This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A short note on model selection by LASSO methods in a change-point model

Fuqi Chen University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4. Email: chen111n@uwindsor.ca    and   Sévérien Nkurunziza University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4. Email: severien@uwindsor.ca
Abstract

In Ciuperca (2012) (Ciuperca. Model selection by LASSO methods in a change-point model, Stat. Papers, 2012;(in press)), the author considered a linear regression model with multiple change-points occurring at unknown times. In particular, the author studied the asymptotic properties of the LASSO-type and of the adaptive LASSO estimators. While the established results seem interesting, we point out some major errors in proof of the most important result of the quoted paper. Further, we present a corrected result and proof.

Keywords: Asymptotic properties; Change-points; Model selection; LASSO; Regression.

1 Introduction

In Ciuperca (2012), the author considered a linear regression model with multiple change-points occurring at unknown times. In particular, the author studied the asymptotic properties of the LASSO-type and that of the adaptive LASSO estimators. While the established results seem interesting, we point out a major error in proof of one of the important result. In particular, the proof of Part (ii) of Lemma 3 in Ciuperca (2011) is based on the inequality |a2b2|(ab)2|a^{2}-b^{2}|\leqslant(a-b)^{2}, which is wrong. Indeed, take a=2a=2 and b=1b=1, we get |a2b2|=3>(21)2=1|a^{2}-b^{2}|=3>(2-1)^{2}=1 which contradicts the inequality used in the quoted paper.

For the sake of clarity, we use the same notation and we suppose that the main assumptions in Ciuperca (2012) hold. Below, we recall these assumptions for the convenience of the reader. Namely, we consider the following model: Yi=fθ(Xi)+εiY_{i}=f_{\theta}(X_{i})+\varepsilon_{i}, where

fθ(Xi)=Xiϕ1𝕀{i<l1}+Xiϕ2𝕀{l1i<l2}++XiϕK+1𝕀{i>lK},i=1,n,f_{\theta}(X_{i})=X^{\prime}_{i}\phi_{1}\mathbb{\mathbb{I}}_{\left\{i<l_{1}\right\}}+X^{\prime}_{i}\phi_{2}\mathbf{\mathbb{I}}_{\left\{l_{1}\leq i<l_{2}\right\}}+...+X^{\prime}_{i}\phi_{K+1}\mathbf{\mathbb{I}}_{\left\{i>l_{K}\right\}},\quad i=1,...n,

𝕀A\mathbb{\mathbb{I}}_{A} denotes the indicator function of the event AA, YiY_{i} denotes the response variable, XiX_{i} is a pp-vector of regressors, (εi)1in(\varepsilon_{i})_{1\leqslant i\leqslant n} are the errors which are assumed to be independent and identically distributed (i.i.d.) random variables, ϕiΓp\phi_{i}\in\Gamma\subset\mathbb{R}^{p}, Γ\Gamma is compact, i=1,2,,Ki=1,2,\dots,K. The model parameters are given by θ=(θ1,θ2)\theta=(\theta_{1},\theta_{2}), with the regression parameters θ1=(ϕ1,ϕk+1)\theta_{1}=(\phi_{1},...\phi_{k+1}) and the change-points θ2=(l1,,lk)\theta_{2}=(l_{1},...,l_{k}). In addition, we set θ10=(ϕ10,ϕk+10)\theta_{1}^{0}=(\phi_{1}^{0},...\phi_{k+1}^{0}) and θ20=(l10,,lk0)\theta_{2}^{0}=(l_{1}^{0},...,l_{k}^{0}) to be the true values of θ1\theta_{1} and θ2\theta_{2}, respectively. As in Ciuperca (2012), we impose the following conditions.

Main Assumptions

(𝑯𝟏)\bm{(H_{1})}

There exists two positive constants u,c0(>0)u,c_{0}(>0) such that lr+1lrc0[nu]l_{r+1}-l_{r}\geqslant c_{0}[n^{u}], for every r(1,,K)r\in(1,...,K), with l0=1l_{0}=1 and lK+1=nl_{K+1}=n. Without loss of generality, we consider 3/4u13/4\leqslant u\leqslant 1, and c0=1c_{0}=1.

