This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A search for photons with energies above 2×1017eV2{\times}10^{17}\,\mathrm{eV} using hybrid data from the low-energy extensions of the Pierre Auger Observatory

P. Abreu Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Lisboa, Portugal M. Aglietta Osservatorio Astrofisico di Torino (INAF), Torino, Italy INFN, Sezione di Torino, Torino, Italy J.M. Albury University of Adelaide, Adelaide, S.A., Australia I. Allekotte Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina K. Almeida Cheminant Institute of Nuclear Physics PAN, Krakow, Poland A. Almela Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina Universidad Tecnológica Nacional – Facultad Regional Buenos Aires, Buenos Aires, Argentina J. Alvarez-Muñiz Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain R. Alves Batista IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands J. Ammerman Yebra Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain G.A. Anastasi Osservatorio Astrofisico di Torino (INAF), Torino, Italy INFN, Sezione di Torino, Torino, Italy L. Anchordoqui Department of Physics and Astronomy, Lehman College, City University of New York, Bronx, NY, USA B. Andrada Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina S. Andringa Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Lisboa, Portugal C. Aramo INFN, Sezione di Napoli, Napoli, Italy P.R. Araújo Ferreira RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany E. Arnone Università Torino, Dipartimento di Fisica, Torino, Italy INFN, Sezione di Torino, Torino, Italy J. C. Arteaga Velázquez Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México H. Asorey Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina P. Assis Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Lisboa, Portugal G. Avila Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Malargüe, Argentina E. Avocone Università dell’Aquila, Dipartimento di Scienze Fisiche e Chimiche, L’Aquila, Italy Gran Sasso Science Institute, L’Aquila, Italy A.M. Badescu University Politehnica of Bucharest, Bucharest, Romania A. Bakalova Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic A. Balaceanu “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania F. Barbato Gran Sasso Science Institute, L’Aquila, Italy INFN Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy J.A. Bellido University of Adelaide, Adelaide, S.A., Australia Universidad Nacional de San Agustin de Arequipa, Facultad de Ciencias Naturales y Formales, Arequipa, Peru C. Berat Univ. Grenoble Alpes, CNRS, Grenoble Institute of Engineering Univ. Grenoble Alpes, LPSC-IN2P3, 38000 Grenoble, France M.E. Bertaina Università Torino, Dipartimento di Fisica, Torino, Italy INFN, Sezione di Torino, Torino, Italy G. Bhatta Institute of Nuclear Physics PAN, Krakow, Poland P.L. Biermann Max-Planck-Institut für Radioastronomie, Bonn, Germany V. Binet Instituto de Física de Rosario (IFIR) – CONICET/U.N.R. and Facultad de Ciencias Bioquímicas y Farmacéuticas U.N.R., Rosario, Argentina K. Bismark Karlsruhe Institute of Technology (KIT), Institute for Experimental Particle Physics, Karlsruhe, Germany Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina T. Bister RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany J. Biteau Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France J. Blazek Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic C. Bleve Univ. Grenoble Alpes, CNRS, Grenoble Institute of Engineering Univ. Grenoble Alpes, LPSC-IN2P3, 38000 Grenoble, France J. Blümer Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany M. Boháčová Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic D. Boncioli Università dell’Aquila, Dipartimento di Scienze Fisiche e Chimiche, L’Aquila, Italy INFN Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy C. Bonifazi International Center of Advanced Studies and Instituto de Ciencias Físicas, ECyT-UNSAM and CONICET, Campus Miguelete – San Martín, Buenos Aires, Argentina Universidade Federal do Rio de Janeiro, Instituto de Física, Rio de Janeiro, RJ, Brazil L. Bonneau Arbeletche Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil N. Borodai Institute of Nuclear Physics PAN, Krakow, Poland A.M. Botti Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina J. Brack Colorado State University, Fort Collins, CO, USA T. Bretz RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany P.G. Brichetto Orchera Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina F.L. Briechle RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany P. Buchholz Universität Siegen, Department Physik – Experimentelle Teilchenphysik, Siegen, Germany A. Bueno Universidad de Granada and C.A.F.P.E., Granada, Spain S. Buitink Vrije Universiteit Brussels, Brussels, Belgium M. Buscemi INFN, Sezione di Catania, Catania, Italy M. Büsken Karlsruhe Institute of Technology (KIT), Institute for Experimental Particle Physics, Karlsruhe, Germany Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina K.S. Caballero-Mora Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas, México L. Caccianiga Università di Milano, Dipartimento di Fisica, Milano, Italy INFN, Sezione di Milano, Milano, Italy F. Canfora IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (NIKHEF), Science Park, Amsterdam, The Netherlands I. Caracas Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany R. Caruso Università di Catania, Dipartimento di Fisica e Astronomia “Ettore Majorana”, Catania, Italy INFN, Sezione di Catania, Catania, Italy A. Castellina Osservatorio Astrofisico di Torino (INAF), Torino, Italy INFN, Sezione di Torino, Torino, Italy F. Catalani Universidade de São Paulo, Escola de Engenharia de Lorena, Lorena, SP, Brazil G. Cataldi INFN, Sezione di Lecce, Lecce, Italy L. Cazon Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain M. Cerda Observatorio Pierre Auger, Malargüe, Argentina J.A. Chinellato Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil J. Chudoba Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic L. Chytka Palacky University, RCPTM, Olomouc, Czech Republic R.W. Clay University of Adelaide, Adelaide, S.A., Australia A.C. Cobos Cerutti Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), and Universidad Tecnológica Nacional – Facultad Regional Mendoza (CONICET/CNEA), Mendoza, Argentina R. Colalillo Università di Napoli “Federico II”, Dipartimento di Fisica “Ettore Pancini”, Napoli, Italy INFN, Sezione di Napoli, Napoli, Italy A. Coleman University of Delaware, Department of Physics and Astronomy, Bartol Research Institute, Newark, DE, USA M.R. Coluccia INFN, Sezione di Lecce, Lecce, Italy R. Conceição Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Lisboa, Portugal A. Condorelli Gran Sasso Science Institute, L’Aquila, Italy INFN Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy G. Consolati INFN, Sezione di Milano, Milano, Italy Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali , Milano, Italy F. Contreras Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Malargüe, Argentina F. Convenga Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany D. Correia dos Santos Universidade Federal Fluminense, EEIMVR, Volta Redonda, RJ, Brazil C.E. Covault Case Western Reserve University, Cleveland, OH, USA S. Dasso Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), Buenos Aires, Argentina Departamento de Física and Departamento de Ciencias de la Atmósfera y los Océanos, FCEyN, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina K. Daumiller Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany B.R. Dawson University of Adelaide, Adelaide, S.A., Australia J.A. Day University of Adelaide, Adelaide, S.A., Australia R.M. de Almeida Universidade Federal Fluminense, EEIMVR, Volta Redonda, RJ, Brazil J. de Jesús Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany S.J. de Jong IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (NIKHEF), Science Park, Amsterdam, The Netherlands J.R.T. de Mello Neto Universidade Federal do Rio de Janeiro, Instituto de Física, Rio de Janeiro, RJ, Brazil Universidade Federal do Rio de Janeiro (UFRJ), Observatório do Valongo, Rio de Janeiro, RJ, Brazil I. De Mitri Gran Sasso Science Institute, L’Aquila, Italy INFN Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy J. de Oliveira Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Brazil D. de Oliveira Franco Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil F. de Palma Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Lecce, Italy INFN, Sezione di Lecce, Lecce, Italy V. de Souza Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brazil E. De Vito Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Lecce, Italy INFN, Sezione di Lecce, Lecce, Italy A. Del Popolo Università di Catania, Dipartimento di Fisica e Astronomia “Ettore Majorana”, Catania, Italy INFN, Sezione di Catania, Catania, Italy M. del Río Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Malargüe, Argentina O. Deligny CNRS/IN2P3, IJCLab, Université Paris-Saclay, Orsay, France L. Deval Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina A. di Matteo INFN, Sezione di Torino, Torino, Italy M. Dobre “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania C. Dobrigkeit Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil J.C. D’Olivo Universidad Nacional Autónoma de México, México, D.F., México L.M. Domingues Mendes Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Lisboa, Portugal R.C. dos Anjos Universidade Federal do Paraná, Setor Palotina, Palotina, Brazil M.T. Dova IFLP, Universidad Nacional de La Plata and CONICET, La Plata, Argentina J. Ebr Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic R. Engel Karlsruhe Institute of Technology (KIT), Institute for Experimental Particle Physics, Karlsruhe, Germany Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany I. Epicoco Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Lecce, Italy INFN, Sezione di Lecce, Lecce, Italy M. Erdmann RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany C.O. Escobar Fermi National Accelerator Laboratory, Fermilab, Batavia, IL, USA A. Etchegoyen Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina Universidad Tecnológica Nacional – Facultad Regional Buenos Aires, Buenos Aires, Argentina H. Falcke IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands Stichting Astronomisch Onderzoek in Nederland (ASTRON), Dwingeloo, The Netherlands Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (NIKHEF), Science Park, Amsterdam, The Netherlands J. Farmer University of Chicago, Enrico Fermi Institute, Chicago, IL, USA G. Farrar New York University, New York, NY, USA A.C. Fauth Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil N. Fazzini Fermi National Accelerator Laboratory, Fermilab, Batavia, IL, USA F. Feldbusch Karlsruhe Institute of Technology (KIT), Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe, Germany F. Fenu Università Torino, Dipartimento di Fisica, Torino, Italy INFN, Sezione di Torino, Torino, Italy B. Fick Michigan Technological University, Houghton, MI, USA J.M. Figueira Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina A. Filipčič Experimental Particle Physics Department, J. Stefan