This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\catchline

A shifted Mahler measure identity for Boyd’s family

Quanli Yang yangquanli16@mails.ucas.ac.cn School of Mathematical Sciences, University of Chinese Academy of Sciences
Beijing, 100049, P. R. China,
   Hang Liu111Corresponding author College of Mathematics and Statistics, Shenzhen University
Shenzhen, Guangdong, 518060, P. R. China
liuhang@szu.edu.cn
   Guoping Tang School of Mathematical Sciences, University of Chinese Academy of Sciences
Beijing, 100049, P. R. China
tanggp@ucas.ac.cn
Abstract

Recently the second author and Qin numerically verified some Mahler measure identities of genus 2 and 3 polynomial families. In this paper, we use the elliptic regulator to prove an identity invoving shifted Mahler measure for Boyd’s family.

keywords:
Mahler measure; genus 2 curves; elliptic curve; elliptic regulator.
\ccode

Mathematics Subject Classification 2010:11R06, 11G05, 19F27

1 Introduction

The (logarithmic) Mahler measure of a non-zero rational function P(x1,,xn)P\in\mathbb{C}(x_{1},\cdots,x_{n}) is defined by

m(P):=1(2πi)n𝕋nlog|P(x1,,xn)|dx1x1dxnxn\displaystyle m(P):=\frac{1}{(2\pi i)^{n}}\int_{\mathbb{T}^{n}}\log|P(x_{1},\cdots,x_{n})|\frac{dx_{1}}{x_{1}}\cdots\frac{dx_{n}}{x_{n}}

where the integration is taken over the unit torus 𝕋n={(x1,,xn)n:|x1|==|xn|=1}.\mathbb{T}^{n}=\{(x_{1},\cdots,x_{n})\in\mathbb{C}^{n}:|x_{1}|=\cdots=|x_{n}|=1\}.

For one-variable polynomials, by the famous Jensen’s formula [5, page 6], the Mahler measures depend only on the roots of the polynomials. For multivariate polynomials, there are many results that establish the relationship between special value of LL-functions of arithmetic-geometric objects and these Mahler measures. In his seminal work, Deninger [6] related the Mahler measures to regulator integrals and hence found some relationship between the Mahler measures and special values of LL-functions by means of Beilinson’s conjectures.

Boyd [3] numerically studied the Mahler measures of families of polynomials like A(x)y2+Bk(x)y+C(x)A(x)y^{2}+B_{k}(x)y+C(x). For the Boyd’s family Qk(x,y)=y2+(x4+kx3+2kx2+kx+1)y+x4Q_{k}(x,y)=y^{2}+(x^{4}+kx^{3}+2kx^{2}+kx+1)y+x^{4} and Pk(x,y)=(x+1)(y+1)(x+y)kxyP_{k}(x,y)=(x+1)(y+1)(x+y)-kxy, Bertin and Zudilin [1] proved the following relation which was later reproved by Lalin and Wu [9] using the regulator theory

m(Qk)={2m(Pk),0k4,m(Pk),k1.\displaystyle m(Q_{k})=\begin{cases}2m(P_{k}),&\quad 0\leqslant k\leqslant 4,\\ m(P_{k}),&\quad k\leqslant-1.\end{cases}

All these families are reciprocal polynomials which are easier to deal with than non-reciprocal polynomials by a relatively standard procedure.

The second author and Qin [11] generalized Boyd’s method of constructing reciprocal polynomials, obtained more types of polynomials, and proposed many conjectural Mahler measure identities. For Qk(x1,y),Pk(x,y)Q_{k}(x-1,y),P_{k}(x,y) and Rk(x,y)=x+1x+y+1y+(k4)R_{k}(x,y)=x+\frac{1}{x}+y+\frac{1}{y}+(k-4), they numerical verified a relation between the Mahler measures of these polynomials. While we are writing this article, we find Ringeling and Zudilin [12] proved the relation using a diamond-free method. In this article, we prove it in Theorem 1.1 by the regulator theory which follows more closely on how the second author and Qin found this relation. We hope the two methods could complement each other.

Theorem 1.1.

Let Pk,Qk,RkP_{k},Q_{k},R_{k} be as above. We have

m(Qk(x1,y))={m(Rk)k1,12(m(Pk)+m(Rk))k17.\displaystyle m(Q_{k}(x-1,y))=\begin{cases}m(R_{k})\qquad&k\leqslant-1,\\ \frac{1}{2}(m(P_{k})+m(R_{k}))\qquad&k\geqslant 17.\end{cases}

This paper is organized as follows. Section 2 reviews some important definitions and famous results that we need. In Section 3, we calculate the diamond operators related to these three families of polynomials. In Section 4, we analyze their Deninger paths. In Section 5, we synthesize the results obtained in Sections 3 and 4 and prove Theorem 1.1.

2 K2K_{2} and the regulator theory

Let FF be a field, a Steinberg symbol on FF is a bilinear map

c:F×FA\displaystyle c:F^{*}\times F^{*}\longrightarrow A

where AA is an abelian group whose operation we write multiplicatively for the moment, which satisfies the following condition:

c(a,1a)=1,for all aF{1}.\displaystyle c(a,1-a)=1,\quad\text{for all }a\in F^{*}-\{1\}.

By Matsumoto’s theorem, the second KK-group of FF can be described as

K2(F)FF/a(1a):aF,a0,1.\displaystyle K_{2}(F)\cong F^{*}\otimes_{\mathbb{Z}}F^{*}/\langle a\otimes(1-a):a\in F,a\neq 0,1\rangle.

We also call the class {a,b}\{a,b\} of aba\otimes b in K2(F)K_{2}(F) the Steinberg symbol.

Let f,g(C)f,g\in\mathbb{Q}(C). We can define a real-meromorphic differential 1-form

η({f,g}):=log|f|dargglog|g|dargf,\displaystyle\eta(\{f,g\}):=\log|f|d\arg g-\log|g|d\arg f,

where dargfd\arg f is defined by Im(df/f)\text{Im}(df/f), η\eta is defined outside the zeros and poles of ff and gg.

Beilinson’s conjecture relates KK-theory of varieties to special values of their LL-functions via the so-called regulator. There is a well defined paring between the tame K2K_{2} group K2T(C)K2((C))K_{2}^{T}(C)\subseteq K_{2}(\mathbb{Q}(C)) and H1(C(),)H_{1}(C(\mathbb{C}),\mathbb{Z}), giving us the regulator pairing

,:H1(X;)×K2T(C)/torsion\displaystyle\langle\cdotp,\cdotp\rangle:H_{1}(X;\mathbb{Z})\times K_{2}^{T}(C)/\text{torsion}\rightarrow\mathbb{R}
(γ,α)12πγη(α).\displaystyle(\gamma,\alpha)\mapsto\frac{1}{2\pi}\int_{\gamma}\eta(\alpha).

Let CC be the normalization of the projective closure of the algebraic curve defined by P(x,y)[x,y]P(x,y)\in\mathbb{C}[x,y]. Then {x,y}K2T(C)\{x,y\}\in K_{2}^{T}(C)\otimes\mathbb{Q} is equivalent to PP being tempered, i.e.i.e., the roots of all the face polynomials of PP are roots of unity. Denote the degree of PP in yy by dd. Write

P(x,y)=a0(x)k=1d(yyk(x)),\displaystyle P(x,y)=a_{0}(x)\prod_{k=1}^{d}(y-y_{k}(x)),

where yk(x),k=1,,dy_{k}(x),k=1,\cdots,d are dd solutions of P(x,y)=0P(x,y)=0 which maybe chosen to be continuous, piecewise analytic functions of xx. By Jensen’s formula with respect to the variable yy, we have

m(P)m(a0(x))\displaystyle m(P)-m(a_{0}(x)) =1(2πi)2𝕋2k=1dlog|yyk(x)dxxdyy\displaystyle=\frac{1}{(2\pi i)^{2}}\int_{\mathbb{T}^{2}}\sum_{k=1}^{d}\log|y-y_{k}(x)\frac{dx}{x}\frac{dy}{y}
=12πi𝕋1k=1dlog+|yk(x)|dxx,\displaystyle=\frac{1}{2\pi i}\int_{\mathbb{T}^{1}}\sum_{k=1}^{d}\log^{+}|y_{k}(x)|\frac{dx}{x},

where log+|u|:=max(log|u|,0).\log^{+}|u|:=\max(\log|u|,0).

In particular, if d=2d=2 and |y2(x)|1|y_{2}(x)|\leqslant 1 as long as |x|=1|x|=1 (this happens if PP is reciprocal). Then the above formula can be written as

m(P)m(a0(x))=12πiSlog|y1(x)|dxx=12πSη({x,y}),\displaystyle\begin{split}m(P)-m(a_{0}(x))&=\frac{1}{2\pi i}\int_{S}\log|y_{1}(x)|\frac{dx}{x}\\ &=-\frac{1}{2\pi}\int_{S}\eta(\{x,y\}),\end{split} (1)

where S={(x,y):|x|=1,|y1(x)|1}.S=\{(x,y):|x|=1,|y_{1}(x)|\geqslant 1\}. When SS can be seen as a cycle in H1(C,)H_{1}(C,\mathbb{Z}), then we recover a regulator integral.