(𝑯𝟐)(\bm{H_{2}})

n1max1in(XiXi)n𝟎n^{-1}\,\displaystyle{\max_{1\leqslant i\leqslant n}}(X^{\prime}_{i}X_{i})\xrightarrow[n\rightarrow\infty]{}\bm{0} and for any r=1,,K+1r=1,...,K+1, the matrix
Cn,r(lrlr1)i=lr1+1lrXiXinCrC_{n,r}\equiv(l_{r}-l_{r-1})\displaystyle{\sum_{i=l_{r-1}+1}^{l_{r}}}X_{i}X^{\prime}_{i}\xrightarrow[n\rightarrow\infty]{}C_{r}, where CrC_{r} is a non-negative definite matrix.

(𝑯𝟑)(\bm{H_{3}})

ε\varepsilon is a random variable absolutely continuous with E(εi)=0\textrm{E}(\varepsilon_{i})=0, E(εi2)=σ2\textrm{E}(\varepsilon_{i}^{2})=\sigma^{2}, i=1,2,,ni=1,2,\dots,n.

We assume that ϕrϕr+1\phi_{r}\neq\phi_{r+1}, r=1,,kr=1,...,k, and consider the following penalized sum:

S(l1,,lk)=r=1k+1[infϕri=lr1+1lr(((YiXiϕr)2)+λn,(lr1,lr)lrlr1u=1P|ϕr,u|γ)],S(l_{1},...,l_{k})=\sum_{r=1}^{k+1}\Big{[}\inf_{\phi_{r}}\sum_{i=l_{r-1}+1}^{l_{r}}\Big{(}((Y_{i}-X_{i}\phi_{r})^{2})+\frac{\lambda_{n,(l_{r-1},l_{r})}}{l_{r}-l_{r-1}}\sum_{u=1}^{P}|\phi_{r,u}|^{\gamma}\Big{)}\Big{]},

where λn,(lr1,lr)=O(lrlr1)1/2\lambda_{n,(l_{r-1},l_{r})}=O(l_{r}-l_{r-1})^{1/2} is the tuning parameter and γ>0\gamma>0. We define the LASSO-type estimator of (θ10,θ20)(\theta_{1}^{0},\theta_{2}^{0}), say (θ^1s,θ^2s)(\hat{\theta}_{1}^{s},\hat{\theta}_{2}^{s}), where θ^1s=(l^1s,,l^ks)\hat{\theta}_{1}^{s}=(\hat{l}_{1}^{s},...,\hat{l}_{k}^{s}) and θ^2s=(ϕ^1s,,ϕ^k+1s)\hat{\theta}_{2}^{s}=(\hat{\phi}_{1}^{s},...,\hat{\phi}_{k+1}^{s}), by

ϕ^rs=argminϕri=lr1+1lr((YiXiϕr)2)+λn,(lr1,lr)lrlr1u=1P|ϕr,u|γ),r=1,,k+1,\hat{\phi}_{r}^{s}=\displaystyle{\arg\min_{\phi_{r}}}\sum_{i=l_{r-1}+1}^{l_{r}}\Big{(}(Y_{i}-X_{i}\phi_{r})^{2})+\frac{\lambda_{n,(l_{r-1},l_{r})}}{l_{r}-l_{r-1}}\sum_{u=1}^{P}|\phi_{r,u}|^{\gamma}\Big{)},\quad\forall r=1,...,k+1,

and

θ^1s=argminθ1S(l1,,lk).\hat{\theta}_{1}^{s}=\displaystyle{\arg\min_{\theta_{1}}}S(l_{1},...,l_{k}).

Note that, for γ=1\gamma=1 and γ=2\gamma=2, we obtain the LASSO estimator and ridge estimator respectively.

