This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

a0(980)a_{0}(980)-meson twist-2 distribution amplitude within the QCD sum rules and investigation of Da0(980)(ηπ)e+νeD\to a_{0}(980)(\to\eta\pi)e^{+}\nu_{e}

Zai-Hui Wu    Hai-Bing Fu111Corresponding author fuhb@cqu.edu.cn    Tao Zhong zhongtao1219@sina.com    Dong Huang Department of Physics, Guizhou Minzu University, Guiyang 550025, China    Dan-Dan Hu    Xing-Gang Wu wuxg@cqu.edu.cn Department of Physics, Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, China
(July 26, 2025)
Abstract

In this paper, moments of a0(980)a_{0}(980)-meson twist-2 light-cone distribution amplitudes were deeply researched by using QCD sum rules approach within background field theory. Up to 9th-order accuracy, we present ξ2;a0n|μ0\langle\xi_{2;a_{0}}^{n}\rangle|_{\mu_{0}} at the initial scale μ0=1GeV\mu_{0}=1~{\rm GeV}, i.e. ξ2;a01|μ0=0.307(43)\langle\xi^{1}_{2;a_{0}}\rangle|_{\mu_{0}}=-0.307(43), ξ2;a03|μ0=0.181(34)\langle\xi^{3}_{2;a_{0}}\rangle|_{\mu_{0}}=-0.181(34), ξ2;a05|μ0=0.078(28)\langle\xi^{5}_{2;a_{0}}\rangle|_{\mu_{0}}=-0.078(28), ξ2;a07|μ0=0.049(26)\langle\xi^{7}_{2;a_{0}}\rangle|_{\mu_{0}}=-0.049(26), ξ2;a09|μ0=0.036(24)\langle\xi^{9}_{2;a_{0}}\rangle|_{\mu_{0}}=-0.036(24), respectively. An improved light-cone harmonic oscillator model for a0(980)a_{0}(980)-meson twist-2 light-cone distribution amplitudes is adopted, where its parameters are fixed by using the least squares method based on the ξ2;a0n|μ0\langle\xi_{2;a_{0}}^{n}\rangle|_{\mu_{0}}, and their goodness of fit reach to 95.4%95.4\%. Then, we calculate the Da0(980)D\to a_{0}(980) transition form factors within the light-cone sum rules approach, and at largest recoil point, we obtain f+Da0(0)=1.0580.035+0.068f_{+}^{D\to a_{0}}(0)=1.058^{+0.068}_{-0.035} and fDa0(0)=0.7640.036+0.044f_{-}^{D\to a_{0}}(0)=0.764^{+0.044}_{-0.036}. As a further application, the branching fractions of the Da0(980)ν¯D\to a_{0}(980)\ell\bar{\nu}_{\ell} semileptonic decays are given. Taking the decay a0(980)ηπa_{0}(980)\to\eta\pi into consideration, we obtain (D0a0(980)(ηπ)e+νe)=(1.3300.134+0.216)×104{\cal B}(D^{0}\to a_{0}(980)^{-}(\to\eta\pi^{-})e^{+}\nu_{e})=(1.330^{+0.216}_{-0.134})\times 10^{-4}, (D+a0(980)0(ηπ0)e+νe)=(1.6750.169+0.272)×104{\cal B}(D^{+}\to a_{0}(980)^{0}(\to\eta\pi^{0})e^{+}\nu_{e})=(1.675^{+0.272}_{-0.169})\times 10^{-4}, which are consistent with the BESIII collaboration and PDG data within errors. Finally, we present the angle observables of forward-backward asymmetries, q2q^{2}-differential flat terms and lepton polarization asymmetry of the semileptonic decay Da0(980)ν¯D\to a_{0}(980)\ell\bar{\nu}_{\ell}.

pacs:
12.38.-t, 12.38.Bx, 14.40.Aq

I Introduction

In the past few decades, especially for the discovery of resonance a0(980)a_{0}(980) state Ammar:1968zur , nature of scalar mesons below 1 GeV is a long-standing puzzle, which becomes one of hot topics in hadron physics. In the quark model scenario, the composition of a0(980)a_{0}(980) has turned out to be mysterious. Its intriguing internal structure allows tests of various hypotheses, such as quark-antiquark Achasov:1987ts ; Cheng:2005nb , tetraquark states Jaffe:1976ig ; Alford:2000mm ; Humanic:2022hpq ; Brito:2004tv ; Klempt:2007cp ; Alexandrou:2017itd , two-meson molecule bound states Weinstein:1982gc ; Branz:2007xp ; Dai:2012kf ; Dai:2014lza ; Sekihara:2014qxa and hybrid states Ishida:1995 . However, until now there is no definite conclusion of which scenario is correct or have no general agreement on the inner structure of a0(980)a_{0}(980). Among the hadronic decay processes including a0(980)a_{0}(980) state, semileptonic decay of charmed meson provides a simpler decay mechanism and final-state interactions, which can give an ideal platform for studying the meson’s properties.

From the experimental side, BESIII collaboration observed the charmless hadronic decay processes involving a0(980)a_{0}(980)-meson, i.e. D0a0(980)e+νeD^{0}\to a_{0}(980)^{-}e^{+}\nu_{e} and D+a0(980)0e+νeD^{+}\to a_{0}(980)^{0}e^{+}\nu_{e} with the significance up to 6.4σ6.4\sigma and 2.9σ2.9\sigma, respectively BESIII:2018sjg . Experimental facilities have reported the most precise results on the semileptonic decay of D(s)D_{(s)} to pseudoscalar and vector mesons. From theory point of view, these channels are straightforward to study because the internal stucture/quark content of the meson is a typical quark-antiquark system. But the quark structure of the scalar meson below 1 GeV has varied explanations, cf. the review “Scalar mesons below 1 GeV” of Particle Data Group (PDG) ParticleDataGroup:2022pth . Wang et al. conclude the ratio (R)(R) provides a model independent way to distinguish the quark components of the light scalar meson, i.e. the four-quark and two-quark pictures Wang:2009azc . And this value has not confirmed exactly from experiments. Nowadays, the two-quark picture are researched by some theoretical group, such as covariant confined quark model (CCQM) Soni:2020sgn , light-cone sum rule (LCSR) Cheng:2017fkw ; Huang:2021owr , AdS/QCD Momeni:2022gqb , perturbative QCD (pQCD) Rui:2018mxc and Bethe-Salpeter equation Santowsky:2021ugd . So it is also meaningful to reconsider the two-quark scenario in detail and to compare the experimental observable, which is also the starting point of this paper.

The important physical quantity for semileptonic decays Da0(980)ν¯D\to a_{0}(980)\ell\bar{\nu}_{\ell} is the transition form factors (TFFs). As is known that the analogous semileptonic TFFs are also the essential ingredients for the indirect search of new physics beyond the Standard Model Aslam:2009cv . Therefore, an accurate TFFs is crucial for the semileptonic decay process. The LCSR approach is one of an effective method in dealing with heavy to light decays, which makes the operator production expansion (OPE) into the increasing twist light-cone distribution amplitudes (LCDAs), i.e twist-2, 3, 4 LCDAs. The LCSR is suitable in the large and middle recoil region. In this paper, we will adopt the LCSR to recalculate the Da0(980)D\to a_{0}(980) TFFs and the experimental observable. One of the key quantities that characterize the TFFs is the twist-2 LCDA, which describes the dominant momentum fraction distribution for each part of a meson. In general, the a0(980)a_{0}(980)-meson twist-2 LCDA ϕ2;a0(x,μ)\phi_{2;a_{0}}(x,\mu) can be expanded as a Gegenbauer polynomial series

ϕ2;a0(x,μ)=6xx¯[a2;a00(μ)+n=1a2;a0n(μ)Cn3/2(ξ)],\displaystyle\phi_{2;a_{0}}(x,\mu)=6x\bar{x}\bigg{[}a_{2;a_{0}}^{0}(\mu)+\sum\limits_{n=1}^{\infty}a_{2;a_{0}}^{n}(\mu)C_{n}^{3/2}(\xi)\bigg{]}, (1)

where x¯=(1x)\bar{x}=(1-x) and ξ=(2x1)\xi=(2x-1). The zeroth-order Gegenbauer moment a2;a00(μ)a_{2;a_{0}}^{0}(\mu) is equals to zero, and the even Gegenbauer coefficients are highly suppressed, which exactly equal to zero under the approximation that m1m2m_{1}\simeq m_{2} (m1,2m_{1,2} are masses of two constituent quarks), and the LCDA of the scalar meson is then dominated by the odd Gegenabuer moments. In contrast, the odd Gegenbauer moments vanish for π\pi and ρ\rho mesons. Thus, the behavior of ϕ2;a0(x,μ)\phi_{2;a_{0}}(x,\mu) tends to antisymmetric form under the exchange u(1u)u\to(1-u) in isospin symmetry. Currently, the a0(980)a_{0}(980)-meson twist-2 LCDA is mainly coming from QCDSR by Cheng et al. Cheng:2005nb , which gives the first two nonzero ξ\xi-moments 222The ξ\xi-moments can be related with Gegenbauer moments directly, which the formulae can be found in Ref. Cheng:2005nb . In our previous work Zhong:2022lmn , based on the pionic leading-twist DA, we analyzed in detail the influence of different numbers of ξ\xi-moments included in the fitting, and found that when the order of ξ\xi-moments is not more than ten, the change of the number of ξ\xi-moments has an obvious impact on the fitting result. When the order of ξ\xi-moment is more than ten, the change of the number of ξ\xi-moments has a very small impact on the fitting results. Thus, the higher-order ξ\xi-moments should be given in order to get more accuracy ϕ2;a0(x,μ)\phi_{2;a_{0}}(x,\mu) behavior and get more accuracy predictions for the processes involving a0(980)a_{0}(980)-meson.

To achieve this target, the QCDSR under the framework of background field theory (BFT) is one of the effective way Novikov:1983gd ; Hubschmid:1982pa ; Govaerts:1983ka ; Govaerts:1984bk ; Ambjorn:1982bp ; Ambjorn:1982en ; Reinders:1984sr ; Elias:1987ac ; Huang:1986wm ; Huang:1989gv . In this approach, the quark and gluon fields are composed by background fields and quantum fluctuations around them. By decomposing quark and gluon fields into classical background fields describing nonperturbative effects and quantum fields describing perturbative effects, BFT can provide clear physical images for the separation of long-range and short-range dynamics of OPE. At present, the BFT has been applied to calculate the LCDAs of pseudoscalar and vector/axial vector mesons Fu:2016yzx ; Hu:2021zmy ; Hu:2021lkl ; Zhong:2014jla ; Fu:2018vap ; Zhong:2016kuv ; Huang:2004tp ; Zhong:2011rg . Therefore, we will study the scalar a0(980)a_{0}(980)-meson twist-2 LCDA by using BFT. To get a more accurate behavior of ϕ2;a0(x,μ)\phi_{2;a_{0}}(x,\mu), a research scheme is used which combine the LCHO model and nonperturbative QCD sum rule for ξ\xi-moments. Specifically, a new QCD sum rule formula will be used due to the zeroth-order ξ\xi-moments can not be normalized in the whole Borel parameters region. In this paper, we will calculate the first five-order nonzero ξ\xi-moments and determine the LCHO model parameters with the least squares method. This scheme is used in the pion case Zhong:2021epq , and subsequently for the kaon leading-twist DA Zhong:2022ecl and a1(1260)a_{1}(1260)-meson longitudinal twist-2 DA Hu:2021lkl .