The Bloch-Wigner dilogarithm is defined as

D(z):=log|z|arg(1z)Im(0zlog(1t)dtt),\displaystyle D(z):=\log|z|\arg(1-z)-\text{Im}\left(\int_{0}^{z}\log(1-t)\frac{dt}{t}\right),

where we take the principal branch of the arg function and the path of integration is a straight line segment from 0 to zz. This is defined on {z:0<|z|<1}\{z\in\mathbb{C}:0<|z|<1\}, but it can be extended to a real-valued continuous function on {}\mathbb{C}\cup\{\infty\} which is real-analytic on {0,1}\mathbb{C}-\{0,1\}.

Let EE be an elliptic curve over \mathbb{C}, choosing τH={z:Imz>0}\tau\in H=\{z:\text{Im}z>0\} such that E()/(+τ)E(\mathbb{C})\cong\mathbb{C}/(\mathbb{Z}+\mathbb{Z}\tau) and set q=e2πiτq=e^{2\pi i\tau}. A complex point PP on EE corresponds an element u+(+τ)u+(\mathbb{Z}+\mathbb{Z}\tau) of /(+τ)\mathbb{C}/(\mathbb{Z}+\mathbb{Z}\tau). Writing z=e2πiuz=e^{2\pi iu}, then the elliptic dilogarithm is defined as follows

DE(P):=lD(zql),\displaystyle D^{E}(P):=\underset{l\in\mathbb{Z}}{\sum}D(zq^{l}),

which we view as a function from E()E(\mathbb{C}) to \mathbb{R}.

Let [E()]\mathbb{Z}[E(\mathbb{C})] be the group of divisors on EE and let

[E()][E()]/(P)+(P):PE().\displaystyle\mathbb{Z}[E(\mathbb{C})]^{-}\cong\mathbb{Z}[E(\mathbb{C})]/\langle(P)+(-P):P\in E(\mathbb{C})\rangle.

Let f,g(E)×f,g\in\mathbb{C}(E)^{\times}, we define a diamond operation by

:Λ2(E)×[E()]\displaystyle\diamond:\varLambda^{2}\mathbb{C}(E)^{\times}\rightarrow\mathbb{Z}[E(\mathbb{C})]^{-}
fg=i,jminj(SiTj),\displaystyle f\diamond g=\underset{i,j}{\sum}m_{i}n_{j}(S_{i}-T_{j}),

where the divisors of ff and gg are

(f)=𝑖mi(Si)and(g)=𝑗nj(Tj).\displaystyle(f)=\underset{i}{\sum}m_{i}(S_{i})\quad\text{and}\quad(g)=\underset{j}{\sum}n_{j}(T_{j}).
Lemma 2.1.

The elliptic dilogarithm DED^{E} extends by linearity to a map from [E()]\mathbb{Z}[E(\mathbb{Q})]^{-} to \mathbb{C}. Let f,g(E)f,g\in\mathbb{Q}(E) and {f,g}K2(E)\{f,g\}\in K_{2}(E).Then

rE({f,g})[γ]=DE((f)(g)),\displaystyle r_{E}(\{f,g\})[\gamma]=D^{E}((f)\diamond(g)),

where [γ][\gamma] is a generator of H1(E,)H_{1}(E,\mathbb{Z})^{-}.

Let σ\sigma be an automorphism of order 2 of CC and let f:CC/σf:C\rightarrow C/\langle\sigma\rangle be the quotient map. Let MK2T(C)M\in K_{2}^{T}(C), then we have

ff(M)\displaystyle f^{*}f_{*}(M) =Mσ(M),\displaystyle=M\sigma(M), (2)
γη(ff(M))\displaystyle\int_{\gamma}\eta(f^{*}f_{*}(M)) =f(γ)η(f(M)),\displaystyle=\int_{f(\gamma)}\eta(f_{*}(M)), (3)

where ff_{*} is the transfer homomorphism and ff^{*} is the restriction homomorphism. MM may not be pushed directly to the quotient curve, however there are some ways to push it down to the quotient curve, see Lemma 3.4 or Bosman [2] for more details.

3 The diamond operators and the relation between the regulators

In this section, we first compute the pushforward of M1={x,y}M_{1}=\{x,y\} and M2={x+1,y}M_{2}=\{x+1,y\} in the K2K_{2} of the genus 2 family given by Qk(x,y)Q_{k}(x,y) down to the quotient curves of genus 1. Then we compare these pushforwards with the nature elements in K2K_{2} of these quotient curves by comparing the diamond operators of these elements.

3.1 The genus 2 family

The reciprocal family Qk(x,y)=y2+(x4+kx3+2kx2+kx+1)y+x4Q_{k}(x,y)=y^{2}+(x^{4}+kx^{3}+2kx^{2}+kx+1)y+x^{4} generally defines a genus 2 curve Zk:Qk(x,y)=0Z_{k}:Q_{k}(x,y)=0, we can make a birational transformation

{x=X1+1X11X1=x1+1x11y=2X1Y1(2k+1)X14+(2k6)X121(X11)4Y1=4(y2x4)y(x1)3(x+1),\begin{cases}x=\frac{X_{1}+1}{X_{1}-1}\qquad\qquad\qquad&X_{1}=\frac{x_{1}+1}{x_{1}-1}\\ y=\frac{2X_{1}Y_{1}-(2k+1)X_{1}^{4}+(2k-6)X_{1}^{2}-1}{(X_{1}-1)^{4}}&Y_{1}=\frac{4(y^{2}-x^{4})}{y(x-1)^{3}(x+1)},\end{cases}

where ZkZ_{k}^{\prime} is the curve given by

Y12=(k2+k)X16+(2k2+5k+4)X14+(k25k+8)X12k+4.Y_{1}^{2}=(k^{2}+k)X_{1}^{6}+(-2k^{2}+5k+4)X_{1}^{4}+(k^{2}-5k+8)X_{1}^{2}-k+4.

Let h(v)=(k2+k)v3+(2k2+5k+4)v2+(k25k+8)vk+4h(v)=(k^{2}+k)v^{3}+(-2k^{2}+5k+4)v^{2}+(k^{2}-5k+8)v-k+4. Then ZkZ_{k}^{\prime} is defined by Y12=h(X12)Y_{1}^{2}=h(X_{1}^{2}). We can see ZkZ_{k}^{\prime} has two automorphisms σ1:X1X1,Y1Y2\sigma_{1}:X_{1}\rightarrow-X_{1},Y_{1}\rightarrow Y_{2} (this corresponds to the automorphism x1x,y1yx\rightarrow\frac{1}{x},y\rightarrow\frac{1}{y} of ZkZ_{k}) and σ2:X1X1,Y1Y1\sigma_{2}:X_{1}\rightarrow-X_{1},Y_{1}\rightarrow-Y_{1} (this corresponds to the automorphism x1x,yyx4x\rightarrow\frac{1}{x},y\rightarrow\frac{y}{x^{4}} of ZkZ_{k}).

There are two quotient maps

f1:Zk\displaystyle f_{1}:Z_{k} Zk/σ1:W02=h(Z0)\displaystyle\rightarrow Z_{k}/\langle\sigma_{1}\rangle:W_{0}^{2}=h(Z_{0})
(X1,Y1)(X12,Y1),\displaystyle(X_{1},Y_{1})\mapsto(X_{1}^{2},Y_{1}),

and

f2:ZkZk/σ2\displaystyle f_{2}:Z_{k}\rightarrow Z_{k}/\langle\sigma_{2}\rangle
(X1,Y1)(1X12,Y1X13),\displaystyle(X_{1},Y_{1})\mapsto\left(\frac{1}{X_{1}^{2}},\frac{Y_{1}}{X_{1}^{3}}\right),

where Zk/σ2:W2=Z3h(1Z)=(4k)Z3+(k25k+8)Z2+(2k2+5k+4)Z+k2+kZ_{k}/\langle\sigma_{2}\rangle:W^{2}=Z^{3}h\left(\frac{1}{Z}\right)=(4-k)Z^{3}+(k^{2}-5k+8)Z^{2}+(-2k^{2}+5k+4)Z+k^{2}+k. Making a second transformation

{(4K)Z=X(4K)W=Y,\begin{cases}(4-K)Z=X\\ (4-K)W=Y,\end{cases}

we have an isomorphism ψ1:Zk/σ2Ek\psi_{1}:Z_{k}/\langle\sigma_{2}\rangle\cong E_{k} where EkE_{k} is defined by Y2=X3+(k25k+8)X2+(2k2+5k+4)(4k)X+(k2+k)(4k)2Y^{2}=X^{3}+(k^{2}-5k+8)X^{2}+(-2k^{2}+5k+4)(4-k)X+(k^{2}+k)(4-k)^{2}. Making another transformation

{X=4x1kY=8y1,\begin{cases}X=4x_{1}-k\\ Y=8y_{1},\end{cases}

we have an isomorphism ψ2:FkEk\psi_{2}:F_{k}\cong E_{k} where FkF_{k} is defined by y12=x1(x12+((k4)242)x1+1)y_{1}^{2}=x_{1}\left(x_{1}^{2}+\left(\frac{(k-4)^{2}}{4}-2\right)x_{1}+1\right). Making the last transformation

{x1=(k4)+x0+y0x0+y0x0=(k4)x12y12x1(x11)y1=(k4)(y0x0)(k4+x0+y0)2(x0+y0)2y0=(k4)x1+2y12x1(x11),\begin{cases}x_{1}=\frac{(k-4)+x_{0}+y_{0}}{x_{0}+y_{0}}\qquad\qquad&x_{0}=\frac{(k-4)x_{1}-2y_{1}}{2x_{1}(x_{1}-1)}\\ y_{1}=\frac{(k-4)(y_{0}-x_{0})(k-4+x_{0}+y_{0})}{2(x_{0}+y_{0})^{2}}&y_{0}=\frac{(k-4)x_{1}+2y_{1}}{2x_{1}(x_{1}-1)},\end{cases}

we have an isomorphism ψ3:RkFk\psi_{3}:R_{k}\cong F_{k}, where RkR_{k} represent the loci of Rk(x0,y0)=x0+1x0+y0+1y0+(k4).R_{k}(x_{0},y_{0})=x_{0}+\frac{1}{x_{0}}+y_{0}+\frac{1}{y_{0}}+(k-4).