The rest of this paper is organized as follows. Section 2 gives the main result of this paper, and in Section 3. The proof of the main result is given in the Appendix.

2 Main result

Lemma 2.1.

Under Assumptions (𝐇𝟐)(\bm{H_{2}}), (𝐇𝟑)(\bm{H_{3}}), for all n1n_{1}, n2Nn_{2}\in N, such that n1nun_{1}\geqslant n^{u}, with 3/4u13/4\leq u\leq 1, n2nvn_{2}\leq n^{v}, v<1/4v<1/4, let be the model:

Yi\displaystyle Y_{i} =\displaystyle= Xiϕ10+ϵi,i=1,,n1\displaystyle X_{i}^{\prime}\phi_{1}^{0}+\epsilon_{i},\;i=1,...,n_{1}
Yi\displaystyle Y_{i} =\displaystyle= Xiϕ20+ϵi,i=n1+1,,n2,\displaystyle X_{i}^{\prime}\phi_{2}^{0}+\epsilon_{i},\;i=n_{1}+1,...,n_{2},

with ϕ10ϕ20\phi_{1}^{0}\neq\phi_{2}^{0}. We set An1+n2s(ϕ)=i=1n1ηi;(0,n1)s(ϕ,ϕ10)+i=n1+1n1+n2ηi;(n1,n1+n2)s(ϕ,ϕ20)A_{n_{1}+n_{2}}^{s}(\phi)=\displaystyle{\sum_{i=1}^{n_{1}}}\eta_{i;(0,n_{1})}^{s}(\phi,\phi_{1}^{0})+\displaystyle{\sum_{i=n_{1}+1}^{n_{1}+n_{2}}}\eta_{i;(n_{1},n_{1}+n_{2})}^{s}(\phi,\phi_{2}^{0})   and
ϕ^n1+n2s=argminϕAn1+n2s(ϕ)\hat{\phi}_{n_{1}+n_{2}}^{s}=\displaystyle{\arg\min_{\phi}}A_{n_{1}+n_{2}}^{s}(\phi). Let δ(0,u3v)\delta\in(0,u-3v). Then,

  1. (i)

    ϕ^n1+n2sϕ10n(uvδ)/2||\hat{\phi}_{n_{1}+n_{2}}^{s}-\phi_{1}^{0}||\leq n^{-(u-v-\delta)/2}.

  2. (ii)

    If ϕ20=ϕ10+ϕ30n1/4\phi_{2}^{0}=\phi_{1}^{0}+\phi_{3}^{0}\,n^{-1/4} for some ϕ30\phi_{3}^{0}, then

    i=1n1ηi;(0,n1)s(ϕn1+n2s,ϕ10)=Op(1).\displaystyle{\sum_{i=1}^{n_{1}}}\eta_{i;(0,n_{1})}^{s}(\phi_{n_{1}+n_{2}}^{s},\phi_{1}^{0})=O_{p}(1).
Remark 2.1.

It should be noted that, although Part (i) of the above lemma is the same as that of lemma 3 of Ciuperca (2012), Part (ii) is slightly different. The established result holds if ϕ20=ϕ10+ϕ30n1/4\phi_{2}^{0}=\phi_{1}^{0}+\phi_{3}^{0}\,n^{-1/4}, while the result stated in Ciuperca (2012) is supposed to hold for all ϕ20ϕ10\phi_{2}^{0}\neq\phi_{1}^{0}, but with incorrect proof. So far, we are neither able to correct the proof for all ϕ20ϕ10\phi_{2}^{0}\neq\phi_{1}^{0} nor to prove that the statement itself is wrong. Similarly, Part (ii) of Lemmas 4 and 8 hold under the condition that ϕ20=ϕ10+ϕ30n1/4\phi_{2}^{0}=\phi_{1}^{0}+\phi_{3}^{0}\,n^{-1/4}.

