This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

A study on free roots of Borcherds-Kac-Moody Lie superalgebras

Shushma Rani Indian Institute of Science Education and Research, Mohali, India shushmarani95@gmail.com, ph16067@iisermohali.ac.in.  and  G. Arunkumar Indian Institute of Science, Bangalore, India arun.maths123@gmail.com, garunkumar@iisc.ac.in.
Abstract.

Let 𝔤\mathfrak{g} be a Borcherds-Kac-Moody Lie superalgebra (BKM superalgebra in short) with the associated graph GG. Any such 𝔤\mathfrak{g} is constructed from a free Lie superalgebra by introducing three different sets of relations on the generators: (1) Chevalley relations, (2) Serre relations, and (3) Commutation relations coming from the graph GG. By Chevalley relations we get a triangular decomposition 𝔤=𝔫+𝔥𝔫\mathfrak{g}=\mathfrak{n}_{+}\oplus\mathfrak{h}\oplus\mathfrak{n}_{-} and each roots space 𝔤α\mathfrak{g}_{\alpha} is either contained in 𝔫+\mathfrak{n}_{+} or 𝔫\mathfrak{n}_{-}. In particular, each 𝔤α\mathfrak{g}_{\alpha} involves only the relations (2) and (3). In this paper, we are interested in the root spaces of 𝔤\mathfrak{g} which are independent of the Serre relations. We call these roots free roots1 of 𝔤\mathfrak{g}. Since these root spaces involve only commutation relations coming from the graph GG we can study them combinatorially. We use heaps of pieces to study these roots and prove many combinatorial properties. We construct two different bases for these root spaces of 𝔤\mathfrak{g}: One by extending the Lalonde’s Lyndon heap basis of free partially commutative Lie algebras to the case of free partially commutative Lie superalgebras and the other by extending the basis given in [1] for the free root spaces of Borcherds algebras to the case of BKM superalgebras. This is done by studying the combinatorial properties of super Lyndon heaps. We also discuss a few other combinatorial properties of free roots.

Key words and phrases:
Borcherds-Kac-Moody Lie superlagebras, free roots, Lyndon basis, Heaps of pieces, Chromatic polynomials.
2010 Mathematics Subject Classification:
05E15, 17B01, 17B05, 17B22, 17B65, 17B67, 05C15, 05C31
1-These roots spaces are free from Serre relations. Also, these roots spaces can be identified with certain grade spaces of free partially commutative Lie superalgebras [c.f. Lemma 1]. So we call them free roots and the associated root spaces free root spaces of 𝔤\mathfrak{g}.

1. Introduction

In this paper, we are interested in the combinatorial properties of roots of a Borcherds-Kac-Moody Lie superalgebra (BKM superalgebra in short) 𝔤\mathfrak{g}. In particular, we are interested in the roots of 𝔤\mathfrak{g} whose associated root spaces are independent of the Serre relations. We call these roots free roots of 𝔤\mathfrak{g}. BKM superalgebras [40, 41, 36, 29] are a natural generalization of two important classes of Lie algebras namely Borcherds algebras (Generalized Kac-Moody algebras) [3, 22, 23, 1] and the Kac-Moody Lie superalgebras [24, 7, 26, 9, 10]. BKM superalgebras have a wide range of applications in mathematical physics [37, 20, 16, 12, 4]. For example, physicists applied these algebras to describe supersymmetry, chiral supergravity, and Gauge theory [17, 19, 27, 13, 8, 21].

We explain our results in detail: In [1, Theorem 1] the following connection between the root multiplicities of a Borcherds algebra 𝔤\mathfrak{g} and the 𝕜\mathbb{k}-chromatic polynomial π𝕜G(q)\pi_{\mathbb{k}}^{G}(q) [c.f. Definition 7] of the associated quasi Dynkin diagram GG [c.f. Definition 2] is proved.

Theorem 1.

Let 𝔤\mathfrak{g} be a Borcherds algebra with associated Borcherds-Cartan matrix AA and the quasi Dynkin diagram GG. Assume that the matrix AA is indexed by the countable (finite/countably infinite) set II. Let 𝕜=(ki:iI)+[I]:=iIαi\mathbb{k}=(k_{i}:i\in I)\in\mathbb{Z}_{+}[I]:=\oplus_{i\in I}\mathbb{Z}\alpha_{i} be such that ki1k_{i}\leq 1 for iIrei\in I^{re}. Then

π𝐤G(q)=(1)ht(η(𝕜))𝐉LG(𝕜)(1)|𝐉|J𝕁(q mult(β(J))D(J,𝐉)).\pi^{G}_{\mathbf{k}}(q)=(-1)^{\mathrm{ht}(\eta(\mathbb{k}))}\sum_{\mathbf{J}\in L_{G}(\mathbb{k})}(-1)^{|\mathbf{J}|}\prod_{J\in\mathbb{J}}\binom{q\text{ mult}(\beta(J))}{D(J,\mathbf{J})}.

where η(𝕜):=iIkiαi\eta(\mathbb{k}):=\sum_{i\in I}k_{i}\alpha_{i}, ht(η(𝕜)):=iIki\operatorname{ht}(\eta(\mathbb{k})):=\sum_{i\in I}k_{i}, and LG(𝕜)L_{G}(\mathbb{k}) is the bond lattice of weight 𝕜\mathbb{k} of the graph GG [c.f. Definition 8].

Further in [1], using Theorem 1, the following theorem is proved in which a set of the basis for the root space 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} is constructed using the combinatorial model Ci(𝕜,G)C^{i}(\mathbb{k},G) [c.f. Equation (4.3)].

Theorem 2.

Let 𝕜+[I]\mathbb{k}\in\mathbb{Z}_{+}[I] be as in Theorem 1. Then the set {ι(𝕨):𝕨Ci(𝕜,G)}\left\{\iota(\mathbb{w}):\mathbb{w}\in C^{i}(\mathbb{k},G)\right\} is a basis for the root space 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})}. Moreover, if ki=1k_{i}=1, the set {e(𝕨):𝕨𝒳i,wt(𝕨)=η(𝕜)}\left\{e(\mathbb{w}):\mathbb{w}\in\mathcal{X}_{i},\ \rm{wt}(\mathbb{w})=\eta(\mathbb{k})\right\} forms a left-normed basis of 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} [c.f. Section 4]. We call these bases (one basis for each iIi\in I) as LLN bases (Lyndon - Left normed bases.) [c.f. Example 8].

We observe that, by Lemma 1, the root spaces considered in Theorems 1 and 2 are precisely the set of free roots of the Borcherds algebra 𝔤\mathfrak{g}. In particular, the proof shows that the associated root spaces are independent of the Serre relations. In this paper, we construct two different bases for the free root spaces of BKM superalgebras. First, we prove Theorem 2 for the case BKM superalgebras. In particular, This will give us the LLN basis for the free root spaces of BKM superalgebras. Our proof is completely different from [1] even for Borcherds algebras. For example, our proof of Theorem 2 is independent of Theorem 1 (for Borcherds algebras) and its super analog Theorem 3 (for BKM superalgebras). We give direct simple proof. Second, we construct a Lyndon heaps basis for the free root spaces of BKM superalgebras. We remark that this basis is not discussed in [1].

This is done in the following steps. Let 𝔤(A,Ψ)\mathfrak{g}(A,\Psi) be a BKM superalgebra with the associated quasi Dynkin diagram (G,Ψ)(G,\Psi). Assume that 𝕜+[I]\mathbb{k}\in\mathbb{Z}_{+}[I] satisfies ki1k_{i}\leq 1 for iIreΨ0i\in I^{re}\sqcup\Psi_{0}.

(1) First, we introduce the notion of a supergraph (G,Ψ)(G,\Psi) [c.f. Definition 1]. Using this definition, we give the definition of free partially commutative Lie superalgebra 𝒮(G,Ψ)\mathcal{LS}(G,\Psi) associated with a supergraph (G,Ψ)(G,\Psi) (when Ψ\Psi is the empty set 𝒮(G)\mathcal{LS}(G) is the free partially commutative Lie algebra (G)\mathcal{L}(G) associated with the graph GG). Then we explain the Lyndon heaps basis of (G)\mathcal{L}(G) due to Lalonde [31]: The set {Λ(𝔼):𝔼(I,ζ) is a Lyndon heap}\{\Lambda(\mathbb{E}):\mathbb{E}\in\mathcal{H}(I,\zeta)\text{ is a Lyndon heap}\} forms a basis of (G)\mathcal{L}(G) [c.f. Theorem 4] (Basics definitions and results in the theory of heaps of pieces are given in Section 3.3).

Next, we identify a free root space 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} of the BKM superalgebra 𝔤(A,Ψ)\mathfrak{g}(A,\Psi) with the 𝕜\mathbb{k}-grade space 𝒮𝕜(G,Ψ)\mathcal{LS}_{\mathbb{k}}(G,\Psi) of the free partially commutative Lie superalgebra 𝒮(G,Ψ)\mathcal{LS}(G,\Psi) associated with the supergraph (G,Ψ)(G,\Psi). The exact statement is as follows: The root space 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} can be identified with the grade space 𝒮𝕜(G)\mathcal{LS}_{\mathbb{k}}(G) of the free partially commutative Lie superalgebra 𝒮(G,Ψ)\mathcal{LS}(G,\Psi). In particular, multη(𝕜)=dim𝒮𝕜(G)\operatorname{mult}\eta(\mathbb{k})=\dim\mathcal{LS}_{\mathbb{k}}(G). This is our first main result. This observation plays a crucial role in giving an alternate proof of Theorem 2 when 𝔤\mathfrak{g} is a Borcherds algebra [c.f. Section 4].

(2) Step (1) shows that to construct a basis for a free root space 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} of the BKM superalgebra 𝔤(A,Ψ)\mathfrak{g}(A,\Psi) it is enough to extend the Lyndon heaps basis of the free partially commutative Lie algebra (G)\mathcal{L}(G) to the case of free partially commutative Lie superalgebra 𝒮(G,Ψ)\mathcal{LS}(G,\Psi). We introduce the notion of super Lyndon heaps and construct a (super) Lyndon heaps basis for 𝒮(G,Ψ)\mathcal{LS}(G,\Psi) following the proof idea of Lalonde. The precise statement is as follows [c.f. Theorem 5]: The set {Λ(𝔼):𝔼(I,ζ) is super Lyndon heap}\{\Lambda(\mathbb{E}):\mathbb{E}\in\mathcal{H}(I,\zeta)\text{ is super Lyndon heap}\} forms a basis of 𝒮(G,Ψ)\mathcal{LS}(G,\Psi). This is our second main result. This gives us Lyndon heaps basis for the free root spaces of BKM superalgebras.

(3) Next, we extend Theorem 2 to the case of BKM superalgebras, namely we construct LLN basis for the free root spaces of BKM superalgebras. The main step is the identification of the combinatorial model Ci(𝕜,G)C^{i}(\mathbb{k},G) given in Theorem 2 with the (super) Lyndon heaps of weight 𝕜\mathbb{k} over the graph GG. This gives a different proof (heap theoretic proof) to Theorem 2 when 𝔤\mathfrak{g} is a Borcherds algebra. We are using neither the denominator identity nor Theorem 1 in our proof. We use only the identification of the spaces 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} and 𝒮𝕜(G)\mathcal{LS}_{\mathbb{k}}(G), and the super Lyndon heaps basis for free partially commutative Lie superalgebra 𝒮(G,Ψ)\mathcal{LS}(G,\Psi) [c.f. Theorem 5]. In this sense, our proof is simpler and transparent. This is our third main result. We remark that the LLN basis and the Lyndon heaps basis of a free roots space 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} are different in general. The cases when the elements of these two bases are the same are discussed in Section 4.9.

(4) Next, along with various other combinatorial results on the free roots, we prove the following super analogue of Theorem 1 and its corollary. This is our final main result.

Theorem 3.

Let GG be the quasi Dynkin diagram of a BKM superalgebra 𝔤\mathfrak{g}. Assume that 𝕜=(ki:iI)+[I]\mathbb{k}=(k_{i}:i\in I)\in\mathbb{Z}_{+}[I] satisfies the assumptions of Theorem 1 and in addition ki1k_{i}\leq 1 for iΨ0i\in\Psi_{0}. Then

π𝐤G(q)=(1)ht(η(𝕜))𝐉LG(𝕜)(1)|𝐉|+|𝕁1|J𝕁0(q mult(β(J))D(J,𝐉))J𝕁1(q mult(β(J))D(J,𝐉)).\pi^{G}_{\mathbf{k}}(q)=(-1)^{\mathrm{ht}(\eta(\mathbb{k}))}\sum_{\mathbf{J}\in L_{G}(\mathbb{k})}(-1)^{|\mathbf{J}|+|\mathbb{J}_{1}|}\prod_{J\in\mathbb{J}_{0}}\binom{q\text{ mult}(\beta(J))}{D(J,\mathbf{J})}\prod_{J\in\mathbb{J}_{1}}\binom{-q\text{ mult}(\beta(J))}{D(J,\mathbf{J})}.

where LG(𝕜)L_{G}(\mathbb{k}) is the bond lattice of weight 𝕜\mathbb{k} of the graph GG.

We have the following corollary to the above theorem which gives us a recurrence formula for the root multiplicities of free roots of 𝔤\mathfrak{g}.

Corollary 1.

We have

mult(η(𝕜))=|𝕜μ()|π𝕜/G(q)[q]|\operatorname{mult}(\eta(\mathbb{k}))=\sum\limits_{\ell|\mathbb{k}}\frac{\mu(\ell)}{\ell}\ |\pi^{G}_{\mathbb{k}/\ell}(q)[q]|

if η(𝕜)=iIkiαiΔ0+\eta(\mathbb{k})=\sum_{i\in I}k_{i}\alpha_{i}\in\Delta_{0}^{+} and

mult(η(𝕜))=|𝕜(1)l+1μ()|π𝕜/G(q)[q]|\operatorname{mult}(\eta(\mathbb{k}))=\sum\limits_{\ell|\mathbb{k}}\frac{(-1)^{l+1}\mu(\ell)}{\ell}\ |\pi^{G}_{\mathbb{k}/\ell}(q)[q]|

if η(𝕜)Δ1+\eta(\mathbb{k})\in\Delta_{1}^{+} where |π𝕜G(q)[q]||\pi^{G}_{\mathbb{k}}(q)[q]| denotes the absolute value of the coefficient of qq in π𝕜G(q)\pi^{G}_{\mathbb{k}}(q) and μ\mu is the Möbius function. See Example 11 for an working example of this formula.

If kik_{i}’s are relatively prime (In particular if ki=1k_{i}=1 for some iIi\in I) then the above formula becomes much simpler:

mult(η(𝕜))=|π𝕜G(q)[q]|\operatorname{mult}(\eta(\mathbb{k}))=|\pi^{G}_{\mathbb{k}}(q)[q]|

for any η(𝕜)Δ+\eta(\mathbb{k})\in\Delta^{+}.

We also discuss why the expression given in Theorem 3 exists only for free roots explaining the main assumptions made in [49] and [1]. Various examples explaining our results are provided throughout the paper.

The paper is organized as follows. In Section 2, the definition and the basic results on the Borcherds Kac Moody Lie superalgebra are given. In Section 3, we construct the Lyndon heaps basis of free root spaces of BKM superalgebras. In Section 4, we construct the LLN basis of free root spaces of BKM superalgebras. In Section 5, we study the further combinatorial properties of free roots of BKM superalgebras.

Acknowledgments. The authors thank Tanusree Khandai for many helpful discussions on Lie superalgebras and also for her constant support. The first author acknowledges the CSIR research grant: 09/947(0082)/2017-EMR-I. The second author thanks Apoorva Khare for his constant support and also acknowledges the National Board for Higher Mathematics postdoctoral research grant: 0204/7/2019/R&\&D-II/6831.

2. Structure theory of BKM superalgebras

In this section, we recall the basic properties and the denominator identity of BKM superalgebras from [50]. The theory of BKM superalgebras can also be seen in [40]. Our base field will be complex numbers throughout the paper.

2.1. Generators and Relations

Let I={1,2,,n}I=\{1,2,\dots,n\} or the set of natural numbers. Fix a subset Ψ\Psi of II to describe the odd simple roots. A complex matrix A=(aij)i,jIA=(a_{ij})_{i,j\in I} together with a choice of Ψ\Psi is said to be a Borcherds-Kac-Moody supermatrix (BKM supermatrix in short) if the following conditions are satisfied: For i,jIi,j\in I we have

  1. (1)

    aii=2a_{ii}=2 or aii0a_{ii}\leq 0.

  2. (2)

    aij0a_{ij}\leq 0 if iji\neq j.

  3. (3)

    aij=0a_{ij}=0 if and only if aji=0a_{ji}=0.

  4. (4)

    aija_{ij}\in\mathbb{Z} if aii=2a_{ii}=2.

  5. (5)

    αij2\alpha_{ij}\in 2\mathbb{Z} if aii=2a_{ii}=2 and iΨi\in\Psi.

  6. (6)

    AA is symmetrizable, i.e., DADA is symmetric for some diagonal matrix D=diag(d1,,dn)D=\mathrm{diag}(d_{1},\ldots,d_{n}) with positive entries.

Denote by Ire={iI:aii=2}I^{\mathrm{re}}=\{i\in I:a_{ii}=2\}, Iim=I\IreI^{\mathrm{im}}=I\backslash I^{\mathrm{re}}, Ψre=ΨIre\Psi^{re}=\Psi\cap I^{re}, and Ψ0={iΨ:aii=0}\Psi_{0}=\{i\in\Psi:a_{ii}=0\}. The Borcherds-Kac-Moody Lie superalgebra (BKM superalgebra in short) associated with a BKM supermatrix (A,Ψ)(A,\Psi) is the Lie superalgebra 𝔤(A,Ψ)\mathfrak{g}(A,\Psi) (simply 𝔤\mathfrak{g} when the presence of AA and Ψ\Psi are understood) generated by ei,fi,hi,iIe_{i},f_{i},h_{i},i\in I with the following defining relations [50, Equations (2.10)-(2.13), (2.24)-(2.26)]:

  1. (1)

    [hi,hj]=0[h_{i},h_{j}]=0 for i,jIi,j\in I,

  2. (2)

    [hi,ej]=aijej[h_{i},e_{j}]=a_{ij}e_{j}, [hi,fj]=aijfj[h_{i},f_{j}]=-a_{ij}f_{j} for i,jIi,j\in I,

  3. (3)

    [ei,fj]=δijhi[e_{i},f_{j}]=\delta_{ij}h_{i} for i,jIi,j\in I,

  4. (4)

    deghi=0,iI\deg h_{i}=0,i\in I,

  5. (5)

    degei=0=degfi\deg e_{i}=0=\deg f_{i} if iΨi\notin\Psi,

  6. (6)

    degei=1=degfi\deg e_{i}=1=\deg f_{i} if iΨi\in\Psi,

  7. (7)

    (ad ei)1aijej=0=(ad fi)1aijfj(\text{ad }e_{i})^{1-a_{ij}}e_{j}=0=(\text{ad }f_{i})^{1-a_{ij}}f_{j} if iIrei\in I^{re} and iji\neq j,

  8. (8)

    (ad ei)1aij2ej=0=(ad fi)1aij2fj(\text{ad }e_{i})^{1-\frac{a_{ij}}{2}}e_{j}=0=(\text{ad }f_{i})^{1-\frac{a_{ij}}{2}}f_{j} if iΨrei\in\Psi^{re} and iji\neq j,

  9. (9)

    (ad ei)1aij2ej=0=(ad fi)1aij2fj(\text{ad }e_{i})^{1-\frac{a_{ij}}{2}}e_{j}=0=(\text{ad }f_{i})^{1-\frac{a_{ij}}{2}}f_{j} if iΨ0i\in\Psi_{0} and i=ji=j,

  10. (10)

    [ei,ej]=0=[fi,fj][e_{i},e_{j}]=0=[f_{i},f_{j}] if aij=0a_{ij}=0.

The relations (7), (8) and (9) are called the Serre relations of 𝔤\mathfrak{g}. We define Ij={iI:degei=j}I_{j}=\{i\in I:\deg e_{i}=j\} for j=0,1j=0,1 and theses sets will be identified with the set of even and odd simple roots of 𝔤\mathfrak{g} respectively.

Remark 1.

If Ψ\Psi is the empty set then (A,Ψ)(A,\Psi) becomes a Borcherds Cartan matrix and the resulting Lie algebra 𝔤(A)\mathfrak{g}(A) is a Borcherds algebra. Assume that aii0a_{ii}\neq 0. If iI\Ψi\in I\backslash\Psi, then the Lie subsuperalgebra Si=fihieiS_{i}=\mathbb{C}f_{i}\oplus\mathbb{C}h_{i}\oplus\mathbb{C}e_{i} of the BKM superalgebra 𝔤\mathfrak{g} is isomorphic to 𝔰𝔩2\mathfrak{sl}_{2} and if iΨi\in\Psi, then the Lie sub-superalgebra Si=[fi,fi]fihiei[ei,ei]S_{i}=\mathbb{C}[f_{i},f_{i}]\oplus\mathbb{C}f_{i}\oplus\mathbb{C}h_{i}\oplus\mathbb{C}e_{i}\oplus\mathbb{C}[e_{i},e_{i}] is isomorphic to 𝔰𝔩(0,1)\mathfrak{sl}(0,1). If aii=0a_{ii}=0, the Lie sub-superalgebra Si=fihieiS_{i}=\mathbb{C}f_{i}\oplus\mathbb{C}h_{i}\oplus\mathbb{C}e_{i} is isomorphic to the three dimensional Heisenberg Lie algebra (resp. superalgebra) if iI\Ψi\in I\backslash\Psi (resp. if iΨi\in\Psi). The conditions (5) and (6) defines a 2\mathbb{Z}_{2} gradation on 𝔤\mathfrak{g} which makes it a Lie superalgebra. The presence of 𝔰𝔩(0,1)\mathfrak{sl}(0,1) explains the appearances of even integers in the definition of BKM supermatrix. This fact is also reflected in condition (8) of the defining relations of 𝔤\mathfrak{g}. This is one of the main structural difference between Borcherds algebras and the BKM superalgebras.

2.2. Quasi Dynkin diagram

First, we define the notion of a supergraph.

Definition 1.

Let GG be a finite/countably infinite simple graph with vertex set II. Let ΨI\Psi\subseteq I be a subset of the vertex set. Then the pair (G,Ψ)(G,\Psi) is said to be a supergraph and the vertices in Ψ\Psi (resp. I\ΨI\backslash\Psi) are said to be odd (resp. even) vertices of GG. Let AA be the classical adjacency matrix of the graph GG. Then the pair (A,Ψ)(A,\Psi) is said to be the adjacency matrix of the supergraph (G,Ψ)(G,\Psi).

Definition 2.

The quasi Dynkin diagram of a BKM superalgebra is defined as follows [50, Section 2.1]. Let (A=(aij),Ψ)(A=(a_{ij}),\Psi) be a BKM supermatrix and let 𝔤\mathfrak{g} be the associated BKM superalgebra. The quasi Dynkin diagram of 𝔤\mathfrak{g} is the supergraph (G,Ψ)(G,\Psi) with vertex set II and two vertices i,jIi,j\in I are connected by an edge if and only if aij0a_{ij}\neq 0. We often refer to (G,Ψ)(G,\Psi) simply as the graph of 𝔤\mathfrak{g}. An example of a quasi Dynkin diagram of a BKM superalgebra 𝔤\mathfrak{g} is given in Example 2.

Remark 2.

We observe that the quasi Dynkin diagram of 𝔤\mathfrak{g} is the underlying simple graph of the classical Dynkin diagram of 𝔤\mathfrak{g} [50, Definition 2.4 above]. In other words, the quasi Dynkin diagram can be obtained from the Dynkin diagram of 𝔤\mathfrak{g} by replacing all the multi edges with a single edge. In Section 5, we find a connection between root multiplicities of a BKM superalgebra 𝔤(A)\mathfrak{g}(A) and the chromatic polynomial of the associated supergraph (G,Ψ)(G,\Psi). We will see that the chromatic polynomial of GG depends on whether two vertices of GG are adjacent or not but not on the actual number of edges connecting them. Therefore, we work with quasi Dynkin diagrams instead of the Dynkin diagrams.

For any subset SΠS\subseteq\Pi, we denote by |S||S| the number of elements in SS. The subgraph induced by the subset SS is denoted by GSG_{S}. We say a subset SΠS\subseteq\Pi is connected if the corresponding subgraph GSG_{S} is connected. Also, we say SS is independent if there is no edge between any two elements of SS, i.e., GSG_{S} is totally disconnected.

2.3. Root system and the Weyl group

Let Δ\Delta be the root system of a BKM superalgebra 𝔤\mathfrak{g} [50, Section 2.3]. Let Π\Pi the set of simple roots of 𝔤\mathfrak{g}. Define Q:=αΠα,Q+:=αΠ+α.Q:=\bigoplus_{\alpha\in\Pi}\mathbb{Z}\alpha,\ \ Q_{+}:=\sum_{\alpha\in\Pi}\mathbb{Z}_{+}\alpha.

Definition 3.

An element α=iIkiαiQ+\alpha=\sum_{i\in I}k_{i}\alpha_{i}\in Q_{+} (or its weight 𝕜=(ki:iI)+[I]\mathbb{k}=(k_{i}:i\in I)\in\mathbb{Z}_{+}[I]) is said to be free if ki1k_{i}\leq 1 for iIreΨ0i\in I^{re}\sqcup\Psi_{0}.

Remark 3.

In Lemma 1, we will show that any root space of a BKM superalgebra that corresponds to a free root is independent of (or free from) the Serre relations.

The set of positive roots is denoted by Δ+:=ΔQ+\Delta_{+}:=\Delta\cap Q_{+}. All the root spaces of 𝔤\mathfrak{g} are finite dimensional and for any α𝔥\alpha\in\mathfrak{h}^{*} either 𝔤α𝔤0\mathfrak{g}_{\alpha}\subset\mathfrak{g}_{0} or 𝔤α𝔤1\mathfrak{g}_{\alpha}\subset\mathfrak{g}_{1}, i.e, every root is either even or odd. Set Δ+0\Delta_{+}^{0} (resp. Δ+1\Delta_{+}^{1}) to be the set of positive even (resp. odd) roots. We have a triangular decomposition 𝔤𝔫𝔥𝔫+,\mathfrak{g}\cong\mathfrak{n}^{-}\oplus\mathfrak{h}\oplus\mathfrak{n}^{+}, where 𝔫±=α±Δ+𝔤α.\mathfrak{n}^{\pm}=\bigoplus_{\alpha\in\pm\Delta_{+}}\mathfrak{g}_{\alpha}. Given γ=iIkiαiQ+\gamma=\sum_{i\in I}k_{i}\alpha_{i}\in Q_{+}, we set ht(γ):=iIki.\text{ht}(\gamma):=\sum_{i\in I}k_{i}. The real vector space spanned by Δ\Delta is denoted by R=QR=\mathbb{R}\otimes_{\mathbb{Z}}Q. For αΠre\alpha\in\Pi^{\mathrm{re}}, define the linear isomorphism 𝕤α\mathbb{s}_{\alpha} of RR by 𝕤α(λ)=λ2(λ,α)(α,α)α,λR.\mathbb{s}_{\alpha}(\lambda)=\lambda-2\frac{(\lambda,\alpha)}{(\alpha,\alpha)}\alpha,\ \ \lambda\in R. Note that the simple reflections are defined for odd real simple roots also. The Weyl group WW of 𝔤\mathfrak{g} is the subgroup of GL(R)\mathrm{GL}(R) generated by the simple reflections 𝕤α\mathbb{s}_{\alpha}, αΠre\alpha\in\Pi^{\mathrm{re}}. Note that the above bilinear form is WW–invariant and WW is a Coxeter group with canonical generators 𝕤α,αΠre\mathbb{s}_{\alpha},\alpha\in\Pi^{\mathrm{re}}. Define the length of wWw\in W by (w):=min{k:w=𝕤αi1𝕤αik}\ell(w):=\mathrm{min}\{k\in\mathbb{N}:w=\mathbb{s}_{\alpha_{i_{1}}}\cdots\mathbb{s}_{\alpha_{i_{k}}}\} and any expression w=𝕤αi1𝕤αikw=\mathbb{s}_{\alpha_{i_{1}}}\cdots\mathbb{s}_{\alpha_{i_{k}}} with k=(w)k=\ell(w) is called a reduced expression. The set of real roots is denoted by Δre=W(Π~re)\Delta^{\mathrm{re}}=W(\widetilde{\Pi}^{\mathrm{re}}) and the set of imaginary roots is denoted by Δim=Δ\Δre\Delta^{\mathrm{im}}=\Delta\backslash\Delta^{\mathrm{re}}. Equivalently, a root α\alpha is real if and only if (α,α)>0(\alpha,\alpha)>0 and else imaginary. Let ρ\rho be any element of 𝔥\mathfrak{h}^{*} satisfying 2(ρ,α)=(α,α)2(\rho,\alpha)=(\alpha,\alpha) for all αΠ\alpha\in\Pi.

2.4. Denominator identity of BKM superalgebras

Let Ω\Omega be the set of all γQ+\gamma\in Q_{+} such that

  1. (1)

    γ=j=1rαij+k=1slikβik\gamma=\sum_{j=1}^{r}\alpha_{i_{j}}+\sum_{k=1}^{s}l_{i_{k}}\beta_{i_{k}} where the αij\alpha_{i_{j}} (resp. βik\beta_{i_{k}}) are distinct even (resp. odd) imaginary simple roots,

  2. (2)

    (αij,αik)=(βij,βik)=0(\alpha_{i_{j}},\alpha_{i_{k}})=(\beta_{i_{j}},\beta_{i_{k}})=0 for jkj\neq k; (αij,βik)=0(\alpha_{i_{j}},\beta_{i_{k}})=0 for all j,kj,k;

  3. (3)

    if lik2l_{i_{k}}\geq 2, then (βik,βik)=0(\beta_{i_{k}},\beta_{i_{k}})=0.

