiv(𝒖𝒖0)02+λι2|div𝒖|12\displaystyle\quad\lambda\|\operatorname{div}(\bm{u}-\bm{u}_{0})\|_{0}^{2}+\lambda\iota^{2}|\operatorname{div}\bm{u}|_{1}^{2}
(3.25) =2μ(𝜺(𝒖𝒖0),𝜺(𝒗))+2μι2(Δ𝜺(𝒖),𝜺(𝒗))λι2(Δdiv𝒖,div𝒖0).\displaystyle=-2\mu(\bm{\varepsilon}(\bm{u}-\bm{u}_{0}),\bm{\varepsilon}(\bm{v}))+2\mu\iota^{2}(\Delta\bm{\varepsilon}(\bm{u}),\bm{\varepsilon}(\bm{v}))-\lambda\iota^{2}(\Delta\operatorname{div}\bm{u},\operatorname{div}\bm{u}_{0}).

By the multiplicative trace inequality and (3.22), it holds

λι2(Δdiv𝒖,div𝒖0)\displaystyle-\lambda\iota^{2}(\Delta\operatorname{div}\bm{u},\operatorname{div}\bm{u}_{0}) =λι2(div𝒖,div𝒖0)λι2(𝒏div𝒖,div𝒖0)Ω\displaystyle=\lambda\iota^{2}(\nabla\operatorname{div}\bm{u},\nabla\operatorname{div}\bm{u}_{0})-\lambda\iota^{2}(\partial_{\bm{n}}\operatorname{div}\bm{u},\operatorname{div}\bm{u}_{0})_{\partial\Omega}
λι2|div𝒖|1|div𝒖0|1+λι2|div𝒖|11/2div𝒖21/2div𝒖01\displaystyle\lesssim\lambda\iota^{2}|\operatorname{div}\bm{u}|_{1}|\operatorname{div}\bm{u}_{0}|_{1}+\lambda\iota^{2}|\operatorname{div}\bm{u}|_{1}^{1/2}\|\operatorname{div}\bm{u}\|_{2}^{1/2}\|\operatorname{div}\bm{u}_{0}\|_{1}
λι2|div𝒖|1|div𝒖0|1+λ1/2ι5/4|div𝒖|11/2𝒇01/2div𝒖01\displaystyle\lesssim\lambda\iota^{2}|\operatorname{div}\bm{u}|_{1}|\operatorname{div}\bm{u}_{0}|_{1}+\lambda^{1/2}\iota^{5/4}|\operatorname{div}\bm{u}|_{1}^{1/2}\|\bm{f}\|_{0}^{1/2}\|\operatorname{div}\bm{u}_{0}\|_{1}
+λι|div𝒖|11/2div(𝒖𝒖0)01/2div𝒖01.\displaystyle\quad+\lambda\iota|\operatorname{div}\bm{u}|_{1}^{1/2}\|\operatorname{div}(\bm{u}-\bm{u}_{0})\|_{0}^{1/2}\|\operatorname{div}\bm{u}_{0}\|_{1}.

Then we acquire from (3.24)-(3.25) that

λdiv(𝒖𝒖0)02+λι2|div𝒖|12\displaystyle\quad\lambda\|\operatorname{div}(\bm{u}-\bm{u}_{0})\|_{0}^{2}+\lambda\iota^{2}|\operatorname{div}\bm{u}|_{1}^{2}
(|𝒖𝒖0|1+ι2|𝒖|3)|𝒗|1+λι2|div𝒖|1|div𝒖0|1\displaystyle\lesssim(|\bm{u}-\bm{u}_{0}|_{1}+\iota^{2}|\bm{u}|_{3})|\bm{v}|_{1}+\lambda\iota^{2}|\operatorname{div}\bm{u}|_{1}|\operatorname{div}\bm{u}_{0}|_{1}
+λ1/2ι5/4|div𝒖|11/2𝒇01/2div𝒖01+λι|div𝒖|11/2div(𝒖𝒖0)01/2div𝒖01\displaystyle\quad+\lambda^{1/2}\iota^{5/4}|\operatorname{div}\bm{u}|_{1}^{1/2}\|\bm{f}\|_{0}^{1/2}\|\operatorname{div}\bm{u}_{0}\|_{1}+\lambda\iota|\operatorname{div}\bm{u}|_{1}^{1/2}\|\operatorname{div}(\bm{u}-\bm{u}_{0})\|_{0}^{1/2}\|\operatorname{div}\bm{u}_{0}\|_{1}
(|𝒖𝒖0|1+ι2|𝒖|3)div(𝒖𝒖0)0+(λι2|div𝒖|12)1/2(λι2div𝒖012)1/2\displaystyle\lesssim(|\bm{u}-\bm{u}_{0}|_{1}+\iota^{2}|\bm{u}|_{3})\|\operatorname{div}(\bm{u}-\bm{u}_{0})\|_{0}+(\lambda\iota^{2}|\operatorname{div}\bm{u}|_{1}^{2})^{1/2}(\lambda\iota^{2}\|\operatorname{div}\bm{u}_{0}\|_{1}^{2})^{1/2}
+ι3/2|div𝒖|1𝒇0+λιdiv𝒖012\displaystyle\quad+\iota^{3/2}|\operatorname{div}\bm{u}|_{1}\|\bm{f}\|_{0}+\lambda\iota\|\operatorname{div}\bm{u}_{0}\|_{1}^{2}
+(λι|div𝒖|1div(𝒖𝒖0)0)1/2(λιdiv𝒖012)1/2.\displaystyle\quad+(\lambda\iota|\operatorname{div}\bm{u}|_{1}\|\operatorname{div}(\bm{u}-\bm{u}_{0})\|_{0})^{1/2}(\lambda\iota\|\operatorname{div}\bm{u}_{0}\|_{1}^{2})^{1/2}.

This implies

λdiv(𝒖𝒖0)02+λι2|div𝒖|121λ(|𝒖𝒖0|1+ι2|𝒖|3)2+λιdiv𝒖012+1λι𝒇02,\displaystyle\quad\lambda\|\operatorname{div}(\bm{u}-\bm{u}_{0})\|_{0}^{2}+\lambda\iota^{2}|\operatorname{div}\bm{u}|_{1}^{2}\lesssim\frac{1}{\lambda}(|\bm{u}-\bm{u}_{0}|_{1}+\iota^{2}|\bm{u}|_{3})^{2}+\lambda\iota\|\operatorname{div}\bm{u}_{0}\|_{1}^{2}+\frac{1}{\lambda}\iota\|\bm{f}\|_{0}^{2},

i.e.,

λdiv(𝒖𝒖0)0+λι|div𝒖|1|𝒖𝒖0|1+ι2|𝒖|3+λι1/2div𝒖01+ι1/2𝒇0.\lambda\|\operatorname{div}(\bm{u}-\bm{u}_{0})\|_{0}+\lambda\iota|\operatorname{div}\bm{u}|_{1}\lesssim|\bm{u}-\bm{u}_{0}|_{1}+\iota^{2}|\bm{u}|_{3}+\lambda\iota^{1/2}\|\operatorname{div}\bm{u}_{0}\|_{1}+\iota^{1/2}\|\bm{f}\|_{0}.

Therefore, we conclude (3.23) from (3.17) and (3.16). ∎

4. Mixed finite element method

In this section we will construct a lower order C0C^{0}-continuous H2H^{2}-nonconforming finite element, and apply to discretize the variational formulation (2.3) of SGE model (1.2).

4.1. H2H^{2}-nonconforming finite element

For a dd-dimensional simplex KK (d=2, 3d=2,\,3) with vertices a1,,ad+1a_{1},\ldots,a_{d+1}, let 𝒱(K)\mathcal{V}(K), (K)\mathcal{E}(K) and (K)\mathcal{F}(K) be the sets of all vertices, one-dimensional edges and (d1)(d-1)-dimensional faces of KK respectively. Set 𝒱i(K):=𝒱(K)𝒱i(𝒯h)\mathcal{V}^{i}(K):=\mathcal{V}(K)\cap\mathcal{V}^{i}(\mathcal{T}_{h}). For s=1,,d+1s=1,\ldots,d+1, denote by λs\lambda_{s} the barycentric coordinate corresponding to asa_{s} and there exists Fs(K)F_{s}\in\mathcal{F}(K) such that λs|Fs=0\lambda_{s}|_{F_{s}}=0. Let bK=s=1d+1λs=λjbFjb_{K}=\prod_{s=1}^{d+1}\lambda_{s}=\lambda_{j}b_{F_{j}} be the bubble function of KK, where bFjb_{F_{j}} is the bubble function of FjF_{j} with j=1,,d+1j=1,\cdots,d+1.

Given a face F(K)F\in\mathcal{F}(K) with unit normal vector 𝒏\bm{n}, for a vector function 𝒗\bm{v}, define the tangential component ΠF𝒗=𝒗(𝒗𝒏)𝒏\Pi_{F}\bm{v}=\bm{v}-(\bm{v}\cdot\bm{n})\bm{n}. Then

(4.1) div𝒗=div((𝒗𝒏)𝒏+ΠF𝒗)=𝒏(𝒗𝒏)+divF𝒗,\operatorname{div}\bm{v}=\operatorname{div}((\bm{v}\cdot\bm{n})\bm{n}+\Pi_{F}\bm{v})=\partial_{\bm{n}}(\bm{v}\cdot\bm{n})+\operatorname{div}_{F}\bm{v},

where face divergence divF𝒗:=div(ΠF𝒗)\operatorname{div}_{F}\bm{v}:=\operatorname{div}(\Pi_{F}\bm{v}).

With previous preparation, take

V(K):=2(K;d)+bK1(K;d)+bK20(K;d)V(K):=\mathbb{P}_{2}(K;\mathbb{R}^{d})+b_{K}\mathbb{P}_{1}(K;\mathbb{R}^{d})+b_{K}^{2}\mathbb{P}_{0}(K;\mathbb{R}^{d})

as the space of shape functions. Then

dimV(K)=d(d+22)+d(d+1)+d=12d(d+2)(d+3).\dim V(K)=d{d+2\choose 2}+d(d+1)+d=\frac{1}{2}d(d+2)(d+3).

