This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A Stabilizer-Free Weak Galerkin Mixed Finite Element Method for the Biharmonic Equation

Shanshan Gu guss22@mails.jlu.edu.cn Fuchang Huo huofc22@mails.jlu.edu.cn Shicheng Liu lsc22@mails.jlu.edu.cn School of Mathematics, Jilin University, Changchun 130012, Jilin, China
Abstract

In this paper, we present and research a stabilizer-free weak Galerkin (SFWG) finite element method for the Ciarlet-Raviart mixed form of the Biharmonic equation on general polygonal meshes. We utilize the SFWG solutions of the second order elliptic problem to define projection operators and build error equations. Further, we derive the O(hk)O(h^{k}) and O(hk+1)O(h^{k+1}) convergence for the exact solution uu in the H1H^{1} and L2L^{2} norms with polynomials of degree kk. Finally, numerical examples support the results reached by the theory.

keywords:
Stabilizer-free weak Galerkin finite element method, Biharmonic equation, Ciarlet-Raviart mixed form, projection operators.
MSC:
[2020] 65N15 , 65N30 , 35J50 , 35J35 , 35G15

1 Introduction

Let Ω\Omega be a bounded polygonal domain in d\mathbb{R}^{d}, (d=2)(d=2) with Lipschitz continuous boundary Ω\partial\Omega. We consider the Biharmonic equation as follows

Δ2u\displaystyle\Delta^{2}u =f,inΩ,\displaystyle=f,\qquad in~{}\Omega, (1.1)
u\displaystyle u =0,onΩ,\displaystyle=0,\qquad on~{}\partial\Omega, (1.2)
u𝐧\displaystyle\frac{\partial u}{\partial{\bf n}} =0,onΩ,\displaystyle=0,\qquad on~{}\partial\Omega, (1.3)

where 𝐧{\bf n} is the unit outward normal vector on Ω\partial\Omega.

The variational form of (1.1)(1.3)(\ref{Bmodel-equ1})-(\ref{Bmodel-equ3}) is given as follows: find uH02(Ω)u\in H^{2}_{0}(\Omega) such that

(Δu,Δv)=(f,v),vH02(Ω),\displaystyle(\Delta u,\Delta v)=(f,v),\qquad\forall\,v\in H^{2}_{0}(\Omega), (1.4)

where H02(Ω)H^{2}_{0}(\Omega) is defined by

H02(Ω)={vH2(Ω):v|Ω=0,v𝐧|Ω=0}.\displaystyle H^{2}_{0}(\Omega)=\left\{v\in H^{2}(\Omega):~{}v|_{\partial\Omega}=0,~{}\frac{\partial v}{\partial{\bf n}}|_{\partial\Omega}=0\right\}.

As a widely used technique, the conforming finite element methods have long been applied to the Biharmonic equation [15, 24, 5]. They are based on the variational form (1.4) and are required to construct finite element spaces as the subspaces of H2(Ω)H^{2}(\Omega), which need C1C^{1}-continuous finite elements. Due to the complexity of constructing high continuous elements, H2H^{2}-conforming finite element methods are seldom employed to solve the Biharmonic equation in actual computation.

To avoid constructing the H2H^{2}-conforming finite elements, nonconforming and discontinuous Galerkin finite element methods are also used to solve the equation. For example, the Morley element [9] is a well-known nonconforming element for the Biharmonic equation, and a hp-version interior penalty discontinuous Galerkin method [10] is proposed to solve the equation.

There are other ways that adopt different variational principles to deal with the problem. The hybrid finite element methods and mixed finite element methods do precisely that. For the analysis related to hybrid methods, see the paper of Brezzi [2] specifically. The mixed finite element methods build different variational forms from the above variational formulation by introducing an auxiliary variable. For example, the Ciarlet-Raviart form [16, 8] introduces a variable φ=Δu\varphi=-\Delta u to build the variational formulation: find uH01(Ω)u\in H^{1}_{0}(\Omega) and φH1(Ω)\varphi\in H^{1}(\Omega) satisfying

(φ,v)(u,v)\displaystyle(\varphi,v)-(\nabla u,\nabla v) =0,vH1(Ω),\displaystyle=0,\quad\quad\,\,\,\,\,\forall\,v\in H^{1}(\Omega), (1.5)
(φ,ψ)\displaystyle(\nabla\varphi,\nabla\psi) =(f,ψ),ψH01(Ω).\displaystyle=(f,\psi),\quad\forall\,\psi\in H^{1}_{0}(\Omega). (1.6)

This approach is more appropriate for hydrodynamics problems, where Δu-\Delta u represents vorticity. In addition, there are some other ways, such as the Hermann-Miyoshi method [7] and Hermann-Johnson method [6], which use the variable σ=2u\sigma=-\nabla^{2}u to build the variational form. The case is more appropriate for plate problems because of the second partial derivatives of the solution uu, whose physical meanings are moments. For general results about mixed methods, the papers of Oden [14] can be used as a reference.

The weak Galerkin (WG) finite element methods have been well developed as a new class of discontinuous Galerkin finite element methods in the last decade. The WG method employs weak differential operators to substitute classical differential operators in variational forms, facilitating the achievement of weak continuity in numerical solution through stabilizer. The method was first introduced in [19] to solve the second order elliptic equation and achieved good results. The method is further developed by applying to more kinds of problems and modifying the definition of the weak differential operators. On the one hand, the WG method is utilized to solve the Stokes equation [20], the Biharmonic equation [13, 23], the Brinkman equation [12], etc. On the other hand, some scholars increase the degrees of the polynomial range space for the weak operator to eliminate the stabilizer in the WG numerical scheme [21, 3, 22], which is known as the stabilizer-free weak Galerkin (SFWG) method. The SFWG method simplifies the numerical format and reduces the computation amount in the programming process.

Currently, the WG method [13, 23, 25] and SFWG method [22] are applied to the primal form of the Biharmonic equation. For the Ciarlet-Raviart mixed finite element formulation (1.5)-(1.6), based on the Raviart-Thomas elements, a WG numerical scheme without stabilizer for the mixed formulation is developed in [11]. However, the disadvantage of using the Raviart-Thomas elements is that the results only work on triangular meshes. In this paper, we use the SFWG method to discrete the Ciarlet-Raviart mixed formulation (1.5)-(1.6) for the Biharmonic equation on general polytopal meshes. The convergence rates for the primal variable in the H1H^{1} and L2L^{2} norms are of order O(hk)O(h^{k}) and O(hk+1)O(h^{k+1}), respectively.

The following is the outline of this paper. In Section 2, we construct the SFWG numerical scheme for the Ciarlet-Raviart mixed formulation (1.5)-(1.6). In Section 3, we analyze the well-posedness of the SFWG method. In Section 4, we present the error equations and give the H1H^{1} and L2L^{2} error estimates for the SFWG method. Numerical examples are shown in Section 5. Section 6 makes a conclusion.

2 SFWG mixed scheme for the Biharmonic equation

In this section, we shall introduce some simple notations and build the stabilizer-free numerical formulation.

Let 𝒯h{\mathcal{T}}_{h} be the shape-regular partition of Ω\Omega satisfying the assumptions in [18]. Denote h{\mathcal{E}}_{h} as the set of all edges or flat faces in 𝒯h{\mathcal{T}}_{h}, and let h0=h\Ω{\mathcal{E}}^{0}_{h}={\mathcal{E}}_{h}\backslash\partial\Omega be the set of all interior edges or flat faces. Let hTh_{T} be the diameter of TT, and denote the mesh size of 𝒯h{\mathcal{T}}_{h} by h=maxT𝒯hhTh=\max_{T\in{\mathcal{T}}_{h}}h_{T}. Denote ρPk(T)\rho\in P_{k}(T) that ρ|T\rho|_{T} is polynomial with degree no more than kk, and the piecewise function space Pk(e)P_{k}(e) is similar.

Let KK be an open bounded domain in d\mathbb{R}^{d}, and ss be a positive integer. We use s,K\|\cdot\|_{s,K}, ||s,K|\cdot|_{s,K}, (,)s,K(\cdot,\cdot)_{s,K} to represent the norm, seminorm, and inner product of the Sobolev space Hs(K)H^{s}(K), respectively. We shall drop the subscript KK if K=ΩK=\Omega and drop the subscript ss if s=2s=2. In addition, for any a,b>0a,b>0, we use the term aba\lesssim b to express aCba\leq Cb, where C>0C>0 is a constant independent of the mesh size.

For convenience, we use the following notations:

(v,w)𝒯h\displaystyle(v,w)_{{\mathcal{T}}_{h}} =T𝒯h(v,w)T=T𝒯hTvw𝑑T,\displaystyle=\sum_{T\in\mathcal{T}_{h}}(v,w)_{T}=\sum_{T\in\mathcal{T}_{h}}\int_{T}vwdT,
v,w𝒯h\displaystyle\langle v,w\rangle_{\partial{\mathcal{T}}_{h}} =T𝒯hv,wT=T𝒯hTvw𝑑s.\displaystyle=\sum_{T\in\mathcal{T}_{h}}\langle v,w\rangle_{\partial T}=\sum_{T\in\mathcal{T}_{h}}\int_{\partial T}vwds.

Define the weak finite element spaces:

Vh\displaystyle V_{h} ={v={v0,vb},v0|TPk(T),vb|ePk(e),T𝒯h,eh},\displaystyle=\left\{v=\{v_{0},v_{b}\},v_{0}|_{T}\in P_{k}(T),v_{b}|_{e}\in P_{k}(e),T\in\mathcal{T}_{h},e\in\mathcal{E}_{h}\right\}, (2.1)
Vh0\displaystyle V_{h}^{0} ={v={v0,vb}Vh:vb|e=0,eΩ}.\displaystyle=\{v=\left\{v_{0},v_{b}\}\in V_{h}:~{}v_{b}|_{e}=0,~{}e\subset\partial\Omega\right\}. (2.2)

The discrete weak gradient of functions is defined as follows.

Definition 2.1.

[21] For any vVh+H1(Ω)v\in V_{h}+H^{1}(\Omega), the discrete weak gradient wv|T[Pj(T)]d\nabla_{w}v|_{T}\in[P_{j}(T)]^{d} satisfies

(wv,𝐪)T=(v0,𝐪)T+vb,𝐪𝐧T,𝐪[Pj(T)]d,\displaystyle(\nabla_{w}v,{\mathbf{q}})_{T}=-(v_{0},\nabla\cdot{\mathbf{q}})_{T}+\langle v_{b},{\mathbf{q}}\cdot{\bf n}\rangle_{\partial T},\qquad\forall\,{\mathbf{q}}\in[P_{j}(T)]^{d}, (2.3)

where jj will be defined later.

In addition, we define

a(w,v)=\displaystyle a(w,v)= (w0,v0)𝒯h+T𝒯hhTw0wb,v0vbT,w,vVh,\displaystyle~{}(w_{0},v_{0})_{{\mathcal{T}}_{h}}+\sum_{T\in\mathcal{T}_{h}}h_{T}\langle w_{0}-w_{b},v_{0}-v_{b}\rangle_{\partial T},\quad\forall\,w,v\in V_{h},
b(v,ψ)=\displaystyle b(v,\psi)= (wv,wψ)𝒯h,vVh,ψVh0.\displaystyle~{}(\nabla_{w}v,\nabla_{w}\psi)_{{\mathcal{T}}_{h}},\quad\forall\,v\in V_{h},\psi\in V^{0}_{h}.

With these preparations, we can propose the SFWG numerical scheme as follows.

Algorithm 1 Stabilizer-free Weak Galerkin Algorithm

A stabilizer-free weak Galerkin numerical scheme of (1.5)-(1.6) is seeking φh×uhVh×Vh0\varphi_{h}\times u_{h}\in V_{h}\times V^{0}_{h} such that

a(φh,v)b(v,uh)\displaystyle a(\varphi_{h},v)-b(v,u_{h}) =0,vVh,\displaystyle=0,\quad\quad\,\,\,\,\,\,\,\,\forall\,v\in V_{h}, (2.4)
b(φh,ψ)\displaystyle b(\varphi_{h},\psi) =(f,ψ0),ψVh0.\displaystyle=(f,\psi_{0}),\quad\forall\,\psi\in V^{0}_{h}. (2.5)

By setting v={1,1}v=\{1,1\} in (2.4), we can get an important fact that φh\varphi_{h} has mean value zero over the domain Ω\Omega. For simplicity, we define a space V¯hVh\overline{V}_{h}\subset V_{h} as follows.

V¯h={v={v0,vb}Vh:Ωv0𝑑x=0}.\displaystyle\overline{V}_{h}=\left\{v=\{v_{0},v_{b}\}\in V_{h}:\int_{\Omega}v_{0}dx=0\right\}.

For the sake of later analysis, we introduce several L2L^{2} projection operators. Let Q0Q_{0} be a locally defined L2L^{2} projection operator to Pk(T)P_{k}(T) on each element T𝒯hT\in{\mathcal{T}}_{h} and QbQ_{b} be a locally defined L2L^{2} projection operator to Pk(e)P_{k}(e) on each edge ehe\in{\mathcal{E}}_{h}. Then Qh={Q0,Qb}Q_{h}=\{Q_{0},Q_{b}\} is the projection operator into VhV_{h}. Furthermore, we define h{\mathbb{Q}}_{h} as the projection to [Pj(T)]d[P_{j}(T)]^{d} in T𝒯hT\in{\mathcal{T}}_{h}.

3 Well-posedness

In this section, we first equip the space Vh0V^{0}_{h} and VhV_{h} with proper norms. Next, we use the introduced norms and the relationship between the norms to derive the well-posedness of the numerical scheme.

Definition 3.1.

For any vVh+H1(Ω)v\in V_{h}+H^{1}(\Omega), we define the following semi-norms

v0,h2=\displaystyle\|v\|^{2}_{0,h}= a(v,v)=(v0,v0)𝒯h+T𝒯hhTv0vb,v0vbT,\displaystyle~{}a(v,v)=(v_{0},v_{0})_{{\mathcal{T}}_{h}}+\sum_{T\in\mathcal{T}_{h}}h_{T}\langle v_{0}-v_{b},v_{0}-v_{b}\rangle_{\partial T},
|v|2=\displaystyle|\!|\!|v|\!|\!|^{2}= b(v,v)=(wv,wv)𝒯h,\displaystyle~{}b(v,v)=(\nabla_{w}v,\nabla_{w}v)_{{\mathcal{T}}_{h}},
v1,h2=\displaystyle\|v\|^{2}_{1,h}= T𝒯hv0T2+T𝒯hhT1v0vbT2.\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}\left\|\nabla v_{0}\right\|^{2}_{T}+\sum_{T\in\mathcal{T}_{h}}h_{T}^{-1}\left\|v_{0}-v_{b}\right\|^{2}_{\partial T}.

Obviously, 0,h\|\cdot\|_{0,h} is the norm in VhV_{h}. Besides, with respect to |||||||\!|\!|\cdot|\!|\!| and 1,h\left\|\cdot\right\|_{1,h}, there is the following relationship.

Lemma 3.1.

[21]There exist two positive constants C1C_{1} and C2C_{2} such that

C1v1,h|v|C2v1,h,vVh,\displaystyle C_{1}\left\|v\right\|_{1,h}\leq|\!|\!|v|\!|\!|\leq C_{2}\left\|v\right\|_{1,h},\quad\forall\,v\in V_{h}, (3.1)

where j=n+k1j=n+k-1 (nn is the number of edges of the polygon) in the definition of w\nabla_{w}.

Lemma 3.2.

1,h\left\|\cdot\right\|_{1,h} provides a norm in Vh0V^{0}_{h} and V¯h\overline{V}_{h}.

Proof.

We shall only prove the positivity property for 1,h\left\|\cdot\right\|_{1,h}. Assume that v1,h=0\left\|v\right\|_{1,h}=0 for some vVh0v\in V^{0}_{h}. From the definition of 1,h\left\|\cdot\right\|_{1,h}, we have

v0T=0,v0vbT=0,T𝒯h.\displaystyle\left\|\nabla v_{0}\right\|_{T}=0,\quad\left\|v_{0}-v_{b}\right\|_{\partial T}=0,\qquad\forall\,T\in{\mathcal{T}}_{h}.

Due to v0T=0,T𝒯h\left\|\nabla v_{0}\right\|_{T}=0,~{}\forall\,T\in{\mathcal{T}}_{h}, we get v0=constv_{0}=const locally on each element T. Further, by using v0vbT=0,T𝒯h\left\|v_{0}-v_{b}\right\|_{\partial T}=0,~{}\forall\,T\in{\mathcal{T}}_{h}, we obtain v0=vb=constv_{0}=v_{b}=const on Ω\Omega. The boundary condition of vb=0v_{b}=0 finally implies v={0,0}v=\{0,0\} on Ω\Omega. Therefore, 1,h\left\|\cdot\right\|_{1,h} is the norm in Vh0V_{h}^{0}.

On the other hand, assume that v1,h=0\left\|v\right\|_{1,h}=0 for some vV¯hv\in\overline{V}_{h}. From the definition of 1,h\left\|\cdot\right\|_{1,h}, we get v0=vb=constv_{0}=v_{b}=const on Ω\Omega, together with the fact that vV¯hv\in\overline{V}_{h} implies v={0,0}v=\{0,0\} on Ω\Omega. This completes the proof. ∎

Furthermore, the norm equivalence (3.1)(\ref{norm-equ}) implies |||||||\!|\!|\cdot|\!|\!| is the norm in Vh0V_{h}^{0} and V¯h\overline{V}_{h}. And we have the following relationships about 1,h\left\|\cdot\right\|_{1,h}, 0,h\left\|\cdot\right\|_{0,h} and |||||||\!|\!|\cdot|\!|\!|.

Lemma 3.3.

For any vVhv\in V_{h}, we have

v1,h\displaystyle\left\|v\right\|_{1,h}\lesssim h1v0,h,\displaystyle~{}h^{-1}\left\|v\right\|_{0,h}, (3.2)
|v|\displaystyle|\!|\!|v|\!|\!|\lesssim h1v0,h.\displaystyle~{}h^{-1}\left\|v\right\|_{0,h}. (3.3)
Proof.