The following denominator identity of BKM superalgebras is proved in [50, Section 2.6]:

U:=wWγΩϵ(w)ϵ(γ)ew(ργ)ρ\displaystyle U:=\sum_{w\in W}\sum_{\gamma\in\Omega}\epsilon(w)\epsilon(\gamma)e^{w(\rho-\gamma)-\rho} =\displaystyle= αΔ+0(1eα)mult(α)αΔ+1(1+eα)mult(α)\displaystyle\frac{\prod_{\alpha\in\Delta_{+}^{0}}(1-e^{-\alpha})^{\operatorname{mult}(\alpha)}}{\prod_{\alpha\in\Delta_{+}^{1}}(1+e^{-\alpha})^{\operatorname{mult}(\alpha)}} (2.1)

where mult(α)=dim𝔤α,ϵ(w)=(1)l(w)\operatorname{mult}(\alpha)=\dim\mathfrak{g}_{\alpha},\epsilon(w)=(-1)^{l(w)} and ϵ(γ)=(1)htγ\epsilon(\gamma)=(-1)^{\operatorname{ht}\gamma}.

Remark 4.

If Ψ\Psi is the empty set then Equation (2.1) reduces to the denominator identity of the Borcherds algebras. Further, if IimI^{im} is also empty then Equation (2.1) reduces to the denominator identity of the Kac-Moody algebras.

3. Main result I: Lyndon basis of BKM superalgebras

In this section, we identify the free root spaces of a BKM superalgebra with the grade spaces of free partially commutative Lie superalgebra. Using this identification, we construct the Lyndon basis for the free root spaces of a BKM superalgebra 𝔤\mathfrak{g}. We start with the definition of free partially commutative Lie superalgebras.

3.1. Free partially commutative Lie superalgebra 𝒮(G,Ψ)\mathcal{LS}(G,\Psi)

Given a supergraph (G,Ψ)(G,\Psi), the associated free partially commutative Lie superalgebra 𝒮(G,Ψ)\mathcal{LS}(G,\Psi) is defined as follows. First, we define the free Lie superalgebra on a 2\mathbb{Z}_{2}-graded set.

Definition 4.

Let I=I0I1I=I_{0}\sqcup I_{1} be a non-empty superset (2\mathbb{Z}_{2}-graded set). Let II^{\ast} be the free monoid generated by II. A word 𝕨I\mathbb{w}\in I^{\ast} is called even if the number of odd alphabets (i.e. the elements of I1I_{1}) in 𝕨\mathbb{w} is even otherwise it is called odd. This defines a 2\mathbb{Z}_{2}-gradation on II^{*}. Let VV be the free super vector space on the set II and let T(V)T(V) be the tensor algebra on VV. The algebra T(V)T(V) has an induced 2\mathbb{Z}_{2}-gradation makes it an associative superalgebra for which II^{*} is a basis. Since T(V)T(V) is associative, it has a natural Lie superalgebra structure. Given this, the free Lie superalgebra on the superset I=I0I1I=I_{0}\sqcup I_{1} is defined to be the smallest Lie subsuperalgebra of T(V)T(V) containing II. We denote the free Lie superalgebra on the superset II by 𝒮(I)\mathcal{FLS}(I).

Remark 5.

If I1I_{1} is the empty set then 𝒮(I)\mathcal{FLS}(I) is the free Lie algebra on set I0I_{0}. Whenever we talk about a free Lie superalgebra on a set I={1,,n}I=\{1,\dots,n\} or {1,2,}\{1,2,\dots\}, we consider the elements of II as {e1,,en}\{e_{1},\dots,e_{n}\} and {e1,e2,}\{e_{1},e_{2},\dots\} instead II. This way, we can relate the elements of 𝒮(I)\mathcal{FLS}(I) with the elements of a free root spaces of a BKM superalgebra 𝔤\mathfrak{g}.

Definition 5.

Let (G,Ψ)(G,\Psi) be a supergraph with the vertex set II and the edge set EE. Let 𝒮(I)\mathcal{FLS}(I) be the free Lie superalgebra on the set I=I0I1I=I_{0}\sqcup I_{1} where we take I1I_{1} to be Ψ\Psi. Let JJ be the ideal in 𝒮(I)\mathcal{FLS}(I) generated by the relations {[ei,ej]:{i,j}E}\{[e_{i},e_{j}]:\{i,j\}\notin E\} [c.f. Remark 5]. The quotient algebra 𝒮(I)J\frac{\mathcal{FLS}(I)}{J}, denoted by 𝒮(G,Ψ)\mathcal{LS}(G,\Psi), is the free partially commutative Lie superalgebra associated with the supergraph (G,Ψ)(G,\Psi). When Ψ\Psi is the empty set, 𝒮(G,Ψ)\mathcal{LS}(G,\Psi) is the free partially commutative Lie algebra associated with the graph GG and is denoted by (G)\mathcal{L}(G). It is well-known that 𝒮(I)\mathcal{FLS}(I) and hence 𝒮(G,Ψ)\mathcal{LS}(G,\Psi) is graded by +[I]\mathbb{Z}_{+}[I].

3.2. Free partially commutative super monoid

Let (G,Ψ)(G,\Psi) be a supergraph with a finite/countably infinite vertex set I=I0I1I=I_{0}\sqcup I_{1} (where I1=ΨI_{1}=\Psi). We assume that II is totally ordered. Let II^{*} be the free monoid generated by II. We note that II^{*} is totally ordered by the lexicographical order. The free partially commutative super monoid associated with a supergraph (G,Ψ)(G,\Psi) is denoted by M(I,G,Ψ):=I/M(I,G,\Psi):=I^{*}/\sim, where \sim is generated by the relations abba, if (a,b)E(G).ab\sim ba,\text{ if }(a,b)\notin E(G). When Ψ\Psi is empty, M(I,G,Ψ)M(I,G,\Psi) is called the free partially commutative monoid associated with the graph GG and denoted simply by M(I,G)M(I,G). We observe that M(I,G,Ψ)M(I,G,\Psi) has a natural 2\mathbb{Z}_{2}-gradation induced from the 2\mathbb{Z}_{2}-gradation of II^{*}. We associate with each element [a]M(I,G,Ψ)[a]\in M(I,G,\Psi) a unique element a~I\tilde{a}\in I^{*} which is the maximal element in [a][a] with respect to the lexicographical order. We call this element the standard word of the class [a][a] and denoted by st([a])\operatorname{st}([a]). A total order on M(I,G,Ψ)M(I,G,\Psi) is then given by

[a]<[b]:st[a]<st[b].[a]<[b]:\Leftrightarrow\operatorname{st}{[a]}<\operatorname{st}{[b]}. (3.1)

Next, we explain the Lyndon heaps basis of free partially commutative Lie algebras. For this reason, in the next subsection, we give the essential definitions from the theory of heaps of pieces to define pyramids and Lyndon heaps from [32].

3.3. Heaps monoid, Pyramids, and Lyndon heaps

Heaps of pieces were introduced by Xavier Viennot in [44]. He proved many combinatorial results on heaps of pieces and gave applications of heaps of pieces to a wide range of areas: directed animals, polyominoes, Motzkin paths, and orthogonal polynomials, Rogers-Ramanujan identities, fully commutative elements in Coxeter groups, Bessel functions, Lorentzian quantum gravity and may many more applications in mathematical physics. In [2, 45, 34], special types of heaps namely pyramids are the important tools in proving results. Heaps of pieces have also applications in the representation theory of complex simple Lie algebras [14]. In this book, the combinatorial aspects of minuscule representations are studied using heaps of pieces. In [2], the connection between heaps of piece , chromatic polynomials and the free partially commutative Lie algebras is discussed along with many other combinatorial properties of heaps of pieces.

Let (G,Ψ)(G,\Psi) be a supergraph with a (finite/countably infinite) totally ordered vertex set I={α1,,αk}I=\{\alpha_{1},\dots,\alpha_{k}\} or I={α1,α2,}I=\{\alpha_{1},\alpha_{2},\dots\}. Let ζ\zeta be the concurrency relation complement to the commuting relation \sim on II^{*} [c.f. Section 3.2]. A pre-heap EE over (I,ζ)(I,\zeta) is a finite subset of I×{0,1,2,}I\times\{0,1,2,\dots\} satisfying, if (α1,m),(α2,n)E(\alpha_{1},m),(\alpha_{2},n)\in E with α1ζα2\alpha_{1}\,\zeta\,\alpha_{2}, then mnm\neq n. Each element (α,m)(\alpha,m) of EE is called a basic piece. If (α,m)E(\alpha,m)\in E, we write π(α,m)=α\pi(\alpha,m)=\alpha (the position of the piece (α,m)(\alpha,m)) and h(α,m)=mh(\alpha,m)=m (the level of the piece (α,m)(\alpha,m)). A basic piece will be simply denoted by α\alpha when we don’t need to emphasize the level. The set π(E)\pi(E) is defined to be the set of all positions occupied by the pieces of EE. A pre-heap EE defines a partial order E\leq_{E} by taking the transitive closure of the relation : (α1,m)E(α2,n)(\alpha_{1},m)\leq_{E}(\alpha_{2},n) if α1ζα2\alpha_{1}\zeta\alpha_{2} and m<nm<n. We say that two heaps EE and FF are isomorphic if there exists a position preserving order isomorphism ϕ\phi between (E,E)(E,\leq_{E}) and (F,F)(F,\leq_{F}). A heap EE over (I,ζ)(I,\zeta) is a pre-heap over (I,ζ)(I,\zeta) such that: if (α,m)E(\alpha,m)\in E with m>0m>0 then there exists (β,m1)E(\beta,m-1)\in E such that αζβ\alpha\zeta\beta. Every isomorphism class of pre-heaps contains exactly one heap and this is the unique pre-heap EE in the class for which αEh(α)\sum_{\alpha\in E}h(\alpha) is minimal.

Remark 6.

The graph GG can have a countably infinite number of vertices, but each heap EE over the graph GG has only a finite number of pieces by definition. This fact leads to a natural +[I]\mathbb{Z}_{+}[I]-gradation on the set of all heaps over the graph GG.

Let (I,ζ)\mathcal{H}(I,\zeta) be the set of all heaps over (I,ζ)(I,\zeta). This set can be made into a monoid with a product called the superposition of heaps. To get superposition EFE\circ F of FF over EE, let the heap FF ‘fall’ over EE. Let 𝕜(I,ζ)\mathcal{H}_{\mathbb{k}}(I,\zeta) be the set of all heaps of weight 𝕜\mathbb{k} for 𝕜+[I]\mathbb{k}\in\mathbb{Z}_{+}[I] where the weight counts the number of pieces in each of the positions. This gives a +[I]\mathbb{Z}_{+}[I]-gradation on (I,ζ)\mathcal{H}(I,\zeta). We define a map ψ:I(I,ζ)\psi:I^{*}\rightarrow\mathcal{H}(I,\zeta) as follows: For a word p1p2pkIp_{1}\,p_{2}\,\cdots\,p_{k}\in I^{*} define ψ(p1p2pk)=p1p2pk\psi(p_{1}\,p_{2}\,\cdots\,p_{k})=p_{1}\,\circ\,p_{2}\,\circ\cdots\circ\,p_{k}. Note that ψ1(E)\psi^{-1}(E) is the set of all linear orders compatible with E\leq_{E}. It is clear that ψ\psi extends to weight and order-preserving isomorphism of the monoids M(I,G,Ψ)M(I,G,\Psi) and (I,ζ)\mathcal{H}(I,\zeta). This defines a total order on (I,ζ)\mathcal{H}(I,\zeta). It also defines a 2\mathbb{Z}_{2}-grading (I,ζ)=0(I,ζ)1(I,ζ)\mathcal{H}(I,\zeta)=\mathcal{H}_{0}(I,\zeta)\oplus\mathcal{H}_{1}(I,\zeta). The standard word of a heap EE is defined to be st(E)=st(ψ1(E))\operatorname{st}(E)=\operatorname{st}(\psi^{-1}(E)) [c.f. Equation (3.1)]. For a heap EE, minE\min E is the heap composed of minimal pieces of EE with respect to E\leq_{E} and maxE\max E is defined similarly. We write |E||E| for the number of pieces in EE and |E|α|E|_{\alpha} for the number of pieces of EE in the position α\alpha. A heap EE such that min(E)={α}\min(E)=\{\alpha\} is said to be a pyramid with the basis α\alpha. The set of all pyramids in (I,ζ)\mathcal{H}(I,\zeta) is denoted by 𝒫(I,ζ)\mathcal{P}(I,\zeta) and the set of all pyramids with basis αi\alpha_{i} is denoted by 𝒫i(I,ζ)\mathcal{P}^{i}(I,\zeta).

Let EE be a heap, we say that EE is periodic if there exists a heap F0F\neq 0 (0 - empty heap) and an integer k2k\geq 2 such that E=FkE=F^{k}. Similarly, EE is primitive if E=UV=VUE=U\circ V=V\circ U then either U=0U=0 or V=0.V=0. Pyramids in which the minimum piece has the lowest position (with respect to the total order on II) are known as admissible pyramids. A pyramid EE with the basis pp such that |E|p=1|E|_{p}=1 is said to an elementary pyramid. An admissible pyramid that is also elementary is known as a super-letter. The set of all super-letters in (I,ζ)\mathcal{H}(I,\zeta) is denoted by 𝒜(I,ζ)\mathcal{A}(I,\zeta). A heap EE in (I,ζ)\mathcal{H}(I,\zeta) is said to be multilinear if every basic piece occurs exactly once in EE.

Let EE be a heap. If EE = UVU\circ V for some heaps UU and V,V, we say that VUV\circ U is a transpose of EE. The transitive closure of transposition is an equivalence relation on (I,ζ)\mathcal{H}(I,\zeta), which we call the conjugacy relation of heaps and is denoted by c\sim_{c}. A non-empty heap EE is said to be Lyndon if EE is primitive and minimal in its conjugacy class. We write (I,ζ)\mathcal{LH}(I,\zeta) for the set of all Lyndon heaps over the super graph (G,Ψ)(G,\Psi).

Remark 7.

According to Viennot, a pyramid is a heap with a unique maximal piece [44, Definition 5.9]. In this paper, we follow Lalonde’s convention on pyramids [32], i.e., A pyramid is a heap with a unique minimal piece.

Given the definition of Lyndon heaps, in the next subsection, we explain the Lyndon heaps basis of free partially commutative Lie algebras.

3.4. Lyndon heaps basis of free partially commutative Lie algebras

In this subsection, we recall the Lyndon heaps basis of Lalonde from [31]. If EE is a Lyndon heap then the standard factorization (E)\sum(E) of EE is given by (E)=(F,N)\sum(E)=(F,N), where

  1. (1)

    F0(empty heap)F\neq 0\,\,\,(\text{empty heap})

  2. (2)

    E=FNE=F\circ N

  3. (3)

    NN is Lyndon

  4. (4)

    NN is minimal in the total order on (I,ζ)\mathcal{H}(I,\zeta).

To each Lyndon heap E(I,ζ)E\in\mathcal{H}(I,\zeta) we associate a Lie monomial Λ(E)\Lambda(E) in (G)\mathcal{L}(G) as follows. If EIE\in I, then Λ(E)=E\Lambda(E)=E and otherwise Λ(E)=[Λ(F1),Λ(F2)]\Lambda(E)=[\Lambda(F_{1}),\Lambda(F_{2})], where Σ(E)=(F1,F2)\Sigma(E)=(F_{1},F_{2}) is the standard factorization of EE. Given these notions, we have the following theorem which gives the Lyndon basis of the free partially commutative Lie algebra (G)\mathcal{L}(G).

Theorem 4.

[31] The set {Λ(E):E(I,ζ) is a Lyndon heap}\{\Lambda(E):E\in\mathcal{H}(I,\zeta)\text{ is a Lyndon heap}\} forms a basis of (G)\mathcal{L}(G).

3.5. The identification of the spaces 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} and 𝒮𝕜(G)\mathcal{LS}_{\mathbb{k}}(G)

Let 𝔤\mathfrak{g} be a BKM superalgebra with the associated supergraph (G,Ψ)(G,\Psi). Let 𝒮(G,Ψ)\mathcal{LS}(G,\Psi) be the free partially commutative Lie superalgebra associated with the supergraph (G,Ψ)(G,\Psi). Let II be the vertex set of GG. Fix 𝕜+[I]\mathbb{k}\in\mathbb{Z}_{+}[I] such that ki1k_{i}\leq 1 for iIreΨ0i\in I^{re}\sqcup\Psi_{0}. In this subsection, we claim that there is a natural vector space isomorphism between the root space 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} of 𝔤\mathfrak{g} and the grade space 𝒮𝕜(G,Ψ)\mathcal{LS}_{\mathbb{k}}(G,\Psi) of 𝒮(G,Ψ)\mathcal{LS}(G,\Psi). The precise statement is the following.

Lemma 1.

Fix 𝕜+[I]\mathbb{k}\in\mathbb{Z}_{+}[I] such that ki1k_{i}\leq 1 for iIreΨ0i\in I^{re}\sqcup\Psi_{0}. Then

  1. (1)

    The root space 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} can be identified with the grade space 𝒮𝕜(G)\mathcal{LS}_{\mathbb{k}}(G) of the free partially commutative Lie superalgebra 𝒮(G,Ψ)\mathcal{LS}(G,\Psi). In particular, multη(𝕜)=dim𝒮𝕜(G,ψ)\operatorname{mult}\eta(\mathbb{k})=\dim\mathcal{LS}_{\mathbb{k}}(G,\psi).

  2. (2)

    The root space 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} is independent of the Serre relations.

Proof.

The positive part 𝔫+\mathfrak{n}_{+} of 𝔤\mathfrak{g} can be written as (αΔ+free𝔤α)(αΔ+non-free𝔤α)\Big{(}\bigoplus\limits_{\begin{subarray}{c}\alpha\in\Delta_{+}\\ \text{free}\end{subarray}}\mathfrak{g}_{\alpha}\Big{)}\bigoplus\Big{(}\bigoplus\limits_{\begin{subarray}{c}\alpha\in\Delta_{+}\\ \text{non-free}\end{subarray}}\mathfrak{g}_{\alpha}\Big{)}. From the defining relations (relation (9)) of 𝔤\mathfrak{g}, there is a natural grade preserving surjection ϕ\phi from 𝒮(G,Ψ)\mathcal{LS}(G,\Psi) to 𝔫+\mathfrak{n}_{+}. Further, by the defining relations (7), (8) and (9), the kernel of this map is generated by the elements

(ad ei)1aijej if iIre and ij,(\text{ad }e_{i})^{1-a_{ij}}e_{j}\text{ if }i\in I^{re}\text{ and }i\neq j,
(ad ei)1aij2ej if iΨre and ij, and(\text{ad }e_{i})^{1-\frac{a_{ij}}{2}}e_{j}\text{ if }i\in\Psi^{re}\text{ and }i\neq j,\text{ and}
(ad ei)1aij2ej if iΨ0 and i=j(\text{ad }e_{i})^{1-\frac{a_{ij}}{2}}e_{j}\text{ if }i\in\Psi_{0}\text{ and }i=j

of 𝒮(G,Ψ)\mathcal{LS}(G,\Psi). We observe that in all these elements some eie_{i}’s (corresponding to a real simple root or an odd simple root of norm zero) are occurring at least twice. Since ϕ\phi preserves the grading, by our assumption on 𝕜\mathbb{k}, the grade space 𝒮𝕜(G,Ψ)\mathcal{LS}_{\mathbb{k}}(G,\Psi) is injectively mapped onto the free root space 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} of 𝔤\mathfrak{g}. This completes the proof. ∎

3.6. Super Lyndon heaps and the standard factorization

Let 𝔤\mathfrak{g} be a BKM superalgebra with the associated supergraph (G,Ψ)(G,\Psi). In Theorem 4, we saw the Lyndon heaps of the free partially commutative Lie algebra (G)\mathcal{L}(G). We construct a similar basis for the free root spaces of the BKM superalgebra 𝔤\mathfrak{g}. Given Lemma 1, to construct such a basis it is enough to extend Theorem 4 to the case of free partially commutative Lie superalgebra associated with the supergraph (G,Ψ)(G,\Psi). This extension is the main result of this section [c.f. Theorem 5]. This is done by introducing and studying the combinatorial properties of super Lyndon heaps.

Definition 6.

Let I=I0I1I=I_{0}\sqcup I_{1} be a non-empty set. Let (G,Ψ)(G,\Psi) be a supergraph with vertex set II and I1=ΨI_{1}=\Psi. A heap E(I,ζ)=0(I,ζ)1(I,ζ)E\in\mathcal{H}(I,\zeta)=\mathcal{H}_{0}(I,\zeta)\oplus\mathcal{H}_{1}(I,\zeta) (heap monoid over the supergraph (G,Ψ)(G,\Psi)) is said to be a super Lyndon heap if EE satisfies one of the following conditions:

  • EE is a Lyndon heap.

  • E=FFE=F\circ F where F1(I,ζ)F\in\mathcal{H}_{1}(I,\zeta) is Lyndon.

The set of all super Lyndon heaps over the supergraph (G,Ψ)(G,\Psi) is denoted by 𝒮(,ζ)\mathcal{SLH(I,\zeta)}.

Example 1.

A super Lyndon heap over the path graph on 44 vertices with I1={α1,α2,α3}I_{1}=\{\alpha_{1},\alpha_{2},\alpha_{3}\} and I0={α4}I_{0}=\{\alpha_{4}\} is the following.

α1\displaystyle\alpha_{1}α3\displaystyle\alpha_{3}α2\displaystyle\alpha_{2}α4\displaystyle\alpha_{4}α1\displaystyle\alpha_{1}α2\displaystyle\alpha_{2}α2\displaystyle\alpha_{2}α3\displaystyle\alpha_{3}α3\displaystyle\alpha_{3}α1\displaystyle\alpha_{1}

This is an example of a super Lyndon heap E=123123E=123123 with F=123F=123 is a Lyndon heap in 1(I,ζ)\mathcal{H}_{1}(I,\zeta).

Let EE be a super Lyndon heap in (I,ζ)\mathcal{H}(I,\zeta). Assume that E=FFE=F\circ F with FF is a Lyndon heap in 1(I,ζ)\mathcal{H}_{1}(I,\zeta). We define the standard factorization of EE to be Σ(E)=(F,F)\Sigma(E)=(F,F). To each super Lyndon heap E(I,ζ)E\in\mathcal{H}(I,\zeta) we associate a Lie word Λ(E)\Lambda(E) in 𝒮(G,Ψ)\mathcal{LS}(G,\Psi) as follows. If EIE\in I, then Λ(E)=E\Lambda(E)=E and otherwise Λ(E)=[Λ(F1),Λ(F2)]\Lambda(E)=[\Lambda(F_{1}),\Lambda(F_{2})], where E=F1F2E=F_{1}\circ F_{2} is the standard factorization of EE. Given these notions, we have our following theorem which gives a basis for free partially commutative Lie superalgebra 𝒮(G,Ψ)\mathcal{LS}(G,\Psi).

3.7. Super Lyndon heaps basis of free partially commutative Lie superalgebras

The following theorem is the main result of this subsection in which we construct the Lyndon heaps basis for free partially commutative Lie superalgebras.

Theorem 5.

The set {Λ(E):E(I,ζ) is super Lyndon}\{\Lambda(E):E\in\mathcal{H}(I,\zeta)\text{ is super Lyndon}\} forms a basis of 𝒮(G,Ψ)\mathcal{LS}(G,\Psi).

The rest of the section is dedicated to the proof of the above theorem. The proof of the following lemma is immediate.

Lemma 2.

Let E𝒮𝕜(I,ζ)E\in\mathcal{SLH}_{\mathbb{k}}(I,\zeta). Then Λ(E)=F𝒮𝕜(I,ζ)αFF\Lambda(E)=\sum\limits_{F\in\mathcal{SLH}_{\mathbb{k}}(I,\zeta)}\alpha_{F}F where αF\alpha_{F}\in\mathbb{Z}. Since there are finite number of heaps of degree 𝕜\mathbb{k}, the sum is a finite sum.

Proposition 1.

The set (I,ζ)\mathcal{H}(I,\zeta) indexes a basis for the universal enveloping algebra of the free partially commutative Lie superalgebra 𝒮(G,Ψ)\mathcal{LS}(G,\Psi).

Proof.

Let 𝔘\mathfrak{U} be the \mathbb{C}-span of the heaps monoid (I,ζ)\mathcal{H}(I,\zeta) associated with the supergraph (G,Ψ)(G,\Psi). Then 𝔘\mathfrak{U} has an algebra structure induced from the multiplication in (I,ζ)\mathcal{H}(I,\zeta). This is the free partially commutative superalgebra associated with the supergraph (G,Ψ)(G,\Psi). This is the smallest associative superalgebra containing 𝒮(G)\mathcal{LS}(G). Therefore 𝔘\mathfrak{U} is the universal enveloping algebra of the Lie superalgebra 𝒮(G,Ψ)\mathcal{LS}(G,\Psi). ∎

Proposition 2.

Let LL be a super Lyndon heap of weight 𝕜\mathbb{k} over the supergraph (G,Ψ)(G,\Psi). Put Λ(L)=E𝒮𝕜(I,ζ)αEE\Lambda(L)=\sum\limits_{E\in\mathcal{SLH}_{\mathbb{k}}(I,\zeta)}\alpha_{E}E. Then

  • (i)

    αL=1\alpha_{L}=1 if LL is a Lyndon heap

  • (ii)

    αL=2\alpha_{L}=2 if L=L1L1L=L_{1}\circ L_{1}, L1L_{1} is Lyndon heap in 1(I,ζ)\mathcal{H}_{1}(I,\zeta)

  • (iii)

    If αE0\alpha_{E}\neq 0 then ELE\geq L.

Proof.

If EE is a Lyndon heap, then the proofs of (i) and (iii) are given in [31, Theorem 4.2]. So we prove (ii) and (iii) when LL is a super Lyndon heap. Let L=L1L1L=L_{1}\circ L_{1} where L1L_{1} is Lyndon heap in 1(I,ζ)\mathcal{H}_{1}(I,\zeta). Now,

Λ(L)\displaystyle\Lambda(L) =[Λ(L1),Λ(L1)]\displaystyle=[\Lambda(L_{1}),\Lambda(L_{1})]
=[EL1αEE,EL1αEE] (Using part(i) and (iii)) for Lyndon heaps)\displaystyle=[\sum\limits_{E\geq L_{1}}\alpha_{E}E,\sum\limits_{E^{\prime}\geq L_{1}}\alpha_{E^{\prime}}E^{\prime}]\text{ (Using part(i) and (iii)) for Lyndon heaps)}
=[L1,L1]+E>L1E>L1αEαE[E,E]+E>L1αE[E,L1]+E>L1αE[L1,E]\displaystyle=[L_{1},L_{1}]+\sum\limits_{\begin{subarray}{c}{E>L_{1}}\\ {E^{\prime}>L_{1}}\end{subarray}}\alpha_{E}\alpha_{E^{\prime}}[E,E^{\prime}]+\sum\limits_{E>L_{1}}\alpha_{E}[E,L_{1}]+\sum\limits_{E^{\prime}>L_{1}}\alpha_{E^{\prime}}[L_{1},E^{\prime}]
=2L+K>LαKK.\displaystyle=2L+\sum_{K>L}\alpha_{K}K.

This proves (ii). Now, st(EE)st(E)st(E)>st(L1)st(L1)=:st(L1L1)EE>Lst(E\circ E^{{}^{\prime}})\geq st(E)\cdot st(E^{{}^{\prime}})>st(L_{1})\cdot st(L_{1})=:st(L_{1}\circ L_{1})\Rightarrow E\circ E^{{}^{\prime}}>L. Similarly, we have EE>L.E^{{}^{\prime}}\circ E>L. Also, EL1>L,L1E>L.E\circ L_{1}>L,L_{1}\circ E>L. Hence (iii) follows. ∎

Corollary 2.

The set ={Λ(L):L\mathcal{B}=\{\Lambda(L):L is a super Lyndon heap} is linearly independent in 𝒮(G,Ψ)\mathcal{LS}(G,\Psi).

Proof.

