This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Small-Gain Theorem for Discrete-Time Convergent Systems and Its Applications

Jiayin Chen and Hendra I. Nurdin J. Chen and H. I. Nurdin are with the School of Electrical Engineering and Telecommunications, UNSW Australia, Sydney NSW 2052, Australia (email: jiayin.chen@unsw.edu.au, h.nurdin@unsw.edu.au)
Abstract

Convergent, contractive or incremental stability properties of nonlinear systems have attracted interest for control tasks such as observer design, output regulation and synchronization. The convergence property plays a central role in the neuromorphic (brain-inspired) computing of reservoir computing, which seeks to harness the information processing capability of nonlinear systems. This paper presents a small-gain theorem for discrete-time output-feedback interconnected systems to be uniformly input-to-output convergent (UIOC) with outputs converging to a bounded reference output uniquely determined by the input. A small-gain theorem for interconnected time-varying discrete-time uniform input-to-output stable systems that could be of separate interest is also presented as an intermediate result. Applications of the UIOC small-gain theorem are illustrated in the design of observer-based controllers and interconnected nonlinear classical and quantum dynamical systems (as reservoir computers) for black-box system identification.

Index Terms:
Convergent dynamics; Reservoir computing; Small-gain; Input-to-output stability.

I Introduction

Convergence notions, such as incremental stability [1], convergent dynamics [2, 3] and contracting dynamics [4], impose that all solutions must “forget” their initial conditions and converge to each other asymptotically; also see [5] for a survey of such convergence properties in the discrete-time setting. Such properties have found applications in observer design [1, 4], output regulation [6, 7] and synchronization [1, 8].

In an independent development, efforts to go beyond the von Neumann computing architecture to imitate human capabilities in tasks that are difficult or energetically expensive on conventional digital computers, have led to the pursuit of neuromorphic (brain-inspired) computing paradigms implemented on physical hardware. Central to this is to exploit high-dimensional nonlinear dynamical systems for processing of time-varying input signals. An emerging neuromorphic paradigm is reservoir computing (RC) [9, 10], which uses a fixed but otherwise almost arbitrary dynamical system, the so-called “reservoir”, to map inputs into its state-space. This paper is interested in discrete-time reservoir computers (also abbreviated as RCs) that perform causal nonlinear operations on input sequences to produce output sequences. Only a simple linear regression algorithm is required to optimize the parameters of a readout function to approximate target output sequences. In the RC paradigm, convergence (referred to as the echo-state property in the RC literature) ensures that the reservoir outputs are asymptotically independent of its initial condition, and the reservoir induces an input-output (I/O) map to approximate a target I/O map [11].

A prominent example of RCs are the echo state networks (ESNs), which have demonstrated remarkable ability to predict chaotic time series [12, 13]. There is substantial interest in hardware realizations of RC for fast processing using less memory and energy, as opposed to software-based implementation on digital computers. For instance, a photonic RC achieved high-speed speech classification (million words per second) with low error rates [14] and a FPGA-based RC reached an 160 MHz rate for time-series prediction [15]; see [16, 17, 18] for other recent RC hardware implementations. Its extremely efficient training makes RC suitable for applications such as edge computing, in which information processing is incorporated into decentralized sensors (the ‘edges’) to reduce computation and transmission overhead [19]. For more recent developments, see [9, 10, 19].

Recent years have also seen the advent of noisy near-term intermediate scale quantum (NISQ) computers [20], which are not equipped with quantum error correction and can only perform a limited form of quantum computing, made available via cloud-based access from companies such as IBM [21]. This has led to the proposal of RCs that exploit nonlinear quantum dynamics (referred to as QRC) [22, 23]. Control-oriented applications of QRCs were put forward in [24] and Ref. [25] further develops a QRC scheme that can be implemented on NISQ computers and demonstrates a proof-of-principle of QRC on cloud-based IBM superconducting quantum computers [21]. This work provides further theoretical support for the application of RC and QRC for black-box system identification of discrete-time nonlinear systems, with examples developed in Section IV. Since QRCs can have a high-dimensional underlying Hilbert space, it may be advantageous for identifying systems with a high-dimensional state-space.

This paper focuses on uniformly convergent dynamics or the uniform convergence (UC) property. For output-feedback interconnected systems, we introduce the uniform output convergence (UOC) and the uniform input-to-output convergence (UIOC) properties. Roughly speaking, a UOC system has a unique reference state solution with its reference output defined and bounded both backwards and forwards in time. All other outputs asymptotically converge to the reference output, independent of their initial conditions. The UIOC property adapts the uniform input-to-state convergence (UISC) property [2] to output-feedback interconnected systems. A UIOC system is UOC and the perturbation in its reference outputs are asymptotically bounded by a nonlinear gain on the input perturbation. We present a small-gain theorem for output-feedback interconnected systems to be UIOC, and that the closed-loop system induces a well-posed I/O map in the sense of [26].

Our UIOC small-gain theorem is based on a small-gain theorem for time-varying discrete-time systems in the uniform input-to-output stability (UIOS) framework, also presented herein. This latter small-gain result is used to establish the UIOC small-gain theorem for interconnected time-invariant UOC systems, the time-variance arising through a change of variables. Small-gain criteria for time-varying continuous-time interconnected systems in the UIOS framework have been established [27, 28, 29, 30]. Ref. [31] develops a generalized small-gain theorem that recover the previous results for specific interconnections. Small-gain criteria for time-invariant discrete-time systems can be found in [32, 33]. Here, we adopt the techniques in [31] to establish a UIOS small-gain theorem for output-feedback interconnected time-varying discrete-time systems. Ref. [29] is based on [34, Lemma 3, Prop. 2.5], which also concerns continuous-time systems, and is not immediately applicable to our setting. Furthermore, [32, 33] do not carry over to time-varying systems [35]. Therefore, we establish a link to bridge our setting with the continuous-time results of [31].

Finally, we apply our results to observer-based controller design for globally Lipschitz systems [36, 37] and to design RC parameters for black-box system identification of discrete-time nonlinear systems solely based on I/O data collected from a system. Example nonlinear models for black-box system identification include NARMAX [38], the Volterra series [39] and block-oriented models [40, 41]. The use of closed-loop structures, such as in the Wiener-Hammerstein feedback model, is motivated by modeling systems that exhibit nonlinear feedback behavior [41]. Here we introduce interconnected ESNs and QRCs as models with closed-loop structures. The interconnected ESNs and QRCs dynamics are arbitrary but fixed at the onset, as long as they satisfy the UIOC small-gain theorem. Only an RC output function is optimized via ordinary least squares to fit the data, making the RC approach computationally efficient. We illustrate numerically the efficacy of this approach to model a feedback-controlled nonlinear system.

Notation. \|\cdot\| is the Euclidean norm. \mathbb{Z} ()(\mathbb{R}) and k0\mathbb{Z}_{\geq k_{0}} (k0\mathbb{R}_{\geq k_{0}}) denote, respectively, integers (reals) and integers (reals) larger than equal to k0k_{0}\in\mathbb{Z}. xnx\in\mathbb{R}^{n} is a column vector and xx^{\top} its transpose. For xjnj(j=1,2)x_{j}\in\mathbb{R}^{n_{j}}(j=1,2), (x1,x2)n1+n2(x_{1},x_{2})\in\mathbb{R}^{n_{1}+n_{2}} is their concatenation into a column vector. For a sequence zz on \mathbb{Z}, z[k0,k]supk0jkz(j)\|z_{[k_{0},k]}\|\coloneqq\sup_{k_{0}\leq j\leq k}\|z(j)\| for any k0k_{0}\in\mathbb{Z} and kk0k\geq k_{0}. lnl_{n}^{\infty} denotes the set of bounded sequences on \mathbb{Z}, i.e., zlnz\in l^{\infty}_{n} if z(k)nz(k)\in\mathbb{R}^{n} and zsupkz(k)<\|z\|_{\infty}\coloneqq\sup_{k\in\mathbb{Z}}\|z(k)\|<\infty. For any sequences z1,z2z_{1},z_{2} on \mathbb{Z}, z=(z1,z2)z=(z_{1},z_{2}) is given by z(k)=(z1(k),z2(k))z(k)=(z_{1}(k),z_{2}(k)) k\forall k\in\mathbb{Z}. Function composition is denoted by \circ. We use standard comparison function classes 𝒦,𝒦\mathcal{K},\mathcal{K_{\infty}} and 𝒦\mathcal{KL} [28]111A function γ:00\gamma:\mathbb{R}_{\geq 0}\rightarrow\mathbb{R}_{\geq 0} is a 𝒦\mathcal{K} function if it is continuous, strictly increasing and γ(0)=0\gamma(0)=0. A 𝒦\mathcal{K} function is a 𝒦\mathcal{K}_{\infty} function if it is unbounded. A 𝒦\mathcal{KL} function β:0×00\beta:\mathbb{R}_{\geq 0}\times\mathbb{R}_{\geq 0}\rightarrow\mathbb{R}_{\geq 0} is 𝒦\mathcal{K} in the first argument and decreasing (i.e., non-increasing) in the second argument, with limtβ(s,t)=0\lim_{t\rightarrow\infty}\beta(s,t)=0 for all s0s\in\mathbb{R}_{\geq 0}. As in [28, 42], we do not require a 𝒦\mathcal{KL} function to be continuous or strictly decreasing in the second argument..

II Stability concepts

This section defines the uniform output convergence (UOC) (Def. 2) and the uniform input-to-output convergence (UIOC) (Def. 4) properties. See Table I for a summary of relevant stability definitions. We first set some preliminaries.

For kk\in\mathbb{Z}, consider a time-varying discrete-time system,

{x(k+1)=f(k,x(k),u(k)),y(k)=h(k,x(k),u(k)),\begin{cases}x(k+1)=f(k,x(k),u(k)),\\ \hskip 18.00005pty(k)=h(k,x(k),u(k)),\end{cases} (1)

where x(k)nxx(k)\in\mathbb{R}^{n_{x}} is the state, u(k)nuu(k)\in\mathbb{R}^{n_{u}} is the input and y(k)nyy(k)\in\mathbb{R}^{n_{y}} is the output. We assume that ulnuu\in l^{\infty}_{n_{u}} and for each kk\in\mathbb{Z}, f(k,x(k),u(k))<\|f(k,x(k),u(k))\|<\infty and h(k,x(k),u(k))<\|h(k,x(k),u(k))\|<\infty. These conditions ensure that the system is non-singular at any time and for any initial condition.

The following definition of UOC adapts the uniform convergence (UC) property [5, Def. 3] to systems with output of the form (1).

Definition 1

For any ulnuu\in l_{n_{u}}^{\infty}, a solution x(k)x^{*}(k) to (1) and its corresponding output y(k)=h(k,x(k),u(k))y^{*}(k)=h(k,x^{*}(k),u(k)) are a reference state solution and the corresponding reference output, respectively, if they are defined for all kk\in\mathbb{Z}, with x<\|x^{*}\|_{\infty}<\infty and y<\|y^{*}\|_{\infty}<\infty.

Definition 2

System (1) is uniformly output convergent (UOC) if, for any input ulnuu\in l^{\infty}_{n_{u}},

  • (i)

    There exists a unique reference state solution xx^{*} with its corresponding reference output yy^{*}.

  • (ii)

    There exists β𝒦\beta\in\mathcal{KL} independent of uu such that, for any k,k0k,k_{0}\in\mathbb{Z} with kk0k\geq k_{0} and x(k0)nxx(k_{0})\in\mathbb{R}^{n_{x}},

y(k)y(k)β(x(k0)x(k0),kk0).\|y^{*}(k)-y(k)\|\leq\beta(\|x^{*}(k_{0})-x(k_{0})\|,k-k_{0}). (2)

System (1) with y(k)=x(k)y(k)=x(k) is uniformly convergent (UC) if, for any ulnuu\in l^{\infty}_{n_{u}},

  • (i)

    There exists a unique reference state solution xx^{*}.

  • (ii)

    There exists β𝒦\beta\in\mathcal{KL} independent of uu such that, for any k,k0k,k_{0}\in\mathbb{Z} with kk0k\geq k_{0} and x(k0)nxx(k_{0})\in\mathbb{R}^{n_{x}},

x(k)x(k)β(x(k0)x(k0),kk0).\|x^{*}(k)-x(k)\|\leq\beta(\|x^{*}(k_{0})-x(k_{0})\|,k-k_{0}). (3)
Remark 3

In this note, all gain functions (e.g. β\beta in (2) and (3)) are independent of the input ulnuu\in l_{n_{u}}^{\infty}. Further, as in [5], ‘uniform’ means that for each x(k0)x(k_{0}), the bound β(x(k0),kk0)\beta(\|x(k_{0})\|,k-k_{0}) in (2) and (3) depends on kk0k-k_{0} but not k0k_{0}.

The UIOC property further extends the UOC property, and ensures that the perturbation in the reference outputs is asymptotically bounded by a nonlinear gain of the input perturbation. The following definition of UIOC is a discrete-time analogue of the UISC property defined in [2, Def. 3] adapted to systems with output of the form (1).

Definition 4

System (1) is uniformly input-to-output convergent (UIOC) if it is UOC and for any u,u¯lnuu,\overline{u}\in l^{\infty}_{n_{u}}, with the reference state solution xx^{*} and its reference output yy^{*} associated to uu, and any solution x¯(k)\overline{x}(k) with any initial condition x¯(k0)\overline{x}(k_{0}) and the corresponding output y¯(k)\overline{y}(k) associated to u¯\overline{u}, there exists β𝒦,γ𝒦\beta\in\mathcal{KL},\gamma\in\mathcal{K} such that, for all k0,kk_{0},k\in\mathbb{Z} with kk0k\geq k_{0},

y(k)y¯(k)max{β(x(k0)x¯(k0),kk0),γ((uu¯)[k0,k])}.\begin{split}\|y^{*}(k)-\overline{y}(k)\|\leq\max\{\beta(\|x^{*}(k_{0})-\overline{x}(k_{0})\|,k-k_{0}),&\\ \gamma\left(\|(u-\overline{u})_{[k_{0},k]}\|\right)\}.&\end{split} (4)

System (1) with y(k)=x(k)y(k)=x(k) is uniformly input-to-state convergent (UISC) if it is UC and

x(k)x¯(k)max{β(x(k0)x¯(k0),kk0),γ((uu¯)[k0,k1])}.\begin{split}\|x^{*}(k)-\overline{x}(k)\|\leq\max\{\beta(\|x^{*}(k_{0})-\overline{x}(k_{0})\|,k-k_{0}),&\\ \gamma\left(\|(u-\overline{u})_{[k_{0},k-1]}\|\right)\}.&\end{split} (5)

We conclude this section by summarizing the aforementioned stability concepts and their acronyms in Table I.

TABLE I: Summary of stability concepts and their acronyms.
Stability concept Acronym Definition
Uniformly output convergent UOC Definition 2
Uniformly convergent UC Definition 2
Uniformly input-to-output convergent UIOC Definition 4
Uniformly input-to-state convergent UISC Definition 4

III A UIOC small-gain theorem

In this section, we present our main UIOC small-gain theorem (Theorem 5). We first set some preliminaries.

For kk\in\mathbb{Z}, consider the interconnected system (see Fig. 1),

{x1(k+1)=f1(x1(k),v1(k),u1(k))y1(k)=h1(x1(k),v1(k),u1(k)),{x2(k+1)=f2(x2(k),v2(k),u2(k))y2(k)=h2(x2(k),v2(k),u2(k)),v1(k)=y2(k),v2(k)=y1(k).\begin{split}&\begin{cases}x_{1}(k+1)=f_{1}(x_{1}(k),v_{1}(k),u_{1}(k))\\ \hskip 18.00005pty_{1}(k)=h_{1}(x_{1}(k),v_{1}(k),u_{1}(k)),\\ \end{cases}\\ &\begin{cases}x_{2}(k+1)=f_{2}(x_{2}(k),v_{2}(k),u_{2}(k))\\ \hskip 18.00005pty_{2}(k)=h_{2}(x_{2}(k),v_{2}(k),u_{2}(k)),\\ \end{cases}\\ &\qquad v_{1}(k)=y_{2}(k),\ v_{2}(k)=y_{1}(k).\end{split} (6)
Refer to caption
Figure 1: Schematic of the interconnected system (6).

For subsystems j=1,2j=1,2, xj(k)nxjx_{j}(k)\in\mathbb{R}^{n_{x_{j}}} are states, yj(k)nyjy_{j}(k)\in\mathbb{R}^{n_{y_{j}}} are outputs and uj(k)nuju_{j}(k)\in\mathbb{R}^{n_{u_{j}}} are inputs with ujlnuju_{j}\in l^{\infty}_{n_{u_{j}}}. Throughout, we assume that the interconnected system (6) is well-posed. That is, for any k,k0k,k_{0}\in\mathbb{Z} with kk0k\geq k_{0} and any initial conditions xj(k0)x_{j}(k_{0}), there exists a unique solution y(k)(y1(k),y2(k))ny1+ny2y(k)\coloneqq(y_{1}(k),y_{2}(k))\in\mathbb{R}^{n_{y_{1}}+n_{y_{2}}} solving the algebraic equations y1(k)=h1(x1(k),y2(k),u1(k))y_{1}(k)=h_{1}(x_{1}(k),y_{2}(k),u_{1}(k)) and y2(k)=h2(x2(k),y1(k),u2(k))y_{2}(k)=h_{2}(x_{2}(k),y_{1}(k),u_{2}(k)).