The remaining parts of this paper are organized as follows. In Sec. II, we calculate the a0(980)a_{0}(980)-meson twist-2 LCDA moments and introduce the LCHO model. A new improved model is proposed and the model parameters shall be obtained by fitting moment with the least square method. Section III gives the numerical results and discussions, which include the transition form factor, decay width, decay branching ratio of semileptonic decays Da0(980)ν¯D\to a_{0}(980)\ell\bar{\nu}_{\ell}. Meanwhile, the forward-backward asymmetries, the q2q^{2} differential flat terms and lepton polarization asymmetry of the semileptonic decay Da0(980)ν¯D\to a_{0}(980)\ell\bar{\nu}_{\ell} are also given. Section IV is for a brief summary.

II Theoretical framework

The a0(980)a_{0}(980)-meson have three types of states, one is a0(980)0a_{0}(980)^{0}-meson with (u¯ud¯d)/2(\bar{u}u-\bar{d}d)/\sqrt{2} component, the other is a0(980)a_{0}(980)^{-}-meson with (u¯d)(\bar{u}d) component, and the third one is a0(980)+a_{0}(980)^{+}-meson with (d¯u)(\bar{d}u). Based on the basic procedure of QCD sum rules, one can adopt the following two-point correlator to derive the sum rules for a0(980)a_{0}(980)-meson twist-2 LCDA moments ξ2;a0n|μ\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu}, which can be read off,

Π2;a0(n,0)(z,q)\displaystyle\Pi^{(n,0)}_{2;a_{0}}(z,q) =\displaystyle= id4xeiqx0|T{JnV(x),J0S,(0)}|0\displaystyle i\int d^{4}xe^{iq\cdot x}\langle 0|T\{J_{n}^{V}(x),J^{S,{\dagger}}_{0}(0)\}|0\rangle (2)
=\displaystyle= (zq)n+1I2;a0(q2),\displaystyle(z\cdot q)^{n+1}I_{2;a_{0}}(q^{2}),

where z2=0z^{2}=0 and nn take odd numbers. The currents are taken as JnV(x)=q¯1(x)/z(izD)nq2(x)J^{V}_{n}(x)=\bar{q}_{1}(x)/\!\!\!z(iz\cdot\tensor{D})^{n}q_{2}(x) and J0S(0)=q¯1(0)q2(0)J^{S}_{0}(0)=\bar{q}_{1}(0)q_{2}(0), which are mainly come from definitions of the scalar a0(980)a_{0}(980)-meson twist-2 LCDA ϕ2;a0(x,μ)\phi_{2;a_{0}}(x,\mu) and twist-3 LCDA ϕ3,a0p(x,μ)\phi_{3,a_{0}}^{p}(x,\mu), which can be written as Cheng:2005nb

0|q¯1(z)γμq2(z)|a0(p)\displaystyle\hskip-5.69046pt\langle 0|\bar{q}_{1}(z)\gamma_{\mu}q_{2}(-z)|a_{0}(p)\rangle
=pμf¯a001𝑑xei(2u1)(pz)ϕ2;a0(x,μ),\displaystyle\qquad\qquad=p_{\mu}\bar{f}_{a_{0}}\int^{1}_{0}dxe^{i(2u-1)(p\cdot z)}\phi_{2;a_{0}}(x,\mu), (3)
0|q¯1(z)q2(z)|a0(p)\displaystyle\hskip-5.69046pt\langle 0|\bar{q}_{1}(z)q_{2}(-z)|a_{0}(p)\rangle
=ma0f¯a001𝑑xei(2u1)(pz)ϕ3,a0p(x,μ),\displaystyle\qquad\qquad=m_{a_{0}}\bar{f}_{a_{0}}\int^{1}_{0}dxe^{i(2u-1)(p\cdot z)}\phi_{3,a_{0}}^{p}(x,\mu), (4)

From one side, one can apply the OPE for the correlator, e.g. Eq. (2) in deep Euclidean region q20q^{2}\ll 0. The calculation is carried out in the framework of BFT Huang:1989gv . Based on the basic assumptions and Feynman rules of BFT, the correlator can be expanded into three terms including the quark propagators and the vertex operators,

Π2;a0(n,0)(z,q)\displaystyle\Pi^{(n,0)}_{2;a_{0}}(z,q) =id4xeiqx{\displaystyle=i\int d^{4}xe^{iq\cdot x}\Big{\{}
Tr0|SFq1(0,x)/z(izD)nSFq2(x,0)|0\displaystyle-{\rm Tr}\langle 0|S^{q_{1}}_{F}(0,x)/\!\!\!z(iz\cdot\tensor{D})^{n}S^{q_{2}}_{F}(x,0)|0\rangle
+Tr0|q¯1(x)q1(0)/z(izD)nSFq2(x,0)|0\displaystyle+{\rm Tr}\langle 0|\bar{q}_{1}(x)q_{1}(0)/\!\!\!z(iz\cdot\tensor{D})^{n}S^{q_{2}}_{F}(x,0)|0\rangle
+Tr0|SFq1(0,x)/z(izD)nq¯2(x)q2(0)|0\displaystyle+{\rm Tr}\langle 0|S^{q_{1}}_{F}(0,x)/\!\!\!z(iz\cdot\tensor{D})^{n}\bar{q}_{2}(x)q_{2}(0)|0\rangle
+}\displaystyle+\cdots\Big{\}} (5)

where “Tr” indicates trace for the γ\gamma-matrix and color matrix, SFq1(0,x)S^{q_{1}}_{F}(0,x) and SFq2(x,0)S^{q_{2}}_{F}(x,0) indicate the light-quark propagator from xx to 0 and from 0 to xx. The /z(izD)n/\!\!\!z(iz\cdot\tensor{D})^{n} are the vertex operators from current Jn(x)J_{n}(x). The expressions up to dimension-six of the quark propagator, the vertex operator, and the vacuum matrix elements such as 0|q¯1(x)q1(0)|0\langle 0|\bar{q}_{1}(x)q_{1}(0)|0\rangle and 0|q¯2(x)q2(0)|0\langle 0|\bar{q}_{2}(x)q_{2}(0)|0\rangle have been derived in our previous works Zhong:2011rg ; Zhong:2014jla ; Zhong:2021epq ; Hu:2021zmy . By substituting those corresponding formula into Eq. (5), the OPE of correlator (2), I2;a0QCD(q2)I^{\rm QCD}_{2;a_{0}}(q^{2}), can be obtained. Meanwhlie, we take q1=q2=qq_{1}=q_{2}=q stand for the light uu, dd-quark. On the other hand, one can insert a complete set of a0(980)a_{0}(980)-meson intermediated hadronic states with the same JPJ^{P} quantum number into the correlator and obtain the hadronic expression

ImI2;a0,had(n,0)(q2)\displaystyle\textrm{Im}I^{(n,0)}_{2;a_{0},{\rm had}}(q^{2}) =πδ(q2ma02)ma0f¯a02ξ2;a0n|μξ3;a0p;0|μ\displaystyle=\pi\delta(q^{2}-m^{2}_{a_{0}})m_{a_{0}}\bar{f}^{2}_{a_{0}}\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu}\langle\xi^{p;0}_{3;a_{0}}\rangle|_{\mu}
3mq4π2(n+2)θ(q2sa0).\displaystyle-\frac{3m_{q}}{4\pi^{2}(n+2)}\theta(q^{2}-s_{a_{0}}). (6)

with mq=mq1=mq2m_{q}=m_{q_{1}}=m_{q_{2}} is the light quark mass, where the slight difference between mass of uu-quark and dd-quark is ignored in this paper. Meanwhile, the sa0s_{a_{0}} stands for the continuum threshold. Here the definitions of moments for a0(980)a_{0}(980)-meson twist-2, 3 LCDAs are used, which have the following formula

0|q¯1(0)/z(izD)nq2(0)|a0(p)=(zp)n+1f¯a0ξ2;a0n|μ,\displaystyle\hskip-8.5359pt\langle 0|\bar{q}_{1}(0)/\!\!\!z(iz\cdot\tensor{D})^{n}q_{2}(0)|a_{0}(p)\rangle=(z\cdot p)^{n+1}\bar{f}_{a_{0}}\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu}, (7)
0|q¯1(0)q2(0)|a0(p)=ma0f¯a0ξ3;a0p,0|μ.\displaystyle\hskip-8.5359pt\langle 0|\bar{q}_{1}(0)q_{2}(0)|a_{0}(p)\rangle=m_{a_{0}}\bar{f}_{a_{0}}\langle\xi^{p,0}_{3;a_{0}}\rangle|_{\mu}. (8)

where ma0m_{a_{0}} and f¯a0\bar{f}_{a_{0}} stand for a0(980)a_{0}(980)-meson mass and its decay constant, respectively. By considering the dispersion relation and performing Borel transformation, we can get the sum rule for ξ2;a0n|μξ3;a0p;0|μ\langle\xi_{2;a_{0}}^{n}\rangle|_{\mu}\langle\xi_{3;a_{0}}^{p;0}\rangle|_{\mu},