Assume that

LβLΛ(L)=0,βL\sum\limits_{L\in\mathcal{B}}\beta_{L}\Lambda(L)=0,\,\,\,\,\,\beta_{L}\in\mathbb{C}

where all but finitely many βL\beta_{L} are zero. Then by the above proposition, we have

LβL(ELwt(E)=wt(L)αEE)=0\sum\limits_{L\in\mathcal{B}}\beta_{L}\left(\sum\limits_{\begin{subarray}{c}E\geq L\\ \operatorname{wt}(E)=\operatorname{wt}(L)\end{subarray}}\alpha_{E}E\right)=0
LβL(αLL+E>Lwt(E)=wt(L)αEE)=0 where αL={1 if L(I,ζ)2 if L=EE,E1(I,ζ)\Rightarrow\sum\limits_{L\in\mathcal{B}}\beta_{L}\left(\alpha_{L}L+\sum\limits_{\begin{subarray}{c}E>L\\ \operatorname{wt}(E)=\operatorname{wt}(L)\end{subarray}}\alpha_{E}E\right)=0\text{ where }\alpha_{L}=\begin{cases}1&\text{ if }L\in\mathcal{LH}(I,\zeta)\\ 2&\text{ if }L=E\circ E,E\in\mathcal{H}_{1}(I,\zeta)\end{cases}
L(I,ζ)βLL+2L=EEE1(I,ζ)βLL+LE>Lwt(E)=wt(L)βLαEE=0\Rightarrow\sum\limits_{L\in\mathcal{LH}(I,\zeta)}\beta_{L}L+2\sum\limits_{\begin{subarray}{c}L=E\circ E\\ E\in\mathcal{LH}_{1}(I,\zeta)\end{subarray}}\beta_{L}L+\sum\limits_{L\in\mathcal{B}}\sum\limits_{\begin{subarray}{c}E>L\\ \operatorname{wt}(E)=\operatorname{wt}(L)\end{subarray}}\beta_{L}\alpha_{E}E=0

Taking modulo in the grade space 𝒮𝕜(G,Ψ)\mathcal{LS}_{\mathbb{k}}(G,\Psi) we get

{L𝕜(I,ζ)βLL+E>Lwt(E)=wt(L)E𝒮𝕜(I,ζ)βLαEE=0 if ki is odd for some isupp(𝕜)L𝕜(I,ζ)βLL+2L𝕜(I,ζ)L=EEE1(I,ζ)βLL+E>Lwt(E)=wt(L)L𝒮𝕜(I,ζ)βLαEE=0 otherwise.\begin{cases}\sum\limits_{\begin{subarray}{c}{L\in\mathcal{LH}_{\mathbb{k}}(I,\zeta)}\end{subarray}}\beta_{L}L+\sum\limits_{\begin{subarray}{c}{E>L}\\ \operatorname{wt}(E)=\operatorname{wt}(L)\\ {E\in\mathcal{SLH}_{\mathbb{k}}(I,\zeta)}\end{subarray}}\beta_{L}\alpha_{E}E=0\text{ if $k_{i}$ is odd for some }i\in\operatorname{supp}(\mathbb{k})\\ \sum\limits_{\begin{subarray}{c}{L\in\mathcal{LH}_{\mathbb{k}}(I,\zeta)}\end{subarray}}\beta_{L}L+2\sum\limits_{\begin{subarray}{c}L\in\mathcal{LH}_{\mathbb{k}}(I,\zeta)\\ L=E\circ E\\ E\in\mathcal{LH}_{1}(I,\zeta)\end{subarray}}\beta_{L}L+\sum\limits_{\begin{subarray}{c}{\begin{subarray}{c}E>L\\ \operatorname{wt}(E)=\operatorname{wt}(L)\end{subarray}}\\ {L\in\mathcal{SLH}_{\mathbb{k}}(I,\zeta)}\end{subarray}}\beta_{L}\alpha_{E}E=0\text{ otherwise}.\end{cases}

which are finite linear combinations of heaps of weight 𝕜\mathbb{k} in the universal enveloping algebra 𝔘\mathfrak{U} of 𝒮(G,Ψ)\mathcal{LS}(G,\Psi). Since heaps form a basis of 𝔘=((I,ζ))\mathfrak{U}=\mathbb{C}(\mathcal{H}(I,\zeta)) we get all the βL=0\beta_{L}=0 in the above equations. Since 𝕜\mathbb{k} is arbitrary we get βL=0\beta_{L}=0 for all LL\in\mathcal{B}. This completes the proof. ∎

Proposition 3.

Let LL and MM be super Lyndon heaps such that L<ML<M. Then we can write [Λ(L),Λ(M)]=N𝒮(I,ζ)N<Mdeg(N)=deg(LM)αNΛ(N)[\Lambda(L),\Lambda(M)]=\sum\limits_{\begin{subarray}{c}{N\in\mathcal{SLH}(I,\zeta)}\\ N<M\\ {deg(N)=deg(L\circ M)}\end{subarray}}\alpha_{N}\Lambda(N).

Proof.

The proof is by case by case analysis.

Case (i):- Suppose L,ML,M are Lyndon heaps satisfying L<ML<M then result follows from [31, Theorem 4.4].

Case (ii):- Suppose exactly one of L,ML,M is a super Lyndon heap. Without loss of generality assume that L=L1L1L=L_{1}\circ L_{1} where L1L_{1} is Lyndon heap in 1(I,ζ){\mathcal{H}_{1}(I,\zeta)} and MM is an arbitrary Lyndon heap. Now,

[Λ(L),Λ(M)]\displaystyle[\Lambda(L),\Lambda(M)] =[[Λ(L1),Λ(L1)],Λ(M)]\displaystyle=[[\Lambda(L_{1}),\Lambda(L_{1})],\Lambda(M)] (3.2)
=2[Λ(L1),[Λ(L1),Λ(M)]]\displaystyle=2[\Lambda(L_{1}),[\Lambda(L_{1}),\Lambda(M)]] (3.3)
=2[Λ(L1),N1(I,ζ)N1<Mdeg(N1)=deg(L1M)αN1Λ(N1)](L1<L1L1=L<M)\displaystyle=2[\Lambda(L_{1}),\sum\limits_{\begin{subarray}{c}{N_{1}\in\mathcal{LH}(I,\zeta)}\\ {N_{1}<M}\\ {deg(N_{1})=deg(L_{1}\circ M)}\end{subarray}}\alpha_{N_{1}}\Lambda(N_{1})]\,\,\,(\because L_{1}<L_{1}\circ L_{1}=L<M) (3.4)
=2N1(I,ζ)N1<Mdeg(N1)=deg(L1M)αN1[Λ(L1),Λ(N1)]\displaystyle=2\sum\limits_{\begin{subarray}{c}{N_{1}\in\mathcal{LH}(I,\zeta)}\\ {N_{1}<M}\\ {deg(N_{1})=deg(L_{1}\circ M)}\end{subarray}}\alpha_{N_{1}}[\Lambda(L_{1}),\Lambda(N_{1})] (3.5)
=2(N1(I,ζ)L1<N1<Mdeg(N1)=deg(L1M)αN1[Λ(L1),Λ(N1)]+N1(I,ζ)N1<L1deg(N1)=deg(L1M)αN1[Λ(L1),Λ(N1)])\displaystyle=2\left(\sum\limits_{\begin{subarray}{c}{N_{1}\in\mathcal{LH}(I,\zeta)}\\ {L_{1}<N_{1}<M}\\ {deg(N_{1})=deg(L_{1}\circ M)}\end{subarray}}\alpha_{N_{1}}[\Lambda(L_{1}),\Lambda(N_{1})]+\sum\limits_{\begin{subarray}{c}{N_{1}\in\mathcal{LH}(I,\zeta)}\\ {N_{1}<L_{1}}\\ {deg(N_{1})=deg(L_{1}\circ M)}\end{subarray}}\alpha_{N_{1}}[\Lambda(L_{1}),\Lambda(N_{1})]\right) (3.6)

Using case (i) in the first term of the above equation we get

N1(I,ζ)L1<N1<Mdeg(N1)=deg(L1M)αN1[Λ(L1),Λ(N1)]\displaystyle\sum\limits_{\begin{subarray}{c}{N_{1}\in\mathcal{LH}(I,\zeta)}\\ {L_{1}<N_{1}<M}\\ {deg(N_{1})=deg(L_{1}\circ M)}\end{subarray}}\alpha_{N_{1}}[\Lambda(L_{1}),\Lambda(N_{1})] =N1(I,ζ)N1<Mdeg(N1)=deg(L1M)αN1(N2(I,ζ)N2<N1<Mdeg(N2)=deg(L1N1)=deg(LM)αN2Λ(N2))\displaystyle=\sum\limits_{\begin{subarray}{c}{N_{1}\in\mathcal{LH}(I,\zeta)}\\ {N_{1}<M}\\ {deg(N_{1})=deg(L_{1}\circ M)}\end{subarray}}\alpha_{N_{1}}\left(\sum\limits_{\begin{subarray}{c}{N_{2}\in\mathcal{LH}(I,\zeta)}\\ {N_{2}<N_{1}<M}\\ {deg(N_{2})=deg(L_{1}\circ N_{1})=deg(L\circ M)}\end{subarray}}\alpha_{N_{2}}\Lambda(N_{2})\right)
=N2(I,ζ)N2<Mdeg(N2)=deg(LoM)(N(I,ζ)N2<N<Mdeg(N)=deg(L1M)αN)some constant cN2αN2Λ(N2)\displaystyle=\sum\limits_{\begin{subarray}{c}{N_{2}\in\mathcal{LH}(I,\zeta)}\\ {N_{2}<M}\\ {deg(N_{2})=deg(LoM)}\end{subarray}}\underbrace{\left(\sum\limits_{\begin{subarray}{c}{N^{\prime}\in\mathcal{LH}(I,\zeta)}\\ {N_{2}<N^{\prime}<M}\\ {deg(N^{\prime})=deg(L_{1}\circ M)}\end{subarray}}\alpha_{N^{\prime}}\right)}_{\text{some constant }c_{N_{2}}}\alpha_{N_{2}}\Lambda(N_{2})
=N2(I,ζ)N2<Mdeg(N2)=deg(LM)(cN2αN2)Λ(N2)\displaystyle=\sum\limits_{\begin{subarray}{c}{N_{2}\in\mathcal{LH}(I,\zeta)}\\ {N_{2}<M}\\ {deg(N_{2})=deg(L\circ M)}\end{subarray}}(c_{N_{2}}\alpha_{N_{2}})\Lambda(N_{2})

For the second summation, [Λ(L1),Λ(N1)]=(1)aN1bL1[Λ(N1),Λ(L1)][\Lambda(L_{1}),\Lambda(N_{1})]=-(-1)^{a_{N_{1}}b_{L_{1}}}[\Lambda(N_{1}),\Lambda(L_{1})] where aN1,bL1{0,1}a_{N_{1}},b_{L_{1}}\in\{0,1\} according to N1,L1i(I,ζ)N_{1},L_{1}\in\mathcal{H}_{i}(I,\zeta) for i{0,1}i\in\{0,1\}. Therefore,

[Λ(L1),Λ(N1)]=(1)aN1bL1K(I,ζ)K<L1<Mdeg(K)=deg(N1L1)=deg(LM)αKΛ(K)[\Lambda(L_{1}),\Lambda(N_{1})]=-(-1)^{a_{N_{1}}b_{L_{1}}}\sum\limits_{\begin{subarray}{c}{K\in\mathcal{LH}(I,\zeta)}\\ {K<L_{1}<M}\\ {deg(K)=deg(N_{1}\circ L_{1})=deg(L\circ M)}\end{subarray}}\alpha_{K}\Lambda(K)

=N1(I,ζ)N1<Mdeg(N1)=deg(L1M)L1>N1αN1[Λ(L1),Λ(N1)]=\sum\limits_{\begin{subarray}{c}{N_{1}\in\mathcal{LH}(I,\zeta)}\\ {N_{1}<M}\\ {deg(N_{1})=deg(L_{1}\circ M)}\\ {L_{1}>N_{1}}\end{subarray}}\alpha_{N_{1}}[\Lambda(L_{1}),\Lambda(N_{1})]

=N1(I,ζ)N1<Mdeg(N1)=deg(L1M)αN1[Λ(L1),Λ(N1)]=\sum\limits_{\begin{subarray}{c}{N_{1}\in\mathcal{LH}(I,\zeta)}\\ {N_{1}<M}\\ {deg(N_{1})=deg(L_{1}\circ M)}\end{subarray}}\alpha_{N_{1}}[\Lambda(L_{1}),\Lambda(N_{1})]

=N1(I,ζ)N1<Mdeg(N1)=deg(L1oM)αN1((1)aN1bL1K(I,ζ)K<L1<Mdeg(K)=deg(N1L1)=deg(LM)αKΛ(K))=-\sum\limits_{\begin{subarray}{c}{N_{1}\in\mathcal{LH}(I,\zeta)}\\ {N_{1}<M}\\ {deg(N_{1})=deg(L_{1}oM)}\end{subarray}}\alpha_{N_{1}}\left((-1)^{a_{N_{1}}b_{L_{1}}}\sum\limits_{\begin{subarray}{c}{K\in\mathcal{LH}(I,\zeta)}\\ {K<L_{1}<M}\\ {deg(K)=deg(N_{1}\circ L_{1})=deg(L\circ M)}\end{subarray}}\alpha_{K}\Lambda(K)\right)

=K(I,ζ)K<Mdeg(K)=deg(LM)(N(I,ζ)K<N<Mdeg(N)=deg(L1M)(1)aNbL1αN)constant cKαKΛ(K)=-\sum\limits_{\begin{subarray}{c}{K\in\mathcal{LH}(I,\zeta)}\\ {K<M}\\ {deg(K)=deg(L\circ M)}\end{subarray}}\underbrace{\left(\sum\limits_{\begin{subarray}{c}{N^{\prime}\in\mathcal{LH}(I,\zeta)}\\ {K<N^{\prime}<M}\\ {deg(N^{\prime})=deg(L_{1}\circ M)}\end{subarray}}(-1)^{a_{N^{\prime}}b_{L_{1}}}\alpha_{N^{\prime}}\right)}_{\text{constant }c_{K}}\alpha_{K}\Lambda(K)

=K(I,ζ)K<Mdeg(K)=deg(LM)αKΛ(K) where αK=cKαK=\sum\limits_{\begin{subarray}{c}{K\in\mathcal{LH}(I,\zeta)}\\ {K<M}\\ {deg(K)=deg(L\circ M)}\end{subarray}}\alpha_{K}^{\prime}\Lambda(K)\,\,\text{ where }\alpha_{K}^{\prime}=-c_{K}\alpha_{K}

[Λ(L),Λ(M)]=2(N2(I,ζ)N2<Mdeg(N2)=deg(LM)(cN2αN2)Λ(N2)+K(I,ζ)K<Mdeg(K)=deg(LM)αKΛ(K))\Rightarrow[\Lambda(L),\Lambda(M)]=2\left(\sum\limits_{\begin{subarray}{c}{N_{2}\in\mathcal{LH}(I,\zeta)}\\ {N_{2}<M}\\ {deg(N_{2})=deg(L\circ M)}\end{subarray}}(c_{N_{2}}\alpha_{N_{2}})\Lambda(N_{2})+\sum\limits_{\begin{subarray}{c}{K\in\mathcal{LH}(I,\zeta)}\\ {K<M}\\ {deg(K)=deg(L\circ M)}\end{subarray}}\alpha_{K}^{\prime}\Lambda(K)\right)

Case (iii):- Suppose L=L1L1,M=M1M1L=L_{1}\circ L_{1},\,M=M_{1}\circ M_{1} where L1,M1L_{1},M_{1} are Lyndon heaps in 1(I,ζ){\mathcal{H}_{1}(I,\zeta)} satisfying L<ML<M. Then

[Λ(L),Λ(M)]\displaystyle[\Lambda(L),\Lambda(M)] =[[Λ(L1),Λ(L1)],Λ(M)]\displaystyle=[[\Lambda(L_{1}),\Lambda(L_{1})],\Lambda(M)]
=2[Λ(L1),[Λ(L1),Λ(M)]]\displaystyle=2[\Lambda(L_{1}),[\Lambda(L_{1}),\Lambda(M)]]
=2[Λ(L1),N(I,ζ)N<Mdeg(N)=deg(L1M)αNΛ(N)](by the previous case)\displaystyle=2[\Lambda(L_{1}),\sum\limits_{\begin{subarray}{c}{N\in\mathcal{LH}(I,\zeta)}\\ {N<M}\\ {deg(N)=deg(L_{1}\circ M)}\end{subarray}}\alpha_{N}\Lambda(N)]\,\,(\text{by the previous case})
=2N(I,ζ)N<Mdeg(N)=deg(L1M)αN[Λ(L1),Λ(N)]\displaystyle=2\sum\limits_{\begin{subarray}{c}{N\in\mathcal{LH}(I,\zeta)}\\ {N<M}\\ {deg(N)=deg(L_{1}\circ M)}\end{subarray}}\alpha_{N}[\Lambda(L_{1}),\Lambda(N)]
=2(N(I,ζ)L1<N<Mdeg(N)=deg(L1M)αN[Λ(L1),Λ(N)]+N(I,ζ)N<M and L1>Ndeg(N)=deg(L1M)αN[Λ(L1),Λ(N)])\displaystyle=2\left(\sum\limits_{\begin{subarray}{c}{N\in\mathcal{LH}(I,\zeta)}\\ {L_{1}<N<M}\\ {deg(N)=deg(L_{1}\circ M)}\end{subarray}}\alpha_{N}[\Lambda(L_{1}),\Lambda(N)]+\sum\limits_{\begin{subarray}{c}{N\in\mathcal{LH}(I,\zeta)}\\ {N<M\text{ and }L_{1}>N}\\ {deg(N)=deg(L_{1}\circ M)}\end{subarray}}\alpha_{N}[\Lambda(L_{1}),\Lambda(N)]\right)

For those N(I,ζ)N\in\mathcal{LH}(I,\zeta) such that L1<NL_{1}<N then by first case

[Λ(L1),Λ(N)]=K(I,ζ)K<N<Mdeg(K)=deg(L1N)βKΛ(K)[\Lambda(L_{1}),\Lambda(N)]=\sum\limits_{\begin{subarray}{c}{K\in\mathcal{LH}(I,\zeta)}\\ {K<N<M}\\ {deg(K)=deg(L_{1}\circ N)}\end{subarray}}\beta_{K}\Lambda(K)
N(I,ζ)N<Mdeg(N)=deg(L1M)L1<NαN[Λ(L1),Λ(N)]\displaystyle\Rightarrow\sum\limits_{\begin{subarray}{c}{N\in\mathcal{LH}(I,\zeta)}\\ {N<M}\\ {deg(N)=deg(L_{1}\circ M)}\\ {L_{1}<N}\end{subarray}}\alpha_{N}[\Lambda(L_{1}),\Lambda(N)] =N(I,ζ)N<Mdeg(N)=deg(L1M)αN(K(I,ζ)K<Mdeg(K)=deg(LM)βKΛ(K))\displaystyle=\sum\limits_{\begin{subarray}{c}{N\in\mathcal{LH}(I,\zeta)}\\ {N<M}\\ {deg(N)=deg(L_{1}\circ M)}\end{subarray}}\alpha_{N}\left(\sum\limits_{\begin{subarray}{c}{K\in\mathcal{LH}(I,\zeta)}\\ {K<M}\\ {deg(K)=deg(L\circ M)}\end{subarray}}\beta_{K}\Lambda(K)\right)
=K(I,ζ)K<Mdeg(K)=deg(LM)αKΛ(K)\displaystyle=\sum\limits_{\begin{subarray}{c}{K\in\mathcal{LH}(I,\zeta)}\\ {K<M}\\ {deg(K)=deg(L\circ M)}\end{subarray}}\alpha_{K}^{\prime}\Lambda(K)

For those N(I,ζ)N\in\mathcal{LH}(I,\zeta) such that L1>NL_{1}>N then

[Λ(L1),Λ(N)]\displaystyle[\Lambda(L_{1}),\Lambda(N)] =[Λ(N),Λ(L1)]\displaystyle=-[\Lambda(N),\Lambda(L_{1})]
=N(I,ζ)K2<L1deg(K2)=deg(NL1)βK2Λ(K2)\displaystyle=-\sum\limits_{\begin{subarray}{c}{N\in\mathcal{LH}(I,\zeta)}\\ {K_{2}<L_{1}}\\ {deg(K_{2})=deg(N\circ L_{1})}\end{subarray}}\beta_{K_{2}}\Lambda(K_{2})
N(I,ζ)N<Mdeg(N)=deg(L1M)L1>NαN[Λ(L1),Λ(N)]\displaystyle\Rightarrow\sum\limits_{\begin{subarray}{c}{N\in\mathcal{LH}(I,\zeta)}\\ {N<M}\\ {deg(N)=deg(L_{1}\circ M)}\\ {L_{1}>N}\end{subarray}}\alpha_{N}[\Lambda(L_{1}),\Lambda(N)] =N(I,ζ)N<Mdeg(N)=deg(L1M)αN(K2(I,ζ)K<L1<Mdeg(K2)=deg(LM)βK2Λ(K2))\displaystyle=\sum\limits_{\begin{subarray}{c}{N\in\mathcal{LH}(I,\zeta)}\\ {N<M}\\ {deg(N)=deg(L_{1}\circ M)}\end{subarray}}\alpha_{N}\left(\sum\limits_{\begin{subarray}{c}{K_{2}\in\mathcal{LH}(I,\zeta)}\\ {K<L_{1}<M}\\ {deg(K_{2})=deg(L\circ M)}\end{subarray}}\beta_{K_{2}}\Lambda(K_{2})\right)
=K2(I,ζ)K2<Mdeg(K2)=deg(LM)αK2Λ(K2)\displaystyle=\sum\limits_{\begin{subarray}{c}{K_{2}\in\mathcal{LH}(I,\zeta)}\\ {K_{2}<M}\\ {deg(K_{2})=deg(L\circ M)}\end{subarray}}\alpha_{K_{2}}^{\prime}\Lambda(K_{2})

[Λ(L),Λ(M)]=2(K(I,ζ)K<Mdeg(K)=deg(LM)αKΛ(K)+K2(I,ζ)K2<Mdeg(K2)=deg(LM)αK2Λ(K2))\Rightarrow[\Lambda(L),\Lambda(M)]=2\left(\sum\limits_{\begin{subarray}{c}{K\in\mathcal{LH}(I,\zeta)}\\ {K<M}\\ {deg(K)=deg(L\circ M)}\end{subarray}}\alpha_{K}^{\prime}\Lambda(K)+\sum\limits_{\begin{subarray}{c}{K_{2}\in\mathcal{LH}(I,\zeta)}\\ {K_{2}<M}\\ {deg(K_{2})=deg(L\circ M)}\end{subarray}}\alpha_{K_{2}}^{\prime}\Lambda(K_{2})\right)

This completes the proof.

By the above proposition, the Lie subsuperalgebra generated by ={Λ(L):L\mathcal{B}=\{\Lambda(L):L is super Lyndon heap} in 𝒮(G,Ψ)\mathcal{LS}(G,\Psi) contains II. So this subalgebra is equal to 𝒮(G,Ψ)\mathcal{LS}(G,\Psi). This completes the proof of Theorem 5 and in turn, gives the Lyndon basis for the free roots spaces of BKM superalgebra 𝔤\mathfrak{g} whose associated supergraph is (G,Ψ)(G,\Psi) [c.f Lemma 1].

Example 2.

Consider the BKM superalgebra 𝔤\mathfrak{g} associated with the BKM supermatrix

A=[210000134100044001010210000120001003].A=\begin{bmatrix}2&-1&0&0&0&0\\ -1&-3&-4&-1&0&0\\ 0&-4&-4&0&0&-1\\ 0&-1&0&2&-1&0\\ 0&0&0&-1&-2&0\\ 0&0&-1&0&0&-3\\ \end{bmatrix}.

The quasi-Dynkin diagram GG of 𝔤\mathfrak{g} is as follows:

α1\alpha_{1}α2\alpha_{2}α3\alpha_{3}α4\alpha_{4}α6\alpha_{6}α5\alpha_{5}

We have I={1,2,3,4,5,6},Ψ={3,5}I=\{1,2,3,4,5,6\},\Psi=\{3,5\} and Ire={1,4}I^{re}=\{1,4\}. Assume the natural total order on II. Let 𝕜=(0,0,3,0,0,3)+[I]\mathbb{k}=(0,0,3,0,0,3)\in\mathbb{Z}_{+}[I]. Then η(𝕜)=3α3+3α6Δ+1\eta(\mathbb{k})=3\alpha_{3}+3\alpha_{6}\in\Delta_{+}^{1}.

Fix i=3i=3 (minimal element in the support of 𝕜\mathbb{k}), then the super Lyndon heaps of weight η(𝕜)\eta(\mathbb{k}) are {336636,333666,336366}\{336636,333666,336366\} with standard factorization 3366|36,3|336663366|36,3|33666 and 3|363663|36366. The associated Lie monomials

{[[3,[[3,6],6]],[3,6]],[3,[3,[[[3,6],6],6]]],[3,[[3,6],[[3,6],6]]]}\{[[3,[[3,6],6]],[3,6]],[3,[3,[[[3,6],6],6]]],[3,[[3,6],[[3,6],6]]]\}

spans 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})}. We have mult(η(𝕜))=3\operatorname{mult}(\eta(\mathbb{k}))=3 [c.f. Example 10]. So these Lie monomials form a basis for 𝔤η(𝕜).\mathfrak{g}_{\eta(\mathbb{k})}.

Example 3.

Consider the BKM superalgebra 𝔤\mathfrak{g} associated with the BKM supermatrix

A=[210000131000024100001210000121000013].A=\begin{bmatrix}2&-1&0&0&0&0\\ -1&-3&-1&0&0&0\\ 0&-2&-4&-1&0&0\\ 0&0&-1&2&-1&0\\ 0&0&0&-1&-2&-1\\ 0&0&0&0&-1&-3\\ \end{bmatrix}.

The quasi-Dynkin diagram GG of 𝔤\mathfrak{g} is as follows:

α1\alpha_{1}α2\alpha_{2}α3\alpha_{3}α4\alpha_{4}α6\alpha_{6}α5\alpha_{5}

We have I={1,2,3,4,5,6},Ψ={3,5},Ire={1,4},η(𝕜)=2α3+α4+2α5+α6I=\{1,2,3,4,5,6\},\,\Psi=\{3,5\},I^{re}=\{1,4\},\eta(\mathbb{k})=2\alpha_{3}+\alpha_{4}+2\alpha_{5}+\alpha_{6}. Assume the natural total order on II. Fix i=3i=3, observe that the Lyndon heaps of weight η(𝕜)\eta(\mathbb{k}) are {334556,334565}\{334556,334565\} with standard factorizations 3|34565,3|345563|34565,3|34556 respectively. The associated Lie monomials are

{[3,[3,[4,[[5,6],5]]]],[3,[3,[4,[5,[5,6]]]]]}\{[3,[3,[4,[[5,6],5]]]],[3,[3,[4,[5,[5,6]]]]]\}

which form a spanning set of 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})}. Since mult(η(𝕜))=2\operatorname{mult}(\eta(\mathbb{k}))=2 [c.f. Example 11]. These lie monomials form a basis of 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})}.

4. Main result II: LLN basis of BKM superalgebras

Let 𝔤\mathfrak{g} be the BKM Lie superalgebra associated with a Borcherds-Cartan matrix (A,Ψ)(A,\Psi). Let (G,Ψ)(G,\Psi) be the quasi-Dynkin diagram of 𝔤\mathfrak{g} with the vertex set II [c.f. Definition 2]. In this section, we extend Theorem 2 to the case of free root spaces of 𝔤\mathfrak{g}.

In what follows in this section, we use the super-Jacobi identity (up to sign) to prove our results. Also, whenever we fix an iIi\in I, it is assumed that ii is the least element in the total order of II.

4.1. Initial alphabet and Left normed Lie word associated with a word

Let 𝕨M(I,G)\mathbb{w}\in M(I,G) [c.f. Section 3.2] and 𝕨=a1ar\mathbb{w}=a_{1}\cdots a_{r} be an element in the class 𝕨\mathbb{w}. We define the length of the word |𝕨|=r|\mathbb{w}|=r. We define, i(𝕨)=|{j:aj=i}|i(\mathbb{w})=|\{j:a_{j}=i\}| and supp(𝕨)={iI:i(𝕨)0}\operatorname{supp}(\mathbb{w})=\{i\in I:i(\mathbb{w})\neq 0\}. We define the weight of 𝕨\mathbb{w} to be wt(𝕨)=iIi(𝕨)αi.\operatorname{wt}(\mathbb{w})=\sum\limits_{i\in I}i(\mathbb{w})\alpha_{i}. The following definition of the initial alphabet is different from the one given in [1, Section 4]. Our definition is compatible with the definition of pyramids given in Section 3.3 and pyramids will be the main tool in this section. For iIi\in I, its initial multiplicity in 𝕨\mathbb{w} is defined to be the largest k0k\geq 0 for which there exists 𝕦M(I,G)\mathbb{u}\in M(I,G) such that 𝕨=ik𝕦\mathbb{w}=i^{k}\mathbb{u}. We define the initial alphabet IAm(𝕨)\rm{IA_{m}}(\mathbb{w}) of 𝕨\mathbb{w} to be the multiset in which each iIi\in I occurs as many times as its initial multiplicity in 𝕨\mathbb{w}. The underlying set is denoted by IA(𝕨)\rm{IA}(\mathbb{w}). The left normed Lie word associated with 𝕨\mathbb{w} is defined by

e(𝕨)=[[[[a1,a2],a3],ar1]ar]𝔤.e(\mathbb{w})=[[\cdots[[a_{1},a_{2}],a_{3}]\cdots,a_{r-1}]a_{r}]\in\mathfrak{g}. (4.1)

Using the Jacobi identity, it is easy to see that the association 𝕨e(𝕨)\mathbb{w}\mapsto e(\mathbb{w}) is well-defined and preserves the 2\mathbb{Z}_{2}-grading.

4.2. Lyndon words and their Standard factorization

For a fixed iIi\in I (which is assumed to be minimal in the total order on II), consider the set

𝒳i={𝕨M(I,G):IAm(𝕨)={i} and i(𝕨)=1}.\mathcal{X}_{i}=\{\mathbb{w}\in M(I,G):\rm{IA}_{m}(\mathbb{w})=\{i\}\text{ and }i(\mathbb{w})=1\}.