The degrees of freedom (DoFs) are chosen as

(4.2) 𝒗(δ)\displaystyle\bm{v}(\delta) δ𝒱(K),\displaystyle\quad\forall~{}\delta\in\mathcal{V}(K),
(4.3) 1|e|(𝒗,𝒒)e\displaystyle\frac{1}{|e|}(\bm{v},\bm{q})_{e} 𝒒0(e;d),e(K),\displaystyle\quad\forall~{}\bm{q}\in\mathbb{P}_{0}(e;\mathbb{R}^{d}),e\in\mathcal{E}(K),
(4.4) 1|F|(𝒏(𝒗𝒕i),q)F\displaystyle\frac{1}{|F|}(\partial_{\bm{n}}(\bm{v}\cdot\bm{t}_{i}),q)_{F} q0(F),F(K),i=1,,d1,\displaystyle\quad\forall~{}q\in\mathbb{P}_{0}(F),F\in\mathcal{F}(K),i=1,\ldots,d-1,
(4.5) 1|F|(div𝒗,q)F\displaystyle\frac{1}{|F|}(\operatorname{div}\bm{v},q)_{F} q0(F),F(K),\displaystyle\quad\forall~{}q\in\mathbb{P}_{0}(F),F\in\mathcal{F}(K),
(4.6) 1|K|(𝒗,𝒒)K\displaystyle\frac{1}{|K|}(\bm{v},\bm{q})_{K} 𝒒0(K;d),\displaystyle\quad\forall~{}\bm{q}\in\mathbb{P}_{0}(K;\mathbb{R}^{d}),

where 𝒕1,,𝒕d1\bm{t}_{1},\ldots,\bm{t}_{d-1} are (d1)(d-1) unit orthogonal tangential vectors of FF. DoF (4.5) is vital to prove the robust discrete inf-sup condition with respect to the size parameter ι\iota.

Lemma 4.1.

The degrees of freedom (4.2)-(4.6) are uni-solvent for V(K)V(K).

Proof.

The number of the degrees of freedom (4.2)-(4.6) is

d(d+1)+d(d+12)+d(d+1)+d=12d(d+2)(d+3)=dimV(K).d(d+1)+d{d+1\choose 2}+d(d+1)+d=\frac{1}{2}d(d+2)(d+3)=\dim V(K).

Take 𝒗V(K)\bm{v}\in V(K) and assume all the degrees of freedom (4.2)-(4.6) vanish, then we prove 𝒗=𝟎\bm{v}=\bm{0}. Noting that 𝒗|F2(F;d)\bm{v}|_{F}\in\mathbb{P}_{2}(F;\mathbb{R}^{d}) for each F(K)F\in\mathcal{F}(K), we get from the vanishing DoFs (4.2)-(4.3) that 𝒗|K=𝟎\bm{v}|_{\partial K}=\bm{0}. As a result there exist 𝒗11(K;d)\bm{v}_{1}\in\mathbb{P}_{1}(K;\mathbb{R}^{d}) and 𝒗20(K;d)\bm{v}_{2}\in\mathbb{P}_{0}(K;\mathbb{R}^{d}) such that 𝒗=bK𝒗1+bK2𝒗2\bm{v}=b_{K}\bm{v}_{1}+b_{K}^{2}\bm{v}_{2}. Thanks to (4.1), the vanishing DoF (4.5) implies (𝒏(𝒗𝒏),q)F=0(\partial_{\bm{n}}(\bm{v}\cdot\bm{n}),q)_{F}=0 for all q0(F)q\in\mathbb{P}_{0}(F), which combined with the vanishing DoF (4.4) yields (𝒏𝒗,𝒒)F=0(\partial_{\bm{n}}\bm{v},\bm{q})_{F}=0 for all 𝒒0(F;d)\bm{q}\in\mathbb{P}_{0}(F;\mathbb{R}^{d}), and thus

(bF𝒗1,𝒒)F=0𝒒0(F;d),F(K).(b_{F}\bm{v}_{1},\bm{q})_{F}=0\quad\forall~{}\bm{q}\in\mathbb{P}_{0}(F;\mathbb{R}^{d}),F\in\mathcal{F}(K).

As a result 𝒗1=𝟎\bm{v}_{1}=\bm{0}. Finally, we conclude 𝒗=𝒗2=𝟎\bm{v}=\bm{v}_{2}=\bm{0} from the vanishing DoF (4.6). ∎

Define a global H2H^{2}-nonconforming finite element space:

Vh=\displaystyle V_{h}= {𝒗hL2(Ω;d)|𝒗h|KV(K) for each K𝒯h, all the DoFs (4.2)-(4.6)\displaystyle\{\bm{v}_{h}\in L^{2}(\Omega;\mathbb{R}^{d})|\,\bm{v}_{h}|_{K}\in V(K)\textrm{ for each }K\in\mathcal{T}_{h},\textrm{ all the DoFs \eqref{H2lowestncfemnDdof1}-\eqref{H2lowestncfemnDdof4}}
 are single-valued,and DoFs (4.2)-(4.5) on boundary vanish}.\displaystyle\qquad\qquad\qquad\textrm{ are single-valued},\textrm{and DoFs \eqref{H2lowestncfemnDdof1}-\eqref{H2lowestncfemnDdof32} on boundary vanish}\}.

Clearly VhH01(Ω;d)V_{h}\subset H_{0}^{1}(\Omega;\mathbb{R}^{d}), but VhH2(Ω;d)V_{h}\not\subset H^{2}(\Omega;\mathbb{R}^{d}). The finite element space VhV_{h} has the weak continuity

(4.7) Fh𝒗hdS=𝟎𝒗hVh,F(𝒯h).\int_{F}\llbracket\nabla_{h}\bm{v}_{h}\rrbracket{\rm d}S=\bm{0}\quad\forall~{}\bm{v}_{h}\in V_{h},F\in\mathcal{F}(\mathcal{T}_{h}).

Here h\nabla_{h} is the elementwise version of \nabla with respect to 𝒯h\mathcal{T}_{h}.

Introduce the Lagrange element space Qh=QhLQQ_{h}=Q_{h}^{L}\cap Q, where

QhL:={qH1(Ω)|q|K1(K) for each K𝒯h}.Q_{h}^{L}:=\{q\in H^{1}(\Omega)\,|\,q|_{K}\in\mathbb{P}_{1}(K)\textrm{ for each }K\in\mathcal{T}_{h}\}.

Then the dicretization formulation of (2.3) is to find (𝒖h,ph)Vh×Qh(\bm{u}_{h},p_{h})\in V_{h}\times Q_{h} such that

(4.8) {ah(𝒖h,𝒗h)+bh(𝒗h,ph)=(𝒇,𝒗h)𝒗hVh,bh(𝒖h,qh)c(ph,qh)=0qhQh,\begin{cases}a_{h}(\bm{u}_{h},\bm{v}_{h})+b_{h}(\bm{v}_{h},p_{h})=(\bm{f},\bm{v}_{h})&\forall~{}\bm{v}_{h}\in V_{h},\\ b_{h}(\bm{u}_{h},q_{h})-c(p_{h},q_{h})=0&\forall~{}q_{h}\in Q_{h},\end{cases}

where

ah(𝒖h,𝒗h):=2μ((𝜺(𝒖h),𝜺(𝒗h))+ι2(h𝜺(𝒖h),h𝜺(𝒗h))),a_{h}(\bm{u}_{h},\bm{v}_{h}):=2\mu\big{(}(\bm{\varepsilon}(\bm{u}_{h}),\bm{\varepsilon}(\bm{v}_{h}))+\iota^{2}(\nabla_{h}\bm{\varepsilon}(\bm{u}_{h}),\nabla_{h}\bm{\varepsilon}(\bm{v}_{h}))\big{)},
bh(𝒗h,ph):=(div𝒗h,ph)+ι2(hdiv𝒗h,ph).b_{h}(\bm{v}_{h},p_{h}):=(\operatorname{div}\bm{v}_{h},p_{h})+\iota^{2}(\nabla_{h}\operatorname{div}\bm{v}_{h},\nabla p_{h}).

Define squared norm 𝒗hV,h2:=|𝒗h|12+ι2|𝒗h|2,h2\|\bm{v}_{h}\|^{2}_{V,h}:=|\bm{v}_{h}|_{1}^{2}+\iota^{2}|\bm{v}_{h}|_{2,h}^{2} with |𝒗h|2,h2=K𝒯h|𝒗h|2,K2.|\bm{v}_{h}|_{2,h}^{2}=\sum_{K\in\mathcal{T}_{h}}|\bm{v}_{h}|_{2,K}^{2}. Clearly the discrete linear forms ah(,)a_{h}(\cdot,\cdot) and bh(,)b_{h}(\cdot,\cdot) are continuous on Vh×VhV_{h}\times V_{h} and Vh×QhV_{h}\times Q_{h}, respectively. Since (11/2)|𝒗h|2,h2h𝜺(𝒗h)02(1-1/\sqrt{2})|\bm{v}_{h}|_{2,h}^{2}\lesssim\|\nabla_{h}\bm{\varepsilon}(\bm{v}_{h})\|_{0}^{2} and the Korn’s inequality (2.1), we achieve the discrete coercivity

(4.9) 𝒗hV,h2ah(𝒗h,𝒗h)𝒗hVh.\|\bm{v}_{h}\|_{V,h}^{2}\lesssim a_{h}(\bm{v}_{h},\bm{v}_{h})\quad\forall~{}\bm{v}_{h}\in V_{h}.

4.2. Discrete inf-sup condition and uni-solvence

To derive the unisolvence of the mixed finite element method (4.8), we first introduce the second order Brezzi-Douglas-Marini (BDM) element [10, 15]. The second order BDM element takes 2(K;d)\mathbb{P}_{2}(K;\mathbb{R}^{d}) as the shape function space, and the degrees of freedom are chosen as [15]

(4.10) (𝒗𝒏,q)F\displaystyle(\bm{v}\cdot\bm{n},q)_{F} q2(F),F(K),\displaystyle\quad\forall~{}q\in\mathbb{P}_{2}(F),F\in\mathcal{F}(K),
(4.11) (𝒗,𝒒)K\displaystyle(\bm{v},\bm{q})_{K} 𝒒1(K;d)satisfying𝒙𝒒1(K).\displaystyle\quad\forall~{}\bm{q}\in\mathbb{P}_{1}(K;\mathbb{R}^{d})\;{\rm satisfying}\;\bm{x}\cdot\bm{q}\in\mathbb{P}_{1}(K).

Let IKBDM:H1(K;d)2(K;d)I_{K}^{BDM}:H^{1}(K;\mathbb{R}^{d})\to\mathbb{P}_{2}(K;\mathbb{R}^{d}) be the nodal interpolation operator based on DoFs (4.10)-(4.11). It holds

(4.12) div(IKBDM𝒗)=QK(div𝒗)𝒗H1(K;d),\operatorname{div}(I_{K}^{BDM}\bm{v})=Q_{K}(\operatorname{div}\bm{v})\quad\forall~{}\bm{v}\in H^{1}(K;\mathbb{R}^{d}),

where QKQ_{K} is the standard L2L^{2} projection operator from L2(K)L^{2}(K) to 1(K)\mathbb{P}_{1}(K). Let IhBDMI_{h}^{BDM} be the global version of IKBDMI_{K}^{BDM}.