There are two useful results from [11]

Lemma 3.1.

Qk(x,y)Q_{k}(x,y) and Qk(x1,y)Q_{k}(x-1,y) are tempered polynomials.

Corollary 3.2.

{x+1,y}K2T(Zk)\{x+1,y\}\in K_{2}^{T}(Z_{k})\otimes\mathbb{Q}.

Let us do an analysis as in [11], let D1,kD_{1,k} and D2,kD_{2,k} be the elliptic curves Zk/σ1Z_{k}/\langle\sigma_{1}\rangle and Zk/σ2Z_{k}/\langle\sigma_{2}\rangle respectively. By (2), we have

f1f1(M1)=M1σ1(M1)={x,y}{1x,1y}=2M1,\displaystyle f_{1}^{*}f_{1*}(M_{1})=M_{1}\sigma_{1}(M_{1})=\{x,y\}\left\{\frac{1}{x},\frac{1}{y}\right\}=2M_{1},
f2f2(M2)=M2σ2(M2)={x+1,y}{x+1x,yx4}=2M2M1.\displaystyle f_{2}^{*}f_{2*}(M_{2})=M_{2}\sigma_{2}(M_{2})=\{x+1,y\}\left\{\frac{x+1}{x},\frac{y}{x^{4}}\right\}=2M_{2}-M_{1}.

Now we can pushforward the regulator integral of M2={x+1,y}M_{2}=\{x+1,y\} on ZkZ_{k} to D2,kD_{2,k}, by above equations and (3), we have

1πγη(M1)=12πγη(f1f1(M1))=12πf1(γ)η(f1(M1)),\displaystyle\frac{1}{\pi}\int_{\gamma}\eta(M_{1})=\frac{1}{2\pi}\int_{\gamma}\eta(f_{1}^{*}f_{1*}(M_{1}))=\frac{1}{2\pi}\int_{f_{1}(\gamma)}\eta(f_{1*}(M_{1})),

and

12π(2γη(M2)γη(M1))=12πγη(f2f2(M2))=12πf2(γ)η(f2(M2)),\displaystyle\frac{1}{2\pi}\left(2\int_{\gamma}\eta(M_{2})-\int_{\gamma}\eta(M_{1})\right)=\frac{1}{2\pi}\int_{\gamma}\eta(f_{2}^{*}f_{2*}(M_{2}))=\frac{1}{2\pi}\int_{f_{2}(\gamma)}\eta(f_{2*}(M_{2})),

where γ\gamma is a cycle in H1(Zk,)H_{1}(Z_{k},\mathbb{Z}). f1(γ)f_{1}(\gamma) and f2(γ)f_{2}(\gamma) are cycles in H1(D1,k,)H_{1}(D_{1,k},\mathbb{Z}), H1(D2,k,)H_{1}(D_{2,k},\mathbb{Z}) respectively. Hence, by the above equations, the regulator integral of M2M_{2} on γ\gamma is

12πγη(M2)=18πf1(γ)η(f1(M1))+14πf2(γ)η(f2(M2)).\displaystyle\begin{split}\frac{1}{2\pi}\int_{\gamma}\eta(M_{2})=\frac{1}{8\pi}\int_{f_{1}(\gamma)}\eta(f_{1*}(M_{1}))+\frac{1}{4\pi}\int_{f_{2}(\gamma)}\eta(f_{2*}(M_{2})).\end{split} (4)

3.2 The quotient curve D1,kD_{1,k}

D1,k=Zk/σ1:W02=(k2+k)Z03+(2k2+5k+4)Z02+(k25k+8)Z0+(4k)D_{1,k}=Z_{k}/\langle\sigma_{1}\rangle:W_{0}^{2}=(k^{2}+k)Z_{0}^{3}+(-2k^{2}+5k+4)Z_{0}^{2}+(k^{2}-5k+8)Z_{0}+(4-k), making a birational transformation ϕ1\phi_{1}

{Z0=4X0+k23kk2+kW0=4(2Y0+(k2)X0+k)k2+k,\displaystyle\begin{cases}Z_{0}=\frac{4X_{0}+k^{2}-3k}{k^{2}+k}\\ W_{0}=\frac{4(2Y_{0}+(k-2)X_{0}+k)}{k^{2}+k},\end{cases}

this gives ϕ1:D1,kUk\phi_{1}:D_{1,k}\cong U_{k}, where Uk:Y02+(k2)X0Y0+kY0=X03U_{k}:Y_{0}^{2}+(k-2)X_{0}Y_{0}+kY_{0}=X_{0}^{3}. There is also a birational transformation ϕ2\phi_{2}

{X0=kx2+y2+1x2+y2kx2=X0Y0X0kY0=kkx2+y2+1x2+y2ky2=Y0+(k1)X0+kX0k,\displaystyle\begin{cases}X_{0}=k\frac{x_{2}+y_{2}+1}{x_{2}+y_{2}-k}\qquad\quad&x_{2}=\frac{X_{0}-Y_{0}}{X_{0}-k}\\ Y_{0}=k\frac{-kx_{2}+y_{2}+1}{x_{2}+y_{2}-k}&y_{2}=\frac{Y_{0}+(k-1)X_{0}+k}{X_{0}-k},\end{cases}

which gives ϕ2:PkUk\phi_{2}:P_{k}\cong U_{k} where PkP_{k} represent the loci of Pk(x2,y2)P_{k}(x_{2},y_{2}).

Let PP be the point (k,k)(k,k) on UkU_{k} which is a torsion point of order 6. Lalin and Wu [9] get the following result

Lemma 3.3.

Let γPk={(x2,y2)Pk:|x2|=1,|y2|1}\gamma_{P_{k}}=\{(x_{2},y_{2})\in P_{k}:|x_{2}|=1,|y_{2}|\geqslant 1\}, γZk={(x,y)Zk:|x+1|=1,|y|1}\gamma_{Z_{k}}=\{(x,y)\in Z_{k}:|x+1|=1,|y|\geqslant 1\} and [γ2][\gamma_{2}] be a generator of H1(Uk,)H_{1}(U_{k},\mathbb{Z})^{-}. If [(ϕ1f1)(γZk)]=p1[γ2][(\phi_{1}\circ f_{1})(\gamma_{Z_{k}})]=p_{1}[\gamma_{2}] and [ϕ2(γPk)]=p2[γ2][\phi_{2}(\gamma_{P_{k}})]=p_{2}[\gamma_{2}], then

rZk({x,y})[γZk]=p1DUk(6(P)6(2P)),\displaystyle r_{Z_{k}}(\{x,y\})[\gamma_{Z_{k}}]=p_{1}D^{U_{k}}(-6(P)-6(2P)),

and

rPk({x2,y2})[γPk]=p2DUk(6(P)6(2P)),\displaystyle\begin{split}r_{P_{k}}(\{x_{2},y_{2}\})[\gamma_{P_{k}}]=p_{2}D^{U_{k}}(-6(P)-6(2P)),\end{split} (5)

By the above Lemma, we have

f1(γZk)η(f1(M1))=γZkη(f1f1(M1))=rZk(2{x,y})[γZk]=2p1DUk(6(P)6(2P)).\displaystyle\begin{split}\int_{f_{1}(\gamma_{Z_{k}})}\eta(f_{1*}(M_{1}))&=\int_{\gamma_{Z_{k}}}\eta(f_{1}^{*}f_{1*}(M_{1}))\\ &=r_{Z_{k}}(2\{x,y\})[\gamma_{Z_{k}}]\\ &=2p_{1}D^{U_{k}}(-6(P)-6(2P)).\end{split} (6)

3.3 The quotient curve D2,kD_{2,k}

First we prove a Lemma which allow us to calculate f2(M2)f_{2*}(M_{2}) so as to calculate its regulator integral in (4).

Lemma 3.4.

Suppose we have rational functions a(Z,W),b(Z,W)a(Z,W),b(Z,W) on D2,kD_{2,k} such that

a(x+1)+by=1\displaystyle a(x+1)+by=1

in which we also see a,ba,b as functions on ZkZ_{k}. Then we have

f2(γ)η(f2(M2))=\displaystyle\int_{f_{2}(\gamma)}\eta(f_{2*}(M_{2}))= f2(γ)η(f2({a,b}))12f2(γ)η(f2({a,y2x4}))\displaystyle-\int_{f_{2}(\gamma)}\eta(f_{2*}(\{a,b\}))-\frac{1}{2}\int_{f_{2}(\gamma)}\eta\left(f_{2*}\left(\left\{a,\frac{y^{2}}{x^{4}}\right\}\right)\right)
12f2(γ)η(f2({(x+1)2x,b})).\displaystyle-\frac{1}{2}\int_{f_{2}(\gamma)}\eta\left(f_{2*}\left(\left\{\frac{(x+1)^{2}}{x},b\right\}\right)\right).
Proof 3.5.