From the definition of 1,h\left\|\cdot\right\|_{1,h}, the inverse inequality [18, Lemma A.6], and the definition of 0,h\left\|\cdot\right\|_{0,h}, we obtain

v1,h2=\displaystyle\left\|v\right\|_{1,h}^{2}= T𝒯h(v0T2+hT1v0vbT2)\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}(\left\|\nabla v_{0}\right\|_{T}^{2}+h^{-1}_{T}\left\|v_{0}-v_{b}\right\|_{\partial T}^{2})
\displaystyle\lesssim T𝒯h(hT2v0T2+hT1v0vbT2)\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}(h^{-2}_{T}\left\|v_{0}\right\|_{T}^{2}+h^{-1}_{T}\left\|v_{0}-v_{b}\right\|_{\partial T}^{2})
\displaystyle\lesssim h2T𝒯h(v0T2+hTv0vbT2)\displaystyle~{}h^{-2}\sum_{T\in\mathcal{T}_{h}}(\left\|v_{0}\right\|_{T}^{2}+h_{T}\left\|v_{0}-v_{b}\right\|_{\partial T}^{2})
\displaystyle\lesssim h2v0,h2,\displaystyle~{}h^{-2}\left\|v\right\|_{0,h}^{2},

which implies (3.2). Consequently, we have (3.3) by using Lemma 3.1. ∎

Lemma 3.4.

We have the following estimates:

v0,h\displaystyle\left\|v\right\|_{0,h}\lesssim |v|,vVh0,\displaystyle~{}|\!|\!|v|\!|\!|,\qquad\forall\,v\in V_{h}^{0}, (3.4)
v0,h\displaystyle\left\|v\right\|_{0,h}\lesssim |v|,vV¯h.\displaystyle~{}|\!|\!|v|\!|\!|,\qquad\forall\,v\in\overline{V}_{h}. (3.5)
Proof.

For any vVh0v\in V_{h}^{0}, it follows from [11] that there exists 𝐪[H1(Ω)]2{\mathbf{q}}\in[H^{1}(\Omega)]^{2} such that 𝐪=v0\nabla\cdot{\mathbf{q}}=v_{0} and 𝐪1v0\left\|{\mathbf{q}}\right\|_{1}\lesssim\left\|v_{0}\right\|. Then we obtain

v02=\displaystyle\left\|v_{0}\right\|^{2}= T𝒯h(v0,𝐪)T\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}(v_{0},\nabla\cdot{\mathbf{q}})_{T}
=\displaystyle= T𝒯h((v0,𝐪)T+v0,𝐪𝐧T)\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}(-(\nabla v_{0},{\mathbf{q}})_{T}+\langle v_{0},{\mathbf{q}}\cdot{\bf n}\rangle_{\partial T})
=\displaystyle= T𝒯h((v0,h𝐪)T+v0vb,𝐪𝐧T)\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}(-(\nabla v_{0},\mathbb{Q}_{h}{\mathbf{q}})_{T}+\langle v_{0}-v_{b},{\mathbf{q}}\cdot{\bf n}\rangle_{\partial T})
=\displaystyle= T𝒯h((v0,h𝐪)Tv0,h𝐪𝐧T+v0vb,𝐪𝐧T)\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}((v_{0},\nabla\cdot\mathbb{Q}_{h}{\mathbf{q}})_{T}-\langle v_{0},\mathbb{Q}_{h}{\mathbf{q}}\cdot{\bf n}\rangle_{\partial T}+\langle v_{0}-v_{b},{\mathbf{q}}\cdot{\bf n}\rangle_{\partial T})
=\displaystyle= T𝒯h((wv,h𝐪)T+vb,h𝐪𝐧Tv0,h𝐪𝐧T+v0vb,𝐪𝐧T)\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}\left(-(\nabla_{w}v,\mathbb{Q}_{h}{\mathbf{q}})_{T}+\langle v_{b},\mathbb{Q}_{h}{\mathbf{q}}\cdot{\bf n}\rangle_{\partial T}-\langle v_{0},\mathbb{Q}_{h}{\mathbf{q}}\cdot{\bf n}\rangle_{\partial T}+\langle v_{0}-v_{b},{\mathbf{q}}\cdot{\bf n}\rangle_{\partial T}\right)
=\displaystyle= (wv,h𝐪)𝒯h+T𝒯hv0vb,(𝐪h𝐪)𝐧T,\displaystyle~{}-(\nabla_{w}v,\mathbb{Q}_{h}{\mathbf{q}})_{{\mathcal{T}}_{h}}+\sum_{T\in\mathcal{T}_{h}}\langle v_{0}-v_{b},({\mathbf{q}}-\mathbb{Q}_{h}{\mathbf{q}})\cdot{\bf n}\rangle_{\partial T},

where we have used the integration by parts, vb,𝐪𝐧𝒯h=0\langle v_{b},{\mathbf{q}}\cdot{\bf n}\rangle_{\partial{\mathcal{T}}_{h}}=0 and the definition of w\nabla_{w}.
By Cauchy-Schwarz inequality and 𝐪1v0\left\|{\mathbf{q}}\right\|_{1}\lesssim\left\|v_{0}\right\|, we have

|(wv,h𝐪)𝒯h|\displaystyle|(\nabla_{w}v,\mathbb{Q}_{h}{\mathbf{q}})_{{\mathcal{T}}_{h}}|\lesssim |v|h𝐪\displaystyle~{}|\!|\!|v|\!|\!|\left\|\mathbb{Q}_{h}{\mathbf{q}}\right\|
\displaystyle\lesssim |v|𝐪\displaystyle~{}|\!|\!|v|\!|\!|\left\|{\mathbf{q}}\right\|
\displaystyle\lesssim |v|𝐪1\displaystyle~{}|\!|\!|v|\!|\!|\left\|{\mathbf{q}}\right\|_{1}
\displaystyle\lesssim |v|v0.\displaystyle~{}|\!|\!|v|\!|\!|\left\|v_{0}\right\|.

For T𝒯hv0vb,(𝐪h𝐪)𝐧T\sum_{T\in\mathcal{T}_{h}}\langle v_{0}-v_{b},({\mathbf{q}}-\mathbb{Q}_{h}{\mathbf{q}})\cdot{\bf n}\rangle_{\partial T}, we have

T𝒯hv0vb,(𝐪h𝐪)𝐧T\displaystyle\sum_{T\in\mathcal{T}_{h}}\langle v_{0}-v_{b},({\mathbf{q}}-\mathbb{Q}_{h}{\mathbf{q}})\cdot{\bf n}\rangle_{\partial T}\lesssim (T𝒯hhT1v0vbT2)12(T𝒯hhT𝐪h𝐪T)12\displaystyle~{}\left(\sum_{T\in\mathcal{T}_{h}}h_{T}^{-1}\left\|v_{0}-v_{b}\right\|_{\partial T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}}h_{T}\left\|{\mathbf{q}}-\mathbb{Q}_{h}{\mathbf{q}}\right\|_{\partial T}\right)^{\frac{1}{2}}
\displaystyle\lesssim hv1,h𝐪1\displaystyle~{}h\left\|v\right\|_{1,h}\left\|{\mathbf{q}}\right\|_{1}
\displaystyle\lesssim h|v|v0,\displaystyle~{}h|\!|\!|v|\!|\!|\left\|v_{0}\right\|,

where we have used the Cauchy-Schwarz inequality, the trace inequality [18, Lemma A.3], and the projection inequality [18, Lemma 4.1], and 𝐪1v0\left\|{\mathbf{q}}\right\|_{1}\lesssim\left\|v_{0}\right\|.
Thus, we get v02|v|v0\left\|v_{0}\right\|^{2}\lesssim|\!|\!|v|\!|\!|\left\|v_{0}\right\|, which implies that

v0|v|.\displaystyle\left\|v_{0}\right\|\lesssim|\!|\!|v|\!|\!|.

According to the proof of Lemma 3.1, we have

hv0vbT2\displaystyle h\left\|v_{0}-v_{b}\right\|_{\partial T}^{2}\lesssim h1v0vbT2\displaystyle~{}h^{-1}\left\|v_{0}-v_{b}\right\|_{\partial T}^{2}
\displaystyle\lesssim wvT2.\displaystyle~{}\left\|\nabla_{w}v\right\|_{T}^{2}. (3.6)

Combining the above results, we get (3.4).

For (3.5), if vV¯hv\in\overline{V}_{h}, according to [11], one may find a vector-valued function 𝐪{\mathbf{q}} satisfying 𝐪=v0\nabla\cdot{\mathbf{q}}=v_{0} and 𝐪𝐧=0{\mathbf{q}}\cdot{\bf n}=0 on Ω\partial\Omega. Apart from this, we have 𝐪1v0\left\|{\mathbf{q}}\right\|_{1}\lesssim\left\|v_{0}\right\|. The remaining proof of the (3.5) is similar to (3.4).

From Lemma 3.1 and Lemma 3.4, we obtain

v0,h\displaystyle\left\|v\right\|_{0,h}\lesssim v1,h,vVh0,\displaystyle~{}\left\|v\right\|_{1,h},\qquad\forall\,v\in V_{h}^{0}, (3.7)
v0,h\displaystyle\left\|v\right\|_{0,h}\lesssim v1,h,vV¯h.\displaystyle~{}\left\|v\right\|_{1,h},\qquad\forall\,v\in\overline{V}_{h}. (3.8)

For all ψhVh0\psi_{h}\in V_{h}^{0}, we define

|ψh|1=(T𝒯hQ0(wψh)T2+ehh1Qb[wψh]e2)12,\displaystyle|\!|\!|\psi_{h}|\!|\!|_{1}=\left(\sum_{T\in\mathcal{T}_{h}}\left\|Q_{0}(\nabla\cdot\nabla_{w}\psi_{h})\right\|_{T}^{2}+\sum_{e\in{\mathcal{E}}_{h}}h^{-1}\left\|Q_{b}[\nabla_{w}\psi_{h}]\right\|^{2}_{e}\right)^{\frac{1}{2}},

where [wψh]|e=(wψh)|T1e𝐧1+(wψh)|T2e𝐧2[\nabla_{w}\psi_{h}]|_{e}=(\nabla_{w}\psi_{h})|_{\partial T_{1}\cap e}\cdot{\bf n}_{1}+(\nabla_{w}\psi_{h})|_{\partial T_{2}\cap e}\cdot{\bf n}_{2} for any internal edge eh0e\in{\mathcal{E}}_{h}^{0}, T1T_{1}, T2T_{2} are the elements sharing the edge ee and 𝐧1{\bf n}_{1}, 𝐧2{\bf n}_{2} are the unit outward normal vectors of T1,T2T_{1},T_{2} on ee. When the edge ee is on the boundary Ω\partial\Omega, which is the part of element boundary of TT and 𝐧{\bf n} is the unit outward normal vector of TT on ee, [wψh]|e=(wψh)|Te𝐧[\nabla_{w}\psi_{h}]|_{e}=(\nabla_{w}\psi_{h})|_{\partial T\cap e}\cdot{\bf n}.

Then, we have the following conclusions.

Lemma 3.5.

||||||1|\!|\!|\cdot|\!|\!|_{1} is a norm in Vh0V_{h}^{0}, and we have

b(v,ψ)v0,h|ψ|1,vVh,ψVh0,\displaystyle b(v,\psi)\lesssim\left\|v\right\|_{0,h}|\!|\!|\psi|\!|\!|_{1},\qquad\forall\,v\in V_{h},\psi\in V_{h}^{0}, (3.9)
supvVhb(v,ψ)v0,h|ψ|1|ψ|,ψVh0.\displaystyle\sup_{\forall\,v\in V_{h}}\frac{b(v,\psi)}{\left\|v\right\|_{0,h}}\gtrsim|\!|\!|\psi|\!|\!|_{1}\gtrsim|\!|\!|\psi|\!|\!|,\qquad\forall\,\psi\in V^{0}_{h}. (3.10)
Proof.

We only prove ψ=0\psi=0 if |ψ|1=0|\!|\!|\psi|\!|\!|_{1}=0 to verify that ||||||1|\!|\!|\cdot|\!|\!|_{1} is a norm. For any ψVh0\psi\in V^{0}_{h}, if |ψ|1=0|\!|\!|\psi|\!|\!|_{1}=0, we have

Q0(wψh)|T=\displaystyle Q_{0}(\nabla\cdot\nabla_{w}\psi_{h})|_{T}= 0,T𝒯h,\displaystyle~{}0,\quad\forall\,T\in{\mathcal{T}}_{h},
Qb[wψh]|e=\displaystyle Q_{b}[\nabla_{w}\psi_{h}]|_{e}= 0,eh.\displaystyle~{}0,\quad\forall\,e\in{\mathcal{E}}_{h}.

Further, from the definitions of w\nabla_{w}, [][\cdot], and QhQ_{h}, we have

(wψ,wψ)=\displaystyle(\nabla_{w}\psi,\nabla_{w}\psi)= T𝒯h(ψ0,wψ)T+ehψb,[wψ]e\displaystyle~{}-\sum_{T\in\mathcal{T}_{h}}(\psi_{0},\nabla\cdot\nabla_{w}\psi)_{T}+\sum_{e\in{\mathcal{E}}_{h}}\langle\psi_{b},[\nabla_{w}\psi]\rangle_{e}
=\displaystyle= T𝒯h(ψ0,Q0(wψ))T+ehψb,Qb[wψ]e\displaystyle~{}-\sum_{T\in\mathcal{T}_{h}}(\psi_{0},Q_{0}(\nabla\cdot\nabla_{w}\psi))_{T}+\sum_{e\in{\mathcal{E}}_{h}}\langle\psi_{b},Q_{b}[\nabla_{w}\psi]\rangle_{e}
=\displaystyle= 0,\displaystyle~{}0,

which shows |ψ|=0|\!|\!|\psi|\!|\!|=0. Since |||||||\!|\!|\cdot|\!|\!| is a norm in Vh0V^{0}_{h}, we have ψ=0\psi=0. Thus, ||||||1|\!|\!|\cdot|\!|\!|_{1} is a norm in Vh0V^{0}_{h}.

For (3.9), by using the definition of w\nabla_{w}, the Cauchy-Schwarz inequality, the trace inequality, and the inverse inequality, we acquire

b(v,ψ)=\displaystyle b(v,\psi)= T𝒯h(wv,wψ)T\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}(\nabla_{w}v,\nabla_{w}\psi)_{T}
=\displaystyle= T𝒯h((v0,wψ)T+vb,wψ𝐧T)\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}((-v_{0},\nabla\cdot\nabla_{w}\psi)_{T}+\langle v_{b},\nabla_{w}\psi\cdot{\bf n}\rangle_{\partial T})
=\displaystyle= T𝒯h(v0,wψ)T+ehvb,[wψ]e\displaystyle~{}-\sum_{T\in\mathcal{T}_{h}}(v_{0},\nabla\cdot\nabla_{w}\psi)_{T}+\sum_{e\in{\mathcal{E}}_{h}}\langle v_{b},[\nabla_{w}\psi]\rangle_{e}
=\displaystyle= T𝒯h(v0,Q0(wψ))T+ehvb,Qb[wψ]e\displaystyle~{}-\sum_{T\in\mathcal{T}_{h}}(v_{0},Q_{0}(\nabla\cdot\nabla_{w}\psi))_{T}+\sum_{e\in{\mathcal{E}}_{h}}\langle v_{b},Q_{b}[\nabla_{w}\psi]\rangle_{e}
\displaystyle\leq (T𝒯hv0T2)12(T𝒯hQ0(wψ)T2)12\displaystyle~{}\left(\sum_{T\in\mathcal{T}_{h}}\left\|v_{0}\right\|_{T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}}\left\|Q_{0}(\nabla\cdot\nabla_{w}\psi)\right\|_{T}^{2}\right)^{\frac{1}{2}}
+(ehhvbe2)12(ehh1Qb[wψ]e2)12\displaystyle~{}+\left(\sum_{e\in{\mathcal{E}}_{h}}h\left\|v_{b}\right\|_{e}^{2}\right)^{\frac{1}{2}}\left(\sum_{e\in{\mathcal{E}}_{h}}h^{-1}\left\|Q_{b}[\nabla_{w}\psi]\right\|_{e}^{2}\right)^{\frac{1}{2}}
\displaystyle\leq (T𝒯h(v0T2+hvbT2))12|ψ|1\displaystyle~{}\left(\sum_{T\in\mathcal{T}_{h}}(\left\|v_{0}\right\|_{T}^{2}+h\left\|v_{b}\right\|_{\partial T}^{2})\right)^{\frac{1}{2}}|\!|\!|\psi|\!|\!|_{1}
\displaystyle\leq (T𝒯h(v0T2+hv0vbT2+hv0T2))12|ψ|1\displaystyle~{}\left(\sum_{T\in\mathcal{T}_{h}}(\left\|v_{0}\right\|_{T}^{2}+h\left\|v_{0}-v_{b}\right\|_{\partial T}^{2}+h\left\|v_{0}\right\|_{\partial T}^{2})\right)^{\frac{1}{2}}|\!|\!|\psi|\!|\!|_{1}
\displaystyle\lesssim v0,h|ψ|1.\displaystyle~{}\left\|v\right\|_{0,h}|\!|\!|\psi|\!|\!|_{1}.