Observe that 𝒳i\mathcal{X}_{i} (and hence 𝒳i\mathcal{X}_{i}^{*}) is 2\mathbb{Z}_{2}-graded and also totally ordered using (3.1). We denote by FLS(𝒳i)FLS(\mathcal{X}_{i}) the free Lie superalgebra generated by 𝒳i=𝒳i,0𝒳i,1\mathcal{X}_{i}=\mathcal{X}_{i,0}\sqcup\mathcal{X}_{i,1} where 𝒳i,0\mathcal{X}_{i,0} (resp. 𝒳i,1\mathcal{X}_{i,1}) is the set of even (resp. odd) elements in 𝒳i\mathcal{X}_{i}. A non–empty word 𝕨𝒳i\mathbb{w}\in\mathcal{X}_{i}^{*} is called a Lyndon word if it satisfies one of the following equivalent definitions:

  • 𝕨\mathbb{w} is strictly smaller than any of its proper cyclic rotations.

  • 𝕨𝒳i\mathbb{w}\in\mathcal{X}_{i} or 𝕨=𝕦𝕧\mathbb{w}=\mathbb{u}\mathbb{v} for Lyndon words 𝕦\mathbb{u} and 𝕧\mathbb{v} with 𝕦<𝕧\mathbb{u}<\mathbb{v}.

There may be more than one choice of 𝕦\mathbb{u} and 𝕧\mathbb{v} with 𝕨=𝕦𝕧\mathbb{w}=\mathbb{u}\mathbb{v} and 𝕦<𝕧\mathbb{u}<\mathbb{v} but if 𝕧\mathbb{v} is of maximal possible length we call it the standard factorization. Equivalently, we can define 𝕧\mathbb{v} to be the minimal Lyndon word in the lexicographic order satisfying 𝕨=𝕦𝕧\mathbb{w}=\mathbb{u}\mathbb{v}. This is called the standard factorization of 𝕨\mathbb{w} and denoted by σ(𝕨)=(𝕦,𝕧)\sigma(\mathbb{w})=(\mathbb{u},\mathbb{v}). Note that, when GG is a complete graph, the heap monoid (I,ζ)\mathcal{H}(I,\zeta) is isomorphic to the free monoid II^{*}. Further, the standard factorization Σ(E)\Sigma(E) of a Lyndon heap E(I,ζ)E\in\mathcal{H}(I,\zeta) coincides with the factorization σ(E)\sigma(E).

4.3. Super Lyndon words and their associated Lie word

Next, we recall the definition and some properties of super Lyndon words and state the main theorem of this section, we define a word 𝕨𝒳i\mathbb{w}\in\mathcal{X}_{i}^{*} to be super Lyndon if 𝕨\mathbb{w} satisfies one of the following conditions [5]:

  • 𝕨\mathbb{w} is a Lyndon word.

  • 𝕨=𝕦𝕦\mathbb{w}=\mathbb{u}\mathbb{u} where 𝕦𝒳i,1\mathbb{u}\in\mathcal{X}_{i,1}^{*} is Lyndon. In this case, we define 𝕨=𝕦𝕦\mathbb{w}=\mathbb{u}\mathbb{u} is the standard factorization of 𝕨\mathbb{w}.

In [35], super Lyndon words are known as ss-regular words. We will use Lyndon words (resp. super Lyndon words) to construct a basis for the Borcherds algebras (resp. BKM Lie superalgebras). To each super Lyndon word 𝕨𝒳i\mathbb{w}\in\mathcal{X}_{i}^{*} we associate a Lie word L(𝕨)L(\mathbb{w}) in FLS(𝒳i)FLS(\mathcal{X}_{i}) as follows. If 𝕨𝒳i\mathbb{w}\in\mathcal{X}_{i}, then L(𝕨)=𝕨L(\mathbb{w})=\mathbb{w} and otherwise L(𝕨)=[L(𝕦),L(𝕧)]L(\mathbb{w})=[L(\mathbb{u}),L(\mathbb{v})] where 𝕨=𝕦𝕧\mathbb{w}=\mathbb{u}\mathbb{v} is the standard factorization of 𝕨\mathbb{w}. If 𝒳i,1\mathcal{X}_{i,1} is empty then the map LL assigns Lie monomials in free Lie algebras to Lyndon words. For more details about Lyndon words and super Lyndon words, we refer the readers to [6, 35, 42]. The following result can be seen in [6, 35] and the basis constructed is known as the Lyndon basis for free Lie superalgebras.

Proposition 4.

The set {L(𝕨):𝕨𝒳i is super Lyndon}\{L(\mathbb{w}):\mathbb{w}\in\mathcal{X}_{i}^{*}\text{ is super Lyndon}\} forms a basis of FLS(𝒳i)FLS(\mathcal{X}_{i}).

Corollary 3.

If the set 𝒳i,1\mathcal{X}_{i,1} is empty then FLS(𝒳i)FLS(\mathcal{X}_{i}) becomes the free Lie algebra FL(𝒳i)FL(\mathcal{X}_{i}). In this case, {L(𝕨):𝕨𝒳i is Lyndon}\{L(\mathbb{w}):\mathbb{w}\in\mathcal{X}_{i}^{*}\text{ is Lyndon}\} forms a basis of FL(𝒳i)FL(\mathcal{X}_{i}).

Universal property of the free Lie superalgebra FLS(𝒳i)FLS(\mathcal{X}_{i}): Let 𝔩\mathfrak{l} be a Lie superalgebra and let Φ:𝒳i𝔩\Phi:\mathcal{X}_{i}\to\mathfrak{l} be a set map that preserves the 2\mathbb{Z}_{2} grading. Then Φ\Phi can be extended to a Lie superalgebra homomorphism Φ:FLS(𝒳i)𝔩\Phi:FLS(\mathcal{X}_{i})\to\mathfrak{l}.

4.4. Idea of the proof

Let 𝔤\mathfrak{g} be a BKM superalgebra with the associated supergraph (G,Ψ)(G,\Psi). Define a map Φ:𝒳i𝔤\Phi:\mathcal{X}_{i}\to\mathfrak{g} by Φ(𝕨)=e(𝕨)\Phi(\mathbb{w})=e(\mathbb{w}), the left normed Lie word associated with 𝕨\mathbb{w}. The map Φ\Phi preserves the 2\mathbb{Z}_{2} grading. By the universal property, we have a Lie superalgebra homomorphism

Φ:FLS(𝒳i)𝔤,𝕨e(𝕨)𝕨𝒳i.\Phi:FLS(\mathcal{X}_{i})\to\mathfrak{g},\ \ \mathbb{w}\mapsto e(\mathbb{w})\ \ \forall\ \mathbb{w}\in\mathcal{X}_{i}. (4.2)

Since Φ\Phi preserves the Q+=+[I]Q_{+}=\mathbb{Z}_{+}[I]-grading and 𝔤\mathfrak{g} can be finite-dimensional the map Φ\Phi need not be surjective. Let 𝔤i\mathfrak{g}^{i} be the image of the homomorphism Φ\Phi in 𝔤\mathfrak{g}. Then 𝔤i\mathfrak{g}^{i} is the Lie sub-superalgebra of 𝔤\mathfrak{g} generated by {e(𝕨):𝕨𝒳i}\{e(\mathbb{w}):\mathbb{w}\in\mathcal{X}_{i}\}. Note that 𝔤i\mathfrak{g}^{i} is again Q+Q_{+}-graded. Any basis of the free Lie superalgebra FLS(𝒳i)FLS(\mathcal{X}_{i}) can be pushed forward through the map Φ\Phi to 𝔤i\mathfrak{g}^{i} and the image will be a spanning set of 𝔤i\mathfrak{g}^{i}. We construct a basis for the root space 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} from this spanning set; This is the main theorem of this section. This is done by identifying the following combinatorial model from [1] with the set of super Lyndon heaps of weight 𝕜\mathbb{k}.

Ci(𝕜,G)={𝕨𝒳i:𝕨 is a super Lyndon word,wt(𝕨)=η(𝕜)},ι(𝕨)=ΦL(𝕨).C^{i}(\mathbb{k},G)=\{\mathbb{w}\in\mathcal{X}_{i}^{*}:\mathbb{w}\text{ is a super Lyndon word},\ \rm{wt}(\mathbb{w})=\eta(\mathbb{k})\},\ \ \iota(\mathbb{w})=\Phi\circ L(\mathbb{w}). (4.3)

The precise statement is given in the next subsection.

4.5. Theorem 6: LLN basis of BKM superalgebras

In this subsection, we state Theorem 6 and two main lemmas which are essential to prove this theorem. The proofs of these lemmas are postponed to the subsequent subsection.

Theorem 6.

The set {ι(𝕨):𝕨Ci(𝕜,G)}\left\{\iota(\mathbb{w}):\mathbb{w}\in C^{i}(\mathbb{k},G)\right\} is a basis of the root space 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})}. Moreover, if ki=1k_{i}=1, the set {e(𝕨):𝕨𝒳i,wt(𝕨)=η(𝕜)}\left\{e(\mathbb{w}):\mathbb{w}\in\mathcal{X}_{i},\ \rm{wt}(\mathbb{w})=\eta(\mathbb{k})\right\} forms a left-normed basis of 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})}.

Lemma 3.

The root space 𝔤η(𝕜)=𝔤η(𝕜)i\mathfrak{g}_{\eta(\mathbb{k})}=\mathfrak{g}_{\eta(\mathbb{k})}^{i} for 𝕜+[I]\mathbb{k}\in\mathbb{Z}_{+}[I] satisfying ki1k_{i}\leq 1 for iIreΨ0i\in I^{re}\sqcup\Psi_{0}.

Lemma 4.

With the notations as above we have

|Ci(𝕜,G)|=dimFLS𝕜(𝒳i)=dim𝒮𝕜(G,Ψ).|C^{i}(\mathbb{k},G)|=\dim FLS_{\mathbb{k}}(\mathcal{X}_{i})=\dim\mathcal{LS}_{\mathbb{k}}(G,\Psi).

From the above lemmas Theorem 6 can be deduced as follows. Since 𝔤η(𝕜)=𝔤η(𝕜)i\mathfrak{g}_{\eta(\mathbb{k})}=\mathfrak{g}_{\eta(\mathbb{k})}^{i} we get {ι(𝕨):𝕨Ci(𝕜,G)}\left\{\iota(\mathbb{w}):\mathbb{w}\in C^{i}(\mathbb{k},G)\right\} is a spanning set for 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} of cardinality equal to |Ci(𝕜,G)||C^{i}(\mathbb{k},G)|. Now, Lemmas 4 and 1 show that {ι(𝕨):𝕨Ci(𝕜,G)}\left\{\iota(\mathbb{w}):\mathbb{w}\in C^{i}(\mathbb{k},G)\right\} is in fact a basis.

4.6. Examples to Theorem 6

First, we explain Theorem 6 by an example before giving the proofs of the Lemmas 3 and 4.

Example 4.

Consider the root space 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} where η(𝕜)=3α3+3α6\eta(\mathbb{k})=3\alpha_{3}+3\alpha_{6} from Example 2. Fix i=3i=3. Super Lyndon words of weight η(𝕜)\eta(\mathbb{k}) in C3(𝕜,G)={𝕨χ3:wt(𝕨)=η(𝕜),𝕨 is super Lyndon}C^{3}(\mathbb{k},G)=\{\mathbb{w}\in\chi^{\ast}_{3}:\operatorname{wt}(\mathbb{w})=\eta(\mathbb{k}),\mathbb{w}\text{ is super Lyndon}\} are {336636,333666,336366}\{336636,333666,336366\} and {[[3,[[3,6],6]],[3,6]],[3,[3,[[[3,6],6],6]]],[3,[[3,6],[[3,6],6]]]}\{[[3,[[3,6],6]],[3,6]],[3,[3,[[[3,6],6],6]]],[3,[[3,6],[[3,6],6]]]\} spans 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})}. We have mult(η(𝕜))=3\operatorname{mult}(\eta(\mathbb{k}))=3 [c.f. Example 10]. So these Lie monomials form a basis for 𝔤η(𝕜).\mathfrak{g}_{\eta(\mathbb{k})}.

Example 5.

Consider the root space 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} where η(𝕜)=2α3+α4+2α5+α6\eta(\mathbb{k})=2\alpha_{3}+\alpha_{4}+2\alpha_{5}+\alpha_{6} from Example 3. Fix i=3i=3, observe that χ3={3,34,345,3456,344,34545,}\chi_{3}=\{3,34,345,3456,344,34545,\cdots\}. Only Lyndon words on χ3\chi_{3}^{\ast} of weight η(𝕜)\eta(\mathbb{k}) are {334556,334565}\{334556,334565\} with standard factorization 3|34556,3|345653|34556,3|34565 respectively. So the corresponding Lie monomials {[3,[[[[3,4],5],6],5]],[3,[[[[3,4],5],5],6]]}\{[3,[[[[3,4],5],6],5]],[3,[[[[3,4],5],5],6]]\} spans 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})}. We have mult(η(𝕜))=2\operatorname{mult}(\eta(\mathbb{k}))=2 [c.f. Example 11]. So these Lie monomials form a basis for 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})}.

4.7. Proof of Lemma 3

We claim that the root space 𝔤η(𝕜)=𝔤η(𝕜)i\mathfrak{g}_{\eta(\mathbb{k})}=\mathfrak{g}_{\eta(\mathbb{k})}^{i}. This is done in multiple steps. First, we claim that the left normed Lie words of weight 𝕜\mathbb{k} starting with a fixed iIi\in I spans 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})}. More precisely,

Lemma 5.

Fix an index iIi\in I. Then the root space 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} is spanned by the set of left normed lie words {e(𝕨):𝕨χi,wt(𝕨)=η(𝕜)}\{e(\mathbb{w}):\mathbb{w}\in\chi_{i}^{\ast},\operatorname{wt}(\mathbb{w})=\eta(\mathbb{k})\}.

Proof.

We observe that 𝕨χi\mathbb{w}\in\chi_{i}^{\ast} if, and only if, IA(𝕨)={i}\rm{IA}(\mathbb{w})=\{i\}. It is well-known that, the set ={e(𝕨):𝕨M𝕜(I,G)}\mathcal{B}=\{e(\mathbb{w}):\mathbb{w}\in M_{\mathbb{k}}(I,G)\} forms a spanning set for 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})}. We will prove that each element of \mathcal{B} can be written as linear combination of left normed Lie words e(𝕨)e(\mathbb{w}) satisfying wt(𝕨)=η(𝕜)\rm{wt}(\mathbb{w})=\eta(\mathbb{k}) and IA(𝕨)={i}\rm{IA}(\mathbb{w})=\{i\}. Let 𝕨=a1a2arM𝕜(I,G)\mathbb{w}=a_{1}a_{2}\cdots a_{r}\in M_{\mathbb{k}}(I,G). Assume that a1=ia_{1}=i. If |IA(𝕨)|>1|\rm{IA}(\mathbb{w})|>1 then e(𝕨)=0e(\mathbb{w})=0 and nothing to prove. If |IA(w)|=1|\rm{IA}(w)|=1 then we have IA(𝕨)={i}\rm{IA}(\mathbb{w})=\{i\} and the proof follows in this case. Assume a1ia_{1}\neq i and consider the set i(𝕨)={j:aj=i}i(\mathbb{w})=\{j:a_{j}=i\}. Assume min{i(𝕨)}=p+1\min\{i(\mathbb{w})\}=p+1 and set 𝕨=a1a2api\mathbb{w}^{\prime}=a_{1}a_{2}\cdots a_{p}i.

First, we claim that

e(𝕨)=\displaystyle e(\mathbb{w}^{\prime})= e(ia1a2ap)+j1=2pe(iaj1a1a2aj1^ap)+1<j2<j1pe(iaj1aj2a1a2aj2^aj1^ap)\displaystyle e(ia_{1}a_{2}\cdots a_{p})+\sum\limits_{j_{1}=2}^{p}e(ia_{j_{1}}a_{1}a_{2}\cdots\hat{a_{j_{1}}}\cdots a_{p})+\sum\limits_{1<j_{2}<j_{1}\leq p}e(ia_{j_{1}}a_{j_{2}}a_{1}a_{2}\cdots\hat{a_{j_{2}}}\cdots\hat{a_{j_{1}}}\cdots a_{p})
+1<j3<j2<j1pe(iaj1aj2aj3a1a2aj3^aj2^aj1^ap)\displaystyle+\sum\limits_{1<j_{3}<j_{2}<j_{1}\leq p}e(ia_{j_{1}}a_{j_{2}}a_{j_{3}}a_{1}a_{2}\cdots\hat{a_{j_{3}}}\cdots\hat{a_{j_{2}}}\cdots\hat{a_{j_{1}}}\cdots a_{p})
+1<j4<j3<j2<j1pe(iaj1aj2aj3aj4a1a2aj4^aj3^aj2^aj1^ap)+\displaystyle+\sum\limits_{1<j_{4}<j_{3}<j_{2}<j_{1}\leq p}e(ia_{j_{1}}a_{j_{2}}a_{j_{3}}a_{j_{4}}a_{1}a_{2}\cdots\hat{a_{j_{4}}}\cdots\hat{a_{j_{3}}}\cdots\hat{a_{j_{2}}}\cdots\hat{a_{j_{1}}}\cdots a_{p})+\cdots
+1<jp2<jp3<<j2<j1pe(iaj1aj2aj3ajp3ajp2a1a2ajp2^ajp3^aj2^aj1^ap)\displaystyle+\sum\limits_{1<j_{p-2}<j_{p-3}<\cdots<j_{2}<j_{1}\leq p}e(ia_{j_{1}}a_{j_{2}}a_{j_{3}}\cdots a_{j_{p-3}}a_{j_{p-2}}a_{1}a_{2}\cdots\hat{a_{j_{p-2}}}\cdots\hat{a_{j_{p-3}}}\cdots\hat{a_{j_{2}}}\cdots\hat{a_{j_{1}}}\cdots a_{p})
+e(iapap1a2a1)\displaystyle+e(ia_{p}a_{p-1}\cdots a_{2}a_{1})

where a^\hat{a} means the omission of the alphabet aa in the expression.

We explain the above equation with an example for better understanding. Consider the root space 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} where η(𝕜)=2α3+α4+2α5+α6\eta(\mathbb{k})=2\alpha_{3}+\alpha_{4}+2\alpha_{5}+\alpha_{6} from Example 3. Fix i=3i=3 and consider the word 𝕨=456353\mathbb{w}=456353. Then p=3p=3 and 𝕨=4563\mathbb{w^{\prime}}=4563. Now,

e(𝕨)\displaystyle e(\mathbb{w}^{\prime}) =[[[4,5],6],3]=[3,[[4,5],6]]=[[3,[4,5]],6][[4,5],[3,6]]\displaystyle=[[[4,5],6],3]=[3,[[4,5],6]]=[[3,[4,5]],6]-[[4,5],[3,6]]
=[[[3,4],5],6]+[[4,[3,5]],6][[4,5],[3,6]]\displaystyle=[[[3,4],5],6]+[[4,[3,5]],6]-[[4,5],[3,6]]
=[[[3,4],5],6][[[3,5],4],6]+[[3,6],[4,5]]\displaystyle=[[[3,4],5],6]-[[[3,5],4],6]+[[3,6],[4,5]]
=[[[3,4],5],6][[[3,5],4],6]+[[[3,6],4],5]+[4,[[3,6],5]]\displaystyle=[[[3,4],5],6]-[[[3,5],4],6]+[[[3,6],4],5]+[4,[[3,6],5]]
=[[[3,4],5],6][[[3,5],4],6]+[[[3,6],4],5][[[3,6],5],4]\displaystyle=[[[3,4],5],6]-[[[3,5],4],6]+[[[3,6],4],5]-[[[3,6],5],4]
=e(3456)e(3546)+e(3645)e(3654)\displaystyle=e(3456)-e(3546)+e(3645)-e(3654)

We do induction on pp. For p=1p=1, 𝕨=a1ie(𝕨)=[i,a1]=e(ia1)\mathbb{w^{\prime}}=a_{1}i\Rightarrow e(\mathbb{w^{\prime}})=[i,a_{1}]=e(ia_{1}). Assume that the result is true for p=k.p=k. Now consider p=k+1p=k+1

[[[[[[a1,a2],a3],a4],ak],ak+1],i]=[[[[[a1,a3]a4],,ak],ak+1],i][[[[[[a_{1},a_{2}],a_{3}],a_{4}]\cdots,a_{k}],a_{k+1}],i]=[[[[[a_{1}^{{}^{\prime}},a_{3}]a_{4}],\cdots,a_{k}],a_{k+1}],i] (4.4)

by taking [a1,a2]=a1[a_{1},a_{2}]=a_{1}^{{}^{\prime}}. Using the induction hypothesis on right hand side of the above equation we get

[[[[[[[a1,a3],a4],,ak],ak+1],i]=\displaystyle[[[[[[[a_{1}^{{}^{\prime}},a_{3}],a_{4}],\cdots,a_{k}],a_{k+1}],i]= (4.5)
e(ia1a3ak+1)+3jk+1e(iaja1a3aj^ak+1)\displaystyle e(ia_{1}^{{}^{\prime}}a_{3}\cdots a_{k+1})+\sum\limits_{3\leq j\leq k+1}e(ia_{j}a_{1}^{{}^{\prime}}a_{3}\cdots\hat{a_{j}}\cdots a_{k+1})
+3j2<j1k+1e(iaj1aj2a1a3aj2^aj1^ak+1)+\displaystyle+\sum\limits_{3\leq j_{2}<j_{1}\leq k+1}e(ia_{j_{1}}a_{j_{2}}a_{1}^{{}^{\prime}}a_{3}\cdots\hat{a_{j_{2}}}\cdots\hat{a_{j_{1}}}\cdots a_{k+1})+\cdots
+3jk1<<j2<j1k+1e(iaj1aj2aj3ajk1a1a3ajk1^aj2^aj1^ak+1)\displaystyle+\sum\limits_{3\leq j_{k-1}<\cdots<j_{2}<j_{1}\leq{k+1}}e(ia_{j_{1}}a_{j_{2}}a_{j_{3}}\cdots a_{j_{k-1}}a_{1}^{{}^{\prime}}a_{3}\cdots\hat{a_{j_{k-1}}}\cdots\hat{a_{j_{2}}}\cdots\hat{a_{j_{1}}}\cdots a_{k+1})
+e(iak+1aka1)\displaystyle+e(ia_{k+1}a_{k}\cdots a_{1}^{{}^{\prime}})

Now,

e(iaj1aj2ajta1)\displaystyle e(ia_{j_{1}}a_{j_{2}}\cdots a_{j_{t}}a_{1}^{{}^{\prime}}) =[[[[i,aj1],aj2],,ajt]x,[a1y,a2z]]\displaystyle=[\underbrace{[[[i,a_{j_{1}}],a_{j_{2}}],\cdots,a_{j_{t}}]}_{x},[\underbrace{a_{1}}_{y},\underbrace{a_{2}}_{z}]]
=[[[[[i,aj1],aj2],,ajt],a1],a2][[x,y],z]+[[[[[i,aj1],aj2],,ajt],a2],a1][[x,z],y]\displaystyle=\underbrace{[[[[[i,a_{j_{1}}],a_{j_{2}}],\cdots,a_{j_{t}}],a_{1}],a_{2}]}_{[[x,y],z]}+\underbrace{[[[[[i,a_{j_{1}}],a_{j_{2}}],\cdots,a_{j_{t}}],a_{2}],a_{1}]}_{[[x,z],y]}
=e(iaj1aj2ajta1a2)+e(iaj1aj2ajta2a1)\displaystyle=e(ia_{j_{1}}a_{j_{2}}\cdots a_{j_{t}}a_{1}a_{2})+e(ia_{j_{1}}a_{j_{2}}\cdots a_{j_{t}}a_{2}a_{1})
e(iaj1aj2ajta1a3ak+1)\displaystyle\Rightarrow e(ia_{j_{1}}a_{j_{2}}\cdots a_{j_{t}}a_{1}^{{}^{\prime}}a_{3}\cdots a_{k+1}) =[[[[[[i,aj1],aj2],ajt]a1]e(iaj1aj2ajta1),a3],ak+1]\displaystyle=[[\underbrace{[[[[i,a_{j_{1}}],a_{j_{2}}],\cdots a_{j_{t}}]a_{1}^{{}^{\prime}}]}_{e(ia_{j_{1}}a_{j_{2}}\cdots a_{j_{t}}a_{1}^{{}^{\prime}})},a_{3}],\cdots a_{k+1}]
=[[[e(iaj1aj2ajta1),a3],,ak+1]\displaystyle=[[[e(ia_{j_{1}}a_{j_{2}}\cdots a_{j_{t}}a_{1}^{{}^{\prime}}),a_{3}],\cdots,a_{k+1}]
=[[[e(iaj1aj2ajta1a2)+e(iaj1aj2ajta2a1),a3],,ak+1]\displaystyle=[[[e(ia_{j_{1}}a_{j_{2}}\cdots a_{j_{t}}a_{1}a_{2})+e(ia_{j_{1}}a_{j_{2}}\cdots a_{j_{t}}a_{2}a_{1}),a_{3}],\cdots,a_{k+1}]
=[[e(iaj1aj2..ajta1a2),a3],..,ak+1]+[[e(iaj1aj2..ajta2a1),a3]..,ak+1]\displaystyle=[[e(ia_{j_{1}}a_{j_{2}}..a_{j_{t}}a_{1}a_{2}),a_{3}],..,a_{k+1}]+[[e(ia_{j_{1}}a_{j_{2}}..a_{j_{t}}a_{2}a_{1}),a_{3}]..,a_{k+1}]
=e(iaj1aj2ajta1a2a3ak+1)+e(iaj1aj2ajta2a1a3ak+1)\displaystyle=e(ia_{j_{1}}a_{j_{2}}\cdots a_{j_{t}}a_{1}a_{2}a_{3}\cdots a_{k+1})+e(ia_{j_{1}}a_{j_{2}}\cdots a_{j_{t}}a_{2}a_{1}a_{3}\cdots a_{k+1})

Using this in Equation (4.5) we get

[[[[[a1,a3]a4],,ak],ak+1],i]=\displaystyle[[[[[a_{1}^{{}^{\prime}},a_{3}]a_{4}],\cdots,a_{k}],a_{k+1}],i]=
e(ia1a2a3ak+1)+e(ia2a1a3ak+1)\displaystyle e(ia_{1}a_{2}a_{3}\cdots a_{k+1})+e(ia_{2}a_{1}a_{3}\cdots a_{k+1})
+3jk+1(e(iaja1a2a3aj^ak+1)+e(iaja2a1a3aj^ak+1))\displaystyle+\sum\limits_{3\leq j\leq k+1}\left(e(ia_{j}a_{1}a_{2}a_{3}\cdots\hat{a_{j}}\cdots a_{k+1})+e(ia_{j}a_{2}a_{1}a_{3}\cdots\hat{a_{j}}\cdots a_{k+1})\right)
+3j2<j1k+1(e(iaj1aj2a1a2a3aj2^aj1^ak+1)+e(iaj1aj2a2a1a3aj2^aj1^ak+1))+\displaystyle+\sum\limits_{3\leq j_{2}<j_{1}\leq k+1}\left(e(ia_{j_{1}}a_{j_{2}}a_{1}a_{2}a_{3}\cdots\hat{a_{j_{2}}}\cdots\hat{a_{j_{1}}}\cdots a_{k+1})+e(ia_{j_{1}}a_{j_{2}}a_{2}a_{1}a_{3}\cdots\hat{a_{j_{2}}}\cdots\hat{a_{j_{1}}}\cdots a_{k+1})\right)+\cdots
+3jk1<<j2<j1k+1e(iaj1aj2aj3ajk1a1a2ajk1^aj2^aj1^ak+1)\displaystyle+\sum\limits_{3\leq j_{k-1}<\cdots<j_{2}<j_{1}\leq{k+1}}e(ia_{j_{1}}a_{j_{2}}a_{j_{3}}\cdots a_{j_{k-1}}a_{1}a_{2}\cdots\hat{a_{j_{k-1}}}\cdots\hat{a_{j_{2}}}\cdots\hat{a_{j_{1}}}\cdots a_{k+1})
+e(iaj1aj2aj3ajk1a2a1ajk1^aj2^aj1^ak+1)\displaystyle+e(ia_{j_{1}}a_{j_{2}}a_{j_{3}}\cdots a_{j_{k-1}}a_{2}a_{1}\cdots\hat{a_{j_{k-1}}}\cdots\hat{a_{j_{2}}}\cdots\hat{a_{j_{1}}}\cdots a_{k+1})
+(e(iak+1aka1a2)+e(iak+1aka2a1))\displaystyle+\left(e(ia_{k+1}a_{k}\cdots a_{1}a_{2})+e(ia_{k+1}a_{k}\cdots a_{2}a_{1})\right)
=(e(ia1a2a3ak+1)+e(ia2a1a3ak+1)+3jk+1e(iaja1a2a3aj^ak+1))\displaystyle=\left(e(ia_{1}a_{2}a_{3}\cdots a_{k+1})+e(ia_{2}a_{1}a_{3}\cdots a_{k+1})+\sum\limits_{3\leq j\leq k+1}e(ia_{j}a_{1}a_{2}a_{3}\cdots\hat{a_{j}}\cdots a_{k+1})\right)
+(3jk+1e(iaja2a1a3aj^ak+1)+3j2<j1k+1e(iaj1aj2a1a2a3aj2^aj1^ak+1))\displaystyle+\left(\sum\limits_{3\leq j\leq k+1}e(ia_{j}a_{2}a_{1}a_{3}\cdots\hat{a_{j}}\cdots a_{k+1})+\sum\limits_{3\leq j_{2}<j_{1}\leq k+1}e(ia_{j_{1}}a_{j_{2}}a_{1}a_{2}a_{3}\cdots\hat{a_{j_{2}}}\cdots\hat{a_{j_{1}}}\cdots a_{k+1})\right)
+(3j2<j1k+1e(iaj1aj2a2a1a3aj2^aj1^ak+1)+\displaystyle+(\sum\limits_{3\leq j_{2}<j_{1}\leq k+1}e(ia_{j_{1}}a_{j_{2}}a_{2}a_{1}a_{3}\cdots\hat{a_{j_{2}}}\cdots\hat{a_{j_{1}}}\cdots a_{k+1})+
3j3<j2<j1k+1e(iaj1aj2aj3a2a1a3aj3^aj2^aj1^ak+1))++\displaystyle\sum\limits_{3\leq j_{3}<j_{2}<j_{1}\leq k+1}e(ia_{j_{1}}a_{j_{2}}a_{j_{3}}a_{2}a_{1}a_{3}\cdots\hat{a_{j_{3}}}\cdots\hat{a_{j_{2}}}\cdots\hat{a_{j_{1}}}\cdots a_{k+1}))+\cdots+
+(3jk1<<j2<j1k+1e(iaj1aj2aj3ajk1a2a1ajk1^aj2^aj1^ak+1)+e(iak+1aka1a2))\displaystyle+\left(\sum\limits_{3\leq j_{k-1}<\cdots<j_{2}<j_{1}\leq{k+1}}e(ia_{j_{1}}a_{j_{2}}a_{j_{3}}\cdots a_{j_{k-1}}a_{2}a_{1}\cdots\hat{a_{j_{k-1}}}\cdots\hat{a_{j_{2}}}\cdots\hat{a_{j_{1}}}\cdots a_{k+1})+e(ia_{k+1}a_{k}\cdots a_{1}a_{2})\right)
+e(iak+1aka2a1)\displaystyle+e(ia_{k+1}a_{k}\cdots a_{2}a_{1})
=\displaystyle= j=1k+1e(iaja1a2aj^ak+1)+1<j2<j1k+1e(iaj1aj2a1a2aj2^aj1^ak+1)\displaystyle\sum\limits_{j=1}^{k+1}e(ia_{j}a_{1}a_{2}\cdots\hat{a_{j}}\cdots a_{k+1})+\sum\limits_{1<j_{2}<j_{1}\leq k+1}e(ia_{j_{1}}a_{j_{2}}a_{1}a_{2}\cdots\hat{a_{j_{2}}}\cdots\hat{a_{j_{1}}}\cdots a_{k+1})
+1<j3<j2<j1k+1e(iaj1aj2aj3a1a2aj3^aj2^aj1^ak+1)++\displaystyle+\sum\limits_{1<j_{3}<j_{2}<j_{1}\leq k+1}e(ia_{j_{1}}a_{j_{2}}a_{j_{3}}a_{1}a_{2}\cdots\hat{a_{j_{3}}}\cdots\hat{a_{j_{2}}}\cdots\hat{a_{j_{1}}}\cdots a_{k+1})+\cdots+
+1<jk1<<j2<j1k+1e(iaj1aj2aj3ajk1a1a2ajk1^aj2^aj1^ak+1)\displaystyle+\sum\limits_{1<j_{k-1}<\cdots<j_{2}<j_{1}\leq{k+1}}e(ia_{j_{1}}a_{j_{2}}a_{j_{3}}\cdots a_{j_{k-1}}a_{1}a_{2}\cdots\hat{a_{j_{k-1}}}\cdots\hat{a_{j_{2}}}\cdots\hat{a_{j_{1}}}\cdots a_{k+1})
+e(iak+1aka2a1)\displaystyle+e(ia_{k+1}a_{k}\cdots a_{2}a_{1})