By the properties of Steinberg symbols, we have

0={a(x+1),by}={a,b}+{a,y}+{x+1,b}+{x+1,y}.\displaystyle\begin{split}0&=\{a(x+1),by\}\\ &=\{a,b\}+\{a,y\}+\{x+1,b\}+\{x+1,y\}.\end{split} (7)

Now consider the automorphism σ2:x1x,yyx4\sigma_{2}:x\rightarrow\frac{1}{x},y\rightarrow\frac{y}{x^{4}} of ZkZ_{k} acting on (7), since aa and bb are invariant under this automorphism, we have

0={a,b}+{a,yx4}+{x+1x,b}+{x+1x,yx4}={a,b}+{a,yx4}+{x+1x,b}+{x+1,y}{x,y}.\displaystyle\begin{split}0&=\{a,b\}+\left\{a,\frac{y}{x^{4}}\right\}+\left\{\frac{x+1}{x},b\right\}+\left\{\frac{x+1}{x},\frac{y}{x^{4}}\right\}\\ &=\{a,b\}+\left\{a,\frac{y}{x^{4}}\right\}+\left\{\frac{x+1}{x},b\right\}+\{x+1,y\}-\{x,y\}.\end{split} (8)
(7)+(8)\displaystyle\eqref{eqn:ax}+\eqref{eqn:ab} 0=2{a,b}+{a,y2x4}+{(x+1)2x,b}+2{x+1,y}{x,y}\displaystyle\Rightarrow 0=2\{a,b\}+\left\{a,\frac{y^{2}}{x^{4}}\right\}+\left\{\frac{(x+1)^{2}}{x},b\right\}+2\{x+1,y\}-\{x,y\}
2{x+1,y}={x,y}2{a,b}{a,y2x4}{(x+1)2x,b}\displaystyle\Rightarrow 2\{x+1,y\}=\{x,y\}-2\{a,b\}-\left\{a,\frac{y^{2}}{x^{4}}\right\}-\left\{\frac{(x+1)^{2}}{x},b\right\}
2f2f2({x+1,y})=2f2f2({a,b})f2f2({a,y2x4})\displaystyle\Rightarrow 2f_{2}^{*}f_{2*}(\{x+1,y\})=-2f_{2}^{*}f_{2*}(\{a,b\})-f_{2}^{*}f_{2*}\left(\left\{a,\frac{y^{2}}{x^{4}}\right\}\right)
f2f2({(x+1)2x,b})\displaystyle\qquad\qquad\qquad\qquad\qquad-f_{2}^{*}f_{2*}\left(\left\{\frac{(x+1)^{2}}{x},b\right\}\right)
γη(f2f2(M2))=γη(f2f2({a,b}))12γη(f2f2({a,y2x4}))\displaystyle\Rightarrow\int_{\gamma}\eta(f_{2}^{*}f_{2*}(M_{2}))=-\int_{\gamma}\eta(f_{2}^{*}f_{2*}(\{a,b\}))-\frac{1}{2}\int_{\gamma}\eta\left(f_{2}^{*}f_{2*}\left(\left\{a,\frac{y^{2}}{x^{4}}\right\}\right)\right)
12γη(f2f2({(x+1)2x,b}))\displaystyle\qquad\qquad\qquad\qquad-\frac{1}{2}\int_{\gamma}\eta\left(f_{2}^{*}f_{2*}\left(\left\{\frac{(x+1)^{2}}{x},b\right\}\right)\right)
f2(γ)η(f2(M2))=f2(γ)η(f2({a,b}))12f2(γ)η(f2({a,y2x4}))\displaystyle\Rightarrow\int_{f_{2}(\gamma)}\eta(f_{2*}(M_{2}))=-\int_{f_{2}(\gamma)}\eta(f_{2*}(\{a,b\}))-\frac{1}{2}\int_{f_{2}(\gamma)}\eta\left(f_{2*}\left(\left\{a,\frac{y^{2}}{x^{4}}\right\}\right)\right)
12f2(γ)η(f2({(x+1)2x,b}))\displaystyle\qquad\qquad\qquad\qquad\qquad-\frac{1}{2}\int_{f_{2}(\gamma)}\eta\left(f_{2*}\left(\left\{\frac{(x+1)^{2}}{x},b\right\}\right)\right)

We can find the following functions satisfying Lemma 3.4

a\displaystyle a =2(1+Z)3+Z\displaystyle=\frac{2(1+Z)}{3+Z}
=2(Xk+4)X3k+12,\displaystyle=\frac{2(X-k+4)}{X-3k+12},
b\displaystyle b =(Z1)3(Z+3)(Z2+(2k6)Z+2W2k1)\displaystyle=\frac{(Z-1)^{3}}{(Z+3)(-Z^{2}+(2k-6)Z+2W-2k-1)}
=(X4+k)318(X3k+12)(12X2+(k27k+12)X+k3152k2+12k+8+(k4)Y).\displaystyle=-\frac{(X-4+k)^{3}}{18(X-3k+12)\left(\frac{1}{2}X^{2}+(k^{2}-7k+12)X+k^{3}-\frac{15}{2}k^{2}+12k+8+(k-4)Y\right)}.

The functions y2x4\frac{y^{2}}{x^{4}} and (x+1)2x\frac{(x+1)^{2}}{x} are also invariant under σ2\sigma_{2}, so we can also see them as functions on D2,kD_{2,k} and further as functions on EkE_{k} which gives

y2x4\displaystyle\frac{y^{2}}{x^{4}} =((2k+1)X14+(2k+6)X122X1Y1+1)2(X121)4,\displaystyle=\frac{((2k+1)X_{1}^{4}+(-2k+6)X_{1}^{2}-2X_{1}Y_{1}+1)^{2}}{(X_{1}^{2}-1)^{4}},
=(2kZZ22k+2W6Z1)2(Z1)4\displaystyle=\frac{(2kZ-Z^{2}-2k+2W-6Z-1)^{2}}{(Z-1)^{4}}
=4(12X2+(k27k+12)X+(k4)Y+k3152k2+12k+8)2(X+k4)2,\displaystyle=\frac{4(\frac{1}{2}X^{2}+(k^{2}-7k+12)X+(k-4)Y+k^{3}-\frac{15}{2}k^{2}+12k+8)^{2}}{(X+k-4)^{2}},

and

(x+1)2x\displaystyle\frac{(x+1)^{2}}{x} =4X12X121,\displaystyle=\frac{4X_{1}^{2}}{X_{1}^{2}-1},
=41Z\displaystyle=\frac{4}{1-Z}
=4(k4)X+k4.\displaystyle=\frac{4(k-4)}{X+k-4}.

Let a1=Xk+4,a2=X3k+12,b1=X+k4a_{1}=X-k+4,a_{2}=X-3k+12,b_{1}=X+k-4 and b2=12X2+(k27k+12)X+(k4)Y+k3152k2+12k+8b_{2}=\frac{1}{2}X^{2}+(k^{2}-7k+12)X+(k-4)Y+k^{3}-\frac{15}{2}k^{2}+12k+8. Then

a\displaystyle a =2a1a2\displaystyle=\frac{2a_{1}}{a_{2}}
b\displaystyle b =b1318a2b2\displaystyle=-\frac{b_{1}^{3}}{18a_{2}b_{2}}
y2x4\displaystyle\frac{y^{2}}{x^{4}} =4b22b14\displaystyle=\frac{4b_{2}^{2}}{b_{1}^{4}}
(x+1)2x\displaystyle\frac{(x+1)^{2}}{x} =4(k4)b1.\displaystyle=\frac{4(k-4)}{b_{1}}.

Let T=(k4,2(k4)k22k)T=(k-4,2(k-4)\sqrt{k^{2}-2k}), U=(3k12,4(k4)k22k3)U=(3k-12,4(k-4)\sqrt{k^{2}-2k-3}) and S=(4k,164k)S=(4-k,16-4k) which are all points on EkE_{k}, and SS is a 4-torsion point. Then

(a1)\displaystyle(a_{1}) =(T)+(T)2O\displaystyle=(T)+(-T)-2O
(a2)\displaystyle(a_{2}) =(U)+(U)2O\displaystyle=(U)+(-U)-2O
(b1)\displaystyle(b_{1}) =(S)+(S)2O\displaystyle=(S)+(-S)-2O
(b2)\displaystyle(b_{2}) =4(S)4O.\displaystyle=4(S)-4O.