ξ2;a0n|μξ3;a0p;0|μma0f¯a02ema02/M2=3mq4π2(n+2)(1es0/M2)+2q¯q+gsq¯q281M44mq(n+3)gs2q¯q21944π2M4mq(2+κ2)\displaystyle\hskip-8.5359pt\frac{\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu}\langle\xi^{p;0}_{3;a_{0}}\rangle|_{\mu}m_{a_{0}}\bar{f}_{a_{0}}^{2}}{e^{m_{a_{0}}^{2}/M^{2}}}=-\frac{3m_{q}}{4\pi^{2}(n+2)}\left(1-e^{-s_{0}/M^{2}}\right)+2\langle\bar{q}q\rangle+\frac{\langle g_{s}\bar{q}q\rangle^{2}}{81M^{4}}4m_{q}(n+3)-\frac{\langle g_{s}^{2}\bar{q}q\rangle^{2}}{1944\pi^{2}M^{4}}m_{q}(2+\kappa^{2})
×{δ0n[24(lnM2μ2)148]+δ1n[128(lnM2μ2)692]+θ(n1)[8(6n2+34n)(lnM2μ2)\displaystyle\qquad\times\bigg{\{}\delta^{0n}\Big{[}-24\,\bigg{(}-\ln\frac{M^{2}}{\mu^{2}}\bigg{)}-148\Big{]}\,+\,\delta^{1n}\bigg{[}128\bigg{(}-\ln\frac{M^{2}}{\mu^{2}}\bigg{)}-692\bigg{]}\,+\,\theta(n-1)\bigg{[}8\,(6n^{2}+34n)\,\bigg{(}-\ln\frac{M^{2}}{\mu^{2}}\bigg{)}
+4nψ~(n)2(6n2+96n+212)]+θ(n2)[8(33n217n)(lnM2μ2)2(6n2+71n)ψ~(n)1n(n1)\displaystyle\qquad+4n\tilde{\psi}(n)-2(6n^{2}+96n+212)\bigg{]}+\theta(n-2)\bigg{[}8(33n^{2}-17n)\bigg{(}-\ln\frac{M^{2}}{\mu^{2}}\bigg{)}-2(6n^{2}+71n)\tilde{\psi}(n)-\frac{1}{n(n-1)}
×(231n4+520n31101n2+230n)]+θ(n3)[(74n144n2)ψ~(n)1n1(169n3348n2+245n\displaystyle\qquad\times(231n^{4}\,+520n^{3}\,-1101n^{2}\,+230n)\,\bigg{]}\,+\,\theta(n-3)\bigg{[}(74n-144n^{2})\,\tilde{\psi}(n)\,-\,\frac{1}{n-1}\,(169n^{3}-348n^{2}+245n
+60)]+4(n+5)}αsG224πM2mq{12n(lnM2μ2)6(n+2)+θ(n1)[4n(lnM2μ2)+3ψ~(n)6n]\displaystyle\qquad+60)\bigg{]}+4(n+5)\bigg{\}}\,-\frac{\langle\alpha_{s}G^{2}\rangle}{24\pi M^{2}}m_{q}\bigg{\{}12n\bigg{(}-\ln\frac{M^{2}}{\mu^{2}}\bigg{)}-6(n+2)+\theta(n-1)\bigg{[}4n\bigg{(}-\ln\frac{M^{2}}{\mu^{2}}\bigg{)}+3\tilde{\psi}(n)-\frac{6}{n}\bigg{]}
+θ(n2)[(8n+3)ψ~(n)2(2n+1)+6n]}gs3fG3192π2M4mq{δ1n[24(lnM2μ2)+84]+θ(n1)\displaystyle\qquad+\theta(n-2)\bigg{[}-(8n+3)\tilde{\psi}(n)-2(2n+1)+\frac{6}{n}\bigg{]}\bigg{\}}-\frac{\langle g_{s}^{3}fG^{3}\rangle}{192\pi^{2}M^{4}}m_{q}\bigg{\{}\delta^{1n}\bigg{[}-24\bigg{(}-\ln\frac{M^{2}}{\mu^{2}}\bigg{)}+84\bigg{]}+\theta(n-1)
×[4n(3n5)(lnM2μ2)+ 2(2n2+5n13)]+θ(n2)[24n2(lnM2μ2)+ 2n(n4)ψ~(n)\displaystyle\qquad\times\bigg{[}-4n(3n-5)\,\bigg{(}-\ln\frac{M^{2}}{\mu^{2}}\bigg{)}\,+\,2(2n^{2}\,+5n\,-13)\bigg{]}\,+\,\theta(n-2)\,\bigg{[}-24n^{2}\bigg{(}-\ln\frac{M^{2}}{\mu^{2}}\bigg{)}\,+\,2n\,(n-4)\,\tilde{\psi}(n)
+17n2+55n+12]+θ(n3)[2n(n4)ψ~(n)+1n1(19n332n2+7n+6)]}gsq¯σTGq3M24n,\displaystyle\qquad+17n^{2}+55n+12\bigg{]}+\theta(n-3)\bigg{[}2n(n-4)\tilde{\psi}(n)+\frac{1}{n-1}(19n^{3}-32n^{2}+7n+6)\bigg{]}\bigg{\}}-\frac{\langle{g_{s}}\bar{q}\sigma TGq\rangle}{3M^{2}}4n, (9)

with ψ~(n)=ψ(n+12)ψ(n2)+(1)nln4\tilde{\psi}(n)=\psi(\frac{n+1}{2})-\psi(\frac{n}{2})+(-1)^{n}\ln 4. For a more thorough considering the sum rule for ξ2;a0n|μ\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu}, it might be convenient to calculate ξ3;a0p;0|μ\langle\xi^{p;0}_{3;a_{0}}\rangle|_{\mu}. To achieve this target, one can use the correlator Π3;a0(0,0)(z,q)=id4xeiqx0|T{J0S(x),J0S(0)}|0\Pi^{(0,0)}_{3;a_{0}}(z,q)=i\int d^{4}xe^{iq\cdot x}\langle 0|T\{J^{S}_{0}(x),J^{S{\dagger}}_{0}(0)\}|0\rangle for the a0(980)a_{0}(980)-meson twist-3 LCDA 0th moment. Followed by the basic procedure of the QCDSR, the expression of the 0th moment of scalar meson a0(980)a_{0}(980)-meson twist-3 LCDA can be obtained,

(ξ3;a0p;0|μ)2ma02f¯a02M2ema02/M2=38π2(n+1)[M2(M2+s0)es0/M2]\displaystyle\frac{(\langle\xi^{p;0}_{3;a_{0}}\rangle|_{\mu})^{2}m_{a_{0}}^{2}\bar{f}_{a_{0}}^{2}}{M^{2}e^{m_{a_{0}}^{2}/M^{2}}}\!=\!\frac{3}{8\pi^{2}(n+1)}\!\bigg{[}M^{2}\!-\!(M^{2}\!+\!s_{0})e^{-s_{0}/M^{2}}\!\bigg{]}
+αsG28πM2+gs2q¯q2(2+κ2)486π2M4[3516(lnM2μ2)]\displaystyle\hskip 22.76228pt+\frac{\langle\alpha_{s}G^{2}\rangle}{8\pi M^{2}}+\frac{\langle g_{s}^{2}\bar{q}q\rangle^{2}(2+\kappa^{2})}{486\pi^{2}M^{4}}\bigg{[}35-16\left(-\ln\frac{M^{2}}{\mu^{2}}\right)\bigg{]}
8gsq¯q227M4+gsq¯σTGqM4+ 3mqq¯qM2,\displaystyle\hskip 22.76228pt-\frac{8\,\langle g_{s}\bar{q}q\rangle^{2}}{27M^{4}}~+~\frac{\langle g_{s}\bar{q}\sigma TGq\rangle}{M^{4}}\,+\,3m_{q}~\frac{\langle\bar{q}q\rangle}{M^{2}}, (10)

Here, the light quark is taken as q=(u,d)q=(u,d) and corresponding vacuum condensates are given in the next Section. Since higher-order and higher-dimensional corrections are difficult to calculate completely, the moments ξ2;a0n|μ\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu} of the sum rule (9) cannot be normalized in the intire Borel parameter region. To get a more accurate moments ξ2;a0n|μ\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu} for sum rule, we can use the following expression

ξ2;a0n|μ=(ξ2;a0n|μξ3;a0p;0|μ)|FromEq.(9)ξ3;a0p;02|μ|FromEq.(10)\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu}=\frac{(\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu}\langle\xi^{p;0}_{3;a_{0}}\rangle|_{\mu})|_{\rm From~Eq.~\eqref{Eq:SRxi2nxi30}}}{\sqrt{\langle\xi^{p;0}_{3;a_{0}}\rangle^{2}|_{\mu}}\big{|}_{\rm From~Eq.~\eqref{Eq:xi30xi30}}} (11)

This method can eliminate the systematic errors caused by many factors. The discussion for the pion and kaon cases can be found in our previous work Zhong:2021epq ; Zhong:2022ecl .

Furthermore, a0(980)a_{0}(980)-meson twist-2 DA ϕ2;a0(x,μ)\phi_{2;a_{0}}(x,\mu) describes the momentum fraction distribution of partons in a0(980)a_{0}(980)-meson for the lowest Fock state. Due to the ϕ2;a0(x,μ)\phi_{2;a_{0}}(x,\mu) is the universal nonperturbative physical quantity, it should be researched by the nonperturbative QCD approach. Normally, one can study the ϕ2;a0(x,μ)\phi_{2;a_{0}}(x,\mu) based on the combination of nonperturbative QCD and phenomenological model. Meanwhile, conformal expansion of LCDAs Gegenbauer polynomials makes the higher-order Gegenbauer moments unreliable. To improve this situation, the LCHO is adopted to determine a0(980)a_{0}(980)-meson twist-2 LCDA. Referring to the LCHO model of the pion leading-twist WF raised in Refs. Wu:2010zc ; Wu:2011gf , one can start with the Brodsky-Huang-Lepage (BHL) prescription, which assuming there is a connection between the equal-times wave function in the rest frame and the light-cone wave function BHL . it can be expressed as:

Ψ2;a0(x,k)=λ1λ2χ2;a0λ1λ2(x,k)Ψ2;a0R(x,k),\displaystyle\Psi_{2;a_{0}}(x,\textbf{k}_{\bot})=\sum_{\lambda_{1}\lambda_{2}}\chi_{2;a_{0}}^{\lambda_{1}\lambda_{2}}(x,\textbf{k}_{\bot})\Psi^{R}_{2;a_{0}}(x,\textbf{k}_{\bot}), (12)

where k\textbf{k}_{\bot} is transverse momentum. Furthermore, λ1\lambda_{1} and λ2\lambda_{2} are the helicities of the two constituent quark. χ2;a0λ1λ2(x,k)\chi_{2;a_{0}}^{\lambda_{1}\lambda_{2}}(x,\textbf{k}_{\bot}) stands for the spin-space WF that comes from the Wigner-Melosh rotation. The different forms of λ1λ2\lambda_{1}\lambda_{2} are shown in Table 1, which can also been seen in Refs. Huang:1994dy ; Cao:1997hw ; Huang:2004su ; Wu:2005kq . The spin-space WF, e.g. λ1λ2χ2;a0λ1λ2(x,k)=m^q2/(k2+m^q2)1/2\sum_{\lambda_{1}\lambda_{2}}\chi_{2;a_{0}}^{\lambda_{1}\lambda_{2}}(x,\textbf{k}_{\bot})={\hat{m}_{q}}^{2}/(\textbf{k}^{2}_{\bot}+{\hat{m}_{q}}^{2})^{1/2}. Then, by combing the spatial WF Ψ2;a0R(x,k)=A2;a0φ2;a0(x)exp[(k2+m^q2)/(8β2;a02xx¯)]\Psi^{R}_{2;a_{0}}(x,\textbf{k}_{\bot})=A_{2;a_{0}}\varphi_{2;a_{0}}(x)\exp[-(\textbf{k}^{2}_{\bot}+{\hat{m}_{q}}^{2})/(8\beta_{2;a_{0}}^{2}x\bar{x})], the a0(980)a_{0}(980)-meson WF will be obtained. Here, the A2;a0A_{2;a_{0}}, m^q\hat{m}_{q} stand for the normalization constant and light quark mass. The final a0(980)a_{0}(980)-meson twist-2 LCDA can be obtained by using the relationship between the twist-2 LCDA and WF of a0(980)a_{0}(980)-meson, e.g. integrated over the squared transverse momentum, which can be expressed as

ϕ2;a0(x,μ)=A2;a0m^qβ2;a042π3/2xx¯φ2;a0(x)\displaystyle\phi_{2;a_{0}}(x,\mu)=\frac{A_{2;a_{0}}\hat{m}_{q}\beta_{2;a_{0}}}{4\sqrt{2}\pi^{3/2}}\sqrt{x\bar{x}}\varphi_{2;a_{0}}(x)
×{Erf[m^q2+μ28β2;a02xx¯]Erf[m^q28β2;a02xx¯]},\displaystyle\quad\times\left\{\textrm{Erf}\left[\sqrt{\frac{{\hat{m}_{q}}^{2}+\mu^{2}}{8\beta_{2;a_{0}}^{2}x\bar{x}}}\right]-\textrm{Erf}\left[\sqrt{\frac{{\hat{m}_{q}^{2}}}{8\beta_{2;a_{0}}^{2}x\bar{x}}}\right]\right\}, (13)

where Erf(x)=20xet2𝑑x/π{\rm Erf}(x)=2\int^{x}_{0}e^{-t^{2}}dx/{\sqrt{\pi}} is the error function, and φ2;a0(x)=(xx¯)α2;a0C13/2(2x1)\varphi_{2;a_{0}}(x)=(x\bar{x})^{\alpha_{2;a_{0}}}C_{1}^{3/2}(2x-1). Based on the experience of other mesons Huang:2013gra ; Huang:2013yya ; Wu:2012kw ; Zhong:2015nxa ; Zhang:2021wnv ; Hu:2021lkl ; Zhong:2018exo ; Zhong:2022ecl ; Zhong:2021epq , we take the wavefunction parameter β2;a0=0.5\beta_{2;a_{0}}=0.5. Whether the value of β2;a0\beta_{2;a_{0}} is accurate can be judged by goodness of fit Pχ2P_{\chi^{2}}. The free parameters α2;a0\alpha_{2;a_{0}} and A2;a0A_{2;a_{0}} can be obtained by fitting the moments ξ2;a0n|μ\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu} with the least squares method directly.