Now we define interpolation operator Ih:H02(Ω;d)VhI_{h}:H_{0}^{2}(\Omega;\mathbb{R}^{d})\to V_{h} as follows:

(Ih𝒗)(δ)\displaystyle(I_{h}\bm{v})(\delta) =1#𝒯δK𝒯δ(IKBDM𝒗)(δ),\displaystyle=\frac{1}{\#\mathcal{T}_{\delta}}\sum_{K\in\mathcal{T}_{\delta}}(I_{K}^{BDM}\bm{v})(\delta),
(Ih𝒗,𝒒)e\displaystyle(I_{h}\bm{v},\bm{q})_{e} =1#𝒯eK𝒯e(IKBDM𝒗,𝒒)e𝒒0(e;d),\displaystyle=\frac{1}{\#\mathcal{T}_{e}}\sum_{K\in\mathcal{T}_{e}}(I_{K}^{BDM}\bm{v},\bm{q})_{e}\quad\forall~{}\bm{q}\in\mathbb{P}_{0}(e;\mathbb{R}^{d}),
(𝒏(ΠF(Ih𝒗)),𝒒)F\displaystyle(\partial_{\bm{n}}(\Pi_{F}(I_{h}\bm{v})),\bm{q})_{F} =1#𝒯FK𝒯F(𝒏(ΠF(IKBDM𝒗)),𝒒)F𝒒0(F;d1),\displaystyle=\frac{1}{\#\mathcal{T}_{F}}\sum_{K\in\mathcal{T}_{F}}(\partial_{\bm{n}}(\Pi_{F}(I_{K}^{BDM}\bm{v})),\bm{q})_{F}\quad\forall~{}\bm{q}\in\mathbb{P}_{0}(F;\mathbb{R}^{d-1}),
(4.13) (div(Ih𝒗),q)F\displaystyle(\operatorname{div}(I_{h}\bm{v}),q)_{F} =1#𝒯FK𝒯F(div(IKBDM𝒗),q)Fq0(F),\displaystyle=\frac{1}{\#\mathcal{T}_{F}}\sum_{K\in\mathcal{T}_{F}}(\operatorname{div}(I_{K}^{BDM}\bm{v}),q)_{F}\quad\forall~{}q\in\mathbb{P}_{0}(F),
(4.14) (Ih𝒗,𝒒)K\displaystyle(I_{h}\bm{v},\bm{q})_{K} =(𝒗,𝒒)K𝒒0(K;d),\displaystyle=(\bm{v},\bm{q})_{K}\quad\forall~{}\bm{q}\in\mathbb{P}_{0}(K;\mathbb{R}^{d}),

for δ𝒱i(𝒯h)\delta\in\mathcal{V}^{i}(\mathcal{T}_{h}), ei(𝒯h)e\in\mathcal{E}^{i}(\mathcal{T}_{h}), Fi(𝒯h)F\in\mathcal{F}^{i}(\mathcal{T}_{h}) and K𝒯hK\in\mathcal{T}_{h}.

Lemma 4.2.

We have

(4.15) |Ih𝒗|j,h\displaystyle|I_{h}\bm{v}|_{j,h} |𝒗|j𝒗H02(Ω;d),j=1,2,\displaystyle\lesssim|\bm{v}|_{j}\quad\forall~{}\bm{v}\in H_{0}^{2}(\Omega;\mathbb{R}^{d}),j=1,2,
(4.16) i=03hKi|𝒗Ih𝒗|i,K\displaystyle\sum_{i=0}^{3}h_{K}^{i}|\bm{v}-I_{h}\bm{v}|_{i,K} hK3δ𝒱(K)|𝒗|3,ωδ𝒗H02(Ω;d)H3(Ω;d).\displaystyle\lesssim h_{K}^{3}\sum_{\delta\in\mathcal{V}(K)}|\bm{v}|_{3,\omega_{\delta}}\quad\forall~{}\bm{v}\in H_{0}^{2}(\Omega;\mathbb{R}^{d})\cap H^{3}(\Omega;\mathbb{R}^{d}).
Proof.

Thanks to (4.11) and (4.14), it follows that

(Ih𝒗IKBDM𝒗,𝒒)K=0𝒒0(K;d).(I_{h}\bm{v}-I_{K}^{BDM}\bm{v},\bm{q})_{K}=0\quad\forall~{}\bm{q}\in\mathbb{P}_{0}(K;\mathbb{R}^{d}).

Then by the inverse inequality, scaling argument and (4.12),

hK2i|Ih𝒗IKBDM𝒗|i,K2\displaystyle h_{K}^{2i}|I_{h}\bm{v}-I_{K}^{BDM}\bm{v}|_{i,K}^{2}
\displaystyle\lesssim hKdδ𝒱(K)(Ih𝒗IKBDM𝒗)2(δ)+hKd1e(K)Ih𝒗IKBDM𝒗0,e2\displaystyle h_{K}^{d}\sum_{\delta\in\mathcal{V}(K)}(I_{h}\bm{v}-I_{K}^{BDM}\bm{v})^{2}(\delta)+h_{K}^{d-1}\sum_{e\in\mathcal{E}(K)}\|I_{h}\bm{v}-I_{K}^{BDM}\bm{v}\|_{0,e}^{2}
+hK3F(K)𝒏(ΠF(Ih𝒗IKBDM𝒗))0,F2+hK3F(K)div(Ih𝒗IKBDM𝒗)0,F2\displaystyle+h_{K}^{3}\sum_{F\in\mathcal{F}(K)}\|\partial_{\bm{n}}(\Pi_{F}(I_{h}\bm{v}-I_{K}^{BDM}\bm{v}))\|_{0,F}^{2}+h_{K}^{3}\sum_{F\in\mathcal{F}(K)}\|\operatorname{div}(I_{h}\bm{v}-I_{K}^{BDM}\bm{v})\|_{0,F}^{2}
\displaystyle\lesssim hKδ𝒱(K)F(Th),δFIKBDM𝒗0,F2+hK3F(K)𝒏(IKBDM𝒗)0,F2\displaystyle h_{K}\sum_{\delta\in\mathcal{V}(K)}\sum_{F\in\mathcal{F}(T_{h}),\delta\in F}\|\llbracket I_{K}^{BDM}\bm{v}\rrbracket\|_{0,F}^{2}+h_{K}^{3}\sum_{F\in\mathcal{F}(K)}\|\llbracket\partial_{\bm{n}}(I_{K}^{BDM}\bm{v})\rrbracket\|_{0,F}^{2}
+hK3F(K)QK(div𝒗)0,F2.\displaystyle+h_{K}^{3}\sum_{F\in\mathcal{F}(K)}\|\llbracket Q_{K}(\operatorname{div}\bm{v})\rrbracket\|_{0,F}^{2}.

This implies

hK2i|𝒗Ih𝒗|i,K2\displaystyle h_{K}^{2i}|\bm{v}-I_{h}\bm{v}|_{i,K}^{2} hK2i|𝒗IKBDM𝒗|i,K2+hKδ𝒱(K)F(Th),δFIKBDM𝒗0,F2\displaystyle\lesssim h_{K}^{2i}|\bm{v}-I_{K}^{BDM}\bm{v}|_{i,K}^{2}+h_{K}\sum_{\delta\in\mathcal{V}(K)}\sum_{F\in\mathcal{F}(T_{h}),\delta\in F}\|\llbracket I_{K}^{BDM}\bm{v}\rrbracket\|_{0,F}^{2}
+hK3F(K)𝒏(IKBDM𝒗)0,F2+hK3F(K)QK(div𝒗)0,F2.\displaystyle\quad+h_{K}^{3}\sum_{F\in\mathcal{F}(K)}\|\llbracket\partial_{\bm{n}}(I_{K}^{BDM}\bm{v})\rrbracket\|_{0,F}^{2}+h_{K}^{3}\sum_{F\in\mathcal{F}(K)}\|\llbracket Q_{K}(\operatorname{div}\bm{v})\rrbracket\|_{0,F}^{2}.

Finally, we end the proof by employing the inverse inequality, the trace inequality, and the error estimates of IKBDMI_{K}^{BDM} and QKQ_{K}. ∎

Next we present the discrete inf-sup condition.

Lemma 4.3.

It holds the discrete inf-sup condition

(4.17) qhQ=qh0+ι|qh|1sup𝒗h𝑽hbh(𝒗h,qh)𝒗hV,hqhQh.\|q_{h}\|_{Q}=\|q_{h}\|_{0}+\iota|q_{h}|_{1}\lesssim\sup_{\bm{v}_{h}\in\bm{V}_{h}}\frac{b_{h}(\bm{v}_{h},q_{h})}{\|\bm{v}_{h}\|_{V,h}}\quad\forall~{}q_{h}\in Q_{h}.
Proof.

By Lemma 2.1, there exists 𝒗H02(Ω;d)\bm{v}\in H_{0}^{2}(\Omega;\mathbb{R}^{d}) satisfying div𝒗=qh\operatorname{div}\bm{v}=q_{h} and |𝒗|1+ι|𝒗|2qh0+ι|qh|1.|\bm{v}|_{1}+\iota|\bm{v}|_{2}\lesssim\|q_{h}\|_{0}+\iota|q_{h}|_{1}. Take 𝒗h=Ih𝒗H01(Ω;d)\bm{v}_{h}=I_{h}\bm{v}\in H_{0}^{1}(\Omega;\mathbb{R}^{d}). By (4.15),

(4.18) |𝒗h|1+ι|𝒗h|2,h|𝒗|1+ι|𝒗|2qh0+ι|qh|1.|\bm{v}_{h}|_{1}+\iota|\bm{v}_{h}|_{2,h}\lesssim|\bm{v}|_{1}+\iota|\bm{v}|_{2}\lesssim\|q_{h}\|_{0}+\iota|q_{h}|_{1}.

For K𝒯hK\in\mathcal{T}_{h}, by (4.12) and div𝒗Qh\operatorname{div}\bm{v}\in Q_{h}, we have div(IKBDM𝒗)=QK(div𝒗)=div𝒗\operatorname{div}(I_{K}^{BDM}\bm{v})=Q_{K}(\operatorname{div}\bm{v})=\operatorname{div}\bm{v}. Then we get from (4.13) and (4.14) that

(div(𝒗h𝒗),qh)\displaystyle(\operatorname{div}(\bm{v}_{h}-\bm{v}),q_{h}) =(𝒗h𝒗,qh)=0,\displaystyle=-(\bm{v}_{h}-\bm{v},\nabla q_{h})=0,
(hdiv(𝒗h𝒗),qh)\displaystyle(\nabla_{h}\operatorname{div}(\bm{v}_{h}-\bm{v}),\nabla q_{h}) =K𝒯h(div(𝒗h𝒗),𝒏qh)K=0.\displaystyle=\sum_{K\in\mathcal{T}_{h}}(\operatorname{div}(\bm{v}_{h}-\bm{v}),\partial_{\bm{n}}q_{h})_{\partial K}=0.

Combining the last two equations gives

bh(𝒗h,qh)=(div𝒗,qh)+ι2(div𝒗,qh)=qh02+ι2|qh|12,b_{h}(\bm{v}_{h},q_{h})=(\operatorname{div}\bm{v},q_{h})+\iota^{2}(\nabla\operatorname{div}\bm{v},\nabla q_{h})=\|q_{h}\|_{0}^{2}+\iota^{2}|q_{h}|_{1}^{2},

which together with (4.18) ends the proof. ∎

Theorem 4.4.