We see a,b,y2x4,(x+1)2xa,b,\frac{y^{2}}{x^{4}},\frac{(x+1)^{2}}{x} as functions on ZkZ_{k} or EkE_{k} when appropriate. By Lemma 3.4, Lemma 2.1 and using the fact that f2({c,d})={c,dσ2(d)}f_{2*}(\{c,d\})=\{c,d\sigma_{2}(d)\} if cc is invariant under σ2\sigma_{2}, we have

f2(γ)η(f2(M2))=f2(γ)η(f2({a,b}))12f2(γ)η(f2({a,y2x4}))12f2(γ)η(f2({(x+1)2x,b}))=q12DEk((a)(b))+q1DEk((a)(y2x4))+q1DEk(((x+1)2x)b)=2q1DEk((a1)(b1))+2q1DEk((a1)(a2))+3q1DEk((a2)(b1))q1DEk((b1)(b2))=8q1DEk((S))4q1DEk((2S))=8q1DEk((S)),\displaystyle\begin{split}\int_{f_{2}(\gamma)}\eta(f_{2*}(M_{2}))&=-\int_{f_{2}(\gamma)}\eta(f_{2*}(\{a,b\}))-\frac{1}{2}\int_{f_{2}(\gamma)}\eta\left(f_{2*}\left(\left\{a,\frac{y^{2}}{x^{4}}\right\}\right)\right)\\ &\quad-\frac{1}{2}\int_{f_{2}(\gamma)}\eta\left(f_{2*}\left(\left\{\frac{(x+1)^{2}}{x},b\right\}\right)\right)\\ &=-q_{1}2D^{E_{k}}((a)\diamond(b))+q_{1}D^{E_{k}}\left((a)\diamond\left(\frac{y^{2}}{x^{4}}\right)\right)\\ &\quad+q_{1}D^{E_{k}}\left(\left(\frac{(x+1)^{2}}{x}\right)\diamond b\right)\\ &=-2q_{1}D^{E_{k}}((a_{1})\diamond(b_{1}))+2q_{1}D^{E_{k}}((a_{1})\diamond(a_{2}))+3q_{1}D^{E_{k}}((a_{2})\diamond(b_{1}))\\ &\quad-q_{1}D^{E_{k}}((b_{1})\diamond(b_{2}))\\ &=-8q_{1}D^{E_{k}}((S))-4q_{1}D^{E_{k}}((2S))\\ &=-8q_{1}D^{E_{k}}((S)),\end{split} (9)

where [f2(γ)]=q1[γ][f_{2}(\gamma)]=q_{1}[\gamma^{\prime}] in H1(Ek,)H_{1}(E_{k},\mathbb{Z})^{-}, [γ][\gamma^{\prime}] is a generator of H1(Ek,)H_{1}(E_{k},\mathbb{Z})^{-}.

Now we take Rk(x0,y0)=0R_{k}(x_{0},y_{0})=0 into account, then

x0\displaystyle x_{0} =(k4)x12y12x1(x11)\displaystyle=\frac{(k-4)x_{1}-2y_{1}}{2x_{1}(x_{1}-1)}
=(2k8)X+(2k28k)2Y(X+k)(X+k4)\displaystyle=\frac{(2k-8)X+(2k^{2}-8k)-2Y}{(X+k)(X+k-4)}
y0\displaystyle y_{0} =(k4)x1+2y12x1(x11)\displaystyle=\frac{(k-4)x_{1}+2y_{1}}{2x_{1}(x_{1}-1)}
=(2k8)X+(2k28k)+2Y(X+k)(X+k4),\displaystyle=\frac{(2k-8)X+(2k^{2}-8k)+2Y}{(X+k)(X+k-4)},

we can easily get

(x0)(y0)8(S).\displaystyle(x_{0})\diamond(y_{0})\sim-8(S).

By Lemma 2.1 again, we have

rRk({x0,y0})[γRk]=rEk({x0(X,Y),y0(X,Y)})[ψ2ψ3(γRk)]=q2DEk((x0)(y0))=8q2DEk((S)),\displaystyle\begin{split}r_{R_{k}}(\{x_{0},y_{0}\})[\gamma_{R_{k}}]&=r_{E_{k}}(\{x_{0}(X,Y),y_{0}(X,Y)\})[\psi_{2}\circ\psi_{3}(\gamma_{R_{k}})]\\ &=q_{2}D^{E_{k}}((x_{0})\diamond(y_{0}))\\ &=-8q_{2}D^{E_{k}}((S)),\end{split} (10)

where γRk={(x0,y0)Rk(x0,y0)=0:|x0|=1,|y0|1}\gamma_{R_{k}}=\{(x_{0},y_{0})\in R_{k}(x_{0},y_{0})=0:|x_{0}|=1,|y_{0}|\geqslant 1\} is the Deninger path of Rk(x0,y0)=0R_{k}(x_{0},y_{0})=0, and [γRk]=q2[γ][\gamma_{R_{k}}]=q_{2}[\gamma^{\prime}] in H1(Ek,)H_{1}(E_{k},\mathbb{Z})^{-} as above. So if we get the multiple relationship between q1q_{1} and q2q_{2}, we can establish the connection between m(Rk)m(R_{k}) and f2(γ)η(f2(M2))\int_{f_{2}(\gamma)}\eta(f_{2*}(M_{2})).

4 The cycles of integration

In the above analysis, if we get the relationship between p1p_{1} and p2p_{2} and between q1q_{1} and q2q_{2}, we can connect the right side of equations (6) and (9) with m(Pk)m(P_{k}) and m(Rk)m(R_{k}) respectively. In this section, we will calculate their relationship in different value ranges of kk, so as to obtain the Theorem 1.1.

We will first prove γZk,γPk\gamma_{Z_{k}},\gamma_{P_{k}} and γRk\gamma_{R_{k}} are closed. From now on, let us use “±\pm”to indicate the sign to be determined.

For reciprocal polynomials Pk(x2,y2)P_{k}(x_{2},y_{2}) and Rk(x0,y0)R_{k}(x_{0},y_{0}), γPk\gamma_{P_{k}} and γRk\gamma_{R_{k}} are closed, since Pk(x0,y0)=0P_{k}(x_{0},y_{0})=0 and Rk(x2,y2)=0R_{k}(x_{2},y_{2})=0 do not intersect the torus 𝕋2\mathbb{T}^{2} for both k1k\leqslant-1 and k17k\geqslant 17.

For Qk(x,y)=y2+(x4+kx3+2kx2+kx+1)y+x4Q_{k}(x,y)=y^{2}+(x^{4}+kx^{3}+2kx^{2}+kx+1)y+x^{4}, we prove a lemma.

Lemma 4.1.

γZk={(x,y)Zk:|x+1|=1,|y|1}\gamma_{Z_{k}}=\{(x,y)\in Z_{k}:|x+1|=1,|y|\geqslant 1\} is a closed path of ZkZ_{k} for k1k\leqslant-1 and k17k\geqslant 17.

Proof 4.2.

Let Zk:Q(x1,y)=0Z_{k}^{\prime}:Q(x-1,y)=0, then γZk\gamma_{Z_{k}} being a closed path is equivalent to γZk={(x,y)Zk:|x|=1,|y|1}\gamma_{Z_{k}}^{\prime}=\{(x,y)\in Z_{k}^{\prime}:|x|=1,|y|\geqslant 1\} being a closed path.

We want to find the intersection between Qk(x1,y)=0Q_{k}(x-1,y)=0 and the torus |x|=|y|=1|x|=|y|=1. Assume such intersection exists, then we also have Qk(1/x1,1/y)=0Q_{k}(1/x-1,1/y)=0. Let M(x,y)=Qk(x1,y)M(x,y)=Q_{k}(x-1,y) and M(x,y)=x4y2Qk(1x1,1y)M^{*}(x,y)=x^{4}y^{2}Q_{k}(\frac{1}{x}-1,\frac{1}{y}). Then

Resy(M(x,y),M(x,y))=\displaystyle Res_{y}(M(x,y),M^{*}(x,y))=
((k+5)x6+(k35)x5+(7k+100)x4+(15k145)x3+(7k+100)x2+(k35)x+k+5)×\displaystyle((k+5)x^{6}+(-k-35)x^{5}+(-7k+100)x^{4}+(15k-145)x^{3}+(-7k+100)x^{2}+(-k-35)x+k+5)\times
(x1)2(x2x+1)2x2k=0.\displaystyle(x-1)^{2}(x^{2}-x+1)^{2}x^{2}k=0.

If x1=0x-1=0, i.e., x=1x=1, then y=1y=-1.

If x2x+1=0x^{2}-x+1=0, we can find f(x,y)=y2yxk+yx+x1=0f(x,y)=y^{2}-yxk+yx+x-1=0. We have

f(eπi3,y)f(eπi3,y)\displaystyle f(e^{\frac{\pi i}{3}},y)f(e^{-\frac{\pi i}{3}},y) =y4+(k+1)y3+(k22k)y2+(k+1)y+1\displaystyle=y^{4}+(-k+1)y^{3}+(k^{2}-2k)y^{2}+(-k+1)y+1
=y2g(u),\displaystyle=y^{2}g(u),

where u=y+1yu=y+\frac{1}{y}. It is easy to see g(u)=u2+(k+1)u+k22k2>0g(u)=u^{2}+(-k+1)u+k^{2}-2k-2>0 for u[2,2]u\in[-2,2] and k1k\leqslant-1 or k17k\geqslant 17. Hence we can easily conclude that f(eπi3,y)f(e^{\frac{\pi i}{3}},y) and f(eπi3,y)f(e^{-\frac{\pi i}{3}},y) have no solution on |y|=1|y|=1.