Institute, Ljubljana, Slovenia Center for Astrophysics and Cosmology (CAC), University of Nova Gorica, Nova Gorica, Slovenia T. Fitoussi Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany T. Fodran IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands T. Fujii now at Hakubi Center for Advanced Research and Graduate School of Science, Kyoto University, Kyoto, Japan University of Chicago, Enrico Fermi Institute, Chicago, IL, USA A. Fuster Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina Universidad Tecnológica Nacional – Facultad Regional Buenos Aires, Buenos Aires, Argentina C. Galea IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands C. Galelli Università di Milano, Dipartimento di Fisica, Milano, Italy INFN, Sezione di Milano, Milano, Italy B. García Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), and Universidad Tecnológica Nacional – Facultad Regional Mendoza (CONICET/CNEA), Mendoza, Argentina A.L. Garcia Vegas RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany H. Gemmeke Karlsruhe Institute of Technology (KIT), Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe, Germany F. Gesualdi Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany A. Gherghel-Lascu “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania P.L. Ghia CNRS/IN2P3, IJCLab, Université Paris-Saclay, Orsay, France U. Giaccari IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands M. Giammarchi INFN, Sezione di Milano, Milano, Italy J. Glombitza RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany F. Gobbi Observatorio Pierre Auger, Malargüe, Argentina F. Gollan Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina G. Golup Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina M. Gómez Berisso Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina P.F. Gómez Vitale Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Malargüe, Argentina J.P. Gongora Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Malargüe, Argentina J.M. González Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina N. González Université Libre de Bruxelles (ULB), Brussels, Belgium I. Goos Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany D. Góra Institute of Nuclear Physics PAN, Krakow, Poland A. Gorgi Osservatorio Astrofisico di Torino (INAF), Torino, Italy INFN, Sezione di Torino, Torino, Italy M. Gottowik Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany T.D. Grubb University of Adelaide, Adelaide, S.A., Australia F. Guarino Università di Napoli “Federico II”, Dipartimento di Fisica “Ettore Pancini”, Napoli, Italy INFN, Sezione di Napoli, Napoli, Italy G.P. Guedes Universidade Estadual de Feira de Santana, Feira de Santana, Brazil E. Guido INFN, Sezione di Torino, Torino, Italy Università Torino, Dipartimento di Fisica, Torino, Italy S. Hahn Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina P. Hamal Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic M.R. Hampel Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina P. Hansen IFLP, Universidad Nacional de La Plata and CONICET, La Plata, Argentina D. Harari Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina V.M. Harvey University of Adelaide, Adelaide, S.A., Australia A. Haungs Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany T. Hebbeker RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany D. Heck Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany G.C. Hill University of Adelaide, Adelaide, S.A., Australia C. Hojvat Fermi National Accelerator Laboratory, Fermilab, Batavia, IL, USA J.R. Hörandel IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (NIKHEF), Science Park, Amsterdam, The Netherlands P. Horvath Palacky University, RCPTM, Olomouc, Czech Republic M. Hrabovský Palacky University, RCPTM, Olomouc, Czech Republic T. Huege Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany Vrije Universiteit Brussels, Brussels, Belgium A. Insolia Università di Catania, Dipartimento di Fisica e Astronomia “Ettore Majorana”, Catania, Italy INFN, Sezione di Catania, Catania, Italy P.G. Isar Institute of Space Science, Bucharest-Magurele, Romania P. Janecek Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic J.A. Johnsen Colorado School of Mines, Golden, CO, USA J. Jurysek Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic A. Kääpä Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany K.H. Kampert Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany B. Keilhauer Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany A. Khakurdikar IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands V.V. Kizakke Covilakam Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany H.O. Klages Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany M. Kleifges Karlsruhe Institute of Technology (KIT), Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe, Germany J. Kleinfeller Observatorio Pierre Auger, Malargüe, Argentina F. Knapp Karlsruhe Institute of Technology (KIT), Institute for Experimental Particle Physics, Karlsruhe, Germany N. Kunka Karlsruhe Institute of Technology (KIT), Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe, Germany B.L. Lago Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Nova Friburgo, Brazil N. Langner RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany M.A. Leigui de Oliveira Universidade Federal do ABC, Santo André, SP, Brazil V. Lenok Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany A. Letessier-Selvon Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Sorbonne Université, Université de Paris, CNRS-IN2P3, Paris, France I. Lhenry-Yvon CNRS/IN2P3, IJCLab, Université Paris-Saclay, Orsay, France D. Lo Presti Università di Catania, Dipartimento di Fisica e Astronomia “Ettore Majorana”, Catania, Italy INFN, Sezione di Catania, Catania, Italy L. Lopes Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Lisboa, Portugal R. López Benemérita Universidad Autónoma de Puebla, Puebla, México L. Lu University of Wisconsin-Madison, Department of Physics and WIPAC, Madison, WI, USA Q. Luce Karlsruhe Institute of Technology (KIT), Institute for Experimental Particle Physics, Karlsruhe, Germany J.P. Lundquist Center for Astrophysics and Cosmology (CAC), University of Nova Gorica, Nova Gorica, Slovenia A. Machado Payeras Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil G. Mancarella Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Lecce, Italy INFN, Sezione di Lecce, Lecce, Italy D. Mandat Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic B.C. Manning University of Adelaide, Adelaide, S.A., Australia J. Manshanden Universität Hamburg, II. Institut für Theoretische Physik, Hamburg, Germany P. Mantsch Fermi National Accelerator Laboratory, Fermilab, Batavia, IL, USA S. Marafico CNRS/IN2P3, IJCLab, Université Paris-Saclay, Orsay, France F.M. Mariani Università di Milano, Dipartimento di Fisica, Milano, Italy INFN, Sezione di Milano, Milano, Italy A.G. Mariazzi IFLP, Universidad Nacional de La Plata and CONICET, La Plata, Argentina I.C. Mariş Université Libre de Bruxelles (ULB), Brussels, Belgium G. Marsella Università di Palermo, Dipartimento di Fisica e Chimica ”E. Segrè”, Palermo, Italy INFN, Sezione di Catania, Catania, Italy D. Martello Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Lecce, Italy INFN, Sezione di Lecce, Lecce, Italy S. Martinelli Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina O. Martínez Bravo Benemérita Universidad Autónoma de Puebla, Puebla, México M. Mastrodicasa Università dell’Aquila, Dipartimento di Scienze Fisiche e Chimiche, L’Aquila, Italy INFN Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy H.J. Mathes Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany J. Matthews Louisiana State University, Baton Rouge, LA, USA G. Matthiae Università di Roma “Tor Vergata”, Dipartimento di Fisica, Roma, Italy INFN, Sezione di Roma “Tor Vergata”, Roma, Italy E. Mayotte Colorado School of Mines, Golden, CO, USA Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany S. Mayotte Colorado School of Mines, Golden, CO, USA P.O. Mazur Fermi National Accelerator Laboratory, Fermilab, Batavia, IL, USA G. Medina-Tanco Universidad Nacional Autónoma de México, México, D.F., México D. Melo Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina A. Menshikov Karlsruhe Institute of Technology (KIT), Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe, Germany S. Michal Palacky University, RCPTM, Olomouc, Czech Republic M.I. Micheletti Instituto de Física de Rosario (IFIR) – CONICET/U.N.R. and Facultad de Ciencias Bioquímicas y Farmacéuticas U.N.R., Rosario, Argentina L. Miramonti Università di Milano, Dipartimento di Fisica, Milano, Italy INFN, Sezione di Milano, Milano, Italy S. Mollerach Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina F. Montanet Univ. Grenoble Alpes, CNRS, Grenoble Institute of Engineering Univ. Grenoble Alpes, LPSC-IN2P3, 38000 Grenoble, France L. Morejon Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany C. Morello Osservatorio Astrofisico di Torino (INAF), Torino, Italy INFN, Sezione di Torino, Torino, Italy M. Mostafá Pennsylvania State University, University Park, PA, USA A.L. Müller Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic M.A. Muller Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil K. Mulrey IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (NIKHEF), Science Park, Amsterdam, The Netherlands R. Mussa INFN, Sezione di Torino, Torino, Italy M. Muzio New York University, New York, NY, USA W.M. Namasaka Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany A. Nasr-Esfahani Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany L. Nellen Universidad Nacional Autónoma de México, México, D.F., México G. Nicora Centro de Investigaciones en Láseres y Aplicaciones, CITEDEF and CONICET, Villa Martelli, Argentina M. Niculescu-Oglinzanu “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania M. Niechciol Universität Siegen, Department Physik – Experimentelle Teilchenphysik, Siegen, Germany D. Nitz Michigan Technological University, Houghton, MI, USA I. Norwood Michigan Technological University, Houghton, MI, USA D. Nosek Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic V. Novotny Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic L. Nožka Palacky University, RCPTM, Olomouc, Czech Republic A Nucita Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Lecce, Italy INFN, Sezione di Lecce, Lecce, Italy L.A. Núñez Universidad Industrial de Santander, Bucaramanga, Colombia C. Oliveira Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brazil M. Palatka Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic J. Pallotta Centro de Investigaciones en Láseres y Aplicaciones, CITEDEF and CONICET, Villa Martelli, Argentina P. Papenbreer Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany G. Parente Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain A. Parra Benemérita Universidad Autónoma de Puebla, Puebla, México J. Pawlowsky Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany M. Pech Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic J. Pȩkala Institute of Nuclear Physics PAN, Krakow, Poland R. Pelayo Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del Instituto