Table 1: The expressions of the spin-space wave function χ2;a0λ1λ2(x,k)\chi_{2;a_{0}}^{\lambda_{1}\lambda_{2}}(x,\textbf{k}_{\perp}) with different λ1λ2\lambda_{1}\lambda_{2}.
λ1λ2\lambda_{1}\lambda_{2} χ2;a0λ1λ2(x,k)\chi_{2;a_{0}}^{\lambda_{1}\lambda_{2}}(x,\textbf{k}_{\perp})              λ1λ2\lambda_{1}\lambda_{2} χ2;a0λ1λ2(x,k)\chi_{2;a_{0}}^{\lambda_{1}\lambda_{2}}(x,\textbf{k}_{\perp})
\downarrow\downarrow kx+iky2(m^q2+k2)-\dfrac{k_{x}+ik_{y}}{\sqrt{2({\hat{m}_{q}}^{2}+\textbf{k}_{\perp}^{2})}}              \uparrow\uparrow kxiky2(m^q2+k2)-\dfrac{k_{x}-ik_{y}}{\sqrt{2({\hat{m}_{q}}^{2}+\textbf{k}_{\perp}^{2})}}
\uparrow\downarrow +m^q2(m^q2+k2)+\dfrac{\hat{m}_{q}}{\sqrt{2({\hat{m}_{q}}^{2}+\textbf{k}_{\perp}^{2})}}              \downarrow\uparrow m^q2(m^q2+k2)-\dfrac{\hat{m}_{q}}{\sqrt{2({\hat{m}_{q}}^{2}+\textbf{k}_{\perp}^{2})}}

In deriving the complete expression for Da0(980)D\to a_{0}(980) TFFs, one can take the following correlator

Πμ(p,q)=id4xeiqxa0|T{Jn(x),jn(0)}|0,\displaystyle\Pi_{\mu}(p,q)=i\int d^{4}xe^{iq\cdot x}\langle a_{0}|T\{J_{n}(x),j_{n}^{\dagger}(0)\}|0\rangle, (14)

with Jn(x)=q¯1(x)γμγ5c(x)J_{n}(x)=\bar{q}_{1}(x)\gamma_{\mu}\gamma_{5}c(x), jn(0)=c¯iγ5q2(0)j_{n}^{\dagger}(0)=\bar{c}i\gamma_{5}q_{2}(0). Followed by the standard LCSR approach, one can make the OPE near the light-cone in the space-like region, and insert a complete set of DD-meson states in the physical region. After performing the Borel transformation, we can get the Da0(980)D\to a_{0}(980) TFFs f±Da0(q2)f_{\pm}^{D\to a_{0}}(q^{2}) up to twist-3 accuracy, which can be read off

f+Da0(q2)=mcf¯a0mD2fDu01due(ma02s(u))/M2{mcuϕ2;a0(u)\displaystyle f_{+}^{D\to a_{0}}(q^{2})\!=\!\frac{m_{c}\bar{f}_{a_{0}}}{m_{D}^{2}f_{D}}\int^{1}_{u_{0}}due^{(m_{a_{0}}^{2}-s(u))/M^{2}}\bigg{\{}\!-\!\frac{m_{c}}{u}\phi_{2;a_{0}}(u)
+ma0ϕ3,a0p(u)+ma06[2uϕ3,a0σ(u)1mc2+u2ma02q2\displaystyle\quad+m_{a_{0}}\phi_{3,a_{0}}^{p}(u)+\frac{m_{a_{0}}}{6}\bigg{[}\frac{2}{u}\,\phi_{3,a_{0}}^{\sigma}(u)-\frac{1}{m_{c}^{2}+u^{2}m_{a_{0}}^{2}-q^{2}}
×((mc2u2ma02+q2)dϕ3,a0σ(u)du4umc2ma02mc2+u2ma02q2\displaystyle\quad\times\bigg{(}(m_{c}^{2}-u^{2}m_{a_{0}}^{2}+q^{2})\,\frac{d\phi_{3,a_{0}}^{\sigma}(u)}{du}-\frac{4um_{c}^{2}m_{a_{0}}^{2}}{m_{c}^{2}+u^{2}m_{a_{0}}^{2}-q^{2}}
×ϕ3,a0σ(u))]},\displaystyle\quad\times\phi_{3,a_{0}}^{\sigma}(u)\bigg{)}\bigg{]}\bigg{\}}, (15)
fDa0(q2)=mcf¯a0mD2fDu01due(ma02s(u))/M2[ϕ3;a0p(u)u\displaystyle f_{-}^{D\to a_{0}}(q^{2})=\frac{~m_{c}~\bar{f}_{a_{0}}}{m_{D}^{2}f_{D}}~\int^{1}_{u_{0}}du~e^{(m_{a_{0}}^{2}-s(u))/M^{2}}\bigg{[}\,\frac{\phi_{3;a_{0}}^{p}(u)}{u}
+16udϕ3,a0σ(u)du].\displaystyle\quad+\frac{1}{6u}\frac{d\phi_{3,a_{0}}^{\sigma}(u)}{du}\bigg{]}. (16)

Here the abbreviation s(u)=(mb2+uu¯ma02u¯q2)/us(u)=(m_{b}^{2}+u\bar{u}m_{a_{0}}^{2}-\bar{u}q^{2})/u is used. The lower limits of the integration is u0={[(sq2ma02)2+4ma02(mc2q2)]1/2(sq2ma02)}/(2ma02)u_{0}=\{[(s-q^{2}-m_{a_{0}}^{2})^{2}+4m_{a_{0}}^{2}(m_{c}^{2}-q^{2})]^{1/2}-(s-q^{2}-m_{a_{0}}^{2})\}/(2m_{a_{0}}^{2}). Here, mDm_{D} and fDf_{D} are the mass and decay constant of DD-meson, mcm_{c} is the cc-quark mass, u¯=(1u)\bar{u}=(1-u), s0s_{0} stands for the continuum threshold. ϕ2;a0\phi_{2;a_{0}} and ϕ3,a0σ\phi_{3,a_{0}}^{\sigma}, ϕ3;a0p\phi_{3;a_{0}}^{p} are twist-2 and twist-3 LCDAs, respectively. The twist-3 LCDA can be found in Refs. Han:2013zg ; Lu:2006fr . Here, we have a notation that the analytical expressions for the sum rules of the Da0(980)D\to a_{0}(980) TFFs, i.e. Eqs. (15) and (16) are equivalent with the tree-level LCSR for the exclusive heavy-to-light BSB\to S TFFs (S=a0(1450),K0(1430),f0(1500)S=a_{0}(1450),\,K_{0}^{\ast}(1430),\,f_{0}(1500)) have been previously constructed in Ref. Wang:2008da , without the surface term coming from the twist-3 LCDA ΦSσ(u)\Phi_{S}^{\sigma}(u) contributions. In this paper, the TFFs analytical expressions are derived based on the pion cases Duplancic:2008ix , where the power of denominator is reduced by taking the derivative of the final state light-cone distribution amplitude.

Then, the explicit expression for the full differential Da0(980)ν¯D\to a_{0}(980)\ell\bar{\nu}_{\ell} decay width have the following form

d2Γ(Da0(980)ν¯)dq2dcosθ\displaystyle\frac{d^{2}\Gamma(D\to a_{0}(980)\ell\bar{\nu}_{\ell})}{dq^{2}d\cos\theta_{\ell}} =\displaystyle= aθ(q2)+bθ(q2)cosθ\displaystyle a_{\theta_{\ell}}(q^{2})+b_{\theta_{\ell}}(q^{2})\cos\theta_{\ell} (17)
+\displaystyle+ cθ(q2)cos2θ,\displaystyle c_{\theta_{\ell}}(q^{2})\cos^{2}\theta_{\ell},

with the angular coefficient functions aθ(q2)a_{\theta_{\ell}}(q^{2}), bθ(q2)b_{\theta_{\ell}}(q^{2}) and cθ(q2)c_{\theta_{\ell}}(q^{2}) are Becirevic:2016hea

aθ(q2)\displaystyle a_{\theta_{\ell}}(q^{2}) =𝒩λ3/2(1m2q2)2[|f+Da0(q2)|2+1λm2q2\displaystyle={\cal N_{\rm ew}}\lambda^{3/2}\bigg{(}1\,-\,\frac{m^{2}_{\ell}}{q^{2}}\bigg{)}^{2}\,\bigg{[}|f_{+}^{D\to a_{0}}(q^{2})|^{2}\,+\,\frac{1}{\lambda}\frac{m^{2}_{\ell}}{q^{2}}
×(1ma02mD2)2|f0Da0(q2)|2],\displaystyle\times\bigg{(}1-\frac{m^{2}_{a_{0}}}{m^{2}_{D}}\bigg{)}^{2}|f_{0}^{D\to a_{0}}(q^{2})|^{2}\bigg{]},
bθ(q2)\displaystyle b_{\theta_{\ell}}(q^{2}) =2𝒩λ(1m2q2)2m2q2(1ma02mD2)Re[f+Da0(q2)\displaystyle=2{\cal N_{\rm ew}}\lambda\!\bigg{(}1\!-\!\frac{m^{2}_{\ell}}{q^{2}}\!\bigg{)}^{2}\frac{m^{2}_{\ell}}{q^{2}}\!\bigg{(}\!1-\!\!\frac{m^{2}_{a_{0}}}{m^{2}_{D}}\bigg{)}{\rm Re}\!\bigg{[}f_{+}^{D\to a_{0}}(q^{2})
×f0Da0(q2)],\displaystyle\times f_{0}^{*D\to a_{0}}(q^{2})\bigg{]},
bθ(q2)\displaystyle b_{\theta_{\ell}}(q^{2}) =𝒩λ3/2(1m2q2)3|f+Da0(q2)|2.\displaystyle=-{\cal N_{\rm ew}}\lambda^{3/2}\bigg{(}1-\frac{m^{2}_{\ell}}{q^{2}}\bigg{)}^{3}|f_{+}^{D\to a_{0}}(q^{2})|^{2}. (18)