By using (3.4) gives

|ψ|2\displaystyle|\!|\!|\psi|\!|\!|^{2}\lesssim ψ0,h|ψ|1\displaystyle~{}\left\|\psi\right\|_{0,h}|\!|\!|\psi|\!|\!|_{1}
\displaystyle\lesssim |ψ||ψ|1,\displaystyle~{}|\!|\!|\psi|\!|\!||\!|\!|\psi|\!|\!|_{1},

which yields

|ψ||ψ|1,ψVh0.\displaystyle|\!|\!|\psi|\!|\!|\lesssim|\!|\!|\psi|\!|\!|_{1},\qquad\forall\,\psi\in V_{h}^{0}. (3.11)

Next, we prove (3.10). For any ψVh0\psi\in V^{0}_{h}, we choose v={Q0(wψ),h1Qb[wψ]}Vhv^{\ast}=\{-Q_{0}(\nabla\cdot\nabla_{w}\psi),h^{-1}Q_{b}[\nabla_{w}\psi]\}\in V_{h}, and use the definitions of the w\nabla_{w} and QhQ_{h}, which yields

b(v,ψ)=\displaystyle b(v^{\ast},\psi)= T𝒯h(wv,wψ)T\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}(\nabla_{w}v^{\ast},\nabla_{w}\psi)_{T}
=\displaystyle= T𝒯h((v0,wψ)T+vb,wψ𝐧T)\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}((-v_{0}^{\ast},\nabla\cdot\nabla_{w}\psi)_{T}+\langle v_{b}^{\ast},\nabla_{w}\psi\cdot{\bf n}\rangle_{\partial T})
=\displaystyle= T𝒯h(v0,wψ)T+ehvb,[wψ]e\displaystyle~{}-\sum_{T\in\mathcal{T}_{h}}(v_{0}^{\ast},\nabla\cdot\nabla_{w}\psi)_{T}+\sum_{e\in{\mathcal{E}}_{h}}\langle v_{b}^{\ast},[\nabla_{w}\psi]\rangle_{e}
=\displaystyle= T𝒯h(Q0(wψ),wψ)T+ehh1Qb[wψ],[wψ]e\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}(Q_{0}(\nabla\cdot\nabla_{w}\psi),\nabla\cdot\nabla_{w}\psi)_{T}+\sum_{e\in{\mathcal{E}}_{h}}\langle h^{-1}Q_{b}[\nabla_{w}\psi],[\nabla_{w}\psi]\rangle_{e}
=\displaystyle= T𝒯h(Q0(wψ),Q0(wψ))T+ehh1Qb[wψ],Qb[wψ]e\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}(Q_{0}(\nabla\cdot\nabla_{w}\psi),Q_{0}(\nabla\cdot\nabla_{w}\psi))_{T}+\sum_{e\in{\mathcal{E}}_{h}}\langle h^{-1}Q_{b}[\nabla_{w}\psi],Q_{b}[\nabla_{w}\psi]\rangle_{e}
=\displaystyle= T𝒯hQ0(wψ)T2+ehh1Qb[wψ]e2\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}\left\|Q_{0}(\nabla\cdot\nabla_{w}\psi)\right\|^{2}_{T}+\sum_{e\in{\mathcal{E}}_{h}}h^{-1}\left\|Q_{b}[\nabla_{w}\psi]\right\|_{e}^{2}
=\displaystyle= |ψ|12.\displaystyle~{}|\!|\!|\psi|\!|\!|_{1}^{2}.

Using the definitions of the 0,h\left\|\cdot\right\|_{0,h} and vv^{\ast}, the trace inequality, and the inverse inequality, we have

v0,h2=\displaystyle\left\|v^{\ast}\right\|^{2}_{0,h}= T𝒯hv0T2+T𝒯hhv0vbT2\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}\left\|v_{0}^{\ast}\right\|_{T}^{2}+\sum_{T\in\mathcal{T}_{h}}h\left\|v_{0}^{\ast}-v_{b}^{\ast}\right\|_{\partial T}^{2}
=\displaystyle= T𝒯hQ0(wψ)T2+T𝒯hhQ0(wψ)h1Qb[wψ]T2\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}\left\|-Q_{0}(\nabla\cdot\nabla_{w}\psi)\right\|_{T}^{2}+\sum_{T\in\mathcal{T}_{h}}h\left\|-Q_{0}(\nabla\cdot\nabla_{w}\psi)-h^{-1}Q_{b}[\nabla_{w}\psi]\right\|_{\partial T}^{2}
\displaystyle\lesssim T𝒯hQ0(wψ)T2+T𝒯hhQ0(wψ)T2\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}\left\|-Q_{0}(\nabla\cdot\nabla_{w}\psi)\right\|_{T}^{2}+\sum_{T\in\mathcal{T}_{h}}h\left\|Q_{0}(\nabla\cdot\nabla_{w}\psi)\right\|_{\partial T}^{2}
+T𝒯hhh1Qb[wψ]T2\displaystyle~{}+\sum_{T\in\mathcal{T}_{h}}h\left\|h^{-1}Q_{b}[\nabla_{w}\psi]\right\|_{\partial T}^{2}
\displaystyle\lesssim T𝒯hQ0(wψ)T2+T𝒯hh1Qb[wψ]T2\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}\left\|Q_{0}(\nabla\cdot\nabla_{w}\psi)\right\|_{T}^{2}+\sum_{T\in\mathcal{T}_{h}}h^{-1}\left\|Q_{b}[\nabla_{w}\psi]\right\|_{\partial T}^{2}
\displaystyle\lesssim |ψ|12.\displaystyle~{}|\!|\!|\psi|\!|\!|_{1}^{2}.

Thus, we arrive at

supvVhb(v,ψ)v0,hb(v,ψ)v0,h|ψ|1|ψ|,\displaystyle\sup_{\forall v\in V_{h}}\frac{b(v,\psi)}{\left\|v\right\|_{0,h}}\gtrsim\frac{b(v^{\ast},\psi)}{\left\|v^{\ast}\right\|_{0,h}}\gtrsim|\!|\!|\psi|\!|\!|_{1}\gtrsim|\!|\!|\psi|\!|\!|,

which implies (3.10). ∎

Theorem 3.1.

The numerical scheme (2.4)-(2.5) exists a unique solution.

Proof.

Let (φh1,uh1)(\varphi_{h}^{1},u_{h}^{1}) and (φh2,uh2)(\varphi_{h}^{2},u_{h}^{2}) are two solutions of the numerical scheme (2.4)-(2.5), then we have

a(φh1φh2,v)b(v,uh1uh2)=\displaystyle a(\varphi_{h}^{1}-\varphi_{h}^{2},v)-b(v,u_{h}^{1}-u_{h}^{2})= 0,vVh,\displaystyle~{}0,\qquad\forall\,v\in V_{h}, (3.12)
b(φh1φh2,ψ)=\displaystyle b(\varphi_{h}^{1}-\varphi_{h}^{2},\psi)= 0,ψVh0.\displaystyle~{}0,\qquad\forall\,\psi\in V_{h}^{0}. (3.13)

Let v=φh1φh2,ψ=uh1uh2v=\varphi_{h}^{1}-\varphi_{h}^{2},\psi=u_{h}^{1}-u_{h}^{2} the difference between the two solutions, and add the two equations together, then we obtain

φh1φh20,h2=0,\displaystyle\left\|\varphi_{h}^{1}-\varphi_{h}^{2}\right\|_{0,h}^{2}=0,

which implies φh1=φh2\varphi_{h}^{1}=\varphi_{h}^{2}. Furthermore, by (3.12), we have

b(v,uh1uh2)=0,vVh.\displaystyle b(v,u_{h}^{1}-u_{h}^{2})=0,\qquad\forall v\in V_{h}.

By taking v=uh1uh2v=u_{h}^{1}-u_{h}^{2}, we get |uh1uh2|=0|\!|\!|u_{h}^{1}-u_{h}^{2}|\!|\!|=0, which implies uh1=uh2u_{h}^{1}=u_{h}^{2}. The proof is completed. ∎

Lemma 3.6.

For any vHm+1(Ω)v\in H^{m+1}(\Omega), (0mk)(0\leq m\leq k), there holds

vQhv0,hhmvm.\displaystyle\left\|v-Q_{h}v\right\|_{0,h}\lesssim h^{m}\left\|v\right\|_{m}.
Proof.

Using the definition of QhQ_{h}, the trace inequality, and the projection inequality, we have

vQhv0,h2=\displaystyle\left\|v-Q_{h}v\right\|_{0,h}^{2}= T𝒯hvQ0vT2+T𝒯hhvQ0v(vQbv)T2\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}\left\|v-Q_{0}v\right\|_{T}^{2}+\sum_{T\in\mathcal{T}_{h}}h\left\|v-Q_{0}v-(v-Q_{b}v)\right\|_{\partial T}^{2}
\displaystyle\lesssim T𝒯hvQ0vT2+T𝒯hhvQ0vT2\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}\left\|v-Q_{0}v\right\|_{T}^{2}+\sum_{T\in\mathcal{T}_{h}}h\left\|v-Q_{0}v\right\|_{\partial T}^{2}
\displaystyle\lesssim T𝒯h(vQ0vT2+h2(vQ0v)T2)\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}(\left\|v-Q_{0}v\right\|_{T}^{2}+h^{2}\left\|\nabla(v-Q_{0}v)\right\|_{T}^{2})
\displaystyle\lesssim h2mvm2,\displaystyle~{}h^{2m}\left\|v\right\|_{m}^{2},

which completes the proof. ∎

Lemma 3.7.

vH1(Ω)\forall\,v\in H^{1}(\Omega), there holds

wv=h(v).\displaystyle\nabla_{w}v={\mathbb{Q}}_{h}(\nabla v). (3.14)
Proof.

It follows from the definition of the weak gradient, the integration by parts, and the definition of h{\mathbb{Q}}_{h} that

(wv,𝐪)T=\displaystyle(\nabla_{w}v,{\mathbf{q}})_{T}= (v,𝐪)T+v,𝐪𝐧T\displaystyle~{}-(v,\nabla\cdot{\mathbf{q}})_{T}+\langle v,{\mathbf{q}}\cdot{\bf n}\rangle_{\partial T}
=\displaystyle= (v,𝐪)T\displaystyle~{}(\nabla v,{\mathbf{q}})_{T}
=\displaystyle= (h(v),𝐪)T,𝐪[Pj(T)]d.\displaystyle~{}({\mathbb{Q}}_{h}(\nabla v),{\mathbf{q}})_{T},\quad\forall\,{\mathbf{q}}\in[P_{j}(T)]^{d}.

Let 𝐪=wvh(v){\mathbf{q}}=\nabla_{w}v-{\mathbb{Q}}_{h}(\nabla v), and then we get (3.14). ∎

4 Error analysis

In this section, we shall derive the error equations by the newly introduced projection operators and make further error analysis.

4.1 Ritz and Neumann projections

Now, we shall introduce two projection operators, the Ritz projection ΠhR\Pi_{h}^{R} and the Neumann projection ΠhN\Pi_{h}^{N}, which apply the SFWG method to the second order elliptic problem with different boundary conditions.

Definition 4.1.

For any vH01(Ω)v\in H^{1}_{0}(\Omega), we define the Ritz projection ΠhRv={Π0Rv,ΠbRv}Vh0\Pi_{h}^{R}v=\{\Pi_{0}^{R}v,\Pi_{b}^{R}v\}\in V_{h}^{0} as the solution of the following problem:

(wΠhRv,wψ)𝒯h=(Δv,ψ0)𝒯h,ψVh0.\displaystyle(\nabla_{w}\Pi_{h}^{R}v,\nabla_{w}\psi)_{{\mathcal{T}}_{h}}=(-\Delta v,\psi_{0})_{{\mathcal{T}}_{h}},\qquad\forall\,\psi\in V_{h}^{0}. (4.1)

It is known that ΠhRv\Pi_{h}^{R}v is the stabilizer-free weak Galerkin finite element solution [21] of the Poisson equation with homogeneous Dirichlet boundary condition.

Definition 4.2.

For any vH¯1(Ω)v\in\overline{H}^{1}(\Omega), we define the Neumann projection ΠhN:H¯1(Ω)V¯h\Pi_{h}^{N}:\overline{H}^{1}(\Omega)\to\overline{V}_{h} such that

(wΠhNv,wψ)𝒯h=(Δv,ψ0)𝒯h+v𝐧,ψbΩ,ψVh,\displaystyle(\nabla_{w}\Pi_{h}^{N}v,\nabla_{w}\psi)_{{\mathcal{T}}_{h}}=(-\Delta v,\psi_{0})_{{\mathcal{T}}_{h}}+\langle\nabla v\cdot{\bf n},\psi_{b}\rangle_{\partial\Omega},\qquad\forall\,\psi\in V_{h}, (4.2)

where H¯1(Ω)={vH1(Ω):Ωv𝑑x=0}\overline{H}^{1}(\Omega)=\left\{v\in H^{1}(\Omega):\int_{\Omega}vdx=0\right\}.

Similarly, the ΠhNv={Π0Nv,ΠbNv}V¯h\Pi_{h}^{N}v=\{\Pi_{0}^{N}v,\Pi_{b}^{N}v\}\in\overline{V}_{h} can be seen as the stabilizer-free WG finite element solution of the Poisson equation with inhomogeneous Neumann boundary condition.

The relevant conclusions of these two projection operators are presented in A.

4.2 Error equations

Next, we shall derive the error equations for the SFWG numerical scheme (2.4)-(2.5).

Theorem 4.1.

Define εu=ΠhRuuh\varepsilon_{u}=\Pi_{h}^{R}u-u_{h} and εφ=ΠhNφφh\varepsilon_{\varphi}=\Pi_{h}^{N}\varphi-\varphi_{h}, we have the error equations as follows:

a(εφ,ϕh)b(ϕh,εu)=\displaystyle a(\varepsilon_{\varphi},\phi_{h})-b(\phi_{h},\varepsilon_{u})= E(φ,u,ϕh),ϕhVh,\displaystyle~{}E(\varphi,u,\phi_{h}),\quad\forall\,\phi_{h}\in V_{h}, (4.3)
b(εφ,ψh)=\displaystyle b(\varepsilon_{\varphi},\psi_{h})= 0,ψhVh0,\displaystyle~{}0,\quad\qquad\qquad\,\,\forall\,\psi_{h}\in V_{h}^{0}, (4.4)

where

E(φ,u,ϕh)=a(ΠhNφφ,ϕh)+(wϕh,w(uΠhRu))𝒯h+l(u,ϕ0).E(\varphi,u,\phi_{h})=a(\Pi_{h}^{N}\varphi-\varphi,\phi_{h})+(\nabla_{w}\phi_{h},\nabla_{w}(u-\Pi_{h}^{R}u))_{{\mathcal{T}}_{h}}+l(u,\phi_{0}).
Proof.

Testing φ=Δu\varphi=-\Delta u with ϕhVh\phi_{h}\in V_{h} and using (A.4), (1.3), we have

(φ,ϕ0)𝒯h=\displaystyle(\varphi,\phi_{0})_{{\mathcal{T}}_{h}}= (Δu,ϕ0)𝒯h\displaystyle~{}-(\Delta u,\phi_{0})_{{\mathcal{T}}_{h}}
=\displaystyle= (wu,wϕh)𝒯h+(huu)𝐧,ϕ0ϕb𝒯h,\displaystyle~{}(\nabla_{w}u,\nabla_{w}\phi_{h})_{{\mathcal{T}}_{h}}+\langle({\mathbb{Q}}_{h}\nabla u-\nabla u)\cdot{\bf n},\phi_{0}-\phi_{b}\rangle_{\partial{\mathcal{T}}_{h}},

which leads to

0=(φ,ϕh)𝒯h+(wu,wϕh)𝒯h+l(u,ϕh),ϕhVh.\displaystyle 0=-(\varphi,\phi_{h})_{{\mathcal{T}}_{h}}+(\nabla_{w}u,\nabla_{w}\phi_{h})_{{\mathcal{T}}_{h}}+l(u,\phi_{h}),\qquad\forall\,\phi_{h}\in V_{h}.

l(,)l(\cdot,\cdot) is defined in Lemma A.1. Adding a(ΠhNφ,ϕh)(wϕh,wΠhRu)𝒯ha(\Pi_{h}^{N}\varphi,\phi_{h})-(\nabla_{w}\phi_{h},\nabla_{w}\Pi_{h}^{R}u)_{{\mathcal{T}}_{h}} to the above equation, we get

a(ΠhNφ,ϕh)(wϕh,wΠhRu)𝒯h\displaystyle~{}a(\Pi_{h}^{N}\varphi,\phi_{h})-(\nabla_{w}\phi_{h},\nabla_{w}\Pi_{h}^{R}u)_{{\mathcal{T}}_{h}}
=\displaystyle= a(ΠhNφφ,ϕh)+(wϕh,w(uΠhRu))𝒯h+l(u,ϕh),ϕhVh.\displaystyle~{}a(\Pi_{h}^{N}\varphi-\varphi,\phi_{h})+(\nabla_{w}\phi_{h},\nabla_{w}(u-\Pi_{h}^{R}u))_{{\mathcal{T}}_{h}}+l(u,\phi_{h}),\qquad\forall\,\phi_{h}\in V_{h}.

Using ψhVh0\psi_{h}\in V_{h}^{0} to test Δφ=f-\Delta\varphi=f, (A.4), ψb|Ω=0\psi_{b}|_{\partial\Omega}=0 and (A.2), we obtain

(f,ψ0)𝒯h=\displaystyle(f,\psi_{0})_{{\mathcal{T}}_{h}}= (Δφ,ψ0)𝒯h\displaystyle~{}(-\Delta\varphi,\psi_{0})_{{\mathcal{T}}_{h}}
=\displaystyle= (wφ,wψh)𝒯h+(hφφ)𝐧,ψ0ψb𝒯h\displaystyle~{}(\nabla_{w}\varphi,\nabla_{w}\psi_{h})_{{\mathcal{T}}_{h}}+\langle({\mathbb{Q}}_{h}\nabla\varphi-\nabla\varphi)\cdot{\bf n},\psi_{0}-\psi_{b}\rangle_{\partial{\mathcal{T}}_{h}}
=\displaystyle= (wφ,wψh)𝒯h+l(φ,ψh)\displaystyle~{}(\nabla_{w}\varphi,\nabla_{w}\psi_{h})_{{\mathcal{T}}_{h}}+l(\varphi,\psi_{h})
=\displaystyle= (wΠhNφ,wψh)𝒯h.\displaystyle~{}(\nabla_{w}\Pi_{h}^{N}\varphi,\nabla_{w}\psi_{h})_{{\mathcal{T}}_{h}}.