Politécnico Nacional (UPIITA-IPN), México, D.F., México J. Peña-Rodriguez Universidad Industrial de Santander, Bucaramanga, Colombia E.E. Pereira Martins Karlsruhe Institute of Technology (KIT), Institute for Experimental Particle Physics, Karlsruhe, Germany Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina J. Perez Armand Universidade de São Paulo, Instituto de Física, São Paulo, SP, Brazil C. Pérez Bertolli Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany L. Perrone Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Lecce, Italy INFN, Sezione di Lecce, Lecce, Italy S. Petrera Gran Sasso Science Institute, L’Aquila, Italy INFN Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy C. Petrucci Università dell’Aquila, Dipartimento di Scienze Fisiche e Chimiche, L’Aquila, Italy INFN Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy T. Pierog Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany M. Pimenta Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Lisboa, Portugal V. Pirronello Università di Catania, Dipartimento di Fisica e Astronomia “Ettore Majorana”, Catania, Italy INFN, Sezione di Catania, Catania, Italy M. Platino Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina B. Pont IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands M. Pothast Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (NIKHEF), Science Park, Amsterdam, The Netherlands IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands P. Privitera University of Chicago, Enrico Fermi Institute, Chicago, IL, USA M. Prouza Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic A. Puyleart Michigan Technological University, Houghton, MI, USA S. Querchfeld Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany J. Rautenberg Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany D. Ravignani Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina M. Reininghaus Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina J. Ridky Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic F. Riehn Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Lisboa, Portugal M. Risse Universität Siegen, Department Physik – Experimentelle Teilchenphysik, Siegen, Germany V. Rizi Università dell’Aquila, Dipartimento di Scienze Fisiche e Chimiche, L’Aquila, Italy INFN Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy W. Rodrigues de Carvalho IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands J. Rodriguez Rojo Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Malargüe, Argentina M.J. Roncoroni Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina S. Rossoni Universität Hamburg, II. Institut für Theoretische Physik, Hamburg, Germany M. Roth Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany E. Roulet Centro Atómico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina A.C. Rovero Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), Buenos Aires, Argentina P. Ruehl Universität Siegen, Department Physik – Experimentelle Teilchenphysik, Siegen, Germany A. Saftoiu “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania M. Saharan IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands F. Salamida Università dell’Aquila, Dipartimento di Scienze Fisiche e Chimiche, L’Aquila, Italy INFN Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy H. Salazar Benemérita Universidad Autónoma de Puebla, Puebla, México G. Salina INFN, Sezione di Roma “Tor Vergata”, Roma, Italy J.D. Sanabria Gomez Universidad Industrial de Santander, Bucaramanga, Colombia F. Sánchez Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina E.M. Santos Universidade de São Paulo, Instituto de Física, São Paulo, SP, Brazil E. Santos Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic F. Sarazin Colorado School of Mines, Golden, CO, USA R. Sarmento Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Lisboa, Portugal C. Sarmiento-Cano Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina R. Sato Observatorio Pierre Auger and Comisión Nacional de Energía Atómica, Malargüe, Argentina P. Savina University of Wisconsin-Madison, Department of Physics and WIPAC, Madison, WI, USA C.M. Schäfer Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany V. Scherini Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Lecce, Italy INFN, Sezione di Lecce, Lecce, Italy H. Schieler Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany M. Schimassek Karlsruhe Institute of Technology (KIT), Institute for Experimental Particle Physics, Karlsruhe, Germany Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina M. Schimp Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany F. Schlüter Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina D. Schmidt Karlsruhe Institute of Technology (KIT), Institute for Experimental Particle Physics, Karlsruhe, Germany O. Scholten Vrije Universiteit Brussels, Brussels, Belgium H. Schoorlemmer IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (NIKHEF), Science Park, Amsterdam, The Netherlands P. Schovánek Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic F.G. Schröder University of Delaware, Department of Physics and Astronomy, Bartol Research Institute, Newark, DE, USA Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany J. Schulte RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany T. Schulz Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany S.J. Sciutto IFLP, Universidad Nacional de La Plata and CONICET, La Plata, Argentina M. Scornavacche Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany A. Segreto Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo (INAF), Palermo, Italy INFN, Sezione di Catania, Catania, Italy S. Sehgal Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany R.C. Shellard Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ, Brazil G. Sigl Universität Hamburg, II. Institut für Theoretische Physik, Hamburg, Germany G. Silli Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany O. Sima also at University of Bucharest, Physics Department, Bucharest, Romania “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania R. Smau “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania R. Šmída University of Chicago, Enrico Fermi Institute, Chicago, IL, USA P. Sommers Pennsylvania State University, University Park, PA, USA J.F. Soriano Department of Physics and Astronomy, Lehman College, City University of New York, Bronx, NY, USA R. Squartini Observatorio Pierre Auger, Malargüe, Argentina M. Stadelmaier Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina D. Stanca “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania S. Stanič Center for Astrophysics and Cosmology (CAC), University of Nova Gorica, Nova Gorica, Slovenia J. Stasielak Institute of Nuclear Physics PAN, Krakow, Poland P. Stassi Univ. Grenoble Alpes, CNRS, Grenoble Institute of Engineering Univ. Grenoble Alpes, LPSC-IN2P3, 38000 Grenoble, France A. Streich Karlsruhe Institute of Technology (KIT), Institute for Experimental Particle Physics, Karlsruhe, Germany Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina M. Suárez-Durán Université Libre de Bruxelles (ULB), Brussels, Belgium T. Sudholz University of Adelaide, Adelaide, S.A., Australia T. Suomijärvi Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France A.D. Supanitsky Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina Z. Szadkowski University of Łódź, Faculty of High-Energy Astrophysics,Łódź, Poland A. Tapia Universidad de Medellín, Medellín, Colombia C. Taricco Università Torino, Dipartimento di Fisica, Torino, Italy INFN, Sezione di Torino, Torino, Italy C. Timmermans Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (NIKHEF), Science Park, Amsterdam, The Netherlands IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands O. Tkachenko Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany P. Tobiska Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic C.J. Todero Peixoto Universidade de São Paulo, Escola de Engenharia de Lorena, Lorena, SP, Brazil B. Tomé Laboratório de Instrumentação e Física Experimental de Partículas – LIP and Instituto Superior Técnico – IST, Universidade de Lisboa – UL, Lisboa, Portugal Z. Torrès Univ. Grenoble Alpes, CNRS, Grenoble Institute of Engineering Univ. Grenoble Alpes, LPSC-IN2P3, 38000 Grenoble, France A. Travaini Observatorio Pierre Auger, Malargüe, Argentina P. Travnicek Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic C. Trimarelli Università dell’Aquila, Dipartimento di Scienze Fisiche e Chimiche, L’Aquila, Italy INFN Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy M. Tueros IFLP, Universidad Nacional de La Plata and CONICET, La Plata, Argentina R. Ulrich Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany M. Unger Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany L. Vaclavek Palacky University, RCPTM, Olomouc, Czech Republic M. Vacula Palacky University, RCPTM, Olomouc, Czech Republic J.F. Valdés Galicia Universidad Nacional Autónoma de México, México, D.F., México L. Valore Università di Napoli “Federico II”, Dipartimento di Fisica “Ettore Pancini”, Napoli, Italy INFN, Sezione di Napoli, Napoli, Italy E. Varela Benemérita Universidad Autónoma de Puebla, Puebla, México A. Vásquez-Ramírez Universidad Industrial de Santander, Bucaramanga, Colombia D. Veberič Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany C. Ventura Universidade Federal do Rio de Janeiro (UFRJ), Observatório do Valongo, Rio de Janeiro, RJ, Brazil I.D. Vergara Quispe IFLP, Universidad Nacional de La Plata and CONICET, La Plata, Argentina V. Verzi INFN, Sezione di Roma “Tor Vergata”, Roma, Italy J. Vicha Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic J. Vink Universiteit van Amsterdam, Faculty of Science, Amsterdam, The Netherlands S. Vorobiov Center for Astrophysics and Cosmology (CAC), University of Nova Gorica, Nova Gorica, Slovenia H. Wahlberg IFLP, Universidad Nacional de La Plata and CONICET, La Plata, Argentina C. Watanabe Universidade Federal do Rio de Janeiro, Instituto de Física, Rio de Janeiro, RJ, Brazil A.A. Watson School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom A. Weindl Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany L. Wiencke Colorado School of Mines, Golden, CO, USA H. Wilczyński Institute of Nuclear Physics PAN, Krakow, Poland D. Wittkowski Bergische Universität Wuppertal, Department of Physics, Wuppertal, Germany B. Wundheiler Instituto de Tecnologías en Detección y Astropartículas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina A. Yushkov Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic O. Zapparrata Université Libre de Bruxelles (ULB), Brussels, Belgium E. Zas Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain D. Zavrtanik Center for Astrophysics and Cosmology (CAC), University of Nova Gorica, Nova Gorica, Slovenia Experimental Particle Physics Department, J. Stefan Institute, Ljubljana, Slovenia M. Zavrtanik Experimental Particle Physics Department, J. Stefan Institute, Ljubljana, Slovenia Center for Astrophysics and Cosmology (CAC), University of Nova Gorica, Nova Gorica, Slovenia L. Zehrer Center for Astrophysics and Cosmology (CAC), University of Nova Gorica, Nova Gorica, Slovenia spokespersons@auger.org
Abstract