3 Concluding Remark

In this paper, we proposed a modification of Part (ii) of Lemma 3 given in Ciuperca (2012) for which the proof is wrong. Further, we provided the correct proof. It should be noted that there are several important results in the quoted paper which were established by using Lemma 3. In particular, the quoted author used this lemma in establishing Lemmas 4 and 8, as well as Theorems 1, 2 and 4.

Appendix A Appendix

Proof of Lemma 2.1.
  1. (i)

    The proof of Part (i) is similar to that in Ciuperca (2012).

  2. (ii)

    Let Zn(ϕ)=i=1n1ηi(ϕ,ϕ10)Z_{n}(\phi)=\displaystyle{\sum_{i=1}^{n_{1}}}\eta_{i}(\phi,\phi_{1}^{0}), tn(ϕ)=i=n1+1n1+n2[(ϵiXi(ϕϕ20))2(ϵiXi(ϕ1ϕ20))2]t_{n}(\phi)=\displaystyle{\sum_{i=n_{1}+1}^{n_{1}+n_{2}}}[(\epsilon_{i}-X_{i}^{\prime}(\phi-\phi_{2}^{0}))^{2}-(\epsilon_{i}-X_{i}^{\prime}(\phi_{1}-\phi_{2}^{0}))^{2}]. Then,

    |tn(ϕ^n1+n2)|\displaystyle|t_{n}(\hat{\phi}_{n_{1}+n_{2}})| =\displaystyle= |2i=n1+1n1+n2εiXi(ϕ^n1+n2ϕ10)+(ϕ^n1+n2ϕ20)i=n1+1n1+n2XiXi(ϕ^n1+n2ϕ20)\displaystyle|-2\sum_{i=n_{1}+1}^{n_{1}+n_{2}}\varepsilon_{i}X_{i}^{\prime}(\hat{\phi}_{n_{1}+n_{2}}-\phi_{1}^{0})+(\hat{\phi}_{n_{1}+n_{2}}-\phi_{2}^{0})^{\prime}\sum_{i=n_{1}+1}^{n_{1}+n_{2}}X_{i}X_{i}^{\prime}(\hat{\phi}_{n_{1}+n_{2}}-\phi_{2}^{0})
    (ϕ10ϕ20)i=n1+1n1+n2XiXi(ϕ10ϕ20)|.\displaystyle-(\phi_{1}^{0}-\phi_{2}^{0})^{\prime}\sum_{i=n_{1}+1}^{n_{1}+n_{2}}X_{i}X_{i}^{\prime}(\phi_{1}^{0}-\phi_{2}^{0})|.

    Since ϕ^n1+n2ϕ10n(uvδ)/2||\hat{\phi}_{n_{1}+n_{2}}-\phi_{1}^{0}||\leq n^{-(u-v-\delta)/2}, by Cauchy-Schwarz inequality, we have

    |i=n1+1n1+n2εiXi(ϕ^n1+n2ϕ10)|O(nv/2n(uvδ)/2)=o(1).|\sum_{i=n_{1}+1}^{n_{1}+n_{2}}\varepsilon_{i}X_{i}^{\prime}(\hat{\phi}_{n_{1}+n_{2}}-\phi_{1}^{0})|\leqslant O(n^{v/2}n^{-(u-v-\delta)/2})=o(1).

    Further, let λmax\lambda_{\max} be the largest eigenvalue of 1n2i=n1+1n1+n2XiXi\frac{1}{n_{2}}\displaystyle{\sum_{i=n_{1}+1}^{n_{1}+n_{2}}}X_{i}X_{i}^{\prime}. Then, using the fact that ϕ20=ϕ10+ϕ30n1/4\phi_{2}^{0}=\phi_{1}^{0}+\phi_{3}^{0}n^{-1/4} and Cauchy-Schwarz inequality, we have