Here 𝒩=GF2|Vub|2mD3/256π3{\cal N_{\rm ew}}={G^{2}_{F}|V_{ub}|^{2}m^{3}_{D}}/{256\pi^{3}} with |Vcd||V_{cd}| and GFG_{F} stand for CKM matrix element and fermi coupling constant. mm_{\ell} and θ\theta_{\ell} stand for the leptonic mass and helicity angle. In the massless lepton limit, the angular functions bθ(q2)=0b_{\theta_{\ell}}(q^{2})=0, aθ(q2)+cθ(q2)=0a_{\theta_{\ell}}(q^{2})+c_{\theta_{\ell}}(q^{2})=0. In addition, λλ(1,ma02/mD2,q2/mD2)\lambda\equiv\lambda(1,{m^{2}_{a_{0}}}/{m^{2}_{D}},{q^{2}}/{m^{2}_{D}}) with λ(a,b,c)a2+b2+c22(ab+ac+bc)\lambda(a,b,c)\equiv a^{2}+b^{2}+c^{2}-2(ab+ac+bc). The f0Da0(q2)f_{0}^{D\to a_{0}}(q^{2}) in the expression can be expressed as f0Da0(q2)=f+Da0(q2)+q2/(mB2mD2)fDa0(q2)f_{0}^{D\to a_{0}}(q^{2})=f_{+}^{D\to a_{0}}(q^{2})+q^{2}/{(m^{2}_{B}-m^{2}_{D})}f_{-}^{D\to a_{0}}(q^{2}) Fu:2013wqa . After integrating over the helicity angle θ[1,1]\theta_{\ell}\in[-1,1], we can get the expression q2q^{2}-dependence differential Da0(980)ν¯D\to a_{0}(980)\ell\bar{\nu}_{\ell} decay width Cheng:2017fkw ; Huang:2021owr

dΓ(Da0(980)ν¯)dq2=GF2|Vcb|2768π3mD3(q2m2)2q6[(mD2+ma02\displaystyle\frac{d\Gamma(D\to a_{0}(980)\ell\bar{\nu}_{\ell})}{dq^{2}}=\frac{G_{F}^{2}|V_{cb}|^{2}}{768\pi^{3}m_{D}^{3}}\frac{(q^{2}\!-\!m_{\ell}^{2})^{2}}{q^{6}}\Big{[}(m_{D}^{2}\!+\!m_{a_{0}}^{2}
q2)24mD2ma02]1/2{[(q2+ma02mD2)2(q2+2m2)\displaystyle~~-q^{2})^{2}-4m_{D}^{2}m_{a_{0}}^{2}\Big{]}^{1/2}\bigg{\{}\bigg{[}(q^{2}+m_{a_{0}}^{2}-m_{D}^{2})^{2}(q^{2}+2m_{\ell}^{2})
q2ma02(4q2+2m2)](f+Da0(q2))2+6q2m2(mD2ma02\displaystyle~~-q^{2}m_{a_{0}}^{2}(4q^{2}\!+\!2m_{\ell}^{2})\bigg{]}(f_{+}^{D\to a_{0}}(q^{2}))^{2}\!+\!6q^{2}m_{\ell}^{2}(m_{D}^{2}-m^{2}_{a_{0}}
q2)f+Da0(q2)fDa0(q2)+6q4m2(fDa0(q2))2}.\displaystyle~~-q^{2})f_{+}^{D\to a_{0}}(q^{2})f_{-}^{D\to a_{0}}(q^{2})+6q^{4}m_{\ell}^{2}(f_{-}^{D\to a_{0}}(q^{2}))^{2}\bigg{\}}.

Furthermore, the Da0(980)D\to a_{0}(980) TFFs are also the basic component of indirect search for new physics Beyond the Standard Model (BSM) phenomenologically. So the angular observables which are sensitive to BSM, i.e. the normalized forward-backward asymmetries, the q2q^{2}-differential flat terms and lepton polarization asymmetry 𝒜FBDa0(980)ν¯{\cal A}^{D\to a_{0}(980)\ell\bar{\nu}_{\ell}}_{\rm FB}, HDa0(980)ν¯{\cal F}^{D\to a_{0}(980)\ell\bar{\nu}_{\ell}}_{H}, 𝒜λDa0(980)ν¯{\cal A}^{D\to a_{0}(980)\ell\bar{\nu}_{\ell}}_{\lambda_{\ell}} of the semileptonic decay Da0(980)ν¯D\to a_{0}(980)\ell\bar{\nu}_{\ell}, respectively. The relationships between these observables and TFFs are as follows Cui:2022zwm :

𝒜FBDa0(980)ν¯(q2)\displaystyle{\cal A}^{D\to a_{0}(980)\ell\bar{\nu}_{\ell}}_{\rm FB}(q^{2}) =[12bθ(q2)]:[aθ(q2)+13cθ(q2)],\displaystyle=\bigg{[}\frac{1}{2}b_{\theta_{\ell}}(q^{2})\bigg{]}:\bigg{[}a_{\theta_{\ell}}(q^{2})+\frac{1}{3}c_{\theta_{\ell}}(q^{2})\bigg{]},
HDa0(980)ν¯(q2)\displaystyle{\cal F}^{D\to a_{0}(980)\ell\bar{\nu}_{\ell}}_{\rm H}(q^{2}) =[aθ(q2)+cθ(q2)]:[aθ(q2)+13\displaystyle=\bigg{[}a_{\theta_{\ell}}(q^{2})+c_{\theta_{\ell}}(q^{2})\bigg{]}:\bigg{[}a_{\theta_{\ell}}(q^{2})+\frac{1}{3}
×cθ(q2)],\displaystyle\times c_{\theta_{\ell}}(q^{2})\bigg{]},
𝒜λDa0(980)ν¯(q2)\displaystyle{\cal A}^{D\to a_{0}(980)\ell\bar{\nu}_{\ell}}_{\lambda_{\ell}}(q^{2}) =123{[3aθ(q2)+cθ(q2)+2m2\displaystyle=1-\frac{2}{3}\bigg{\{}\bigg{[}3a_{\theta_{\ell}}(q^{2})+c_{\theta_{\ell}}(q^{2})+2m^{2}_{\ell}
×cθ(q2)q2m2]:[aθ(q2)+13cθ(q2)]},\displaystyle\times\frac{c_{\theta_{\ell}}(q^{2})}{q^{2}-m^{2}_{\ell}}\bigg{]}:\bigg{[}a_{\theta_{\ell}}(q^{2})+\frac{1}{3}c_{\theta_{\ell}}(q^{2})\bigg{]}\bigg{\}}, (20)

III Numerical analysis

To do the numerical analysis, we adopt meson’s mass ma0(980)=0.980±0.020GeVm_{a_{0}(980)}=0.980\pm 0.020~{\rm GeV}, mD=1.865GeVm_{D}=1.865~{\rm GeV} and mD0=1.870GeVm_{D^{0}}=1.870~{\rm GeV}. Besides, the current quark-mass are mu=2.160.26+0.49MeVm_{u}=2.16^{+0.49}_{-0.26}~{\rm MeV} and md=4.670.17+0.48MeVm_{d}=4.67^{+0.48}_{-0.17}~{\rm MeV} at scale μ=2GeV\mu=2~{\rm GeV}. The a0(980)a_{0}(980)-meson decay constant is fa0=0.4090.023+0.022GeVf_{a_{0}}=0.409^{+0.022}_{-0.023}~{\rm GeV}. The values of the non-perturbative vacuum condensates appearing in the BFTSR are given below as Narison:2014ska ; Colangelo:2000dp ; Zhong:2021epq ,

q¯q\displaystyle\langle\bar{q}q\rangle =\displaystyle= (2.4170.114+0.227)×102GeV3\displaystyle(-2.417_{-0.114}^{+0.227})\times 10^{-2}~{\rm GeV}^{3}
gsq¯σTGq\displaystyle\langle g_{s}\bar{q}\sigma TGq\rangle =\displaystyle= (1.9340.103+0.188)×102GeV5\displaystyle(-1.934^{+0.188}_{-0.103})\times 10^{-2}~{\rm GeV}^{5}
gsq¯q2\displaystyle\langle g_{s}\bar{q}q\rangle^{2} =\displaystyle= (2.0820.697+0.734)×103GeV6\displaystyle(2.082^{+0.734}_{-0.697})\times 10^{-3}~{\rm GeV}^{6}
gs2q¯q2\displaystyle\langle g_{s}^{2}\bar{q}q\rangle^{2} =\displaystyle= (7.4202.483+2.614)×103GeV6\displaystyle(7.420^{+2.614}_{-2.483})\times 10^{-3}~{\rm GeV}^{6}
αsG2\displaystyle\langle\alpha_{s}G^{2}\rangle =\displaystyle= 0.038±0.011GeV4\displaystyle 0.038\pm 0.011~{\rm GeV}^{4}
gs3fG3\displaystyle\langle g_{s}^{3}fG^{3}\rangle \displaystyle\simeq 0.045GeV6\displaystyle 0.045~{\rm GeV}^{6}
κ\displaystyle\kappa =\displaystyle= 0.74±0.03.\displaystyle 0.74\pm 0.03. (21)

The values of the double-quark condensate qq¯q\bar{q}, quark-gluon mixed condensate gsq¯σTGq\langle g_{s}\bar{q}\sigma TGq\rangle are at μ=2GeV\mu=2~{\rm GeV}. Otherwise, these parameters can be calculated to any scale according to the evolution equation.

In the context of BFTSR, there are two important parameters the continuous threshold sa0s_{a_{0}} and the Borel parameter M2M^{2}, respectively. We generally take the scale μ=M\mu=M. Under the 3-loop approximate solution, the ΛQCD(nf)(324,286,207)MeV\Lambda_{\rm QCD}^{(n_{f})}\simeq(324,286,207)~{\rm MeV} for the number of quark flavors nf=3,4,5n_{f}=3,4,5, with which the αs(Mz)=0.1179(10)\alpha_{s}(M_{z})=0.1179(10), mc(mc¯)=1.27(2)GeVm_{c}(\bar{m_{c}})=1.27(2)~{\rm GeV}, mb(mb¯)=4.180.02+0.03GeVm_{b}(\bar{m_{b}})=4.18^{+0.03}_{-0.02}~{\rm GeV} and MZ=91.1876(21)GeVM_{Z}=91.1876(21)~{\rm GeV} are used. Furthermore, the gluon or quark vacuum condensates and non-perturbative matrix element at initial scale can be running to other scales thought out the renormalization group equations RGE) Yang:1993bp ; Hwang:1994vp , which can be written as a general formula:

χ(μ)=[αs(μ0)αs(μ)]y(nf)χ(μ0),\displaystyle\chi(\mu)=\bigg{[}\frac{\alpha_{s}(\mu_{0})}{\alpha_{s}(\mu)}\bigg{]}^{y(n_{f})}\chi(\mu_{0}), (22)

with which the function y(nf)y(n_{f}) are 4/b-4/b, 4/b-4/b and 2/(3b)-2/(3b) for the mqm_{q}, q¯q\langle\bar{q}q\rangle and gsq¯σTGq\langle g_{s}\bar{q}\sigma TGq\rangle, respectively. The coefficient b=(332nf)/3b=(33-2n_{f})/3 and nfn_{f} is the number of active quark flavors. According to the basic assumption of BFTSR, it is worth noting that gsg_{s} is the coupling constant between background fields in the above vacuum condensates, which is different from the coupling constant in pQCD and should be absorbed into the vacuum condensates as part of these non-perturbative parameters. The RGE of the Gegenbauer moments of the a0(980)a_{0}(980)-meson twist-2 LCDA is  Cheng:2005nb :

an2;a0(μ)\displaystyle a_{n}^{2;a_{0}}(\mu) =\displaystyle= an2;a0(μ0)En(μ,μ0),\displaystyle a_{n}^{2;a_{0}}(\mu_{0})E_{n}(\mu,\mu_{0}), (23)

with En(μ,μ0)=[αs(μ)/αs(μ0)](γn(0)+4)/(b)E_{n}(\mu,\mu_{0})=[\alpha_{s}(\mu)/\alpha_{s}(\mu_{0})]^{-(\gamma_{n}^{(0)}+4)/(b)}. The μ0\mu_{0} and μ\mu represent the initial scale and the running scale, the one-loop anomalous dimensions is γn(0)=CF{[12/[(n+1)(n+2)]+4j=2n+11/j}\gamma_{n}^{(0)}=C_{F}\{[1-2/[(n+1)(n+2)]+4\sum^{n+1}_{j=2}1/j\}, with CF=4/3C_{F}=4/3. According to the RGE of the Gegenbauer moments, one can get the moments ξ2;a0n|μ\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu} for the arbitrary scale μ\mu.