For a well-posed system (6), let x(k)(x1(k),x2(k))nx1+nx2x(k)\coloneqq(x_{1}(k),x_{2}(k))\in\mathbb{R}^{n_{x_{1}}+n_{x_{2}}} be the closed-loop solution to input u(k)(u1(k),u(k)\coloneqq(u_{1}(k), u2(k))nu1+nu2u_{2}(k))\in\mathbb{R}^{n_{u_{1}}+n_{u_{2}}}, starting at x(k0)=(x1(k0),x2(k0))x(k_{0})=(x_{1}(k_{0}),x_{2}(k_{0})). Note that the closed-loop system is causal by definition.

We also assume that the subsystems in (6) are UOC. Each UOC subsystem induces an I/O map j:lnvj×lnujlnyj\mathcal{F}_{j}:l^{\infty}_{n_{v_{j}}}\times l^{\infty}_{n_{u_{j}}}\rightarrow l^{\infty}_{n_{y_{j}}} defined by j(vj,uj)=yj\mathcal{F}_{j}(v_{j},u_{j})=y^{*}_{j}, where yjy^{*}_{j} is the reference output. By construction j\mathcal{F}_{j} is causal, meaning that for any τ\tau\in\mathbb{Z} and any vjlnvj,ujlnujv_{j}\in l^{\infty}_{n_{v_{j}}},u_{j}\in l^{\infty}_{n_{u_{j}}},

ΠτjΠτ(vj,uj)=Πτj(vj,uj),\Pi_{\tau}\circ\mathcal{F}_{j}\circ\Pi_{\tau}(v_{j},u_{j})=\Pi_{\tau}\circ\mathcal{F}_{j}(v_{j},u_{j}), (7)

where Πτ(vj,uj)=(vj(k),uj(k))\Pi_{\tau}(v_{j},u_{j})=(v_{j}(k),u_{j}(k)) for kτk\leq\tau and zero otherwise. We say that system (6) induces a well-posed closed-loop I/O map if the algebraic equations y1=2(y2,u2)y_{1}=\mathcal{F}_{2}(y_{2},u_{2}) and y2=1(y1,u1)y_{2}=\mathcal{F}_{1}(y_{1},u_{1}) have a unique bounded solution ycl=(y1,cl,y2,cl)lny1+ny2y^{*}_{cl}=(y^{*}_{1,cl},y^{*}_{2,cl})\in l^{\infty}_{n_{y_{1}}+n_{y_{2}}}, and the closed-loop I/O map (u)=ycl\mathcal{F}(u)=y^{*}_{cl} is causal [26], where u=(u1,u2)lnu1+nu2u=(u_{1},u_{2})\in l^{\infty}_{n_{u_{1}}+n_{u_{2}}}. We emphasize the difference between a well-pose system (6) and a well-posed closed-loop I/O map induced by (6).

We now state our main UIOC small-gain theorem.

Theorem 5

Consider a well-posed system (6) with UOC subsystems j=1,2j=1,2. For any inputs ujlnuj,vjlnvju_{j}\in l^{\infty}_{n_{u_{j}}},v_{j}\in l^{\infty}_{n_{v_{j}}}, let xjx_{j}^{*} and yjy^{*}_{j} be the corresponding reference state solutions and outputs. For any other inputs u¯j,v¯j\overline{u}_{j},\overline{v}_{j} with u¯jlnuj\overline{u}_{j}\in l^{\infty}_{n_{u_{j}}}, let x¯j\overline{x}_{j} and y¯j\overline{y}_{j} be any corresponding solutions and outputs with initial conditions x¯j(k0)\overline{x}_{j}(k_{0}). Suppose that there exists βj𝒦\beta_{j}\in\mathcal{KL} and γjy,γju,σj,σju,σjy𝒦\gamma^{y}_{j},\gamma^{u}_{j},\sigma_{j},\sigma^{u}_{j},\sigma^{y}_{j}\in\mathcal{K} (independent of uj,vju_{j},v_{j}) such that, for all k0,kk_{0},k\in\mathbb{Z}, kk0k\geq k_{0} and any x¯j(k0)nxj\overline{x}_{j}(k_{0})\in\mathbb{R}^{n_{x_{j}}},

yj(k)y¯j(k)max{βj(xj(k0)x¯j(k0),kk0),γjy((vjv¯j)[k0,k]),γju((uju¯j)[k0,k])},\begin{split}&\|y^{*}_{j}(k)-\overline{y}_{j}(k)\|\\ &\leq\max\{\beta_{j}(\|x^{*}_{j}(k_{0})-\overline{x}_{j}(k_{0})\|,k-k_{0}),\\ &\hskip 35.00005pt\gamma_{j}^{y}(\|(v_{j}-\overline{v}_{j})_{[k_{0},k]}\|),\gamma^{u}_{j}(\|(u_{j}-\overline{u}_{j})_{[k_{0},k]}\|)\},\end{split} (8)
xj(k)x¯j(k)max{σj(xj(k0)x¯j(k0)),σjy((vjv¯j)[k0,k1]),σju((uju¯j)[k0,k1])}.\begin{split}&\|x^{*}_{j}(k)-\overline{x}_{j}(k)\|\leq\max\{\sigma_{j}(\|x^{*}_{j}(k_{0})-\overline{x}_{j}(k_{0})\|),\\ &\hskip 10.00002pt\sigma^{y}_{j}(\|(v_{j}-\overline{v}_{j})_{[k_{0},k-1]}\|),\sigma^{u}_{j}(\|(u_{j}-\overline{u}_{j})_{[k_{0},k-1]}\|)\}.\end{split} (9)

If γ1yγ2y(s)<s\gamma_{1}^{y}\circ\gamma_{2}^{y}(s)<s (or equivalently γ2yγ1y(s)<s\gamma_{2}^{y}\circ\gamma_{1}^{y}(s)<s [43, Chapter 8.1]) for all s>0s>0, for any k0k_{0}\in\mathbb{Z} and x(k0)nx1+nx2x(k_{0})\in\mathbb{R}^{n_{x_{1}}+n_{x_{2}}}, the closed-loop solution and its output are bounded, i.e., supkk0x(k)<\sup_{k\geq k_{0}}\|x(k)\|<\infty and supkk0y(k)<\sup_{k\geq k_{0}}\|y(k)\|<\infty. Further, the closed-loop system (6) induces a well-posed closed-loop I/O map and system (6) is UIOC.

Remark 6

Although Theorem 5 ensures the closed-loop solution x(k)x(k) is bounded, in general, it does not guarantee the closed-loop system (6) is UISC, which would require additional conditions; see Corollary 11.

The main idea in the proof of Theorem 5 is to use the Banach fixed point theorem to show system (6) induces a well-posed closed-loop I/O map. To show that system (6) is UIOC, we apply a change-of-coordinate argument in which the system under consideration becomes time-varying of the form (11). We then apply a uniform input-to-output stability (UIOS) small-gain theorem (Theorem 8) to system (11) to establish the UIOC property of (6). We first define UIOS and state Theorem 8 whose full proof is given in Appendix A.

Definition 7

System (1) is uniformly input-to-output stable (UIOS) if there exists β𝒦\beta\in\mathcal{KL} and γ𝒦\gamma\in\mathcal{K} such that, for any ulnuu\in l^{\infty}_{n_{u}}, k,k0k,k_{0}\in\mathbb{Z} with kk0k\geq k_{0} and x(k0)nxx(k_{0})\in\mathbb{R}^{n_{x}},

y(k)max{β(x(k0),kk0),γ(u[k0,k])}.\|y(k)\|\leq\max\left\{\beta\left(\|x(k_{0})\|,k-k_{0}\right),\gamma\left(\left\|u_{[k_{0},k]}\right\|\right)\right\}. (10)
Theorem 8

Consider a well-posed time-varying system

{Δx1(k+1)=f~1(k,Δx1(k),Δv1(k),Δu1(k))Δy1(k)=h~1(k,Δx1(k),Δv1(k),Δu1(k)),{Δx2(k+1)=f~2(k,Δx2(k),Δv2(k),Δu2(k))Δy2(k)=h~2(k,Δx2(k),Δv2(k),Δu2(k)),Δv1(k)=Δy2(k),Δv2(k)=Δy1(k).\begin{split}&\begin{cases}\Delta x_{1}(k+1)=\tilde{f}_{1}(k,\Delta x_{1}(k),\Delta v_{1}(k),\Delta u_{1}(k))\\ \hskip 18.00005pt\Delta y_{1}(k)=\tilde{h}_{1}(k,\Delta x_{1}(k),\Delta v_{1}(k),\Delta u_{1}(k)),\\ \end{cases}\\ &\begin{cases}\Delta x_{2}(k+1)=\tilde{f}_{2}(k,\Delta x_{2}(k),\Delta v_{2}(k),\Delta u_{2}(k))\\ \hskip 18.00005pt\Delta y_{2}(k)=\tilde{h}_{2}(k,\Delta x_{2}(k),\Delta v_{2}(k),\Delta u_{2}(k)),\\ \end{cases}\\ &\qquad\Delta v_{1}(k)=\Delta y_{2}(k),\ \Delta v_{2}(k)=\Delta y_{1}(k).\end{split} (11)

For j=1,2j=1,2, suppose that there exists βj𝒦\beta_{j}\in\mathcal{KL} and γjy,γju,σj,σju,σjy𝒦\gamma^{y}_{j},\gamma^{u}_{j},\sigma_{j},\sigma^{u}_{j},\sigma^{y}_{j}\in\mathcal{K} such that, for any Δvj,Δuj\Delta v_{j},\Delta u_{j} with ΔujlnΔuj\Delta u_{j}\in l^{\infty}_{n_{\Delta u_{j}}}, k0,kk_{0},k\in\mathbb{Z} with kk0k\geq k_{0} and Δxj(k0)nxj\Delta x_{j}(k_{0})\in\mathbb{R}^{n_{x_{j}}},

Δyj(k)max{βj(Δxj(k0),kk0),γjy(Δvj[k0,k]),γju(Δuj[k0,k])},\begin{split}\|\Delta y_{j}(k)\|\leq\max\{&\beta_{j}(\|\Delta x_{j}(k_{0})\|,k-k_{0}),\\ &\gamma^{y}_{j}(\|\Delta v_{j_{[k_{0},k]}}\|),\gamma^{u}_{j}(\|\Delta u_{j_{[k_{0},k]}}\|)\},\end{split} (12)
Δxj(k)max{σj(Δxj(k0)),σjy(Δvj[k0,k1]),σju(Δuj[k0,k1])}.\begin{split}\|\Delta x_{j}(k)\|\leq&\max\{\sigma_{j}(\|\Delta x_{j}(k_{0})\|),\\ &\sigma^{y}_{j}(\|\Delta v_{j_{[k_{0},k-1]}}\|),\sigma^{u}_{j}(\|\Delta u_{j_{[k_{0},k-1]}}\|)\}.\end{split} (13)

If γ1yγ2y(s)<s\gamma^{y}_{1}\circ\gamma^{y}_{2}(s)<s (or equivalently γ2yγ1y(s)<s\gamma^{y}_{2}\circ\gamma^{y}_{1}(s)<s) for all s>0s>0, then for any k0k_{0}\in\mathbb{Z} and Δx(k0)nx1+nx2\Delta x(k_{0})\in\mathbb{R}^{n_{x_{1}}+n_{x_{2}}}, the closed-loop solution and its output are bounded, i.e., supkk0Δx(k)<\sup_{k\geq k_{0}}\|\Delta x(k)\|<\infty and supkk0Δy(k)<\sup_{k\geq k_{0}}\|\Delta y(k)\|<\infty. Furthermore, the closed-loop system (11) is UIOS.

We now detail the proof for Theorem 5.

Proof:

For any fixed inputs ujlnuju_{j}\in l^{\infty}_{n_{u_{j}}}, the I/O map induced by each subsystem is given by juj:lnvjlnyj,juj(vj)=yj\mathcal{F}^{u_{j}}_{j}:l_{n_{v_{j}}}^{\infty}\rightarrow l^{\infty}_{n_{y_{j}}},\mathcal{F}^{u_{j}}_{j}(v_{j})=y^{*}_{j}. For any vj,v¯jlnvjv_{j},\overline{v}_{j}\in l^{\infty}_{n_{v_{j}}}, let k0k_{0}\rightarrow-\infty and take the supremum over kk\in\mathbb{Z} in (8),

juj(vj)juj(v¯j)γjy(vjv¯j).\|\mathcal{F}^{u_{j}}_{j}(v_{j})-\mathcal{F}^{u_{j}}_{j}(\overline{v}_{j})\|_{\infty}\leq\gamma^{y}_{j}(\|v_{j}-\overline{v}_{j}\|_{\infty}). (14)

Consider the composition 1u12u2:lnv2lnv2\mathcal{F}^{u_{1}}_{1}\circ\mathcal{F}^{u_{2}}_{2}:l^{\infty}_{n_{v_{2}}}\rightarrow l^{\infty}_{n_{v_{2}}}. Applying inequality (14) twice, we have

1u12u2(v2)1u12u2(v¯2)γ1yγ2y(v2v¯2)<v2v¯2.\begin{split}&\|\mathcal{F}^{u_{1}}_{1}\circ\mathcal{F}^{u_{2}}_{2}(v_{2})-\mathcal{F}^{u_{1}}_{1}\circ\mathcal{F}^{u_{2}}_{2}(\overline{v}_{2})\|_{\infty}\\ &\quad\leq\gamma^{y}_{1}\circ\gamma^{y}_{2}(\|v_{2}-\overline{v}_{2}\|_{\infty})<\|v_{2}-\overline{v}_{2}\|_{\infty}.\end{split}

Therefore, 1u12u2\mathcal{F}^{u_{1}}_{1}\circ\mathcal{F}^{u_{2}}_{2} is a strict contraction on (lnv2,)(l^{\infty}_{n_{v_{2}}},\|\cdot\|_{\infty}). Its unique fixed point y1,cllnv2y^{*}_{1,cl}\in l^{\infty}_{n_{v_{2}}} given by the Banach fixed-point theorem [44] is the reference output of subsystem j=1j=1. The corresponding reference output of subsystem j=2j=2 is y2,cl=2u2(y1,cl)y^{*}_{2,cl}=\mathcal{F}^{u_{2}}_{2}(y^{*}_{1,cl}). A symmetric argument shows that 2u21u1\mathcal{F}^{u_{2}}_{2}\circ\mathcal{F}^{u_{1}}_{1} is a strict contraction defined on (lnv1,)(l^{\infty}_{n_{v_{1}}},\|\cdot\|_{\infty}).

To show that the closed-loop I/O map is causal, for any τ\tau\in\mathbb{Z}, consider y1,Πτlnv2y^{*}_{1,\Pi_{\tau}}\in l^{\infty}_{n_{v_{2}}} the unique fixed point of 1Πτ(u1)2Πτ(u2)\mathcal{F}^{\Pi_{\tau}(u_{1})}_{1}\circ\mathcal{F}^{\Pi_{\tau}(u_{2})}_{2}. Causality follows if Πτ(y1,Πτ)=Πτ(y1,cl)\Pi_{\tau}(y^{*}_{1,\Pi_{\tau}})=\Pi_{\tau}(y^{*}_{1,cl}). Re-express (7) as ΠτjΠτ(uj)Πτ(vj)=Πτjuj(vj)\Pi_{\tau}\circ\mathcal{F}^{\Pi_{\tau}(u_{j})}_{j}\circ\Pi_{\tau}(v_{j})=\Pi_{\tau}\circ\mathcal{F}^{u_{j}}_{j}(v_{j}),

Πτ(y1,cl)=Πτ1u12u2(y1,cl)=Πτ1Πτ(u1)Πτ(2u2(y1,cl))=Πτ1Πτ(u1)Πτ2Πτ(u2)Πτ(y1,cl)=Πτ1Πτ(u1)2Πτ(u2)Πτ(y1,cl).\begin{split}\Pi_{\tau}(y^{*}_{1,cl})&=\Pi_{\tau}\circ\mathcal{F}^{u_{1}}_{1}\circ\mathcal{F}^{u_{2}}_{2}(y^{*}_{1,cl})\\ &=\Pi_{\tau}\circ\mathcal{F}^{\Pi_{\tau}(u_{1})}_{1}\circ\Pi_{\tau}(\mathcal{F}^{u_{2}}_{2}(y^{*}_{1,cl}))\\ &=\Pi_{\tau}\circ\mathcal{F}^{\Pi_{\tau}(u_{1})}_{1}\circ\Pi_{\tau}\circ\mathcal{F}^{\Pi_{\tau}(u_{2})}_{2}\circ\Pi_{\tau}(y^{*}_{1,cl})\\ &=\Pi_{\tau}\circ\mathcal{F}^{\Pi_{\tau}(u_{1})}_{1}\circ\mathcal{F}^{\Pi_{\tau}(u_{2})}_{2}\circ\Pi_{\tau}(y^{*}_{1,cl}).\end{split}

Similarly, Πτ(y1,Πτ)=Πτ1Πτ(u1)2Πτ(u2)Πτ(y1,Πτ)\Pi_{\tau}(y^{*}_{1,\Pi_{\tau}})=\Pi_{\tau}\circ\mathcal{F}^{\Pi_{\tau}(u_{1})}_{1}\circ\mathcal{F}^{\Pi_{\tau}(u_{2})}_{2}\circ\Pi_{\tau}(y^{*}_{1,\Pi_{\tau}}). Note that Πτ1Πτ(u1)2Πτ(u2)\Pi_{\tau}\circ\mathcal{F}^{\Pi_{\tau}(u_{1})}_{1}\circ\mathcal{F}^{\Pi_{\tau}(u_{2})}_{2} is a strict contraction, by the Banach fixed point theorem we have Πτ(y1,cl)=Πτ(y1,Πτ)\Pi_{\tau}(y^{*}_{1,cl})=\Pi_{\tau}(y^{*}_{1,\Pi_{\tau}}).