Thus, we have

a(ΠhNφ,ϕh)(wϕh,wΠhRu)𝒯h=\displaystyle a(\Pi_{h}^{N}\varphi,\phi_{h})-(\nabla_{w}\phi_{h},\nabla_{w}\Pi_{h}^{R}u)_{{\mathcal{T}}_{h}}= E(φ,u,ϕh),ϕhVh,\displaystyle~{}E(\varphi,u,\phi_{h}),\quad\forall\,\phi_{h}\in V_{h}, (4.5)
(wΠhNφ,wψh)𝒯h=\displaystyle(\nabla_{w}\Pi_{h}^{N}\varphi,\nabla_{w}\psi_{h})_{{\mathcal{T}}_{h}}= (f,ψh)𝒯h,ψhVh0.\displaystyle~{}(f,\psi_{h})_{{\mathcal{T}}_{h}},\quad\quad\forall\,\psi_{h}\in V_{h}^{0}. (4.6)

Together with (2.4)-(2.5), we get (4.3) and (4.4). ∎

Lemma 4.1.

Assume that φHm+1(Ω)\varphi\in H^{m+1}(\Omega) and uHn+1(Ω)u\in H^{n+1}(\Omega), where 1mk, 1nk1\leq m\leq k,\ 1\leq n\leq k, we have

|E(φ,u,ϕh)|(hm+1φm+1+hn1un+1)ϕh0,h.\displaystyle|E(\varphi,u,\phi_{h})|\lesssim~{}(h^{m+1}\left\|\varphi\right\|_{m+1}+h^{n-1}\left\|u\right\|_{n+1})\left\|\phi_{h}\right\|_{0,h}. (4.7)
Proof.

Using the definition of 0,h\left\|\cdot\right\|_{0,h} and (A.21), we have

|a(ΠhNφφ,ϕh)|\displaystyle|a(\Pi_{h}^{N}\varphi-\varphi,\phi_{h})|\leq ΠhNφφ0,hϕh0,h\displaystyle~{}\left\|\Pi_{h}^{N}\varphi-\varphi\right\|_{0,h}\left\|\phi_{h}\right\|_{0,h}
\displaystyle\lesssim hm+1φm+1ϕh0,h.\displaystyle~{}h^{m+1}\left\|\varphi\right\|_{m+1}\left\|\phi_{h}\right\|_{0,h}.

Using the definition of |||||||\!|\!|\cdot|\!|\!|, (A.6) and (3.3), we have

|(w(uΠhRu),wϕh)𝒯h|\displaystyle|(\nabla_{w}(u-\Pi_{h}^{R}u),\nabla_{w}\phi_{h})_{{\mathcal{T}}_{h}}|\leq |uΠhRu||ϕh|\displaystyle~{}|\!|\!|u-\Pi_{h}^{R}u|\!|\!||\!|\!|\phi_{h}|\!|\!|
\displaystyle\lesssim hnun+1|ϕh|\displaystyle~{}h^{n}\left\|u\right\|_{n+1}|\!|\!|\phi_{h}|\!|\!|
\displaystyle\lesssim hnun+1h1ϕh0,h\displaystyle~{}h^{n}\left\|u\right\|_{n+1}h^{-1}\left\|\phi_{h}\right\|_{0,h}
\displaystyle\lesssim hn1un+1ϕh0,h.\displaystyle~{}h^{n-1}\left\|u\right\|_{n+1}\left\|\phi_{h}\right\|_{0,h}.

By (A.3) and (3.3), we get

|l(u,ϕh)|\displaystyle|l(u,\phi_{h})|\lesssim hnun+1|ϕh|\displaystyle~{}h^{n}\left\|u\right\|_{n+1}|\!|\!|\phi_{h}|\!|\!|
\displaystyle\lesssim hnun+1h1ϕh0,h\displaystyle~{}h^{n}\left\|u\right\|_{n+1}h^{-1}\left\|\phi_{h}\right\|_{0,h}
\displaystyle\lesssim hn1un+1ϕh0,h.\displaystyle~{}h^{n-1}\left\|u\right\|_{n+1}\left\|\phi_{h}\right\|_{0,h}.

Thus, we obtain (4.7). ∎

4.3 Error estimates

Now, we utilize the above error equations to estimate the errors we want.

Theorem 4.2.

Assume φHm+1(Ω),uHn+1(Ω)\varphi\in H^{m+1}(\Omega),~{}u\in H^{n+1}(\Omega), 1mk, 1nk1\leq m\leq k,\ 1\leq n\leq k, and arrive at

εφ0,h\displaystyle\left\|\varepsilon_{\varphi}\right\|_{0,h}\lesssim hm+1φm+1+hn1un+1.\displaystyle~{}h^{m+1}\left\|\varphi\right\|_{m+1}+h^{n-1}\left\|u\right\|_{n+1}. (4.8)
Proof.

We set ϕh=ΠhNφφhVh,ψh=ΠhRuuhVh0\phi_{h}=\Pi_{h}^{N}\varphi-\varphi_{h}\in V_{h},~{}\psi_{h}=\Pi_{h}^{R}u-u_{h}\in V_{h}^{0} in (4.3)-(4.4), add the two equations together, use (4.7) and get

εφ0,h2=\displaystyle\left\|\varepsilon_{\varphi}\right\|_{0,h}^{2}= E(φ,u,εφ)\displaystyle~{}E(\varphi,u,\varepsilon_{\varphi})
\displaystyle\lesssim (hm+1φm+1+hn1un+1)εφ0,h,\displaystyle~{}(h^{m+1}\left\|\varphi\right\|_{m+1}+h^{n-1}\left\|u\right\|_{n+1})\left\|\varepsilon_{\varphi}\right\|_{0,h},

which implies the (4.8). ∎

Theorem 4.3.

Assume φHm+1(Ω),uHn+1(Ω)\varphi\in H^{m+1}(\Omega),~{}u\in H^{n+1}(\Omega), 1mk, 1nk1\leq m\leq k,\ 1\leq n\leq k, we have

εu,0hm+1φm+1+hn+1un+1.\displaystyle\left\|\varepsilon_{u,0}\right\|\lesssim h^{m+1}\left\|\varphi\right\|_{m+1}+h^{n+1}\left\|u\right\|_{n+1}. (4.9)

Further, we get

|εu|\displaystyle|\!|\!|\varepsilon_{u}|\!|\!|\lesssim hmφm+1+hnun+1,\displaystyle~{}h^{m}\left\|\varphi\right\|_{m+1}+h^{n}\left\|u\right\|_{n+1}, (4.10)
εu0,h\displaystyle\left\|\varepsilon_{u}\right\|_{0,h}\lesssim hm+1φm+1+hn+1un+1.\displaystyle~{}h^{m+1}\left\|\varphi\right\|_{m+1}+h^{n+1}\left\|u\right\|_{n+1}. (4.11)
Proof.

To derive the estimate for the L2L^{2} norm of εu\varepsilon_{u}, we use the standard duality argument. Define

ξ+Δη=\displaystyle\xi+\Delta\eta= 0,inΩ,\displaystyle~{}0,\qquad\,in~{}\Omega,
Δξ=\displaystyle-\Delta\xi= εu,0,inΩ,\displaystyle~{}\varepsilon_{u,0},\quad in~{}\Omega,
η=η𝐧=\displaystyle\eta=\frac{\partial\eta}{\partial{\bf n}}= 0,onΩ.\displaystyle~{}0,\qquad\,on~{}\partial\Omega.

Since we assume that all internal angles of Ω\Omega are less than 126.283696126.283696\cdots^{\circ}, the solution of the problem has H4H^{4} regularity [11]:

ξ2+η4εu,0.\displaystyle\left\|\xi\right\|_{2}+\left\|\eta\right\|_{4}\lesssim\left\|\varepsilon_{u,0}\right\|. (4.12)

Further, the second order elliptic problems with either the Dirichlet boundary condition or the Neumann boundary condition have H2H^{2} regularity.

For the above dual problems, like (4.5)-(4.6), we have

a(ΠhNξ,ϕh)(wϕh,wΠhRη)𝒯h=\displaystyle a(\Pi_{h}^{N}\xi,\phi_{h})-(\nabla_{w}\phi_{h},\nabla_{w}\Pi_{h}^{R}\eta)_{{\mathcal{T}}_{h}}= E(ξ,η,ϕh),ϕhVh,\displaystyle~{}E(\xi,\eta,\phi_{h}),\qquad\forall\phi_{h}\in V_{h},
(wΠhNξ,wψh)𝒯h=\displaystyle(\nabla_{w}\Pi_{h}^{N}\xi,\nabla_{w}\psi_{h})_{{\mathcal{T}}_{h}}= (εu,0,ψh)𝒯h,ψhVh0.\displaystyle~{}(\varepsilon_{u,0},\psi_{h})_{{\mathcal{T}}_{h}},\qquad\forall\psi_{h}\in V_{h}^{0}.

Define

Λ(ΠhNξ,ΠhRη;ϕh,ψh)=a(ΠhNξ,ϕh)(wϕh,wΠhRη)𝒯h(wΠhNξ,wψh)𝒯h,\Lambda(\Pi_{h}^{N}\xi,\Pi_{h}^{R}\eta;\phi_{h},\psi_{h})=a(\Pi_{h}^{N}\xi,\phi_{h})-(\nabla_{w}\phi_{h},\nabla_{w}\Pi_{h}^{R}\eta)_{{\mathcal{T}}_{h}}-(\nabla_{w}\Pi_{h}^{N}\xi,\nabla_{w}\psi_{h})_{{\mathcal{T}}_{h}},

we know

Λ(ϕh,ψh;ΠhNξ,ΠhRη)=a(ϕh,ΠhNξ)(wΠhNξ,wψh)𝒯h(wϕh,wΠhRη)𝒯h.\Lambda(\phi_{h},\psi_{h};\Pi_{h}^{N}\xi,\Pi_{h}^{R}\eta)=a(\phi_{h},\Pi_{h}^{N}\xi)-(\nabla_{w}\Pi_{h}^{N}\xi,\nabla_{w}\psi_{h})_{{\mathcal{T}}_{h}}-(\nabla_{w}\phi_{h},\nabla_{w}\Pi_{h}^{R}\eta)_{{\mathcal{T}}_{h}}.

It is not hard to see that Λ\Lambda is a symmetric bilinear form. Thus, we have

εu,02=\displaystyle\left\|\varepsilon_{u,0}\right\|^{2}= E(ξ,η,εφ)Λ(ΠhNξ,ΠhRη;εφ,εu)\displaystyle~{}E(\xi,\eta,\varepsilon_{\varphi})-\Lambda(\Pi_{h}^{N}\xi,\Pi_{h}^{R}\eta;\varepsilon_{\varphi},\varepsilon_{u})
=\displaystyle= E(ξ,η,εφ)Λ(εφ,εu;ΠhNξ,ΠhRη)\displaystyle~{}E(\xi,\eta,\varepsilon_{\varphi})-\Lambda(\varepsilon_{\varphi},\varepsilon_{u};\Pi_{h}^{N}\xi,\Pi_{h}^{R}\eta)
=\displaystyle= E(ξ,η,εφ)E(φ,u,ΠhNξ),\displaystyle~{}E(\xi,\eta,\varepsilon_{\varphi})-E(\varphi,u,\Pi_{h}^{N}\xi),

where we have used (4.3)-(4.4). Next, we estimate the two items respectively.
For E(ξ,η,εφ)E(\xi,\eta,\varepsilon_{\varphi}), by (4.7), (4.8) and (4.12), we get

|E(ξ,η,εφ)|\displaystyle|E(\xi,\eta,\varepsilon_{\varphi})|\lesssim (h2ξ2+h2η4)εφ0,h\displaystyle~{}(h^{2}\left\|\xi\right\|_{2}+h^{2}\left\|\eta\right\|_{4})\left\|\varepsilon_{\varphi}\right\|_{0,h}
\displaystyle\lesssim h2(ξ2+η4)(hm+1φm+1+hn1un+1)\displaystyle~{}h^{2}(\left\|\xi\right\|_{2}+\left\|\eta\right\|_{4})(h^{m+1}\left\|\varphi\right\|_{m+1}+h^{n-1}\left\|u\right\|_{n+1})
\displaystyle\lesssim h2εu,0(hm+1φm+1+hn1un+1)\displaystyle~{}h^{2}\left\|\varepsilon_{u,0}\right\|(h^{m+1}\left\|\varphi\right\|_{m+1}+h^{n-1}\left\|u\right\|_{n+1})

As to E(φ,u,ΠhNξ)E(\varphi,u,\Pi_{h}^{N}\xi), by definition we discuss it in three parts.
Using (A.21) and the definition of 0,h\left\|\cdot\right\|_{0,h}, we have

|a(ΠhNφφ,ΠhNξ)|\displaystyle|a(\Pi_{h}^{N}\varphi-\varphi,\Pi_{h}^{N}\xi)|\leq ΠhNφφ0,hΠhNξ0,h\displaystyle~{}\left\|\Pi_{h}^{N}\varphi-\varphi\right\|_{0,h}\left\|\Pi_{h}^{N}\xi\right\|_{0,h}
\displaystyle\lesssim hm+1φm+1ΠhNξ0,h\displaystyle~{}h^{m+1}\left\|\varphi\right\|_{m+1}\left\|\Pi_{h}^{N}\xi\right\|_{0,h}
\displaystyle\lesssim hm+1φm+1(ΠhNξξ0,h+ξ0,h)\displaystyle~{}h^{m+1}\left\|\varphi\right\|_{m+1}(\left\|\Pi_{h}^{N}\xi-\xi\right\|_{0,h}+\left\|\xi\right\|_{0,h})
\displaystyle\lesssim hm+1φm+1(h2ξ2+ξ)\displaystyle~{}h^{m+1}\left\|\varphi\right\|_{m+1}(h^{2}\left\|\xi\right\|_{2}+\left\|\xi\right\|)
\displaystyle\lesssim hm+1φm+1ξ2\displaystyle~{}h^{m+1}\left\|\varphi\right\|_{m+1}\left\|\xi\right\|_{2}
\displaystyle\lesssim hm+1φm+1εu,0.\displaystyle~{}h^{m+1}\left\|\varphi\right\|_{m+1}\left\|\varepsilon_{u,0}\right\|.

We utilize the Cauchy-Schwarz inequality, (A.7), (A.6), (3.14), the definition of w\nabla_{w}, the dual problems, (1.2) and (A.12) to get

(wΠhNξ,w(uΠhRu))𝒯h\displaystyle~{}(\nabla_{w}\Pi_{h}^{N}\xi,\nabla_{w}(u-\Pi_{h}^{R}u))_{{\mathcal{T}}_{h}}
=\displaystyle= (w(ΠhNξξ),w(uΠhRu))𝒯h+(wξ,w(uΠhRu))𝒯h\displaystyle~{}(\nabla_{w}(\Pi_{h}^{N}\xi-\xi),\nabla_{w}(u-\Pi_{h}^{R}u))_{{\mathcal{T}}_{h}}+(\nabla_{w}\xi,\nabla_{w}(u-\Pi_{h}^{R}u))_{{\mathcal{T}}_{h}}
\displaystyle\leq |ΠhNξξ||uΠhRu|+(hξ,w(uΠhRu))𝒯h\displaystyle~{}|\!|\!|\Pi_{h}^{N}\xi-\xi|\!|\!||\!|\!|u-\Pi_{h}^{R}u|\!|\!|+({\mathbb{Q}}_{h}\nabla\xi,\nabla_{w}(u-\Pi_{h}^{R}u))_{{\mathcal{T}}_{h}}
\displaystyle\lesssim hnun+1hξ2+(ξ,w(uΠhRu))𝒯h\displaystyle~{}h^{n}\left\|u\right\|_{n+1}h\left\|\xi\right\|_{2}+(\nabla\xi,\nabla_{w}(u-\Pi_{h}^{R}u))_{{\mathcal{T}}_{h}}
\displaystyle\lesssim hn+1un+1ξ2(uΠ0Ru,Δξ)𝒯h+uΠbRu,ξ𝐧𝒯h\displaystyle~{}h^{n+1}\left\|u\right\|_{n+1}\left\|\xi\right\|_{2}-(u-\Pi_{0}^{R}u,\Delta\xi)_{{\mathcal{T}}_{h}}+\langle u-\Pi_{b}^{R}u,\nabla\xi\cdot{\bf n}\rangle_{\partial{\mathcal{T}}_{h}}
\displaystyle\lesssim hn+1un+1ξ2+(uΠ0Ru,εu,0)𝒯h\displaystyle~{}h^{n+1}\left\|u\right\|_{n+1}\left\|\xi\right\|_{2}+(u-\Pi_{0}^{R}u,\varepsilon_{u,0})_{{\mathcal{T}}_{h}}
\displaystyle\lesssim hn+1un+1εu,0+uΠ0Ruεu,0\displaystyle~{}h^{n+1}\left\|u\right\|_{n+1}\left\|\varepsilon_{u,0}\right\|+\left\|u-\Pi_{0}^{R}u\right\|\left\|\varepsilon_{u,0}\right\|
\displaystyle\lesssim hn+1un+1εu,0.\displaystyle~{}h^{n+1}\left\|u\right\|_{n+1}\left\|\varepsilon_{u,0}\right\|.