It holds the discrete stability

(4.19) 𝒖~hV,h+p~hQsup𝒗hVhqhQhah(𝒖~h,𝒗h)+bh(𝒗h,p~h)bh(𝒖~h,qh)+c(p~h,qh)𝒗hV,h+qhQ\|\tilde{\bm{u}}_{h}\|_{V,h}+\|\tilde{p}_{h}\|_{Q}\lesssim\sup_{\bm{v}_{h}\in V_{h}\atop q_{h}\in Q_{h}}\frac{a_{h}(\tilde{\bm{u}}_{h},\bm{v}_{h})+b_{h}(\bm{v}_{h},\tilde{p}_{h})-b_{h}(\tilde{\bm{u}}_{h},q_{h})+c(\tilde{p}_{h},q_{h})}{\|\bm{v}_{h}\|_{V,h}+\|q_{h}\|_{Q}}

for 𝐮~hVh\tilde{\bm{u}}_{h}\in V_{h} and p~hQh\tilde{p}_{h}\in Q_{h}. Then the mixed finite element method (4.8) is well-posed.

Proof.

Applying the Babuška-Brezzi theory [10], we get from the discrete coercivity (4.9) and the discrete inf-sup condition (4.17) that

𝒖~hV,h+p~hQsup𝒗hVh,qhQhah(𝒖~h,𝒗h)+bh(𝒗h,p~h)bh(𝒖~h,qh)𝒗hV,h+qhQ\|\tilde{\bm{u}}_{h}\|_{V,h}+\|\tilde{p}_{h}\|_{Q}\lesssim\sup_{\bm{v}_{h}\in V_{h},q_{h}\in Q_{h}}\frac{a_{h}(\tilde{\bm{u}}_{h},\bm{v}_{h})+b_{h}(\bm{v}_{h},\tilde{p}_{h})-b_{h}(\tilde{\bm{u}}_{h},q_{h})}{\|\bm{v}_{h}\|_{V,h}+\|q_{h}\|_{Q}}

for 𝒖~hVh\tilde{\bm{u}}_{h}\in V_{h} and p~hQh\tilde{p}_{h}\in Q_{h}, which indicates (4.19). ∎

5. Error analysis

We will analyze the mixed finite element method (4.8) in this section, and derive robust error estimates of 𝒖𝒖hV,h+pphQ\|\bm{u}-\bm{u}_{h}\|_{V,h}+\|p-p_{h}\|_{Q} with respect to parameters ι\iota and λ\lambda.

5.1. Interpolation estimates

Denote by IhSZ:H01(Ω)QhLH01(Ω)I^{SZ}_{h}:H_{0}^{1}(\Omega)\to Q_{h}^{L}\cap H_{0}^{1}(\Omega) the Scott-Zhang interpolation operator with the homogeneous boundary condition [47]. Since IhSZvQhI^{SZ}_{h}v\not\in Q_{h} for IhSZvL02(Ω)I^{SZ}_{h}v\not\in L_{0}^{2}(\Omega), we will modify IhSZvI^{SZ}_{h}v.

For K𝒯hK\in\mathcal{T}_{h}, let NK:=#𝒱i(K)N_{K}:=\#\mathcal{V}^{i}(K) be the number of interior vertices of KK. We assume the triangulation 𝒯h\mathcal{T}_{h} satisfies minK𝒯hNK1\min_{K\in\mathcal{T}_{h}}N_{K}\geq 1. Define operator 𝒬h:L2(Ω)QhLH01(Ω)\mathcal{Q}_{h}:L^{2}(\Omega)\to Q_{h}^{L}\cap H_{0}^{1}(\Omega) by

(𝒬hv)(δ)=K𝒯δd+1NK|ωδ|Kvdxδ𝒱i(𝒯h),(\mathcal{Q}_{h}v)(\delta)=\sum_{K\in\mathcal{T}_{\delta}}\frac{d+1}{N_{K}|\omega_{\delta}|}\int_{K}v~{}{\rm d}x\quad\forall~{}\delta\in\mathcal{V}^{i}(\mathcal{T}_{h}),

where |ωδ||\omega_{\delta}| is the geometrical measure of ωδ\omega_{\delta}.

Lemma 5.1.

For vL2(Ω)v\in L^{2}(\Omega), we have v𝒬hvL02(Ω)v-\mathcal{Q}_{h}v\in L_{0}^{2}(\Omega), and

(5.1) 𝒬hv0,K+hK|𝒬hv|1,Kδ𝒱i(K)v0,ωδ.\|\mathcal{Q}_{h}v\|_{0,K}+h_{K}|\mathcal{Q}_{h}v|_{1,K}\lesssim\sum_{\delta\in\mathcal{V}^{i}(K)}\|v\|_{0,\omega_{\delta}}.
Proof.

By the fact (𝒬hv)|K1(K)(\mathcal{Q}_{h}v)|_{K}\in\mathbb{P}_{1}(K) for K𝒯hK\in\mathcal{T}_{h},

Ω𝒬hvdx=K𝒯hK𝒬hvdx=1d+1K𝒯hδ𝒱i(K)|K|(𝒬hv)(δ)\displaystyle\quad\int_{\Omega}\mathcal{Q}_{h}v~{}{\rm d}x=\sum_{K\in\mathcal{T}_{h}}\int_{K}\mathcal{Q}_{h}v~{}{\rm d}x=\frac{1}{d+1}\sum_{K\in\mathcal{T}_{h}}\sum_{\delta\in\mathcal{V}^{i}(K)}|K|(\mathcal{Q}_{h}v)(\delta)
=1d+1δ𝒱i(𝒯h)K𝒯δ|K|(𝒬hv)(δ)=δ𝒱i(𝒯h)K𝒯δK𝒯δ|K|NK|ωδ|Kvdx\displaystyle=\frac{1}{d+1}\sum_{\delta\in\mathcal{V}^{i}(\mathcal{T}_{h})}\sum_{K\in\mathcal{T}_{\delta}}|K|(\mathcal{Q}_{h}v)(\delta)=\sum_{\delta\in\mathcal{V}^{i}(\mathcal{T}_{h})}\sum_{K\in\mathcal{T}_{\delta}}\sum_{K^{\prime}\in\mathcal{T}_{\delta}}\frac{|K|}{N_{K^{\prime}}|\omega_{\delta}|}\int_{K^{\prime}}v~{}{\rm d}x
=δ𝒱i(𝒯h)K𝒯δ1NKKvdx=Ωvdx.\displaystyle=\sum_{\delta\in\mathcal{V}^{i}(\mathcal{T}_{h})}\sum_{K^{\prime}\in\mathcal{T}_{\delta}}\frac{1}{N_{K^{\prime}}}\int_{K^{\prime}}v~{}{\rm d}x=\int_{\Omega}v~{}{\rm d}x.

On the other side, by the scaling argument,

𝒬hv0,KhKd/2δ𝒱i(K)|(𝒬hv)(δ)|δ𝒱i(K)v0,ωδ,\|\mathcal{Q}_{h}v\|_{0,K}\lesssim h_{K}^{d/2}\sum_{\delta\in\mathcal{V}^{i}(K)}|(\mathcal{Q}_{h}v)(\delta)|\lesssim\sum_{\delta\in\mathcal{V}^{i}(K)}\|v\|_{0,\omega_{\delta}},

which together with the inverse inequality produces (5.1). ∎

Define Jh:H01(Ω)QhLH01(Ω)J_{h}:H_{0}^{1}(\Omega)\to Q_{h}^{L}\cap H_{0}^{1}(\Omega) by Jhv:=IhSZv+𝒬h(vIhSZv)J_{h}v:=I_{h}^{SZ}v+\mathcal{Q}_{h}(v-I_{h}^{SZ}v). Since ΩJhvdx=Ωvdx\int_{\Omega}J_{h}v~{}{\rm d}x=\int_{\Omega}v~{}{\rm d}x, it holds that JhvQhJ_{h}v\in Q_{h} when vQv\in Q.

Lemma 5.2.

We have

(5.2) hi|vJhv|ihj|v|jvH01(Ω)Hj(Ω),ij2,i=0,1.h^{i}|v-J_{h}v|_{i}\lesssim h^{j}|v|_{j}\quad\forall~{}v\in H_{0}^{1}(\Omega)\cap H^{j}(\Omega),\;i\leq j\leq 2,\;i=0,1.
Proof.

For each K𝒯hK\in\mathcal{T}_{h}, by (5.1) and vJhv=vIhSZv𝒬h(vIhSZv)v-J_{h}v=v-I_{h}^{SZ}v-\mathcal{Q}_{h}(v-I_{h}^{SZ}v),

hKi|vJhv|i,KhKi|vIhSZv|i,K+δ𝒱i(K)vIhSZv0,ωδ.h_{K}^{i}|v-J_{h}v|_{i,K}\lesssim h_{K}^{i}|v-I_{h}^{SZ}v|_{i,K}+\sum_{\delta\in\mathcal{V}^{i}(K)}\|v-I_{h}^{SZ}v\|_{0,\omega_{\delta}}.

Therefore, we acquire (5.2) from the estimate of IhSZI^{SZ}_{h}. ∎

To derive robust error estimates of 𝒖𝒖hV,h+pphQ\|\bm{u}-\bm{u}_{h}\|_{V,h}+\|p-p_{h}\|_{Q} with respect to parameters ι\iota and λ\lambda, we introduce a finite element space

V~h:=\displaystyle\tilde{V}_{h}:= {𝒗hL2(Ω;d)|𝒗h|KV(K) for each K𝒯h, all the DoFs (4.2)-(4.6)\displaystyle\{\bm{v}_{h}\in L^{2}(\Omega;\mathbb{R}^{d})|\,\bm{v}_{h}|_{K}\in V(K)\textrm{ for each }K\in\mathcal{T}_{h},\textrm{ all the DoFs \eqref{H2lowestncfemnDdof1}-\eqref{H2lowestncfemnDdof4}}
 are single-valued,and DoFs (4.2)-(4.3) on boundary vanish}.\displaystyle\qquad\qquad\qquad\textrm{ are single-valued},\textrm{and DoFs \eqref{H2lowestncfemnDdof1}-\eqref{H2lowestncfemnDdof2} on boundary vanish}\}.