To establish closed-loop UIOC, let x1,clx^{*}_{1,cl} be the reference state solution to subsystem j=1j=1 with respect to input (y2,cl,u1)(y^{*}_{2,cl},u_{1}) and analogously for x2,clx^{*}_{2,cl}. Then xcl=(x1,cl,x2,cl)x^{*}_{cl}=(x^{*}_{1,cl},x^{*}_{2,cl}) is the closed-loop reference state solution. Let x¯(k)=(x¯1(k),x¯2(k)),y¯(k)=(y¯1(k),y¯2(k))\overline{x}(k)=(\overline{x}_{1}(k),\overline{x}_{2}(k)),\overline{y}(k)=(\overline{y}_{1}(k),\overline{y}_{2}(k)) be any other closed-loop solution and its corresponding output to another input u¯=(u¯1,u¯2)\overline{u}=(\overline{u}_{1},\overline{u}_{2}), starting at x¯(k0)\overline{x}(k_{0}). From (8) and (9), the same argument as in the proof of Theorem 8 shows that supkk0xcl(k)x¯(k)<\sup_{k\geq k_{0}}\|x_{cl}^{*}(k)-\overline{x}(k)\|<\infty, supkk0ycl(k)y¯(k)<\sup_{k\geq k_{0}}\|y^{*}_{cl}(k)-\overline{y}(k)\|<\infty.

For j=1,2j=1,2 and kk0k\geq k_{0}, define Δxj(k)=x¯j(k)xj,cl(k)\Delta x_{j}(k)=\overline{x}_{j}(k)-x^{*}_{j,cl}(k), Δyj(k)=y¯j(k)yj,cl(k)\Delta y_{j}(k)=\overline{y}_{j}(k)-y^{*}_{j,cl}(k) and Δuj(k)=u¯j(k)uj(k)\Delta u_{j}(k)=\overline{u}_{j}(k)-u_{j}(k). Let v1,cl=y2,clv^{*}_{1,cl}=y^{*}_{2,cl} and v2,cl=y1,clv^{*}_{2,cl}=y^{*}_{1,cl}, we have the time-varying systems with states Δxj(k)\Delta x_{j}(k), outputs Δyj(k)\Delta y_{j}(k), inputs Δuj(k)\Delta u_{j}(k), and interconnections Δv1(k)=Δy2(k)\Delta v_{1}(k)=\Delta y_{2}(k) and Δv2(k)=Δy1(k)\Delta v_{2}(k)=\Delta y_{1}(k),

Δxj(k+1)=fj(Δxj(k)+xj,cl(k),Δvj(k)+vj,cl(k),Δuj(k)+uj(k))fj(xj,cl(k),vj,cl(k),uj(k))=f~j(k,Δxj(k),Δvj(k),Δuj(k)),\begin{split}&\Delta x_{j}(k+1)\\ &=f_{j}(\Delta x_{j}(k)+x^{*}_{j,cl}(k),\Delta v_{j}(k)+v^{*}_{j,cl}(k),\Delta u_{j}(k)+u_{j}(k))\\ &\qquad-f_{j}(x^{*}_{j,cl}(k),v^{*}_{j,cl}(k),u_{j}(k))\\ &=\tilde{f}_{j}(k,\Delta x_{j}(k),\Delta v_{j}(k),\Delta u_{j}(k)),\\ \end{split}
Δyj(k)=hj(Δxj(k)+xj,cl(k),Δvj(k)+vj,cl(k),Δuj(k)+uj(k))hj(xj,cl(k),vj,cl(k),uj(k))=h~j(k,Δxj(k),Δvj(k),Δuj(k)).\begin{split}&\Delta y_{j}(k)\\ &=h_{j}(\Delta x_{j}(k)+x^{*}_{j,cl}(k),\Delta v_{j}(k)+v^{*}_{j,cl}(k),\Delta u_{j}(k)+u_{j}(k))\\ &\qquad-h_{j}(x^{*}_{j,cl}(k),v^{*}_{j,cl}(k),u_{j}(k))\\ &=\tilde{h}_{j}(k,\Delta x_{j}(k),\Delta v_{j}(k),\Delta u_{j}(k)).\end{split}

From (8) and (9), Δxj(k)\Delta x_{j}(k) and Δyj(k)\Delta y_{j}(k) satisfy (12) and (13) in Theorem 8. Finally, closed-loop UIOC follows from applying Theorem 8 to the above interconnected systems. ∎

Sometimes it is convenient to upper bound yj(k)y¯(k)\|y^{*}_{j}(k)-\overline{y}(k)\| in (8) by a sum instead of max\max of nonlinear gains. That is,

yj(k)y¯j(k)βj(xj(k0)x¯j(k0),kk0)+γjy((vjv¯j)[k0,k])+γju((uju¯j)[k0,k]).\begin{split}\|y^{*}_{j}(k)-\overline{y}_{j}(k)\|\leq\beta_{j}(\|x^{*}_{j}(k_{0})-\overline{x}_{j}(k_{0})\|,k-k_{0})&\\ +\gamma^{y}_{j}(\|(v_{j}-\overline{v}_{j})_{[k_{0},k]}\|)+\gamma^{u}_{j}(\|(u_{j}-\overline{u}_{j})_{[k_{0},k]}\|).&\end{split} (15)

Theorem 5 can be applied to this scenario by re-writing (15) in terms of max\max of nonlinear gains. If system (6) satisfies (15) instead of (8), to ensure UIOC of (6), the condition γ1yγ2y(s)<s\gamma^{y}_{1}\circ\gamma^{y}_{2}(s)<s for all s>0s>0 needs to be strengthened to (16) below. We first present a lemma that allows us to re-write (15) in terms of max\max.

Lemma 9

Given any λ𝒦\lambda\in\mathcal{K}_{\infty}, for any a,b0a,b\geq 0, it holds that a+bmax{a+λ(a),b+λ1(b)}a+b\leq\max\{a+\lambda(a),b+\lambda^{-1}(b)\}.

Proof:

Since λ𝒦\lambda\in\mathcal{K}_{\infty}, its inverse λ1\lambda^{-1} exists and is in 𝒦\mathcal{K}_{\infty}. Consider two cases. Suppose bλ(a)b\leq\lambda(a), then a+ba+λ(a)max{a+λ(a),b+λ1(b)}a+b\leq a+\lambda(a)\leq\max\{a+\lambda(a),b+\lambda^{-1}(b)\}. Otherwise, b>λ(a)b>\lambda(a). Applying λ1\lambda^{-1} on both sides gives λ1(b)>a\lambda^{-1}(b)>a and a+b<λ1(b)+bmax{a+λ(a),b+λ1(b)}a+b<\lambda^{-1}(b)+b\leq\max\{a+\lambda(a),b+\lambda^{-1}(b)\}. ∎

Theorem 5 and Lemma 9 leads to the following Corollary.

Corollary 10

Consider a well-posed system (6) with UOC subsystems. For any inputs ujlnuj,vjlnvju_{j}\in l^{\infty}_{n_{u_{j}}},v_{j}\in l^{\infty}_{n_{v_{j}}}, let xjx_{j}^{*} and yjy^{*}_{j} be the corresponding reference state solutions and outputs. For any other inputs u¯j,v¯j\overline{u}_{j},\overline{v}_{j} with u¯jlnuj\overline{u}_{j}\in l^{\infty}_{n_{u_{j}}}, let x¯j\overline{x}_{j} and y¯j\overline{y}_{j} be any corresponding solutions and outputs with initial conditions x¯j(k0)\overline{x}_{j}(k_{0}). Suppose that there exists βj𝒦\beta_{j}\in\mathcal{KL} and γjy,γju,σj,σju,σjy𝒦\gamma^{y}_{j},\gamma^{u}_{j},\sigma_{j},\sigma^{u}_{j},\sigma^{y}_{j}\in\mathcal{K} such that, for all k0,kk_{0},k\in\mathbb{Z} with kk0k\geq k_{0} and any x¯j(k0)nxj\overline{x}_{j}(k_{0})\in\mathbb{R}^{n_{x_{j}}}, (9) and (15) hold. If there exists λj𝒦\lambda_{j}\in\mathcal{K}_{\infty} such that for all s>0s>0,

(id+λ1)γ1y(id+λ2)γ2y(s)<s,\begin{split}&(id+\lambda_{1})\circ\gamma^{y}_{1}\circ(id+\lambda_{2})\circ\gamma^{y}_{2}(s)<s,\\ \end{split} (16)

where idid is the identity map. Then for any k0k_{0}\in\mathbb{Z} and x(k0)nx1+nx2x(k_{0})\in\mathbb{R}^{n_{x_{1}}+n_{x_{2}}}, the closed-loop solution and output are bounded, i.e., supkk0x(k)<\sup_{k\geq k_{0}}\|x(k)\|<\infty and supkk0y(k)<\sup_{k\geq k_{0}}\|y(k)\|<\infty. Further, system (6) is UIOC and induces a well-posed closed-loop I/O map.

We can further apply Theorem 5 and Lemma 9 to system (6) with yj(k)=xj(k)y_{j}(k)=x_{j}(k). In this case, Theorem 5 ensures the UISC property of system (6), leading to the following Corollary.

Corollary 11

Consider a well-posed system (6) with yj(k)=xj(k)y_{j}(k)=x_{j}(k) and UC subsystems. For any inputs ujlnuj,vjlnvju_{j}\in l^{\infty}_{n_{u_{j}}},v_{j}\in l^{\infty}_{n_{v_{j}}}, let xjx_{j}^{*} be the corresponding reference state solutions. For any other inputs u¯j,v¯j\overline{u}_{j},\overline{v}_{j} with u¯jlnuj\overline{u}_{j}\in l^{\infty}_{n_{u_{j}}}, let x¯j\overline{x}_{j} be any corresponding solutions with initial conditions x¯j(k0)\overline{x}_{j}(k_{0}). Suppose that there exists βj𝒦\beta_{j}\in\mathcal{KL} and γjy,γju𝒦\gamma^{y}_{j},\gamma^{u}_{j}\in\mathcal{K} such that, for all k0,kk_{0},k\in\mathbb{Z}, kk0k\geq k_{0} and any x¯j(k0)nxj\overline{x}_{j}(k_{0})\in\mathbb{R}^{n_{x_{j}}},

xj(k)x¯j(k)βj(xj(k0)x¯j(k0),kk0)+γjy((vjv¯j)[k0,k1])+γju((uju¯j)[k0,k1]).\begin{split}&\|x^{*}_{j}(k)-\overline{x}_{j}(k)\|\leq\beta_{j}(\|x^{*}_{j}(k_{0})-\overline{x}_{j}(k_{0})\|,k-k_{0})\\ &+\gamma_{j}^{y}(\|(v_{j}-\overline{v}_{j})_{[k_{0},k-1]}\|)+\gamma^{u}_{j}(\|(u_{j}-\overline{u}_{j})_{[k_{0},k-1]}\|).\end{split} (17)

If (16) holds, then for any k0k_{0}\in\mathbb{Z} and x(k0)nx1+nx2x(k_{0})\in\mathbb{R}^{n_{x_{1}}+n_{x_{2}}}, the closed-loop solution is bounded, i.e., supkk0x(k)<\sup_{k\geq k_{0}}\|x(k)\|<\infty. Further, system (6) is UISC.

IV Applications

This section demonstrates potential applications of Theorem 5 on observer design and black-box system identification.

IV-A Observer-based controller design

The conventional observer-based controller design approach first finds a desired solution of the closed-loop system x~(k)\tilde{x}(k). It then ensures that for any other solution x(k)x(k), z(k)=x(k)x~(k)z(k)=x(k)-\tilde{x}(k) is asymptotically stable. Since z(k)z(k) typically depends on x~(k)\tilde{x}(k), it can be difficult to analyze the asymptotic stability of z(k)z(k). Recently, the convergence approach has been applied to observer-based control in continuous-time, which may circumvent the cumbersome stability analysis in the conventional approach [2]. The convergence approach first designs an observer and a feedback controller so that the closed-loop system is UC. This ensures that the closed-loop system induces a well-posed I/O map and the internal states are bounded. Secondly, a feedforward controller is designed to shape the closed-loop system’s response. Here, we employ Theorem 5 to achieve the first step in the convergence approach.

For kk\in\mathbb{Z}, consider a nonlinear plant

z(k+1)=f(z(k),u(k),w(k)),y(k)=h(z(k)),z(k+1)=f(z(k),u(k),w(k)),\quad y(k)=h(z(k)),

with state z(k)nzz(k)\in\mathbb{R}^{n_{z}}, control u(k)nuu(k)\in\mathbb{R}^{n_{u}}, external input wlnww\in l^{\infty}_{n_{w}} and output y(k)nyy(k)\in\mathbb{R}^{n_{y}}. Construct an observer,

z^(k+1)=f(z^(k),u(k),w(k))L(h(z^(k))y(k)),\hat{z}(k+1)=f(\hat{z}(k),u(k),w(k))-L(h(\hat{z}(k))-y(k)),

where u(k)=ϕ(z^(k))u(k)=\phi(\hat{z}(k)) and L(s)=0L(s)=0 if s=0s=0. In general, LL can be a nonlinear function. Let Δz(k)=z^(k)z(k)\Delta z(k)=\hat{z}(k)-z(k), then u(k)=ϕ(Δz(k)+z(k))u(k)=\phi(\Delta z(k)+z(k)) and the observer error dynamics is

Δz(k+1)=f^(Δz(k),z(k),w(k))=f(Δz(k)+z(k),u(k),w(k))f(z(k),u(k),w(k))L(h(Δz(k)+z(k))h(z(k))),\begin{split}\Delta z(k+1)&=\hat{f}(\Delta z(k),z(k),w(k))\\ &=f(\Delta z(k)+z(k),u(k),w(k))\\ &-f(z(k),u(k),w(k))-L(h(\Delta z(k)+z(k))-h(z(k))),\\ \end{split}

where z(k),w(k)z(k),w(k) are viewed as inputs to the error dynamics. Consider the interconnected system (18) (see Fig. 2),

{z(k+1)=f(z(k),ϕ(v1(k)+z(k)),w(k)),Δz(k+1)=f^(Δz(k),v2(k),w(k)),v1(k)=Δz(k),v2(k)=z(k),\begin{split}&\begin{cases}\hskip 8.00003ptz(k+1)=f(z(k),\phi(v_{1}(k)+z(k)),w(k)),\\ \Delta z(k+1)=\hat{f}(\Delta z(k),v_{2}(k),w(k)),\end{cases}\\ &\hskip 31.49998ptv_{1}(k)=\Delta z(k),\quad v_{2}(k)=z(k),\end{split} (18)

where ww is the input. Our goal is to employ Theorem 5 to design the observer gain L()L(\cdot) and the controller u(k)=ϕ(z^(k))u(k)=\phi(\hat{z}(k)) such that the closed-loop system is UISC. To achieve this goal, we employ the following Corollary of Theorem 5 to system (18), whose full proof is given in Appendix B.

Refer to caption
Figure 2: Schematic of the closed-loop system (18) consisting of the plant and the observer error dynamics.
Corollary 12

Consider a well-posed system (18). Suppose that for any inputs v2,wv_{2},w with wlnww\in l^{\infty}_{n_{w}}, there exists β2𝒦\beta_{2}\in\mathcal{KL} such that, for any k,k0,kk0k,k_{0}\in\mathbb{Z},k\geq k_{0} and Δz(k0)nΔz\Delta z(k_{0})\in\mathbb{R}^{n_{\Delta z}},

Δz(k)β2(Δz(k0),kk0).\|\Delta z(k)\|\leq\beta_{2}(\|\Delta z(k_{0})\|,k-k_{0}). (19)

Suppose that the zz-subsystem is UC and let zz^{*} be the reference solution to v1,wv_{1},w. For any other input v¯1,w¯\overline{v}_{1},\overline{w} with w¯lnw\overline{w}\in l^{\infty}_{n_{w}}, let z¯\overline{z} be any solution. Suppose that there exists β1𝒦,γ1y,γ1w𝒦\beta_{1}\in\mathcal{KL},\gamma_{1}^{y},\gamma_{1}^{w}\in\mathcal{K} such that for any k0,k,kk0k_{0},k\in\mathbb{Z},k\geq k_{0} and z¯(k0)nz\overline{z}(k_{0})\in\mathbb{R}^{n_{z}},

z(k)z¯(k)β1(z(k0)z¯(k0),kk0)+γ1y((v1v¯1)[k0,k1])+γ1w((ww¯)[k0,k1]).\begin{split}&\|z^{*}(k)-\overline{z}(k)\|\leq\beta_{1}(\|z^{*}(k_{0})-\overline{z}(k_{0})\|,k-k_{0})\\ &+\gamma^{y}_{1}(\|(v_{1}-\overline{v}_{1})_{[k_{0},k-1]}\|)+\gamma^{w}_{1}(\|(w-\overline{w})_{[k_{0},k-1]}\|).\end{split} (20)

It follow that system (18) is UISC.