    (ϕ^n1+n2ϕ20)i=n1+1n1+n2XiXi(ϕ^n1+n2ϕ20)\displaystyle(\hat{\phi}_{n_{1}+n_{2}}-\phi_{2}^{0})^{\prime}\sum_{i=n_{1}+1}^{n_{1}+n_{2}}X_{i}X_{i}^{\prime}(\hat{\phi}_{n_{1}+n_{2}}-\phi_{2}^{0})
    =\displaystyle= (ϕ^n1+n2ϕ10)n21n2i=n1+1n1+n2XiXi(ϕ^n1+n2ϕ10)2ϕ30n1/4n21n2i=n1+1n1+n2XiXi(ϕ^n1+n2ϕ10)\displaystyle(\hat{\phi}_{n_{1}+n_{2}}-\phi_{1}^{0})^{\prime}n_{2}\frac{1}{n_{2}}\sum_{i=n_{1}+1}^{n_{1}+n_{2}}X_{i}X_{i}^{\prime}(\hat{\phi}_{n_{1}+n_{2}}-\phi_{1}^{0})-2\phi_{3}^{0^{\prime}}n^{-1/4}n_{2}\frac{1}{n_{2}}\sum_{i=n_{1}+1}^{n_{1}+n_{2}}X_{i}X_{i}^{\prime}(\hat{\phi}_{n_{1}+n_{2}}-\phi_{1}^{0})
    +n1/2ϕ30n21n2i=n1+1n1+n2XiXiϕ30\displaystyle+n^{-1/2}\phi_{3}^{0^{\prime}}n_{2}\frac{1}{n_{2}}\sum_{i=n_{1}+1}^{n_{1}+n_{2}}X_{i}X_{i}^{\prime}\phi_{3}^{0}
    \displaystyle\leqslant n2λmaxϕ^n1+n2ϕ102+2ϕ30n1/4n2λmaxϕ^n1+n2ϕ10+n1/2n2λmaxϕ302,\displaystyle n_{2}\lambda_{\max}||\hat{\phi}_{n_{1}+n_{2}}-\phi_{1}^{0}||^{2}+2||\phi_{3}^{0}||n^{-1/4}n_{2}\lambda_{\max}||\hat{\phi}_{n_{1}+n_{2}}-\phi_{1}^{0}||+n^{-1/2}n_{2}\lambda_{\max}||\phi_{3}^{0}||^{2},

    and then,

    (ϕ^n1+n2ϕ20)i=n1+1n1+n2XiXi(ϕ^n1+n2ϕ20)=O(n(uvδ)nv)+o(1)+O(nv1/2)=o(1).\displaystyle(\hat{\phi}_{n_{1}+n_{2}}-\phi_{2}^{0})^{\prime}\sum_{i=n_{1}+1}^{n_{1}+n_{2}}X_{i}X_{i}^{\prime}(\hat{\phi}_{n_{1}+n_{2}}-\phi_{2}^{0})=O(n^{(u-v-\delta)}n^{v})+o(1)+O(n^{v-1/2})=o(1).

    Also, we have

    (ϕ10ϕ20)i=n1+1n1+n2XiXi(ϕ10ϕ20)=n1/2ϕ30i=n1+1n1+n2XiXiϕ30=O(nv1/2)=o(1).\displaystyle({\phi}_{1}^{0}-\phi_{2}^{0})^{\prime}\sum_{i=n_{1}+1}^{n_{1}+n_{2}}X_{i}X^{\prime}_{i}(\phi_{1}^{0}-\phi_{2}^{0})=n^{-1/2}\phi_{3}^{0^{\prime}}\sum_{i=n_{1}+1}^{n_{1}+n_{2}}X_{i}X_{i}^{\prime}\phi_{3}^{0}=O(n^{v-1/2})=o(1).