Thus the result is true for p=k+1. This proves our claim. From this claim proof of the lemma follows from the following steps.

e(𝕨)=\displaystyle e(\mathbb{w}^{\prime})= e(ia1a2ap)+j1=2pe(𝕨j1)+1<j2<j1pe(𝕨j1j2)+1<j3<j2<j1pe(𝕨j1j2j3)++\displaystyle e(ia_{1}a_{2}\cdots a_{p})+\sum\limits_{j_{1}=2}^{p}e(\mathbb{w}_{j_{1}})+\sum\limits_{1<j_{2}<j_{1}\leq p}e(\mathbb{w}_{j_{1}j_{2}})+\sum\limits_{1<j_{3}<j_{2}<j_{1}\leq p}e(\mathbb{w}_{j_{1}j_{2}j_{3}})+\cdots+
+e(𝕨p(p1)21)\displaystyle+e(\mathbb{w}_{p(p-1)\cdots 2\cdot 1})

where 𝕨j1j2jl=(iaj1aj2ajla1a2ajl^ajl1^aj1^ap).\mathbb{w}_{j_{1}j_{2}\cdots j_{l}}=(ia_{j_{1}}a_{j_{2}}\cdots a_{j_{l}}a_{1}a_{2}\cdots\hat{a_{j_{l}}}\cdots\hat{a_{j_{l-1}}}\cdots\hat{a_{j_{1}}}\cdots a_{p}). We observe that all the words 𝕨j1,jm\mathbb{w}_{j_{1},\dots j_{m}} have the same weight and belongs to χi\chi_{i}. This is because if some ajpa_{j_{p}} commutes with i,aj1,aj2,,ajp1i,a_{j_{1}},a_{j_{2}},\cdots,a_{j_{p-1}} then e(𝕨j1j2jl)=0e(\mathbb{w}_{j_{1}j_{2}\cdots j_{l}})=0 . In our example, e(𝕨)=e(𝕨𝟜)+e(𝕨𝟜𝟚)+e(𝕨𝟜𝟛)+e(𝕨𝟜𝟛𝟚) where 𝕨=a1a2a3a4=4563e(\mathbb{w}^{\prime})=e(\mathbb{w^{\prime}_{4}})+e(\mathbb{w^{\prime}_{42}})+e(\mathbb{w^{\prime}_{43}})+e(\mathbb{w^{\prime}_{432}})\,\,\text{ where }\mathbb{w}^{\prime}=a_{1}a_{2}a_{3}a_{4}=4563. Now, By the linearity property of the brackets we have

e(𝕨ap+2)=j1=1pe(𝕨j1ap+2)+1<j2<j1pe(𝕨j1j2ap+2)+1<j3<j2<j1pe(𝕨j1j2j3ap+2)+++e(𝕨p(p1)2.1ap+2)e(\mathbb{w}^{\prime}\cdot a_{p+2})=\sum\limits_{j_{1}=1}^{p}e(\mathbb{w}_{j_{1}}\cdot a_{p+2})+\sum\limits_{1<j_{2}<j_{1}\leq p}e(\mathbb{w}_{j_{1}j_{2}}\cdot a_{p+2})+\sum\limits_{1<j_{3}<j_{2}<j_{1}\leq p}e(\mathbb{w}_{j_{1}j_{2}j_{3}}\cdot a_{p+2})++\cdots+e(\mathbb{w}_{p(p-1)\cdots 2.1}\cdot a_{p+2}).

Similarly, we can add all the remaining alphabets ap+3,,ara_{p+3},\dots,a_{r} to the above expression. This will give us

e(𝕨)=𝕦𝒳iwt(𝕦)=η(𝕜)α(𝕦)e(𝕦) for some scalars α(𝕦).e(\mathbb{w})=\sum\limits_{\begin{subarray}{c}\mathbb{u}\in\mathcal{X}_{i}^{*}\\ \rm{wt}(\mathbb{u})=\eta(\mathbb{k})\end{subarray}}\alpha(\mathbb{u})e(\mathbb{u})\text{ for some scalars }\alpha(\mathbb{u}).

In our example,

e(𝕨.5)\displaystyle e(\mathbb{w^{\prime}}.5) =[[[[4,5],6],3],5]=[e(𝕨),5]\displaystyle=[[[[4,5],6],3],5]=[e(\mathbb{w^{\prime}}),5]
=[e(3456)e(3546)+e(3645)e(3654),5]\displaystyle=[e(3456)-e(3546)+e(3645)-e(3654),5]
=[e(3456),5][e(3546),5]+[e(3645),5][e(3654),5]\displaystyle=[e(3456),5]-[e(3546),5]+[e(3645),5]-[e(3654),5]
=e(34565)e(35465)+e(36455)e(36545)\displaystyle=e(34565)-e(35465)+e(36455)-e(36545)

Thus

e(𝕨)\displaystyle e(\mathbb{w}) =[e(45635),3]=[e(𝕨.5),3]\displaystyle=[e(45635),3]=[e(\mathbb{w^{\prime}}.5),3]
=[e(34565)e(35465)+e(36455)e(36545),3]\displaystyle=[e(34565)-e(35465)+e(36455)-e(36545),3]
=[e(34565),3][e(35465),3]+[e(36455),3][e(36545),3]\displaystyle=[e(34565),3]-[e(35465),3]+[e(36455),3]-[e(36545),3]
=e(345653)e(354653)+e(364553)e(365453)\displaystyle=e(345653)-e(354653)+e(364553)-e(365453)

This completes the proof. ∎

Lemma 6.

If 𝕦𝕧χi\mathbb{u}\neq\mathbb{v}\in\chi_{i}^{*} are Lyndon words then exactly one element of the set {𝕦𝕧,𝕧𝕦}\{\mathbb{u}\mathbb{v},\mathbb{v}\mathbb{u}\} is Lyndon.

Proof.

We observe that if 𝕦<𝕧\mathbb{u}<\mathbb{v} then 𝕦𝕧\mathbb{u}\mathbb{v} is Lyndon otherwise 𝕧𝕦\mathbb{v}\mathbb{u} is Lyndon. ∎

Lemma 7.

If 𝕨,𝕨~𝒳i\mathbb{w},\mathbb{\tilde{w}}\in\mathcal{X}_{i}^{*} are Lyndon words with standard factorization 𝕨=𝕦𝟙𝕦𝟚,𝕨~=𝕧𝟙𝕧𝟚\mathbb{w}=\mathbb{u_{1}u_{2}},\,\mathbb{\tilde{w}}=\mathbb{v_{1}v_{2}}. Assume that 𝕨𝕨~\mathbb{w}\mathbb{\tilde{w}} is a Lyndon word. Then

[L(𝕨),L(𝕨~)]span{L(Ci(wt(𝕨𝕨~)),G)}[L(\mathbb{w}),L(\mathbb{\tilde{w}})]\in\rm{span}\{L(C^{i}(\rm{wt}(\mathbb{w}\tilde{\mathbb{w}})),G)\}
Proof.

We have two possibles situations: either 𝕦𝟚𝕨~\mathbb{u_{2}}\geq\mathbb{\tilde{w}} or 𝕦𝟚<𝕨~.\mathbb{u_{2}}<\mathbb{\tilde{w}}.

If 𝕦𝟚𝕨~\mathbb{u_{2}}\geq\mathbb{\tilde{w}} then 𝕦𝟙𝕦𝟚|𝕧𝟙𝕧𝟚\mathbb{u_{1}u_{2}}|\mathbb{v_{1}v_{2}} is the standard factorization of 𝕨𝕨~\mathbb{w}\mathbb{\tilde{w}}. Observe that 𝕦𝟙𝕦𝟚𝟙|𝕦𝟚𝟚𝕧𝟙𝕧𝟚\mathbb{u_{1}u_{21}}|\mathbb{u_{22}v_{1}v_{2}} can’t be standard factorization for some standard factorization 𝕦𝟚=𝕦𝟚𝟙𝕦𝟚𝟚\mathbb{u_{2}}=\mathbb{u_{21}}\mathbb{u_{22}} as 𝕦𝟚𝟚<𝕨~𝕦𝟚=𝕦𝟚𝟙𝕦𝟚𝟚\mathbb{u_{22}}<\mathbb{\tilde{w}}\leq\mathbb{u_{2}}=\mathbb{u_{21}}\mathbb{u_{22}} means 𝕦𝟚𝟚<𝕦𝟚𝟙\mathbb{u_{22}}<\mathbb{u_{21}} i.e. 𝕦𝟚=𝕦𝟚𝟙𝕦𝟚𝟚\mathbb{u_{2}}=\mathbb{u_{21}}\mathbb{u_{22}} can’t be a Lyndon word. From this observation, the proof is immediate in this case: We have 𝕨𝕨~=𝕦𝟙𝕦𝟚|𝕧𝟙𝕧𝟚\mathbb{w}\mathbb{\tilde{w}}=\mathbb{u_{1}u_{2}}|\mathbb{v_{1}v_{2}} is the standard factorization and [L(𝕨),L(𝕨~)]=L(𝕨𝕨~)span{L(Ci(wt(𝕨𝕨~)),G)}.[L(\mathbb{w}),L(\mathbb{\tilde{w}})]=L(\mathbb{w}\mathbb{\tilde{w}})\in\rm{span}\{L(C^{i}(\rm{wt}(\mathbb{w\tilde{w}})),G)\}.

If 𝕦𝟚<𝕨~\mathbb{u_{2}}<\mathbb{\tilde{w}} then 𝕦𝟙|𝕦𝟚𝕧𝟙𝕧𝟚\mathbb{u_{1}}|\mathbb{u_{2}v_{1}v_{2}} is the standard factorization of 𝕨𝕨~\mathbb{w\tilde{w}}. Observe that 𝕦𝟙𝟙|𝕦𝟙𝟚𝕦𝟚𝕧𝟙𝕧𝟚\mathbb{u_{11}}|\mathbb{u_{12}u_{2}v_{1}v_{2}} can’t be the standard factorization for some standard factorization of 𝕦𝟙=𝕦𝟙𝟙}boldu12\mathbb{u_{1}}=\mathbb{u_{11}}\}bold{u_{12}} as 𝕦𝟙𝟚<𝕦𝟚\mathbb{u_{12}}<\mathbb{u_{2}} means 𝕦𝟙𝟚𝕦𝟚\mathbb{u_{12}}\mathbb{u_{2}} is the longest right factor of 𝕨=𝕦𝟙𝟙𝕦𝟙𝟚𝕦𝟚\mathbb{w}=\mathbb{u_{11}}\mathbb{u_{12}}\mathbb{u_{2}} which contradicts the statement: 𝕨=𝕦𝟙𝕦𝟚\mathbb{w}=\mathbb{u_{1}u_{2}} is the standard factorization.

If 𝕨𝕨~=𝕦𝟙|𝕦𝟚𝕧𝟙𝕧𝟚\mathbb{w}\mathbb{\tilde{w}}=\mathbb{u_{1}}|\mathbb{u_{2}v_{1}v_{2}} is standard factorization then

[L(𝕨),L(𝕨~)]\displaystyle[L(\mathbb{w}),L(\mathbb{\tilde{w}})] =[L(𝕦𝟙𝕦𝟚),L(𝕨~)]\displaystyle=[L(\mathbb{u_{1}u_{2}}),L(\mathbb{\tilde{w}})]
=[[L(𝕦𝟙),L(𝕦𝟚)],L(𝕨~)]\displaystyle=[[L(\mathbb{u_{1}}),L(\mathbb{u_{2}})],L(\mathbb{\tilde{w}})]
=[L(𝕦𝟙),[L(𝕦𝟚),L(𝕨~)]+[[L(𝕦𝟙),L(𝕨~)],L(𝕦𝟚)]\displaystyle=[L(\mathbb{u_{1}}),[L(\mathbb{u_{2}}),L(\mathbb{\tilde{w}})]+[[L(\mathbb{u_{1}}),L(\mathbb{\tilde{w}})],L(\mathbb{u_{2}})]

subcase(i):- If 𝕦𝟚𝕨~\mathbb{u_{2}}\mathbb{\tilde{w}} is Lyndon word with standard factorization 𝕦𝟚|𝕨~\mathbb{u_{2}}|\mathbb{\tilde{w}} and 𝕦𝟙𝕨~\mathbb{u_{1}}\mathbb{\tilde{w}} is a Lyndon word with standard factorization 𝕦𝟙|𝕨~\mathbb{u_{1}}|\mathbb{\tilde{w}} then

[L(𝕨),L(𝕨~)]\displaystyle[L(\mathbb{w}),L(\mathbb{\tilde{w}})] =[L(𝕦𝟙),L(𝕦𝟚𝕨~)]+[L(𝕦𝟙𝕨~),L(𝕦𝟚)]\displaystyle=[L(\mathbb{u_{1}}),L(\mathbb{u_{2}}\mathbb{\tilde{w}})]+[L(\mathbb{u_{1}}\mathbb{\tilde{w}}),L(\mathbb{u_{2}})]
=[L(𝕦𝟙),L(𝕦𝟚𝕨~)]+L(𝕦𝟙𝕨~𝕦𝟚)\displaystyle=[L(\mathbb{u_{1}}),L(\mathbb{u_{2}}\mathbb{\tilde{w}})]+L(\mathbb{u_{1}}\mathbb{\tilde{w}}\mathbb{u_{2}})
as 𝕦𝟚<𝕨~ so 𝕦𝟙𝕨~|𝕦𝟚 is standard factorization.\displaystyle\text{as }\mathbb{u_{2}}<\mathbb{\tilde{w}}\text{ so }\mathbb{u_{1}}\mathbb{\tilde{w}}|\mathbb{u_{2}}\text{ is standard factorization}.

Now repeat the above procedure again on [L(𝕦𝟙),L(𝕦𝟚𝕨~)][L(\mathbb{u_{1}}),L(\mathbb{u_{2}}\mathbb{\tilde{w}})]. Continue this procedure on the subsequent terms till we get the term like [L(𝕧𝟙),L(𝕧𝟚)][L(\mathbb{v_{1}}),L(\mathbb{v_{2}})] where 𝕧𝟙,𝕧𝟚\mathbb{v_{1}},\mathbb{v_{2}} are Lyndon words with 𝕧𝟙χi.\mathbb{v_{1}}\in\chi_{i}. This is possible since wt(𝕦𝟙)<wt(𝕨)wt(\mathbb{u_{1}})<wt(\mathbb{w}).

subcase(ii):- If 𝕦𝟚𝕨~\mathbb{u_{2}}\mathbb{\tilde{w}} is Lyndon word with standard factorization 𝕦𝟚𝟙|𝕦𝟚𝟚𝕨~\mathbb{u_{21}}|\mathbb{u_{22}}\mathbb{\tilde{w}} for standard factorization 𝕦𝟚=𝕦𝟚𝟙𝕦𝟚𝟚\mathbb{u_{2}}=\mathbb{u_{21}}\mathbb{u_{22}} and 𝕦𝟙𝕨~\mathbb{u_{1}}\mathbb{\tilde{w}} is Lyndon word with standard factorization 𝕦𝟙|𝕨~\mathbb{u_{1}}|\mathbb{\tilde{w}} then

=[L(𝕦𝟙),[[L(𝕦𝟚𝟙),L(𝕦𝟚𝟚)],L(𝕨~)]]+[L(𝕦𝟙𝕨~),L(𝕦𝟚)]\displaystyle=[L(\mathbb{u_{1}}),[[L(\mathbb{u_{21}}),L(\mathbb{u_{22}})],L(\mathbb{\tilde{w}})]]+[L(\mathbb{u_{1}}\mathbb{\tilde{w}}),L(\mathbb{u_{2}})]
=[L(𝕦𝟙),[[L(𝕦𝟚𝟙),L(𝕨~)],L(𝕦𝟚𝟚)]]+[L(𝕦𝟙),[L(𝕦𝟚𝟙),[L(𝕦𝟚𝟚),L(𝕨~)]]]+L(𝕦𝟙𝕨~𝕦𝟚)\displaystyle=[L(\mathbb{u_{1}}),[[L(\mathbb{u_{21}}),L(\mathbb{\tilde{w}})],L(\mathbb{u_{22}})]]+[L(\mathbb{u_{1}}),[L(\mathbb{u_{21}}),[L(\mathbb{u_{22}}),L(\mathbb{\tilde{w}})]]]+L(\mathbb{u_{1}}\mathbb{\tilde{w}}\mathbb{u_{2}})

Repeat the above procedure firstly for [L(𝕦𝟚𝟙),L(𝕨~)],[L(𝕦𝟚𝟚),L(𝕨~)][L(\mathbb{u_{21}}),L(\mathbb{\tilde{w}})],[L(\mathbb{u_{22}}),L(\mathbb{\tilde{w}})], then using this in the above equation and repeat the procedure for subsequent terms and so on. This process will end when we got terms like [L(𝕧𝟙),L(𝕧𝟚)][L(\mathbb{v_{1}}),L(\mathbb{v_{2}})] where 𝕧𝟙,𝕧𝟚\mathbb{v_{1}},\mathbb{v_{2}} are Lyndon words with 𝕧𝟙χi.\mathbb{v_{1}}\in\chi_{i}.

subcase(iii):- If 𝕦𝟚𝕨~\mathbb{u_{2}}\mathbb{\tilde{w}} is Lyndon word with standard factorization 𝕦𝟚𝟙|𝕦𝟚𝟚𝕨~\mathbb{u_{21}}|\mathbb{u_{22}}\mathbb{\tilde{w}} for the standard factorization 𝕦𝟚=𝕦𝟚𝟙𝕦𝟚𝟚\mathbb{u_{2}}=\mathbb{u_{21}}\mathbb{u_{22}} and 𝕦𝟙𝕨~\mathbb{u_{1}}\mathbb{\tilde{w}} is Lyndon word with standard factorization 𝕦𝟙𝟙|𝕦𝟙𝟚𝕨~\mathbb{u_{11}}|\mathbb{u_{12}}\mathbb{\tilde{w}} for standard factorization 𝕦𝟙=𝕦𝟙𝟙𝕦𝟙𝟚\mathbb{u_{1}}=\mathbb{u_{11}}\mathbb{u_{12}} then

=[L(𝕦𝟙),[[L(𝕦𝟚𝟙),L(𝕦𝟚𝟚)],L(𝕨~)]]+[[[L(𝕦𝟙𝟙),L(𝕦𝟙𝟚)],L(𝕨~)],L(𝕦𝟚)]\displaystyle=[L(\mathbb{u_{1}}),[[L(\mathbb{u_{21}}),L(\mathbb{u_{22}})],L(\mathbb{\tilde{w}})]]+[[[L(\mathbb{u_{11}}),L(\mathbb{u_{12}})],L(\mathbb{\tilde{w}})],L(\mathbb{u_{2}})]
=[L(𝕦𝟙),[[L(𝕦𝟚𝟙),L(𝕨~)],L(𝕦𝟚𝟚)]]+[L(𝕦𝟙),[L(𝕦𝟚𝟙),[L(𝕦𝟚𝟚),L(𝕨~)]]]\displaystyle=[L(\mathbb{u_{1}}),[[L(\mathbb{u_{21}}),L(\mathbb{\tilde{w}})],L(\mathbb{u_{22}})]]+[L(\mathbb{u_{1}}),[L(\mathbb{u_{21}}),[L(\mathbb{u_{22}}),L(\mathbb{\tilde{w}})]]]
+[[L(𝕦𝟙𝟙),[L(𝕦𝟙𝟚),L(𝕨~)]],L(𝕦𝟚)]+[[[L(𝕦𝟙𝟙),L(𝕨~)],L(𝕦𝟙𝟚)],L(𝕦𝟙)]\displaystyle+[[L(\mathbb{u_{11}}),[L(\mathbb{u_{12}}),L(\mathbb{\tilde{w}})]],L(\mathbb{u_{2}})]+[[[L(\mathbb{u_{11}}),L(\mathbb{\tilde{w}})],L(\mathbb{u_{12}})],L(\mathbb{u_{1}})]

Repeat the above procedure firstly for [L(𝕦𝟙𝟚),L(𝕨~)],[L(𝕦𝟙𝟙),L(𝕨~)][L(\mathbb{u_{12}}),L(\mathbb{\tilde{w}})],[L(\mathbb{u_{11}}),L(\mathbb{\tilde{w}})], then using this in the above equation and repeat the procedure for subsequent terms and so on. This process will end when we got terms like [L(𝕧𝟙),L(𝕧𝟚)][L(\mathbb{v_{1}}),L(\mathbb{v_{2}})] where 𝕧𝟙,𝕧𝟚\mathbb{v_{1}},\mathbb{v_{2}} are super Lyndon words with 𝕧𝟙χi.\mathbb{v_{1}}\in\chi_{i}.

The following example explains the above lemma.

Example 6.

Consider the root space 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} where η(𝕜)=2α3+α4+2α5+α6\eta(\mathbb{k})=2\alpha_{3}+\alpha_{4}+2\alpha_{5}+\alpha_{6} from Example 3. Fix i=3i=3 . Let 𝕨=334345,𝕨=34635364χ3\mathbb{w}=334345,\mathbb{w}^{\prime}=34635364\in\chi_{3}^{\ast} then 𝕨=3|34345=𝕦𝟙𝕦𝟚,𝕨=346|35364=v1v2\mathbb{w}=3|34345=\mathbb{u_{1}}\mathbb{u_{2}},\mathbb{w}^{\prime}=346|35364=v_{1}v_{2} are the standard factorizations . Thus L(𝕨)=[L(𝕦𝟙),L(𝕦𝟚)]=[3,[34,345]]L(\mathbb{w})=[L(\mathbb{u_{1}}),L(\mathbb{u_{2}})]=[3,[34,345]] and L(𝕨)=[L(𝕧𝟙),L(𝕧𝟚)]=[346,[35,364]]L(\mathbb{w}^{\prime})=[L(\mathbb{v_{1}}),L(\mathbb{v_{2}})]=[346,[35,364]]. Since 𝕨𝕨=334345u1u234635364𝕨=3𝕦𝟙|3434534635364𝕦𝟚𝕨\mathbb{w}\mathbb{w}^{\prime}=\underbrace{334345}_{u_{1}u_{2}}\underbrace{34635364}_{\mathbb{w}^{\prime}}=\underbrace{3}_{\mathbb{u_{1}}}|\underbrace{3434534635364}_{\mathbb{u_{2}}\mathbb{w}^{\prime}} is the standard factorization, we have

[L(𝕨),L(𝕨)][L(\mathbb{w}),L(\mathbb{w}^{\prime})]

=[[L(3),L(34345)][L(𝕦𝟙),L(𝕦𝟚)],L(34635364)L(𝕨)]\displaystyle=[\underbrace{[L(3),L(34345)]}_{[L(\mathbb{u_{1}}),L(\mathbb{u_{2}})]},\underbrace{L(34635364)}_{L(\mathbb{w}^{\prime})}]
=[L(3),[L(34345),L(34635364)]][L(𝕦𝟙),[L(𝕦𝟚),L(𝕨)]]+[[L(3),L(34635364)],L(34345)][[L(𝕦𝟙),L(𝕨)],L(𝕦𝟚)]\displaystyle=\underbrace{[L(3),[L(34345),L(34635364)]]}_{[L(\mathbb{u_{1}}),[L(\mathbb{u_{2}}),L(\mathbb{w}^{\prime})]]}+\underbrace{[[L(3),L(34635364)],L(34345)]}_{[[L(\mathbb{u_{1}}),L(\mathbb{w}^{\prime})],L(\mathbb{u_{2}})]}
=[L(3),[[L(34),L(345)],L(34635364)]][L(𝕦𝟙),[[L(𝕦𝟚𝟙),L(𝕦𝟚𝟚)],L(𝕨)]]+[L(334635364),L(34345)][L(𝕦𝟙𝕨),L(𝕦𝟚)]\displaystyle=\underbrace{[L(3),[[L(34),L(345)],L(34635364)]]}_{[L(\mathbb{u_{1}}),[[L(\mathbb{u_{21}}),L(\mathbb{u_{22}})],L(\mathbb{w}^{\prime})]]}+\underbrace{[L(334635364),L(34345)]}_{[L(\mathbb{u_{1}}\mathbb{w}^{\prime}),L(\mathbb{u_{2}})]}
=[L(3),[[L(34),L(34635364)],L(345)]+[L(34),[L(345),L(34635364)]][[L(𝕦𝟚𝟙),L(𝕨)],L(𝕦𝟚𝟚)]+[L(𝕦𝟚𝟙),[L(𝕦𝟚𝟚),L(𝕨)]]]+L(33463536434345)L(𝕦𝟙𝕨𝕦𝟚)\displaystyle=[L(3),\underbrace{[[L(34),L(34635364)],L(345)]+[L(34),[L(345),L(34635364)]]}_{[[L(\mathbb{u_{21}}),L(\mathbb{w}^{\prime})],L(\mathbb{u_{22}})]+[L(\mathbb{u_{21}}),[L(\mathbb{u_{22}}),L(\mathbb{w}^{\prime})]]}]+\underbrace{L(33463536434345)}_{L(\mathbb{u_{1}}\mathbb{w}^{\prime}\mathbb{u_{2}})}
=[L(3),[L(3434635364),L(345)]+[L(34),L(34534635364)][L(𝕦𝟚𝟙𝕨),L(𝕦𝟚𝟚)]+[L(𝕦𝟚𝟙𝕦𝟚𝟚),L(𝕨)]]+L(33463536434345)L(𝕦𝟙𝕨𝕦𝟚)\displaystyle=[L(3),\underbrace{[L(3434635364),L(345)]+[L(34),L(34534635364)]}_{[L(\mathbb{u_{21}}\mathbb{w}^{\prime}),L(\mathbb{u_{22}})]+[L(\mathbb{u_{21}}\mathbb{u_{22}}),L(\mathbb{w}^{\prime})]}]+\underbrace{L(33463536434345)}_{L(\mathbb{u_{1}}\mathbb{w}^{\prime}\mathbb{u_{2}})}
=[L(3),L(3434635364345)+L(3434534635364)L(𝕦𝟚𝟙𝕨𝕦𝟚𝟚)+L(𝕦𝟚𝟙𝕦𝟚𝟚)𝕨)]+L(33463536434345)L(𝕦𝟙𝕨𝕦𝟚)\displaystyle=[L(3),\underbrace{L(3434635364345)+L(3434534635364)}_{L(\mathbb{u_{21}}\mathbb{w}^{\prime}\mathbb{u_{22}})+L(\mathbb{u_{21}}\mathbb{u_{22}})\mathbb{w}^{\prime})}]+\underbrace{L(33463536434345)}_{L(\mathbb{u_{1}}\mathbb{w}^{\prime}\mathbb{u_{2}})}
=L(33434635364345)L(𝕦𝟙𝕦𝟚𝟙𝕨𝕦𝟚𝟚)+L(33434534635364)L(𝕦𝟙𝕦𝟚𝟙𝕦𝟚𝟚𝕨)+L(33463536434345)L(𝕦𝟙𝕨𝕦𝟚)\displaystyle=\underbrace{L(33434635364345)}_{L(\mathbb{u_{1}}\mathbb{u_{21}}\mathbb{w}^{\prime}\mathbb{u_{22}})}+\underbrace{L(33434534635364)}_{L(\mathbb{u_{1}}\mathbb{u_{21}}\mathbb{u_{22}}\mathbb{w}^{\prime})}+\underbrace{L(33463536434345)}_{L(\mathbb{u_{1}}\mathbb{w}^{\prime}\mathbb{u_{2}})}
Example 7.