Ultra-high-energy photons with energies exceeding 1017eV10^{17}\,\mathrm{eV} offer a wealth of connections to different aspects of cosmic-ray astrophysics as well as to gamma-ray and neutrino astronomy. The recent observations of photons with energies in the 1015eV10^{15}\,\mathrm{eV} range further motivate searches for even higher-energy photons. In this paper, we present a search for photons with energies exceeding 2×1017eV2{\times}10^{17}\,\mathrm{eV} using about 5.5 years of hybrid data from the low-energy extensions of the Pierre Auger Observatory. The upper limits on the integral photon flux derived here are the most stringent ones to date in the energy region between 101710^{17} and 1018eV10^{18}\,\mathrm{eV}.

Particle astrophysics (96) — Ultra-high-energy cosmic radiation (1733) — Cosmic-ray showers (327) — Non-thermal radiation sources (1119) — Multivariate analysis (1913)
journal: ApJ

1 Introduction

The recent observations of photons with energies of a few 1014eV10^{14}\,\mathrm{eV} from decaying neutral pions, both from a direction coincident with a giant molecular cloud (HAWC J1825-134, Albert et al. (2021)) and from the Galactic plane (Amenomori et al., 2021), provide evidence for an acceleration of cosmic rays to energies of several 1015eV10^{15}\,\mathrm{eV}, and above, in the Galaxy. A dozen of sources emitting photons with energies up to 1015eV10^{15}\,\mathrm{eV} have even been reported (Cao et al., 2021a), and in at least one of them (LHAASO J2108+515, also in directional coincidence with a giant molecular cloud), these photons might have a hadronic origin (Cao et al., 2021b). Observations of these photons are key in probing the mechanisms of particle acceleration, completing the multi-messenger approach aimed at understanding the non-thermal processes producing cosmic rays. The detection of even higher-energy photons would be of considerable interest in discovering extreme accelerators in the Galaxy. Also, should one detect photons of such energies clustered preferentially in the direction of the Galactic Center, then this could highlight the presence of super-heavy dark matter produced in the early Universe and decaying today (see, e.g., Berezinsky & Mikhailov (1999); Benson et al. (1999); Medina-Tanco & Watson (1999); Aloisio et al. (2006); Siffert et al. (2007); Kalashev & Kuznetsov (2016); Alcantara et al. (2019)).

Above 1017eV10^{17}\,\mathrm{eV}, the absorption length for photons almost matches the scale of the Galaxy, and reaches that of the Local Group as the energy increases (Risse & Homola, 2007). The observation of point-like sources of photons would be compelling evidence for the presence of ultra-high-energy accelerators within such a local horizon. Diffuse fluxes of photons are also expected from farther away from the interactions of ultra-high-energy cosmic rays (UHECRs) with the background photon fields permeating the extragalactic space (see, e.g., Gelmini et al. (2008); Kampert et al. (2011); Bobrikova et al. (2021)) or with the interstellar matter in the Galactic disk (Bérat et al., 2022). Although the estimation of these cosmogenic photon fluxes suffers from several uncertainties of astrophysical origin, such as, in particular, the exact composition of UHECRs, they can be determined to range, at most, around 102km2sr1yr110^{-2}\,\mathrm{km^{-2}\,sr^{-1}\,yr^{-1}} above 1017eV10^{17}\,\mathrm{eV} and around 103.5km2sr1yr110^{-3.5}\,\mathrm{km^{-2}\,sr^{-1}\,yr^{-1}} above 1018eV10^{18}\,\mathrm{eV}. These cosmogenic fluxes are more than two orders of magnitude below the sensitivity of current instruments, thereby constituting a negligible background for detecting photons from point sources, extended structures, or exotic phenomena.

Previous searches for a diffuse flux of photons using data from KASCADE-Grande (Apel et al., 2017) and EAS-MSU (Fomin et al., 2017) have led to upper limits on photon fluxes of the order of 10km2sr1yr110\,\mathrm{km^{-2}\,sr^{-1}\,yr^{-1}} for energy thresholds between 1017eV10^{17}\,\mathrm{eV} and 3×1017eV3{\times}10^{17}\,\mathrm{eV}, while at higher energies, at a threshold of 1018eV10^{18}\,\mathrm{eV}, upper limits of the order of 102km2sr1yr110^{-2}\,\mathrm{km^{-2}\,sr^{-1}\,yr^{-1}} were determined using data from the Pierre Auger Observatory (Savina & Pierre Auger Collaboration, 2021). The aim of the study reported in this paper is to search for primary photons with energies above 2×1017eV2{\times}10^{17}\,\mathrm{eV} using data from the low-energy extensions of the Pierre Auger Observatory, which are briefly presented in Section 2. The data set used in this study is described in Section 3 together with the simulations needed to establish the selection criteria aimed at distinguishing photon-induced air showers from those initiated by hadronic cosmic rays. In Section 4, the specificities of the photon-induced showers are used to define discriminating observables, which are then combined to search for photon candidate events in the data. Results are given in Section 5 and, from the absence of a photon signal, upper limits on the integral photon flux are derived that improve the previous ones mentioned before. Finally, the astrophysical significance of these limits is discussed in Section 6.

2 The Pierre Auger Observatory

The Pierre Auger Observatory (Aab et al., 2015a), located near Malargüe, Argentina, offers an unprecedented exposure for UHE photons. A key feature of the Pierre Auger Observatory is the hybrid concept, combining a Surface Detector array (SD) with a Fluorescence Detector (FD). The SD consists of 1600 water-Cherenkov detectors arranged on a triangular grid with a spacing of 1500m1500\,\mathrm{m}, covering a total area of 3000km23000\,\mathrm{km^{2}}. The SD is overlooked by 24 fluorescence telescopes, located at four sites at the border of the array. The SD samples the lateral shower profile at ground level, i.e., the distribution of particles as a function of the distance from the shower axis, with a duty cycle of 100%{\sim}100\,\mathrm{\%}, while the FD records the longitudinal shower development in the atmosphere above the SD. The FD can only be operated in clear, moonless nights, reducing the duty cycle to 15%{\sim}15\,\mathrm{\%}. Through combining measurements from both detector systems in hybrid events, a superior accuracy of the air-shower reconstruction can be achieved than with just one system. In the western part of the SD array, 50 additional SD stations have been placed between the existing SD stations, forming a sub-array with a spacing of 750m750\,\mathrm{m} and covering a total area of about 27.5km227.5\,\mathrm{km^{2}}. With this sub-array, air showers of lower primary energy (below 1018eV10^{18}\,\mathrm{eV}) with a smaller footprint can be measured. To allow also for hybrid measurements in this energy range, where air showers develop above the field of view of the standard FD telescopes, three additional High-Elevation Auger Telescopes (HEAT) have been installed at the FD site Coihueco, overlooking the 750m750\,\mathrm{m} SD array. The HEAT telescopes operate in the range of elevation angles from 3030^{\circ} to 6060^{\circ}, complementing the Coihueco telescopes operating in the 00^{\circ} to 3030^{\circ} range. The combination of the data from both HEAT and Coihueco (“HeCo” data) enable fluorescence measurements of air showers over a large range of elevation angles. A schematic depiction of the detector layout, including the 750m750\,\mathrm{m} array and HEAT, can be found in Fig. 1.

Refer to caption
Figure 1: Schematic depiction of the part of the detector layout of the Pierre Auger Observatory (Aab et al., 2015a) that is relevant for the analysis discussed here. Detector stations from the 750m750\,\mathrm{m} SD array are shown as black points. Detector stations that are not used in this analysis (for example from the 1500m1500\,\mathrm{m} SD array) are greyed out. The projections of the fields-of-view of the fluorescence telescopes from Coihueco and HEAT on the ground are indicated by the green and gray lines, respectively. Note that Coihueco and HEAT cover different elevation ranges. The outline of the 750m750\,\mathrm{m} SD array is given by the solid red line, while the dashed red line marks the region where the shower core of an air shower event has to be located for the event to be accepted in this analysis (see Sec. 3).

3 Data Samples and Simulations

The analysis is based on hybrid data collected by the Coihueco and HEAT telescopes and the 750m750\,\mathrm{m} SD array between 1 June 2010 and 31 December 2015. Subsequent data will be used in a follow-up paper. In the present paper, we use the same analysis techniques as in Aab et al. (2017a) to provide a first search for photons in the energy range between 2×1017eV2{\times}10^{17}\,\mathrm{eV} and 1018eV10^{18}\,\mathrm{eV} using data from the Pierre Auger Observatory. The follow-up paper will not only make use of a larger dataset, but also profit from an analysis that is tailor-made for the low-energy enhancements of the Observatory.

Several selection criteria are applied to this dataset to ensure a good reconstruction of the air-shower events and a reliable measurement of the observables used to discriminate photon- and hadron-induced air showers (see Sec. 4). These criteria are summarized in the following.

The total dataset contains 587,475587{,}475 “HeCo” events at the detector level, before any further selection criteria are applied. A sub-sample consisting of about 5%5\,\mathrm{\%} of the total dataset (29,53129{,}531 events, selected from the full data period using the simple prescription T\textGPS\textmod 20=0T_{\text{GPS}}\,\text{mod}\,20=0, where T\textGPST_{\text{GPS}} denotes the time the event was recorded in units of GPS seconds) was used as a “burnt sample” to optimize the event selection and perform cross-checks on the analysis. The events from the “burnt sample” are not used in the final analysis.