    Therefore, |tn(ϕ^n1+n2)|=op(1)|t_{n}(\hat{\phi}_{n_{1}+n_{2}})|=o_{p}(1). Further, since
    Zn(ϕ10)=tn(ϕ10)=0Z_{n}(\phi_{1}^{0})=t_{n}(\phi_{1}^{0})=0, Zn(ϕ^n1+n2)+tn(ϕ^n1+n2)Zn(ϕ10)+tn(ϕ10)Z_{n}(\hat{\phi}_{n_{1}+n_{2}})+t_{n}(\hat{\phi}_{n_{1}+n_{2}})\leqslant Z_{n}(\phi_{1}^{0})+t_{n}(\phi_{1}^{0}), we have

    0zn(ϕ^n1+n2)+tn(ϕ^n1+n2)infϕZn(ϕ)|tn(ϕ^n1+n2)|=infϕZn(ϕ)|op(1)|.0\geqslant z_{n}(\hat{\phi}_{n_{1}+n_{2}})+t_{n}(\hat{\phi}_{n_{1}+n_{2}})\geqslant\inf_{\phi}Z_{n}(\phi)-|t_{n}(\hat{\phi}_{n_{1}+n_{2}})|=\inf_{\phi}Z_{n}(\phi)-|o_{p}(1)|.

    Hence

    |zn(ϕ^n1+n2)||tn(ϕ^n1+n2)||zn(ϕ^n1+n2)+tn(ϕ^n1+n2)||infϕZn(ϕ)|+op(1),|z_{n}(\hat{\phi}_{n_{1}+n_{2}})|-|t_{n}(\hat{\phi}_{n_{1}+n_{2}})|\leqslant|z_{n}(\hat{\phi}_{n_{1}+n_{2}})+t_{n}(\hat{\phi}_{n_{1}+n_{2}})|\leqslant|\inf_{\phi}Z_{n}(\phi)|+o_{p}(1),

    which implies that

    |zn(ϕ^n1+n2)||infϕZn(ϕ)|+op(1)+|tn(ϕ^n1+n2)|=|infϕZn(ϕ)|+op(1).|z_{n}(\hat{\phi}_{n_{1}+n_{2}})|\leqslant|\inf_{\phi}Z_{n}(\phi)|+o_{p}(1)+|t_{n}(\hat{\phi}_{n_{1}+n_{2}})|=|\inf_{\phi}Z_{n}(\phi)|+o_{p}(1).

    Let ϕ^n1=argminϕZn(ϕ)\hat{\phi}_{n_{1}}=\arg\min_{\phi}Z_{n}(\phi) and λmax\lambda_{\max} be the largest eigenvalue of n11i=1n1XiXin_{1}^{-1}\sum_{i=1}^{n_{1}}X_{i}X^{\prime}_{i}. Then, by Cauchy-Schwarz inequality,

    infϕZn(ϕ)(n1ϕ^n1ϕ10)2λmax+2n1|(ϕ^n1ϕ10)n11/2i=1n1εiXi|,\displaystyle\inf_{\phi}Z_{n}(\phi)\leqslant\left(\sqrt{n_{1}}\left\|\hat{\phi}_{n_{1}}-\phi_{1}^{0}\right\|\right)^{2}\lambda_{\max}+2\sqrt{n_{1}}\left|(\hat{\phi}_{n_{1}}-\phi_{1}^{0})^{\prime}n_{1}^{-1/2}\sum_{i=1}^{n_{1}}\varepsilon_{i}X_{i}\right|,

    and then,

    infϕZn(ϕ)=Op(1)+Op(1)Op(1)=Op(1), and |zn(ϕ^n1+n2)|=Op(1).\displaystyle\inf_{\phi}Z_{n}(\phi)=O_{p}(1)+O_{p}(1)O_{p}(1)=O_{p}(1),\quad{}\mbox{ and }\quad{}|z_{n}(\hat{\phi}_{n_{1}+n_{2}})|=O_{p}(1).