As a concrete example, we employ Corollary 12 to a design observer-based controller for a Lur’e system with a globally Lipschitz nonlinearity modified from [45, Example 1],

z(k+1)=Az(k)+Buu(k)+Bww(k)+ρGsin(Hz(k)),z(k+1)=Az(k)+B_{u}u(k)+B_{w}w(k)+\rho G\sin(Hz(k)),

with output y(k)=Cz(k)y(k)=Cz(k), ρ=0.1\rho=0.1 and

A=[1101.1],Bu=[11],Bw=[0.51],C=[0.10.5],G=[0.51],H=[11].\begin{split}&A=\begin{bmatrix}1&1\\ 0&1.1\end{bmatrix},B_{u}=\begin{bmatrix}1\\ 1\end{bmatrix},B_{w}=\begin{bmatrix}-0.5\\ 1\end{bmatrix},\\ &C=\begin{bmatrix}0.1&0.5\end{bmatrix},G=\begin{bmatrix}0.5\\ 1\end{bmatrix},H=\begin{bmatrix}1&1\end{bmatrix}.\end{split}

Here, for any a,a^2a,\hat{a}\in\mathbb{R}^{2}, we have

ρGsin(Ha)ρGsin(Ha^)ρGH(aa^).\|\rho G\sin(Ha)-\rho G\sin(H\hat{a})\|\leq\|\rho GH(a-\hat{a})\|.

Consider a Luenberger observer with gain L=P1Z2L=P^{-1}Z\in\mathbb{R}^{2},

z^(k+1)=Az^(k)+Buu(k)+Bww(k)+ρGsin(Hz^(k))P1ZC(z^(k)z(k)),\begin{split}\hat{z}(k+1)=&A\hat{z}(k)+B_{u}u(k)+B_{w}w(k)\\ &+\rho G\sin(H\hat{z}(k))-P^{-1}ZC(\hat{z}(k)-z(k)),\end{split}

where P>0P>0. In Appendix C, we show that the observer error dynamics Δz(k)=z^(k)z(k)\Delta z(k)=\hat{z}(k)-z(k) satisfies (19) if there exists Z2Z\in\mathbb{R}^{2}, P>0P>0, ϵ>0\epsilon>0 and θ(0,1)\theta\in(0,1) such that

PϵI<0,[θPAPCZϵρ(GH)APCZPAZCP00ϵρGH0ϵI0PAZC00PϵI]0.\begin{split}P-\epsilon I&<0,\\ \begin{bmatrix}-\theta P&A^{\top}P-C^{\top}Z^{\top}&\epsilon\rho(GH)^{\top}&A^{\top}P-C^{\top}Z^{\top}\\ PA-ZC&-P&0&0\\ \epsilon\rho GH&0&-\epsilon I&0\\ PA-ZC&0&0&P-\epsilon I\end{bmatrix}&\leq 0.\end{split} (21)

Consider a linear state-feedback law u(k)=Kz^(k)u(k)=-K\hat{z}(k) with gain K2K^{\top}\in\mathbb{R}^{2}. The plant subject to u(k)u(k) becomes

z(k+1)=(ABuK)z(k)+ρGsin(Hz(k))BuKΔz(k)+Bww(k)f~(z(k),Δz(k),w(k)),\begin{split}z(k+1)&=(A-B_{u}K)z(k)+\rho G\sin(Hz(k))\\ &\hskip 10.00002pt-B_{u}K\Delta z(k)+B_{w}w(k)\\ &\coloneqq\tilde{f}(z(k),\Delta z(k),w(k)),\end{split} (22)

where Δz(k),w(k)\Delta z(k),w(k) are viewed as inputs. Let z(k),z¯(k)z(k),\overline{z}(k)be any solutions starting at z(k0),z¯(k0)z(k_{0}),\overline{z}(k_{0}) to inputs Δz(k),w\Delta z(k),w and Δz¯(k),w¯\Delta\overline{z}(k),\overline{w}, respectively. Let δz¯(k)=z(k)z¯(k)\delta\overline{z}(k)=z(k)-\overline{z}(k), then

δz¯(k)λsδz¯(k1)+σmax(BuK)Δz(k1)Δz¯(k1)+Bw|w(k1)w¯(k1)|,\begin{split}\|\delta\overline{z}(k)\|&\leq\lambda_{s}\|\delta\overline{z}(k-1)\|\\ &+\sigma_{\max}(B_{u}K)\|\Delta z(k-1)-\Delta\overline{z}(k-1)\|\\ &+\|B_{w}\||w(k-1)-\overline{w}(k-1)|,\end{split} (23)

where λs=σmax(ABuK)+ρσmax(GH)\lambda_{s}=\sigma_{\max}(A-B_{u}K)+\rho\sigma_{\max}(GH). We employ [3, Theorem 1] to show that the plant (23) is UC. Firstly, consider Δz=Δz¯,w=w¯\Delta z=\Delta\overline{z},w=\overline{w}. From (23), we have δz¯(k)λsδz¯(k1)\|\delta\overline{z}(k)\|\leq\lambda_{s}\|\delta\overline{z}(k-1)\|. Further, note that for any Δzl2\Delta z\in l^{\infty}_{2} and wl1w\in l^{\infty}_{1}, we have

supkf~(0,Δz(k),w(k))Bww+σmax(BuK)Δz<.\begin{split}&\sup_{k\in\mathbb{Z}}\|\tilde{f}(0,\Delta z(k),w(k))\|\\ &\leq\|B_{w}\|\|w\|_{\infty}+\sigma_{\max}(B_{u}K)\|\Delta z\|_{\infty}<\infty.\end{split}

By [3, Theorem 1], if there exists KK such that λs<1\lambda_{s}<1, then the plant (22) is UC.

Furthermore, the condition λs<1\lambda_{s}<1 also ensures that the plant satisfies (20) in Corollary 12. Finally, applying Corollary 12 shows that the closed-loop system (18) is UISC.

Example 13

Choose LL^{\top} =[2.32582.1104]=\begin{bmatrix}2.3258&2.1104\end{bmatrix} and K=[0.49561.006]K=\begin{bmatrix}0.4956&1.006\end{bmatrix}, then λs=0.8687\lambda_{s}=0.8687 and the linear matrix inequalities (21) hold for θ=ϵ=0.001\theta=\epsilon=0.001. Hence, the closed-loop system (18) is UISC. The UISC property ensures that all solutions z(k)z(k) of the controlled plant to an input ww asymptotically converge to the reference state solution zz^{*}, independent of initial condition z(k0)z(k_{0}); see Fig. 3.

Refer to caption
Figure 3: The controlled plant states z(k)=(z1(k),z2(k))z(k)=(z_{1}(k),z_{2}(k)) under (a) w(k)w(k) is independently and uniformly sampled from [1,1][-1,1], (b) w(k)=sin(0.1πk)w(k)=\sin(0.1\pi k). (a) and (b) show the convergence of solutions for 5 random initial conditions.

IV-B Interconnected RCs for system identification

Nonlinear closed-loop model structures for black-box system identification, such as the Wiener-Hammerstein feedback models, have been proposed to better capture nonlinear feedback phenomena of the unknown system [40, 41]. Here we introduce interconnected RCs as candidate models. When identification is entirely based on the I/O data, the closed-loop RC is required to be UOC (or UC for state-feedback interconnections, see Sec IV-B1), so that the estimated outputs for large times are determined by the inputs but not by the RC’s initial condition. The internal RC parameters are arbitrary but fixed at the onset, as long as the closed-loop RC is UOC (or UC, see Sec. IV-B1). Only the RC’s output function is optimized to approximate the target output data.

Suppose that we have inputs wl(k),wl(k)w_{l}(k),w^{\prime}_{l^{\prime}}(k)\in\mathbb{R} and their corresponding outputs yl(k),yl(k)y_{l}(k),y^{\prime}_{l^{\prime}}(k)\in\mathbb{R} of the unknown system for 1kL1\leq k\leq L, 1lM1\leq l\leq M and 1lM1\leq l^{\prime}\leq M^{\prime}. I/O data wl(k),yl(k)w_{l}(k),y_{l}(k) are for parameter estimation (using l=1,,M1l=1,\ldots,M_{1}) and model selection (using l=M1+1,,Ml=M_{1}+1,\ldots,M, based on Akaike’s final prediction error [46]). I/O data wl(k),yl(k)w^{\prime}_{l^{\prime}}(k),y^{\prime}_{l^{\prime}}(k) are for model evaluation. For each ll and ll^{\prime}, we first washout the effect of RC’s initial condition for k=1,,Lwk=1,\ldots,L_{w}. Let y^l(k),y^l(k)\hat{y}_{l}(k),\hat{y}_{l^{\prime}}(k) be the RC’s outputs under inputs wl(k),wl(k)w_{l}(k),w_{l^{\prime}}(k), respectively. To optimize the RC output function, we minimize l=1M1k=Lw+1L|yl(k)y^l(k)|2\sum_{l=1}^{M_{1}}\sum_{k=L_{w}+1}^{L}|y_{l}(k)-\hat{y}_{l}(k)|^{2}. We estimate the model order based on FPEl{\rm FPE}_{l}, computed as

FPEl=1LLwk=Lw+1L|yl(k)y^l(k)|2LLw+pLLwp,{\rm FPE}_{l}=\frac{1}{L-L_{w}}\sum_{k=L_{w}+1}^{L}|y_{l}(k)-\hat{y}_{l}(k)|^{2}\frac{L-L_{w}+p}{L-L_{w}-p},

where pp is the number of RC output parameters. For each pp, we randomly generate NN RCs and select a model out of NpNp models with the minimum FPEl=M1+1MFPEl{\rm FPE}\coloneqq\sum_{l=M_{1}+1}^{M}{\rm FPE}_{l}. For each l=1,,Ml^{\prime}=1,\ldots,M^{\prime}, the selected model is assessed using MSEl=1LLwk=Lw+1L|yl(k)y^l(k)|2.{\rm MSE}_{l^{\prime}}=\frac{1}{L-L_{w}}\sum_{k=L_{w}+1}^{L}|y^{\prime}_{l^{\prime}}(k)-\hat{y}^{\prime}_{l^{\prime}}(k)|^{2}. We employ interconnected ESNs and QRCs to emulate the feedback-controlled Lur’e system in Sec. IV-A. We set Lw=500L_{w}=500, L=1500L=1500, N=10N=10, M=10,M1=8M=10,M_{1}=8 and M=2M^{\prime}=2, with inputs wl(k)w_{l}(k) and w1(k)w^{\prime}_{1}(k) sampled uniformly over [2,2][-2,2], independently for each kk (persistently exciting [46] with an order of 5050 estimated by the ‘pexcit’ Matlab command), whereas w2(k)=sin(2πk/25)+sin(πk/5)w^{\prime}_{2}(k)=\sin(2\pi k/25)+\sin(\pi k/5) as in [47].

IV-B1 Echo-state networks (ESNs)

Consider state-feedback interconnected ESNs with subsystems j=1,2j=1,2 of the form,

xj(k+1)=tanh(Ajxj(k)+Ajfbvj(k)+Bjw(k)),\begin{split}x_{j}(k+1)=\tanh(A_{j}x_{j}(k)+A^{fb}_{j}v_{j}(k)+B_{j}w(k)),\\ \end{split} (24)

where v1(k)=x2(k)nx2,v2(k)=x1(k)nx1v_{1}(k)=x_{2}(k)\in\mathbb{R}^{n_{x_{2}}},v_{2}(k)=x_{1}(k)\in\mathbb{R}^{n_{x_{1}}}, wl1w\in l^{\infty}_{1} is the input and tanh()\tanh(\cdot) is applied to a vector elementwise. We choose an output y^(k)=W1x1(k)+W2x2(k)+ζ\hat{y}(k)=W^{\top}_{1}x_{1}(k)+W_{2}^{\top}x_{2}(k)+\zeta, where WjnxjW_{j}\in\mathbb{R}^{n_{x_{j}}} and ζ\zeta\in\mathbb{R} is a bias term. The output parameters W1,W2,ζW_{1},W_{2},\zeta are optimized via ordinary least squares. The UC property of each ESN is guaranteed by choosing σmax(Aj)<1\sigma_{\max}(A_{j})<1 and noticing its compact state-space [5, Theorem 13]. We apply Corollary 11 to establish the UISC property for the interconnected system (24). For any k,k0k,k_{0}\in\mathbb{Z}, let xj(k),x¯j(k)x_{j}(k),\overline{x}_{j}(k) be any solutions to (24) under inputs vj,wv_{j},w and v¯j,w¯\overline{v}_{j},\overline{w} respectively. Let δx¯j(k)=xj(k)x¯j(k)\delta\overline{x}_{j}(k)=x_{j}(k)-\overline{x}_{j}(k), δv¯j=vjv¯j\delta\overline{v}_{j}=v_{j}-\overline{v}_{j} and δw¯=ww¯\delta\overline{w}=w-\overline{w}, then (17) in Corollary 11 is satisfied since

δx¯j(k)σmax(Aj)kk0δx¯j(k0)+σmax(Ajfb)1σmax(Aj)δv¯j[k0,k1]+Bj1σmax(Aj)|δw¯[k0,k1]|.\begin{split}&\|\delta\overline{x}_{j}(k)\|\leq\sigma_{\max}(A_{j})^{k-k_{0}}\|\delta\overline{x}_{j}(k_{0})\|\\ &+\frac{\sigma_{\max}(A^{fb}_{j})}{1-\sigma_{\max}(A_{j})}\|\delta\overline{v}_{j_{[k_{0},k-1]}}\|+\frac{\|B_{j}\|}{1-\sigma_{\max}(A_{j})}|\delta\overline{w}_{[k_{0},k-1]}|.\end{split}

In Corollary 11, choose λ1(s)=λ2(s)=λs\lambda_{1}(s)=\lambda_{2}(s)=\lambda s for some λ>0\lambda>0. The closed-loop system (24) is UISC if

σmax(A1fb)1σmax(A1)σmax(A2fb)1σmax(A2)<1(1+λ)2.\frac{\sigma_{\max}(A^{fb}_{1})}{1-\sigma_{\max}(A_{1})}\frac{\sigma_{\max}(A^{fb}_{2})}{1-\sigma_{\max}(A_{2})}<\frac{1}{(1+\lambda)^{2}}. (25)
Example 14

We consider interconnected ESN (24) with nx1=nx2{2,,5}n_{x_{1}}=n_{x_{2}}\in\{2,\ldots,5\} (i.e., p=2nx1+1p=2n_{x_{1}}+1) to model the feedback-controlled Lur’e system in Sec. IV-A. For each ESN, elements of Aj,Ajfb,BjA_{j},A^{fb}_{j},B_{j} are sampled independently and uniformly over [1,1][-1,1]. We fix σmax(Aj)=0.5\sigma_{\max}(A_{j})=0.5, σmax(A2fb)\sigma_{\max}(A^{fb}_{2}), and scale σmax(A1fb)\sigma_{\max}(A^{fb}_{1}) so that (25) holds. The minimum FPE achieved is FPE=0.0023{\rm FPE}=0.0023, with nx1=nx2=4n_{x_{1}}=n_{x_{2}}=4 and p=9p=9. For this selected ESN, σmax(A1fb)=0.15,σmax(A2fb)=1.65\sigma_{\max}(A^{fb}_{1})=0.15,\sigma_{\max}(A^{fb}_{2})=1.65 and (25) holds for λ=0.003\lambda=0.003. This results in MSE1=0.0012\text{MSE}_{1}=0.0012 and MSE2=0.0028\text{MSE}_{2}=0.0028 corresponding to the evaluation data l=1,2l^{\prime}=1,2, respectively. See Fig. 4 for the target outputs yl(k)y^{\prime}_{l^{\prime}}(k) and the closed-loop ESN outputs y^l(k)\hat{y}^{\prime}_{l^{\prime}}(k).

Refer to caption
Figure 4: Target outputs yl(k)y^{\prime}_{l^{\prime}}(k) and the closed-loop ESN outputs y^l(k)\hat{y}^{\prime}_{l^{\prime}}(k) for k=501,,540k=501,\ldots,540 with (a) l=1l^{\prime}=1 under a uniform random input w1(k)w^{\prime}_{1}(k) and (b) l=2l^{\prime}=2 under a sum of sinusoidals w2(k)=sin(2πk/25)+sin(πk/5)w^{\prime}_{2}(k)=\sin(2\pi k/25)+\sin(\pi k/5).