Define an interpolation operator I~h:H01(Ω;d)V~h\tilde{I}_{h}:H_{0}^{1}(\Omega;\mathbb{R}^{d})\to\tilde{V}_{h} as follows:

(I~h𝒗)(δ)\displaystyle(\tilde{I}_{h}\bm{v})(\delta) =1#𝒯δK𝒯δ(IKBDM𝒗)(δ),\displaystyle=\frac{1}{\#\mathcal{T}_{\delta}}\sum_{K\in\mathcal{T}_{\delta}}(I_{K}^{BDM}\bm{v})(\delta),
(I~h𝒗,𝒒)e\displaystyle(\tilde{I}_{h}\bm{v},\bm{q})_{e} =1#𝒯eK𝒯e(IKBDM𝒗,𝒒)e𝒒0(e;d),\displaystyle=\frac{1}{\#\mathcal{T}_{e}}\sum_{K\in\mathcal{T}_{e}}(I_{K}^{BDM}\bm{v},\bm{q})_{e}\quad\forall~{}\bm{q}\in\mathbb{P}_{0}(e;\mathbb{R}^{d}),
(𝒏(ΠF(I~h𝒗)),𝒒)F\displaystyle(\partial_{\bm{n}}(\Pi_{F}(\tilde{I}_{h}\bm{v})),\bm{q})_{F} =1#𝒯FK𝒯F(𝒏(ΠF(IKBDM𝒗)),𝒒)F𝒒0(F;d1),\displaystyle=\frac{1}{\#\mathcal{T}_{F}}\sum_{K\in\mathcal{T}_{F}}(\partial_{\bm{n}}(\Pi_{F}(I_{K}^{BDM}\bm{v})),\bm{q})_{F}\quad\forall~{}\bm{q}\in\mathbb{P}_{0}(F;\mathbb{R}^{d-1}),
(div(I~h𝒗),q)F\displaystyle(\operatorname{div}(\tilde{I}_{h}\bm{v}),q)_{F} =1#𝒯FK𝒯F(div(IKBDM𝒗),q)Fq0(F),\displaystyle=\frac{1}{\#\mathcal{T}_{F}}\sum_{K\in\mathcal{T}_{F}}(\operatorname{div}(I_{K}^{BDM}\bm{v}),q)_{F}\quad\forall~{}q\in\mathbb{P}_{0}(F),
(I~h𝒗,𝒒)K\displaystyle(\tilde{I}_{h}\bm{v},\bm{q})_{K} =(𝒗,𝒒)K𝒒0(K;d),\displaystyle=(\bm{v},\bm{q})_{K}\quad\forall~{}\bm{q}\in\mathbb{P}_{0}(K;\mathbb{R}^{d}),

for δ𝒱i(𝒯h)\delta\in\mathcal{V}^{i}(\mathcal{T}_{h}), ei(𝒯h)e\in\mathcal{E}^{i}(\mathcal{T}_{h}), F(𝒯h)F\in\mathcal{F}(\mathcal{T}_{h}) and K𝒯hK\in\mathcal{T}_{h}.

Lemma 5.3.

We have

(5.3) |I~h𝒗|1\displaystyle|\tilde{I}_{h}\bm{v}|_{1} |𝒗|1𝒗H01(Ω;d),\displaystyle\lesssim|\bm{v}|_{1}\quad\forall~{}\bm{v}\in H_{0}^{1}(\Omega;\mathbb{R}^{d}),
(5.4) i=12hKi|𝒗I~h𝒗|i,K\displaystyle\sum_{i=1}^{2}h_{K}^{i}|\bm{v}-\tilde{I}_{h}\bm{v}|_{i,K} hKjδ𝒱(K)|𝒗|j,ωδ𝒗H01(Ω;d)Hj(Ω;d),j=2,3.\displaystyle\lesssim h_{K}^{j}\sum_{\delta\in\mathcal{V}(K)}|\bm{v}|_{j,\omega_{\delta}}\;\forall~{}\bm{v}\in H_{0}^{1}(\Omega;\mathbb{R}^{d})\cap H^{j}(\Omega;\mathbb{R}^{d}),j=2,3.
Proof.

Applying the similar argument as Lemma 4.2, we get for i=1,2i=1,2 that

hK2i|I~h𝒗IKBDM𝒗|i,K2hKδ𝒱(K)F(Th),δFIKBDM𝒗0,F2\displaystyle h_{K}^{2i}|\tilde{I}_{h}\bm{v}-I_{K}^{BDM}\bm{v}|_{i,K}^{2}\lesssim h_{K}\sum_{\delta\in\mathcal{V}(K)}\sum_{F\in\mathcal{F}(T_{h}),\delta\in F}\|\llbracket I_{K}^{BDM}\bm{v}\rrbracket\|_{0,F}^{2}
(5.5) +hK3Fi(K)𝒏(IKBDM𝒗)0,F2+hK3Fi(K)QK(div𝒗)0,F2.\displaystyle\qquad\qquad\quad+h_{K}^{3}\sum_{F\in\mathcal{F}^{i}(K)}\|\llbracket\partial_{\bm{n}}(I_{K}^{BDM}\bm{v})\rrbracket\|_{0,F}^{2}+h_{K}^{3}\sum_{F\in\mathcal{F}^{i}(K)}\|\llbracket Q_{K}(\operatorname{div}\bm{v})\rrbracket\|_{0,F}^{2}.

Employing the inverse inequality, the trace inequality, the error estimates of IKBDMI_{K}^{BDM} and QKQ_{K},

|I~h𝒗IKBDM𝒗|1,Kδ𝒱(K)|𝒗|1,ωδ,|\tilde{I}_{h}\bm{v}-I_{K}^{BDM}\bm{v}|_{1,K}\lesssim\sum_{\delta\in\mathcal{V}(K)}|\bm{v}|_{1,\omega_{\delta}},

which combined with the H1H^{1} boundedness of IKBDMI_{K}^{BDM} yields (5.3).

On the other hand, by (5.5), we get

hK2i|𝒗I~h𝒗|i,K2\displaystyle h_{K}^{2i}|\bm{v}-\tilde{I}_{h}\bm{v}|_{i,K}^{2} hK2i|𝒗IKBDM𝒗|i,K2+hKδ𝒱(K)F(Th),δFIKBDM𝒗0,F2\displaystyle\lesssim h_{K}^{2i}|\bm{v}-I_{K}^{BDM}\bm{v}|_{i,K}^{2}+h_{K}\sum_{\delta\in\mathcal{V}(K)}\sum_{F\in\mathcal{F}(T_{h}),\delta\in F}\|\llbracket I_{K}^{BDM}\bm{v}\rrbracket\|_{0,F}^{2}
+hK3Fi(K)𝒏(IKBDM𝒗)0,F2+hK3Fi(K)QK(div𝒗)0,F2.\displaystyle\quad+h_{K}^{3}\sum_{F\in\mathcal{F}^{i}(K)}\|\llbracket\partial_{\bm{n}}(I_{K}^{BDM}\bm{v})\rrbracket\|_{0,F}^{2}+h_{K}^{3}\sum_{F\in\mathcal{F}^{i}(K)}\|\llbracket Q_{K}(\operatorname{div}\bm{v})\rrbracket\|_{0,F}^{2}.

Then (5.4) follows from the inverse inequality, the trace inequality, and the error estimates of IKBDMI_{K}^{BDM} and QKQ_{K}. ∎

Lemma 5.4.

We have

(5.6) |𝒖I~h𝒖|1+ι|𝒖I~h𝒖|2,hh1/2𝒇0.|\bm{u}-\tilde{I}_{h}\bm{u}|_{1}+\iota|\bm{u}-\tilde{I}_{h}\bm{u}|_{2,h}\lesssim h^{1/2}\|\bm{f}\|_{0}.
Proof.

By (5.3)-(5.4) and (3.16)-(3.17),

|𝒖𝒖0I~h(𝒖𝒖0)|1h1/2|𝒖𝒖0|11/2|𝒖𝒖0|21/2h1/2𝒇0.\displaystyle|\bm{u}-\bm{u}_{0}-\tilde{I}_{h}(\bm{u}-\bm{u}_{0})|_{1}\lesssim h^{1/2}|\bm{u}-\bm{u}_{0}|_{1}^{1/2}|\bm{u}-\bm{u}_{0}|_{2}^{1/2}\lesssim h^{1/2}\|\bm{f}\|_{0}.

And it follows from (5.4) and (3.16) that

|𝒖0I~h𝒖0|1h|𝒖0|2h𝒇0.|\bm{u}_{0}-\tilde{I}_{h}\bm{u}_{0}|_{1}\lesssim h|\bm{u}_{0}|_{2}\lesssim h\|\bm{f}\|_{0}.

Combining the last two inequalities gives

|𝒖I~h𝒖|1h1/2𝒇0.|\bm{u}-\tilde{I}_{h}\bm{u}|_{1}\lesssim h^{1/2}\|\bm{f}\|_{0}.

According to (5.4) and (3.17), we have

|𝒖I~h𝒖|2,hh1/2|𝒖|21/2|𝒖|31/2ι1h1/2𝒇0.|\bm{u}-\tilde{I}_{h}\bm{u}|_{2,h}\lesssim h^{1/2}|\bm{u}|_{2}^{1/2}|\bm{u}|_{3}^{1/2}\lesssim\iota^{-1}h^{1/2}\|\bm{f}\|_{0}.

Therefore, (5.6) holds from the last two inequalities. ∎

Lemma 5.5.

We have

(5.7) |𝒖Ih𝒖|1+ι|𝒖Ih𝒖|2,h\displaystyle|\bm{u}-I_{h}\bm{u}|_{1}+\iota|\bm{u}-I_{h}\bm{u}|_{2,h} h1/2𝒇0,\displaystyle\lesssim h^{1/2}\|\bm{f}\|_{0},
(5.8) pJhp0+ι|pJhp|1\displaystyle\|p-J_{h}p\|_{0}+\iota|p-J_{h}p|_{1} h1/2𝒇0.\displaystyle\lesssim h^{1/2}\|\bm{f}\|_{0}.
Proof.

We only prove (5.7), since the proof of (5.8) is similar. By the definitions of IhI_{h} and I~h\tilde{I}_{h}, we get from the multiplicative trace inequality, the estimate of IhBDMI_{h}^{BDM} and (3.16)-(3.17) that

|I~h𝒖Ih𝒖|12F(𝒯h)hF(𝒖IhBDM𝒖)0,F2\displaystyle|\tilde{I}_{h}\bm{u}-I_{h}\bm{u}|_{1}^{2}\lesssim\sum_{F\in\mathcal{F}^{\partial}(\mathcal{T}_{h})}h_{F}\|\nabla(\bm{u}-I_{h}^{BDM}\bm{u})\|_{0,F}^{2}
\displaystyle\lesssim F(𝒯h)hF((𝒖𝒖0IhBDM(𝒖𝒖0))0,F2+(𝒖0IhBDM𝒖0)0,F2)\displaystyle\sum_{F\in\mathcal{F}^{\partial}(\mathcal{T}_{h})}h_{F}\big{(}\|\nabla(\bm{u}-\bm{u}_{0}-I_{h}^{BDM}(\bm{u}-\bm{u}_{0}))\|_{0,F}^{2}+\|\nabla(\bm{u}_{0}-I_{h}^{BDM}\bm{u}_{0})\|_{0,F}^{2}\big{)}
\displaystyle\lesssim h|𝒖𝒖0|1|𝒖𝒖0|2+h2|𝒖0|22h𝒇02.\displaystyle h|\bm{u}-\bm{u}_{0}|_{1}|\bm{u}-\bm{u}_{0}|_{2}+h^{2}|\bm{u}_{0}|_{2}^{2}\lesssim h\|\bm{f}\|_{0}^{2}.