At the geometry level of the event selection, it is required that the events are reconstructed using the hybrid event reconstruction procedure, taking into account the timing information from a triggered SD station from the 750m750\,\mathrm{m} SD array in addition to the FD measurements. To exclude events pointing directly towards the FD telescope, where Cherenkov light will distort the FD measurement, a minimum viewing angle of 1515^{\circ} is required. Lastly, only events where the shower core is reconstructed within the inner region of the 750m750\,\mathrm{m} SD array (marked by the dashed red line in Fig. 1) and where the zenith angle is below 6060^{\circ} are considered. More inclined events are not taken into account because of the absorption of the electromagnetic component of the air showers in the atmosphere and the resulting smaller trigger efficiency at lower energies.

At the third level of the event selection, the profile level, events with an unreliable reconstruction of the longitudinal profile of the air shower are discarded using a cut based on the reduced χ2\chi^{2} of the fit of a Gaisser-Hillas function to the recorded profile. Events are only accepted when the reconstructed atmospheric depth of the shower maximum X\textmaxX_{\text{max}} is inside the geometrical field of view of the fluorescence telescopes and gaps in the recorded tracks, which can appear, for example, for air showers crossing several telescopes, amount to less than 30%30\,\mathrm{\%} of the total observed track length. Finally, it is required that the uncertainty on the reconstructed photon energy EγE_{\gamma}, defined as the calorimetric energy taken from the integration of the profile plus a missing-energy correction of 1%1\,\mathrm{\%} appropriate for primary photons (Aab et al., 2017a), is less than 20%20\,\mathrm{\%}.

Since the precise knowledge of the atmospheric conditions is crucial for the hybrid reconstruction, events recorded during periods without information on the aerosol content of the atmosphere are not taken into account. To exclude events where the recorded profile may be distorted due to clouds over the Observatory, only events from known cloud-free periods are accepted. Events where no information on the cloud coverage is available from either the Lidar system installed at the FD site Coihueco (BenZvi et al., 2007) or infrared data from the GOES-12 satellite (Abreu et al., 2013) are excluded.

Finally, the last selection criterion removes events where fewer than four of the six SD stations in the first 750m750\,\mathrm{m} hexagon around the station with the largest signal are active. Such cases can occur, e.g., in the border region of the array or when individual SD stations are temporarily offline and not taking data. In this case, the discriminating observables SbS_{b} and N\textstationsN_{\text{stations}} (see Sec. 4) can be underestimated, mimicking air showers initiated by photons.

The numbers of events after each level of the event selection and the associated selection efficiencies are given in Tab. 1, excluding the “burnt sample” as mentioned before. The largest reduction occurs already at the geometry level. Here, the main contribution comes from the restriction of the acceptance to the area of the 750m750\,\mathrm{m} SD array, followed by the requirement that the events have to be reconstructed using the hybrid procedure. After all cuts, 2,2042{,}204 events remain with a photon energy EγE_{\gamma} above 2×1017eV2{\times}10^{17}\,\mathrm{eV}.

Table 1: Numbers of events from the data sample (excluding the “burnt sample”) passing the different event selection levels and the associated selection efficiencies relative to the preceding level. See the text for explanations.
Total number of “HeCo” events: 557,944557{,}944  %
After geometry level: 20,54520{,}545 3.7 %
After profile level: 12,12912{,}129 59.0 %
After atmosphere level: 4,3734{,}373 36.1 %
After SbS_{b} level: 3,8733{,}873 88.6 %
Eγ2×1017eVE_{\gamma}\geq 2{\times}10^{17}\,\mathrm{eV}: 2,2042{,}204 56.9 %

A large sample of simulated events has been used to study the photon/hadron separation by the observables used in this analysis, to train the multivariate analysis, and to evaluate its performance. Air-shower simulations have been performed with CORSIKA (Heck et al., 1998), using EPOS LHC (Pierog et al., 2015) as the hadronic interaction model. About 72,00072{,}000 photon-induced and 42,00042{,}000 proton-induced air showers in six bins of equal width in log10(E[eV])\log_{10}(E\,\mathrm{[eV]}) between 1016.5eV10^{16.5}\,\mathrm{eV} and 1019.5eV10^{19.5}\,\mathrm{eV}, following a power-law spectrum with spectral index 1-1 within each bin, have been used. Zenith and azimuth angles of the simulated events were drawn from an isotropic distribution between 0 and 6565^{\circ} and from a uniform distribution between 0 and 360360^{\circ}, respectively. Although they do not have a significant impact on the development of photon-induced air showers at the target energy range below 1018eV10^{18}\,\mathrm{eV}, pre-showering (Erber, 1966; McBreen & Lambert, 1981; Homola et al., 2007) and LPM effects (Landau & Pomeranchuk, 1953; Migdal, 1956) were included in the simulations. Only proton-induced air showers are used as background, as these are the most “photon-like” compared to air showers induced by heavier nuclei such as helium. Even though there are indications that the composition of UHECRs is getting heavier with energy (see, e.g., Yushkov & Pierre Auger Collaboration (2019)), the assumption of a pure-proton background in the context of a search for UHE photons can be taken as a conservative “worst-case” assumption, since including heavier nuclei would always lead to a smaller estimate for the contamination in the final sample of photon candidate events.

All simulated air-shower events are processed with the Auger Offline Software Framework (Argiro et al., 2007) for a detailed simulation of the detector response. In these simulations, the actual detector status of both the SD and the FD as well as the atmospheric conditions at any given time during the aforementioned data period are taken into account, leading to a realistic estimate of the detector response. Each simulated air shower is used five times, each time with a different impact point on the ground, randomly taken from a uniform distribution encompassing the region of the 750m750\,\mathrm{m} SD array, and with a different event time, which was randomly determined according to the on-time of the Coihueco and HEAT telescopes during the data period used in this analysis. All simulated events are finally passed through the same event selection as the events from the data sample. After the event selection stage, the simulated samples contain about 55,00055{,}000 photon-induced events and about 35,00035{,}000 proton-induced events.

4 Analysis

The search for primary photons presented in this work exploits the well-known differences in air-shower development for photon-induced and hadron-induced air showers: on the one hand, air showers initiated by photons develop deeper in the atmosphere than those initiated by hadrons, and on the other hand, they exhibit a smaller number of muons at ground level (Risse & Homola, 2007). The first difference can be quantified through X\textmaxX_{\text{max}}, which can be directly measured with the FD. To complement the FD-observable X\textmaxX_{\text{max}}, we use another quantity determined from the data of the 750m750\,\mathrm{m} SD array, called SbS_{b}, which is defined as follows (Ros et al., 2011):

Sb=iSi×(Ri1000m)b,S_{b}=\sum_{i}S_{i}\times\left(\frac{R_{i}}{1000\,\mathrm{m}}\right)^{b}, (1)

where SiS_{i} denotes the measured signal in the ii-th SD station at a perpendicular distance RiR_{i} to the shower axis. The parameter SbS_{b} has been chosen here as b=4b=4 to optimize the photon-hadron separation in accordance with Aab et al. (2017a). By construction, SbS_{b} is sensitive to the lateral distribution, which in turn depends on the depth of the air-shower development in the atmosphere and the number of muons. Hence, SbS_{b} can be used to distinguish photon- and hadron-induced air showers. In addition to X\textmaxX_{\text{max}} and SbS_{b}, the number of triggered SD stations N\textstationsN_{\text{stations}} is also used in the analysis, as it has been shown in Aab et al. (2017a) that it can significantly improve the overall performance of the analysis. The distributions of X\textmaxX_{\text{max}}, SbS_{b} and N\textstationsN_{\text{stations}} are shown in Fig. 2 for the simulated samples as well as the data sample.

Figure 2: Normalized distributions of the three discriminating observables X\textmaxX_{\text{max}}, SbS_{b} and N\textstationsN_{\text{stations}}. The photon sample is shown in blue, the proton sample in red, and the data sample in black. Only events with Eγ>2×1017eVE_{\gamma}{>}2{\times}10^{17}\,\mathrm{eV} are shown. The simulated samples are subdivided into a training sample used to train the MVA and a test sample used to determine the separation power of the individual observables. Note that for illustrative purposes and to facilitate the comparison of the data distributions to the ones obtained from the simulated samples, the latter were weighted with an Eγ3E_{\gamma}^{-3} spectrum instead of the Eγ2E_{\gamma}^{-2} one used in the MVA (see Sec. 4).

To combine the three discriminating observables, a multivariate analysis (MVA) is performed using the Boosted Decision Tree (BDT) method as implemented by the TMVA package (Hoecker et al., 2007). To take into account energy and zenith angle dependencies, the photon energy EγE_{\gamma} and the zenith angle θ\theta are also included in the MVA. The MVA is trained using two thirds of the simulated samples described before, while the remaining third is used to test the trained MVA for consistency and calculate the performance of the MVA with regard to photon/hadron separation. In Fig. 2, the training and test sub-samples are denoted by the markers and the shaded regions, respectively, for both the photon and the proton samples. In the training and testing stages of the MVA, events are weighted according to a power-law spectrum EΓE^{-\Gamma} with a spectral index Γ=2\Gamma=2, as in previous photon searches (see, e.g., Aab et al. (2017a)).