Table 2: The determined Borel windows and the corresponding a0(980)a_{0}(980)-meson twist-2 LCDA moments ξ2;a0n|μ\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu} with n=(1,3,5,7,9)n=(1,3,5,7,9) at the scale μk=1.4GeV\mu_{k}=1.4~{\rm GeV}. Where all input parameters are set to be their central values. In which the abbreviation “Con.” indicate the continuum contributions.
nn         M2M^{2}             ξ2;a0n|μ\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu}      Con.
11  [2.483,3.483][2.483,3.483]  [0.250,0.203][-0.250,-0.203] <30%<30\%
33  [1.869,2.869][1.869,2.869]  [0.095,0.129][-0.095,-0.129] <20%<20\%
55  [3.057,4.057][3.057,4.057]  [0.041,0.074][-0.041,-0.074] <40%<40\%
77  [4.143,5.143][4.143,5.143]  [0.020,0.048][-0.020,-0.048] <60%<60\%
99  [4.916,5.916][4.916,5.916]  [0.000,0.027][-0.000,-0.027] <75%<75\%

Furthermore, the continuum threshold parameter for the sum rule ξ2;a0n|μ\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu} can be determined by normalization for ξ3;a0p;0|μ\langle\xi^{p;0}_{3;a_{0}}\rangle|_{\mu}, which leads to sa0=7GeV2s_{a_{0}}=7~{\rm GeV}^{2}. Then, the Borel window for the each order of a0(980)a_{0}(980)-meson LCDA moments can be determined by limiting the continuum states and the dimension-six condensates contributions. Then, the moments ξ2;a0n|μ\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu} with n=(1,3,5,7,9)n=(1,3,5,7,9) within uncertainties coming from Borel parameters are listed in Table 2. Based on the BFTSR, the dimension-six condensates contributions for ξ2;a0n|μ\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu} are less than 1%1\% for all the nnth-order. To get the suitable Borel window, the continuum contributions for ξ2;a0n|μ\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu} are restrict to (30,20,40,60,75)%(30,20,40,60,75)\% for n=(1,3,5,7,9)n=(1,3,5,7,9) respectively. Since the dimension-six condensates contributions are very small, we determine the upper limit of the Borel parameter M2M^{2} through the continuum contributions. Then the lower limit of the Borel parameter M2M^{2} can be determined by the method of the upper limits, so as to obtain the appropriate Borel window. At the same time, the values of the moments ξ2;a0n|μ\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu} are stable in the appropriate Borel window. To have a deeper insight into the relationship of the LCDA moments versus Borel parameter M2M^{2}, the first five moments’s curves are shown in Fig. 1, which can be seen that

  • In the region M2[1,2]M^{2}\in{\rm{[1,2]}} of Borel window, the curves for ξ2;a0n|μ\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu} changed dramatically. With the increase of Borel window M2M^{2}, the change trend of moments ξ2;a01|μ\langle\xi^{1}_{2;a_{0}}\rangle|_{\mu}, ξ2;a03|μ\langle\xi^{3}_{2;a_{0}}\rangle|_{\mu}, ξ2;a05|μ\langle\xi^{5}_{2;a_{0}}\rangle|_{\mu}, ξ2;a07|μ\langle\xi^{7}_{2;a_{0}}\rangle|_{\mu}, ξ2;a09|μ\langle\xi^{9}_{2;a_{0}}\rangle|_{\mu} tends to be gentle.

  • With nn increases, the absolute value of the moments ξ2;a0n|μ\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu} tend to be smaller.

Refer to caption
Figure 1: The a0(980)a_{0}(980)-meson leading-twist DA moments ξ2;a0n|μ\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu} with n=(1,3,5,7,9)n=(1,3,5,7,9) versus the Borel parameter M2M^{2}, where all input parameters are set to be their central values. Where the shaded band indicate the Borel Windows for n=(1,3,5,7,9)n=(1,3,5,7,9), respectively.
Refer to caption
Refer to caption
Figure 2: The a0(980)a_{0}(980)-meson twist-2 DA curves in this work. As a comparison, we present the curve from QCDSR prediction Cheng:2005nb in the left panel. In the right panel, the a0(980)a_{0}(980)-meson twist-2 DA ϕ2;a0(x,μ)\phi_{2;a_{0}}(x,\mu) at μk=1.4GeV\mu_{k}=1.4~{\rm GeV} with the constituent quark mass mq=(200,250,300,350)MeVm_{q}=(200,250,300,350)~{\rm MeV} are given, respectively.

Taking all the input uncertainties into consideration, we can get the moments ξ2;a0n|μ\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu} with n=(1,3,5,7,9)n=(1,3,5,7,9) under two types of factorization scale μ0\mu_{0} and μk\mu_{k},

ξ2;a01|μ0=0.310(43),\displaystyle\langle\xi^{1}_{2;a_{0}}\rangle|_{\mu_{0}}=-0.310(43), ξ2;a01|μk=0.250(34),\displaystyle\langle\xi^{1}_{2;a_{0}}\rangle|_{\mu_{k}}=-0.250(34),
ξ2;a03|μ0=0.184(32),\displaystyle\langle\xi^{3}_{2;a_{0}}\rangle|_{\mu_{0}}=-0.184(32), ξ2;a03|μk=0.126(22),\displaystyle\langle\xi^{3}_{2;a_{0}}\rangle|_{\mu_{k}}=-0.126(22),
ξ2;a05|μ0=0.082(27),\displaystyle\langle\xi^{5}_{2;a_{0}}\rangle|_{\mu_{0}}=-0.082(27), ξ2;a05|μk=0.067(21),\displaystyle\langle\xi^{5}_{2;a_{0}}\rangle|_{\mu_{k}}=-0.067(21),
ξ2;a07|μ0=0.053(25),\displaystyle\langle\xi^{7}_{2;a_{0}}\rangle|_{\mu_{0}}=-0.053(25), ξ2;a07|μk=0.044(18),\displaystyle\langle\xi^{7}_{2;a_{0}}\rangle|_{\mu_{k}}=-0.044(18),
ξ2;a09|μ0=0.043(23),\displaystyle\langle\xi^{9}_{2;a_{0}}\rangle|_{\mu_{0}}=-0.043(23), ξ2;a09|μk=0.024(15),\displaystyle\langle\xi^{9}_{2;a_{0}}\rangle|_{\mu_{k}}=-0.024(15), (24)

Our results for the first two order are slightly smaller than the Cheng’s predictions, e.g. ξ2;a01|μ0=0.56(5)\langle\xi^{1}_{2;a_{0}}\rangle|_{\mu_{0}}=-0.56(5) and ξ2;a03|μ0=0.21(3)\langle\xi^{3}_{2;a_{0}}\rangle|_{\mu_{0}}=-0.21(3) by using the QCDSR approach from Ref. Cheng:2005nb , which is more likely to be antisymmetric behavior. The little difference may be related to the different methods in determining the continuum threshold sa0s_{a_{0}}. Meanwhile, the higher order such as n=(5,7,9)n=(5,7,9) are given for the first time. The new formulae Eq. (11) can reduce the systematic error of sum rules of the ξ\xi-moments, and it enables us to calculate higher-order moments to provide more complete information of DA.

Table 3: The model parameters mqm_{q} (in unit: MeV) of LCHO model φ2;a0IV(x)\varphi_{2;a_{0}}^{\rm IV}(x) under different quark masses and their corresponding goodness of fit.
mqm_{q} A2;a0(GeV1)A_{2;a_{0}}(\rm GeV^{-1}) α2;a0\alpha_{2;a_{0}} Pχmin2P_{\chi^{2}_{\rm min}}
200 MeV 367-367 0.17-0.17 0.9470.947
250 MeV 239-239 0.36-0.36 0.9540.954
300 MeV 181-181 0.51-0.51 0.9570.957
350 MeV 105-105 0.80-0.80 0.9660.966
Refer to caption
Figure 3: Relationship between the goodness of fit Pχmin2P_{\chi^{2}_{\rm min}} and the two LCHO parameters A2;a0A_{2;a_{0}}, α2;a0\alpha_{2;a_{0}}. In which the Pχmin2P_{\chi^{2}_{\rm min}} is separated into three area with different color.
Refer to caption
Refer to caption
Figure 4: The Da0(980)ν¯D\to a_{0}(980)\ell\bar{\nu}_{\ell} TFFs f+Da0(q2)f_{+}^{D\to a_{0}}(q^{2}) and fDa0(q2)f_{-}^{D\to a_{0}}(q^{2}) of our predictions within uncertainties. Where the darker band stand for the results calculated in LCSR, and the light colored band stand for the SSE. Meanwhile, the results for LCSR Huang:2021owr and Ads/QCD Momeni:2022gqb as a comparison.

Secondly, the free parameters α2;a0\alpha_{2;a_{0}} and A2;a0A_{2;a_{0}} for the LCHO model can be fixed by adopting the method of least squares to fit ξ2;a0n|μ\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu} calculated in the framework of the BFTSR shown in Eq. (24). The goodness of fit can be judged by the probability Pχ2P_{\chi^{2}} (Pχ2[0,1]P_{\chi^{2}}\in[0,1]333For more details, one can see our previous work for pion Zhong:2021epq .. By fitting the moments ξ2;a0n|μk\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu_{k}} at the scale μk=1.4GeV\mu_{k}=1.4~{\rm GeV}, the optimal model parameters are obtained as follows,

A2;a0\displaystyle A_{2;a_{0}} =\displaystyle= 239GeV1,\displaystyle-239~{\rm GeV}^{-1},
α2;a0\displaystyle\alpha_{2;a_{0}} =\displaystyle= 0.36,\displaystyle-0.36,
β2;a0\displaystyle\beta_{2;a_{0}} =\displaystyle= 0.5GeV,\displaystyle 0.5~{\rm GeV}, (25)

The above parameters are derived from mq=250MeVm_{q}=250~{\rm MeV}. From these parameters, we obtain the scalar a0(980)a_{0}(980)-meson twist-2 LCDA ϕ2;a0(x,μk)\phi_{2;a_{0}}(x,\mu_{k}), which is shown in the left panel of Fig. 2. In the meantime, we also present the results of QCDSR Cheng:2005nb prediction as a comparison. From the perspective of variation trend, our prediction results are relatively consistent with the those of QCDSR, and twist-2 LCDA are both antisymmetric. However, there are also some differences between the two, which may be due to differences in calculation methods. The former uses the Gegenbauer moments polynomials expansion, while we take the LCHO model to construct LCDA ϕ2;a0(x,μ)\phi_{2;a_{0}}(x,\mu).

For further study, we also analyze the relationship between the goodness-fit of the a0(980)a_{0}(980)-meson twist-2 LCDA ϕ2;a0(x,μk)\phi_{2;a_{0}}(x,\mu_{k}) and the quark mass mqm_{q} listed in Table 3. It is obvious that as the quark mass increases, the goodness of fit also increases. The goodness of fit Pχmin2P_{\chi^{2}_{\rm min}} also indicates that β2;a0=0.5GeV\beta_{2;a_{0}}=0.5~{\rm GeV} is reasonable. Considering the effect of quark mass mqm_{q} on the a0(980)a_{0}(980)-meson twist-2 LCDA ϕ2;a0(x,μk)\phi_{2;a_{0}}(x,\mu_{k}), the behavior of LCHO model ϕ2;a0(x,μ)\phi_{2;a_{0}}(x,\mu) for different quark masses mq=(200,250,300,350)MeVm_{q}=(200,250,300,350)~{\rm MeV} is shown in the right panel of Fig. 2. As can be seen from the figure, the peak value of the LCHO model curves increases with the increase of mass mqm_{q}. In addition to this, the relationship between goodness of fit Pχmin2P_{\chi^{2}_{\rm min}} and parameters A2;a0A_{2;a_{0}} and α2;a0\alpha_{2;a_{0}} is also shown in Fig. 3. From the table we can see that the Pχmin2P_{\chi^{2}_{\rm min}} can reach to 95.4%95.4\%, which shows the fitting is good.