Let I={1,2,3,4,5,6},Ψ={3,5},I1={3,5},I0={1,2,4,6},Ire={1,4},η(𝕜)=2α3+α4+2α5+α6I=\{1,2,3,4,5,6\},\,{\Psi=\{3,5\},I_{1}=\{3,5\}},I_{0}=\{1,2,4,6\},I^{re}=\{1,4\},\eta(\mathbb{k})=2\alpha_{3}+\alpha_{4}+2\alpha_{5}+\alpha_{6}. Fix i=3i=3 . Let 𝕨=334365,𝕨=34635364χ3\mathbb{w}=334365,\mathbb{w}^{\prime}=34635364\in\chi_{3}^{\ast} then 𝕨=3|34365=𝕦𝟙𝕦𝟚,𝕨=346|35364=𝕧𝟙𝕧𝟚\mathbb{w}=3|34365=\mathbb{u_{1}}\mathbb{u_{2}},\mathbb{w}^{\prime}=346|35364=\mathbb{v_{1}}\mathbb{v_{2}} be standard factorization of these words. Since 𝕨𝕨=334365𝕦𝟙𝕦𝟚34635364𝕨=3𝕦𝟙|3436534635364𝕦𝟚𝕨\mathbb{w}\mathbb{w}^{\prime}=\underbrace{334365}_{\mathbb{u_{1}}\mathbb{u_{2}}}\underbrace{34635364}_{\mathbb{w}^{\prime}}=\underbrace{3}_{\mathbb{u_{1}}}|\underbrace{3436534635364}_{\mathbb{u_{2}}\mathbb{w}^{\prime}} is the standard factorization,

[L(𝕨),L(𝕨)]\displaystyle[L(\mathbb{w}),L(\mathbb{w}^{\prime})] =[[L(3),L(34365)][L(𝕦𝟙),L(𝕦𝟚)],L(34635364)L(𝕨)]\displaystyle=[\underbrace{[L(3),L(34365)]}_{[L(\mathbb{u_{1}}),L(\mathbb{u_{2}})]},\underbrace{L(34635364)}_{L(\mathbb{w}^{\prime})}]
=[L(3),[L(34365),L(34635364)]][L(𝕦𝟙),[L(𝕦𝟚),L(𝕨)]]+[[L(3),L(34635364)],L(34345)][[L(𝕦𝟙),L(𝕨)],L(𝕦𝟚)]\displaystyle=\underbrace{[L(3),[L(34365),L(34635364)]]}_{[L(\mathbb{u_{1}}),[L(\mathbb{u_{2}}),L(\mathbb{w}^{\prime})]]}+\underbrace{[[L(3),L(34635364)],L(34345)]}_{[[L(\mathbb{u_{1}}),L(\mathbb{w}^{\prime})],L(\mathbb{u_{2}})]}
=[L(3),L(3436534635364)][L(𝕦𝟙),L(𝕦𝟚𝕨)]+[L(334635364),L(34345)][L(𝕦𝟙𝕨),L(𝕦𝟚)]\displaystyle=\underbrace{[L(3),L(3436534635364)]}_{[L(\mathbb{u_{1}}),L(\mathbb{u_{2}}\mathbb{w}^{\prime})]}+\underbrace{[L(334635364),L(34345)]}_{[L(\mathbb{u_{1}}\mathbb{w}^{\prime}),L(\mathbb{u_{2}})]}
=L(33436534635364)L(𝕦𝟙𝕦𝟚𝕨)+L(33463536434345)L(𝕦𝟙𝕨𝕦𝟚)\displaystyle=\underbrace{L(33436534635364)}_{L(\mathbb{u_{1}}\mathbb{u_{2}}\mathbb{w}^{\prime})}+\underbrace{L(33463536434345)}_{L(\mathbb{u_{1}}\mathbb{w}^{\prime}\mathbb{u_{2}})}
Lemma 8.

If 𝕨𝕒\mathbb{w_{a}} and 𝕨𝕓\mathbb{w_{b}} are super Lyndon words then [L(𝕨𝕒),L(𝕨𝕓)]span{L(Ci(wt(𝕨𝕒𝕨𝕓)),G)}.[L(\mathbb{w_{a}}),L(\mathbb{w_{b}})]\in\rm{span}\{L(C^{i}(\rm{wt}(\mathbb{w_{a}}\mathbb{w_{b}})),G)\}.

Proof.

Since 𝕨𝕒\mathbb{w_{a}} and 𝕨𝕓\mathbb{w_{b}} are super Lyndon words, we have the following cases:-

  1. (i)

    𝕨𝕒=𝕦𝕦\mathbb{w_{a}}=\mathbb{u}\mathbb{u}, 𝕨𝕓=𝕧𝟙𝕧𝟚\mathbb{w_{b}}=\mathbb{v_{1}}\mathbb{v_{2}}

  2. (ii)

    𝕨𝕒=𝕦𝟙𝕦𝟚\mathbb{w_{a}}=\mathbb{u_{1}}\mathbb{u_{2}}, 𝕨𝕓=𝕧𝕧\mathbb{w_{b}}=\mathbb{v}\mathbb{v}

  3. (iii)

    𝕨𝕒=𝕦𝕦\mathbb{w_{a}}=\mathbb{u}\mathbb{u}, 𝕨𝕓=𝕧𝕧\mathbb{w_{b}}=\mathbb{v}\mathbb{v}

  4. (iv)

    𝕨𝕒=𝕦𝟙𝕦𝟚\mathbb{w_{a}}=\mathbb{u_{1}}\mathbb{u_{2}}, 𝕨𝕓=𝕧𝟙𝕧𝟚\mathbb{w_{b}}=\mathbb{v_{1}}\mathbb{v_{2}} where 𝕦𝟙𝕦𝟚,𝕧𝟙𝕧𝟚\mathbb{u_{1}}\neq\mathbb{u_{2}},\,\mathbb{v_{1}}\neq\mathbb{v_{2}}

Case(i):- Since 𝕨𝕒=𝕦𝕦\mathbb{w_{a}}=\mathbb{u}\mathbb{u}, 𝕨𝕓=𝕧𝟙𝕧𝟚𝕨𝕒𝕨𝕓=𝕦|𝕦𝕧𝟙𝕧𝟚\mathbb{w_{b}}=\mathbb{v_{1}}\mathbb{v_{2}}\Rightarrow\mathbb{w_{a}}\mathbb{w_{b}}=\mathbb{u}|\mathbb{u}\mathbb{v_{1}}\mathbb{v_{2}}

[L(𝕨𝕒),L(𝕨𝕓)]\displaystyle[L(\mathbb{w_{a}}),L(\mathbb{w_{b}})] =[[L(𝕦),L(𝕦)],L(𝕨𝕓)]\displaystyle=[[L(\mathbb{u}),L(\mathbb{u})],L(\mathbb{w_{b}})]
=2[L(𝕦),[L(𝕦),L(𝕨𝕓)]]\displaystyle=2[L(\mathbb{u}),[L(\mathbb{u}),L(\mathbb{w_{b}})]]
=2[L(𝕦),L(𝕦𝕨𝕓)]\displaystyle=2[L(\mathbb{u}),L(\mathbb{u}\mathbb{w_{b}})]
=L(𝕦𝕦𝕨𝕓)\displaystyle=L(\mathbb{u}\mathbb{u}\mathbb{w_{b}})

Case(ii):-𝕨𝕒=𝕦𝟙𝕦𝟚\mathbb{w_{a}}=\mathbb{u_{1}}\mathbb{u_{2}}, 𝕨𝕓=𝕧𝕧\mathbb{w_{b}}=\mathbb{v}\mathbb{v}. If 𝕦𝟚<𝕧\mathbb{u_{2}}<\mathbb{v} then 𝕨𝕒𝕨𝕓=𝕦𝟙|𝕦𝟚𝕧𝕧\mathbb{w_{a}}\mathbb{w_{b}}=\mathbb{u_{1}}|\mathbb{u_{2}}\mathbb{v}\mathbb{v} is the standard factorization.

[L(𝕨𝕒),L(𝕨𝕓)]\displaystyle[L(\mathbb{w_{a}}),L(\mathbb{w_{b}})] =[[L(𝕦𝟙),L(𝕦𝟚)],L(𝕨𝕓)]\displaystyle=[[L(\mathbb{u_{1}}),L(\mathbb{u_{2}})],L(\mathbb{w_{b}})]
=[[L(𝕦𝟙),L(𝕨𝕓)],L(𝕦𝟚)]+[L(𝕦𝟙),[L(𝕦𝟚),L(𝕨𝕓)]]\displaystyle=[[L(\mathbb{u_{1}}),L(\mathbb{w_{b}})],L(\mathbb{u_{2}})]+[L(\mathbb{u_{1}}),[L(\mathbb{u_{2}}),L(\mathbb{w_{b}})]]
=[L(𝕦𝟙𝕨𝕓),L(𝕦𝟚)]+[L(𝕦𝟙),L(𝕦𝟚𝕨𝕓)])]\displaystyle=[L(\mathbb{u_{1}}\mathbb{w_{b}}),L(\mathbb{u_{2}})]+[L(\mathbb{u_{1}}),L(\mathbb{u_{2}}\mathbb{w_{b}})])]

Otherwise 𝕨𝕒𝕨𝕓=𝕦𝟙𝕦𝟚|𝕧𝕧\mathbb{w_{a}}\mathbb{w_{b}}=\mathbb{u_{1}}\mathbb{u_{2}}|\mathbb{v}\mathbb{v} is the standard factorization.

[L(𝕨𝕒),L(𝕨𝕓)]=L(𝕨𝕒𝕨𝕓)\Rightarrow[L(\mathbb{w_{a}}),L(\mathbb{w_{b}})]=L(\mathbb{w_{a}}\mathbb{w_{b}})

Case(iii):-𝕨𝕒=𝕦𝕦\mathbb{w_{a}}=\mathbb{u}\mathbb{u}, 𝕨𝕓=𝕧𝕧\mathbb{w_{b}}=\mathbb{v}\mathbb{v}. Since 𝕦<𝕧,𝕨𝕒𝕨𝕓=𝕦|𝕦𝕧𝕧\mathbb{u}<\mathbb{v},\mathbb{w_{a}}\mathbb{w_{b}}=\mathbb{u}|\mathbb{u}\mathbb{v}\mathbb{v} is the standard factorization.

[L(𝕨𝕒),L(𝕨𝕓)]\displaystyle[L(\mathbb{w_{a}}),L(\mathbb{w_{b}})] =[[L(𝕦),L(𝕦)],L(𝕨𝕓)]\displaystyle=[[L(\mathbb{u}),L(\mathbb{u})],L(\mathbb{w_{b}})]
=[L(𝕦),L(𝕦𝕨𝕓)]\displaystyle=[L(\mathbb{u}),L(\mathbb{u}\mathbb{w_{b}})]

Case(iv):- 𝕨𝕒=𝕦𝟙𝕦𝟚\mathbb{w_{a}}=\mathbb{u_{1}}\mathbb{u_{2}}, 𝕨𝕓=𝕧𝟙𝕧𝟚\mathbb{w_{b}}=\mathbb{v_{1}}\mathbb{v_{2}}. This case follows from Lemma 7. ∎

Lemma 9.

The root space 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} is contained in the span {e(L(Ci(𝕜,G))}\{e(L(C^{i}(\mathbb{k},G))\}.

Proof.

Let e(𝕨)𝔤η(𝕜)e(\mathbb{w})\in\mathfrak{g}_{\eta(\mathbb{k})} for some 𝕨M𝕜(I,η)\mathbb{w}\in M_{\mathbb{k}}(I,\eta). By Lemma 5, we can assume that IA(𝕨)={i}\rm{IA}(\mathbb{w})=\{i\} . We will do the proof by induction on ht(η(𝕜))\operatorname{ht}(\eta(\mathbb{k})). If ht(η(𝕜))=1\operatorname{ht}(\eta(\mathbb{k}))=1 then 𝕨=i\mathbb{w}=i and nothing to prove. Assume that the result is true for any 𝕨~\mathbb{\tilde{w}} such that ht(wt(𝕨~))<ht(η(k))\operatorname{ht}(\rm{wt}(\mathbb{\tilde{w}}))<ht(\eta(k)). Let 𝕨=ia1a2ar=i𝕦\mathbb{w}=ia_{1}a_{2}\cdots a_{r}=i\cdot\mathbb{u}.

If i(𝕦)=ϕi(\mathbb{u})=\phi then 𝕨𝒳iL(𝕨)=𝕨e(𝕨)=e(L(𝕨))span{e(L(Ci(𝕜,G))}\mathbb{w}\in\mathcal{X}_{i}\Rightarrow L(\mathbb{w})=\mathbb{w}\Rightarrow e(\mathbb{w})=e(L(\mathbb{w}))\in\rm{span}\{e(L(C^{i}(\mathbb{k},G))\}.

If i(𝕦)ϕi(\mathbb{u})\neq\phi then let min{i(𝕦)}=p+1min\{i(\mathbb{u})\}=p+1\, (say). Set 𝕨=ia1a2api\mathbb{w}^{\prime}=ia_{1}a_{2}\cdots a_{p}i. Now,

e(𝕨)\displaystyle e(\mathbb{w}^{\prime}) =[[[[i,a1],a2],ap],i]\displaystyle=[[[[i,a_{1}],a_{2}]\cdots,a_{p}],i]
=[i,[[[i,a1],a2],ap]]\displaystyle=-[i,[[[i,a_{1}],a_{2}]\cdots,a_{p}]]
=e(L(iia1ap))\displaystyle=e(L(iia_{1}\cdots a_{p}))
e(𝕨)span{e(L(Ci(wt(𝕨),G))} as (iia1ap) is a super Lyndon word.\Rightarrow e(\mathbb{w}^{\prime})\in\rm{span}\{e(L(C^{i}(wt(\mathbb{w}^{\prime}),G))\}\text{ as }(iia_{1}\cdots a_{p})\text{ is a super Lyndon word}.

Now,

e(𝕨ap+2)\displaystyle e(\mathbb{w}^{\prime}\cdot a_{p+2}) =[[[[[i,a1],a2],ap],i],ap+2]\displaystyle=[[[[[i,a_{1}],a_{2}]\cdots,a_{p}],i],a_{p+2}]
=[e(𝕨),ap+2]\displaystyle=[e(\mathbb{w}^{\prime}),a_{p+2}]
=[[e(i),e(ia1a2ap)],ap+2]\displaystyle=[[e(i),e(ia_{1}a_{2}\cdots a_{p})],a_{p+2}]
=[e(i),[e(ia1a2ap),ap+2]]+[[e(i),ap+2],e(ia1a2ap)]\displaystyle=[e(i),[e(ia_{1}a_{2}\cdots a_{p}),a_{p+2}]]+[[e(i),a_{p+2}],e(ia_{1}a_{2}\cdots a_{p})]
=[e(i),e(ia1a2apap+2)]+[e(iap+2),e(ia1a2ap)]\displaystyle=[e(i),e(ia_{1}a_{2}\cdots a_{p}a_{p+2})]+[e(ia_{p+2}),e(ia_{1}a_{2}\cdots a_{p})]

Similarly, again using the Jacobi identity, we can write

e(𝕨)=\displaystyle e(\mathbb{w})= [e(i),e(ia1a2ap+1^ar)]+t=p+2k[e(ia1a2ap+1^at^ar),e(iat)]+\displaystyle[e(i),e(ia_{1}a_{2}\cdots\hat{a_{p+1}}\cdots a_{r})]+\sum\limits_{t=p+2}^{k}[e(ia_{1}a_{2}\cdots\hat{a_{p+1}}\cdots\hat{a_{t}}\cdots a_{r}),e(ia_{t})]+
+p+2t1<t2rk[e(ia1a2ap+1^at1^at2^ar),e(iat1at2)]\displaystyle+\sum\limits_{p+2\leq t_{1}<t_{2}\leq r}^{k}[e(ia_{1}a_{2}\cdots\hat{a_{p+1}}\cdots\hat{a_{t_{1}}}\cdots\hat{a_{t_{2}}}\cdots a_{r}),e(ia_{t_{1}}a_{t_{2}})]
+p+2t1<t2<t3rk[e(ia1a2ap+1^at1^at2^at3^ar),e(iat1at2at3)]+\displaystyle+\sum\limits_{p+2\leq t_{1}<t_{2}<t_{3}\leq r}^{k}[e(ia_{1}a_{2}\cdots\hat{a_{p+1}}\cdots\hat{a_{t_{1}}}\cdots\hat{a_{t_{2}}}\cdots\hat{a_{t_{3}}}\cdots a_{r}),e(ia_{t_{1}}a_{t_{2}}a_{t_{3}})]+\cdots
+[e(ia1ap),e(iap+2ar)]\displaystyle+[e(ia_{1}\cdots a_{p}),e(ia_{p+2}\cdots a_{r})]

Using the induction hypothesis, we can check that each term on the right-hand side is of the form

[e(ia1a2ap^ap+1at1^at2^atj^ar),e(iat1at2atj)]=[ae(L(𝕨𝕒)),be(L(𝕨𝕓))][e(ia_{1}a_{2}\cdots\hat{a_{p}}a_{p+1}\cdots\hat{a_{t_{1}}}\cdots\hat{a_{t_{2}}}\cdots\hat{a_{t_{j}}}\cdots a_{r}),e(ia_{t_{1}}a_{t_{2}}\cdots a_{t_{j}})]=\left[\sum\limits_{a}e(L(\mathbb{w_{a}})),\sum\limits_{b}e(L(\mathbb{w_{b}}))\right]

as (wt(ia1a2ap^ap+1at1^at2^atj^ar)<wt(𝕨))\left(\rm{wt}(ia_{1}a_{2}\cdots\hat{a_{p}}a_{p+1}\cdots\hat{a_{t_{1}}}\cdots\hat{a_{t_{2}}}\cdots\hat{a_{t_{j}}}\cdots a_{r})<\rm{wt}(\mathbb{w})\right). So

e(ia1a2ap^ap+1at1^at2^atj^ar)=ae(L(𝕨𝕒))e(ia_{1}a_{2}\cdots\hat{a_{p}}a_{p+1}\cdots\hat{a_{t_{1}}}\cdots\hat{a_{t_{2}}}\cdots\hat{a_{t_{j}}}\cdots a_{r})=\sum\limits_{a}e(L(\mathbb{w_{a}})) where 𝕨𝕒\mathbb{w_{a}} is super Lyndon word, wt(𝕨𝕒)=wt(ia1a2ap^ap+1at1^at2^atj^ar)\rm{wt}(\mathbb{w_{a}})=\rm{wt}(ia_{1}a_{2}\cdots\hat{a_{p}}a_{p+1}\cdots\hat{a_{t_{1}}}\cdots\hat{a_{t_{2}}}\cdots\hat{a_{t_{j}}}\cdots a_{r}) and wt(iat1at2atj)<wt(𝕨𝕓).\rm{wt}(ia_{t_{1}}a_{t_{2}}\cdots a_{t_{j}})<\rm{wt}(\mathbb{w_{b}}). So e(iat1at2atj)=be(L(𝕨𝕓))e(ia_{t_{1}}a_{t_{2}}\cdots a_{t_{j}})=\sum\limits_{b}e(L(\mathbb{w_{b}})) where 𝕨𝕓\mathbb{w_{b}} is super Lyndon word and wt(𝕨𝕓)=wt(iat1at2atj)\rm{wt}(\mathbb{w_{b}})=\rm{wt}(ia_{t_{1}}a_{t_{2}}\cdots a_{t_{j}}).

[ae(L(𝕨𝕒)),be(L(𝕨𝕓))]\displaystyle\Rightarrow\left[\sum\limits_{a}e(L(\mathbb{w_{a}})),\sum\limits_{b}e(L(\mathbb{w_{b}}))\right] =a,b[e(L(𝕨𝕒)),e(L(𝕨𝕓))]\displaystyle=\sum\limits_{a,b}[e(L(\mathbb{w_{a}})),e(L(\mathbb{w_{b}}))]
=a,be([L(𝕨𝕒),L(𝕨𝕓)])\displaystyle=\sum\limits_{a,b}e\left([L(\mathbb{w_{a}}),L(\mathbb{w_{b}})]\right)

By Lemma 8, we can write [L(𝕨𝕒),L(𝕨𝕓)]span{L(Ci(𝕜,G))}[L(\mathbb{w_{a}}),L(\mathbb{w_{b}})]\in\rm{span}\{L(C^{i}(\mathbb{k},G))\}.
Thus

a,be([L(𝕨𝕒),L(𝕨𝕓)])spane(L(Ci(𝕜,G)).\sum\limits_{a,b}e\left([L(\mathbb{w_{a}}),L(\mathbb{w_{b}})]\right)\in\rm{span}\,e(L(C^{i}(\mathbb{k},G)).
e(𝕨)span{e(L(Ci(𝕜,G))}.\Rightarrow e(\mathbb{w})\in\rm{span}\{e(L(C^{i}(\mathbb{k},G))\}.

Hence 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} is contained in the span of {e(L(Ci(𝕜,G))}𝔤i\{e(L(C^{i}(\mathbb{k},G))\}\subseteq\mathfrak{g}^{i} .

4.8. Proof of Lemma 4 (Identification of Ci(𝕜,G)C^{i}(\mathbb{k},G) and super Lyndon heaps)

Let 𝔤\mathfrak{g} be the BKM superalgebra associated with the Borcherds-Kac-Moody supermatrix (A,Ψ)(A,\Psi). Let GG be the associated quasi-Dynkin diagram of 𝔤\mathfrak{g} with the vertex set II. Fix 𝕜+[I]\mathbb{k}\in\mathbb{Z}_{+}[I] such that ki1k_{i}\leq 1 for iIreΨ0i\in I^{re}\sqcup\Psi_{0}.

Fix iIi\in I and assume that ii is the minimum element in the total order of II. Consider

𝒳i={𝕨M(I,G,Ψ):IAm(𝕨)={i} and i occurs only once in 𝕨}.\mathcal{X}_{i}=\{\mathbb{w}\in M(I,G,\Psi):\rm{IA}_{m}(\mathbb{w})=\{i\}\text{ and $i$ occurs only once in $\mathbb{w}$}\}.

Now, Let 𝕨𝒳i\mathbb{w}\in\mathcal{X}_{i} and E=ψ(𝕨)E=\psi(\mathbb{w}) be the corresponding heap. Then

  1. (1)

    IAm(𝕨)={i}\rm{IA}_{m}(\mathbb{w})=\{i\} implies that EE is a pyramid.

  2. (2)

    ii occurs exactly once in 𝕨\mathbb{w} implies that EE is elementary

  3. (3)

    ii is the minimum element in the total order of II implies that EE is an admissible pyramid.

 Therefore 𝕨𝒳i if and only if E=ψ(𝕨) is a super-letter.\text{ Therefore }\mathbb{w}\in\mathcal{X}_{i}\text{ if and only if }E=\psi(\mathbb{w})\text{ is a super-letter.} (4.6)

Let 𝒜i(I,ζ)\mathcal{A}_{i}(I,\zeta) be the set of all super-letters with basis ii in (I,ζ)\mathcal{H}(I,\zeta). Let 𝒜i(I,ζ)\mathcal{A}_{i}^{*}(I,\zeta) be the monoid generated by 𝒜i(I,ζ)\mathcal{A}_{i}(I,\zeta) in (I,ζ)\mathcal{H}(I,\zeta). Then 𝒜i(I,ζ)=𝒜i,0(I,ζ)𝒜i,1(I,ζ)\mathcal{A}_{i}^{*}(I,\zeta)=\mathcal{A}_{i,0}^{*}(I,\zeta)\oplus\mathcal{A}_{i,1}^{*}(I,\zeta) is also 2\mathbb{Z}_{2}-graded. This monoid is free by the discussion below [32, Definition 2.1.4], and by [32, Proposition 1.3.5 and Proposition 2.1.5]. We have (I,ζ)\mathcal{H}(I,\zeta) is totally ordered and hence 𝒜i(I,ζ)\mathcal{A}_{i}(I,\zeta) is totally ordered. This implies that 𝒜i(I,ζ)\mathcal{A}_{i}^{*}(I,\zeta) is totally ordered by the lexicographic order induced from the order in 𝒜i(I,ζ)\mathcal{A}_{i}(I,\zeta) (call it \leq^{\ast}). The following proposition from [32, Proposition 2.1.6] illustrates the relation between the total order \leq on the heaps monoid (I,ζ)\mathcal{H}(I,\zeta) and the total order \leq^{\ast} on the monoid 𝒜i(I,ζ)\mathcal{A}_{i}^{*}(I,\zeta).

Proposition 5.

Let E,F𝒜i(I,ζ)E,F\in\mathcal{A}_{i}^{\ast}(I,\zeta). Then EFE\leq^{\ast}F if, and only if, EFE\leq F.

Given this, we can talk about the Lyndon words over the alphabets 𝒜i(I,ζ)\mathcal{A}_{i}(I,\zeta). The following proposition from [32, Proposition 2.1.7] illustrates the relationship between the Lyndon words in 𝒜i(I,ζ)\mathcal{A}_{i}^{*}(I,\zeta) and the Lyndon heaps in (I,ζ)\mathcal{H}(I,\zeta).

Proposition 6.

Let E𝒜i(I,ζ)E\in\mathcal{A}_{i}^{*}(I,\zeta) then EE is a Lyndon word in 𝒜i(I,ζ)\mathcal{A}_{i}^{*}(I,\zeta) if and only if EE is a Lyndon heap as an element of (I,ζ)\mathcal{H}(I,\zeta).

Next, we prove the following generalization of Proposition 6 for the case of super Lyndon words and super Lyndon heaps.

Proposition 7.

Let E𝒜i(I,ζ)E\in\mathcal{A}_{i}^{*}(I,\zeta) then EE is a super Lyndon word in 𝒜i(I,ζ)\mathcal{A}_{i}^{*}(I,\zeta) if and only if EE is a super Lyndon heap as an element of (I,ζ)\mathcal{H}(I,\zeta).

Proof.

Let E𝒜i(I,ζ)E\in\mathcal{A}_{i}^{*}(I,\zeta) be a super Lyndon word. Then either EE is a Lyndon word in 𝒜i(I,ζ)\mathcal{A}_{i}^{*}(I,\zeta) or E=FFE=F\circ F for some Lyndon word F𝒜i,1(I,ζ)F\in\mathcal{A}_{i,1}^{*}(I,\zeta). Suppose the former case holds, then by Proposition 6, EE is a Lyndon heap and hence is a super Lyndon heap in (I,ζ)\mathcal{H}(I,\zeta). Suppose the latter case holds, then again by Proposition 6, FF is a Lyndon heap in (I,ζ)\mathcal{H}(I,\zeta) and hence E=FFE=F\circ F is a super Lyndon heap in (I,ζ)\mathcal{H}(I,\zeta).

Conversely, suppose EE is a super Lyndon heap in (I,ζ)\mathcal{H}(I,\zeta). Then EE is a Lyndon heap in (I,ζ)\mathcal{H}(I,\zeta) or E=FFE=F\circ F for some Lyndon heap F(I,ζ)F\in\mathcal{H}(I,\zeta). Suppose the former case holds, then by Proposition 6, EE is a Lyndon word and hence is a super Lyndon word in 𝒜i(I,ζ)\mathcal{A}_{i}^{*}(I,\zeta). Suppose the latter case holds, then again by Proposition 6, FF is a Lyndon word in 𝒜i,1(I,ζ)\mathcal{A}_{i,1}^{*}(I,\zeta) and hence E=FFE=F\circ F is a super Lyndon word in 𝒜i(I,ζ)\mathcal{A}_{i}^{*}(I,\zeta). ∎

By Equation (4.6), we can identify 𝒳i\mathcal{X}_{i}^{*} with 𝒜i(I,ζ)\mathcal{A}_{i}^{*}(I,\zeta). This implies that

|Ci(𝕜,G)|\displaystyle|C^{i}(\mathbb{k},G)| =|{ super Lyndon words in 𝒳i of weight 𝕜}|\displaystyle=|\{\text{ super Lyndon words in }\mathcal{X}_{i}^{*}\text{ of weight }\mathbb{k}\}|
=|{ super Lyndon words of weight 𝕜 in 𝒜i(I,ζ)}|\displaystyle=|\{\text{ super Lyndon words of weight $\mathbb{k}$ in }\mathcal{A}_{i}^{*}(I,\zeta)\}|
=|{ super Lyndon heaps of weight 𝕜 in (I,ζ)}|\displaystyle=|\{\text{ super Lyndon heaps of weight $\mathbb{k}$ in }\mathcal{H}(I,\zeta)\}|
=dim𝒮𝕜(G)\displaystyle=\dim\mathcal{LS}_{\mathbb{k}}(G)
=dim𝔤η(𝕜)(By Theorem 5).\displaystyle=\dim\mathfrak{g}_{\eta(\mathbb{k})}\,\,\,(\text{By Theorem \ref{lafps}}).