The distribution of the output from the BDT β\beta, which is used as the final discriminator for separating photon-induced air showers from the hadronic background, is shown in Fig. 3 for both the simulated and the data samples (see also Sec. 5). The photon and proton distributions are clearly separated. The background rejection at a signal efficiency of 50%50\,\mathrm{\%}, i.e., the fraction of proton-induced events that have a β\beta larger than the median of the photon (test sample) distribution—which is used as the photon candidate cut, marked with the dashed line in Fig. 3)—is (99.87± 0.03)%(99.87\,{\pm}\,0.03)\,\mathrm{\%}, where the uncertainty has been determined through a bootstrapping method. When only events with Eγ2×1017eVE_{\gamma}\geq 2{\times}10^{17}\,\mathrm{eV} are taken into account, the background rejection at 50%50\,\mathrm{\%} signal efficiency becomes (99.91± 0.03)%(99.91\,{\pm}\,0.03)\,\mathrm{\%}, hence we expect a background contamination of (0.09± 0.03)%(0.09\,{\pm}\,0.03)\,\mathrm{\%}. For the size of the data sample given in Tab. 1 (2,2042{,}204 events), this would translate, under the assumption of a pure-proton background, to 1.98± 0.661.98\,{\pm}\,0.66 background events that are wrongly identified as photon candidate events. All of these numbers have been determined from the test samples (see above). Were the analysis to be based on X\textmaxX_{\text{max}} only, the background rejection at 50%50\,\mathrm{\%} signal efficiency would be 92.5%92.5\,\mathrm{\%}. The expected background contamination can therefore be reduced significantly by including the SD-related observables SbS_{b} and N\textstationsN_{\text{stations}}.

5 Results

Finally, we apply the analysis to the data sample to search for the presence of photon candidate events. The distributions of the three discriminating observables X\textmaxX_{\text{max}}, SbS_{b} and N\textstationsN_{\text{stations}} for the data sample are shown in Fig. 2 together with the corresponding distributions for the simulated samples. In the following paragraphs, we briefly discuss these distributions.

The X\textmaxX_{\text{max}} distribution for the data sample is shifted towards smaller X\textmaxX_{\text{max}} values compared to the proton distribution. This is in line with current Auger results on the composition of ultra-high-energy cosmic rays: for example, in Yushkov & Pierre Auger Collaboration (2019), the X\textmax\left<X_{\text{max}}\right> values that were measured above 1017.2eV10^{17.2}\,\mathrm{eV} are consistently below the expectation for primary protons, indicating a heavier composition. As the average X\textmaxX_{\text{max}} is decreasing with increasing primary mass, a shift of the X\textmaxX_{\text{max}} distribution for the data sample towards smaller values is expected. Similarly, a composition effect can be seen in the SbS_{b} and N\textstationsN_{\text{stations}} distributions. As the lateral shower profile gets wider with increasing primary mass and the number of muons at ground level increases, more triggered SD stations are expected, on average, compared to primary protons (and, consequently, primary photons), leading to higher values of N\textstationsN_{\text{stations}}, as well as a higher signal in these stations, which together with the higher multiplicity leads to larger SbS_{b} values. Also the choice of the hadronic interaction model—here EPOS LHC—has an impact on the distributions obtained for the simulated samples, in particular the proton distributions. Furthermore, Aab et al. (2015b, 2016a) indicate a possible underestimation of the number of muons in simulations, which can also influence the distributions.

In the next step, the MVA is applied to the 2,2042{,}204 events from the data sample. The distribution of β\beta obtained for the data sample is shown in Fig. 3 and compared to the distributions for the simulated samples. As expected from the distributions of the individual observables, on average smaller, i.e., less photon-like, values of β\beta for the data sample than for the proton sample are found.

Refer to caption
Figure 3: Normalized distributions of the final discriminator β\beta. The photon sample is shown in blue, the proton sample in red, and the data sample in black. Only events with Eγ>2×1017eVE_{\gamma}{>}2{\times}10^{17}\,\mathrm{eV} are shown. The simulated samples are subdivided into a training sample used to train the MVA and a test sample used to determine the separation power of the full analysis. The dashed line denotes the median of the photon test sample, which is used as the photon candidate cut. The inlay shows a zoom on the data distribution around the photon candidate cut.

Finally, we use the distribution of β\beta for the data sample to identify photon candidate events. As in Aab et al. (2017a), we use a photon candidate cut fixed to the median of the photon (test sample) distribution in the energy range Eγ>2×1017eVE_{\gamma}{>}2{\times}10^{17}\,\mathrm{eV}, which is shown in Fig. 3 as a dashed line. Zero events from the data sample have β\beta value above the candidate cut value, hence no photon candidate events are identified. When looking at the events closest to the candidate cut, it can be noticed that their SbS_{b} values are located towards the “photon-like” tail of the distribution for primary protons at the respective energies, typically at 1.5 to 2 standard deviations from the corresponding mean values for protons. Their X\textmaxX_{\text{max}} values, however, are usually within one standard deviation from the corresponding average for protons. Regarding N\textstationsN_{\text{stations}}, a similar behaviour as for SbS_{b} is found. In the combination of the individual observables in the MVA, the resulting value of β\beta is below the photon candidate cut.

We calculate the final results of this study in terms of upper limits on the integral flux of photons Φγ,\textU.L.\textC.L.(Eγ>E0)\Phi^{\text{C.L.}}_{\gamma,\,\text{U.L.}}(E_{\gamma}{>}E_{0}), where C.L. denotes the confidence level at which we determine the upper limits. Φγ,\textU.L.\textC.L.(Eγ>E0)\Phi^{\text{C.L.}}_{\gamma,\,\text{U.L.}}(E_{\gamma}{>}E_{0}) is calculated according to

Φγ,\textU.L.\textC.L.(Eγ>E0)=Nγ\textC.L.ϵ\textcand×(1f\textburnt)×γ,\Phi^{\text{C.L.}}_{\gamma,\,\text{U.L.}}(E_{\gamma}{>}E_{0})=\frac{N^{\text{C.L.}}_{\gamma}}{\epsilon_{\text{cand}}{\times}(1-f_{\text{burnt}}){\times}\mathcal{E}_{\gamma}}, (2)

where Nγ\textC.L.N^{\text{C.L.}}_{\gamma} is the upper limit on the number of photon candidate events at the given confidence level calculated using the Feldman-Cousins approach (Feldman & Cousins, 1998) with no background subtraction, ϵ\textcand\epsilon_{\text{cand}} is the efficiency of the photon candidate cut, f\textburntf_{\text{burnt}} is the fraction of the data used as a “burnt sample”, and γ\mathcal{E}_{\gamma} is the integrated efficiency-weighted exposure for photons (see also Tab. 2). γ\mathcal{E}_{\gamma} is calculated from simulations as

γ(Eγ>E0)=E0EγΓcEϵγ(Eγ,t,θ,φ,x,y)\text𝑑S\text𝑑t\text𝑑Ω\text𝑑Eγ,\mathcal{E}_{\gamma}(E_{\gamma}{>}E_{0})=\int_{E_{0}}^{\infty}\frac{E_{\gamma}^{-\Gamma}}{c_{E}}\,\epsilon_{\gamma}(E_{\gamma},t,\theta,\varphi,x,y)\,\text{d}S\,\text{d}t\,\text{d}\Omega\,\text{d}E_{\gamma}, (3)

where ϵγ(Eγ,t,θ,φ,x,y)\epsilon_{\gamma}(E_{\gamma},t,\theta,\varphi,x,y) is the overall efficiency for photons—excluding the final photon candidate cut—depending on the photon energy EγE_{\gamma}, the time tt, the zenith angle θ\theta, the azimuth angle φ\varphi and the coordinates xx and yy of the impact point of the air shower on the ground. The integration is performed over the area SS, the time tt, the solid angle Ω\Omega, and the photon energy EγE_{\gamma}. The normalization factor cEc_{E} is calculated through

cE=E0EγΓ\text𝑑Eγ.c_{E}=\int_{E_{0}}^{\infty}E_{\gamma}^{-\Gamma}\,\text{d}E_{\gamma}. (4)

The result of the integration following Eq. 3 with a spectral index Γ=2\Gamma=2 is shown in Fig. 4. In the energy range of interest between 2×1017eV2{\times}10^{17}\,\mathrm{eV} and 1018eV10^{18}\,\mathrm{eV}, the weighted exposure varies between 2.42.4 and 2.7km2yrsr2.7\,\mathrm{km^{2}\,yr\,sr}, with a maximum at 3.5×1017eV3.5{\times}10^{17}\,\mathrm{eV}. Towards lower energies, the exposure becomes smaller because lower-energy air showers trigger the detector with reduced efficiency. Towards higher energies, the dominant cause for the decrease in exposure is the event selection, because showers where X\textmaxX_{\text{max}} is reconstructed to be below the field of view of the telescopes are excluded from the analysis (see Sec. 3).

Refer to caption
Figure 4: Integrated efficiency-weighted hybrid exposure for photons, calculated from simulations following Eq. 3 under the assumption Γ=2\Gamma=2, with the statistical uncertainties shown as a grey band. The dashed lines denote the energy thresholds at which upper limits on the integral photon flux are placed in this analysis.