IV-B2 Quantum reservoir computers (QRCs)

We consider RCs realized by quantum dynamical systems for system identification [22, 23, 25]. An nn-qubit quantum system is described by a 2n×2n2^{n}\times 2^{n} positive semidefinite Hermitian matrix ρ\rho with trace Tr(ρ)=1{\rm Tr}(\rho)=1. A matrix ρ\rho satisfying the above properties is referred to as a density operator. We consider quantum systems evolving according to ρ(k+1)=𝒯(w(k))ρ(k)\rho(k+1)=\mathcal{T}(w(k))\rho(k), where 𝒯(w(k))\mathcal{T}(w(k)) is a completely positive trace-preserving (CPTP) map [48] determined by input w(k)w(k). A CPTP map sends a density operator to another density operator. A natural norm choice for density operators is the Schatten 1-norm, defined as A1Tr(AA)\|A\|_{1}\coloneqq{\rm Tr}(\sqrt{A^{\dagger}A}) for any complex matrix AA and its conjugate transpose AA^{\dagger}. We let 𝒯11supA1=1𝒯(A)1\|\mathcal{T}\|_{1-1}\coloneqq\sup_{\|A\|_{1}=1}\|\mathcal{T}(A)\|_{1} be the operator norm induced by the Schatten 1-norm.

Consider an interconnected QRC (also see Fig. 5),

{ρj(k+1)=𝒯j(w(k),vj(k))ρj(k)+ϵϕ(j)ϕj,y^j(k)=i=1njTr(Ziρj(k)),v1(k)=y^2(k),v2(k)=y^1(k),\begin{split}&\begin{cases}\rho_{j}(k+1)=\mathcal{T}_{j}(w(k),v_{j}(k))\rho_{j}(k)+\epsilon^{(j)}_{\phi}\phi_{j},\\ \hskip 18.00005pt\hat{y}_{j}(k)=\sum_{i=1}^{n_{j}}{\rm Tr}(Z_{i}\rho_{j}(k)),\end{cases}\\ &\hskip 50.00008ptv_{1}(k)=\hat{y}_{2}(k),\ v_{2}(k)=\hat{y}_{1}(k),\end{split} (26)

for j=1,2j=1,2. Here 𝒯j(w(k),vj(k))=ϵw(j)𝒯w(j)(w(k))+ϵv(j)𝒯v(j)(vj(k))\mathcal{T}_{j}(w(k),v_{j}(k))=\epsilon^{(j)}_{w}\mathcal{T}^{(j)}_{w}(w(k))+\epsilon^{(j)}_{v}\mathcal{T}^{(j)}_{v}(v_{j}(k)), ϵw(j)+ϵv(j)+ϵϕ(j)=1\epsilon^{(j)}_{w}+\epsilon^{(j)}_{v}+\epsilon^{(j)}_{\phi}=1 and ϵw(j),ϵv(j),ϵϕ(j)>0\epsilon^{(j)}_{w},\epsilon^{(j)}_{v},\epsilon^{(j)}_{\phi}>0. Subsystem jj has njn_{j} qubits so that ρj(k)\rho_{j}(k) and ϕj\phi_{j} are two 2nj×2nj2^{n_{j}}\times 2^{n_{j}} density operators, with ϕj\phi_{j} being fixed. Here, ZiZ_{i} is the Pauli-ZZ operator acting on qubit ii, where Pauli-ZZ is a 2×22\times 2 diagonal matrix with diagonal elements 1,11,-1. For S{w,v}S\in\{w,v\}, the input-dependent CPTP maps are

𝒯S(j)(x)ρj(k)=[g(x)TS,1(j)+(1g(x))TS,2(j)]ρj(k),\mathcal{T}^{(j)}_{S}(x)\rho_{j}(k)=\left[g(x)T^{(j)}_{S,1}+(1-g(x))T^{(j)}_{S,2}\right]\rho_{j}(k),

where g(x)=1/(1+exp(x))g(x)=1/(1+\exp(-x)) is the logistic function with a globally Lipschitz constant Lg=1/4L_{g}=1/4 and TS,1(j),TS,2(j)T^{(j)}_{S,1},T^{(j)}_{S,2} are input-independent CPTP maps. We choose the output of the closed-loop QRC as

y^(k)=i=1n1Wi(1)Tr(Ziρ1(k))+i=1n2Wi(2)Tr(Ziρ2(k))+ζ,\hat{y}(k)=\sum_{i=1}^{n_{1}}W_{i}^{(1)}{\rm Tr}(Z_{i}\rho_{1}(k))+\sum_{i=1}^{n_{2}}W_{i}^{(2)}{\rm Tr}(Z_{i}\rho_{2}(k))+\zeta,

where Wi(j),ζW^{(j)}_{i},\zeta\in\mathbb{R} (j=1,2j=1,2 and i=1,,nji=1,\ldots,n_{j}) are the output parameters to be optimized via ordinary least squares.

Refer to caption
Figure 5: Schematic of an interconnected QRC described by (26).

Note that interconnected quantum systems do not generally take the form (6); see [49], [50], [51] and [52, Chapter 5]. System (26) can describe ensembles of identical quantum systems such as NMR ensembles [22], and quantum systems that can emulate such ensembles; e.g., [25, 53]. Such quantum systems have dynamics constrained by quantum mechanics, but can otherwise be viewed as deterministic systems. Since the quantum subsystems here do not interact quantum mechanically, the composite state ρ(k)\rho(k) for (26) can be described by the direct sum of the subsystem density operators, ρ(k)=ρ1(k)ρ2(k)\rho(k)=\rho_{1}(k)\oplus\rho_{2}(k), as for interconnected classical systems. Consequently, the closed-loop system (26) is of the form (6) and Theorem 5 is applicable. We remark that Theorem 5 and its subsequent corollaries also hold for the Schatten 1-norm.

We now employ Corollary 10 to establish the UIOC of system (26). Note that for any density operators ρ,ρ¯\rho,\overline{\rho} and any CPTP map 𝒯\mathcal{T}, 𝒯(ρρ¯)1ρρ¯1\|\mathcal{T}(\rho-\overline{\rho})\|_{1}\leq\|\rho-\overline{\rho}\|_{1} [48]. For any k,k0k,k_{0}\in\mathbb{Z} with kk0k\geq k_{0}, let ρj(k),ρ¯j(k)\rho_{j}(k),\overline{\rho}_{j}(k) be any solutions to inputs vj,wv_{j},w and v¯j,w¯\overline{v}_{j},\overline{w}, respectively. Let δρ¯j(k)=ρj(k)ρ¯j(k)\delta\overline{\rho}_{j}(k)=\rho_{j}(k)-\overline{\rho}_{j}(k), δv¯j=vjv¯j\delta\overline{v}_{j}=v_{j}-\overline{v}_{j} and δw¯=ww¯\delta\overline{w}=w-\overline{w}, we have

δρ¯j(k)1(ϵw(j)+ϵv(j))kk0δρ¯j(k0)1+(ϵv(j)/ϵϕ(j))LgTv,1(j)Tv,2(j)11|δv¯j[k0,k1]|+(ϵw(j)/ϵϕ(j))LgTw,1(j)Tw,2(j)11|δw¯[k0,k1]|.\begin{split}&\|\delta\overline{\rho}_{j}(k)\|_{1}\leq(\epsilon^{(j)}_{w}+\epsilon^{(j)}_{v})^{k-k_{0}}\|\delta\overline{\rho}_{j}(k_{0})\|_{1}\\ &\qquad+(\epsilon^{(j)}_{v}/\epsilon^{(j)}_{\phi})L_{g}\|T^{(j)}_{v,1}-T^{(j)}_{v,2}\|_{1-1}|\delta\overline{v}_{j_{[k_{0},k-1]}}|\\ &\qquad+(\epsilon^{(j)}_{w}/\epsilon^{(j)}_{\phi})L_{g}\|T^{(j)}_{w,1}-T^{(j)}_{w,2}\|_{1-1}|\delta\overline{w}_{[k_{0},k-1]}|.\end{split} (27)

Furthermore, let yj(k),y¯j(k)y_{j}(k),\overline{y}_{j}(k) be the outputs associated to ρj(k),ρ¯j(k)\rho_{j}(k),\overline{\rho}_{j}(k). Applying Lemma 19 in Appendix D gives

|yj(k)y¯j(k)|=|i=1njTr(Ziδρ¯j(k))|njδρ¯j(k)1.|y_{j}(k)-\overline{y}_{j}(k)|=\left|\sum_{i=1}^{n_{j}}{\rm Tr}(Z_{i}\delta\overline{\rho}_{j}(k))\right|\leq n_{j}\|\delta\overline{\rho}_{j}(k)\|_{1}. (28)

To show that each QRC subsystem is UOC, note that a quantum system admits a compact state-space. Consider δv¯j=δw¯j=0\delta\overline{v}_{j}=\delta\overline{w}_{j}=0. From (27), we have δρ¯j(k)(ϵw(j)+ϵv(j))kk0δρ¯j(k0)1\|\delta\overline{\rho}_{j}(k)\|\leq(\epsilon^{(j)}_{w}+\epsilon^{(j)}_{v})^{k-k_{0}}\|\delta\overline{\rho}_{j}(k_{0})\|_{1} with ϵw(j)+ϵv(j)<1\epsilon^{(j)}_{w}+\epsilon^{(j)}_{v}<1. By [5, Theorem 13], there exists a unique bounded reference state solution ρj\rho^{*}_{j} to each subsystem in (26). From (27) and (28), we have |yj(k)y¯j(k)|nj(ϵw(j)+ϵv(j))kk0δρ¯j(k0)1|y_{j}(k)-\overline{y}_{j}(k)|\leq n_{j}(\epsilon^{(j)}_{w}+\epsilon^{(j)}_{v})^{k-k_{0}}\|\delta\overline{\rho}_{j}(k_{0})\|_{1}, and hence UOC of each QRC subsystem.

Upper bounding TS,1(j)TS,2(j)112\|T^{(j)}_{S,1}-T^{(j)}_{S,2}\|_{1-1}\leq 2 for S{w,v}S\in\{w,v\} [54, Theorem 2.1] in (27). Equations (27), (28) show that (9), (15) in Corollary 10 hold. Choose λ1(s)=λ2(s)=λs\lambda_{1}(s)=\lambda_{2}(s)=\lambda s for some λ>0\lambda>0 in Corollary 10. From (27), (28), the closed-loop QRC (26) is UIOC if

(4ϵv(1)ϵv(2)LgLgn1n2)/(ϵϕ(1)ϵϕ(2))<1/(1+λ)2.(4\epsilon^{(1)}_{v}\epsilon^{(2)}_{v}L_{g}L_{g}n_{1}n_{2})/(\epsilon^{(1)}_{\phi}\epsilon^{(2)}_{\phi})<1/(1+\lambda)^{2}. (29)
Example 15

We consider an interconnected QRC (26) with n1=n2{2,,5}n_{1}=n_{2}\in\{2,\ldots,5\} (i.e., p=2n1+1p=2n_{1}+1) to model the feedback-controlled Lur’e system in Sec. IV-A. For each QRC, we fix ϵw(1)=0.25,ϵv(1)=0.1,ϵϕ(1)=0.65\epsilon^{(1)}_{w}=0.25,\epsilon^{(1)}_{v}=0.1,\epsilon^{(1)}_{\phi}=0.65 and ϵw(2)=0.1,ϵv(2)=0.45,ϵϕ(2)=0.45\epsilon^{(2)}_{w}=0.1,\epsilon^{(2)}_{v}=0.45,\epsilon^{(2)}_{\phi}=0.45, such that (29) holds for all values of n1n_{1} considered here. For j=1,2j=1,2, ϕj\phi_{j} is chosen with its 1,11,1-th element (ϕj)1,1=1(\phi_{j})_{1,1}=1 and zero otherwise. Each input-independent CPTP map is governed by a unitary matrix US,m(j)U^{(j)}_{S,m}, defined by TS,m(j)(ρ)=US,m(j)ρ(US,m(j))T^{(j)}_{S,m}(\rho)=U^{(j)}_{S,m}\rho(U^{(j)}_{S,m})^{\dagger} for j,m=1,2j,m=1,2 and S{w,v}S\in\{w,v\}. More explicitly, we choose Uw,1(1)=Uv,2(1)=Uw,1(2)=Uv,2(2)=i=1n1ZiU^{(1)}_{w,1}=U^{(1)}_{v,2}=U^{(2)}_{w,1}=U^{(2)}_{v,2}=\bigotimes_{i=1}^{n_{1}}Z_{i}, where \otimes denotes the tensor (Kronecker) product. Other unitaries are US,m(j)=i=1n1eιθiS,m,jXiU^{(j)}_{S,m}=\bigotimes_{i=1}^{n_{1}}e^{-\iota\theta^{S,m,j}_{i}X_{i}}, where ι=1\iota=\sqrt{-1}, XiX_{i} is the Pauli-XX operator on qubit ii and the Pauli-XX operator is [0110]\begin{bmatrix}0&1\\ 1&0\end{bmatrix}. Parameters θiS,m,j\theta^{S,m,j}_{i} are uniformly distributed on [π,π][-\pi,\pi], independently for each S,m,jS,m,j and ii. The unitaries employed here are simple, more complex unitaries that entangle qubits within a QRC subsystem can also be used; see [22, 23, 25].

The minimum FPE is achieved at FPE=0.0032{\rm FPE}=0.0032 with n1=n2=5n_{1}=n_{2}=5 and p=11p=11, and (29) holds for λ=0.019\lambda=0.019. This selected QRC achieves MSE1=MSE2=0.0015{\rm MSE}_{1}={\rm MSE}_{2}=0.0015. See Fig. 6 for the QRC outputs y^l(k)\hat{y}^{\prime}_{l^{\prime}}(k) against the target outputs yl(k)y^{\prime}_{l^{\prime}}(k) for the evaluation data l=1,2l^{\prime}=1,2.

Refer to caption
Figure 6: Target outputs yl(k)y^{\prime}_{l^{\prime}}(k) and the closed-loop QRC outputs y^l(k)\hat{y}^{\prime}_{l^{\prime}}(k) for k=501,,540k=501,\ldots,540 with (a) l=1l^{\prime}=1 under a uniform random input w1(k)w^{\prime}_{1}(k) and (b) l=2l^{\prime}=2 under a sum of sinusoidals w2(k)=sin(2πk/25)+sin(πk/5)w^{\prime}_{2}(k)=\sin(2\pi k/25)+\sin(\pi k/5).

V Conclusion

We present a small-gain theorem for output-feedback interconnected systems to be uniformly input-to-output convergent systems, as a discrete-time counterpart of the continuous-time results in [55]. Our proof is based on a small-gain theorem for time-varying discrete-time systems in the input-to-output stability framework, also derived herein. The latter result bridges the gap between time-invariant and time-varying discrete-time small-gain theorems in the literature [33, 35].

Our small-gain theorems are applicable to important control problems, such as output regulation and tracking [7]. We demonstrate an application of our small-gain theorems to observer-based controller design, illustrated with systems subject to globally Lipschitz nonlinearities that are ubiquitous in mechanical and robotic applications. Detouring from conventional applications, we apply the uniform input-to-output convergence small-gain theorem to design parameters of interconnected reservoir computers for black-box system identification. We introduce interconnected echo-state networks and quantum reservoir computers as candidate models equipped with closed-loop structures and demonstrate numerically their efficacy in modeling a feedback-controlled system.

Appendix A

To prove Theorem 8, we will apply Lemma 16 below.

Lemma 16

Consider a well-posed system (6). Suppose that for j=1,2j=1,2, there exists β~j𝒦\tilde{\beta}_{j}\in\mathcal{KL}, γ~ju,γ~jy𝒦\tilde{\gamma}^{u}_{j},\tilde{\gamma}^{y}_{j}\in\mathcal{K} (independent of uj,vju_{j},v_{j}) with γ~jy(s)<s\tilde{\gamma}^{y}_{j}(s)<s for all s>0s>0 such that,for some MM\in\mathbb{Z} with M2M\geq 2, for any input ulnu1+nu2u\in l^{\infty}_{n_{u_{1}}+n_{u_{2}}}, any k0k_{0}\in\mathbb{Z} and k10k_{1}\in\mathbb{Z}_{\geq 0}, and any x(k0)nx1+nx2x(k_{0})\in\mathbb{R}^{n_{x_{1}}+n_{x_{2}}},

yj(k0+k1)max{β~j(x(k0),k1),γ~jy(yj[k0+k1/M,k0+k1]),γ~ju(u[k0,k0+k1])},\begin{split}\|y_{j}(k_{0}&+k_{1})\|\leq\max\{\tilde{\beta}_{j}(\|x(k_{0})\|,k_{1}),\\ &\tilde{\gamma}^{y}_{j}(\|y_{j_{[k_{0}+\lfloor k_{1}/M\rfloor,k_{0}+k_{1}]}}\|),\tilde{\gamma}^{u}_{j}(\|u_{[k_{0},k_{0}+k_{1}]}\|)\},\end{split} (30)

and

supk10yj(k0+k1)<.\sup_{k_{1}\in\mathbb{Z}_{\geq 0}}\|y_{j}(k_{0}+k_{1})\|<\infty.