This shows that the elements of Ci(𝕜,G)C^{i}(\mathbb{k},G) are precisely the Lyndon heaps of weight 𝕜\mathbb{k} and completes the proof of Lemma 4.

Remark 8.

The important step in the proof of Theorem 2 given in [1] is the proof of the equality multη(𝕜)=|Ci(𝕜,G)|\operatorname{mult}\eta(\mathbb{k})=|C^{i}(\mathbb{k},G)| ([1, Proposition 4.5 (iii)]). The key idea is to reduce the proof to 𝕜=𝟙=(1,1,1,)\mathbb{k}=\mathbb{1}=(1,1,1,\dots)-case and then to use a result of Greene and Zaslavsky [15] for acyclic orientations of GG to complete the proof. Also, Theorem 1 is used in the proof (in other words the denominator identity of 𝔤\mathfrak{g} is used in the proof). Above, we have given a simpler and direct proof of this equality by identifying the set Ci(𝕜,G)C^{i}(\mathbb{k},G) with the set of Lyndon heaps over graph GG. Our proof doesn’t use Theorem 1 and hence independent of the denominator identity of 𝔤\mathfrak{g}. Similarly, we don’t need the result of Greene and Zaslavsky. Also, we have extended this equality to the super case using super Lyndon heaps.

Example 8.

The following diagram explains the connection between the Lyndon basis and the LLN basis of the free root spaces of a BKM superalgebra 𝔤\mathfrak{g}.

Lyndon heaps Lie monomials in Super letters Lyndon heaps basis Lyndon words over Super letters Lie monomials in Super letters LLN basis IdentificationIdentification(Lemma 1)(Proposition 8)LΛ\displaystyle\LambdaΛ\displaystyle\Lambdae

To observe the above diagram through an example, consider the root space 𝔤η(𝕜)\mathfrak{g}_{\eta(\mathbb{k})} where η(𝕜)=2α3+α4+2α5+α6\eta(\mathbb{k})=2\alpha_{3}+\alpha_{4}+2\alpha_{5}+\alpha_{6} from Example 3. Fix i=3i=3, set of super-letters with basis 3 is 𝒜3(I,ζ)={3,34,345,3456,344,34545,}{\mathcal{A}_{3}(I,\zeta)}=\{3,34,345,3456,344,34545,\cdots\}.

Lyndon heaps on 𝒜3(I,ζ){\mathcal{A}_{3}^{\ast}(I,\zeta)} of weight η(𝕜)={334556,334565}\eta(\mathbb{k})=\{334556,334565\}

Lie monomials in super-letters ={Λ(334556),Λ(334565)}\displaystyle=\{\Lambda(334556),\Lambda(334565)\}
={[3,34556],[3,34565]}\displaystyle=\{[3,34556],[3,34565]\}
Lyndon heaps basis ={Λ([3,34565]),Λ([3,34556])}\displaystyle=\{\Lambda([3,34565]),\Lambda([3,34556])\}
={[Λ(3),Λ(34565)],[Λ(3),Λ(34556)]}\displaystyle=\{[\Lambda(3),\Lambda(34565)],[\Lambda(3),\Lambda(34556)]\}
={[3,[3,[4,[[5,6],5]]]],[3,[3,[4,[5,[5,6]]]]]}\displaystyle=\{[3,[3,[4,[[5,6],5]]]],[3,[3,[4,[5,[5,6]]]]]\}

Lyndon words on super-letters of weight η(𝕜)={334556,334565}\eta(\mathbb{k})=\{334556,334565\}

Lie monomials in super-letters ={L(334556),L(334565)}\displaystyle=\{L(334556),L(334565)\}
={[3,34556],[3,34565]}\displaystyle=\{[3,34556],[3,34565]\}
LLN basis ={e([3,34556]),e([3,34565])}\displaystyle=\{e([3,34556]),e([3,34565])\}
={[e(3),e(34556)],[e(3),e(34565)]}\displaystyle=\{[e(3),e(34556)],[e(3),e(34565)]\}
={[3,[[[[3,4],5],5],6]],[3,[[[[3,4],5],6],5]]}\displaystyle=\{[3,[[[[3,4],5],5],6]],[3,[[[[3,4],5],6],5]]\}

4.9. Comparison of the Lyndon basis with the LLN basis

In this section, we will give necessary and sufficient condition in which certain elements in both the bases are equal. We start with the following proposition whose proof is immediate from Propositions 5 and 6.

Proposition 8.

Let 𝕨𝒳i\mathbb{w}\in\mathcal{X}_{i}^{*} be a Lyndon word with standard factorization σ(𝕨)=(𝕨1,𝕨2)\sigma(\mathbb{w})=(\mathbb{w}_{1},\mathbb{w}_{2}). Then 𝕨,𝕨1\mathbb{w},\mathbb{w}_{1} and 𝕨2\mathbb{w}_{2} can be thought of as Lyndon heaps [c.f. Proposition 7] and the Standard factorization of the Lyndon heap 𝕨\mathbb{w} is Σ(𝕨)=(𝕨1,𝕨2)\Sigma(\mathbb{w})=(\mathbb{w}_{1},\mathbb{w}_{2}). Further L(𝕨)=Λ(𝕨)L(\mathbb{w})=\Lambda(\mathbb{w}).

The following lemma will be helpful.

Lemma 10.

[32, Lemma 2.3.5] Let E(I,P)E\in\mathcal{H}(I,P) with |E|2|E|\geq 2. Then Σ(E)=(F,N)\Sigma(E)=(F,N) iff σ(St(E))=(St(F),St(N)).\sigma(St(E))=(St(F),St(N)).

From Example 8, to compare elements in the Lyndon basis and LLN basis we have to compare the action of the maps Λ\Lambda and ee on the super-letters. The following proposition gives a necessary and sufficient condition for the Lyndon basis element and LLN basis element associated with a super-letter to be equal.

Proposition 9.

Let EE be a super-letter with the associated standard word 𝕨=a1a2ar\mathbb{w}=a_{1}a_{2}\cdots a_{r}. Then Λ(E)=e(E)\Lambda(E)=e(E) if, and only if, a1<arar1a2a_{1}<a_{r}\leq a_{r-1}\leq\cdots\leq a_{2}.

Proof.

Let EE be a super-letter with the associated standard word 𝕨=a1a2ar\mathbb{w}=a_{1}a_{2}\cdots a_{r}. Assume that a1<arar1a2a_{1}<a_{r}\leq a_{r-1}\leq\cdots\leq a_{2}. Now, the standard factorization of 𝕨\mathbb{w} is given by σ(𝕨)=(a1a2ar1,ar)\sigma(\mathbb{w})=(a_{1}a_{2}\cdots a_{r-1},a_{r}). This implies that, by Lemma 10, the standard factorization of EE is Σ(E)=(F,G)\Sigma(E)=(F,G) where FF and GG are Lyndon heaps satisfying st(F)=a1a2ar1\operatorname{st}(F)=a_{1}a_{2}\cdots a_{r-1} and st(G)=ar\operatorname{st}(G)=a_{r}. Therefore,

Λ(E)\displaystyle\Lambda(E) =[Λ(F),Λ(G)]\displaystyle=[\Lambda(F),\Lambda(G)]
=[Λ(F),ar]\displaystyle=[\Lambda(F),a_{r}]
=[[Λ(F1),Λ(ar1)],ar] since σ(st(F))=(a1a2ar1,ar2)\displaystyle=[[\Lambda(F_{1}),\Lambda(a_{r-1})],a_{r}]\text{ since }\sigma(st(F))=(a_{1}a_{2}\cdots a_{r-1},a_{r-2})
=[[Λ(F1),ar1],ar]\displaystyle=[[\Lambda(F_{1}),a_{r-1}],a_{r}]
\displaystyle\,\,\,\vdots
=[[[[[a1,a2],a3],],ar1],ar]\displaystyle=[[[[[a_{1},a_{2}],a_{3}],\cdots],a_{r-1}],a_{r}]
=e(E).\displaystyle=e(E).

Conversely, assume that Λ(E)=e(E)\Lambda(E)=e(E) for a super-letter EE. Let 𝕨=a1ar\mathbb{w}=a_{1}\cdots a_{r} be the standard word of EE. We will prove a1<arar1a2a_{1}<a_{r}\leq a_{r-1}\leq\cdots\leq a_{2} by using induction on rr.

The base cases r=1r=1 and r=2r=2 are straight forward.

Assume that the result is true for r1r-1. Write 𝕨=a1a2ar=𝕨ar\mathbb{w}=a_{1}a_{2}\cdots a_{r}=\mathbb{w}^{\prime}\cdot a_{r} where 𝕨=a1a2ar1\mathbb{w}^{\prime}=a_{1}a_{2}\cdots a_{r-1}. We have E=FGE=F\circ G with st(F)=a1a2ar1\operatorname{st}(F)=a_{1}a_{2}\cdots a_{r-1} and st(G)=ar\operatorname{st}(G)=a_{r}. We observe that 𝕨χi\mathbb{w}^{{}^{\prime}}\in\chi_{i} and FF is a super-letter [c.f Equation (4.6)]. We claim that Λ(F)=e(F)\Lambda(F)=e(F), i.e., Λ(F)=[[[[a1,a2],a3],],ar1]\Lambda(F)=[[[[a_{1},a_{2}],a_{3}],\cdots],a_{r-1}]. Suppose not, then Λ(F)=[Λ(F1),Λ(F2)]\Lambda(F)=[\Lambda(F_{1}),\Lambda(F_{2})] such that st(F2)ar1\operatorname{st}(F_{2})\neq a_{r-1} and

Λ(E)=Λ(F1F2ar)={[Λ(F1),Λ(F2ar)] if IA(st(F))<ar[Λ(F1F2),Λ(ar)]otherwise.\Lambda(E)=\Lambda(F_{1}\circ F_{2}\circ a_{r})=\begin{cases}[\Lambda(F_{1}),\Lambda(F_{2}\circ a_{r})]&\text{ if }\rm{IA}(\operatorname{st}(F))<a_{r}\\ [\Lambda(F_{1}\circ F_{2}),\Lambda(a_{r})]&\text{otherwise.}\\ \end{cases}

There is no other standard factorization of F1F2arF_{1}\circ F_{2}\circ a_{r} is possible as if (F1F2ar)=(F1F21,F22ar)\sum(F_{1}\circ F_{2}\circ a_{r})=(F_{1}\circ F_{21},F_{22}\circ a_{r}) for some standard factorization of F2=F21F22F_{2}=F_{21}\circ F_{22} then F22<F21F_{22}<F_{21} which contradicts that F2=F21F22F_{2}=F_{21}\circ F_{22} is Lyndon heap.

This shows that Λ(E)[[[[[a1,a2],a3],],ar1],ar]\Lambda(E)\neq[[[[[a_{1},a_{2}],a_{3}],\cdots],a_{r-1}],a_{r}], a contradiction. Therefore Λ(F)=e(F)\Lambda(F)=e(F). Thus by using the induction hypothesis, we have a1<ar1a2a_{1}<a_{r-1}\leq\cdots\leq a_{2}. It remains to prove that arar1a_{r}\leq a_{r-1}. Suppose ar>ar1a_{r}>a_{r-1}. We have ar1ar2a_{r-1}\leq a_{r-2} and σ(𝕨)=(a1a2ar2,ar1ar)\sigma(\mathbb{w})=(a_{1}a_{2}\cdots a_{r-2},a_{r-1}a_{r}). Therefore Σ(E)=(L,K)\Sigma(E)=(L,K) (by Lemma 10) where st(L)=a1a2ar2st(L)=a_{1}a_{2}\cdots a_{r-2} and st(K)=ar1arst(K)=a_{r-1}a_{r}. This implies that

Λ(E)=[Λ(L),Λ(K)]=[Λ(L),[ar1,ar]]=[[[[[a1,a2],a3],],ar2],[ar1,ar]]\Lambda(E)=[\Lambda(L),\Lambda(K)]=[\Lambda(L),[a_{r-1},a_{r}]]=[[[[[a_{1},a_{2}],a_{3}],\cdots],a_{r-2}],[a_{r-1},a_{r}]] which is not equal to e(E)e(E), a contradiction to our hypothesis. Hence arar1a_{r}\leq a_{r-1} and the proof is complete. ∎

Remark 9.

Example 2 and Example 4 have same basis as super-letters 3636, 366366 and 36663666 satisfy condition given in the above proposition. We remark that all these super-letters satisfying the condition given in the above proposition because there are only two elements in the support of the root. If support has more than two elements then some super-letter among these might satisfy the condition and the others may not. In particular, the Lyndon basis and the LLN basis will share only some common elements. Example 3 and Example 5 have different basis as super-letters 3456534565 and 3455634556 do not satisfy the condition given in the above proposition.

5. Combinatorial properties of free roots of BKM superalgebras

In this section, we explore the further combinatorial properties of free roots of BKM superalgebras. Also, we explain why the proof works in the papers [49, 1]: Chromatic polynomial cannot distinguish multi edges. So we lose multi edges in the Dynkin diagram when we consider the chromatic polynomial of the graph of a BKM superalgebra. In particular, we lose the Cartan integers and consequently Serre relations. The root spaces which are independent of the Serre relations are precisely the free root spaces.

5.1. Free roots of BKM superalgebras

Let (G,Ψ)(G,\Psi) be a finite simple supergraph with vertex set II, edge set EE, and the set of odd vertices ΨI\Psi\subseteq I [c.f. Definition 1]. Let (A=(aij),Ψ)(A=(a_{ij}),\Psi) be the adjacency matrix of GG. We construct a class of BKM supermatrices from (A,Ψ)(A,\Psi) as follows: Replace the diagonal zeros of AA by arbitrary real numbers. If one such number is positive then replace all the non-zero entries in the corresponding row of AA by arbitrary non-positive integers (resp. non-positive even integers) provided iΨi\notin\Psi (resp. iΨi\in\Psi). Otherwise, replace the non-zero entries in the associated row of AA with arbitrary non-positive real numbers. Let MΨ(G)M_{\Psi}(G) be the set of BKM supermatrices associated with the supergraph (G,Ψ)(G,\Psi) constructed in this way. Let M(G)=ΨIMΨ(G)M(G)=\bigcup\limits_{\Psi\subseteq I}M_{\Psi}(G). Let 𝒞(G)\mathcal{C}(G) be the set of all BKM superalgebras whose quasi-Dynkin diagram is (G,Ψ)(G,\Psi) for some ΨI\Psi\subseteq I. We observe that the set C(G)C(G) consists of BKM superalgebras whose associated BKM supermatrices are in M(G)M(G). In the following proposition, we will prove that all the BKM superalgebras belong to 𝒞(G)\mathcal{C}(G) share the same set of free roots and have equal respective multiplicities.

Proposition 10.

Let GG be a graph. Let 𝔤\mathfrak{g} be a BKM superalgebra which is an element of 𝒞(G)\mathcal{C}(G). Then

  1. (1)

    A αQ+\alpha\in Q_{+} is a free root in 𝔤\mathfrak{g} if and only if suppα\operatorname{supp}\alpha is connected in GG. This gives a one-one correspondence between the connected subgraphs of GG and the free roots of any 𝔤𝒞(G)\mathfrak{g}\in\mathcal{C}(G). In particular, Δm(𝔤1)=Δm(𝔤2)\Delta^{m}(\mathfrak{g}_{1})=\Delta^{m}(\mathfrak{g}_{2}) for 𝔤1,𝔤2𝒞(G)\mathfrak{g}_{1},\mathfrak{g}_{2}\in\mathcal{C}(G).

  2. (2)

    For any 𝔤𝒞(G)\mathfrak{g}\in\mathcal{C}(G), the multiplicity of a free root α\alpha depends only on the graph GG and this multiplicity is equal to the number of super Lyndon heaps of weight 𝕜=(ki:iI)\mathbb{k}=(k_{i}:i\in I) where α=iIkiαi\alpha=\sum\limits_{i\in I}k_{i}\alpha_{i}.

Proof.

The necessity part of (1) is straight forward and we prove the sufficiency part. Assume αQ+\alpha\in Q_{+} is free and suppα\operatorname{supp}\alpha is connected in GG. We claim that α\alpha is a root of 𝔤\mathfrak{g}. We use induction on height of α\alpha. The case in which ht(α)=1\operatorname{ht}(\alpha)=1 is clear. Suppose ht(α)=2\operatorname{ht}(\alpha)=2 then α=αi+αj\alpha=\alpha_{i}+\alpha_{j} and aij<0a_{ij}<0. Suppose one of αi\alpha_{i} or αj\alpha_{j} is real. Without loss of generality we assume αi\alpha_{i} is real. Then Sαi(αj)=αjaijαiS_{\alpha_{i}}(\alpha_{j})=\alpha_{j}-a_{ij}\alpha_{i} is a root of 𝔤\mathfrak{g}. This implies that αi+αj\alpha_{i}+\alpha_{j} is a root as the root chain of αj\alpha_{j} through αi\alpha_{i} contains αj+mαi\alpha_{j}+m\alpha_{i} for all 0mk0\leq m\leq k for some kk\in\mathbb{N}. Suppose both αi\alpha_{i} and αj\alpha_{j} are imaginary then Lemma 11 completes the proof. Assume that the result is true for all connected free αQ+\alpha\in Q_{+} of height r1r-1. Let β\beta be a connected free element of height rr in Q+Q_{+}. Let αisuppβ\alpha_{i}\in\operatorname{supp}\beta be such that suppβ\{αi}\operatorname{supp}\beta\backslash\{\alpha_{i}\} is connected in GG. Since suppβ\operatorname{supp}\beta is connected such a vertex exit. Now, α=αjsuppβjiαj\alpha=\sum_{\begin{subarray}{c}\alpha_{j}\in\operatorname{supp}\beta\\ j\neq i\end{subarray}}\alpha_{j} is connected, free, and has height r1r-1. By the induction hypothesis α\alpha is a root in 𝔤\mathfrak{g}. If αi\alpha_{i} is real then Sαi(α)S_{\alpha_{i}}(\alpha) is a root in turn β=α+αi\beta=\alpha+\alpha_{i} is also root. If αi\alpha_{i} is imaginary then, again by Lemma 11, β\beta is a root. This completes the proof of (1). Now, the proof of (2) follows from Lemma 1 and Theorem 5. ∎

Example 9.

Let l11,l22l_{1}\geq 1,l_{2}\geq 2 and l33l_{3}\geq 3 be positive integers satisfying l1=l2=l3l_{1}=l_{2}=l_{3}. Then the complex finite dimensional simple Lie algebras Al1,Bl2A_{l_{1}},B_{l_{2}} and Cl3C_{l_{3}} have the same quasi-Dynkin diagram the path graph on l1l_{1} vertices with Ψ=\Psi=\emptyset. In particular, these algebras have the same set of free roots by the above proposition. In Table 1, using the following Proposition 11, we have listed the BKM superalgebras for which the path graph on 44 vertices is the quasi-Dynkin diagram along with its free roots.

Table 1. BKM superalgebras with equal set of free roots
BKM superalgebras Simple roots [24, Section 2.5.4] Free roots
A4A_{4} α1=ε1ε2,α2=ε2ε3,\alpha_{1}=\varepsilon_{1}-\varepsilon_{2},\alpha_{2}=\varepsilon_{2}-\varepsilon_{3}, α1,α2,α3,α4,α12,α13,\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{12},\alpha_{13},
α3=ε3ε4,α4=ε4ε5.\alpha_{3}=\varepsilon_{3}-\varepsilon_{4},\alpha_{4}=\varepsilon_{4}-\varepsilon_{5}. α14,α23,α24,α34.\alpha_{14},\alpha_{23},\alpha_{24},\alpha_{34}.
B4B_{4} α1=ε1ε2,α2=ε2ε3,\alpha_{1}=\varepsilon_{1}-\varepsilon_{2},\alpha_{2}=\varepsilon_{2}-\varepsilon_{3}, α1,α2,α3,α4,α12,α13,\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{12},\alpha_{13},
α3=ε3ε4,α4=ε4\alpha_{3}=\varepsilon_{3}-\varepsilon_{4},\alpha_{4}=\varepsilon_{4}. α14,α23,α24,α34.\alpha_{14},\alpha_{23},\alpha_{24},\alpha_{34}.
C4C_{4} α1=ε1ε2,α2=ε2ε3,\alpha_{1}=\varepsilon_{1}-\varepsilon_{2},\alpha_{2}=\varepsilon_{2}-\varepsilon_{3}, α1,α2,α3,α4,α12,α13,\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{12},\alpha_{13},
α3=ε3ε4,α4=2ε4.\alpha_{3}=\varepsilon_{3}-\varepsilon_{4},\alpha_{4}=2\varepsilon_{4}. α14,α23,α24,α34.\alpha_{14},\alpha_{23},\alpha_{24},\alpha_{34}.
A(3,0)A(3,0) α1=ε1ε2,α2=ε2ε3,\alpha_{1}=\varepsilon_{1}-\varepsilon_{2},\alpha_{2}=\varepsilon_{2}-\varepsilon_{3}, α1,α2,α3,α4,α12,α13,\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{12},\alpha_{13},
α3=ε3ε4,α4=ε4δ1.\alpha_{3}=\varepsilon_{3}-\varepsilon_{4},\alpha_{4}=\varepsilon_{4}-\delta_{1}. α14,α23,α24,α34.\alpha_{14},\alpha_{23},\alpha_{24},\alpha_{34}.
A(2,1)A(2,1) α1=ε1ε2,α2=ε2ε3,\alpha_{1}=\varepsilon_{1}-\varepsilon_{2},\alpha_{2}=\varepsilon_{2}-\varepsilon_{3}, α1,α2,α3,α4,α12,α13,\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{12},\alpha_{13},
α3=ε3δ1,α4=δ1δ2.\alpha_{3}=\varepsilon_{3}-\delta_{1},\alpha_{4}=\delta_{1}-\delta_{2}. α14,α23,α24,α34.\alpha_{14},\alpha_{23},\alpha_{24},\alpha_{34}.
B(0,4)B(0,4) α1=δ1δ2,α2=δ2δ3,\alpha_{1}=\delta_{1}-\delta_{2},\alpha_{2}=\delta_{2}-\delta_{3}, α1,α2,α3,α4,α12,α13,\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{12},\alpha_{13},
α3=δ3δ4,α4=δ4.\alpha_{3}=\delta_{3}-\delta_{4},\alpha_{4}=\delta_{4}. α14,α23,α24,α34.\alpha_{14},\alpha_{23},\alpha_{24},\alpha_{34}.
B(3,1)B(3,1) α1=δ1ε1,α2=ε1ε2,\alpha_{1}=\delta_{1}-\varepsilon_{1},\alpha_{2}=\varepsilon_{1}-\varepsilon_{2}, α1,α2,α3,α4,α12,α13,\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{12},\alpha_{13},
α3=ε2ε3,α4=ε3.\alpha_{3}=\varepsilon_{2}-\varepsilon_{3},\alpha_{4}=\varepsilon_{3}. α14,α23,α24,α34.\alpha_{14},\alpha_{23},\alpha_{24},\alpha_{34}.
C(4)C(4) α1=ε1δ1,α2=δ1δ2,\alpha_{1}=\varepsilon_{1}-\delta_{1},\alpha_{2}=\delta_{1}-\delta_{2}, α1,α2,α3,α4,α12,α13,\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{12},\alpha_{13},
α3=δ2δ3,α4=2δ3.\alpha_{3}=\delta_{2}-\delta_{3},\alpha_{4}=2\delta_{3}. α14,α23,α24,α34.\alpha_{14},\alpha_{23},\alpha_{24},\alpha_{34}.
F(4)F(4) α1=12(ε1+ε2+ε3+δ),α2=ε1,\alpha_{1}=\frac{1}{2}(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\delta),\alpha_{2}=-\varepsilon_{1}, α1,α2,α3,α4,α12,α13,\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{12},\alpha_{13},
α3=ε1ε2,α4=ε2ε3.\alpha_{3}=\varepsilon_{1}-\varepsilon_{2},\alpha_{4}=\varepsilon_{2}-\varepsilon_{3}. α14,α23,α24,α34.\alpha_{14},\alpha_{23},\alpha_{24},\alpha_{34}.
Proposition 11.

[41, Corollary 2.1.23] A simple finite dimensional Lie superalgebra 𝔤\mathfrak{g} is a BKM superalgebra if and only if 𝔤\mathfrak{g} is contragredient of type A(m,0)=𝔰𝔩(m+1,1),A(m,1)=𝔰𝔩(m+1,2),B(0,n)=𝔬𝔰𝔭(1,2n),B(m,1)=𝔬𝔰𝔭(2m+1,2),C(n)=𝔬𝔰𝔭(2,2n2),D(m,1)=𝔬𝔰𝔭(2m,2),D(2,1,α)A(m,0)=\mathfrak{sl}(m+1,1),A(m,1)=\mathfrak{sl}(m+1,2),B(0,n)=\mathfrak{osp}(1,2n),B(m,1)=\mathfrak{osp}(2m+1,2),C(n)=\mathfrak{osp}(2,2n-2),D(m,1)=\mathfrak{osp}(2m,2),D(2,1,\alpha) for α=0,1,F(4),\alpha=0,-1,F(4), and G(3)G(3).

Remark 10.

We observe that the number of free roots of a BKM superalgebra is equal to the number of connected subgraphs C(G)C(G) of GG. In particular, when GG is a tree, this number is equal to the number of subtrees of GG. This number is well-studied in the literature. For example, see [38] and the references therein.

The rest of this section is dedicated to the proof of Theorem 3 and Corollary 1 which relates the 𝕜\mathbb{k}-chromatic polynomial with root multiplicities of BKM superalgebras. Hence we obtain a Lie superalgebras theoretic interpretation of 𝕜\mathbb{k}-chromatic polynomials.

5.2. Multicoloring and the 𝕜\mathbb{k}-chromatic polynomial of GG

For any finite set SS, let 𝒫(S)\mathcal{P}(S) be the power set of SS. For a tuple of non–negative integers 𝐤=(ki:iI)\mathbf{k}=(k_{i}:i\in I), we have supp(𝕜)={iI:ki0}\mathrm{supp}(\mathbb{k})=\{i\in I:k_{i}\neq 0\}.

Definition 7.

Let GG be a graph with vertex set II and the edge set E(G)E(G). Let 𝐤+[I]\mathbf{k}\in\mathbb{Z}_{+}[I]. We call a map τ:I𝒫({1,,q})\tau:I\rightarrow\mathcal{P}\big{(}\{1,\dots,q\}\big{)} a proper vertex 𝕜\mathbb{k}-multicoloring of GG if the following conditions are satisfied:

  1. (i)

    For all iIi\in I we have |τ(i)|=ki|\tau(i)|=k_{i},

  2. (ii)

    For all i,jIi,j\in I such that (i,j)E(G)(i,j)\in E(G) we have τ(i)τ(j)=\tau(i)\cap\tau(j)=\emptyset.

The case ki=1k_{i}=1 for iIi\in I corresponds to the classical graph coloring of graph GG. For more details and examples we refer to [18]. The number of ways a graph GG can be 𝕜\mathbb{k}–multicolored using qq colors is a polynomial in qq, called the generalized 𝕜\mathbb{k}-chromatic polynomial (𝕜\mathbb{k}-chromatic polynomial in short) and denoted by π𝐤G(q)\pi_{\mathbf{k}}^{G}(q). The 𝕜\mathbb{k}-chromatic polynomial has the following well–known description. We denote by Pk(𝕜,G)P_{k}(\mathbb{k},G) the set of all ordered kk–tuples (P1,,Pk)(P_{1},\dots,P_{k}) such that:

  1. (1)

    each PiP_{i} is a non–empty independent subset of II, i.e. no two vertices have an edge between them; and

  2. (2)

    For all iIi\in I, αi\alpha_{i} occurs exactly kik_{i} times in total in the disjoint union P1˙˙PkP_{1}\dot{\cup}\cdots\dot{\cup}P_{k}.

Then we have

π𝐤G(q)=k0|Pk(𝕜,G)|(qk).\pi^{G}_{\mathbf{k}}(q)=\sum\limits_{k\geq 0}|P_{k}(\mathbb{k},G)|\,{q\choose k}. (5.1)

We have the following relation between the ordinary chromatic polynomials and the 𝕜\mathbb{k}-chromatic polynomials. We have

π𝕜G(q)=1𝕜!π𝟙G(𝕜)(q)\pi_{\mathbb{k}}^{G}(q)=\frac{1}{\mathbb{k}!}\pi_{\mathbb{1}}^{G(\mathbb{k})}(q) (5.2)

where π𝟙G(𝕜)(q)is the chromatic polynomial of the graph G(𝕜)\pi_{\mathbb{1}}^{G(\mathbb{k})}(q)\ \text{is the chromatic polynomial of the graph $G(\mathbb{k})$} and 𝕜!=iIki!\mathbb{k}!=\prod_{i\in I}k_{i}!. The graph G(𝕜)G(\mathbb{k}) (the join of GG with respect to 𝕜\mathbb{k}) is constructed as follows: For each jsupp(𝕜)j\in\mathrm{supp}(\mathbb{k}), take a clique (complete graph) of size kjk_{j} with vertex set {j1,,jkj}\{j^{1},\dots,j^{k_{j}}\} and join all vertices of the rr–th and ss–th cliques if (r,s)E(G).(r,s)\in E(G).