By the definition of l(,)l(\cdot,\cdot), the Cauchy-Schwarz inequality, the trace inequality, the projection inequality, and (A.9), we get

|l(u,ΠhNξ)|=\displaystyle|l(u,\Pi_{h}^{N}\xi)|= |(huu)𝐧,Π0NξΠbNξ𝒯h|\displaystyle~{}|\langle({\mathbb{Q}}_{h}\nabla u-\nabla u)\cdot{\bf n},\Pi_{0}^{N}\xi-\Pi_{b}^{N}\xi\rangle_{\partial{\mathcal{T}}_{h}}|
=\displaystyle= |(huu)𝐧,Π0Nξξ(ΠbNξξ)𝒯h|\displaystyle~{}|\langle({\mathbb{Q}}_{h}\nabla u-\nabla u)\cdot{\bf n},\Pi_{0}^{N}\xi-\xi-(\Pi_{b}^{N}\xi-\xi)\rangle_{\partial{\mathcal{T}}_{h}}|
\displaystyle\leq (T𝒯hhhuuT2)12(T𝒯hh1Π0Nξξ(ΠbNξξ)T2)12\displaystyle~{}\Big{(}\sum_{T\in\mathcal{T}_{h}}h\left\|{\mathbb{Q}}_{h}\nabla u-\nabla u\right\|_{\partial T}^{2}\Big{)}^{\frac{1}{2}}\Big{(}\sum_{T\in\mathcal{T}_{h}}h^{-1}\left\|\Pi_{0}^{N}\xi-\xi-(\Pi_{b}^{N}\xi-\xi)\right\|_{\partial T}^{2}\Big{)}^{\frac{1}{2}}
\displaystyle\lesssim (T𝒯hhuuT2+h2(huu)T2)12ΠhNξξ1,h\displaystyle~{}\Big{(}\sum_{T\in\mathcal{T}_{h}}\left\|{\mathbb{Q}}_{h}\nabla u-\nabla u\right\|_{T}^{2}+h^{2}\left\|\nabla({\mathbb{Q}}_{h}\nabla u-\nabla u)\right\|_{T}^{2}\Big{)}^{\frac{1}{2}}\left\|\Pi_{h}^{N}\xi-\xi\right\|_{1,h}
\displaystyle\lesssim hnun+1hξ2\displaystyle~{}h^{n}\left\|u\right\|_{n+1}h\left\|\xi\right\|_{2}
\displaystyle\lesssim hn+1un+1ξ2\displaystyle~{}h^{n+1}\left\|u\right\|_{n+1}\left\|\xi\right\|_{2}
\displaystyle\lesssim hn+1un+1εu,0.\displaystyle~{}h^{n+1}\left\|u\right\|_{n+1}\left\|\varepsilon_{u,0}\right\|.

Therefore, we obtain

εu,02(hm+1φm+1+hn+1un+1)εu,0,\displaystyle\left\|\varepsilon_{u,0}\right\|^{2}\lesssim(h^{m+1}\left\|\varphi\right\|_{m+1}+h^{n+1}\left\|u\right\|_{n+1})\left\|\varepsilon_{u,0}\right\|,

which implies (4.9).

To verify (4.11), we use the definitions of 0,h\left\|\cdot\right\|_{0,h} and 1,h\left\|\cdot\right\|_{1,h}, (4.9) and Lemma 3.1 to get

εu0,h=\displaystyle\left\|\varepsilon_{u}\right\|_{0,h}= (T𝒯h(εu,0T2+hεu,0εu,bT2))12\displaystyle~{}\Big{(}\sum_{T\in\mathcal{T}_{h}}(\left\|\varepsilon_{u,0}\right\|_{T}^{2}+h\left\|\varepsilon_{u,0}-\varepsilon_{u,b}\right\|_{\partial T}^{2})\Big{)}^{\frac{1}{2}}
\displaystyle\lesssim εu,0+(h2T𝒯hh1εu,0εu,bT2)12\displaystyle~{}\left\|\varepsilon_{u,0}\right\|+\Big{(}h^{2}\sum_{T\in\mathcal{T}_{h}}h^{-1}\left\|\varepsilon_{u,0}-\varepsilon_{u,b}\right\|_{\partial T}^{2}\Big{)}^{\frac{1}{2}}
\displaystyle\lesssim hm+1φm+1+hn+1un+1+hεu1,h\displaystyle~{}h^{m+1}\left\|\varphi\right\|_{m+1}+h^{n+1}\left\|u\right\|_{n+1}+h\left\|\varepsilon_{u}\right\|_{1,h}
\displaystyle\lesssim hm+1φm+1+hn+1un+1+h|εu|\displaystyle~{}h^{m+1}\left\|\varphi\right\|_{m+1}+h^{n+1}\left\|u\right\|_{n+1}+h|\!|\!|\varepsilon_{u}|\!|\!|

By setting ϕh=εu\phi_{h}=\varepsilon_{u} in (4.3), (4.7), (4.8), the above inequality and the Young’s inequality, we have

|εu|2=\displaystyle|\!|\!|\varepsilon_{u}|\!|\!|^{2}= a(εφ,εu)E(φ,u,εu)\displaystyle~{}a(\varepsilon_{\varphi},\varepsilon_{u})-E(\varphi,u,\varepsilon_{u})
\displaystyle\lesssim εφ0,hεu0,h+(hm+1φm+1+hn1un+1)εu0,h\displaystyle~{}\left\|\varepsilon_{\varphi}\right\|_{0,h}\left\|\varepsilon_{u}\right\|_{0,h}+(h^{m+1}\left\|\varphi\right\|_{m+1}+h^{n-1}\left\|u\right\|_{n+1})\left\|\varepsilon_{u}\right\|_{0,h}
\displaystyle\lesssim (hm+1φm+1+hn1un+1)εu0,h\displaystyle~{}(h^{m+1}\left\|\varphi\right\|_{m+1}+h^{n-1}\left\|u\right\|_{n+1})\left\|\varepsilon_{u}\right\|_{0,h}
\displaystyle\lesssim (hm+1φm+1+hn1un+1)(hm+1φm+1+hn+1un+1+h|εu|)\displaystyle~{}(h^{m+1}\left\|\varphi\right\|_{m+1}+h^{n-1}\left\|u\right\|_{n+1})(h^{m+1}\left\|\varphi\right\|_{m+1}+h^{n+1}\left\|u\right\|_{n+1}+h|\!|\!|\varepsilon_{u}|\!|\!|)
\displaystyle\lesssim h2(m+1)φm+12+hm+nφm+1un+1+hm+n+2φm+1un+1\displaystyle~{}h^{2(m+1)}\left\|\varphi\right\|_{m+1}^{2}+h^{m+n}\left\|\varphi\right\|_{m+1}\left\|u\right\|_{n+1}+h^{m+n+2}\left\|\varphi\right\|_{m+1}\left\|u\right\|_{n+1}
+h2nun+12+(hm+2φm+1+hnun+1)|εu|\displaystyle~{}+h^{2n}\left\|u\right\|_{n+1}^{2}+(h^{m+2}\left\|\varphi\right\|_{m+1}+h^{n}\left\|u\right\|_{n+1})|\!|\!|\varepsilon_{u}|\!|\!|
\displaystyle\leq C(h2(m+1)φm+12+h2nun+12+hm+nφm+1un+1)+12|εu|2,\displaystyle~{}C(h^{2(m+1)}\left\|\varphi\right\|_{m+1}^{2}+h^{2n}\left\|u\right\|_{n+1}^{2}+h^{m+n}\left\|\varphi\right\|_{m+1}\left\|u\right\|_{n+1})+\frac{1}{2}|\!|\!|\varepsilon_{u}|\!|\!|^{2},

which implies (4.10) and (4.11). ∎

Corollary 4.1.

For φHm+1(Ω)\varphi\in H^{m+1}(\Omega), uHn+1(Ω)u\in H^{n+1}(\Omega), 1mk, 1nk1\leq m\leq k,\ 1\leq n\leq k, we have the following estimates:

|Qhφφh|\displaystyle|\!|\!|Q_{h}\varphi-\varphi_{h}|\!|\!| hmφm+1+hn2un+1,\displaystyle\lesssim h^{m}\left\|\varphi\right\|_{m+1}+h^{n-2}\left\|u\right\|_{n+1}, (4.13)
|Qhuuh|\displaystyle|\!|\!|Q_{h}u-u_{h}|\!|\!| hmφm+1+hnun+1,\displaystyle\lesssim h^{m}\left\|\varphi\right\|_{m+1}+h^{n}\left\|u\right\|_{n+1}, (4.14)
Qhφφh\displaystyle\left\|Q_{h}\varphi-\varphi_{h}\right\| hm+1φm+1+hn1un+1,\displaystyle\lesssim h^{m+1}\left\|\varphi\right\|_{m+1}+h^{n-1}\left\|u\right\|_{n+1}, (4.15)
Qhuuh\displaystyle\left\|Q_{h}u-u_{h}\right\| hm+1φm+1+hn+1un+1.\displaystyle\lesssim h^{m+1}\left\|\varphi\right\|_{m+1}+h^{n+1}\left\|u\right\|_{n+1}. (4.16)
Proof.

From Lemma A.2, Lemma A.3, (3.3), (4.8), and (4.10), we get (4.13) and (4.14).

By (A.18), (A.19), (4.8), and (4.9), we have (4.15) and (4.16). ∎

5 Numerical Results

This section conducts numerical experiments to illustrate the convergence rates of the SFWG finite element method proposed in this study. The error for the SFWG solution is measured using the following norms:

|Qhvvh|2\displaystyle|\!|\!|Q_{h}v-v_{h}|\!|\!|^{2} =T𝒯hT|w(Qhvvh)|2𝑑T,(AdiscreteH1norm)\displaystyle=\sum_{T\in\mathcal{T}_{h}}\int_{T}|\nabla_{w}(Q_{h}v-v_{h})|^{2}dT,\quad(A~{}discrete~{}H^{1}~{}norm)
Qhvvh2\displaystyle\left\|Q_{h}v-v_{h}\right\|^{2} =T𝒯hT|Q0vv0|2𝑑T,(AdiscreteL2norm)\displaystyle=\sum_{T\in\mathcal{T}_{h}}\int_{T}|Q_{0}v-v_{0}|^{2}dT,\qquad\quad\,\,(A~{}discrete~{}L^{2}~{}norm)

In the following computations, we employ uniform triangular grids, rectangular grids, and polygonal grids, as shown in Figures 1-3, respectively.

Refer to caption
Refer to caption
Refer to caption
Figure 1: The uniform triangular meshes with n=2,4,8n=2,~{}4,~{}8
Refer to caption
Refer to caption
Refer to caption
Figure 2: The uniform rectangular meshes with n=2,4,8n=2,~{}4,~{}8
Refer to caption
Refer to caption
Refer to caption
Figure 3: The polygon meshes with n=2,4,8n=2,~{}4,~{}8
Example 5.1.

In this example, we consider the Biharmonic equation on the square domain Ω=(0,1)2\Omega=(0,1)^{2}, and the exact solution is chosen as follows

u=x2(1x)2y2(1y)2.\displaystyle u=x^{2}(1-x)^{2}y^{2}(1-y)^{2}.

It is clear that u|Ω=0u|_{\partial\Omega}=0 and u𝐧|Ω=0\frac{\partial u}{\partial{\bf n}}|_{\partial\Omega}=0.

The errors and convergence rates for the SFWG method are listed in Tables 1-3. From the tables, we can find the convergence rates for the error QhuuhQ_{h}u-u_{h} in the H1H^{1} and L2L^{2} norms are of order O(hk)O(h^{k}) and O(hk+1)O(h^{k+1}). The error convergence order is O(hk1)O(h^{k-1}) for QhφφhQ_{h}\varphi-\varphi_{h} in the L2L^{2} norm. The numerical results are coincident with our theoretical analysis.

Table 1: Errors and convergence rates on triangular meshes in Example 5.1
nn |Qhφφh||\!|\!|Q_{h}\varphi-\varphi_{h}|\!|\!| Rate |Qhuuh||\!|\!|Q_{h}u-u_{h}|\!|\!| Rate Qhφφh\left\|Q_{h}\varphi-\varphi_{h}\right\| Rate Qhuuh\left\|Q_{h}u-u_{h}\right\| Rate
By the P2P_{2} weak Galerkin finite element
16 5.8675E025.8675\mathrm{E}-02 7.8153E057.8153\mathrm{E}-05 3.3439E043.3439\mathrm{E}-04 4.1789E074.1789\mathrm{E}-07
32 4.3407E024.3407\mathrm{E}-02 0.43 1.9630E051.9630\mathrm{E}-05 1.99 1.1637E041.1637\mathrm{E}-04 1.52 5.0737E085.0737\mathrm{E}-08 3.04
64 3.1476E023.1476\mathrm{E}-02 0.46 4.9142E064.9142\mathrm{E}-06 2.00 4.1265E054.1265\mathrm{E}-05 1.50 6.2747E096.2747\mathrm{E}-09 3.02
128 2.2556E022.2556\mathrm{E}-02 0.48 1.2291E061.2291\mathrm{E}-06 2.00 1.4663E051.4663\mathrm{E}-05 1.49 7.8111E107.8111\mathrm{E}-10 3.01
By the P3P_{3} weak Galerkin finite element
16 4.9264E034.9264\mathrm{E}-03 3.2862E063.2862\mathrm{E}-06 3.1500E053.1500\mathrm{E}-05 9.8363E099.8363\mathrm{E}-09
32 1.8548E031.8548\mathrm{E}-03 1.41 4.1386E074.1386\mathrm{E}-07 2.99 6.0192E066.0192\mathrm{E}-06 2.39 5.9522E105.9522\mathrm{E}-10 4.05
64 6.7498E046.7498\mathrm{E}-04 1.46 5.1863E085.1863\mathrm{E}-08 3.00 1.1038E061.1038\mathrm{E}-06 2.45 3.6593E113.6593\mathrm{E}-11 4.02
128 2.4189E042.4189\mathrm{E}-04 1.48 6.4890E096.4890\mathrm{E}-09 3.00 1.9855E071.9855\mathrm{E}-07 2.47 2.2686E122.2686\mathrm{E}-12 4.01
Table 2: Errors and convergence rates on rectangular meshes in Example 5.1
nn |Qhφφh||\!|\!|Q_{h}\varphi-\varphi_{h}|\!|\!| Rate |Qhuuh||\!|\!|Q_{h}u-u_{h}|\!|\!| Rate Qhφφh\left\|Q_{h}\varphi-\varphi_{h}\right\| Rate Qhuuh\left\|Q_{h}u-u_{h}\right\| Rate
By the P2P_{2} weak Galerkin finite element
16 1.8588E011.8588\mathrm{E}-01 8.8362E058.8362\mathrm{E}-05 6.0219E046.0219\mathrm{E}-04 3.0180E063.0180E-06
32 1.4556E011.4556\mathrm{E}-01 0.35 2.2756E052.2756\mathrm{E}-05 1.96 2.1066E042.1066\mathrm{E}-04 1.52 4.5616E074.5616E-07 2.73
64 1.0805E011.0805\mathrm{E}-01 0.43 5.7975E065.7975\mathrm{E}-06 1.97 7.4677E057.4677\mathrm{E}-05 1.50 6.3231E086.3231E-08 2.85
128 7.8249E027.8249\mathrm{E}-02 0.47 1.4653E061.4653\mathrm{E}-06 1.98 2.6628E052.6628\mathrm{E}-05 1.49 8.3385E098.3385\mathrm{E}-09 2.92
By the P3P_{3} weak Galerkin finite element
16 1.2964E021.2964\mathrm{E}-02 4.9116E064.9116\mathrm{E}-06 6.9365E056.9365\mathrm{E}-05 1.8319E081.8319\mathrm{E}-08
32 5.2127E035.2127\mathrm{E}-03 1.31 6.3524E076.3524\mathrm{E}-07 2.95 1.4350E051.4350\mathrm{E}-05 2.27 9.7185E109.7185\mathrm{E}-10 4.24
64 1.9622E031.9622\mathrm{E}-03 1.41 8.0882E088.0882E-08 2.97 2.7562E062.7562\mathrm{E}-06 2.38 5.3668E115.3668\mathrm{E}-11 4.18
128 7.1558E047.1558\mathrm{E}-04 1.46 1.0208E081.0208\mathrm{E}-08 2.99 5.0843E075.0843\mathrm{E}-07 2.44 3.1624E123.1624\mathrm{E}-12 4.08
Table 3: Errors and convergence rates on polygonal meshes in Example 5.1
nn |Qhφφh||\!|\!|Q_{h}\varphi-\varphi_{h}|\!|\!| Rate |Qhuuh||\!|\!|Q_{h}u-u_{h}|\!|\!| Rate Qhφφh\left\|Q_{h}\varphi-\varphi_{h}\right\| Rate Qhuuh\left\|Q_{h}u-u_{h}\right\| Rate
By the P2P_{2} weak Galerkin finite element
16 4.4235E014.4235\mathrm{E}-01 1.6183E041.6183\mathrm{E}-04 1.6034E031.6034\mathrm{E}-03 5.6366E065.6366\mathrm{E}-06
32 3.5657E013.5657\mathrm{E}-01 0.31 4.2222E054.2222\mathrm{E}-05 1.94 6.1355E046.1355\mathrm{E}-04 1.39 8.7874E078.7874\mathrm{E}-07 2.68
64 2.6774E012.6774\mathrm{E}-01 0.41 1.0802E051.0802\mathrm{E}-05 1.97 2.2588E042.2588\mathrm{E}-04 1.44 1.2324E071.2324\mathrm{E}-07 2.83
128 1.9482E011.9482\mathrm{E}-01 0.46 2.7343E062.7343\mathrm{E}-06 1.98 8.1581E058.1581E-05 1.47 1.6349E081.6349\mathrm{E}-08 2.91
By the P3P_{3} weak Galerkin finite element
16 9.4109E039.4109\mathrm{E}-03 8.5082E068.5082\mathrm{E}-06 5.6358E055.6358\mathrm{E}-05 1.7179E081.7179\mathrm{E}-08
32 3.6245E033.6245\mathrm{E}-03 1.38 1.1584E061.1584\mathrm{E}-06 2.88 1.1518E051.1518\mathrm{E}-05 2.29 1.1435E091.1435\mathrm{E}-09 3.91
64 1.3389E031.3389\mathrm{E}-03 1.44 1.5123E071.5123\mathrm{E}-07 2.94 2.1957E062.1957\mathrm{E}-06 2.39 7.4368E117.4368\mathrm{E}-11 3.94
128 4.8379E044.8379\mathrm{E}-04 1.47 1.9324E081.9324\mathrm{E}-08 2.97 4.0316E074.0316\mathrm{E}-07 2.45 4.7472E124.7472\mathrm{E}-12 3.97
Example 5.2.

We choose the same solution area as in the above example. The exact solution is

u=sin(πx)sin(πy).\displaystyle u=\sin{(\pi x)}\sin{(\pi y)}.

This shows that u|Ω=0u|_{\partial\Omega}=0 and u𝐧|Ω0\frac{\partial u}{\partial{\bf n}}|_{\partial\Omega}\neq 0.

The related results are shown in Tables 4-6. From Tables 4-6, we can see the same order of convergence as Example 5.1, which coincides with the theorem.