Then there exists β^j𝒦\hat{\beta}_{j}\in\mathcal{KL} such that, for all k0k_{0}\in\mathbb{Z}, k10k_{1}\in\mathbb{Z}_{\geq 0},

yj(k0+k1)max{β^j(x(k0),k1),γ~ju(u[k0,k0+k1])}.\|y_{j}(k_{0}+k_{1})\|\leq\max\{\hat{\beta}_{j}(\|x(k_{0})\|,k_{1}),\tilde{\gamma}^{u}_{j}(\|u_{[k_{0},k_{0}+k_{1}]}\|)\}.

The main idea in the proof of Lemma 16 is to apply a continuous extension argument and [31, Lemma A.2] stated below in Lemma 17.

Lemma 17

Given δ𝒦\delta\in\mathcal{K}_{\infty} and T:(0,)×(0,)0T:(0,\infty)\times(0,\infty)\rightarrow\mathbb{R}_{\geq 0} such that, (i) for all ϵ>0\epsilon>0, s1<s2s_{1}<s_{2} implies T(ϵ,s1)T(ϵ,s2)T(\epsilon,s_{1})\leq T(\epsilon,s_{2}); (ii) for all s>0s>0, limϵ0+T(ϵ,s)=\lim_{\epsilon\rightarrow 0^{+}}T(\epsilon,s)=\infty. Then there exists β^𝒦\hat{\beta}\in\mathcal{KL} such that, for each s>0s>0 and t10t_{1}\in\mathbb{R}_{\geq 0}, there exists some ϵAs,t1{ϵ(0,)t1T(ϵ,s)}{}\epsilon\in A_{s,t_{1}}\coloneqq\{\epsilon^{\prime}\in(0,\infty)\mid t_{1}\geq T(\epsilon^{\prime},s)\}\cup\{\infty\} such that min{ϵ,δ1(s)}β^(s,t1)\min\{\epsilon,\delta^{-1}(s)\}\leq\hat{\beta}(s,t_{1}).

Proof:

Fix k0k_{0}\in\mathbb{Z}. For any k10k_{1}\in\mathbb{Z}_{\geq 0}, define zj(k1)=yj(k0+k1)z_{j}(k_{1})=\|y_{j}(k_{0}+k_{1})\| if yj(k0+k1)>γ~ju(u[k0,k0+k1])\|y_{j}(k_{0}+k_{1})\|>\tilde{\gamma}^{u}_{j}(\|u_{[k_{0},k_{0}+k_{1}]}\|) and zj(k1)=0z_{j}(k_{1})=0 otherwise. From the assumption (30) in Lemma 16, we have that for some M,M2M\in\mathbb{Z},M\geq 2,

zj(k1)max{β~j(x(k0),k1),γ~jy(|zj[k1/M,k1]|)}.z_{j}(k_{1})\leq\max\{\tilde{\beta}_{j}(\|x(k_{0})\|,k_{1}),\tilde{\gamma}^{y}_{j}(|z_{j_{[\lfloor k_{1}/M\rfloor,k_{1}]}}|)\}. (31)

Note the implicit dependence zj(k1)=zj(k1,x(k0),u)z_{j}(k_{1})=z_{j}(k_{1},x(k_{0}),u). We sample and hold the left points to extend zjz_{j} to a piecewise continuous function wjw_{j}. For any t10t_{1}\in\mathbb{R}_{\geq 0}, define wj(t1)=k1=0𝟙[k1,k1+1)(t1)zj(k1)w_{j}(t_{1})=\sum_{k_{1}=0}^{\infty}\mathds{1}_{[k_{1},k_{1}+1)}(t_{1})z_{j}(k_{1}), where 𝟙[k1,k1+1)(t1)=1\mathds{1}_{[k_{1},k_{1}+1)}(t_{1})=1 if t1[k1,k1+1)t_{1}\in[k_{1},k_{1}+1) and zero otherwise. For any τ,τ\tau,\tau^{\prime}\in\mathbb{R}, let |wj[τ,τ]|supττ¯τ|wj(τ¯)||w_{j_{[\tau,\tau^{\prime}]}}|\coloneqq\sup_{\tau\leq\overline{\tau}\leq\tau^{\prime}}|w_{j}(\overline{\tau})|. Since t1t1<t1+1\lfloor t_{1}\rfloor\leq t_{1}<\lfloor t_{1}\rfloor+1, we have wj(t1)=zj(t1)=wj(t1)w_{j}(t_{1})=z_{j}(\lfloor t_{1}\rfloor)=w_{j}(\lfloor t_{1}\rfloor) and

|wj[t1/M,t1]|=|wj[t1/M,t1]|=|wj[t1/M,t1]|=|zj[t1/M,t1]|.\begin{split}|w_{j_{[t_{1}/M,t_{1}]}}|=|w_{j_{[\lfloor t_{1}/M\rfloor,\lfloor t_{1}\rfloor]}}|&=|w_{j_{[\lfloor\lfloor t_{1}\rfloor/M\rfloor,\lfloor t_{1}\rfloor]}}|\\ &=|z_{j_{[\lfloor\lfloor t_{1}\rfloor/M\rfloor,\lfloor t_{1}\rfloor]}}|.\end{split} (32)

For s0s\in\mathbb{R}_{\geq 0}, let βj(s,t1)=k1=0𝟙[k1,k1+1)(t1)β~j(s,k1)\beta_{j}(s,t_{1})=\sum_{k_{1}=0}^{\infty}\mathds{1}_{[k_{1},k_{1}+1)}(t_{1})\tilde{\beta}_{j}(s,k_{1}). Then βj𝒦\beta_{j}\in\mathcal{KL} and βj(s,t1)=β~j(s,t1)\beta_{j}(s,t_{1})=\tilde{\beta}_{j}(s,\lfloor t_{1}\rfloor). From (31) and (32), we have that for all t10t_{1}\in\mathbb{R}_{\geq 0},

wj(t1)max{βj(x(k0),t1),γ~jy(|wj[t1/M,t1]|)}.w_{j}(t_{1})\leq\max\{\beta_{j}(\|x(k_{0})\|,t_{1}),\tilde{\gamma}^{y}_{j}(|w_{j_{[t_{1}/M,t_{1}]}}|)\}. (33)

To apply Lemma 17, we first show the following claims.

Claim (i): There exists δ𝒦\delta\in\mathcal{K}_{\infty} such that for all t10t_{1}\in\mathbb{R}_{\geq 0} and x(k0)nx1+nx2x(k_{0})\in\mathbb{R}^{n_{x_{1}}+n_{x_{2}}}, we have wj(t1)δ1(x(k0))w_{j}(t_{1})\leq\delta^{-1}(\|x(k_{0})\|).

Proof:

Note that |wj[0,)|supt10wj(t1)|w_{j_{[0,\infty)}}|\coloneqq\sup_{t_{1}\in\mathbb{R}_{\geq 0}}w_{j}(t_{1}) =supk10yj(k0+k1)<=\sup_{k_{1}\in\mathbb{Z}_{\geq 0}}\|y_{j}(k_{0}+k_{1})\|<\infty. From (33), we have

|wj[0,)|max{βj(x(k0),0),γ~jy(|wj[0,)|)}.\vspace*{-0.4em}|w_{j_{[0,\infty)}}|\leq\max\{\beta_{j}(\|x(k_{0})\|,0),\tilde{\gamma}^{y}_{j}(|w_{j_{[0,\infty)}}|)\}.

Since γ~jy(s)<s\tilde{\gamma}^{y}_{j}(s)<s for all s>0s>0, it follows that for any t10t_{1}\in\mathbb{R}_{\geq 0},

wj(t1)|wj[0,)|βj(x(k0),0).w_{j}(t_{1})\leq|w_{j_{[0,\infty)}}|\leq\beta_{j}(\|x(k_{0})\|,0). (34)

Choose δ𝒦\delta\in\mathcal{K}_{\infty} such that δ1(x(k0))βj(x(k0),0)\delta^{-1}(\|x(k_{0})\|)\geq\beta_{j}(\|x(k_{0})\|,0) (e.g., δ1=id+βj(,0)\delta^{-1}=id+\beta_{j}(\cdot,0)) gives the desired result. ∎

Claim (ii): For any ϵ,r>0\epsilon,r>0, there exists T^ϵ,r0\hat{T}_{\epsilon,r}\in\mathbb{R}_{\geq 0} such that for all t1T^ϵ,rt_{1}\geq\hat{T}_{\epsilon,r}, wj(t1)ϵw_{j}(t_{1})\leq\epsilon whenever x(k0)r\|x(k_{0})\|\leq r.

Proof:

The proof uses (34) and proceeds as in [29, Lemma 2.1]. Let ϵ,r>0\epsilon,r>0, if βj(x(k0),0)βj(r,0)ϵ\beta_{j}(\|x(k_{0})\|,0)\leq\beta_{j}(r,0)\leq\epsilon, then by (34), wj(t1)βj(x(k0),0)ϵw_{j}(t_{1})\leq\beta_{j}(\|x(k_{0})\|,0)\leq\epsilon for all t10t_{1}\in\mathbb{R}_{\geq 0}. Otherwise, since γ~jy\tilde{\gamma}^{y}_{j} is strictly contractive, there exists nϵ,r0n_{\epsilon,r}\in\mathbb{Z}_{\geq 0} such that the nϵ,rn_{\epsilon,r}-times composition (γ~jy)(nϵ,r)(βj(r,0))ϵ(\tilde{\gamma}^{y}_{j})^{(n_{\epsilon,r})}(\beta_{j}(r,0))\leq\epsilon. For i=1,,nϵ,ri=1,\ldots,n_{\epsilon,r}, let τi0\tau_{i}\in\mathbb{R}_{\geq 0} be the first time instance such that βj(r,τi)(γ~jy)(i)(βj(r,0))\beta_{j}(r,\tau_{i})\leq(\tilde{\gamma}^{y}_{j})^{(i)}(\beta_{j}(r,0)) so that τiτj\tau_{i}\leq\tau_{j} for j=i+1,,nϵ,rj=i+1,\ldots,n_{\epsilon,r}. Define τ^0=0\hat{\tau}_{0}=0 and τ^i=max{τi,Mτ^i1}\hat{\tau}_{i}=\max\{\tau_{i},M\hat{\tau}_{i-1}\}. We will show by induction that for t1τ^it_{1}\geq\hat{\tau}_{i}, wj(t1)(γ~jy)(i)(βj(r,0))w_{j}(t_{1})\leq(\tilde{\gamma}^{y}_{j})^{(i)}(\beta_{j}(r,0)).

Claim (i) establishes the case for i=0i=0 (with (γ~jy)(0)=id(\tilde{\gamma}^{y}_{j})^{(0)}=id). Suppose the induction hypothesis holds for t1τ^it_{1}\geq\hat{\tau}_{i}. For t1τ^i+1t_{1}\geq\hat{\tau}_{i+1}, we have t1τi+1t_{1}\geq\tau_{i+1} and t1/Mτ^it_{1}/M\geq\hat{\tau}_{i}. From (33),

wj(t1)max{βj(x(k0),τi+1),γ~jy(γ~jy)(i)(βj(r,0))}=(γ~jy)(i+1)(βj(r,0)).\begin{split}w_{j}(t_{1})&\leq\max\{\beta_{j}(\|x(k_{0})\|,\tau_{i+1}),\tilde{\gamma}^{y}_{j}\circ(\tilde{\gamma}^{y}_{j})^{(i)}(\beta_{j}(r,0))\}\\ &=(\tilde{\gamma}^{y}_{j})^{(i+1)}(\beta_{j}(r,0)).\end{split}

Claim (ii) follows from choosing T^ϵ,rτ^nϵ,r\hat{T}_{\epsilon,r}\geq\hat{\tau}_{n_{\epsilon,r}}. ∎

Let T^ϵ,r\hat{T}_{\epsilon,r} be given by Claim (ii). As in [31, Proposition 2.7], define T(ϵ,r)=r/ϵ+inf{T^ϵ,r|rr,ϵ(0,ϵ]}T(\epsilon,r)=r/\epsilon+\inf\{\hat{T}_{\epsilon^{\prime},r^{\prime}}|r\leq r^{\prime},\epsilon^{\prime}\in(0,\epsilon]\}. Then T(,)T(\cdot,\cdot) satisfies the conditions in Lemma 17. Fix s=x(k0)>0s=\|x(k_{0})\|>0 (the case for s=0s=0 is immediate), any t10t_{1}\in\mathbb{R}_{\geq 0} and the set As,t1A_{s,t_{1}}. By Claim (ii), wj(t1)ϵw_{j}(t_{1})\leq\epsilon for all ϵAs,t1\epsilon\in A_{s,t_{1}}. Let β^j𝒦\hat{\beta}_{j}\in\mathcal{KL} and ϵAs,t1\epsilon\in A_{s,t_{1}} be given by Lemma 17, such that min{ϵ,δ1(x(k0))}β^j(x(k0),t1)\min\{\epsilon,\delta^{-1}(\|x(k_{0})\|)\}\leq\hat{\beta}_{j}(\|x(k_{0})\|,t_{1}). Then

  • If δ1(x(k0))ϵ\delta^{-1}(\|x(k_{0})\|)\leq\epsilon, then by Claim (i) we have wj(t1)δ1(x(k0))β^j(x(k0),t1)w_{j}(t_{1})\leq\delta^{-1}(\|x(k_{0})\|)\leq\hat{\beta}_{j}(\|x(k_{0})\|,t_{1}).

  • If ϵ<δ1(x(k0))\epsilon<\delta^{-1}(\|x(k_{0})\|), then ϵ<\epsilon<\infty and wj(t1)ϵβ^j(x(k0),t1)w_{j}(t_{1})\leq\epsilon\leq\hat{\beta}_{j}(\|x(k_{0})\|,t_{1}).

Therefore, for all t10t_{1}\in\mathbb{R}_{\geq 0}, wj(t1)β^j(x(k0),t1)w_{j}(t_{1})\leq\hat{\beta}_{j}(\|x(k_{0})\|,t_{1}). In particular, for all k10k_{1}\in\mathbb{Z}_{\geq 0}, wj(k1)=zj(k1)β^j(x(k0),k1)w_{j}(k_{1})=z_{j}(k_{1})\leq\hat{\beta}_{j}(\|x(k_{0})\|,k_{1}). By definition of zj(k1)z_{j}(k_{1}), we have the desired result. ∎

We now prove Theorem 8. The proof adapts [29, Theorem 2.1] to discrete-time systems of the form (6). We first show that supkk0x(k)<\sup_{k\geq k_{0}}\|x(k)\|<\infty and supkk0y(k)<\sup_{k\geq k_{0}}\|y(k)\|<\infty, then we apply Lemma 16 with M=4M=4 to show that system (6) is UIOS.

Proof:

From (12), we have that for all kk0k\geq k_{0} and j=1,2j=1,2,

yj[k0,k]max{βj(xj(k0),0),γjy(vj[k0,k]),γju(uj[k0,k])}.\begin{split}\|y_{j_{[k_{0},k]}}\|\leq\max\{&\beta_{j}(\|x_{j}(k_{0})\|,0),\\ &\gamma^{y}_{j}(\|v_{j_{[k_{0},k]}}\|),\gamma^{u}_{j}(\|u_{j_{[k_{0},k]}}\|)\}.\end{split}

Substituting v1=y2v_{1}=y_{2}, v2=y1v_{2}=y_{1} and the bound for y2[k0,k]\|y_{2_{[k_{0},k]}}\| into that of y1[k0,k]\|y_{1_{[k_{0},k]}}\|, we have

y1[k0,k]max{β1(x1(k0),0),γ1yβ2(x2(k0),0),γ1yγ2y(y1[k0,k]),γ1yγ2u(u2[k0,k]),γ1u(u1[k0,k])}max{β1(x1(k0),0),γ1yβ2(x2(k0),0),γ1yγ2u(u2[k0,k]),γ1u(u1[k0,k])},\begin{split}&\|y_{1_{[k_{0},k]}}\|\\ &\leq\max\{\beta_{1}(\|x_{1}(k_{0})\|,0),\gamma_{1}^{y}\circ\beta_{2}(\|x_{2}(k_{0})\|,0),\\ &\gamma^{y}_{1}\circ\gamma^{y}_{2}(\|y_{1_{[k_{0},k]}}\|),\gamma_{1}^{y}\circ\gamma_{2}^{u}(\|u_{2_{[k_{0},k]}}\|),\gamma_{1}^{u}(\|u_{1_{[k_{0},k]}}\|)\}\\ &\leq\max\{\beta_{1}(\|x_{1}(k_{0})\|,0),\gamma_{1}^{y}\circ\beta_{2}(\|x_{2}(k_{0})\|,0),\\ &\hskip 40.00006pt\gamma_{1}^{y}\circ\gamma_{2}^{u}(\|u_{2_{[k_{0},k]}}\|),\gamma_{1}^{u}(\|u_{1_{[k_{0},k]}}\|)\},\end{split} (35)

where the last inequality follows from γ1yγ2y(y1[k0,k])<y1[k0,k]\gamma_{1}^{y}\circ\gamma_{2}^{y}(\|y_{1_{[k_{0},k]}}\|)<\|y_{1_{[k_{0},k]}}\|. A symmetric argument shows that

y2[k0,k]max{β2(x2(k0),0),γ2yβ1(x1(k0),0),γ2yγ1u(u1[k0,k]),γ2u(u2[k0,k])}.\begin{split}&\|y_{2_{[k_{0},k]}}\|\leq\max\{\beta_{2}(\|x_{2}(k_{0})\|,0),\gamma_{2}^{y}\circ\beta_{1}(\|x_{1}(k_{0})\|,0),\\ &\hskip 65.00009pt\gamma_{2}^{y}\circ\gamma_{1}^{u}(\|u_{1_{[k_{0},k]}}\|),\gamma_{2}^{u}(\|u_{2_{[k_{0},k]}}\|)\}.\end{split} (36)

Recall that ujlnuju_{j}\in l^{\infty}_{n_{u_{j}}} for j=1,2j=1,2. From (35) and (36), supkk0yj(k)<\sup_{k\geq k_{0}}\|y_{j}(k)\|<\infty. Substituting v1=y2v_{1}=y_{2} and v2=y1v_{2}=y_{1} in (13), it follows that supkk0xj(k)<\sup_{k\geq k_{0}}\|x_{j}(k)\|<\infty. It remains to show that system (6) is UIOS.