Next we prove (k+5)x6+(k35)x5+(7k+100)x4+(15k145)x3+(7k+100)x2+(k35)x+k+50(k+5)x^{6}+(-k-35)x^{5}+(-7k+100)x^{4}+(15k-145)x^{3}+(-7k+100)x^{2}+(-k-35)x+k+5\neq 0 for |x|=1|x|=1. Let s=x+1xs=x+\frac{1}{x}. Then it is equivalent to show μ(k,s)=(s3s210s+17)k+5s335s2+85s750\mu(k,s)=(s^{3}-s^{2}-10s+17)k+5s^{3}-35s^{2}+85s-75\neq 0 where s[2,2]s\in[-2,2]. It is easy to see s3s210s+17>0s^{3}-s^{2}-10s+17>0. Then we get

{μ(k,s)μ(1,s)=4s334s2+95s92<0for k1,μ(k,s)>μ(17,s)=22s352s285s+2140for k>17.\displaystyle\begin{cases}\mu(k,s)\leqslant\mu(-1,s)=4s^{3}-34s^{2}+95s-92<0\quad\text{for }k\leqslant-1,\\ \mu(k,s)>\mu(17,s)=22s^{3}-52s^{2}-85s+214\geqslant 0\quad\text{for }k>17.\end{cases}

In summary, we see (1,1)(1,-1) is only intersection point of γZk\gamma_{Z_{k}}^{\prime} and 𝕋2\mathbb{T}^{2} for k1k\leqslant-1 and k>17k>17. Hence γZk\gamma_{Z_{k}}^{\prime} is closed for k1k\leqslant-1 and k>17k>17. Then by continuity, γZk\gamma_{Z_{k}}^{\prime} is also closed for k=17k=17.

4.1 The quotient map f1f_{1}

First consider the case k17k\geqslant 17. Let ω1\omega_{1} be the holomorphic differential on UkU_{k}

ω1=dX02Y0+(k2)X0+k.\omega_{1}=\frac{dX_{0}}{2Y_{0}+(k-2)X_{0}+k}.

Then we have

f1(γZk)ω1\displaystyle\int_{f_{1}(\gamma_{Z_{k}})}\omega_{1} =γZkf1ω1\displaystyle=\int_{\gamma_{Z_{k}}}f_{1}^{*}\omega_{1}
=±γZk(x+1)2(x4+kx3+2kx2+kx+1)24x4𝑑x\displaystyle=\pm\int_{\gamma_{Z_{k}}}\frac{(x+1)^{2}}{\sqrt{(x^{4}+kx^{3}+2kx^{2}+kx+1)^{2}-4x^{4}}}dx
=±12ι1(γZk)idu(1u)(u+k22)(u2+k2u+k2).\displaystyle=\pm\frac{1}{2}\int_{\iota_{1}(\gamma_{Z_{k}})}\frac{idu}{\sqrt{(1-u)(u+\frac{k-2}{2})(u^{2}+\frac{k}{2}u+\frac{k}{2})}}.

where ι1\iota_{1} is the substitution u=12(x+1x)u=\frac{1}{2}\left(x+\frac{1}{x}\right).

We can parameterize the loop γZk\gamma_{Z_{k}} by letting x=e2πit1(t[0,1])x=e^{2\pi it}-1(t\in[0,1]) which gives

u(t)\displaystyle u(t) =12(x(t)+1x(t))\displaystyle=\frac{1}{2}\left(x(t)+\frac{1}{x(t)}\right)
=12(e2πit1+1e2πit1)\displaystyle=\frac{1}{2}\left(e^{2\pi it}-1+\frac{1}{e^{2\pi it}-1}\right)
=cos(πt)254+3cos(πt)4cos(πt)34sin(πt)i.\displaystyle=\cos(\pi t)^{2}-\frac{5}{4}+\frac{3\cos(\pi t)-4\cos(\pi t)^{3}}{4\sin(\pi t)}i.

The image of u(t)u(t) has only two intersections with the real axis at 54-\frac{5}{4} which corresponds to t=12t=\frac{1}{2} and 12-\frac{1}{2} which corresponds to t=16t=\frac{1}{6}, 56\frac{5}{6}.

Let e1=1e_{1}=1, e2=1k2e_{2}=1-\frac{k}{2}, e3=14k+14k28ke_{3}=-\frac{1}{4}k+\frac{1}{4}\sqrt{k^{2}-8k} and e4=14k14k28ke_{4}=-\frac{1}{4}k-\frac{1}{4}\sqrt{k^{2}-8k}. Then for k17k\geqslant 17

e2<e4<54<e3<12<1.e_{2}<e_{4}<-\frac{5}{4}<e_{3}<-\frac{1}{2}<1.

We can see u(t)u(t) is a path looping around e3e_{3} which lifts to a homology class equivalent to the lift of the line segment connecting e1e_{1} and e3e_{3} (see the picture below). e3e_{3}54-\frac{5}{4}e4e_{4}e2e_{2}12-\frac{1}{2}e1e_{1}

Then we get

f1(γZk)ω1=12ι1(γZk)idu(1u)(u+k22)(u2+k2u+k2)=±e3e1idt(1u)(u+k22)(u2+k2u+k2)=±k4+k(k8)2k12idss(1s)(k2s2+k(4k)s+4)(u=ksk+22)=±18k212k118kk(k8)0idvv(v2(k24k2)v+k+1)(s=1v+1).\displaystyle\begin{split}\int_{f_{1}(\gamma_{Z_{k}})}\omega_{1}&=\frac{1}{2}\int_{\iota_{1*}(\gamma_{Z_{k}})}\frac{idu}{\sqrt{(1-u)(u+\frac{k-2}{2})(u^{2}+\frac{k}{2}u+\frac{k}{2})}}\\ &=\pm\int_{e_{3}}^{e_{1}}\frac{idt}{\sqrt{(1-u)(u+\frac{k-2}{2})(u^{2}+\frac{k}{2}u+\frac{k}{2})}}\\ &=\pm\int_{\frac{k-4+\sqrt{k(k-8)}}{2k}}^{1}\frac{2ids}{\sqrt{s(1-s)(k^{2}s^{2}+k(4-k)s+4)}}\quad\left(u=\frac{ks-k+2}{2}\right)\\ &=\pm\int_{\frac{1}{8}k^{2}-\frac{1}{2}k-1-\frac{1}{8}k\sqrt{k(k-8)}}^{0}\frac{idv}{\sqrt{v(v^{2}-(\frac{k^{2}}{4}-k-2)v+k+1)}}\quad\left(s=\frac{1}{v+1}\right).\end{split} (11)

On the other hand, we have

ω1\displaystyle\omega_{1} =dX02Y0+(k2)X0+k\displaystyle=\frac{dX_{0}}{2Y_{0}+(k-2)X_{0}+k}
=y2dx2(x2+1)(y22x2),\displaystyle=\frac{y_{2}dx_{2}}{(x_{2}+1)(y_{2}^{2}-x_{2})},

and

γPkω1=γPky2dx2(x2+1)(y22x2)=±γPkdx2(x24+1)2k(x23+x2)+(k24k2)x22=±012πidt(k4cos(πt)2)216cos(πt)2(x2=e2πit)=±0124πidt(k4cos(πt)2)216cos(πt)2=±012idu1u1(1u1)((k4u1)216u1)(u1=cos(πt)2)=±0idww(w2+2(k24k2)w+k316(k8))(u1=11+4wk2)=±18k212k1+18kk(k8)idvv(v2(k24k2)v+k+1)(w=v(k24k2)+k+1v).\displaystyle\begin{split}\int_{\gamma_{P_{k}}}\omega_{1}&=\int_{\gamma_{P_{k}}}\frac{y_{2}dx_{2}}{(x_{2}+1)(y_{2}^{2}-x_{2})}\\ &=\pm\int_{\gamma_{P_{k}}}\frac{dx_{2}}{\sqrt{(x_{2}^{4}+1)-2k(x_{2}^{3}+x_{2})+(k^{2}-4k-2)x_{2}^{2}}}\\ &=\pm\int_{0}^{1}\frac{2\pi idt}{\sqrt{(k-4\cos(\pi t)^{2})^{2}-16\cos(\pi t)^{2}}}\quad\left(x_{2}=e^{2\pi it}\right)\\ &=\pm\int_{0}^{\frac{1}{2}}\frac{4\pi idt}{\sqrt{(k-4\cos(\pi t)^{2})^{2}-16\cos(\pi t)^{2}}}\\ &=\pm\int_{0}^{1}\frac{2idu_{1}}{\sqrt{u_{1}(1-u_{1})((k-4u_{1})^{2}-16u_{1})}}\quad\left(u_{1}=\cos(\pi t)^{2}\right)\\ &=\pm\int_{0}^{\infty}\frac{idw}{\sqrt{w(w^{2}+2(\frac{k^{2}}{4}-k-2)w+\frac{k^{3}}{16}(k-8))}}\quad\left(u_{1}=\frac{1}{1+\frac{4w}{k^{2}}}\right)\\ &=\pm\int_{\frac{1}{8}k^{2}-\frac{1}{2}k-1+\frac{1}{8}k\sqrt{k(k-8)}}^{\infty}\frac{idv}{\sqrt{v(v^{2}-(\frac{k^{2}}{4}-k-2)v+k+1)}}\\ &\qquad\qquad\left(w=v-\left(\frac{k^{2}}{4}-k-2\right)+\frac{k+1}{v}\right).\end{split} (12)

So comparing equations (11) and (12) we get

f1(γZk)ω1=±γPkω1,\displaystyle\int_{f_{1}(\gamma_{Z_{k}})}\omega_{1}=\pm\int_{\gamma_{P_{k}}}\omega_{1},

then

p1=±p2\displaystyle p_{1}=\pm p_{2} (13)

for k17k\geqslant 17.