We place upper limits on the integral photon flux Φγ,\textU.L.\textC.L.(Eγ>E0)\Phi^{\text{C.L.}}_{\gamma,\,\text{U.L.}}(E_{\gamma}{>}E_{0}) at threshold energies of 22, 33, and 5×1017eV5{\times}10^{17}\,\mathrm{eV}, as well as 1018eV10^{18}\,\mathrm{eV}, at a confidence level of 95%95\,\mathrm{\%}. At these threshold energies, the upper limits are 2.722.72, 2.502.50, 2.742.74, and 3.55km2yr1sr13.55\,\mathrm{km^{-2}\,yr^{-1}\,sr^{-1}}, respectively. The quantities needed to calculate the upper limits according to Eq. 2 are listed in Tab. 2. For completeness, we also calculated upper limits at a confidence level of 90%90\,\mathrm{\%}, as used e.g. in Apel et al. (2017) and Fomin et al. (2017). The upper limits in this case are 2.152.15, 1.971.97, 2.162.16, and 2.79km2yr1sr12.79\,\mathrm{km^{-2}\,yr^{-1}\,sr^{-1}} at the same threshold energies. Using the energy spectrum of cosmic rays measured by the Pierre Auger Observatory (Abreu et al., 2021), the upper limits on the integral photon flux can be translated into upper limits on the integral photon fraction. At a confidence level of 95%95\,\mathrm{\%}, these are 0.28%0.28\,\mathrm{\%}, 0.63%0.63\,\mathrm{\%}, 2.20%2.20\,\mathrm{\%} and 13.8%13.8\,\mathrm{\%} for the same threshold energies as above.

Table 2: Upper limits on the integral photon flux, determined at 95%95\,\mathrm{\%} C.L., calculated using Eq. 2. See the text for explanations.
E0[eV]E_{0}\,\mathrm{[eV]} N\texteventsN_{\text{events}} NγN_{\gamma} Nγ95%N^{95\,\mathrm{\%}}_{\gamma} ϵ\textcand\epsilon_{\text{cand}} 1f\textburnt1-f_{\text{burnt}} γ[km2yrsr]\mathcal{E}_{\gamma}\,\mathrm{[km^{2}\,yr\,sr]} Φγ,\textU.L.95%[km2yr1sr1]\Phi^{95\,\mathrm{\%}}_{\gamma,\,\text{U.L.}}\,\mathrm{[km^{-2}\,yr^{-1}\,sr^{-1}]}
2×10172{\times}10^{17} 2,204 0 3.095 0.50 0.96 2.38 2.72
3×10173{\times}10^{17} 1,112 0 3.095 0.48 0.96 2.69 2.50
5×10175{\times}10^{17} 333 0 3.095 0.45 0.94 2.68 2.74
101810^{18} 67 0 3.095 0.38 0.94 2.41 3.55

To assess the impact on the final results of the choice of hadronic interaction models and of the assumptions on the composition of primary cosmic rays, smaller samples of proton-induced air showers simulated with the hadronic interaction models QGSJET-II-04 (Ostapchenko, 2011) and SIBYLL 2.3c (Fedynitch et al., 2019) and of air showers induced by iron nuclei, simulated with EPOS LHC, have been used. Each of these samples contains 30,00030{,}000 air-shower events. The analysis has been repeated replacing the default background sample (primary protons simulated with EPOS LHC) by primary protons simulated with QGSJET-II-04 and SIBYLL 2.3c and with a mixture of 50%50\,\mathrm{\%} primary protons and 50%50\,\mathrm{\%} primary iron nuclei (both simulated with EPOS LHC). In all cases, no photon candidate events were identified in the data sample, indicating that the analysis is robust against these assumptions. Likewise, varying the spectral index Γ\Gamma from 2 to, e.g., 1.51.5 or 2.52.5, and repeating the analysis does not change the observed number of photon candidates (0). It should be taken into account however, that Γ\Gamma also enters the calculation of the weighted exposure, leading to a change in the final upper limits by, on average, 5%5\,\mathrm{\%}. Finally, we studied the impact of possible systematic uncertainties in the measurement of the observables. Changing the X\textmaxX_{\text{max}} values of all events in the data sample by ±10gcm2\pm 10\,\mathrm{g\,cm^{-2}} (Bellido & Pierre Auger Collaboration, 2017) does not change the number of photon candidate events. Likewise, changing the SbS_{b} values of all events in the data sample by ±5%\pm 5\,\mathrm{\%} (Aab et al., 2017a) has no effect on the number of photon candidate events. These tests show that the analysis is also robust against systematic uncertainties in the measured observables.

6 Discussion and Conclusions

Refer to caption
Figure 5: Upper limits (at 95%95\,\mathrm{\%} C.L.) on the integral photon flux above 2×1017eV2{\times}10^{17}\,\mathrm{eV} determined here (red circles). Shown are also previous upper limits by various experiments: Pierre Auger Observatory (hybrid: blue circles, taken from Savina & Pierre Auger Collaboration (2021); SD: cyan circles, taken from Rautenberg & Pierre Auger Collaboration (2019)), KASCADE/KASCADE-Grande (orange triangles, taken from Apel et al. (2017)), EAS-MSU (magenta diamonds, taken from Fomin et al. (2017)) and Telescope Array (green squares, taken from Abbasi et al. (2019)). The red band denotes the range of expected GZK photon fluxes under the assumption of a pure-proton scenario (Kampert et al., 2011). The green band shows the expected GZK photon flux assuming a mixed composition that would fit the Auger data (Bobrikova et al., 2021). In addition, the expected photon fluxes from the decay of super-heavy dark matter particles are included (decay into hadrons: dashed violet line, based on Kalashev & Kuznetsov (2016); decay into leptons: dot-dashed gray line, based on Kachelriess et al. (2018); the exact lines have been obtained through personal communication with one of the authors). The photon fluxes that would be expected from pppp interactions in the Galactic halo (Kalashev & Troitsky (2014), olive-green line) or from cosmic-ray interactions with matter in the Milky Way (Bérat et al. (2022), blue band) are shown as well. Also included is the expected flux of photons from a single, putative source without a cutoff in its spectrum (dotted turquoise line, modeled after HAWC J1825-134, Albert et al. (2021), where we extrapolated the measured flux to the highest energies), ignoring its directionality as if its flux were distributed over the full sky.

The upper limits on the integral photon flux derived in the previous section are shown in Fig. 5, together with the results of other photon searches with energy thresholds ranging from 1016eV10^{16}\,\mathrm{eV} to 1020eV10^{20}\,\mathrm{eV}. In the energy region below 1018eV10^{18}\,\mathrm{eV}, the limits obtained in this study are the most stringent ones, improving previous limits from KASCADE-Grande (Apel et al., 2017) and EAS-MSU (Fomin et al., 2017) by up to an order of magnitude. The analysis presented here extends the energy range of photon searches at the Pierre Auger Observatory and complements previous analyses in the energy range above 1019eV10^{19}\,\mathrm{eV} (Rautenberg & Pierre Auger Collaboration, 2019) and between 1018eV10^{18}\,\mathrm{eV} and 1019eV10^{19}\,\mathrm{eV} (Savina & Pierre Auger Collaboration, 2021), closing the gap to the smaller air-shower experiments mentioned before. For a threshold energy of 1018eV10^{18}\,\mathrm{eV}, the upper limit determined in this analysis is about two orders of magnitude above the previous limit from  Savina & Pierre Auger Collaboration (2021), which is due mainly to the smaller exposure, which in turn is a consequence of the smaller size of the 750m750\,\mathrm{m} SD array compared to the full array. Overall, the Pierre Auger Observatory now provides the most stringent limits on the incoming UHE photon flux over three decades in energy. This set of upper limits allows us to draw some conclusions relevant to the astrophysics of UHECRs and beyond, which we now discuss.

A guaranteed flux of ultra-high-energy photons of cosmogenic origin is that resulting from interactions of UHECRs with the background photon fields permeating the Universe, most notably the cosmic microwave background (Greisen, 1966; Zatsepin & Kuzmin, 1966). This flux is much reduced relative to that of UHECRs due to, as pointed out in the introduction, the short photon horizon (a few hundred kpc) compared to the cosmic-ray one (from a few tens of Mpc above the GZK threshold to cosmological scales below). Although guaranteed, the precise knowledge of this flux suffers from several uncertainties. The production channel of these photons is the decay of π0\pi^{0} mesons. The hadrons that cause the creation of these mesons may be primary proton cosmic rays, or secondary ones mainly produced by the photo-disintegration of nuclei interacting inelastically with a cosmic background photon. Since the nucleons produced in a photo-disintegration reaction inherit the energy of the fragmented nucleus divided by its atomic number, the photons ultimately produced from primary heavy nuclei are of lower energies than those from lighter ones or from proton primaries. The photon flux, therefore, depends on the nature of the UHECRs, which remains poorly constrained above about 5×1019eV5{\times}10^{19}\,\mathrm{eV}. The expectation for a pure-proton scenario is shown as the red band in Fig. 5 (Kampert et al., 2011), while that for a mixed composition at the sources is shown as the green band (Bobrikova et al., 2021). The latter, which is an order of magnitude lower than the former and falls off much faster, is in agreement with the various constraints inferred from the data collected at the Observatory, namely the mass composition and the energy spectrum (Aab et al., 2017b). Other dependencies that explain the width of the bands come from the hypotheses on the maximum acceleration energy of the nuclei at the sources and on the shape of the energy spectrum of the accelerated particles. Overall, while the sensitivities reached above about 3×1018eV3{\times}10^{18}\,\mathrm{eV} approach the most optimistic expectations of the cosmogenic photon flux from protons, they are about 1.51.5 orders of magnitude above those from the mixed-composition model.