Upper bound vj[k0,k1]\|v_{j_{[k_{0},k-1]}}\| in (13) by (35) and (36), using xj(k0)x(k0)\|x_{j}(k_{0})\|\leq\|x(k_{0})\| and uj[k0,k]u[k0,k]\|u_{j_{[k_{0},k]}}\|\leq\|u_{[k_{0},k]}\|, we have

x(k)2max{x1(k),x2(k)}2maxj=1,2{σj(x(k0)),σjy(vj[k0,k]),σju(u[k0,k])}max{σ¯(x(k0)),γ¯(u[k0,k])},\begin{split}&\|x(k)\|\leq 2\max\{\|x_{1}(k)\|,\|x_{2}(k)\|\}\\ &\leq 2\max_{j=1,2}\left\{\sigma_{j}(\left\|x(k_{0})\right\|),\sigma_{j}^{y}(\|v_{j_{[k_{0},k]}}\|),\sigma^{u}_{j}(\left\|u_{[k_{0},k]}\right\|)\right\}\\ &\leq\max\left\{\overline{\sigma}(\left\|x(k_{0})\right\|),\overline{\gamma}(\left\|u_{[k_{0},k]}\right\|)\right\},\end{split} (37)

where σ¯(s)=2max{σ1(s),σ2(s),σ1y(β2(s,0)),σ2y(β1(s,0)),\overline{\sigma}(s)=2\max\{\sigma_{1}(s),\sigma_{2}(s),\sigma_{1}^{y}(\beta_{2}(s,0)),\sigma_{2}^{y}(\beta_{1}(s,0)), σ1yγ2y(β1(s,0)),σ2yγ1y(β2(s,0))}\sigma_{1}^{y}\circ\gamma_{2}^{y}(\beta_{1}(s,0)),\sigma_{2}^{y}\circ\gamma_{1}^{y}(\beta_{2}(s,0))\} and γ¯(s)=2max{σ1u(s),\overline{\gamma}(s)=2\max\{\sigma^{u}_{1}(s), σ2u(s),σ1yγ2yγ1u(s),σ2yγ1yγ2u(s),σ1yγ2u(s),σ2yγ1u(s)}\sigma^{u}_{2}(s),\sigma_{1}^{y}\circ\gamma_{2}^{y}\circ\gamma_{1}^{u}(s),\sigma_{2}^{y}\circ\gamma_{1}^{y}\circ\gamma_{2}^{u}(s),\sigma_{1}^{y}\circ\gamma^{u}_{2}(s),\sigma_{2}^{y}\circ\gamma^{u}_{1}(s)\}.

Consider subsystem j=1j=1 and (12). For any k10k_{1}\in\mathbb{Z}_{\geq 0} and k0k_{0}\in\mathbb{Z}, let k0+k1/2k_{0}+\lceil k_{1}/2\rceil be the initial time and k=k0+k1k=k_{0}+k_{1}. Then k(k0+k1/2)=k1/2k-(k_{0}+\lceil k_{1}/2\rceil)=\lfloor k_{1}/2\rfloor and

y1(k0+k1)max{β1(x1(k0+k1/2),k1/2),γ1y(y2[k0+k1/2,k0+k1]),γ1u(u1[k0+k1/2,k0+k1])}max{β1(x(k0+k1/2),k1/2),γ1y(y2[k0+k1/2,k0+k1]),γ1u(u[k0,k0+k1])}.\begin{split}&\|y_{1}(k_{0}+k_{1})\|\\ &\leq\max\{\beta_{1}(\|x_{1}(k_{0}+\lceil k_{1}/2\rceil)\|,\lfloor k_{1}/2\rfloor),\\ &\gamma^{y}_{1}(\|y_{2_{[k_{0}+\lceil k_{1}/2\rceil,k_{0}+k_{1}]}}\|),\gamma^{u}_{1}(\|u_{1_{[k_{0}+\lceil k_{1}/2\rceil,k_{0}+k_{1}]}}\|)\}\\ &\leq\max\{\beta_{1}(\|x(k_{0}+\lceil k_{1}/2\rceil)\|,\lfloor k_{1}/2\rfloor),\\ &\gamma^{y}_{1}(\|y_{2_{[k_{0}+\lceil k_{1}/2\rceil,k_{0}+k_{1}]}}\|),\gamma^{u}_{1}(\|u_{{[k_{0},k_{0}+k_{1}]}}\|)\}.\end{split} (38)

Consider subsystem j=2j=2 and (12). Let k0+k1/4k_{0}+\lfloor k_{1}/4\rfloor be the initial time. For any k1/2k¯1k1\lceil k_{1}/2\rceil\leq\overline{k}_{1}\leq k_{1}, let k=k0+k¯1k=k_{0}+\overline{k}_{1}. Then k(k0+k1/4)=k¯1k1/4k1/2k1/4k1/4k-(k_{0}+\lfloor k_{1}/4\rfloor)=\overline{k}_{1}-\lfloor k_{1}/4\rfloor\geq\lceil k_{1}/2\rceil-\lfloor k_{1}/4\rfloor\geq\lceil k_{1}/4\rceil,

y2(k0+k¯1)max{β2(x2(k0+k1/4),k¯1k1/4),γ2y(y1[k0+k1/4,k0+k¯1]),γ2u(u2[k0+k1/4,k0+k¯1])}max{β2(x(k0+k1/4),k1/4),γ2y(y1[k0+k1/4,k0+k1]),γ2u(u[k0,k0+k1])}\begin{split}&\left\|y_{2}(k_{0}+\overline{k}_{1})\right\|\\ &\leq\max\{\beta_{2}(\|x_{2}(k_{0}+\lfloor k_{1}/4\rfloor)\|,\overline{k}_{1}-\lfloor k_{1}/4\rfloor),\\ &\gamma_{2}^{y}(\|y_{1_{[k_{0}+\lfloor k_{1}/4\rfloor,k_{0}+\overline{k}_{1}]}}\|),\gamma_{2}^{u}(\|u_{2_{[k_{0}+\lfloor k_{1}/4\rfloor,k_{0}+\overline{k}_{1}]}}\|)\}\\ &\leq\max\{\beta_{2}(\|x(k_{0}+\lfloor k_{1}/4\rfloor)\|,\lceil k_{1}/4\rceil),\\ &\gamma_{2}^{y}(\|y_{1_{[k_{0}+\lfloor k_{1}/4\rfloor,k_{0}+k_{1}]}}\|),\gamma_{2}^{u}(\|u_{{[k_{0},k_{0}+k_{1}]}}\|)\}\end{split} (39)

Note that the right-hand side of the last inequality in (39) does not depend on k¯1\overline{k}_{1}. Now taking supk1/2k¯1k1\sup_{\lceil k_{1}/2\rceil\leq\overline{k}_{1}\leq k_{1}} on both sides of (39) shows that

y2[k0+k1/2,k0+k1]max{β2(x(k0+k1/4),k1/4),γ2y(y1[k0+k1/4,k0+k1]),γ2u(u[k0,k0+k1])}.\begin{split}&\|y_{2_{[k_{0}+\lceil k_{1}/2\rceil,k_{0}+k_{1}]}}\|\\ &\leq\max\{\beta_{2}(\|x(k_{0}+\lfloor k_{1}/4\rfloor)\|,\lceil k_{1}/4\rceil),\\ &\hskip 40.00006pt\gamma_{2}^{y}(\|y_{1_{[k_{0}+\lfloor k_{1}/4\rfloor,k_{0}+k_{1}]}}\|),\gamma_{2}^{u}(\|u_{{[k_{0},k_{0}+k_{1}]}}\|)\}.\end{split} (40)

Upper bounding y2[k0+k1/2,k0+k1]\|y_{2_{[k_{0}+\lceil k_{1}/2\rceil,k_{0}+k_{1}]}}\| in (38) using (40) and upper bounding x(k0+k1/2)\|x(k_{0}+\lceil k_{1}/2\rceil)\| in (38) using (37), we have

y1(k0+k1)max{β1(σ¯(x(k0)),k1/2),γ1yβ2(σ¯(x(k0)),k1/4),γ1yγ2y(y1[k0+k1/4,k0+k1]),γ1yγ2u(u[k0,k0+k1]),γ1u(u[k0,k0+k1]),β1(γ¯(u[k0,k0+k1]),0),γ1yβ2(γ¯(u[k0,k0+k1]),0)}.\begin{split}\|y_{1}(k_{0}+k_{1})\|\leq\max\{\beta_{1}(\overline{\sigma}(\|x(k_{0})\|),\lfloor k_{1}/2\rfloor),&\\ \gamma_{1}^{y}\circ\beta_{2}(\overline{\sigma}(\|x(k_{0})\|),\lceil k_{1}/4\rceil),&\\ \gamma_{1}^{y}\circ\gamma_{2}^{y}(\|y_{1_{[k_{0}+\lfloor k_{1}/4\rfloor,k_{0}+k_{1}]}}\|),\gamma_{1}^{y}\circ\gamma_{2}^{u}(\|u_{{[k_{0},k_{0}+k_{1}]}}\|),&\\ \gamma_{1}^{u}(\|u_{{[k_{0},k_{0}+k_{1}]}}\|),\beta_{1}(\overline{\gamma}(\|u_{[k_{0},k_{0}+k_{1}]}\|),0),&\\ \gamma_{1}^{y}\circ\beta_{2}(\overline{\gamma}(\|u_{[k_{0},k_{0}+k_{1}]}\|),0)\}&.\end{split} (41)

Let γ~1y(s)=γ1yγ2y(s)\tilde{\gamma}^{y}_{1}(s)=\gamma_{1}^{y}\circ\gamma_{2}^{y}(s), β~1(s,k1)=max{β1(σ¯(s),k1/4),\tilde{\beta}_{1}(s,k_{1})=\max\{\beta_{1}(\overline{\sigma}(s),\lfloor k_{1}/4\rfloor), γ1yβ2(σ¯(s),k1/4)}\gamma^{y}_{1}\circ\beta_{2}(\overline{\sigma}(s),\lfloor k_{1}/4\rfloor)\} and γ~1u(s)=max{γ1yγ2u(s),γ1u(s),\tilde{\gamma}^{u}_{1}(s)=\max\{\gamma_{1}^{y}\circ\gamma_{2}^{u}(s),\gamma_{1}^{u}(s), β1(γ¯(s),0),γ1yβ2(γ¯(s),0)}\beta_{1}(\overline{\gamma}(s),0),\gamma_{1}^{y}\circ\beta_{2}(\overline{\gamma}(s),0)\}. By a symmetric argument, we can define β~2\tilde{\beta}_{2} and γ~2u\tilde{\gamma}^{u}_{2} analogously. Here, β~j𝒦\tilde{\beta}_{j}\in\mathcal{KL} and γ~ju𝒦\tilde{\gamma}^{u}_{j}\in\mathcal{K} for j=1,2j=1,2. Re-writing (41) in terms of β~j\tilde{\beta}_{j} and γ~j\tilde{\gamma}_{j}, we have

yj(k0+k1)max{β~j(x(k0),k1),γ~jy(yj[k0+k1/4,k0+k1]),γ~ju(u[k0,k0+k1])},\begin{split}\|y_{j}(k_{0}+k_{1})\|&\leq\max\{\tilde{\beta}_{j}(\|x(k_{0})\|,k_{1}),\\ &\hskip 15.00002pt\tilde{\gamma}^{y}_{j}(\|y_{j_{[k_{0}+\lfloor k_{1}/4\rfloor,k_{0}+k_{1}]}}\|),\tilde{\gamma}^{u}_{j}(\|u_{[k_{0},k_{0}+k_{1}]}\|)\},\end{split}

where γ~jy(s)<s\tilde{\gamma}^{y}_{j}(s)<s for all s>0s>0 by strict contractivity of γ1yγ2y()\gamma_{1}^{y}\circ\gamma^{y}_{2}(\cdot) and γ2yγ1y()\gamma_{2}^{y}\circ\gamma^{y}_{1}(\cdot), and we have shown supk10yj(k0+k1)<\sup_{k_{1}\in\mathbb{Z}_{\geq 0}}\|y_{j}(k_{0}+k_{1})\|<\infty. Invoking Lemma 16 with M=4M=4, there exists β^j𝒦\hat{\beta}_{j}\in\mathcal{KL} such that for all k0k_{0}\in\mathbb{Z} and k10k_{1}\in\mathbb{Z}_{\geq 0},

yj(k0+k1)max{β^j(x(k0),k1),γ~ju(u[k0,k0+k1])}.\|y_{j}(k_{0}+k_{1})\|\leq\max\{\hat{\beta}_{j}(\|x(k_{0})\|,k_{1}),\tilde{\gamma}^{u}_{j}(\|u_{[k_{0},k_{0}+k_{1}]}\|)\}.

Let k=k0+k1k=k_{0}+k_{1}, γ(s)=2maxj=1,2{γ~ju(s)}\gamma(s)=2\max_{j=1,2}\{\tilde{\gamma}^{u}_{j}(s)\} and β(s,k)=2maxj=1,2{β~j(s,k)}\beta(s,k)=2\max_{j=1,2}\{\tilde{\beta}_{j}(s,k)\}. It follows that

y(k)2max{y1(k),y2(k)}max{β(x(k0),kk0),γ(u[k0,k])}\begin{split}\|y(k)\|&\leq 2\max\{\|y_{1}(k)\|,\|y_{2}(k)\|\}\\ &\leq\max\{\beta(\|x(k_{0})\|,k-k_{0}),\gamma(\|u_{[k_{0},k]}\|)\}\end{split}

for all k,k0k,k_{0}\in\mathbb{Z} with kk0k\geq k_{0} and any initial condition x(k0)nx1+nx2x(k_{0})\in\mathbb{R}^{n_{x_{1}}+n_{x_{2}}}. ∎

Appendix B

Proof:

By [5, Remark 5], for any inputs v2,u2v_{2},u_{2}, x2=0x^{*}_{2}=0 is the unique and bounded reference state solution, so that subsystem j=2j=2 is UC. To show closed-loop UISC, let x¯2(k)\overline{x}_{2}(k) be any solution to inputs v¯2,u¯2\overline{v}_{2},\overline{u}_{2} with initial condition x¯2(k0)\overline{x}_{2}(k_{0}). Equation (19) implies that for any gains γ2y,γ2u𝒦\gamma^{y}_{2},\gamma^{u}_{2}\in\mathcal{K},

x2(k)x¯2(k)β2(x2(k0)x¯2(k0),kk0)+γ2y((v2v¯2)[k0,k1])+γ2u((u2u¯2)[k0,k1])}.\begin{split}&\|x_{2}^{*}(k)-\overline{x}_{2}(k)\|\leq\beta_{2}(\|x_{2}^{*}(k_{0})-\overline{x}_{2}(k_{0})\|,k-k_{0})\\ &\hskip 10.00002pt+\gamma^{y}_{2}(\|(v_{2}-\overline{v}_{2})_{[k_{0},k-1]}\|)+\gamma^{u}_{2}(\|(u_{2}-\overline{u}_{2})_{[k_{0},k-1]}\|)\}.\end{split}

The above equation and (20) shows that (17) in Corollary 11 hold. We now show that (16) in Corollary 11 is satisfied and hence the closed-loop UISC of system (18). Observe that id+γ1y𝒦id+\gamma_{1}^{y}\in\mathcal{K}_{\infty} with (id+γ1y)1γ1y(s)<s(id+\gamma_{1}^{y})^{-1}\circ\gamma_{1}^{y}(s)<s for all s>0s>0. Let λ1,λ2𝒦\lambda_{1},\lambda_{2}\in\mathcal{K}_{\infty} be arbitrary. The result follows from choosing γ2y(s)=((id+λ1)(id+γ1y)(id+λ2))1(s)\gamma_{2}^{y}(s)=((id+\lambda_{1})\circ(id+\gamma^{y}_{1})\circ(id+\lambda_{2}))^{-1}(s). ∎

Appendix C

We show that if the linear matrix inequalities (21) are satisfied then (19) holds for the observer error dynamics.