Table 4: TFFs at the point of large recoil q20q^{2}\simeq 0 for Da0(980)D\to a_{0}(980) within uncertainties. And a comparison with other theoretical groups are also given.

. f+Da0(0)f_{+}^{D\to a_{0}}(0) fDa0(0)f_{-}^{D\to a_{0}}(0) This work 1.0700.033+0.0661.070^{+0.066}_{-0.033} 0.7890.037+0.0430.789^{+0.043}_{-0.037} CCQM Soni:2020sgn 0.550.02+0.020.55^{+0.02}_{-0.02} 0.030.01+0.010.03^{+0.01}_{-0.01} LCSR 2021 Huang:2021owr 0.850.11+0.100.85^{+0.10}_{-0.11} 0.850.11+0.10\!\!\!\!\!-0.85^{+0.10}_{-0.11} LCSR 2017 Cheng:2017fkw 1.76(26)1.76(26) 0.31(13)0.31(13) AdS/QCD Momeni:2022gqb 0.72(9)0.72(9)       -

The TFFs is an important parameter in the calculation of the semileptonic decay Da0(980)ν¯D\to a_{0}(980)\ell\bar{\nu}_{\ell}. To obtain the numerical results of TFFs, we take μk=1.4GeV\mu_{k}=1.4~{\rm GeV}, mD=1.869GeVm_{D}=1.869~{\rm GeV} ParticleDataGroup:2022pth , fa0(980)=(0.4090.023+0.022)GeVf_{a_{0}(980)}=(0.409^{+0.022}_{-0.023})~{\rm GeV} Cheng:2005nb . For the continuum threshold s0s_{0}, it is generally taken near the mass square of the first excited state of DD-meson, that is, near the mass square of D(2550)D(2550)-meson. Based on the prediction of the sum rule of heavy quark effective theory (HQET) Huang:1998sa , we take the continuum threshold parameter s0=6.50(25)GeV2s_{0}=6.50(25)~{\rm GeV}^{2}. The adopted threshold parameter is consistent with the LCSR analysis for the heavy-to-heavy BDB\to D form factors with the bottom-meson distribution amplitudes as discussed in Ref. Li:2012gr ; Wang:2017jow .

According to LCSR, in the suitable Borel window, we predict the end values of the Da0(980)ν¯D\to a_{0}(980)\ell\bar{\nu}_{\ell} semileptonic decay TFFs shown in Table 4. As a comparison, the results predicted from various approaches, CCQM  Soni:2020sgn , LCSR 2017 Cheng:2017fkw , LCSR 2021 Huang:2021owr and AdS/QCD Momeni:2022gqb also are presented in Table 4. It is not difficult to see from the Table 4 that our predicted results are significantly different from those obtained by other predictions. The reason lies in the twist-2 LCDA ϕ2;a0(x,μ)\phi_{2;a_{0}}(x,\mu) is different, which the LCHO model is used here.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 5: Differential decay widths for Da0(980)ν¯D\to a_{0}(980)\ell\bar{\nu}_{\ell} with =(e,μ)\ell=(e,\mu) decay process within uncertainties. Where the LCSR Huang:2021owr and AdS/QCD Momeni:2022gqb predictions are also presented.
Table 5: The fitting parameters aia_{i} with i=(1,2)i=(1,2) for TFFs f+Da0(q2)f^{D\to a_{0}}_{+}(q^{2}) and fDa0(q2)f^{D\to a_{0}}_{-}(q^{2}). Where the goodness of fit Δ\Delta are also present.
f+Da0(q2)f^{D\to a_{0}}_{+}(q^{2}) Central value Upper limits Lower limits
a1a_{1} 6.9196.919 6.3126.312 7.2027.202
a2a_{2} 29.6429.64 35.9735.97 24.9824.98
Δ\Delta 0.18‰ 0.17‰ 0.18‰
fDa0(q2)f^{D\to a_{0}}_{-}(q^{2}) Central value Upper limits Lower limits
a1a_{1} 1.793-1.793 2.069-2.069 1.396-1.396
a2a_{2} 139.6139.6 158.9158.9 123.0123.0
Δ\Delta 0.26‰ 0.30‰ 0.23‰
Table 6: Branching fractions for the four different channels of Da0(980)ν¯D\to a_{0}(980)\ell\bar{\nu}_{\ell} (in unit: 10410^{-4}). To make a comparison, we also listed the CCQM Soni:2020sgn , LCSR Huang:2021owr ; Cheng:2017fkw and AdS/QCD Momeni:2022gqb predictions.
D0a0(980)e+νeD^{0}\to{a_{0}(980)}^{-}e^{+}\nu_{e} D0a0(980)μ+νμD^{0}\to{a_{0}(980)}^{-}{\mu}^{+}\nu_{\mu} D+a0(980)0e+νeD^{+}\to{a_{0}(980)}^{0}e^{+}\nu_{e} D+a0(980)0μ+νμD^{+}\to{a_{0}(980)}^{0}{\mu}^{+}\nu_{\mu}
This work 1.5740.156+0.2541.574^{+0.254}_{-0.156} 1.4960.147+0.2401.496^{+0.240}_{-0.147} 1.9820.196+0.3201.982^{+0.320}_{-0.196} 1.8850.186+0.3021.885^{+0.302}_{-0.186}
CCQM  Soni:2020sgn 1.68±0.151.68\pm{0.15} 1.63±0.141.63\pm{0.14} 2.18±0.382.18\pm{0.38} 2.12±0.372.12\pm{0.37}
LCSR 2017 Cheng:2017fkw 4.081.22+1.374.08^{+1.37}_{-1.22} - 5.401.59+1.785.40^{+1.78}_{-1.59} -
LCSR 2021 Huang:2021owr 1.361.36 1.211.21 1.791.79 1.591.59
AdS/QCD Momeni:2022gqb 2.44±0.302.44\pm 0.30 - - -
Table 7: The absolute branching ratio of Da0(980)(ηπ)e+νeD\to a_{0}(980)(\to\eta\pi)e^{+}\nu_{e} (unit: 10410^{-4}) of our predictions within uncertainties. To make a comparison, we also listed the BESIII collaboration BESIII:2018sjg , LCSR results Huang:2021owr and PDG average value ParticleDataGroup:2022pth .
(D0a0(980)(ηπ)e+νe){\cal B}(D^{0}\to a_{0}(980)^{-}(\to\eta\pi^{-})e^{+}\nu_{e}) (D+a0(980)0(ηπ0)e+νe){\cal B}(D^{+}\to a_{0}(980)^{0}(\to\eta\pi^{0})e^{+}\nu_{e})
This work 1.3300.134+0.2161.330^{+0.216}_{-0.134} 1.6750.169+0.2721.675^{+0.272}_{-0.169}
BESIII BESIII:2018sjg 1.330.29+0.331.33^{+0.33}_{-0.29} 1.660.66+0.811.66^{+0.81}_{-0.66}
LCSR 2021 Huang:2021owr 1.151.15 1.511.51
PDG ParticleDataGroup:2022pth 1.330.29+0.301.33^{+0.30}_{-0.29} 1.70.7+0.81.7^{+0.8}_{-0.7}
Refer to caption
Refer to caption
Refer to caption
Figure 6: The prediction for the three different angular observables 𝒜FBDa0(980)ν¯(q2){\cal A}^{D\to a_{0}(980)\ell\bar{\nu}_{\ell}}_{\rm FB}(q^{2}), HDa0(980)ν¯(q2){\cal F}^{D\to a_{0}(980)\ell\bar{\nu}_{\ell}}_{\rm H}(q^{2}) and 𝒜λDa0(980)ν¯(q2){\cal A}^{D\to a_{0}(980)\ell\bar{\nu}_{\ell}}_{\lambda_{\ell}}(q^{2}) within uncertainties, respectively.

In the physical sense, the LCSR method is suitable for in low and intermediate q2q^{2} region. The physical region for Da0(980)D\to a_{0}(980) TFFs is meq20.48GeV2m_{e}\leq q^{2}\leq 0.48~{\rm GeV}^{2}. In order to obtain reasonable LCSR results, we can extend them to the entire physical q2q^{2}-region meq2(mD2ma0)2=0.8GeV2m_{e}\leq q^{2}\leq(m_{D}^{2}-m_{a_{0}})^{2}=0.8~{\rm GeV}^{2}. Therefore, we can fit the complete analysis results with simplified series expansion (SSE), which is a rapidly convergent series on the z(t)z(t)-expansion Fu:2018yin ; Bharucha:2015bzk ; Bourrely:2008za .

fi(q2)=Pi(q2)k=0,1,2aki[z(q2)z(0)]k,\displaystyle{{f}_{i}}(q^{2})={P_{i}}(q^{2})\sum\limits_{{k=0,1,2}}a_{k}^{i}{{[z(}{q^{2}})-z(0)]}^{k}, (26)

where fi(q2){{f}_{i}}(q^{2}) stands for Da0(980)ν¯D\to a_{0}(980)\ell\bar{\nu}_{\ell} TFFs, akia_{k}^{i} the fit coefficients,and

Pi(q2)=(1q2mR,i2)1\displaystyle P_{i}(q^{2})=\bigg{(}1-\frac{q^{2}}{m_{R,i}^{2}}\bigg{)}^{-1}
z(t)=t+tt+t0t+t+t+t0\displaystyle z(t)=\frac{\sqrt{t_{+}-t}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-t}+\sqrt{t_{+}-t_{0}}} (27)

with t±(mD±ma0)2t_{\pm}\equiv(m_{D}\pm m_{a_{0}})^{2}, t0=t+(11t/t+)t_{0}=t_{+}(1-\sqrt{1-t_{-}/t_{+}}). Pi(q2)P_{i}(q^{2}) is a simple pole corresponding to the first resonance in the spectrum. Meanwhile, there have another alternation version of the zz-series parametrization for the heavy-to-light TFFs from Wang and Shen Wang:2015vgv , which can also achieve this purpose. The fitting parameters aia_{i} for the TFFs within uncertainties are given in Table 5. Meanwhile, the goodness of fit Δ=t|Fi(t)Fifit(t)|/t|Fi(t)|×100\Delta={\sum_{t}|F_{i}(t)-F_{i}^{\rm fit}(t)|}/{\sum_{t}|F_{i}(t)|}\times 100 with t[0,1/100,,100/100]×0.48GeVt\in[0,1/100,\cdots,100/100]\times 0.48~{\rm GeV} for each TFFs are also presented. After extrapolating TFFs to the whole q2q^{2} region, the curves f±Da0(q2)f_{\pm}^{D\to a_{0}}(q^{2}) are shown in the Fig. 4. We also give the curves obtained by LCSR 2021 Huang:2021owr and AdS/QCD Momeni:2022gqb for comparison. The results show our prediction is a certain discrepancy between the results in Ref. Huang:2021owr . There are also some deviations from results predicted by AdS/QCD, but the curve trend is relatively consistent. In most cases, The f+Da0(q2)f_{+}^{D\to a_{0}}(q^{2}) shows an upward trend with the increase of q2q^{2}. Our prediction is quite reasonable. The fDa0(q2)f_{-}^{D\to a_{0}}(q^{2}) is also exhibit upward tendency and it turns out that there are some differences.