Table 4: Errors and convergence rates on triangular meshes in Example 5.2
nn |Qhφφh||\!|\!|Q_{h}\varphi-\varphi_{h}|\!|\!| Rate |Qhuuh||\!|\!|Q_{h}u-u_{h}|\!|\!| Rate Qhφφh\left\|Q_{h}\varphi-\varphi_{h}\right\| Rate Qhuuh\left\|Q_{h}u-u_{h}\right\| Rate
By the P2P_{2} weak Galerkin finite element
16 9.1811E+009.1811E+00 7.4385E037.4385\mathrm{E}-03 5.8928E025.8928\mathrm{E}-02 3.4903E053.4903\mathrm{E}-05
32 6.5266E+006.5266\mathrm{E}+00 0.49 1.8629E031.8629\mathrm{E}-03 2.00 2.0861E022.0861\mathrm{E}-02 1.50 4.1944E064.1944\mathrm{E}-06 3.06
64 4.6215E+004.6215\mathrm{E}+00 0.50 4.6598E044.6598\mathrm{E}-04 2.00 7.3777E037.3777\mathrm{E}-03 1.50 5.1526E075.1526\mathrm{E}-07 3.03
128 3.2691E+003.2691E+00 0.50 1.1652E041.1652\mathrm{E}-04 2.00 2.6086E032.6086\mathrm{E}-03 1.50 6.3906E086.3906\mathrm{E}-08 3.01
By the P3P_{3} weak Galerkin finite element
16 2.5564E012.5564\mathrm{E}-01 2.0336E042.0336\mathrm{E}-04 1.6575E031.6575\mathrm{E}-03 5.8062E075.8062\mathrm{E}-07
32 9.0186E029.0186\mathrm{E}-02 1.50 2.5500E052.5500\mathrm{E}-05 3.00 2.9536E042.9536\mathrm{E}-04 2.49 3.5466E083.5466\mathrm{E}-08 4.03
64 3.1828E023.1828\mathrm{E}-02 1.50 3.1915E063.1915\mathrm{E}-06 3.00 5.2358E055.2358\mathrm{E}-05 2.50 2.1929E092.1929\mathrm{E}-09 4.02
128 1.1241E021.1241\mathrm{E}-02 1.50 3.9914E073.9914\mathrm{E}-07 3.00 9.2658E069.2658\mathrm{E}-06 2.50 1.3635E101.3635\mathrm{E}-10 4.01
Table 5: Errors and convergence rates on rectangular meshes in Example 5.2
nn |Qhφφh||\!|\!|Q_{h}\varphi-\varphi_{h}|\!|\!| Rate |Qhuuh||\!|\!|Q_{h}u-u_{h}|\!|\!| Rate Qhφφh\left\|Q_{h}\varphi-\varphi_{h}\right\| Rate Qhuuh\left\|Q_{h}u-u_{h}\right\| Rate
By the P2P_{2} weak Galerkin finite element
16 9.7153E+009.7153\mathrm{E}+00 9.7509E039.7509\mathrm{E}-03 3.9732E023.9732\mathrm{E}-02 3.1204E053.1204\mathrm{E}-05
32 6.9398E+006.9398\mathrm{E}+00 0.49 2.4386E032.4386\mathrm{E}-03 2.00 1.4154E021.4154\mathrm{E}-02 1.49 2.7188E062.7188\mathrm{E}-06 3.52
64 4.9198E+004.9198\mathrm{E}+00 0.50 6.0947E046.0947\mathrm{E}-04 2.00 5.0143E035.0143\mathrm{E}-03 1.50 2.8334E072.8334\mathrm{E}-07 3.26
128 3.4811E+003.4811\mathrm{E}+00 0.50 1.5233E041.5233\mathrm{E}-04 2.00 1.7738E031.7738\mathrm{E}-03 1.50 3.3224E083.3224\mathrm{E}-08 3.09
By the P3P_{3} weak Galerkin finite element
16 1.5239E011.5239\mathrm{E}-01 3.0553E043.0553\mathrm{E}-04 5.6483E045.6483\mathrm{E}-04 6.9886E076.9886\mathrm{E}-07
32 5.2705E025.2705\mathrm{E}-02 1.53 3.8294E053.8294\mathrm{E}-05 3.00 9.5049E059.5049\mathrm{E}-05 2.57 4.3065E084.3065\mathrm{E}-08 4.02
64 1.8493E021.8493\mathrm{E}-02 1.51 4.7900E064.7900\mathrm{E}-06 3.00 1.6481E051.6481\mathrm{E}-05 2.53 2.6808E092.6808\mathrm{E}-09 4.01
128 6.5198E036.5198\mathrm{E}-03 1.50 5.9886E075.9886\mathrm{E}-07 3.00 2.8899E062.8899\mathrm{E}-06 2.51 1.6737E101.6737\mathrm{E}-10 4.00
Table 6: Errors and convergence rates on polygonal meshes in Example 5.2
nn |Qhφφh||\!|\!|Q_{h}\varphi-\varphi_{h}|\!|\!| Rate |Qhuuh||\!|\!|Q_{h}u-u_{h}|\!|\!| Rate Qhφφh\left\|Q_{h}\varphi-\varphi_{h}\right\| Rate Qhuuh\left\|Q_{h}u-u_{h}\right\| Rate
By the P2P_{2} weak Galerkin finite element
16 5.1328E+015.1328\mathrm{E}+01 1.2790E021.2790\mathrm{E}-02 2.4905E012.4905\mathrm{E}-01 2.1091E042.1091\mathrm{E}-04
32 3.6720E+013.6720\mathrm{E}+01 0.48 3.1524E033.1524\mathrm{E}-03 2.02 8.8945E028.8945\mathrm{E}-02 1.49 2.6967E052.6967\mathrm{E}-05 2.97
64 2.6046E+012.6046\mathrm{E}+01 0.50 7.8318E047.8318\mathrm{E}-04 2.01 3.1523E023.1523\mathrm{E}-02 1.50 3.5157E063.5157\mathrm{E}-06 2.94
128 1.8433E+011.8433\mathrm{E}+01 0.50 1.9526E041.9526\mathrm{E}-04 2.00 1.1151E021.1151\mathrm{E}-02 1.50 4.5238E074.5238\mathrm{E}-07 2.96
By the P3P_{3} weak Galerkin finite element
16 6.2345E016.2345\mathrm{E}-01 4.9235E044.9235\mathrm{E}-04 3.9976E033.9976\mathrm{E}-03 5.6491E075.6491\mathrm{E}-07
32 2.2038E012.2038\mathrm{E}-01 1.50 6.3217E056.3217\mathrm{E}-05 2.96 7.2734E047.2734\mathrm{E}-04 2.46 3.1102E083.1102\mathrm{E}-08 4.18
64 7.7966E027.7966\mathrm{E}-02 1.50 8.0051E068.0051\mathrm{E}-06 2.98 1.3035E041.3035\mathrm{E}-04 2.48 1.8314E091.8314\mathrm{E}-09 4.09
128 2.7581E022.7581\mathrm{E}-02 1.50 1.0070E061.0070\mathrm{E}-06 2.99 2.3197E052.3197\mathrm{E}-05 2.49 1.1132E101.1132\mathrm{E}-10 4.04
Example 5.3.

We choose the same solution area as in the above examples. The exact solution is

u=ex+y,\displaystyle u=e^{x+y},

which satisfies u|Ω0u|_{\partial\Omega}\neq 0 and u𝐧|Ω0\frac{\partial u}{\partial{\bf n}}|_{\partial\Omega}\neq 0.

The relevant results are displayed in Tables 7-8, which are consistent with the theoretical results.

Table 7: Errors and convergence rates on triangular meshes in Example 5.3
nn |Qhφφh||\!|\!|Q_{h}\varphi-\varphi_{h}|\!|\!| Rate |Qhuuh||\!|\!|Q_{h}u-u_{h}|\!|\!| Rate Qhφφh\left\|Q_{h}\varphi-\varphi_{h}\right\| Rate Qhuuh\left\|Q_{h}u-u_{h}\right\| Rate
By the P2P_{2} weak Galerkin finite element
16 2.4698E+002.4698\mathrm{E}+00 2.1195E032.1195\mathrm{E}-03 1.6056E021.6056\mathrm{E}-02 8.4842E068.4842\mathrm{E}-06
32 1.7491E+001.7491\mathrm{E}+00 0.50 5.3048E045.3048\mathrm{E}-04 2.00 5.6647E035.6647\mathrm{E}-03 1.50 1.0618E061.0618\mathrm{E}-06 3.00
64 1.2376E+001.2376\mathrm{E}+00 0.50 1.3269E041.3269\mathrm{E}-04 2.00 2.0004E032.0004\mathrm{E}-03 1.50 1.3289E071.3289\mathrm{E}-07 3.00
128 8.7543E018.7543\mathrm{E}-01 0.50 3.3179E053.3179\mathrm{E}-05 2.00 7.0679E047.0679\mathrm{E}-04 1.50 1.6623E081.6623\mathrm{E}-08 3.00
By the P3P_{3} weak Galerkin finite element
16 2.5285E022.5285\mathrm{E}-02 1.8753E051.8753\mathrm{E}-05 1.6657E041.6657\mathrm{E}-04 5.3828E085.3828\mathrm{E}-08
32 8.9885E038.9885\mathrm{E}-03 1.49 2.3491E062.3491\mathrm{E}-06 3.00 2.9758E052.9758\mathrm{E}-05 2.48 3.2872E093.2872\mathrm{E}-09 4.03
64 3.1862E033.1862\mathrm{E}-03 1.50 2.9394E072.9394\mathrm{E}-07 3.00 5.2877E065.2877\mathrm{E}-06 2.49 2.0294E102.0294\mathrm{E}-10 4.02
128 1.1326E031.1326\mathrm{E}-03 1.49 3.6753E083.6753\mathrm{E}-08 3.00 9.4181E079.4181\mathrm{E}-07 2.49 1.2997E111.2997\mathrm{E}-11 3.96
Table 8: Errors and convergence rates on polygonal meshes in Example 5.3
nn |Qhφφh||\!|\!|Q_{h}\varphi-\varphi_{h}|\!|\!| Rate |Qhuuh||\!|\!|Q_{h}u-u_{h}|\!|\!| Rate Qhφφh\left\|Q_{h}\varphi-\varphi_{h}\right\| Rate Qhuuh\left\|Q_{h}u-u_{h}\right\| Rate
By the P2P_{2} weak Galerkin finite element
16 1.2510E+011.2510\mathrm{E}+01 3.3152E033.3152\mathrm{E}-03 6.3503E026.3503\mathrm{E}-02 2.6849E052.6849\mathrm{E}-05
32 9.1780E+009.1780\mathrm{E}+00 0.45 8.2523E048.2523\mathrm{E}-04 2.01 2.3430E022.3430\mathrm{E}-02 1.44 3.6017E063.6017\mathrm{E}-06 2.90
64 6.6115E+006.6115\mathrm{E}+00 0.47 2.0561E042.0561\mathrm{E}-04 2.00 8.4615E038.4615\mathrm{E}-03 1.47 4.6959E074.6959\mathrm{E}-07 2.94
128 4.7189E+004.7189\mathrm{E}+00 0.49 5.1299E055.1299\mathrm{E}-05 2.00 3.0235E033.0235\mathrm{E}-03 1.48 5.9940E085.9940\mathrm{E}-08 2.97
By the P3P_{3} weak Galerkin finite element
16 5.4327E025.4327\mathrm{E}-02 4.3784E054.3784\mathrm{E}-05 3.5923E043.5923\mathrm{E}-04 4.3622E084.3622\mathrm{E}-08
32 1.9577E021.9577\mathrm{E}-02 1.47 5.6822E065.6822\mathrm{E}-06 2.95 6.5444E056.5444\mathrm{E}-05 2.46 2.3973E092.3973\mathrm{E}-09 4.19
64 6.9872E036.9872\mathrm{E}-03 1.49 7.2357E077.2357\mathrm{E}-07 2.97 1.1742E051.1742\mathrm{E}-05 2.48 1.3815E101.3815\mathrm{E}-10 4.12
128 2.4765E032.4765\mathrm{E}-03 1.50 9.1265E089.1265\mathrm{E}-08 2.99 2.0900E062.0900\mathrm{E}-06 2.49 1.1196E111.1196\mathrm{E}-11 3.63

From Tables 1-8, it can be seen that under various boundary conditions, the numerical examples consistently achieve the optimal convergence order, aligning with previous theoretical analyses and affirming the accuracy of the SFWG method. Notably, the convergence order of |Qhφφh||\!|\!|Q_{h}\varphi-\varphi_{h}|\!|\!| is half order higher than the theoretical order O(hk2)O(h^{k-2}).

6 Conclusion

In this paper, we propose a stabilizer-free weak Galerkin (SFWG) method for the Ciarlet-Raviart mixed variational form of the Biharmonic equation and analyze the well-posedness and convergence of the SFWG method. We derive the optimal error estimates about the actual variable uu in the H1H^{1} and L2L^{2} norms. Finally, we use numerical examples to verify the theoretical analysis. In future work, we will continue to study the WG related methods for the mixed form of the Biharmonic equation to reach the optimal error estimates in H1H^{1} and L2L^{2} norms for the auxiliary variable φ\varphi.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 12271208, 12201246, 22341302), the National Key Research and Development Program of China (grant No. 2020YFA0713602, 2023YFA1008803), and the Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education of China housed at Jilin University.

Data Availability

The code used in this work will be made available upon request to the authors.

Appendix A Some Technical Results of Ritz and Neumann Projections

Lemma A.1.

For the definitions of ΠhR\Pi_{h}^{R} and ΠhN\Pi_{h}^{N}, we have the following error equations:

(w(ΠhRvv),wψ)𝒯h=\displaystyle(\nabla_{w}(\Pi_{h}^{R}v-v),\nabla_{w}\psi)_{{\mathcal{T}}_{h}}= l(v,ψ),ψVh0,\displaystyle~{}l(v,\psi),\qquad\forall\,\psi\in V_{h}^{0}, (A.1)
(w(ΠhNvv),wψ)𝒯h=\displaystyle(\nabla_{w}(\Pi_{h}^{N}v-v),\nabla_{w}\psi)_{{\mathcal{T}}_{h}}= l(v,ψ),ψVh,\displaystyle~{}l(v,\psi),\qquad\forall\,\psi\in V_{h}, (A.2)

where

l(v,ψ)=(hvv)𝐧,ψ0ψb𝒯h.l(v,\psi)=\langle({\mathbb{Q}}_{h}\nabla v-\nabla v)\cdot{\bf n},\psi_{0}-\psi_{b}\rangle_{\partial{\mathcal{T}}_{h}}.

For any vHm+1(Ω),(1mj+1)v\in H^{m+1}(\Omega),~{}(1\leq m\leq j+1) and for any ψVh\psi\in V_{h}, we can deduce the estimate as follows

|l(v,ψ)|hmvm+1|ψ|.\displaystyle\big{|}l(v,\psi)\big{|}\lesssim~{}h^{m}\left\|v\right\|_{m+1}|\!|\!|\psi|\!|\!|. (A.3)
Proof.

Using the integration by parts, the definitions of h{\mathbb{Q}}_{h} and w\nabla_{w}, (3.14), we have

(Δv,ψ0)𝒯h=\displaystyle(-\Delta v,\psi_{0})_{{\mathcal{T}}_{h}}= (v,ψ0)𝒯hv𝐧,ψ0𝒯h\displaystyle~{}(\nabla v,\nabla\psi_{0})_{{\mathcal{T}}_{h}}-\langle\nabla v\cdot{\bf n},\psi_{0}\rangle_{\partial{\mathcal{T}}_{h}}
=\displaystyle= (hv,ψ0)𝒯hv𝐧,ψ0𝒯h\displaystyle~{}({\mathbb{Q}}_{h}\nabla v,\nabla\psi_{0})_{{\mathcal{T}}_{h}}-\langle\nabla v\cdot{\bf n},\psi_{0}\rangle_{\partial{\mathcal{T}}_{h}}
=\displaystyle= (hv,ψ0)𝒯h+(hvv)𝐧,ψ0𝒯h\displaystyle~{}-(\nabla\cdot{\mathbb{Q}}_{h}\nabla v,\psi_{0})_{{\mathcal{T}}_{h}}+\langle({\mathbb{Q}}_{h}\nabla v-\nabla v)\cdot{\bf n},\psi_{0}\rangle_{\partial{\mathcal{T}}_{h}}
=\displaystyle= (hv,wψ)hv𝐧,ψb𝒯h+(hvv)𝐧,ψ0𝒯h\displaystyle~{}({\mathbb{Q}}_{h}\nabla v,\nabla_{w}\psi)-\langle{\mathbb{Q}}_{h}\nabla v\cdot{\bf n},\psi_{b}\rangle_{\partial{\mathcal{T}}_{h}}+\langle({\mathbb{Q}}_{h}\nabla v-\nabla v)\cdot{\bf n},\psi_{0}\rangle_{\partial{\mathcal{T}}_{h}}
=\displaystyle= (wv,wψ)𝒯h(hvv)𝐧,ψb𝒯hv𝐧,ψb𝒯h\displaystyle~{}(\nabla_{w}v,\nabla_{w}\psi)_{{\mathcal{T}}_{h}}-\langle({\mathbb{Q}}_{h}\nabla v-\nabla v)\cdot{\bf n},\psi_{b}\rangle_{\partial{\mathcal{T}}_{h}}-\langle\nabla v\cdot{\bf n},\psi_{b}\rangle_{\partial{\mathcal{T}}_{h}}
+(hvv)𝐧,ψ0𝒯h\displaystyle~{}+\langle({\mathbb{Q}}_{h}\nabla v-\nabla v)\cdot{\bf n},\psi_{0}\rangle_{\partial{\mathcal{T}}_{h}}
=\displaystyle= (wv,wψ)𝒯h+(hvv)𝐧,ψ0ψb𝒯hv𝐧,ψb𝒯h.\displaystyle~{}(\nabla_{w}v,\nabla_{w}\psi)_{{\mathcal{T}}_{h}}+\langle({\mathbb{Q}}_{h}\nabla v-\nabla v)\cdot{\bf n},\psi_{0}-\psi_{b}\rangle_{\partial{\mathcal{T}}_{h}}-\langle\nabla v\cdot{\bf n},\psi_{b}\rangle_{\partial{\mathcal{T}}_{h}}. (A.4)

By the above equation and the fact that ψ|Ω=0\psi|_{\partial\Omega}=0 and (4.1), we arrive at (A.1). Using (4.2), we get (A.2).