Lemma 18

Consider the observer error dynamics Δz(k+1)=(AP1ZC)Δz(k)+ρGsin(Hz(k))ρGsin(Hz^(k))\Delta z(k+1)=(A-P^{-1}ZC)\Delta z(k)+\rho G\sin(Hz(k))-\rho G\sin(H\hat{z}(k)). Suppose that there exists Z2Z\in\mathbb{R}^{2}, P>0P>0 and ϵ>0\epsilon>0 such that

PϵI<0,[θPAPCZϵρ(GH)APCZPAZCP00ϵρGH0ϵI0PAZC00PϵI]0.\begin{split}P-\epsilon I&<0,\\ \begin{bmatrix}-\theta P&A^{\top}P-C^{\top}Z^{\top}&\epsilon\rho(GH)^{\top}&A^{\top}P-C^{\top}Z^{\top}\\ PA-ZC&-P&0&0\\ \epsilon\rho GH&0&-\epsilon I&0\\ PA-ZC&0&0&P-\epsilon I\end{bmatrix}&\leq 0.\end{split} (42)

Then the observer error dynamics satisfies (19) in Corollary 12.

Proof:

Let X=ρGHX=\rho GH. Recall that for any z,z^2z,\hat{z}\in\mathbb{R}^{2},

ρGsin(Hz)ρGsin(Hz^)X(zz^).\|\rho G\sin(Hz)-\rho G\sin(H\hat{z})\|\leq\|X(z-\hat{z})\|. (43)

Let w=ρGsin(Hz)ρGsin(Hz^)w=\rho G\sin(Hz)-\rho G\sin(H\hat{z}) and Δz=zz^\Delta z=z-\hat{z}, (43) is the same as wwΔzXXΔz0w^{\top}w-\Delta z^{\top}X^{\top}X\Delta z\leq 0, that is,

[Δzw][XX00I][Δzw]0.\begin{bmatrix}\Delta z^{\top}&w^{\top}\end{bmatrix}\begin{bmatrix}-X^{\top}X&0\\ 0&I\end{bmatrix}\begin{bmatrix}\Delta z\\ w\end{bmatrix}\leq 0. (44)

Let Ao=AP1ZCA_{o}=A-P^{-1}ZC. Eq. (19) holds if there exists θ(0,1)\theta\in(0,1) such that (AoΔz+w)P(AoΔz+w)θΔzPΔz0(A_{o}\Delta z+w)^{\top}P(A_{o}\Delta z+w)-\theta\Delta z^{\top}P\Delta z\leq 0 [56, Theorem 1.4], i.e.,

[Δzw][AoPAoθPAoPPAoP][Δzw]0.\begin{bmatrix}\Delta z^{\top}&w^{\top}\end{bmatrix}\begin{bmatrix}A_{o}^{\top}PA_{o}-\theta P&A_{o}^{\top}P\\ PA_{o}&P\end{bmatrix}\begin{bmatrix}\Delta z\\ w\end{bmatrix}\leq 0. (45)

From (44), (45) holds if there exists ϵ>0\epsilon>0 such that

[AoPAoθPAoPPAoP]ϵ[XX00I]0.\begin{bmatrix}A_{o}^{\top}PA_{o}-\theta P&A_{o}^{\top}P\\ PA_{o}&P\end{bmatrix}-\epsilon\begin{bmatrix}-X^{\top}X&0\\ 0&I\end{bmatrix}\leq 0. (46)

Assuming that PϵI<0P-\epsilon I<0 and ϵ>0\epsilon>0, we claim that (46) is equivalent to

[θPAoPϵXAoPPAoP00ϵX0ϵI0PAo00PϵI]0.\begin{bmatrix}-\theta P&A_{o}^{\top}P&\epsilon X^{\top}&A_{o}^{\top}P\\ PA_{o}&-P&0&0\\ \epsilon X&0&-\epsilon I&0\\ PA_{o}&0&0&P-\epsilon I\end{bmatrix}\leq 0. (47)

To see this, under the assumptions PϵI<0P-\epsilon I<0 and ϵ>0\epsilon>0, the Schur complement shows that (46) is equivalent to AoPAoθP+ϵXXAoP(PϵI)1PAo0A_{o}^{\top}PA_{o}-\theta P+\epsilon X^{\top}X-A_{o}^{\top}P(P-\epsilon I)^{-1}PA_{o}\leq 0. The same condition is obtained by applying the Schur complement twice to (47). ∎

Appendix D

Lemma 19

For any n×nn\times n Hermitian matrices AA and BB, we have |Tr(AB)|σmax(A)B1|{\rm Tr}(AB)|\leq\sigma_{\max}(A)\|B\|_{1}.

Proof:

Let B=j=1nλjvjvjB=\sum_{j=1}^{n}\lambda_{j}v_{j}v^{\dagger}_{j} be the spectral decomposition of BB, where {vj}\{v_{j}\} forms an orthonormal basis for n\mathbb{R}^{n}, where \dagger is the adjoint. Let {ej}\{e_{j}\} be the standard basis for n\mathbb{R}^{n}. Then there exists a unitary matrix UU such that vj=Uejv_{j}=Ue_{j} for 1jn1\leq j\leq n. Therefore,

|Tr(AB)|=|j=1nλjTr(ejUAUej)|j=1n|λj||(UAU)jj|,\left|{\rm Tr}(AB)\right|=\left|\sum_{j=1}^{n}\lambda_{j}{\rm Tr}\left(e^{\dagger}_{j}U^{\dagger}AUe_{j}\right)\right|\leq\sum_{j=1}^{n}|\lambda_{j}|\left|(U^{\dagger}AU)_{jj}\right|,

where XjjX_{jj} is the (j,j)(j,j)-th element of a matrix XX. For any Hermitian matrix AA, by the min-max theorem, we have λmin(A)=minxx=1xAxAjjλmax(A)=maxxx=1xAx.\lambda_{\min}(A)=\min_{\sqrt{x^{\top}x}=1}x^{\top}Ax\leq A_{jj}\leq\lambda_{\max}(A)=\max_{\sqrt{x^{\top}x}=1}x^{\top}Ax. Therefore, |Ajj|max{|λmin(A)|,|λmax(A)|}=σmax(A)|A_{jj}|\leq\max\{|\lambda_{\min}(A)|,|\lambda_{\max}(A)|\}=\sigma_{\max}(A). By unitary invariance of singular values, |Tr(AB)|σmax(A)j=1n|λj|=σmax(A)B1\left|{\rm Tr}(AB)\right|\leq\sigma_{\max}(A)\sum_{j=1}^{n}|\lambda_{j}|=\sigma_{\max}(A)\|B\|_{1}. ∎

References

  • [1] D. Angeli, “A Lyapunov approach to incremental stability properties,” IEEE Transactions on Automatic Control, vol. 47, no. 3, pp. 410–421, 2002.
  • [2] A. Pavlov, N. Van De Wouw, and H. Nijmeijer, “Convergent systems: analysis and synthesis,” in Control and observer design for nonlinear finite and infinite dimensional systems.   Springer, 2005, pp. 131–146.
  • [3] A. Pavlov and N. van de Wouw, “Convergent discrete-time nonlinear systems: the case of PWA systems,” in 2008 American Control Conference.   IEEE, 2008, pp. 3452–3457.
  • [4] W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for non-linear systems,” Automatica, vol. 34, no. 6, pp. 683–696, 1998.
  • [5] D. N. Tran, B. S. Rüffer, and C. M. Kellett, “Convergence properties for discrete-time nonlinear systems,” IEEE Transactions on Automatic Control, vol. 64, no. 8, pp. 3415–3422, 2018.
  • [6] A. Pavlov and N. van de Wouw, “Steady-state analysis and regulation of discrete-time nonlinear systems,” IEEE transactions on automatic control, vol. 57, no. 7, pp. 1793–1798, 2011.
  • [7] A. Pavlov, N. van de Wouw, and H. Nijmeijer, Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach, ser. Systems & Control: Foundations & Applications.   Birkhäuser Boston, 2006.
  • [8] Q.-C. Pham and J.-J. Slotine, “Stable concurrent synchronization in dynamic system networks,” Neural networks, vol. 20, no. 1, pp. 62–77, 2007.
  • [9] G. Tanaka et al., “Recent advances in physical reservoir computing: A review,” Neural Networks, 2019.
  • [10] K. Nakajima and I. Fischer, Reservoir Computing: Theory, Physical Implementations, and Applications.   Springer Singapore, 2020.
  • [11] L. Grigoryeva and J.-P. Ortega, “Universal discrete-time reservoir computers with stochastic inputs and linear readouts using non-homogeneous state-affine systems,” The Journal of Machine Learning Research, vol. 19, no. 1, pp. 892–931, 2018.
  • [12] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication,” Science, vol. 304, no. 5667, pp. 78–80, 2004.
  • [13] J. Pathak et al., “Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach,” Physical review letters, vol. 120, no. 2, p. 024102, 2018.
  • [14] L. Larger, A. Baylón-Fuentes, R. Martinenghi, V. S. Udaltsov, Y. K. Chembo, and M. Jacquot, “High-speed photonic reservoir computing using a time-delay-based architecture: Million words per second classification,” Physical Review X, vol. 7, no. 1, p. 011015, 2017.
  • [15] D. Canaday, A. Griffith, and D. J. Gauthier, “Rapid time series prediction with a hardware-based reservoir computer,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 28, no. 12, p. 123119, 2018.
  • [16] P. Zhou, N. R. McDonald, A. J. Edwards, L. Loomis, C. D. Thiem, and J. S. Friedman, “Reservoir computing with planar nanomagnet arrays,” arXiv preprint arXiv:2003.10948, 2020.
  • [17] F. Galán-Prado, J. Font-Rosselló, and J. L. Rosselló, “Tropical reservoir computing hardware,” IEEE Transactions on Circuits and Systems II: Express Briefs, 2020.
  • [18] M. C. Soriano, P. Massuti-Ballester, J. Yelo, and I. Fischer, “Optoelectronic reservoir computing using a mixed digital-analog hardware implementation,” in International Conference on Artificial Neural Networks.   Springer, 2019, pp. 170–174.
  • [19] K. Nakajima, “Physical reservoir computing—an introductory perspective,” Japanese Journal of Applied Physics, vol. 59, no. 6, p. 060501, 2020.
  • [20] J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, 2018.
  • [21] IBM Quantum Experience. https://www.ibm.com/quantum-computing/.
  • [22] K. Fujii and K. Nakajima, “Harnessing disordered-ensemble quantum dynamics for machine learning,” Physical Review Applied, vol. 8, no. 2, p. 024030, 2017.
  • [23] J. Chen and H. I. Nurdin, “Learning nonlinear input–output maps with dissipative quantum systems,” Quantum Information Processing, vol. 18, no. 7, p. 198, 2019.
  • [24] J. Chen, H. I. Nurdin, and N. Yamamoto, “Single-input single-output nonlinear system identification and signal processing on near-term quantum computers,” in Proceedings of the 2019 IEEE Conference on Decision and Control (CDC), December 2019, pp. 401–406.
  • [25] ——, “Temporal information processing on noisy quantum computers,” Phys. Rev. Applied, vol. 14, p. 024065, Aug 2020.
  • [26] J. S. Shamma and R. Zhao, “Fading-memory feedback systems and robust stability,” Automatica, vol. 29, no. 1, pp. 191–200, 1993.
  • [27] Z. P. Jiang and I. Mareels, “A small-gain control method for nonlinear cascaded systems with dynamic uncertainties,” IEEE Transactions on Automatic Control, vol. 42, no. 3, pp. 292–308, 1997.
  • [28] Z. P. Jiang, A. R. Teel, and L. Praly, “Small-gain theorem for ISS systems and applications,” Mathematics of Control, Signals and Systems, vol. 7, no. 2, pp. 95–120, 1994.
  • [29] Z. Chen and J. Huang, “A simplified small gain theorem for time-varying nonlinear systems,” IEEE Transactions on Automatic Control, vol. 50, no. 11, pp. 1904–1908, 2005.
  • [30] M. Zhu and J. Huang, “Small gain theorem with restrictions for uncertain time-varying nonlinear systems,” Communications in Information & Systems, vol. 6, no. 2, pp. 115–136, 2006.
  • [31] E. D. Sontag and B. Ingalls, “A small-gain theorem with applications to input/output systems, incremental stability, detectability, and interconnections,” Journal of the Franklin Institute, vol. 339, no. 2, pp. 211–229, 2002.
  • [32] Z. P. Jiang, Y. Lin, and Y. Wang, “Nonlinear small-gain theorems for discrete-time feedback systems and applications,” Automatica, vol. 40, no. 12, pp. 2129–2136, 2004.
  • [33] Z. P. Jiang and Y. Wang, “Input-to-state stability for discrete-time nonlinear systems,” Automatica, vol. 37, no. 6, pp. 857–869, 2001.
  • [34] E. D. S. Y. Lin and Y. Wang, “Recent results on lyapunov theoretic techniques for nonlinear stability,” Tech. Rep. SYCON-93-09.
  • [35] Z. P. Jiang, Y. Lin, and Y. Wang, “Remarks on input-to-output stability for discrete time systems,” IFAC Proceedings Volumes, vol. 38, no. 1, pp. 306–311, 2005.
  • [36] S. Ibrir, W. F. Xie, and C.-Y. Su, “Observer-based control of discrete-time Lipschitzian non-linear systems: application to one-link flexible joint robot,” International Journal of Control, vol. 78, no. 6, pp. 385–395, 2005.
  • [37] S. Ibrir and S. Diopt, “Novel LMI conditions for observer-based stabilization of Lipschitzian nonlinear systems and uncertain linear systems in discrete-time,” Applied Mathematics and Computation, vol. 206, no. 2, pp. 579–588, 2008.
  • [38] T. A. Johansen and B. A. Foss, “Constructing NARMAX models using ARMAX models,” International journal of control, vol. 58, no. 5, pp. 1125–1153, 1993.
  • [39] S. Boyd and L. Chua, “Fading memory and the problem of approximating nonlinear operators with Volterra series,” IEEE Transactions on circuits and systems, vol. 32, no. 11, pp. 1150–1161, 1985.
  • [40] F. Giri and E. Bai, Block-oriented Nonlinear System Identification, ser. Lecture Notes in Control and Information Sciences.   Springer London, 2010.
  • [41] M. Schoukens and K. Tiels, “Identification of block-oriented nonlinear systems starting from linear approximations: A survey,” Automatica, vol. 85, pp. 272–292, 2017.
  • [42] Y. Lin, E. D. Sontag, and Y. Wang, “A smooth converse Lyapunov theorem for robust stability,” SIAM Journal on Control and Optimization, vol. 34, no. 1, pp. 124–160, 1996.
  • [43] A. Isidori, Lectures in feedback design for multivariable systems.   Springer, 2017, vol. 3.
  • [44] E. Kreyszig, Introductory functional analysis with applications.   John Wiley & Sons, 1978.
  • [45] S. Ibrir, “Circle-criterion approach to discrete-time nonlinear observer design,” Automatica, vol. 43, no. 8, pp. 1432–1441, 2007.
  • [46] L. Ljung, System Identification: Theory for the User.   Pearson Education, 1998.
  • [47] S. N. Kumpati and P. Kannan, “Identification and control of dynamical systems using neural networks,” IEEE Transactions on neural networks, vol. 1, no. 1, pp. 4–27, 1990.
  • [48] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition.   Cambridge University Press, 2010.
  • [49] H. I. Nurdin, M. R. James, and I. R. Petersen, “Coherent quantum LQG control,” Automatica, vol. 45, no. 8, pp. 1837–1846, 2009.
  • [50] H. Amini, R. A. Somaraju, I. Dotsenko, C. Sayrin, M. Mirrahimi, and P. Rouchon, “Feedback stabilization of discrete-time quantum systems subject to non-demolition measurements with imperfections and delays,” Automatica, vol. 49, no. 9, pp. 2683–2692, 2013.
  • [51] J. Combes, J. Kerckhoff, and M. Sarovar, “The SLH framework for modeling quantum input-output networks,” Adv. Phys. X, vol. 2, no. 784, 2017.
  • [52] H. I. Nurdin and N. Yamamoto, Linear Dynamical Quantum Systems: Analysis, Synthesis, and Control, ser. Communications and Control Engineering.   Springer, 2017.
  • [53] M. Mirrahimi and P. Rouchon, “Singular perturbations and Lindblad-Kossakowski differential equations,” IEEE Transactions Automat. Control, vol. 54, no. 6, pp. 1325–1329, 2009.
  • [54] D. Perez-Garcia, M. M. Wolf, D. Petz, and M. B. Ruskai, “Contractivity of positive and trace-preserving maps under LpL_{p} norms,” Journal of Mathematical Physics, vol. 47, no. 8, p. 083506, 2006.
  • [55] B. Besselink, N. van de Wouw, and H. Nijmeijer, “Model reduction for a class of convergent nonlinear systems,” IEEE transactions on automatic control, vol. 57, no. 4, pp. 1071–1076, 2011.
  • [56] N. Bof, R. Carli, and L. Schenato, “Lyapunov theory for discrete time systems,” arXiv preprint arXiv:1809.05289, 2018.