Similarly, we have

|I~h𝒖Ih𝒖|2,h2\displaystyle|\tilde{I}_{h}\bm{u}-I_{h}\bm{u}|_{2,h}^{2} F(𝒯h)hF1(𝒖IhBDM𝒖)0,F2h|𝒖|2|𝒖|3ι2h𝒇02.\displaystyle\lesssim\sum_{F\in\mathcal{F}^{\partial}(\mathcal{T}_{h})}h_{F}^{-1}\|\nabla(\bm{u}-I_{h}^{BDM}\bm{u})\|_{0,F}^{2}\lesssim h|\bm{u}|_{2}|\bm{u}|_{3}\lesssim\iota^{-2}h\|\bm{f}\|_{0}^{2}.

Hence

|I~h𝒖Ih𝒖|1+ι|I~h𝒖Ih𝒖|2,hh1/2𝒇0.|\tilde{I}_{h}\bm{u}-I_{h}\bm{u}|_{1}+\iota|\tilde{I}_{h}\bm{u}-I_{h}\bm{u}|_{2,h}\lesssim h^{1/2}\|\bm{f}\|_{0}.

Finally, (5.7) holds from (5.6) and the last inequality. ∎

5.2. Error estimates

Similar to [41], we have the following abstract error estimates.

Lemma 5.6.

Let (𝐮,p)V×Q(\bm{u},p)\in V\times Q and (𝐮h,ph)Vh×Qh(\bm{u}_{h},p_{h})\in V_{h}\times Q_{h} be the solution of problem (1.2) and problem (4.8), respectively. Then

𝒖𝒖hV,h+pphQinf𝒖IVh𝒖𝒖IV,h+infpIQhppIQ+Eh,\|\bm{u}-\bm{u}_{h}\|_{V,h}+\|p-p_{h}\|_{Q}\lesssim\inf_{\bm{u}_{I}\in V_{h}}\|\bm{u}-\bm{u}_{I}\|_{V,h}+\inf_{p_{I}\in Q_{h}}\|p-p_{I}\|_{Q}+E_{h},

where

Eh=sup𝒗h𝑽h(𝒇,𝒗h)ah(𝒖,𝒗h)bh(𝒗h,p)𝒗hV,h.E_{h}=\sup_{\bm{v}_{h}\in\bm{V}_{h}}\frac{(\bm{f},\bm{v}_{h})-a_{h}(\bm{u},\bm{v}_{h})-b_{h}(\bm{v}_{h},p)}{\|\bm{v}_{h}\|_{V,h}}.
Proof.

Let 𝒖~h=𝒖h𝒖I\tilde{\bm{u}}_{h}=\bm{u}_{h}-\bm{u}_{I} and p~h=phpI\tilde{p}_{h}=p_{h}-p_{I}. It follows from the mixed finite element method (4.8) and the second equation of (2.3) that

ah(𝒖~h,𝒗h)+bh(𝒗h,p~h)bh(𝒖~h,qh)+c(p~h,qh)\displaystyle a_{h}(\tilde{\bm{u}}_{h},\bm{v}_{h})+b_{h}(\bm{v}_{h},\tilde{p}_{h})-b_{h}(\tilde{\bm{u}}_{h},q_{h})+c(\tilde{p}_{h},q_{h})
=\displaystyle= (𝒇,𝒗h)ah(𝒖I,𝒗h)bh(𝒗h,pI)+bh(𝒖I,qh)c(pI,qh)\displaystyle(\bm{f},\bm{v}_{h})-a_{h}(\bm{u}_{I},\bm{v}_{h})-b_{h}(\bm{v}_{h},p_{I})+b_{h}(\bm{u}_{I},q_{h})-c(p_{I},q_{h})
=\displaystyle= (𝒇,𝒗h)ah(𝒖,𝒗h)bh(𝒗h,p)+ah(𝒖𝒖I,𝒗h)+bh(𝒗h,ppI)\displaystyle(\bm{f},\bm{v}_{h})-a_{h}(\bm{u},\bm{v}_{h})-b_{h}(\bm{v}_{h},p)+a_{h}(\bm{u}-\bm{u}_{I},\bm{v}_{h})+b_{h}(\bm{v}_{h},p-p_{I})
bh(𝒖𝒖I,qh)+c(ppI,qh),\displaystyle-b_{h}(\bm{u}-\bm{u}_{I},q_{h})+c(p-p_{I},q_{h}),

which together with the discrete stability (4.19) ends the proof. ∎

Lemma 5.7.

We have

(5.9) Eh\displaystyle E_{h} ιh(|𝒖|3+λ|div𝒖|2),\displaystyle\lesssim\iota h(|\bm{u}|_{3}+\lambda|\operatorname{div}\bm{u}|_{2}),
(5.10) Eh\displaystyle E_{h} h1/2𝒇0.\displaystyle\lesssim h^{1/2}\|\bm{f}\|_{0}.
Proof.

For 𝒗hVhH01(Ω;d)\bm{v}_{h}\in V_{h}\subset H_{0}^{1}(\Omega;\mathbb{R}^{d}), apply integration by parts to the first equation in problem (1.1) to acquire

(𝒇,𝒗h)ah(𝒖,𝒗h)bh(𝒗h,p)\displaystyle(\bm{f},\bm{v}_{h})-a_{h}(\bm{u},\bm{v}_{h})-b_{h}(\bm{v}_{h},p)
=\displaystyle= (𝝈(𝒖),𝜺(𝒗h))ι2(Δ𝝈(𝒖),𝜺(𝒗h))ah(𝒖,𝒗h)bh(𝒗h,p)\displaystyle(\bm{\sigma}(\bm{u}),\bm{\varepsilon}(\bm{v}_{h}))-\iota^{2}(\Delta\bm{\sigma}(\bm{u}),\bm{\varepsilon}(\bm{v}_{h}))-a_{h}(\bm{u},\bm{v}_{h})-b_{h}(\bm{v}_{h},p)
=\displaystyle= ι2K𝒯hK𝒏𝝈(𝒖):𝜺(𝒗h)dS.\displaystyle-\iota^{2}\sum\limits_{K\in\mathcal{T}_{h}}\int_{\partial K}\partial_{\bm{n}}\bm{\sigma}(\bm{u}):\bm{\varepsilon}(\bm{v}_{h}){\rm d}S.

Let QF0Q_{F}^{0} be the standard L2L^{2}-projection from L2(F)L^{2}(F) to 0(F)\mathbb{P}_{0}(F), whose tensorial version is also denoted by QF0Q_{F}^{0}. By the weak continuity (4.7),

(𝒇,𝒗h)ah(𝒖,𝒗h)bh(𝒗h,p)\displaystyle(\bm{f},\bm{v}_{h})-a_{h}(\bm{u},\bm{v}_{h})-b_{h}(\bm{v}_{h},p)
=\displaystyle= ι2K𝒯hF(K)F(𝒏𝝈(𝒖)QF0𝒏𝝈(𝒖)):(𝜺(𝒗h)QF0𝜺(𝒗h))dS.\displaystyle-\iota^{2}\sum_{K\in\mathcal{T}_{h}}\sum_{F\in\mathcal{F}(K)}\int_{F}(\partial_{\bm{n}}\bm{\sigma}(\bm{u})-Q_{F}^{0}\partial_{\bm{n}}\bm{\sigma}(\bm{u})):(\bm{\varepsilon}(\bm{v}_{h})-Q_{F}^{0}\bm{\varepsilon}(\bm{v}_{h})){\rm d}S.

From the error estimate of QF0Q_{F}^{0} and the trace inequality, we acquire

(𝒇,𝒗h)ah(𝒖,𝒗h)bh(𝒗h,p)ι2h(|𝒖|3+λ|div𝒖|2)|𝒗h|2,h,(\bm{f},\bm{v}_{h})-a_{h}(\bm{u},\bm{v}_{h})-b_{h}(\bm{v}_{h},p)\lesssim\iota^{2}h(|\bm{u}|_{3}+\lambda|\operatorname{div}\bm{u}|_{2})|\bm{v}_{h}|_{2,h},
(𝒇,𝒗h)ah(𝒖,𝒗h)bh(𝒗h,p)ι2h1/2(|𝒖|2+λ|div𝒖|1)1/2(|𝒖|3+λ|div𝒖|2)1/2|𝒗h|2,h.(\bm{f},\bm{v}_{h})-a_{h}(\bm{u},\bm{v}_{h})-b_{h}(\bm{v}_{h},p)\lesssim\iota^{2}h^{1/2}(|\bm{u}|_{2}+\lambda|\operatorname{div}\bm{u}|_{1})^{1/2}(|\bm{u}|_{3}+\lambda|\operatorname{div}\bm{u}|_{2})^{1/2}|\bm{v}_{h}|_{2,h}.

Hence

Ehιh(|𝒖|3+λ|div𝒖|2),Ehιh1/2(|𝒖|2+λ|div𝒖|1)1/2(|𝒖|3+λ|div𝒖|2)1/2.E_{h}\lesssim\iota h(|\bm{u}|_{3}+\lambda|\operatorname{div}\bm{u}|_{2}),\quad E_{h}\lesssim\iota h^{1/2}(|\bm{u}|_{2}+\lambda|\operatorname{div}\bm{u}|_{1})^{1/2}(|\bm{u}|_{3}+\lambda|\operatorname{div}\bm{u}|_{2})^{1/2}.

Therefore, we finish the proof by using (3.17) and (3.21). ∎

Theorem 5.8.

Let (𝐮,p)(VH3(Ω;d))×(QH2(Ω))(\bm{u},p)\in(V\cap H^{3}(\Omega;\mathbb{R}^{d}))\times(Q\cap H^{2}(\Omega)) and (𝐮h,ph)Vh×Qh(\bm{u}_{h},p_{h})\in V_{h}\times Q_{h} be the solution of problem (1.2) and (4.8), respectively. We have

(5.11) 𝒖𝒖hV,h+pphQ(h2+ιh)|𝒖|3+λ(h2+ιh)|div𝒖|2.\|\bm{u}-\bm{u}_{h}\|_{V,h}+\|p-p_{h}\|_{Q}\lesssim(h^{2}+\iota h)|\bm{u}|_{3}+\lambda(h^{2}+\iota h)|\operatorname{div}\bm{u}|_{2}.
Proof.

Let 𝒖I=Ih𝒖Vh\bm{u}_{I}=I_{h}\bm{u}\in V_{h}, and pI=JhpQhp_{I}=J_{h}p\in Q_{h} in Lemma 5.6. Then by (4.16) and (5.2),

𝒖𝒖hV,h+pphQ(h2+ιh)|𝒖|3+λ(h2+ιh)|div𝒖|2+Eh.\|\bm{u}-\bm{u}_{h}\|_{V,h}+\|p-p_{h}\|_{Q}\lesssim(h^{2}+\iota h)|\bm{u}|_{3}+\lambda(h^{2}+\iota h)|\operatorname{div}\bm{u}|_{2}+E_{h}.