For (A.3), we use the Cauchy-Schwarz inequality, the trace inequality, the projection inequality, the definition of 1,h\left\|\cdot\right\|_{1,h}, (3.1), and get

|l(v,ψ)|=\displaystyle\big{|}l(v,\psi)\big{|}= |(hvv)𝐧,ψ0ψb𝒯h|\displaystyle~{}\Big{|}\langle({\mathbb{Q}}_{h}\nabla v-\nabla v)\cdot{\bf n},\psi_{0}-\psi_{b}\rangle_{\partial{\mathcal{T}}_{h}}\Big{|}
\displaystyle\lesssim (T𝒯hhThvvT2)12(T𝒯hhT1ψ0ψbT2)12\displaystyle~{}\left(\sum_{T\in\mathcal{T}_{h}}h_{T}\left\|{\mathbb{Q}}_{h}\nabla v-\nabla v\right\|_{\partial T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}}h_{T}^{-1}\left\|\psi_{0}-\psi_{b}\right\|_{\partial T}^{2}\right)^{\frac{1}{2}}
\displaystyle\lesssim hmvmψ1,h\displaystyle~{}h^{m}\left\|\nabla v\right\|_{m}\left\|\psi\right\|_{1,h}
\displaystyle\lesssim hmvm+1|ψ|.\displaystyle~{}h^{m}\left\|v\right\|_{m+1}|\!|\!|\psi|\!|\!|.

Then we completes the proof. ∎

Lemma A.2.

For any vHm+1(Ω),(0mk)v\in H^{m+1}(\Omega),(0\leq m\leq k), there holds

|vQhv|hmvm+1.\displaystyle|\!|\!|v-Q_{h}v|\!|\!|\lesssim h^{m}\left\|v\right\|_{m+1}. (A.5)
Proof.

We use the definition of the weak gradient, the integration by parts, the Cauchy-Schwarz inequality, the trace inequality, the inverse inequality, the definition of the projection operator, and the projection inequality to obtain for any 𝐪[Pj(T)]d{\mathbf{q}}\in[P_{j}(T)]^{d},

(w(vQhv),𝐪)T\displaystyle~{}(\nabla_{w}(v-Q_{h}v),{\mathbf{q}})_{T}
=(vQ0v,𝐪)T+vQbv,𝐪𝐧T\displaystyle~{}=-(v-Q_{0}v,\nabla\cdot{\mathbf{q}})_{T}+\langle v-Q_{b}v,{\mathbf{q}}\cdot{\bf n}\rangle_{\partial T}
=((vQ0v),𝐪)TvQ0v(vQbv),𝐪𝐧T\displaystyle~{}=(\nabla(v-Q_{0}v),{\mathbf{q}})_{T}-\langle v-Q_{0}v-(v-Q_{b}v),{\mathbf{q}}\cdot{\bf n}\rangle_{\partial T}
(vQ0v)𝐪+(T𝒯hhT1Q0vQbvT2)12(T𝒯hhT𝐪𝐧T2)12\displaystyle~{}\lesssim\left\|\nabla(v-Q_{0}v)\right\|\left\|{\mathbf{q}}\right\|+\left(\sum_{T\in\mathcal{T}_{h}}h_{T}^{-1}\left\|Q_{0}v-Q_{b}v\right\|_{\partial T}^{2}\right)^{\frac{1}{2}}\left(\sum_{T\in\mathcal{T}_{h}}h_{T}\left\|{\mathbf{q}}\cdot{\bf n}\right\|_{\partial T}^{2}\right)^{\frac{1}{2}}
(vQ0v)𝐪+(T𝒯hhT1(vQ0vT2+vQbvT2))12𝐪\displaystyle~{}\lesssim\left\|\nabla(v-Q_{0}v)\right\|\left\|{\mathbf{q}}\right\|+\left(\sum_{T\in\mathcal{T}_{h}}h_{T}^{-1}(\left\|v-Q_{0}v\right\|_{\partial T}^{2}+\left\|v-Q_{b}v\right\|_{\partial T}^{2})\right)^{\frac{1}{2}}\left\|{\mathbf{q}}\right\|
(vQ0v)𝐪+(T𝒯hhT1vQ0vT2)12𝐪\displaystyle~{}\lesssim\left\|\nabla(v-Q_{0}v)\right\|\left\|{\mathbf{q}}\right\|+\left(\sum_{T\in\mathcal{T}_{h}}h_{T}^{-1}\left\|v-Q_{0}v\right\|_{\partial T}^{2}\right)^{\frac{1}{2}}\left\|{\mathbf{q}}\right\|
(vQ0v)𝐪+(T𝒯hhT2vQ0vT2+(vQ0v)T2)12𝐪\displaystyle~{}\lesssim\left\|\nabla(v-Q_{0}v)\right\|\left\|{\mathbf{q}}\right\|+\left(\sum_{T\in\mathcal{T}_{h}}h_{T}^{-2}\left\|v-Q_{0}v\right\|_{T}^{2}+\left\|\nabla(v-Q_{0}v)\right\|_{T}^{2}\right)^{\frac{1}{2}}\left\|{\mathbf{q}}\right\|
hmvm+1𝐪.\displaystyle~{}\lesssim h^{m}\left\|v\right\|_{m+1}\left\|{\mathbf{q}}\right\|.

Let 𝐪=w(vQhv){\mathbf{q}}=\nabla_{w}(v-Q_{h}v), then we get (A.5). ∎

Lemma A.3.

For vH01(Ω)Hm+1(Ω)v\in H^{1}_{0}(\Omega)\bigcap H^{m+1}(\Omega) or H¯1(Ω)Hm+1(Ω)\overline{H}^{1}(\Omega)\bigcap H^{m+1}(\Omega), where 1mk1\leq m\leq k, we have

|vΠhRv|\displaystyle|\!|\!|v-\Pi_{h}^{R}v|\!|\!|\lesssim hmvm+1,\displaystyle~{}h^{m}\left\|v\right\|_{m+1}, (A.6)
|vΠhNv|\displaystyle|\!|\!|v-\Pi_{h}^{N}v|\!|\!|\lesssim hmvm+1.\displaystyle~{}h^{m}\left\|v\right\|_{m+1}. (A.7)
Proof.

For (A.6), by using (A.1), the estimate of l(v,ψ)l(v,\psi) and the Young’s inequality, we get

|vΠhRv|2=\displaystyle|\!|\!|v-\Pi_{h}^{R}v|\!|\!|^{2}= (w(vΠhRv),w(vQhv))𝒯h+(w(vΠhRv),w(QhvΠhRv))𝒯h\displaystyle~{}(\nabla_{w}(v-\Pi_{h}^{R}v),\nabla_{w}(v-Q_{h}v))_{{\mathcal{T}}_{h}}+(\nabla_{w}(v-\Pi_{h}^{R}v),\nabla_{w}(Q_{h}v-\Pi_{h}^{R}v))_{{\mathcal{T}}_{h}}
\displaystyle\lesssim |vQhv||vΠhRv|+|l(v,QhvΠhRv)|\displaystyle~{}|\!|\!|v-Q_{h}v|\!|\!||\!|\!|v-\Pi_{h}^{R}v|\!|\!|+\big{|}l(v,Q_{h}v-\Pi_{h}^{R}v)\big{|}
\displaystyle\lesssim |vQhv||vΠhRv|+hmvm+1|QhvΠhRv|\displaystyle~{}|\!|\!|v-Q_{h}v|\!|\!||\!|\!|v-\Pi_{h}^{R}v|\!|\!|+h^{m}\left\|v\right\|_{m+1}|\!|\!|Q_{h}v-\Pi_{h}^{R}v|\!|\!|
\displaystyle\lesssim |vQhv||vΠhRv|+hmvm+1(|Qhvv|+|vΠhRv|)\displaystyle~{}|\!|\!|v-Q_{h}v|\!|\!||\!|\!|v-\Pi_{h}^{R}v|\!|\!|+h^{m}\left\|v\right\|_{m+1}(|\!|\!|Q_{h}v-v|\!|\!|+|\!|\!|v-\Pi_{h}^{R}v|\!|\!|)
\displaystyle\leq Ch2mvm+12+12|vΠhRv|2.\displaystyle~{}Ch^{2m}\left\|v\right\|_{m+1}^{2}+\frac{1}{2}|\!|\!|v-\Pi_{h}^{R}v|\!|\!|^{2}.

Thus, we have (A.6). Analogously, we use (A.2) and same inequalities to verify (A.7). ∎

Corollary A.1.

For vH01(Ω)Hm+1(Ω)v\in H^{1}_{0}(\Omega)\bigcap H^{m+1}(\Omega) or H¯1(Ω)Hm+1(Ω)\overline{H}^{1}(\Omega)\bigcap H^{m+1}(\Omega), where 1mk1\leq m\leq k, there hold

vΠhRv1,h\displaystyle\left\|v-\Pi_{h}^{R}v\right\|_{1,h}\lesssim hmvm+1,\displaystyle~{}h^{m}\left\|v\right\|_{m+1}, (A.8)
vΠhNv1,h\displaystyle\left\|v-\Pi_{h}^{N}v\right\|_{1,h}\lesssim hmvm+1.\displaystyle~{}h^{m}\left\|v\right\|_{m+1}. (A.9)
Proof.

Using Lemma 3.1, the definitions of 1,h\left\|\cdot\right\|_{1,h} and QbQ_{b}, the trace inequality, the projection inequality, Lemma A.2 and Lemma A.3, we have

vΠhRv1,h\displaystyle~{}\left\|v-\Pi_{h}^{R}v\right\|_{1,h}
\displaystyle\lesssim vQhv1,h+QhvΠhRv1,h\displaystyle~{}\left\|v-Q_{h}v\right\|_{1,h}+\left\|Q_{h}v-\Pi_{h}^{R}v\right\|_{1,h}
\displaystyle\lesssim (T𝒯h(vQ0v)T2+h1vQ0v(vQbv)T2)12+|QhvΠhRv|\displaystyle~{}\left(\sum_{T\in\mathcal{T}_{h}}\left\|\nabla(v-Q_{0}v)\right\|_{T}^{2}+h^{-1}\left\|v-Q_{0}v-(v-Q_{b}v)\right\|_{\partial T}^{2}\right)^{\frac{1}{2}}+|\!|\!|Q_{h}v-\Pi_{h}^{R}v|\!|\!|
\displaystyle\lesssim (T𝒯h(vQ0v)T2+h1vQ0v(vQbv)T2)12+|Qhvv|+|vΠhRv|\displaystyle~{}\left(\sum_{T\in\mathcal{T}_{h}}\left\|\nabla(v-Q_{0}v)\right\|_{T}^{2}+h^{-1}\left\|v-Q_{0}v-(v-Q_{b}v)\right\|_{\partial T}^{2}\right)^{\frac{1}{2}}+|\!|\!|Q_{h}v-v|\!|\!|+|\!|\!|v-\Pi_{h}^{R}v|\!|\!|
\displaystyle\lesssim (T𝒯h(vQ0v)T2+h1vQ0vT2)12+hmvm+1\displaystyle~{}\left(\sum_{T\in\mathcal{T}_{h}}\left\|\nabla(v-Q_{0}v)\right\|_{T}^{2}+h^{-1}\left\|v-Q_{0}v\right\|_{\partial T}^{2}\right)^{\frac{1}{2}}+h^{m}\left\|v\right\|_{m+1}
\displaystyle\lesssim hmvm+1,\displaystyle~{}h^{m}\left\|v\right\|_{m+1},

which completes the proof of (A.8). The (A.9) can be verified in the similar way. ∎

Lemma A.4.

For vH01(Ω)Hm+1(Ω)v\in H^{1}_{0}(\Omega)\bigcap H^{m+1}(\Omega) or H¯1(Ω)Hm+1(Ω)\overline{H}^{1}(\Omega)\bigcap H^{m+1}(\Omega), where 1mk1\leq m\leq k, we have

Q0vΠ0Rv\displaystyle\left\|Q_{0}v-\Pi_{0}^{R}v\right\|\lesssim hm+1vm+1\displaystyle~{}h^{m+1}\left\|v\right\|_{m+1} (A.10)
Q0vΠ0Nv\displaystyle\left\|Q_{0}v-\Pi_{0}^{N}v\right\|\lesssim hm+1vm+1.\displaystyle~{}h^{m+1}\left\|v\right\|_{m+1}. (A.11)

Further, we arrive at

vΠ0Rv\displaystyle\left\|v-\Pi_{0}^{R}v\right\|\lesssim hm+1vm+1\displaystyle~{}h^{m+1}\left\|v\right\|_{m+1} (A.12)
vΠ0Nv\displaystyle\left\|v-\Pi_{0}^{N}v\right\|\lesssim hm+1vm+1.\displaystyle~{}h^{m+1}\left\|v\right\|_{m+1}. (A.13)
Proof.

First, we use the standard duality argument to prove (A.11) and (A.13) in detail. Find ϕH¯1(Ω)\phi\in\overline{H}^{1}(\Omega) such that

Δϕ=\displaystyle-\Delta\phi= Q0vΠ0Nv,inΩ,\displaystyle~{}Q_{0}v-\Pi_{0}^{N}v,\quad in~{}\Omega, (A.14)
ϕ𝐧=\displaystyle\frac{\partial\phi}{\partial{\bf n}}= 0,onΩ,\displaystyle~{}0,\quad\qquad\qquad\,\,\,on~{}\partial\Omega, (A.15)

and the above dual problem has the regularity assumption

ϕ2Q0vΠ0Nv.\left\|\phi\right\|_{2}\lesssim\left\|Q_{0}v-\Pi_{0}^{N}v\right\|.

By (A.4), (A.15), the Cauchy-Schwarz inequality, the projection inequality, (A.7), (A.2), and (A.3), we get

Q0vΠ0Nv2\displaystyle\left\|Q_{0}v-\Pi_{0}^{N}v\right\|^{2}
=\displaystyle= (Δϕ,Q0vΠ0Nv)𝒯h\displaystyle~{}(-\Delta\phi,Q_{0}v-\Pi_{0}^{N}v)_{{\mathcal{T}}_{h}}
=\displaystyle= (wϕ,w(QhvΠhNv))𝒯h+l(ϕ,QhvΠhNv)\displaystyle~{}(\nabla_{w}\phi,\nabla_{w}(Q_{h}v-\Pi_{h}^{N}v))_{{\mathcal{T}}_{h}}+l(\phi,Q_{h}v-\Pi_{h}^{N}v)
=\displaystyle= (w(ϕΠhNϕ),w(QhvΠhNv))𝒯h+(wΠhNϕ,w(QhvΠhNv))𝒯h\displaystyle~{}(\nabla_{w}(\phi-\Pi_{h}^{N}\phi),\nabla_{w}(Q_{h}v-\Pi_{h}^{N}v))_{{\mathcal{T}}_{h}}+(\nabla_{w}\Pi_{h}^{N}\phi,\nabla_{w}(Q_{h}v-\Pi_{h}^{N}v))_{{\mathcal{T}}_{h}}
+l(ϕ,QhvΠhNv)\displaystyle~{}+l(\phi,Q_{h}v-\Pi_{h}^{N}v)
\displaystyle\lesssim |ϕΠhNϕ|(|Qhvv|+|vΠhNv|)+(wΠhNϕ,w(Qhvv))𝒯h\displaystyle~{}|\!|\!|\phi-\Pi_{h}^{N}\phi|\!|\!|(|\!|\!|Q_{h}v-v|\!|\!|+|\!|\!|v-\Pi_{h}^{N}v|\!|\!|)+(\nabla_{w}\Pi_{h}^{N}\phi,\nabla_{w}(Q_{h}v-v))_{{\mathcal{T}}_{h}}
+(wΠhNϕ,w(vΠhNv))𝒯h+l(ϕ,QhvΠhNv)\displaystyle~{}+(\nabla_{w}\Pi_{h}^{N}\phi,\nabla_{w}(v-\Pi_{h}^{N}v))_{{\mathcal{T}}_{h}}+l(\phi,Q_{h}v-\Pi_{h}^{N}v)
\displaystyle\lesssim hϕ2hmvm+1+(w(ΠhNϕϕ),w(Qhvv))𝒯h+(wϕ,w(Qhvv))𝒯h\displaystyle~{}h\left\|\phi\right\|_{2}h^{m}\left\|v\right\|_{m+1}+(\nabla_{w}(\Pi_{h}^{N}\phi-\phi),\nabla_{w}(Q_{h}v-v))_{{\mathcal{T}}_{h}}+(\nabla_{w}\phi,\nabla_{w}(Q_{h}v-v))_{{\mathcal{T}}_{h}}
l(v,ΠhNϕ)+l(ϕ,QhvΠhNv)\displaystyle~{}-l(v,\Pi_{h}^{N}\phi)+l(\phi,Q_{h}v-\Pi_{h}^{N}v)
\displaystyle\lesssim hm+1vm+1ϕ2+hϕ2hmvm+1+(wϕ,w(Qhvv))𝒯hl(v,ΠhNϕ)\displaystyle~{}h^{m+1}\left\|v\right\|_{m+1}\left\|\phi\right\|_{2}+h\left\|\phi\right\|_{2}h^{m}\left\|v\right\|_{m+1}+(\nabla_{w}\phi,\nabla_{w}(Q_{h}v-v))_{{\mathcal{T}}_{h}}-l(v,\Pi_{h}^{N}\phi)
+l(ϕ,QhvΠhNv)\displaystyle~{}+l(\phi,Q_{h}v-\Pi_{h}^{N}v)
\displaystyle\lesssim hm+1vm+1ϕ2+(wϕ,w(Qhvv))𝒯hl(v,ΠhNϕ)\displaystyle~{}h^{m+1}\left\|v\right\|_{m+1}\left\|\phi\right\|_{2}+(\nabla_{w}\phi,\nabla_{w}(Q_{h}v-v))_{{\mathcal{T}}_{h}}-l(v,\Pi_{h}^{N}\phi)
+hϕ2(|Qhvv|+|vΠhNv|)\displaystyle~{}+h\left\|\phi\right\|_{2}(|\!|\!|Q_{h}v-v|\!|\!|+|\!|\!|v-\Pi_{h}^{N}v|\!|\!|)
\displaystyle\lesssim hm+1vm+1ϕ2+(wϕ,w(Qhvv))𝒯hl(v,ΠhNϕ).\displaystyle~{}h^{m+1}\left\|v\right\|_{m+1}\left\|\phi\right\|_{2}+(\nabla_{w}\phi,\nabla_{w}(Q_{h}v-v))_{{\mathcal{T}}_{h}}-l(v,\Pi_{h}^{N}\phi).