Another cosmogenic flux is that from the interactions of UHECRs with the matter traversed in the Galactic plane, which is larger than the aforementioned one below about 1018eV10^{18}\,\mathrm{eV} (Bérat et al., 2022). Shown in blue, the width of the band accounts for uncertainties arising from the distribution of the gas in the disk, the absolute level of the UHECR flux, and the mass composition. The limits obtained in this study improve previous ones in the energy range of interest to probe such a flux; yet they remain between two and three orders of magnitude above the expectations.

The cosmogenic fluxes just mentioned can be seen as floors above which increased sensitivity to photons could reveal unexpected phenomena. To exemplify such a potential, we explain below the four curves that correspond to fluxes from putative sources in the Galactic disk or to patterns that could emerge from proton-proton interactions in the halo of the Galaxy or from the decay of super-heavy dark matter (SHDM).

The recent observation of photons above 2×1014eV2{\times}10^{14}\,\mathrm{eV} from decaying neutral pions from the J1825-134 source reported in Albert et al. (2021), in a direction coincident with a giant molecular cloud, provides evidence that cosmic rays are indeed accelerated to energies of several 1015eV10^{15}\,\mathrm{eV}, and above, in the Galaxy. Interestingly, the flux of this source could extend well beyond 2×1014eV2{\times}10^{14}\,\mathrm{eV}, as no cutoff is currently observed in its energy spectrum measured up to this energy. As an example of the discovery potential with increased exposure, we show as the green curve the flux from such a putative source extrapolated to the highest energies. Note that this flux, which is directional in essence, is here for simplicity calculated by converting it to a diffuse one, assuming the flux were distributed over the full sky. We observe that the extrapolated flux for this source is higher than the cosmogenic ones below 1018eV10^{18}\,\mathrm{eV}. The upper limits determined here exceed the extrapolated flux of this single, specific source by two orders of magnitude. They nevertheless limit the effective number of similar sources in the Galaxy. Improved tests of the abundance of such putative sources will be possible by further increasing the sensitivity of photon searches in this energy region or decreasing the energy threshold.

The origin of the bulk of the high-energy neutrino flux observed at the IceCube observatory (see, e.g., Aartsen et al. (2020)) is still debated. However, their production mechanism is conventionally considered as that of high-energy hadronic or photo-hadronic interactions that create charged pions decaying into neutrinos. These same interactions produce neutral pions that decay into photons. Therefore, there is an expected connection between high-energy photons and high-energy neutrinos. Since the horizon of photons is much smaller than that of neutrinos, they can trace the local sources in a way that could facilitate the differentiation between different scenarios. In Fig. 5, we reproduce in olive green the expectations for cosmic-ray interactions with the hot gas filling the outer halo of the Galaxy up to hundreds of kiloparsecs, as estimated in Kalashev & Troitsky (2014) by requiring that this photon flux is the counterpart of the neutrino one. The width of the band reflects the uncertainties in the spectral shape of the neutrino flux. We observe that the limits derived in this study are already constraining.

Finally, UHE photons could also result from the decay of SHDM particles. We note that previous upper limits on the incoming photon flux already severely constrained non-acceleration models in general, and SHDM models in particular, trying to explain the origin of cosmic rays at the highest energies (see, e.g., Abraham et al. (2008); Aab et al. (2017a)). Still, the production of super-heavy particles in the early Universe remains a possible solution to the dark matter conundrum because of the high value of the instability energy scale in the Standard Model of particle physics, which, according to current measurements of the Higgs-boson mass and the Yukawa coupling of the top quark, ranges between 101010^{10} and 1012GeV10^{12}\,\mathrm{GeV} (Degrassi et al., 2012; Bednyakov et al., 2015). The Standard Model can, therefore, be extrapolated without encountering inconsistencies that would make the electroweak vacuum unstable up to such energy scales (and even to much higher ones given the slow evolution of the instability scale up to the Planck mass (Degrassi et al., 2012)), where new physics could arise, giving rise to a mass spectrum of super-heavy particles that could have been produced during post-inflation reheating by various mechanisms (see, e.g., Ellis et al. (1992); Berezinsky et al. (1997); Chung et al. (1998); Garny et al. (2016); Ellis et al. (2016); Dudas et al. (2017); Kaneta et al. (2019); Mambrini & Olive (2021)). The set of limits shown in Fig. 5 allows for constraining the phase space of mass and lifetime of the SDHM particles (see, e.g., Kalashev & Kuznetsov (2016); Kachelriess et al. (2018); Bérat et al. (2022)). To illustrate the discovery potential with searches for UHE photons, we show as the dashed violet line and the dot-dashed gray line the expected photon fluxes in the case of hadronic (Kalashev & Kuznetsov, 2016) and leptonic (Kachelriess et al., 2018) decay channels, respectively. For these lines, we assume that the mass MXM_{X} of the SHDM particles is 1010GeV10^{10}\,\mathrm{GeV} and their lifetime τX\tau_{X} is 3×1021yr3{\times}10^{21}\,\mathrm{yr}, as currently allowed by previous limits. As the sensitivity of current photon searches increases, it will be possible to further constrain these values (Anchordoqui et al., 2021).

Further improvements of the upper limits derived in this analysis can be expected not only from using a larger dataset, profiting from the constant increase in exposure over time, but also from the ongoing detector upgrade of the Pierre Auger Observatory, dubbed AugerPrime (Castellina & Pierre Auger Collaboration, 2019; Aab et al., 2016b). A major part of this upgrade is the installation of scintillation detectors on top of the water-Cherenkov detector stations of the SD, with the aim to better separate the muonic and electromagnetic components of an air shower. Current photon searches already exploit the differences in these components between photon- and hadron-induced air showers, albeit in a rather indirect way. AugerPrime will allow for a more direct access, which will lead to an overall better separation between photon-induced air showers and the vast hadronic background. Naturally, this upgrade will improve the upper limits on the incoming photon flux or, in the best case, lead to the unambiguous detection of photons at ultra-high energies.

Acknowledgments

The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargüe. We are very grateful to the following agencies and organizations for financial support:

Argentina – Comisión Nacional de Energía Atómica; Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Gobierno de la Provincia de Mendoza; Municipalidad de Malargüe; NDM Holdings and Valle Las Leñas; in gratitude for their continuing cooperation over land access; Australia – the Australian Research Council; Belgium – Fonds de la Recherche Scientifique (FNRS); Research Foundation Flanders (FWO); Brazil – Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundação de Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ); São Paulo Research Foundation (FAPESP) Grants No. 2019/10151-2, No. 2010/07359-6 and No. 1999/05404-3; Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC); Czech Republic – Grant No. MSMT CR LTT18004, LM2015038, LM2018102, CZ.02.1.01/0.0/0.0/16_013/0001402, CZ.02.1.01/0.0/0.0/18_046/0016010 and CZ.02.1.01/0.0/0.0/17_049/0008422; France – Centre de Calcul IN2P3/CNRS; Centre National de la Recherche Scientifique (CNRS); Conseil Régional Ile-de-France; Département Physique Nucléaire et Corpusculaire (PNC-IN2P3/CNRS); Département Sciences de l’Univers (SDU-INSU/CNRS); Institut Lagrange de Paris (ILP) Grant No. LABEX ANR-10-LABX-63 within the Investissements d’Avenir Programme Grant No. ANR-11-IDEX-0004-02; Germany – Bundesministerium für Bildung und Forschung (BMBF); Deutsche Forschungsgemeinschaft (DFG); Finanzministerium Baden-Württemberg; Helmholtz Alliance for Astroparticle Physics (HAP); Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF); Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen; Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg; Italy – Istituto Nazionale di Fisica Nucleare (INFN); Istituto Nazionale di Astrofisica (INAF); Ministero dell’Istruzione, dell’Universitá e della Ricerca (MIUR); CETEMPS Center of Excellence; Ministero degli Affari Esteri (MAE); México – Consejo Nacional de Ciencia y Tecnología (CONACYT) No. 167733; Universidad Nacional Autónoma de México (UNAM); PAPIIT DGAPA-UNAM; The Netherlands – Ministry of Education, Culture and Science; Netherlands Organisation for Scientific Research (NWO); Dutch national e-infrastructure with the support of SURF Cooperative; Poland – Ministry of Education and Science, grant No. DIR/WK/2018/11; National Science Centre, Grants No. 2016/22/M/ST9/00198, 2016/23/B/ST9/01635, and 2020/39/B/ST9/01398; Portugal – Portuguese national funds and FEDER funds within Programa Operacional Factores de Competitividade through Fundação para a Ciência e a Tecnologia (COMPETE); Romania – Ministry of Research, Innovation and Digitization, CNCS/CCCDI – UEFISCDI, projects PN19150201/16N/2019, PN1906010, TE128 and PED289, within PNCDI III; Slovenia – Slovenian Research Agency, grants P1-0031, P1-0385, I0-0033, N1-0111; Spain – Ministerio de Economía, Industria y Competitividad (FPA2017-85114-P and PID2019-104676GB-C32), Xunta de Galicia (ED431C 2017/07), Junta de Andalucía (SOMM17/6104/UGR, P18-FR-4314) Feder Funds, RENATA Red Nacional Temática de Astropartículas (FPA2015-68783-REDT) and María de Maeztu Unit of Excellence (MDM-2016-0692); USA – Department of Energy, Contracts No. DE-AC02-07CH11359, No. DE-FR02-04ER41300, No. DE-FG02-99ER41107 and No. DE-SC0011689; National Science Foundation, Grant No. 0450696; The Grainger Foundation; Marie Curie-IRSES/EPLANET; European Particle Physics Latin American Network; and UNESCO.

References