For k<1k<-1, we have

54<e4<12<e1<e3<e2.-\frac{5}{4}<e_{4}<-\frac{1}{2}<e_{1}<e_{3}<e_{2}.

We can see u(t)u(t) as a path looping around e4e_{4} twice which lifts to a trivial homology class (see the picture below).

54-\frac{5}{4}e4e_{4}12-\frac{1}{2}e1e_{1}e3e_{3}e2e_{2}

We get

f1(γZk)ω1=0.\int_{f_{1}(\gamma_{Z_{k}})}\omega_{1}=0.

Hence we conclude that p1=0p_{1}=0 for k<1k<-1. Then by continuity, we get

p1=0fork1.p_{1}=0\quad\text{for}\quad k\leqslant-1. (14)

4.2 The quotient map f2f_{2}

Consider the holomorphic differential

ω2=dX2Y=dx14y1=y02(y021)x0dx0,\omega_{2}=\frac{dX}{2Y}=\frac{dx_{1}}{4y_{1}}=\frac{y_{0}}{2(y_{0}^{2}-1)x_{0}}dx_{0},

we have

γRkω2=γRky02(y021)x0𝑑x0=±γRkdx02(x02+1+(k4)x0)24x02=±012πidt2(2cos(2πt)+k4)24(x0=e2πit)=±πi011(4(cos(πt))2+k4)(4(cos(πt))2+k8)𝑑t=±2πi0121(4(cos(πt))2+k4)(4(cos(πt))2+k8)𝑑t=±201ds(s21)(4s2+k4)(4s2+k8)(cos(πt)=s)=±01duu(u1)(4u+k4)(4u+k8)(s2=u)=±14k81k8dw(wk88)(w+k88)(wk8)(w+k8)(u=wk8+1)=±1dα(α+1)((k4)α+4)(kα+4)(α=1wk8)=±14k2dβ(βk2)(βk216)(βk2+1616)(α=16βk24kk+4k4).\displaystyle\begin{split}\int_{\gamma_{R_{k}}}\omega_{2}&=\int_{\gamma_{R_{k}}}\frac{y_{0}}{2(y_{0}^{2}-1)x_{0}}dx_{0}\\ &=\pm\int_{\gamma_{R_{k}}}\frac{dx_{0}}{2\sqrt{(x_{0}^{2}+1+(k-4)x_{0})^{2}-4x_{0}^{2}}}\\ &=\pm\int_{0}^{1}\frac{2\pi idt}{2\sqrt{(2\cos(2\pi t)+k-4)^{2}-4}}\quad(x_{0}=e^{2\pi it})\\ &=\pm\pi i\int_{0}^{1}\frac{1}{\sqrt{(4(\cos(\pi t))^{2}+k-4)(4(\cos(\pi t))^{2}+k-8)}}dt\\ &=\pm 2\pi i\int_{0}^{\frac{1}{2}}\frac{1}{\sqrt{(4(\cos(\pi t))^{2}+k-4)(4(\cos(\pi t))^{2}+k-8)}}dt\\ &=\pm 2\int_{0}^{1}\frac{ds}{\sqrt{(s^{2}-1)(4s^{2}+k-4)(4s^{2}+k-8)}}\quad(\cos(\pi t)=s)\\ &=\pm\int_{0}^{1}\frac{du}{\sqrt{u(u-1)(4u+k-4)(4u+k-8)}}\quad(s^{2}=u)\\ &=\pm\frac{1}{4}\int_{\frac{k}{8}-1}^{\frac{k}{8}}\frac{dw}{\sqrt{(w-\frac{k-8}{8})(w+\frac{k-8}{8})(w-\frac{k}{8})(w+\frac{k}{8})}}\quad\left(u=w-\frac{k}{8}+1\right)\\ &=\pm\int_{-1}^{-\infty}\frac{d\alpha}{\sqrt{(\alpha+1)((k-4)\alpha+4)(k\alpha+4)}}\quad\left(\alpha=\frac{1}{w-\frac{k}{8}}\right)\\ &=\pm\frac{1}{4}\int_{\frac{k}{2}}^{-\infty}\frac{d\beta}{\sqrt{(\beta-\frac{k}{2})(\beta-\frac{k^{2}}{16})(\beta-\frac{k^{2}+16}{16})}}\quad\left(\alpha=\frac{16\beta}{k^{2}-4k}-\frac{k+4}{k-4}\right).\end{split} (15)

We also have

f2(γZk)ω2=γZkf2ω2=γZky(x21)2(y2x4)𝑑x=±γZkx212(x4+kx3+2kx2+kx+1)24x4𝑑x=±14ι1(γZk)du(u+1)(u+k22)(u2+k2u+k2)=±14(ι2ι1)(γZk)dτ(τ2(k4)216)(τ2k28k16)=±18(ι3ι2ι1)(γZk)ds(sk2)(sk216)(sk2+1616).\displaystyle\begin{split}\int_{f_{2}(\gamma_{Z_{k}})}\omega_{2}&=\int_{\gamma_{Z_{k}}}f_{2}^{*}\omega_{2}=\int_{\gamma_{Z_{k}}}\frac{y(x^{2}-1)}{2(y^{2}-x^{4})}dx\\ &=\pm\int_{\gamma_{Z_{k}}}\frac{x^{2}-1}{2\sqrt{(x^{4}+kx^{3}+2kx^{2}+kx+1)^{2}-4x^{4}}}dx\\ &=\pm\frac{1}{4}\int_{\iota_{1}(\gamma_{Z_{k}})}\frac{du}{\sqrt{(u+1)(u+\frac{k-2}{2})(u^{2}+\frac{k}{2}u+\frac{k}{2})}}\\ &=\pm\frac{1}{4}\int_{(\iota_{2}\circ\iota_{1})(\gamma_{Z_{k}})}\frac{d\tau}{\sqrt{(\tau^{2}-\frac{(k-4)^{2}}{16})(\tau^{2}-\frac{k^{2}-8k}{16})}}\\ &=\pm\frac{1}{8}\int_{(\iota_{3}\circ\iota_{2}\circ\iota_{1})(\gamma_{Z_{k}})}\frac{ds}{\sqrt{(s-\frac{k}{2})(s-\frac{k^{2}}{16})(s-\frac{k^{2}+16}{16})}}.\end{split} (16)

where ι1,ι2,ι3\iota_{1},\iota_{2},\iota_{3} are the substitutions u=12(x+1x)u=\frac{1}{2}(x+\frac{1}{x}), τ=u+k4\tau=u+\frac{k}{4}, s=τ2+k2s=\tau^{2}+\frac{k}{2} respectively.

Now let us analyze the integral path (ι3ι2ι1)(γZk)(\iota_{3}\circ\iota_{2}\circ\iota_{1})(\gamma_{Z_{k}}). We parameterize the loop γZk\gamma_{Z_{k}} by x=e2πit1x=e^{2\pi it}-1, then

s(t)\displaystyle s(t) =(12(x(t)+1x(t))+k4)2+k2\displaystyle=\left(\frac{1}{2}\left(x(t)+\frac{1}{x(t)}\right)+\frac{k}{4}\right)^{2}+\frac{k}{2}
=11632cos(πt)6+(8k80)cos(πt)4+(k210k+74)cos(πt)2k2+2k25sin(πt)2\displaystyle=-\frac{1}{16}\frac{32\cos(\pi t)^{6}+(8k-80)\cos(\pi t)^{4}+(k^{2}-10k+74)\cos(\pi t)^{2}-k^{2}+2k-25}{\sin(\pi t)^{2}}
18cos(πt)(4cos(πt)23)(4cos(πt)2+k5)sin(πt)i.\displaystyle\quad-\frac{1}{8}\frac{\cos(\pi t)(4\cos(\pi t)^{2}-3)(4\cos(\pi t)^{2}+k-5)}{\sin(\pi t)}i.

The image of s(t)s(t) has only two intersections with the real axis, i.e., (k+2)216\frac{(k+2)^{2}}{16} which corresponds to t=16t=\frac{1}{6}, 56\frac{5}{6} and k22k+2516\frac{k^{2}-2k+25}{16} which corresponds to t=12t=\frac{1}{2}. Let e1=k2e_{1}^{\prime}=\frac{k}{2}, e2=k216e_{2}^{\prime}=\frac{k^{2}}{16}, e3=k216+1e_{3}^{\prime}=\frac{k^{2}}{16}+1.

For k1k\leqslant-1, we have

e1<(k+2)216<e2<e3<k22k+2516,\displaystyle e_{1}^{\prime}<\frac{(k+2)^{2}}{16}<e_{2}^{\prime}<e_{3}^{\prime}<\frac{k^{2}-2k+25}{16},

We can see s(t)s(t) is a path looping around e2e_{2}^{\prime} and e3e_{3}^{\prime} twice which lifts to a homology class which is equivalent to twice of the lift of the line segment connecting e2e_{2}^{\prime} and e3e_{3}^{\prime} (see the picture below).

k22k+2516\frac{k^{2}-2k+25}{16}e3e_{3}^{\prime}e2e_{2}^{\prime}(k+2)216\frac{(k+2)^{2}}{16}e1e_{1}^{\prime}

So we have

18(ι3ι2ι1)(γZk)ds(sk2)(sk216)(sk2+1616)=±12k2ds(sk2)(sk216)(sk2+1616).\displaystyle\begin{split}&\frac{1}{8}\int_{(\iota_{3}\circ\iota_{2}\circ\iota_{1})_{*}(\gamma_{Z_{k}})}\frac{ds}{\sqrt{(s-\frac{k}{2})(s-\frac{k^{2}}{16})(s-\frac{k^{2}+16}{16})}}\\ =&\pm\frac{1}{2}\int_{\frac{k}{2}}^{-\infty}\frac{ds}{\sqrt{(s-\frac{k}{2})(s-\frac{k^{2}}{16})(s-\frac{k^{2}+16}{16})}}.\end{split} (17)

Hence by (15), (16) and (LABEL:eqn:rQk), we conclude that

q1=±2q2\displaystyle q_{1}=\pm 2q_{2} (18)

for k1k\leqslant-1.