    Now, let

    Zns(ϕ)\displaystyle Z_{n}^{s}(\phi) =\displaystyle= i=1n1ηi(ϕ,ϕ10)+λn;(0,n1)[k=1p(|ϕ,k|γ|ϕ1,k0|γ)]\displaystyle\sum_{i=1}^{n_{1}}\eta_{i}(\phi,\phi_{1}^{0})+\lambda_{n;(0,n_{1})}[\sum_{k=1}^{p}(|\phi_{,k}|^{\gamma}-|\phi_{1,k}^{0}|^{\gamma})]
    tns(ϕ)\displaystyle t_{n}^{s}(\phi) =\displaystyle= i=n1+1n1+n2[(ϵiXi(ϕϕ20))2(ϵiXi(ϕ1ϕ20))2]\displaystyle\sum_{i=n_{1}+1}^{n_{1}+n_{2}}[(\epsilon_{i}-X_{i}^{\prime}(\phi-\phi_{2}^{0}))^{2}-(\epsilon_{i}-X_{i}^{\prime}(\phi_{1}-\phi_{2}^{0}))^{2}]
    +λn;(n1,n1+n2)[k=1p(|ϕ,k|γ|ϕ1,k0|γ)].\displaystyle\quad{}+\lambda_{n;(n_{1},n_{1}+n_{2})}[\sum_{k=1}^{p}(|\phi_{,k}|^{\gamma}-|\phi_{1,k}^{0}|^{\gamma})].

    Then,

    An1+n2s(ϕ)=Zns(ϕ)+tns(ϕ)(ϵiXi(ϕ1ϕ20))2+λn;(n1,n1+n2)[k=1p(|ϕ1,k0|γ|ϕ2,k0|γ)].A_{n_{1}+n_{2}}^{s}(\phi)=Z_{n}^{s}(\phi)+t_{n}^{s}(\phi)-(\epsilon_{i}-X_{i}^{\prime}(\phi_{1}-\phi_{2}^{0}))^{2}+\lambda_{n;(n_{1},n_{1}+n_{2})}[\sum_{k=1}^{p}(|\phi_{1,k}^{0}|^{\gamma}-|\phi_{2,k}^{0}|^{\gamma})].

    Then ϕ^n1+n2s=argminϕ(Zns(ϕ)+tns(ϕ))=argminϕAn1+n2s(ϕ)\hat{\phi}_{n_{1}+n_{2}}^{s}=\arg\min_{\phi}(Z_{n}^{s}(\phi)+t_{n}^{s}(\phi))=\arg\min_{\phi}A_{n_{1}+n_{2}}^{s}(\phi). In addition, using the similar approach as previous, with the fact that ϕ^n1+n2sϕ10n(uvδ)/2||\hat{\phi}_{n_{1}+n_{2}}^{s}-\phi_{1}^{0}||\leqslant n^{-(u-v-\delta)/2} and ϕ20=ϕ10+ϕ30n1/4\phi_{2}^{0}=\phi_{1}^{0}+\phi_{3}^{0}n^{-1/4}, we have

    |tns(ϕ^n1+n2s)|\displaystyle|t_{n}^{s}(\hat{\phi}_{n_{1}+n_{2}}^{s})| \displaystyle\leqslant o(1)+λn;(n1,n1+n2)[k=1p(|ϕ^n1+n2,ks|γ|ϕ1,k0|γ)]\displaystyle o(1)+\lambda_{n;(n_{1},n_{1}+n_{2})}[\sum_{k=1}^{p}(|\hat{\phi}_{n_{1}+n_{2},k}^{s}|^{\gamma}-|\phi_{1,k}^{0}|^{\gamma})]
    =\displaystyle= op(1)+O(nv/2)Op(ϕ^n1+n2sϕ10)=Op(n(u2vδ)/2)=op(1).\displaystyle o_{p}(1)+O(n^{v/2})O_{p}(||\hat{\phi}_{n_{1}+n_{2}}^{s}-\phi_{1}^{0}||)=O_{p}(n^{-(u-2v-\delta)/2})=o_{p}(1).