Therefore (5.11) follows from (5.9). ∎

Theorem 5.9.

With the same assumption of Theorem 5.8, we have

(5.12) 𝒖𝒖hV,h+pphQ\displaystyle\|\bm{u}-\bm{u}_{h}\|_{V,h}+\|p-p_{h}\|_{Q} h1/2𝒇0,\displaystyle\lesssim h^{1/2}\|\bm{f}\|_{0},
(5.13) 𝒖0𝒖hV,h+p0phQ\displaystyle\|\bm{u}_{0}-\bm{u}_{h}\|_{V,h}+\|p_{0}-p_{h}\|_{Q} (ι1/2+h1/2)𝒇0.\displaystyle\lesssim(\iota^{1/2}+h^{1/2})\|\bm{f}\|_{0}.
Proof.

The estimate (5.12) follows from Lemma 5.6, (5.7), (5.8) and (5.10). And estimate (5.13) holds from (5.12), (3.16)-(3.17) and (3.21). ∎

6. Numerical experiments

In this section, we present two numerical examples using the mixed FEM constructed in Sect 4.1 toward testifying its uniform convergence and robustness with respect to λ\lambda and ι\iota on a uniform triangulation.

To make the proposed method more accessible, we first present the mixed finite element spaces in two dimensions in detail. Let 𝒯h\mathcal{T}_{h} be a shape regular triangulation. The finite element spaces in two dimensions are

Vh=\displaystyle V_{h}= {𝒗hH01(Ω;2)|𝒗h|KV(K) for each K𝒯h, all the DoFs (6.1)-(6.4)\displaystyle\{\bm{v}_{h}\in H_{0}^{1}(\Omega;\mathbb{R}^{2})|\,\bm{v}_{h}|_{K}\in V(K)\textrm{ for each }K\in\mathcal{T}_{h},\textrm{ all the DoFs \eqref{Ddof1}-\eqref{Ddof42}}
 are single-valued,and DoFs (6.1)-(6.3) on boundary vanish},\displaystyle\qquad\qquad\qquad\textrm{ are single-valued},\textrm{and DoFs \eqref{Ddof1}-\eqref{Ddof31} on boundary vanish}\},
Qh=\displaystyle Q_{h}= {qhH01(Ω)L02(Ω)|qh|K1(K) for each K𝒯h},\displaystyle\{q_{h}\in H^{1}_{0}(\Omega)\cap L^{2}_{0}(\Omega)\,|\,q_{h}|_{K}\in\mathbb{P}_{1}(K)\textrm{ for each }K\in\mathcal{T}_{h}\},

where V(K)=2(K;2)+bK1(K;2)+bK20(K;2)V(K)=\mathbb{P}_{2}(K;\mathbb{R}^{2})+b_{K}\mathbb{P}_{1}(K;\mathbb{R}^{2})+b_{K}^{2}\mathbb{P}_{0}(K;\mathbb{R}^{2}). The associated DoFs for VhV_{h} are given as

(6.1) 𝒗h(δ)\displaystyle\bm{v}_{h}(\delta) δ𝒱i(𝒯h),\displaystyle\quad\forall~{}\delta\in\mathcal{V}^{i}(\mathcal{T}_{h}),
(6.2) 𝒗h(me)\displaystyle\bm{v}_{h}(m_{e}) ei(𝒯h),\displaystyle\quad\forall~{}e\in\mathcal{E}^{i}(\mathcal{T}_{h}),
(6.3) 1|e|e𝒏𝒗hds\displaystyle\frac{1}{|e|}\int_{e}\partial_{\bm{n}}\bm{v}_{h}\,{\rm d}s ei(𝒯h),\displaystyle\quad\forall~{}e\in\mathcal{E}^{i}(\mathcal{T}_{h}),
(6.4) 1|K|K𝒗hdx\displaystyle\frac{1}{|K|}\int_{K}\bm{v}_{h}\,{\rm d}x K𝒯h,\displaystyle\quad\forall~{}K\in\mathcal{T}_{h},

where mem_{e} is the midpoint of ee. The DoFs for QhQ_{h} are all the function values at interior vertices. Note that the DoFs (6.1)-(6.3) on boundary vanish. The other point to be emphasized is that we here substitute DoFs (4.4)-(4.5) by the moments of the normal derivatives (6.3) owing to (4.1) in order to simplify computation. Also, we use the function values of midpoints on edges (6.2) instead of (4.3). With such substitution, the global finite element space remains the same.

Refer to caption
Figure 2. Convergence rate for λ=1e+08\lambda=1e+08.
Example 6.1.

Let Ω=(0,1)2\Omega=(0,1)^{2}. We choose the right side function 𝒇\bm{f} such that the exact solution of SGE model (1.1) is

𝒖=\displaystyle\bm{u}= [3(ecos(2πx1)e)2sin(2πx2)sin(πx2)8(e2cos(2πx1)e1+cos(2πx1))sin(2πx1)sin3(πx2)].\displaystyle\begin{bmatrix}3(e^{\cos(2\pi x_{1})}-e)^{2}\sin(2\pi x_{2})\sin(\pi x_{2})\\ 8(e^{2\cos(2\pi x_{1})}-e^{1+\cos(2\pi x_{1})})\sin(2\pi x_{1})\sin^{3}(\pi x_{2})\end{bmatrix}.

Moreover, set μ=1\mu=1. It is easy to check that 𝒖\bm{u} is divergence-free without boundary layer, and hence 𝒇\bm{f} is independent of the Lamé constant λ\lambda. The purpose of this example is to demonstrate the error estimate given in Theorem 5.8.

We measure the relative error by

Eu𝒖𝒖hV,h𝒇0.E_{u}\coloneqq\frac{\|\bm{u}-\bm{u}_{h}\|_{V,h}}{\|\bm{f}\|_{0}}.

The numerical results of EuE_{u} are displayed in Table 1 with different values of Lamé constant λ\lambda, size parameter ι\iota and mesh size hh. We may observe from Table 1 that when ι\iota takes the value 11 and 1e011e-01, the relative error is linearly convergent and when ι=1e08\iota=1e-08, it is quadratically convergent. In particular, Fig. 2 performs the relative error curves for different ι\iota with fixed λ=1e+08\lambda=1e+08. In this situation, if ι=1e08\iota=1e-08, EuE_{u} behaves like O(h2)O(h^{2}). If ι=1e01\iota=1e-01 or 1e001e-00, Eu=O(h)E_{u}=O(h). Hence, we may conclude that the convergence order of the error is quadratic as ιh\iota\ll h. All these results are in good agreement with the error bound given in Theorem 5.8.

Table 1. The performance of Example 6.1.
λ\lambda ι\iota hh rate
1/16 1/32 1/64 1/128 1/256
1e+00 1e001e-00 5.375e-04 2.776e-04 1.399e-04 7.010e-05 3.507e-05 1.00
1e011e-01 4.561e-03 2.334e-03 1.173e-03 5.874e-04 2.938e-04 1.00
1e081e-08 2.008e-03 5.477e-04 1.407e-04 3.540e-05 8.862e-06 2.00
1e+04 1e001e-00 5.375e-04 2.776e-04 1.399e-04 7.010e-05 3.507e-05 1.00
1e011e-01 4.562e-03 2.334e-03 1.173e-03 5.874e-04 2.938e-04 1.00
1e081e-08 2.009e-03 5.477e-04 1.407e-04 3.540e-05 8.862e-06 2.00
1e+08 1e001e-00 5.375e-04 2.776e-04 1.399e-04 7.010e-05 3.507e-05 1.00
1e011e-01 4.562e-03 2.334e-03 1.173e-03 5.874e-04 2.938e-04 1.00
1e081e-08 2.009e-03 5.477e-04 1.407e-04 3.540e-05 8.862e-06 2.00
Table 2. The performance of Example 6.2.
λ\lambda ι\iota hh rate
1/16 1/32 1/64 1/128 1/256
1e+00 1e041e-04 2.053e-02 1.447e-02 1.025e-02 7.340e-03 5.438e-03 0.43
1e061e-06 2.052e-02 1.445e-02 1.020e-02 7.206e-03 5.093e-03 0.50
1e081e-08 2.052e-02 1.445e-02 1.020e-02 7.206e-03 5.093e-03 0.50
1e+04 1e041e-04 2.054e-02 1.447e-02 1.025e-02 7.341e-03 5.438e-03 0.43
1e061e-06 2.053e-02 1.446e-02 1.020e-02 7.207e-03 5.094e-03 0.50
1e081e-08 2.053e-02 1.446e-02 1.020e-02 7.207e-03 5.094e-03 0.50
1e+08 1e041e-04 2.054e-02 1.447e-02 1.025e-02 7.341e-03 5.438e-03 0.43
1e061e-06 2.053e-02 1.446e-02 1.020e-02 7.207e-03 5.094e-03 0.50
1e081e-08 2.053e-02 1.446e-02 1.020e-02 7.207e-03 5.094e-03 0.50
Example 6.2.

Let Ω=(0,1)2\Omega=(0,1)^{2}. The exact solution of the reduced problem (3.15) is set to be a divergence-free function in the form

𝒖0=\displaystyle\bm{u}_{0}= [x12(1x1)2x2(1x2)(12x2)x1(1x1)(12x1)x22(1x2)2].\displaystyle\begin{bmatrix}-x_{1}^{2}(1-x_{1})^{2}x_{2}(1-x_{2})(1-2x_{2})\\ x_{1}(1-x_{1})(1-2x_{1})x_{2}^{2}(1-x_{2})^{2}\end{bmatrix}.

The right side term 𝒇\bm{f} computed from (3.15) is independent of both λ\lambda and ι\iota. We use this 𝒇\bm{f} as the right side function of problem (1.1). Since 𝒏𝒖0|Ω𝟎\partial_{\bm{n}}\bm{u}_{0}|_{\partial\Omega}\not=\bm{0}, the function 𝒖\bm{u} has a strong boundary layer when ι\iota is sufficient small. We still set μ=1\mu=1. We focus on investigating the robustness of our numerical method with respect to both λ\lambda and ι\iota in this example.