For the rest of this paper, we fix an element 𝐤+[I]\mathbf{k}\in\mathbb{Z}_{+}[I] satisfying ki1k_{i}\leq 1 for iIreΨ0i\in I^{\text{re}}\sqcup\Psi_{0}, where Ψ0\Psi_{0} is the set of odd roots of zero norm.

5.3. Bond lattice and an isomorphism of lattices

In this subsection, we prove a lemma which will be useful in the proof of Theorem 3.

Definition 8.

Let LG(𝕜)L_{G}(\mathbb{k}) be the weighted bond lattice of GG, which is the set of 𝐉={J1,,Jk}\mathbf{J}=\{J_{1},\dots,J_{k}\} satisfying the following properties:

  1. (i)

    𝕁\mathbb{J} is a multiset, i.e. we allow Ji=JjJ_{i}=J_{j} for iji\neq j

  2. (ii)

    each JiJ_{i} is a multiset and the subgraph spanned by the underlying set of JiJ_{i} is a connected subgraph of GG for each 1ik1\leq i\leq k and

  3. (iii)

    For all iIi\in I, αi\alpha_{i} occurs exactly kik_{i} times in total in the disjoint union J1˙˙JkJ_{1}\dot{\cup}\cdots\dot{\cup}J_{k}.

For 𝐉LG(𝕜)\mathbf{J}\in L_{G}(\mathbb{k}) we denote by D(Ji,𝐉)D(J_{i},\mathbf{J}) the multiplicity of JiJ_{i} in 𝐉\mathbf{J} and set mult(β(Ji))=dim 𝔤β(Ji)\text{mult}(\beta(J_{i}))=\text{dim }\mathfrak{g}_{\beta(J_{i})}, where β(Ji)=αJiα\beta(J_{i})=\sum_{\alpha\in J_{i}}\alpha. We define 𝕁0={Ji𝕁:β(Ji)Δ+0}\mathbb{J}_{0}=\{J_{i}\in\mathbb{J}:\beta(J_{i})\in\Delta_{+}^{0}\} and 𝕁1=𝕁\𝕁0\mathbb{J}_{1}=\mathbb{J}\backslash\mathbb{J}_{0}.

Lemma 11.

[50, Proposition 2.40] Let iIimi\in I^{im} and αΔ+\{αi}\alpha\in\Delta_{+}\backslash\{\alpha_{i}\} such that α(hi)<0\alpha(h_{i})<0. Then α+jαiΔ+\alpha+j\alpha_{i}\in\Delta_{+} for all j+j\in\mathbb{Z}_{+}.

Lemma 12.

[1, Lemma 3.4] Let 𝒫\mathcal{P} be the collection of multisets γ={β1,,βr}\gamma=\{\beta_{1},\dots,\beta_{r}\} (we allow βi=βj\beta_{i}=\beta_{j} for iji\neq j) such that each βiΔ+\beta_{i}\in\Delta_{+} and β1++βr=η(𝕜)\beta_{1}+\dots+\beta_{r}=\eta(\mathbb{k}). The map ψ:LG(𝕜)𝒫\psi:L_{G}(\mathbb{k})\rightarrow\mathcal{P} defined by {J1,,Jk}{β(J1),,β(Jk)}\{J_{1},\dots,J_{k}\}\mapsto\{\beta(J_{1}),\dots,\beta(J_{k})\} is a bijection.

5.4. Proof of Theorem 3: (Chromatic polynomial and root multiplicities)

For a Weyl group element wWw\in W, we fix a reduced word w=𝕤i1𝕤ikw=\mathbb{s}_{i_{1}}\cdots\mathbb{s}_{i_{k}} and let I(w)={αi1,,αik}I(w)=\{\alpha_{i_{1}},\dots,\alpha_{i_{k}}\}. Note that I(w)I(w) is independent of the choice of the reduced expression of ww. For γ=iImiαiΩ\gamma=\sum\limits_{i\in I}m_{i}\alpha_{i}\in\Omega, we set Im(γ)I_{m}(\gamma) is the multiset {αi,,αimitimes:iI}\{\underbrace{\alpha_{i},\dots,\alpha_{i}}_{m_{i}\,\mathrm{times}}:i\in I\} and I(γ)I(\gamma) is the underlying set of Im(γ)I_{m}(\gamma). We define Ψ0(γ)=I(γ)Ψ0\Psi_{0}(\gamma)=I(\gamma)\cap\Psi_{0}. Also, we define 𝒥(γ)={wW\{e}:I(w)I(γ) is an independent set}.\mathcal{J}(\gamma)=\{w\in W\backslash\{e\}:I(w)\cup I(\gamma)\mbox{ is an independent set}\}. The following lemma is a generalization of [49, Lemma 2.3] (for Kac-Moody Lie algebras) and [1, Lemma 3.6] (for Borcherds algebras) to the setting of BKM superalgebras. Since the proof of this lemma is similar to the proof of the Borcherds algebras case, we omit the proof here. Recall that 𝐤=(ki:iI)\mathbf{k}=(k_{i}:i\in I) satisfies ki1k_{i}\leq 1 for iIreΨ0i\in I^{\text{re}}\sqcup\Psi_{0}.

Lemma 13.

Let wWw\in W and γ=iI\Ψ0αi+iΨ0miαiΩ\gamma=\sum\limits_{i\in I\backslash\Psi_{0}}\alpha_{i}+\sum\limits_{i\in\Psi_{0}}m_{i}\alpha_{i}\in\Omega. We write ρw(ρ)+w(γ)=αΠbα(w,γ)α\rho-w(\rho)+w(\gamma)=\sum_{\alpha\in\Pi}b_{\alpha}(w,\gamma)\alpha. Then we have

  1. (i)

    bα(w,γ)+b_{\alpha}(w,\gamma)\in\mathbb{Z}_{+} for all αΠ\alpha\in\Pi and bα(w,γ)=0b_{\alpha}(w,\gamma)=0 if αI(w)I(γ)\alpha\notin I(w)\cup I(\gamma).

  2. (ii)

    bα(w,γ)1 for all αI(w)b_{\alpha}(w,\gamma)\geq 1\text{ for all }\alpha\in I(w).

  3. (iii)

    bα(w,γ)=1b_{\alpha}(w,\gamma)=1 if αI(γ)\Ψ0(γ)\alpha\in I(\gamma)\backslash\Psi_{0}(\gamma) and bα(w,γ)=mαb_{\alpha}(w,\gamma)=m_{\alpha} if αΨ0(γ)\alpha\in\Psi_{0}(\gamma).

  4. (iv)

    If w𝒥(γ)w\in\mathcal{J}(\gamma), then bα(w,γ)=1b_{\alpha}(w,\gamma)=1 for all αI(w)(I(γ)\Ψ0(γ))\alpha\in I(w)\cup(I(\gamma)\backslash\Psi_{0}(\gamma)), bα(w,γ)=mαb_{\alpha}(w,\gamma)=m_{\alpha} for all αΨ0(γ)\alpha\in\Psi_{0}(\gamma).

  5. (v)

    If w𝒥(γ){e}w\notin\mathcal{J}(\gamma)\cup\{e\}, then there exists αI(w)Πre\alpha\in I(w)\subseteq\Pi^{\mathrm{r}e} such that bα(w,γ)>1b_{\alpha}(w,\gamma)>1.

The following proposition is an easy consequence of the above lemma and essential to prove Theorem 3. Let UU be the sum-side of the denominator identity (Equation (2.1)).

Proposition 12.

Let qq\in\mathbb{Z}. We have

Uq[eη(𝕜)]=(1)ht(η(𝕜))π𝐤G(q),U^{q}[e^{-\eta(\mathbb{k})}]=(-1)^{\mathrm{ht}(\eta(\mathbb{k}))}\ \pi^{G}_{\mathbf{k}}(q),

where Uq[eη(𝕜)]U^{q}[e^{-\eta(\mathbb{k})}] denotes the coefficient of eη(𝕜)e^{-\eta(\mathbb{k})} in UqU^{q}.

Proof.

Write Uq=k0(qk)(U1)kU^{q}=\sum\limits_{k\geq 0}{q\choose k}\,(U-1)^{k}. From Lemma 13 we get

w(ρ)ρw(γ)=γαI(w)α,for w𝒥(γ){e}.w(\rho)-\rho-w(\gamma)=-\gamma-\sum_{\alpha\in I(w)}\alpha,\ \ \text{for $w\in\mathcal{J}(\gamma)\cup\{e\}$}.

Since ki1k_{i}\leq 1 for iIreΨ0i\in I^{re}\sqcup\Psi_{0}, the coefficient of eη(𝕜)e^{-\eta(\mathbb{k})} in (U1)k(U-1)^{k} is equal to

(γΩγ0w𝒥(γ)ϵ(γ)ϵ(w)eγαI(w)α)k[eη(𝕜)].\Bigg{(}\sum_{\begin{subarray}{c}\gamma\in\Omega\\ \gamma\neq 0\end{subarray}}\sum_{w\in\mathcal{J}(\gamma)}\epsilon(\gamma)\epsilon(w)e^{-\gamma-\sum_{\alpha\in I(w)}\alpha}\Bigg{)}^{k}[e^{-\eta(\mathbb{k})}]. (5.3)

Hence the coefficient is given by

(γ1,,γk)(w1,,wk)ϵ(γ1)ϵ(γk)ϵ(w1)ϵ(wk)\sum_{\begin{subarray}{c}(\gamma_{1},\dots,\gamma_{k})\\ (w_{1},\dots,w_{k})\end{subarray}}\epsilon(\gamma_{1})\cdots\epsilon(\gamma_{k})\epsilon(w_{1})\cdots\epsilon(w_{k}) (5.4)

where the sum ranges over all kk–tuples (γ1,,γk)Ωk(\gamma_{1},\dots,\gamma_{k})\in\Omega^{k} and (w1,,wk)Wk(w_{1},\dots,w_{k})\in W^{k} such that

wi𝒥(γi){e}, 1ik,\displaystyle\bullet\ w_{i}\in\mathcal{J}(\gamma_{i})\cup\{e\},\text{ $1\leq i\leq k$},
I(w1)˙˙I(wk)={αi:iIre,ki=1},\displaystyle\bullet\ I(w_{1})\ \dot{\cup}\cdots\dot{\cup}\ I(w_{k})=\{\alpha_{i}:i\in I^{\mathrm{re}},k_{i}=1\},
I(wi)I(γi) for each 1ik,\displaystyle\bullet\ I(w_{i})\cup I(\gamma_{i})\neq\emptyset\ \text{ for each $1\leq i\leq k$},
γ1++γk=iIimkiαi.\displaystyle\bullet\ \gamma_{1}+\cdots+\gamma_{k}=\sum_{i\in I^{\mathrm{im}}}k_{i}\alpha_{i}.

It follows that (I(w1)I(γ1),,I(wk)I(γk))Pk(𝕜,G)\big{(}I(w_{1})\cup I(\gamma_{1}),\dots,I(w_{k})\cup I(\gamma_{k})\big{)}\in P_{k}\big{(}\mathbb{k},G\big{)} and each element is obtained in this way. So the sum ranges over all elements in Pk(𝕜,G)P_{k}\big{(}\mathbb{k},G\big{)}. Hence (U1)k[eη(𝕜)](U-1)^{k}[e^{-\eta(\mathbb{k})}] is equal to (1)ht(η(𝕜))|Pk(𝕜,G)|(-1)^{\mathrm{ht}(\eta(\mathbb{k}))}|P_{k}(\mathbb{k},G)|. Now, Equation (5.1) completes the proof. ∎

Remark 11.

We need the extra assumption ki1k_{i}\leq 1 for iΨ0i\in\Psi_{0} when we extend Theorem 1 to the case of BKM superalgebras. Suppose ki>1k_{i}>1 for some iΨ0i\in\Psi_{0}. We observe that each γi\gamma_{i} contributes Im(γi)I_{m}(\gamma_{i}) to the required coefficient in Equation (5.3) and Im(γi)I_{m}(\gamma_{i}) can be a multiset. This implies that I(wi)Im(γi)I(w_{i})\cup I_{m}(\gamma_{i}) can be a multiset. The independent set considered in Equation (5.1) are sets. By assuming ki1k_{i}\leq 1 for iΨ0i\in\Psi_{0}, we have avoided the possibility of Im(γi)I_{m}(\gamma_{i}) being a multiset.

Now, we can prove Theorem 3 using the product side of the denominator identity (2.1). Proposition 12 and Equation (2.1) together imply that the 𝕜\mathbb{k}-chromatic polynomial π𝐤G(q)\pi^{G}_{\mathbf{k}}(q) is given by the coefficient of eη(𝕜)e^{-\eta(\mathbb{k})} in

(1)ht(η(𝕜))αΔ+0(1eα)qmult(α)αΔ+1(1+eα)qmult(α)=(1)ht(η(𝕜))αΔ+(1ϵ(α)eα)ϵ(α)qmult(α).(-1)^{\mathrm{ht}(\eta(\mathbb{k}))}\frac{\prod_{\alpha\in\Delta_{+}^{0}}(1-e^{-\alpha})^{q\operatorname{mult}(\alpha)}}{\prod_{\alpha\in\Delta_{+}^{1}}(1+e^{-\alpha})^{q\operatorname{mult}(\alpha)}}=(-1)^{\mathrm{ht}(\eta(\mathbb{k}))}\prod_{\alpha\in\Delta_{+}}(1-\epsilon(\alpha)e^{-\alpha})^{\epsilon(\alpha)q\operatorname{mult}(\alpha)}. (5.5)

where ϵ(α)=1 if αΔ+0 and 1 if αΔ+1\epsilon(\alpha)=1\text{ if }\alpha\in\Delta_{+}^{0}\text{ and }-1\text{ if }\alpha\in\Delta_{+}^{1}. Now,

αΔ+(1ϵ(α)eα)ϵ(α)qmult(α)=αΔ+(k0(ϵ(α))k(ϵ(α)qmultαk)ekα).\prod_{\alpha\in\Delta_{+}}(1-\epsilon(\alpha)e^{-\alpha})^{\epsilon(\alpha)q\operatorname{mult}(\alpha)}=\prod_{\alpha\in\Delta_{+}}\Big{(}\sum\limits_{k\geq 0}(-\epsilon(\alpha))^{k}\binom{\epsilon(\alpha)q\operatorname{mult}\alpha}{k}e^{-k\alpha}\Big{)}.

A direct calculation of the coefficient of eη(𝕜)e^{-\eta(\mathbb{k})} in the right-hand side of the above equation completes the proof of Theorem 3.

5.5. Proof of Corollary 1: (Formula for multiplicities of free roots)

In this subsection, we prove Corollary 1 which gives a combinatorial formula for the multiplicities of free roots. We consider the algebra of formal power series 𝒜:=[[Xi:iI]]\mathcal{A}:=\mathbb{C}[[X_{i}:i\in I]]. For a formal power series ζ𝒜\zeta\in\mathcal{A} with constant term 1, its logarithm log(ζ)=k1(1ζ)kk\text{log}(\zeta)=-\sum_{k\geq 1}\frac{(1-\zeta)^{k}}{k} is well–defined.

Proof.

We consider UU as an element of [[eαi:iI]]\mathbb{C}[[e^{-\alpha_{i}}:i\in I]] where Xi=eαiX_{i}=e^{-\alpha_{i}} [c.f. Lemma 13]. From the proof of Proposition 12 we obtain that the coefficient of eη(𝕜)e^{-\eta(\mathbb{k})} in log U-\text{log }U is equal to

(1)ht(η(𝕜))k1(1)kk|Pk(𝕜,G)|(-1)^{\mathrm{ht}(\eta(\mathbb{k}))}\sum\limits_{k\geq 1}\frac{(-1)^{k}}{k}|P_{k}(\mathbb{k},G)|

which by Equation (5.1) is equal to |π𝕜G(q)[q]||\pi^{G}_{\mathbb{k}}(q)[q]|. Now applying log -\text{log } to the right hand side of the denominator identity (2.1) gives

|𝕜1mult(η(𝕜/))=|π𝕜G(q)[q]|\sum_{\begin{subarray}{c}\ell\in\mathbb{N}\\ \ell|\mathbb{k}\end{subarray}}\frac{1}{\ell}\operatorname{mult}\big{(}\eta\left(\mathbb{k}/\ell\right)\big{)}=|\pi^{G}_{\mathbb{k}}(q)[q]| (5.6)

if β(𝕜)Δ0+\beta(\mathbb{k})\in\Delta_{0}^{+} and

|𝕜(1)l+1mult(η(𝕜/))=|π𝕜G(q)[q]|\sum_{\begin{subarray}{c}\ell\in\mathbb{N}\\ \ell|\mathbb{k}\end{subarray}}\frac{(-1)^{l+1}}{\ell}\operatorname{mult}\big{(}\eta\left(\mathbb{k}/\ell\right)\big{)}=|\pi^{G}_{\mathbb{k}}(q)[q]| (5.7)

if β(𝕜)Δ1+\beta(\mathbb{k})\in\Delta_{1}^{+}.

The statement of the corollary is now an easy consequence of the following Möbius inversion formula: g(d)=d|nf(d)f(n)=d|nμ(nd)g(d)g(d)=\sum_{d|n}f(d)\iff f(n)=\sum_{d|n}\mu(\frac{n}{d})g(d) where μ\mu is the möbius function. ∎

Example 10.

Consider the BKM superalgebra 𝔤\mathfrak{g} and the root space η(𝕜)=3α3+3α6Δ+1\eta(\mathbb{k})=3\alpha_{3}+3\alpha_{6}\in\Delta_{+}^{1} from Example 2. The 𝕜\mathbb{k}-chromatic polynomial of the quasi Dynkin diagram GG of 𝔤\mathfrak{g} is equal to

π𝕜G(q)=(q3)(q33)=13!3!q(q1)(q2)(q3)(q4)(q5).\pi^{G}_{\mathbb{k}}(q)=\binom{q}{3}\binom{q-3}{3}=\frac{1}{3!3!}q(q-1)(q-2)(q-3)(q-4)(q-5).

By Corollary 1, since η(𝕜)\eta(\mathbb{k}) is odd,

mult(η(𝕜))\displaystyle\operatorname{mult}(\eta(\mathbb{k})) =|𝕜(1)l+1μ()|π𝕜/G(q)[q]|\displaystyle=\sum\limits_{\ell|\mathbb{k}}\frac{(-1)^{l+1}\mu(\ell)}{\ell}\ |\pi^{G}_{\mathbb{k}/\ell}(q)[q]|
=|π𝕜G(q)[q]|+μ(3)3|π𝕜G(q)[q]| where 𝕜=(0,0,1,0,0,1)\displaystyle=|\pi_{\mathbb{k}}^{G}(q)[q]|+\frac{\mu(3)}{3}|\pi_{\mathbb{k}^{\prime}}^{G}(q)[q]|\text{ where }\mathbb{k}^{\prime}=(0,0,1,0,0,1)
=10313\displaystyle=\frac{10}{3}-\frac{1}{3}
=3\displaystyle=3
Example 11.

Consider the BKM superalgebra 𝔤\mathfrak{g} from the previous example. Let 𝕜=(2,1,0,1,2,0)+[I]\mathbb{k}=(2,1,0,1,2,0)\in\mathbb{Z}_{+}[I]. Then η(𝕜)=2α1+α2+α4+2α5Δ+0\eta(\mathbb{k})=2\alpha_{1}+\alpha_{2}+\alpha_{4}+2\alpha_{5}\in\Delta_{+}^{0}. We have

mult(η(𝕜))=|𝕜μ()|π𝕜/G(q)[q]|\operatorname{mult}(\eta(\mathbb{k}))=\sum\limits_{\ell|\mathbb{k}}\frac{\mu(\ell)}{\ell}\ |\pi^{G}_{\mathbb{k}/\ell}(q)[q]|

This implies that mult(η(𝕜))=|π𝕜G(q)[q]|\operatorname{mult}(\eta(\mathbb{k}))=|\pi^{G}_{\mathbb{k}}(q)[q]|. We have π𝕜G(q)=14q(q1)3(q2)2\pi^{G}_{\mathbb{k}}(q)=\frac{1}{4}q(q-1)^{3}(q-2)^{2}. Therefore mult(η(𝕜))=1\operatorname{mult}(\eta(\mathbb{k}))=1.

References

  • [1] G. Arunkumar, Deniz Kus, R. Venkatesh. Root multiplicities for Borcherds algebras and graph coloring. J. Algebra 499, 538–569, 2018.
  • [2] G. Arunkumar, Generalized chromatic polynomials of graphs from Heaps of pieces. Arxiv: 1907.08864.
  • [3] Richard Borcherds. Generalized Kac-Moody algebras. J. Algebra, 115(2):501–512, 1988.
  • [4] Martin Cederwall, Jakob Palmkvist. LL_{\infty} algebras for extended geometry from Borcherds superalgebras. Comm. Math. Phys. 369 (2019), no. 2, 721–760.
  • [5] E. S. Chibrikov. A right normed basis for free Lie algebras and Lyndon-Shirshov words. J. Algebra, 302(2):593–612, 2006.
  • [6] E. S. Chibrikov. The right-normed basis for a free Lie superalgebra and Lyndon-Shirshov words Algebra and Logic, 45(4):261–276, 2006.
  • [7] Shun-Jen Cheng, Jae-Hoon Kwon, Weiqiang Wang. Irreducible characters of Kac-Moody Lie superalgebras. Proc. Lond. Math. Soc. 110(3), No.1, 108–132, 2015.
  • [8] Miranda C. N. Cheng, Atish Dabholkar. Borcherds-Kac-Moody symmetry of N=4 dyons. Commun. Number Theory Phys. 3 (2009), no. 1, 59–110.
  • [9] Meng-Kiat Chuah, Fioresi, Rita Fioresi. Equal rank real forms of affine non-twisted Kac-Moody Lie superalgebras. J. Pure Appl. Algebra 224, No.7, 106278, 2020.
  • [10] Meng-Kiat Chuah, Fioresi, Rita Fioresi. Affine Lie superalgebras. Journal of Algebra 570, 15, 636-677, 2021.
  • [11] G. Duchamp and D. Krob. The free partially commutative Lie algebra: bases and ranks. Adv. Math., 95(1):92–126, 1992.
  • [12] Matthias R. Gaberdiel, Stefan Hohenegger, Daniel Persson. Borcherds algebras and N=4N=4 topological amplitudes. J. High Energy Phys. 2011, no. 6, 125, 34 pp.
  • [13] Abhijit Gadde, Pedro Liendo, Leonardo Rastelli, Wenbin Yan. On the integrability of planar N=2 superconformal gauge theories. J. High Energy Phys. 2013, no. 8.
  • [14] R. M. Green. Combinatorics of minuscule representations. Cambridge University Press, Cambridge Cambridge Tracts in Mathematics, (199) viii+320, 2013, ISBN = 978-1-107-02624-7.
  • [15] Curtis Greene, Thomas Zaslavsky. On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions, and orientations of graphs. Trans. Amer. Math. Soc 280 (1) (1983) 97–126.
  • [16] J. Greitz, P. S. Howe. Maximal supergravity in three dimensions: supergeometry and differential forms. J. High Energy Phys. 2011, no. 7, 071, 27 pp.
  • [17] Suresh Govindarajan, Sutapa Samanta. BKM Lie superalgebras from counting twisted CHL dyons—II. Nuclear Phys.B 948 (2019), 114770, 31 pp.
  • [18] Magnús M. Halldórsson and Guy Kortsarz. Multicoloring: problems and techniques. In Mathematical foundations of computer science 2004, volume 3153 of Lecture Notes in Comput. Sci., pages 25–41. Springer, Berlin, 2004.
  • [19] Sarah M. Harrison, Natalie M. Paquette, Roberto Volpato, A Borcherds–Kac–Moody Superalgebra with Conway Symmetry. Comm. Math. Phys. 370 (2019), no. 2, 539–590.
  • [20] Marc Henneaux, Bernard L. Julia, Jérôme Levie. E11E_{11}, Borcherds algebras and maximal supergravity. J. High Energy Phys. 2012, no. 4, 078, front matter+30 pp.
  • [21] Marc Henneaux, Victor Lekeu. Kac-Moody and Borcherds symmetries of six-dimensional chiral supergravity. J. High Energy Phys. 2015, no. 3, 056, front matter+28 pp.
  • [22] Elizabeth Jurisich. An exposition of generalized Kac-Moody algebras. Contemp. Math., 194, Amer. Math. Soc., Providence, RI, 1996.
  • [23] Elizabeth Jurisich. Generalized Kac-Moody Lie algebras, free Lie algebras and the structure of the Monster Lie algebra. J. Pure Appl. Algebra, 126 (1998), no. 1-3, 233–266.
  • [24] V. G. Kac. Lie superalgebras. Advances in Math., 26(1):8–96, 1977.
  • [25] Seok-Jin Kang and Myung-Hwan Kim. Free Lie algebras, generalized Witt formula, and the denominator identity. J. Algebra, 183(2):560–594, 1996.
  • [26] Jeong-Ah Kim, Dong-Uy Shin. Construction of Kac-Moody superalgebras as minimal graded Lie superalgebras and weight multiplicities for Kac-Moody superalgebras. J. Math. Phys. 41, no. 7, 4981–5001, 2000.
  • [27] Ctirad Klimčík. On supermatrix models, Poisson geometry, and noncommutative supersymmetric gauge theories. J. Math. Phys. 56 (2015), no. 12.
  • [28] Daniel Krob and Pierre Lalonde. Partially Commutative Lyndon Words. Book Title: STACS, 1993.
  • [29] Namhee Kwon. Weyl-Kac type character formula for admissible representations of Borcherds-Kac-Moody Lie superalgebras. Math. Z., 295(1-2):711–725, 2020.
  • [30] Ja Kyung Koo, Young Tak Oh. Freudenthal-type multiplicity formulas for generalized Kac-Moody superalgebras. Comm. Algebra 29 (2001), no. 1, 225–244.
  • [31] Pierre Lalonde. Bases de Lyndon des algèbres de Lie libres partiellement commutatives Theor. Comput. Sci., 117(1-2):217–226, 1993.
  • [32] Pierre Lalonde. Lyndon heaps: An analogue of Lyndon words in free partially commutative monoids Discret. Math., 145(1-3):171–189, 1995.
  • [33] R.C. Lyndon. On Burnside’s problem. Trans. Amer. Math. Soc., 77:202–215, 1954.
  • [34] Bousquet-Mélou, Mireille and Rechnitzer, Andrew. Lattice animals and heaps of dimers. Discrete Math., 258(1-3):235–274, 2002.
  • [35] A.A. Mikhalev. Subalgebras of free colored Lie superalgebras. Mathematical Notes of the Academy of Sciences of the USSR, 37, 356–360 (1985). https://doi.org/10.1007/BF01157965.
  • [36] Jakob Palmkvist. Borcherds and Kac-Moody extensions of simple finite-dimensional Lie algebras. J. High Energy Phys. no. 6, 003, front matter+9 pp, 2012.
  • [37] Jakob Palmkvist. Tensor hierarchies, Borcherds algebras and E11E_{11}. J. High Energy Phys. 2012, no. 2, 066, front matter+19 pp.
  • [38] Dinesh Pandey and Kamal Lochan Patra. On the number of connected subgraphs of graphs. To appear in Indian Journal of Pure and Applied Mathematics Arxiv: 1811.11411.
  • [39] E. N. Poroshenko. Bases for partially commutative Lie algebras. Algebra Logika, 50(5):405–417, 2011.
  • [40] Urmie Ray. A character formula for generalized Kac-Moody superalgebras. J. Algebra. 177, no.1, 154-163, 1995.
  • [41] Urmie Ray. Automorphic forms and Lie superalgebras. Springer, Dordrecht Algebra and Applications, ISBN = 978-1-4020-5009-1; 1-4020-5009-7, 2006.
  • [42] Christophe Reutenauer. Free Lie algebras, volume 7 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications.
  • [43] Richard P. Stanley. Acyclic orientations of graphs. Discrete Math., 5:171–178, 1973.
  • [44] Gérard Xavier Viennot. Heaps of pieces. I. Basic definitions and combinatorial lemmas. Graph theory and its applications: East and West (Jinan, 1986). Ann. New York Acad. Sci., 576:542–570, 1989.
  • [45] Gérard Xavier Viennot. Multi-directed animals, connected heaps of dimers and Lorentzian triangulations. Journal of Physics: Conference Series, Institute of Physics Publishing, 42:268–280, 2006.
  • [46] Gérard Xavier Viennot. The Art of Bijective Combinatorics, Part II, Commutations and Heaps of Pieces, Chapters 2b, 2d. Lectures at IMSc, Chennai., http://www.viennot.org/abjc2-ch2.html, PAGES = 8–21, 61–81.
  • [47] Gérard Xavier Viennot. The Art of Bijective Combinatorics, Part II, Commutations and Heaps of Pieces, Chapter 5a. Lectures at IMSc, Chennai., http://www.viennot.org/abjc2-ch5.html, PAGES = 1–80.
  • [48] Gérard Xavier Viennot. Commutations and Heaps of Pieces, Chapter 6. Lectures at IMSc, Chennai., http://cours.xavierviennot.org/Talca_2013_14_files/Talca13%3A14_Ch6.pdf.
  • [49] R. Venkatesh and Sankaran Viswanath. Chromatic polynomials of graphs from Kac-Moody algebras. J. Algebraic Combin., 41(4):1133–1142, 2015.
  • [50] Minoru Wakimoto. Infinite-dimensional Lie algebras. Translated from the 1999 Japanese original by Kenji Iohara, Iwanami Series in Modern Mathematics. Translations of Mathematical Monographs Volume-195 American Mathematical Society, Providence, RI Algebra and Applications, ISBN = 0-8218-2654-9, 2001.
  • [51] E. Witt. Treue Darstellung Liescher ringe. J. Reine Angew. Math., 177:152–160, 1937.