For (wϕ,w(Qhvv))𝒯h(\nabla_{w}\phi,\nabla_{w}(Q_{h}v-v))_{{\mathcal{T}}_{h}}, by using (3.14), the definitions of the projection operator and the weak gradient w\nabla_{w}, (A.14), (A.15), the Cauchy-Schwarz inequality, and the projection inequality, we have

(wϕ,w(Qhvv))𝒯h=\displaystyle(\nabla_{w}\phi,\nabla_{w}(Q_{h}v-v))_{{\mathcal{T}}_{h}}= (hϕ,w(Qhvv))𝒯h\displaystyle~{}({\mathbb{Q}}_{h}\nabla\phi,\nabla_{w}(Q_{h}v-v))_{{\mathcal{T}}_{h}}
=\displaystyle= (ϕ,w(Qhvv))𝒯h\displaystyle~{}(\nabla\phi,\nabla_{w}(Q_{h}v-v))_{{\mathcal{T}}_{h}}
=\displaystyle= (Q0vv,ϕ)𝒯h+Qbvv,ϕ𝐧𝒯h\displaystyle~{}-(Q_{0}v-v,\nabla\cdot\nabla\phi)_{{\mathcal{T}}_{h}}+\langle Q_{b}v-v,\nabla\phi\cdot{\bf n}\rangle_{\partial{\mathcal{T}}_{h}}
=\displaystyle= (Q0vv,Q0vΠ0Nv)𝒯h\displaystyle~{}(Q_{0}v-v,Q_{0}v-\Pi_{0}^{N}v)_{{\mathcal{T}}_{h}}
=\displaystyle= Q0vvQ0vΠ0Nv\displaystyle~{}\left\|Q_{0}v-v\right\|\left\|Q_{0}v-\Pi_{0}^{N}v\right\|
\displaystyle\lesssim hm+1vm+1Q0vΠ0Nv\displaystyle~{}h^{m+1}\left\|v\right\|_{m+1}\left\|Q_{0}v-\Pi_{0}^{N}v\right\|

As to l(v,ΠhNϕ)l(v,\Pi_{h}^{N}\phi), we have

l(v,ΠhNϕ)=\displaystyle l(v,\Pi_{h}^{N}\phi)= (hvv)𝐧,Π0NϕΠbNϕ𝒯h\displaystyle~{}\langle({\mathbb{Q}}_{h}\nabla v-\nabla v)\cdot{\bf n},\Pi_{0}^{N}\phi-\Pi_{b}^{N}\phi\rangle_{\partial{\mathcal{T}}_{h}}
\displaystyle\leq (T𝒯hhThvvT2)12(T𝒯hhT1Π0NϕΠbNϕT2)12\displaystyle~{}\Big{(}\sum_{T\in\mathcal{T}_{h}}h_{T}\left\|{\mathbb{Q}}_{h}\nabla v-\nabla v\right\|_{\partial T}^{2}\Big{)}^{\frac{1}{2}}\Big{(}\sum_{T\in\mathcal{T}_{h}}h_{T}^{-1}\left\|\Pi_{0}^{N}\phi-\Pi_{b}^{N}\phi\right\|_{\partial T}^{2}\Big{)}^{\frac{1}{2}}
\displaystyle\lesssim (T𝒯hhvvT2+hT2(hvv)T2)12\displaystyle~{}\Big{(}\sum_{T\in\mathcal{T}_{h}}\left\|{\mathbb{Q}}_{h}\nabla v-\nabla v\right\|_{T}^{2}+h_{T}^{2}\left\|\nabla({\mathbb{Q}}_{h}\nabla v-\nabla v)\right\|_{T}^{2}\Big{)}^{\frac{1}{2}}
(T𝒯hhT1Π0Nϕϕ(ΠbNϕϕ)T2)12\displaystyle~{}\Big{(}\sum_{T\in\mathcal{T}_{h}}h_{T}^{-1}\left\|\Pi_{0}^{N}\phi-\phi-(\Pi_{b}^{N}\phi-\phi)\right\|_{\partial T}^{2}\Big{)}^{\frac{1}{2}}
\displaystyle\lesssim hmvm+1ΠhNϕϕ1,h\displaystyle~{}h^{m}\left\|v\right\|_{m+1}\left\|\Pi_{h}^{N}\phi-\phi\right\|_{1,h}
\displaystyle\lesssim hm+1vm+1ϕ2,\displaystyle~{}h^{m+1}\left\|v\right\|_{m+1}\left\|\phi\right\|_{2},

where we have utilized the Cauchy-Schwarz inequality, the trace inequality, the projection inequality and (A.9). Thus, we get

Q0vΠ0Nv2\displaystyle\left\|Q_{0}v-\Pi_{0}^{N}v\right\|^{2}\lesssim hm+1vm+1ϕ2+hm+1vm+1Q0vΠ0Nv\displaystyle~{}h^{m+1}\left\|v\right\|_{m+1}\left\|\phi\right\|_{2}+h^{m+1}\left\|v\right\|_{m+1}\left\|Q_{0}v-\Pi_{0}^{N}v\right\|
\displaystyle\lesssim hm+1vm+1Q0vΠ0Nv+hm+1vm+1Q0vΠ0Nv\displaystyle~{}h^{m+1}\left\|v\right\|_{m+1}\left\|Q_{0}v-\Pi_{0}^{N}v\right\|+h^{m+1}\left\|v\right\|_{m+1}\left\|Q_{0}v-\Pi_{0}^{N}v\right\|
\displaystyle\lesssim hm+1vm+1Q0vΠ0Nv,\displaystyle~{}h^{m+1}\left\|v\right\|_{m+1}\left\|Q_{0}v-\Pi_{0}^{N}v\right\|,

which implies

Q0vΠ0Nvhm+1vm+1.\left\|Q_{0}v-\Pi_{0}^{N}v\right\|\lesssim h^{m+1}\left\|v\right\|_{m+1}.

Furthermore, we have

vΠ0Nv\displaystyle\left\|v-\Pi_{0}^{N}v\right\|\leq vQ0v+Q0vΠ0Nv\displaystyle~{}\left\|v-Q_{0}v\right\|+\left\|Q_{0}v-\Pi_{0}^{N}v\right\|
\displaystyle\lesssim hm+1vm+1+hm+1vm+1\displaystyle~{}h^{m+1}\left\|v\right\|_{m+1}+h^{m+1}\left\|v\right\|_{m+1}
\displaystyle\lesssim hm+1vm+1,\displaystyle~{}h^{m+1}\left\|v\right\|_{m+1},

which completes the proof of (A.11) and (A.13).

To verify the estimate (A.12), we consider the dual problem as follows

Δϕ=\displaystyle-\Delta\phi= Q0vΠ0Rv,inΩ,\displaystyle~{}Q_{0}v-\Pi_{0}^{R}v,\quad in~{}\Omega, (A.16)
ϕ=\displaystyle\phi= 0,onΩ.\displaystyle~{}0,\quad\qquad\qquad\,\,on~{}\partial\Omega. (A.17)

Using the above problem, QhvΠhRvVh0Q_{h}v-\Pi_{h}^{R}v\in V_{h}^{0} and v|Ω=0v|_{\partial\Omega}=0, we can obtain the same derivation process and results. The proof is completed. ∎

Corollary A.2.

For vH01(Ω)Hm+1(Ω)v\in H^{1}_{0}(\Omega)\bigcap H^{m+1}(\Omega) or H¯1(Ω)Hm+1(Ω)\overline{H}^{1}(\Omega)\bigcap H^{m+1}(\Omega), where 1mk1\leq m\leq k, we have

QhvΠhRv0,h\displaystyle\left\|Q_{h}v-\Pi_{h}^{R}v\right\|_{0,h}\lesssim hm+1vm+1,\displaystyle~{}h^{m+1}\left\|v\right\|_{m+1}, (A.18)
QhvΠhNv0,h\displaystyle\left\|Q_{h}v-\Pi_{h}^{N}v\right\|_{0,h}\lesssim hm+1vm+1,\displaystyle~{}h^{m+1}\left\|v\right\|_{m+1}, (A.19)

Furthermore, we acquire

vΠhRv0,h\displaystyle\left\|v-\Pi_{h}^{R}v\right\|_{0,h}\lesssim hm+1vm+1,\displaystyle~{}h^{m+1}\left\|v\right\|_{m+1}, (A.20)
vΠhNv0,h\displaystyle\left\|v-\Pi_{h}^{N}v\right\|_{0,h}\lesssim hm+1vm+1,\displaystyle~{}h^{m+1}\left\|v\right\|_{m+1}, (A.21)
Proof.

By the definition of the norm 0,h\left\|\cdot\right\|_{0,h}, (A.10), Lemma 3.1, (A.5) and (A.6), we have

QhvΠhRv0,h2\displaystyle~{}\left\|Q_{h}v-\Pi_{h}^{R}v\right\|_{0,h}^{2}
=\displaystyle= T𝒯hQ0vΠ0RvT2+T𝒯hhQ0vΠ0Rv(QbvΠbRv)T2\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}\left\|Q_{0}v-\Pi_{0}^{R}v\right\|_{T}^{2}+\sum_{T\in\mathcal{T}_{h}}h\left\|Q_{0}v-\Pi_{0}^{R}v-(Q_{b}v-\Pi_{b}^{R}v)\right\|_{\partial T}^{2}
\displaystyle\lesssim h2(m+1)vm+12+h2T𝒯hh1Q0vΠ0Rv(QbvΠbRv)T2\displaystyle~{}h^{2(m+1)}\left\|v\right\|_{m+1}^{2}+h^{2}\sum_{T\in\mathcal{T}_{h}}h^{-1}\left\|Q_{0}v-\Pi_{0}^{R}v-(Q_{b}v-\Pi_{b}^{R}v)\right\|_{\partial T}^{2}
\displaystyle\lesssim h2(m+1)vm+12+h2QhvΠhRv1,h2\displaystyle~{}h^{2(m+1)}\left\|v\right\|_{m+1}^{2}+h^{2}\left\|Q_{h}v-\Pi_{h}^{R}v\right\|_{1,h}^{2}
\displaystyle\lesssim h2(m+1)vm+12+h2|QhvΠhRv|2\displaystyle~{}h^{2(m+1)}\left\|v\right\|_{m+1}^{2}+h^{2}|\!|\!|Q_{h}v-\Pi_{h}^{R}v|\!|\!|^{2}
\displaystyle\lesssim h2(m+1)vm+12+h2(|Qhvv|+|vΠhRv|)2\displaystyle~{}h^{2(m+1)}\left\|v\right\|_{m+1}^{2}+h^{2}(|\!|\!|Q_{h}v-v|\!|\!|+|\!|\!|v-\Pi_{h}^{R}v|\!|\!|)^{2}
\displaystyle\lesssim h2(m+1)vm+12+h2m+2vm+12\displaystyle~{}h^{2(m+1)}\left\|v\right\|_{m+1}^{2}+h^{2m+2}\left\|v\right\|_{m+1}^{2}
\displaystyle\lesssim h2(m+1)vm+12.\displaystyle~{}h^{2(m+1)}\left\|v\right\|_{m+1}^{2}.

Using the definitions of 0,h\left\|\cdot\right\|_{0,h} and the projection QbQ_{b}, the trace inequality, and the projection inequality, we obtain

vΠhRv0,h2\displaystyle~{}\left\|v-\Pi_{h}^{R}v\right\|_{0,h}^{2}
\displaystyle\lesssim vQhv0,h2+QhvΠhRv0,h2\displaystyle~{}\left\|v-Q_{h}v\right\|_{0,h}^{2}+\left\|Q_{h}v-\Pi_{h}^{R}v\right\|_{0,h}^{2}
\displaystyle\lesssim T𝒯hvQ0vT2+T𝒯hhvQ0v(vQbv)T2+h2(m+1)vm+12\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}\left\|v-Q_{0}v\right\|_{T}^{2}+\sum_{T\in\mathcal{T}_{h}}h\left\|v-Q_{0}v-(v-Q_{b}v)\right\|_{\partial T}^{2}+h^{2(m+1)}\left\|v\right\|_{m+1}^{2}
\displaystyle\lesssim T𝒯hvQ0vT2+T𝒯hhvQ0vT2+h2(m+1)vm+12\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}\left\|v-Q_{0}v\right\|_{T}^{2}+\sum_{T\in\mathcal{T}_{h}}h\left\|v-Q_{0}v\right\|_{\partial T}^{2}+h^{2(m+1)}\left\|v\right\|_{m+1}^{2}
\displaystyle\lesssim T𝒯hvQ0vT2+T𝒯hh2(vQ0v)T2+h2(m+1)vm+12\displaystyle~{}\sum_{T\in\mathcal{T}_{h}}\left\|v-Q_{0}v\right\|_{T}^{2}+\sum_{T\in\mathcal{T}_{h}}h^{2}\left\|\nabla(v-Q_{0}v)\right\|_{T}^{2}+h^{2(m+1)}\left\|v\right\|_{m+1}^{2}
\displaystyle\lesssim h2(m+1)vm+12.\displaystyle~{}h^{2(m+1)}\left\|v\right\|_{m+1}^{2}.

We complete the proof of (A.18) and (A.20). Analogously, we get (A.19) and (A.21). ∎

References

  • [1] D. N. Arnold, L. R. Scott, and M. Vogelius, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 15 (1988), pp. 169–192.
  • [2] F. Brezzi, Sur la méthode des éléments finis hybrides pour le problème biharmonique, Numer. Math., 24 (1975), pp. 103–131.
  • [3] Y. Feng, Y. Liu, R. Wang, and S. Zhang, A stabilizer-free weak Galerkin finite element method for the Stokes equations, Adv. Appl. Math. Mech., 14 (2022), pp. 181–201.
  • [4] L. Gastaldi and R. H. Nochetto, Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations, RAIRO Modél. Math. Anal. Numér., 23 (1989), pp. 103–128.
  • [5] J. Hu, Y. Huang, and S. Zhang, The lowest order differentiable finite element on rectangular grids, SIAM J. Numer. Anal., 49 (2011), pp. 1350–1368.
  • [6] C. Johnson, On the convergence of a mixed finite-element method for plate bending problems, Numer. Math., 21 (1973), pp. 43–62.
  • [7] T. Miyoshi, A finite element method for the solutions of fourth order partial differential equations, Kumamoto J. Sci. (Math.), 9 (1972/73), pp. 87–116.
  • [8] P. Monk, A mixed finite element method for the biharmonic equation, SIAM Journal on Numerical Analysis, 24 (1987), pp. 737–749.
  • [9] L. S. D. Morley*, The triangular equilibrium element in the solution of plate bending problems, The Aeronautical Quarterly, (1968), pp. 149–169.
  • [10] I. Mozolevski, E. Süli, and P. R. Bösing, hphp-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation, J. Sci. Comput., 30 (2007), pp. 465–491.
  • [11] L. Mu, J. Wang, Y. Wang, and X. Ye, A weak Galerkin mixed finite element method for biharmonic equations, in Numerical solution of partial differential equations: theory, algorithms, and their applications, vol. 45 of Springer Proc. Math. Stat., Springer, New York, 2013, pp. 247–277.
  • [12] L. Mu, J. Wang, and X. Ye, A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods, J. Comput. Phys., 273 (2014), pp. 327–342.
  • [13] L. Mu, J. Wang, and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods Partial Differential Equations, 30 (2014), pp. 1003–1029.
  • [14] J. T. Oden, Generalized conjugate functions for mixed finite element approximations of boundary value problems, in The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972), Academic Press, New York-London, 1972, pp. 626–669.
  • [15] P. Oswald, Hierarchical conforming finite element methods for the biharmonic equation, SIAM J. Numer. Anal., 29 (1992), pp. 1610–1625.
  • [16] P. C. RAVIART, A mixed finite element method for the biharmonic equation, Mathematical Aspects of Finite Elements in Partial Differential Equations, (1974), pp. 125–145.
  • [17] J. Wang, Asymptotic expansions and LL^{\infty}-error estimates for mixed finite element methods for second order elliptic problems, Numer. Math., 55 (1989), pp. 401–430.
  • [18] J. Wang and X. Ye, A weak galerkin mixed finite element method for second order elliptic problems, 83, pp. 2101–2126.
  • [19] J. Wang and X. Ye, A weak galerkin finite element method for second-order elliptic problems, Journal of Computational and Applied Mathematics, 241 (2013), pp. 103–115.
  • [20] J. Wang and X. Ye, A weak Galerkin finite element method for the stokes equations, Adv. Comput. Math., 42 (2016), pp. 155–174.
  • [21] X. Ye and S. Zhang, A stabilizer-free weak Galerkin finite element method on polytopal meshes, J. Comput. Appl. Math., 371 (2020), pp. 112699, 9.
  • [22] X. Ye and S. Zhang, A stabilizer free weak Galerkin method for the biharmonic equation on polytopal meshes, SIAM J. Numer. Anal., 58 (2020), pp. 2572–2588.
  • [23] R. Zhang and Q. Zhai, A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order, J. Sci. Comput., 64 (2015), pp. 559–585.
  • [24] S. Zhang, A C1C_{1}-P2P_{2} finite element without nodal basis, M2AN Math. Model. Numer. Anal., 42 (2008), pp. 175–192.
  • [25] P. Zhu, S. Xie, and X. Wang, A stabilizer-free C0C^{0} weak Galerkin method for the biharmonic equations, Sci. China Math., 66 (2023), pp. 627–646.