When ιh\iota\ll h, it follows from (3.16)-(3.17) and (3.21) that

𝒖𝒖0Vι1/2𝒇0h1/2𝒇0,\|\bm{u}-\bm{u}_{0}\|_{V}\lesssim\iota^{1/2}\|\bm{f}\|_{0}\lesssim h^{1/2}\|\bm{f}\|_{0},

which combined with (5.13) immediately implies (5.12). So we turn to verify the estimate (5.13), which depends on 𝒖0\bm{u}_{0} instead of the unknown function 𝒖\bm{u}. Let Eu0=𝒖h𝒖0V,h𝒇0E_{u_{0}}=\frac{\|\bm{u}_{h}-\bm{u}_{0}\|_{V,h}}{\|\bm{f}\|_{0}}. We compute its values for different values of Lamé constant λ\lambda and the mesh size hh in Table 2. We may observe that Eu0=O(h0.43)E_{u_{0}}=O(h^{0.43}) with ι=1e04\iota=1e-04 and Eu0=O(h1/2)E_{u_{0}}=O(h^{1/2}) with ι=1e06\iota=1e-06 or 1e081e-08 no matter what value λ\lambda takes. We can see that the best convergence order is really 1/21/2 when ιh\iota\ll h, which is consistent with the estimate (5.13) and shows the robustness of the mixed finite element method with respect to both the size parameter ι\iota and Lamé coefficient λ\lambda.

Acknowledgments

The second author would like to thank Prof. M. Dauge from Université de Rennes 1 for helpful discussion about elliptic boundary value problems in domains with corners and bringing his attention to the monograph [29]. The authors are also indebted to the referees for valuable comments which improved an earlier version of the paper.

References

  • [1] S. Agmon, A. Douglis, and L. Nirenberg. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Commun. Pure. Appl. Math., 17:35–92, 02 1964.
  • [2] E. C. Aifantis. On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol., 106(4):326–330, 1984.
  • [3] S. Akarapu and H. M. Zbib. Numerical analysis of plane cracks in strain-gradient elastic materials. Int. J. Fract., 141(3-4):403–430, 2006.
  • [4] J.-J. Alibert and A. Della Corte. Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Z. Angew. Math. phys., 66:2855–2870, 2015.
  • [5] S. B. Altan and E. C. Aifantis. On the structure of the mode III crack-tip in gradient elasticity. Scr. Metall. Mater., 26(2):319–324, 1992.
  • [6] E. Amanatidou and N. Aravas. Mixed finite element formulations of strain-gradient elasticity problems. Comput. Methods Appl. Mech. Eng., 191(15-16):1723–1751, 2002.
  • [7] H. Askes and E. C. Aifantis. Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct., 48(13):1962–1990, 2011.
  • [8] V. Balobanov and J. Niiranen. Locking-free variational formulations and isogeometric analysis for the timoshenko beam models of strain gradient and classical elasticity. Comput. Methods Appl. Mech. Engrg., 339:137–159, 2018.
  • [9] L. Beirão da Veiga, A. Buffa, G. Sangalli, and R. Vázquez. Mathematical analysis of variational isogeometric methods. Acta Numer., pages 157–287, 2014.
  • [10] D. Boffi, F. Brezzi, and M. Fortin. Mixed Finite Element Methods and Applications. Springer-Verlag, Heidelberg, 2013.
  • [11] R. D. Borst and J. Pamin. Some novel developments in finite element procedures for gradient-dependent plasticity. Int. J. Numer. Methods Eng., 39(14):2477–2505, 1996.
  • [12] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, 2008.
  • [13] S. C. Brenner and L.-Y. Sung. Linear finite element methods for planar linear elasticity. Math. Comp., 59(200):321–338, 1992.
  • [14] L. Chen and X. Huang. Finite element complexes in two dimensions, 2022.
  • [15] L. Chen and X. Huang. Finite elements for div- and divdiv-conforming symmetric tensors in arbitrary dimension. SIAM J. Numer. Anal., 60(4):1932–1961, 2022.
  • [16] L. Chen and X. Huang. Finite element de Rham and Stokes complexes in three dimensions. Math. Comp., arXiv:2206.09525, 2023.
  • [17] E. Cosserat and F. Cosserat. Theorie des corp deformables. Herman, Paris, 1909.
  • [18] M. Costabel and A. McIntosh. On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z., 265(2):297–320, 2010.
  • [19] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward Integration of CAD and FEA. John Wiley & Sons., 2009.
  • [20] M. Dauge. Elliptic Boundary Value Problems on Corner Domains. Springer-Verlag, Berlin, Heidelberg, 1988.
  • [21] V. Girault and P.-A. Raviart. Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, 1986.
  • [22] S. B. Hosseini and J. Niiranen. 3D strain gradient elasticity: Variational formulations, isogeometric analysis and model peculiarities. Comput. Methods Appl. Mech. Engrg., 389:114324, 2022.
  • [23] J. Hu, T. Lin, and Q. Wu. A construction of Cr{C}^{r} conforming finite element spaces in any dimension. Found. Comput. Math., arXiv:2103.14924, 2023.
  • [24] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, nurbs, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng., 194(39-41):4135–4195, 2005.
  • [25] S. Khakalo and A. Laukkanen. Strain gradient elasto-plasticity model: 3D isogeometric implementation and applications to cellular structures. Comput. Methods Appl. Mech. Engrg., 388:114225, 2022.
  • [26] S. Khakalo and J. Niiranen. Form II of Mindlin’s second strain gradient theory of elasticity with a simplification: For materials and structures from nano- to macro-scales. Eur. J. Mech. A-Solid., 71:292–319, 2018.
  • [27] S. Khakalo and J. Niiranen. Anisotropic strain gradient thermoelasticity for cellular structures: Plate models, homogenization and isogeometric analysis. J. Mech. Phys. Solids, 134:103728, 2020.
  • [28] W. T. Koiter. Couple-stresses in the theory of elasticity, I and II. Nederl. Akad. Wetensch. Proc. Ser. B, 67:17–44, 1964.
  • [29] V. Kozlov, V. G. Maźyâ, and J. Rossmann. Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations. AMS, Providence, Rhode Island, 2001.
  • [30] H. Li, P. Ming, and Z. C. Shi. Two robust nonconforming H2H^{2}-elements for linear strain gradient elasticity. Numer. Math., 137:691–711, 2017.
  • [31] H. Li, P. Ming, and Z. C. Shi. New nonconforming elements for linear strain gradient elastic model, 2018.
  • [32] H. Li, P. Ming, and H. Wang. H2H^{2}-Korn’s inequality and the nonconforming elements for the strain gradient elastic model. J. Sci. Comput., 88:78, 2021.
  • [33] Y. Liao and P. Ming. A family of nonconforming rectangular elements for strain gradient elasticity. Adv. Appl. Math. Mech., 11(6):1263–1286, 2019.
  • [34] Y. Liao, P. Ming, and Y. Xu. Taylor-hood like finite elements for nearly incompressible strain gradient elasticity problems, 2021.
  • [35] R. Makvandi, J. C. Reiher, A. Bertram, and D. Juhre. Isogeometric analysis of first and second strain gradient elasticity. Comput. Mech., 61(3):351–363, 2017.
  • [36] M. T. Manzari and K. Yonten. C1C^{1} finite element analysis in gradient enhanced continua. Math. Comput. Model., 57:2519–2531, 2013.
  • [37] V. Maz’ya and J. Rossmann. Elliptic equations in polyhedral domains, volume 162 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2010.
  • [38] R. D. Mindlin. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal., 16(1):51–78, 1964.
  • [39] R. D. Mindlin and H. F. Tiersten. Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal., 11(1):415–448, 1962.
  • [40] J. Niiranen, S. Khakalo, V. Balobanov, and A. H. Niemi. Variational formulation and isogeometric analysis for fourth-order boundary value problems of gradient-elastic bar and plane strain/stress problems. Comput. Methods Appl. Mech. Eng., 308:182–211, 2016.
  • [41] T. Nilssen, X.-C. Tai, and R. Winther. A robust nonconforming H2H^{2}-element. Math. Comput., 70(234):489–505, 2000.
  • [42] S.-A. Papanicolopulos, A. Zervos, and I. Vardoulakis. A three-dimensional C1C^{1} finite element for gradient elasticity. Int. J. Numer. Methods Eng., 77:1396–1415, 2009.
  • [43] V. Phunpeng and P. M. Baiz. Mixed finite element formulations for strain-gradient elasticity problems using the fenics environment. Finite Elem. Anal. Des., 96:23–40, 2015.
  • [44] C. Polizzotto. A unifying variational framework for stress gradient and strain gradient elasticity theories. Eur. J. Mech. A-Solid., 49:430–440, 2015.
  • [45] Y. Rahali, I. Giorgio, J. Ganghoffer, and F. dell’Isola. Homogenization à la piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci., 97:148–172, 2015.
  • [46] C. Q. Ru and E. C. Aifantis. A simple approach to solve boundary-value problems in gradient elasticity. Acta Mech., 101(1-4):59–68, 1993.
  • [47] L. R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp., 54(190):483–493, 1990.
  • [48] J. Y. Shu, W. E. King, and N. A. Fleck. Finite elements for materials with strain gradient effects. Int. J. Numer. Methods Eng., 44(3):373–391, 1999.
  • [49] A.-k. Soh and W. Chen. Finite element formulations of strain gradient theory for microstructures and the C01C^{0-1} patch test. Int. J. Numer. Methods Eng., 61(3):433–454, 2004.
  • [50] Z. Song, B. Zhao, J. He, and Y. Zheng. Modified gradient elasticity and its finite element method for shear boundary layer analysis. Mech. Res. Commun., 62:146–154, 2014.
  • [51] S. Tian. New nonconforming finite element methods for fourth order elliptic problems. PhD thesis, Adviser Jun Hu, Peking University, 2021.
  • [52] J. Torabi, R. Ansari, and M. Darvizeh. A C1C^{1} continuous hexahedral element for nonlinear vibration analysis of nano-plates with circular cutout based on 3D strain gradient theory. Compos. Struct., 205:69–85, 2018.
  • [53] J. Torabi, R. Ansari, and M. Darvizeh. Application of a non-conforming tetrahedral element in the context of the three-dimensional strain gradient elasticity. Comput. Methods Appl. Mech. Eng., 344:1124–1143, 2019.
  • [54] R. A. Toupin. Elastic materials with couple-stresses. Arch. Ration. Mech. Anal., 11(1):385–414, 1962.
  • [55] H. Yang, D. Timofeev, I. Giorgio, and W. H. Müller. Effective strain gradient continuum model of metamaterials and size effects analysis. Continuum Mech. Thermodyn., 2020.
  • [56] J. Yvonnet, N. Auffray, and V. Monchiet. Computational second-order homogenization of materials with effective anisotropic strain-gradient behavior. Int. J. Solids Struct., 191-192:434–448, 2020.
  • [57] A. Zervos, P. Papanastasiou, and I. Vardoulakis. Modelling of localisation and scale effect in thick-walled cylinders with gradient elastoplasticity. Int. J. Solids Struct., 38(30-31):5081–5095, 2001.
  • [58] A. Zervos, S.-A. Papanicolopulos, and I. Vardoulakis. Two finite-element discretizations for gradient elasticity. J. Eng. Mech.– ASCE, 135(3), 03 2009.
  • [59] J. Zhao, W. J. Chen, and S. H. Lo. A refined nonconforming quadrilateral element for couple stress/strain gradient elasticity. Int. J. Numer. Methods Eng., 85(3):269–288, 2011.