As other important parameters for Da0(980)ν¯D\to a_{0}(980)\ell\bar{\nu}_{\ell}, the CKM matrix element |Vcd|=0.221±0.008|V_{cd}|=0.221\pm 0.008 from the PDG ParticleDataGroup:2022pth , the fermi coupling constant GF=1.166×105GeV2G_{F}=1.166\times 10^{-5}~\rm{GeV}^{-2}. By taking the derived Da0(980)ν¯D\to a_{0}(980)\ell\bar{\nu}_{\ell} TFFs and the related parameters into the differential decay widths Eq. (II), one can get the differential decay widths of Da0(980)ν¯D\to a_{0}(980)\ell\bar{\nu}_{\ell} with =(e,μ)\ell=(e,\mu) presented in Fig. 5. For comparison, we also present the results of LCSR 2021 Huang:2021owr predictions in Fig. 5. The figure shows that our prediction is consistent with the result of LCSR 2021 within a certain error range. In Fig. 5(a), discrepancy between our prediction and the result of AdS/QCD, which may be caused by the different TFFs. Obviously, the predicted results converge to zero in the small recoil region q2=(mDma0)2q^{2}=(m_{D}-m_{a_{0}})^{2}. The shaded part in the figure is the error of the width, which mainly comes from the uncertainty of all parameters.

Furthermore, by taking the lifetimes of D0D^{0} and D+D^{+} meson τD0=(0.410±0.001)ps\tau_{D^{0}}=(0.410\pm 0.001)~\rm{ps} and τD+=(1.033±0.005)ps\tau_{D^{+}}=(1.033\pm 0.005)~\rm{ps} from PDG, we can obtain the branching ratio of semileptonic decay channels D+a0(980)0+νD^{+}\to{a_{0}(980)}^{0}\ell^{+}\nu_{\ell} (=e,μ\ell=e,\mu) and D0a0(980)+νD^{0}\to{a_{0}(980)}^{-}\ell^{+}\nu_{\ell} in Table LABEL:branching_ratios. What’s more, the predictions from theoretical groups such as CCQM Soni:2020sgn , LCSR Cheng:2017fkw ; Huang:2021owr , AdS/QCD Momeni:2022gqb are shown in Table LABEL:branching_ratios. It is obvious that our results are relatively consistent with those of CCQM and LCSR 2021 within the error. However, the significant difference between our predictions and LCSR 2017, AdS/QCD may be caused by the difference of the TFFs and a0(980)a_{0}(980)-meson twist-2 LCDA.

Table 8: Numerical results of three observable measurements of semileptonic decay Da0(980)μν¯μD\to a_{0}(980)\mu\bar{\nu}_{\mu} (the forward-backward asymmetries, the q2q^{2} differential flat terms and lepton polarization asymmetry).

. Observables Results 𝒜FBDa0(980)μν¯μ{\cal A}^{D\to a_{0}(980)\mu\bar{\nu}_{\mu}}_{\rm FB} (7.2290.045+0.038)×102(7.229^{+0.038}_{-0.045})\times 10^{-2} HDa0(980)μν¯μ{\cal F}^{D\to a_{0}(980)\mu\bar{\nu}_{\mu}}_{\rm H} 0.1930.003+0.0030.193^{+0.003}_{-0.003} 𝒜λDa0(980)μν¯μ{\cal A}^{D\to a_{0}(980)\mu\bar{\nu}_{\mu}}_{\lambda_{\ell}} 0.4600.006+0.0070.460^{+0.007}_{-0.006}

Additionally, we also calculate the absolute branching ratio of decays Dηπν¯D\to\eta\pi\ell\bar{\nu}_{\ell} by using the relationship

(Da0(980)(ηπ)e+νe)=\displaystyle{\cal B}(D\to{a_{0}(980)}(\to\eta\pi)e^{+}\nu_{e})=
(Da0(980)e+νe)×(a0(980)ηπ).\displaystyle\quad{\cal B}(D\to{a_{0}(980)}e^{+}\nu_{e})\times{\cal B}(a_{0}(980)\to\eta\pi). (28)

Here the (a0(980)0ηπ0)=(a0(980)ηπ)=0.845±0.017{\cal B}(a_{0}(980)^{0}\to\eta\pi^{0})={\cal B}(a_{0}(980)^{-}\to\eta\pi^{-})=0.845\pm 0.017 can be used Cheng:2005nb . Combing with the (Da0(980)e+νe){\cal B}(D\to{a_{0}(980)}e^{+}\nu_{e}) been calculated in this paper, we can get the results for (D0a0(980)(ηπ)e+νe){\mathcal{B}}(D^{0}\to a_{0}(980)^{-}(\to\eta\pi^{-})e^{+}\nu_{e}) and (D+a0(980)0(ηπ0)e+νe){\mathcal{B}}(D^{+}\to a_{0}(980)^{0}(\to\eta\pi^{0})e^{+}\nu_{e}), which are listed in Table LABEL:ratios. For comparison, the results of the BESIII BESIII:2018sjg collaboration, theory groups LCSR 2021 Huang:2021owr and PDG ParticleDataGroup:2022pth predictions are also given. The results show that our predicted absolute branching ratio are in good agreement with those predicted of BESIII, LCSR 2021 and PDG within the error range. It is clear that our prediction is more accurate than the LCSR 2021 prediction, with an improvement of about 12%12\%. It shows that the result of our prediction is reasonable.

Finally, the three differential distribution of angle observables for forward-backward asymmetries, the q2q^{2}-differential flat terms and lepton polarization asymmetry of the semileptonic decay Da0(980)ν¯D\to a_{0}(980)\ell\bar{\nu}_{\ell}, i.e. 𝒜FBDa0(980)ν¯(q2){\cal A}^{D\to a_{0}(980)\ell\bar{\nu}_{\ell}}_{\rm FB}(q^{2}), HDa0(980)ν¯(q2){\cal F}^{D\to a_{0}(980)\ell\bar{\nu}_{\ell}}_{\rm H}(q^{2}) and 𝒜λDa0(980)ν¯(q2){\cal A}^{D\to a_{0}(980)\ell\bar{\nu}_{\ell}}_{\lambda_{\ell}}(q^{2}) are shown in Fig. 6. The forward-backward asymmetries curves, i.e. Fig. 6(a) are different with pion and kaon cases Cui:2022zwm , while the q2q^{2}-differential flat terms and lepton polarization asymmetry have the same tendency overall with pion and kaon cases, but have slight differences. Meanwhile, the uncertainties for the three angle observables are small. Finally, we present the integral results for the three observables in Table 8.

IV Summary

In this paper, we have calculated the moments of a0(980)a_{0}(980)-meson twist-2 LCDA by adopting the QCDSR approach within the background field theory. The continuum threshold parameter sa0s_{a_{0}} is determined from the normalization for the a0(980)a_{0}(980)-meson twist-3 LCDA 0th-order moments. After seeking the suitable Borel windows, we present the first five order moments, i.e. ξ2;a0n|μ\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu} with n=(1,3,5,7,9)n=(1,3,5,7,9) under two different factorization scales μ0\mu_{0} and μk\mu_{k}. Then, we study a0(980)a_{0}(980)-meson twist-2 LCDA ϕ2;a0(x,μ)\phi_{2;a_{0}}(x,\mu) based on the LCHO model for improving the accuracy of the calculation. The least square method is used to fit the moments ξ2;a0n|μ\langle\xi^{n}_{2;a_{0}}\rangle|_{\mu} and to determine the model parameters. The goodness of fit can be up to 95.4%95.4\%. Then, the curves of a0(980)a_{0}(980)-meson twist-2 LCDA comparing with other theoretical groups and with different constituent quark masses are presented.

The Da0(980)D\to a_{0}(980) TFFs are calculated within the LCSR approach. The TFFs at large recoil region are listed in Table 4. After extrapolating the TFFs to the whole q2q^{2} region, the curves f±Da0(q2)f_{\pm}^{D\to a_{0}}(q^{2}) are shown in Fig. 4. A comparison of TFFs with other LCSR and AdS/QCD predictions are also given. Using the resultant TFFs, we further studied the semileptonic decays Da0(980)ν¯D\to a_{0}(980)\ell\bar{\nu}_{\ell} with =(e,μ)\ell=(e,\mu). Their differential decay widths are presented in Fig. 5, and their branching fractions are given in Table LABEL:branching_ratios. The ratio of partial branching fractions is given

(D0a0(980)e+νe)(D+a0(980)0e+νe)=0.7940.136+0.155,\displaystyle\dfrac{{\cal B}(D^{0}\to a_{0}(980)^{-}e^{+}\nu_{e})}{{\cal B}(D^{+}\to a_{0}(980)^{0}e^{+}\nu_{e})}=0.794^{+0.155}_{-0.136}, (29)

which agree with the CCQM prediction Soni:2020sgn and the LCSR predictions Cheng:2017fkw ; Huang:2021owr within errors.

After considering the decay a0(980)ηπa_{0}(980)\to\eta\pi, we have calculated the branching fractions for the decay processes Dηπe+νeD\to\eta\pi e^{+}\nu_{e}, (D0ηπe+νe)=(1.3300.134+0.216)×104{\mathcal{B}}(D^{0}\to\eta\pi^{-}e^{+}\nu_{e})=(1.330^{+0.216}_{-0.134})\times 10^{-4} and (D+ηπ0e+νe)=(1.6750.169+0.272)×104{\mathcal{B}}(D^{+}\to\eta\pi^{0}e^{+}\nu_{e})=(1.675^{+0.272}_{-0.169})\times 10^{-4}. The results of our predictions are consistent with the BESIII data and PDG average value within errors, which indicate the two-quark picture of a0(980)a_{0}(980) is also reasonable in comparing with four-quark picture. Along with other results of branching fraction for scalar meson discovered experimentally, we will have a reliable input for understanding the nature of the light scalar mesons.

Finally, we also predicted the forward-backward asymmetries, the q2q^{2} differential flat terms and lepton polarization asymmetry of the semileptonic decay Da0(980)ν¯D\to a_{0}(980)\ell\bar{\nu}_{\ell}. The overall behavior of 𝒜FBDa0(980)ν¯(q2){\cal A}^{D\to a_{0}(980)\ell\bar{\nu}_{\ell}}_{\rm FB}(q^{2}), HDa0(980)ν¯(q2){\cal F}^{D\to a_{0}(980)\ell\bar{\nu}_{\ell}}_{\rm H}(q^{2}) and 𝒜λDa0(980)ν¯(q2){\cal A}^{D\to a_{0}(980)\ell\bar{\nu}_{\ell}}_{\lambda_{\ell}}(q^{2}) as a function of q2q^{2} is shown in Fig. 6, and the numerical results of the integration are listed in Table 8, which can provides phenomenology value for exploring other new physics.

Acknowledgements.
We are grateful for the referee’s valuable comments and suggestions. This work was supported in part by the National Natural Science Foundation of China under Grant No.12265010, No.12265009, No.12175025 and No.12147102, the Project of Guizhou Provincial Department of Science and Technology under Grant No.ZK[2021]024 and No.ZK[2023]142, the Project of Guizhou Provincial Department of Education under Grant No.KY[2021]030, and by the Chongqing Graduate Research and Innovation Foundation under Grant No. ydstd1912.

References