For k17k\geqslant 17, we have

e1<k22k+2516<e2<e3<(k+2)216.\displaystyle e_{1}^{\prime}<\frac{k^{2}-2k+25}{16}<e_{2}^{\prime}<e_{3}^{\prime}<\frac{(k+2)^{2}}{16}.

We can see s(t)s(t) is a path looping around e2e_{2}^{\prime} and e3e_{3}^{\prime} which lifts to a homology class which is equivalent to the lift of the line segment connecting e2e_{2}^{\prime} and e3e_{3}^{\prime} (see the picture below).

k22k+2516\frac{k^{2}-2k+25}{16}e2e_{2}^{\prime}e3e_{3}^{\prime}(k+2)216\frac{(k+2)^{2}}{16}e1e_{1}^{\prime}

So we have

18(ι3ι2ι1)(γZk)ds(sk2)(sk216)(sk2+1616)=±14k2ds(sk2)(sk216)(sk2+1616).\displaystyle\begin{split}&\frac{1}{8}\int_{(\iota_{3}\circ\iota_{2}\circ\iota_{1})_{*}(\gamma_{Z_{k}})}\frac{ds}{\sqrt{(s-\frac{k}{2})(s-\frac{k^{2}}{16})(s-\frac{k^{2}+16}{16})}}\\ =&\pm\frac{1}{4}\int_{\frac{k}{2}}^{-\infty}\frac{ds}{\sqrt{(s-\frac{k}{2})(s-\frac{k^{2}}{16})(s-\frac{k^{2}+16}{16})}}.\end{split} (19)

Hence by (15), (16) and (LABEL:eqn:rQk2), we conclude that

q1=±q2\displaystyle q_{1}=\pm q_{2} (20)

for k17k\geqslant 17.

5 Proof of Theorem 1.1

Proof 5.1.

Let us take γ=γZk\gamma=\gamma_{Z_{k}} in (4). Then we have

12πγη(M2)\displaystyle\frac{1}{2\pi}\int_{\gamma}\eta(M_{2}) =18πf1(γ)η(f1(M1))+14πf2(γ)η(f2(M2))\displaystyle=\frac{1}{8\pi}\int_{f_{1}(\gamma)}\eta(f_{1*}(M_{1}))+\frac{1}{4\pi}\int_{f_{2}(\gamma)}\eta(f_{2*}(M_{2}))
=14πp1DUk(6(P)6(2P))2πq1DEk((S))(by (9),(6))\displaystyle=\frac{1}{4\pi}p_{1}D^{U_{k}}(-6(P)-6(2P))-\frac{2}{\pi}q_{1}D^{E_{k}}((S))\qquad(\text{by \eqref{eqn:M2},\eqref{eqn:M1}})
={±12πrγRk({x0,y0})[γRk],k1±14πrPk({x2,y2})[γPk]±14πrγRk({x0,y0})[γRk],k17\displaystyle=\begin{cases}\pm\frac{1}{2\pi}r_{\gamma_{R_{k}}}(\{x_{0},y_{0}\})[\gamma_{R_{k}}],&k\leqslant-1\\ \pm\frac{1}{4\pi}r_{P_{k}}(\{x_{2},y_{2}\})[\gamma_{P_{k}}]\pm\frac{1}{4\pi}r_{\gamma_{R_{k}}(\{x_{0},y_{0}\})[\gamma_{R_{k}}]},\quad&k\geqslant 17\end{cases}

where the case k1k\leqslant-1 is derived by (5), (10), (14), (18) and the case k17k\geqslant 17 is derived by (5), (10), (13), (20).

Hence by (1), we have

m(Qk(x1,y))=|12πγη(M2)|={m(Rk),k112|m(Pk)±m(Rk)|,k17.\displaystyle m(Q_{k}(x-1,y))=\left|\frac{1}{2\pi}\int_{\gamma}\eta(M_{2})\right|=\begin{cases}m(R_{k}),&k\leqslant-1\\ \frac{1}{2}|m(P_{k})\pm m(R_{k})|,\quad&k\geqslant 17.\end{cases} (21)

It is easy to see the Mahler measures are equivalent to log|k|\log|k| as kk tends to infinity. Combine this fact with (21)\eqref{eqn:shift} and continuity, we prove Theorem 1.1.

By the evaluation of m(R1),m(R4),m(R8)m(R_{-1}),m(R_{-4}),m(R_{-8}) and m(R12)m(R_{-12}) in [4], [7], [8], [14] and [15], we have the following corollary of Theorem 1.1.

Corollary 5.2.

Let Em/E_{m}/\mathbb{Q} be an elliptic curve with conductor mm. Then we have

m(Q1(x1,y))\displaystyle m(Q_{-1}(x-1,y)) =6L(E15,0),\displaystyle=6L^{\prime}(E_{15},0),
m(Q4(x1,y))\displaystyle m(Q_{-4}(x-1,y)) =4L(E24,0),\displaystyle=4L^{\prime}(E_{24},0),
m(Q8(x1,y))\displaystyle m(Q_{-8}(x-1,y)) =2L(E48,0),\displaystyle=2L^{\prime}(E_{48},0),
m(Q12(x1,y))\displaystyle m(Q_{-12}(x-1,y)) =11L(E15,0).\displaystyle=11L^{\prime}(E_{15},0).

6 Conclusion

In this article, we prove a Mahler measure identity involving the shifted Mahler measure of Boyd’s family. We expect the above methods applicable to prove more Mahler measure identities in [11]. We will try to develop a universal algorithm to deal with this kind of problem in the future work.

Another possible direction is to deal with the the Mahler measure of polynomials defining curve with non-abelian automorphism groups using this method.

7 Acknowledgements

The authors would like to thank Fracois Brunault, Maltilde Lalin, Riccardo Pengo, Haixu Wang and Wadim Zudilin for very helpful conversations and/or correspondences. The first and third authors were supported by the National Natural Science Foundation of China (Grant No. 11771422). The second author was supported by the General Program Class A of Shenzhen Stable Support Plan (Grant No. 20200812135418001) and the National Natural Science Foundation of China (Grant No. 11801345).

References

  • [1] M. J. Bertin, W. Zudilin. On the Mahler measure of a family of genus 2 curves, Math. Z., 2016, 283(3-4): 1185-1193.
  • [2] J. Bosman. Boyd’s conjecture for a family of genus 2 curves. 2004, Thesis-Universiteit Utrecht.
  • [3] D. Boyd. Mahler’s Measure and Special Values of LL-functions, Experiment. Math., 1998, 7(1): 37-82.
  • [4] F. Brunault. Regulators of Siegel units and applications. J. Number Theory, 2016, 163, 542-569.
  • [5] F. Brunault, W. Zudilin. Many Variations of Mahler Measures, A Lasting Symphony. Volumn 28 of Aust. Math. Soc. Lect. Ser. Cambridge: Cambridge University Press, 2020.
  • [6] C. Deninger. Deligne periods of mixed motives, KK-theory and the entropy of certain n\mathbb{Z}^{n}-actions, J. Amer. Math. Soc, 1997, 10(2): 259-281.
  • [7] M. Lalin. On a conjecture by Boyd. Int. J. Number. Theory., 2010, 6(3): 705-711.
  • [8] M. Lalin, M. Rogers. Functional equations for Mahler measures of genus-one curves. Algebra Number Theory., 2007, 1(1): 87-117.
  • [9] M. Lalin, G. Wu. Regulator proofs for Boyd’s identities on genus 2 curves, Intern. J. Number Theory, 2018, 15(5): 945-967.
  • [10] M. Lalin, G. Wu. The Mahler measure of a genus 3 family, Ramanujan J., 2021, 55(1): 309-326.
  • [11] H. Liu, H. Qin. Mahler Measure of Families of Polynomials Defining Genus 2 and 3 Curves, Experiment. Math., in press.
  • [12] B. Ringeling, W. Zudilin . Exercising in complex Mahler measures: diamonds are not forever. arXiv preprint math/2109.14380.
  • [13] F. Rodriguez-Villegas. Modular Mahler Measures I, in Topics in Number Theory, Ahlgren, S., Andrews, G., Ono, K. (eds.), Dordrecht: Kluwer Acad. Publ., 1999, 17-48.
  • [14] M. Rogers and W. Zudilin. From LL-series of elliptic curves to Mahler measures. Compos. Math., 2012, 148(2): 385–414.
  • [15] M. Rogers and W. Zudilin. On the Mahler measure of 1+X+1/X+Y+1/Y1+X+1/X+Y+1/Y. Int. Math. Res. Notices., 2014(9): 2305–2326.