    Besides, Zns(ϕ10)=tns(ϕ10)=0Z_{n}^{s}(\phi_{1}^{0})=t_{n}^{s}(\phi_{1}^{0})=0, thus

    0infϕ(Zns(ϕ10)+tns(ϕ10))=Zns(ϕ^n1+n2s)+tns(ϕ^n1+n2s)=Zns(ϕ^n1+n2s)|op(1)|\displaystyle 0\geqslant\inf_{\phi}(Z_{n}^{s}(\phi_{1}^{0})+t_{n}^{s}(\phi_{1}^{0}))=Z_{n}^{s}(\hat{\phi}_{n_{1}+n_{2}}^{s})+t_{n}^{s}(\hat{\phi}_{n_{1}+n_{2}}^{s})=Z_{n}^{s}(\hat{\phi}_{n_{1}+n_{2}}^{s})-|o_{p}(1)|
    infϕZns(ϕ)|op(1)|.\displaystyle\geqslant\inf_{\phi}Z_{n}^{s}(\phi)-|o_{p}(1)|.

    Hence

    |Zns(ϕ^n1+n2s)||infϕZns(ϕ)|+op(1).|Z_{n}^{s}(\hat{\phi}_{n_{1}+n_{2}}^{s})|\leqslant|\inf_{\phi}Z_{n}^{s}(\phi)|+o_{p}(1).

    On the other hand, since

    0infϕZns(ϕ)infϕZn(ϕ)+λn;(0,n1)infϕ[k=1p(|ϕ,k|γ|ϕ1,k0|γ)],0\geqslant\inf_{\phi}Z_{n}^{s}(\phi)\geqslant\inf_{\phi}Z_{n}(\phi)+\lambda_{n;(0,n_{1})}\inf_{\phi}[\sum_{k=1}^{p}(|\phi_{,k}|^{\gamma}-|\phi_{1,k}^{0}|^{\gamma})],
    |infϕZns(ϕ)||infϕZn(ϕ)|+|λn;(0,n1)infϕ[k=1p(|ϕ,k|γ|ϕ1,k0|γ)]|.|\inf_{\phi}Z_{n}^{s}(\phi)|\leqslant|\inf_{\phi}Z_{n}(\phi)|+|\lambda_{n;(0,n_{1})}\inf_{\phi}[\sum_{k=1}^{p}(|\phi_{,k}|^{\gamma}-|\phi_{1,k}^{0}|^{\gamma})]|.

    Further,

    infϕ[k=1p(|ϕ,k|γ|ϕ1,k0|γ)]k=1p(|ϕ^n1,k|γ|ϕ1,k0|γ)=Op(ϕ^n1ϕ10)=Op(n11/2),\inf_{\phi}[\sum_{k=1}^{p}(|\phi_{,k}|^{\gamma}-|\phi_{1,k}^{0}|^{\gamma})]\leqslant\sum_{k=1}^{p}(|\hat{\phi}_{n_{1},k}|^{\gamma}-|\phi_{1,k}^{0}|^{\gamma})=O_{p}(||\hat{\phi}_{n_{1}}-\phi_{1}^{0}||)=O_{p}(n_{1}^{-1/2}),

    and infϕZn(ϕ)=Op(1)\inf_{\phi}Z_{n}(\phi)=O_{p}(1). It follows that |infϕZns(ϕ)|Op(1)|\inf_{\phi}Z_{n}^{s}(\phi)|\leqslant O_{p}(1). Hence,

    |Zns(ϕ^n1+n2s)||infϕZns(ϕ)|+op(1)=Op(1).|Z_{n}^{s}(\hat{\phi}_{n_{1}+n_{2}}^{s})|\leqslant|\inf_{\phi}Z_{n}^{s}(\phi)|+o_{p}(1)=O_{p}(1).

References

  • [1] Ciuperca, G. (2012). Model selection by LASSO methods in a change-point model. Stat Papers, DOI: 10.1007/s00362-012-0482-x (in press).