This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Absorption-Based Diamond Spin Microscopy on a Plasmonic Quantum Metasurface

Laura Kim Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA    Hyeongrak Choi Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA    Matthew E. Trusheim Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA U.S. Army Research Laboratory, Sensors and Electron Devices Directorate, Adelphi, Maryland 20783, USA    Dirk R. Englund Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
Abstract

Nitrogen vacancy (NV) centers in diamond have emerged as a leading quantum sensor platform, combining exceptional sensitivity with nanoscale spatial resolution by optically detected magnetic resonance (ODMR). Because fluorescence-based ODMR techniques are limited by low photon collection efficiency and modulation contrast, there has been growing interest in infrared (IR)-absorption-based readout of the NV singlet state transition. IR readout can improve contrast and collection efficiency Acosta et al. (2010a); Bougas et al. (2018); Dumeige et al. (2013), but it has thus far been limited to long-pathlength geometries in bulk samples due to the small absorption cross section of the NV singlet state. Here, we amplify the IR absorption by introducing a resonant diamond metallodielectric metasurface that achieves a quality factor of Q \sim 1,000. This ”plasmonic quantum sensing metasurface” (PQSM) combines localized surface plasmon polariton resonances with long-range Rayleigh-Wood anomaly modes and achieves desired balance between field localization and sensing volume to optimize spin readout sensitivity. From combined electromagnetic and rate-equation modeling, we estimate a sensitivity below 1 nT Hz12{}^{-\frac{1}{2}} per µm2 of sensing area using numbers for present-day NV diamond samples and fabrication techniques. The proposed PQSM enables a new form of microscopic ODMR sensing with infrared readout near the spin-projection-noise-limited sensitivity, making it appealing for the most demanding applications such as imaging through scattering tissues and spatially-resolved chemical NMR detection.

I Introduction

The ability to optically measure quantities such as electric field, magnetic field, temperature, and strain under ambient conditions makes the NV system appealing for a range of wide-field sensing applications, from imaging biological systems Barry et al. (2016) and electrical activity in integrated circuits Turner et al. (2020) to studying quantum magnetism and superconductivity in quantum materials Thiel et al. (2016); Tetienne et al. (2015); Du et al. (2017); Ku et al. (2020). NV-based magnetometers have shown exceptional sensitivity at room temperature, but conventional fluorescence-based readout methods result in sensitivity values far from the spin projection noise limit primarily due to background fluorescence, poor photon collection efficiency, and low spin-state contrast Barry et al. (2020). These limitations can be overcome by probing the infrared singlet transition near 1042 nm by absorption. However, this absorption-based readout has only been demonstrated for bulk diamond samples with a large optical path length of millimeters Dumeige et al. (2013); Chatzidrosos et al. (2017) to centimeters Bougas et al. (2018); Jensen et al. (2014) due to the small absorption cross section of the singlet state transition. This long-pathlength requirement presents the central challenge in IR readout to imaging microscopy, where the sensing depth should commonly be below the micron-scale. The plasmonic quantum sensing metasurface (PQSM) solves this problem by confining vertically incident IR probe light in a few-micron-thick diamond layer with a quality factor near 1,000. The PQSM consists of a metallodielectric grating that couples surface plasmon polariton (SPP) excitations and Rayleigh-Wood anomaly (RWA) modes Gao et al. (2009); Steele et al. (2003). The localized plasmonic resonance causes local field concentration as well as a wavelength-scale field enhancement when coupled with the RWA modes. Unlike fluorescence, the directional reflection (or transmission) can be captured with near-unity efficiency. In particular, detection of the reflected coherent probe light with a standard camera enables shot-noise limited detection, eliminating the need of single photon detectors. Taken together, our analysis predicts that the PQSM coupled to NV sensing layers can enable a sensitivity below 1 nT Hz12{}^{-\frac{1}{2}} per µm2 of sensing area.

Refer to caption
Figure 1: (a) Plasmonic quantum sensing metasurface (PQSM) consisting of a metallodielectric grating and proposed homodyne-detection-based sensing scheme. TM-polarized incoming light induces a SPP-RWA hybrid mode, creating a vertically extended field profile as shown in the the overlapping Re(EyE_{y}). With an applied microwave magnetic field, the PQSM generates spin-dependent reflection with an additional phase change, ΔϕNV\Delta\phi_{\text{NV}}. The spin-dependent signal, |Esig|2|E_{\text{sig}}|^{2}, is separated from the un-diffracted beam, |Eud|2|E_{\text{ud}}|^{2}, in a dark-field excitation geometry and interferes with a local oscillator, |ELO|2|E_{\text{LO}}|^{2}. The interfered output beam, Iout(It,ΩR,R,ΔϕLO)I_{\text{out}}(I_{t},\Omega_{R},R,\Delta\phi_{\text{LO}}), is detected by a CCD camera. (c) Total electric field intensity of RWA-SPP resonances upon normal incidence at λ0\lambda_{0} = 1042 nm with pp = 434 nm, ww = 125 nm, and tt = 125 nm. The arrow plot shows the magnetic field generated by a uniform driving current in an infinite array of plasmonic Ag wires.

II Results

II.1 IR-absorption-based detection scheme

The principle of NV-based magnetometers lies in the Zeeman energy shift of the NV defect spin sublevels that can be polarized and measured optically. As illustrated in Fig. 1c, the spin sublevels ms{}_{\text{s}} = 0 and ms{}_{\text{s}} = ±1\pm 1 of the 3A2 ground triplet state, labelled as |1\ket{1} and |2\ket{2}, respectively, are separated by a zero-field splitting of D = 2.87 GHz, whose transition can be accessed with a resonant microwave field. Upon spin-conserving off-resonant green laser excitation, a fraction of the population decays non-radiatively into the 1A1 metastable singlet state, |5\ket{5}, predominantly from |4\ket{4} as k45 \gg k35, where kij{}_{\text{ij}} indicates the decay rate from level i to level j. After a sub-ns decay from |5\ket{5} to |6\ket{6}, the shelving time at |6\ket{6} exceeds 200 ns at room temperature Acosta et al. (2010b). Therefore, the population of |6\ket{6} can be measured by absorption of the singlet state transition resonant at 1042 nm.

Figure 1a shows the proposed PQSM for the IR-absorption-based detection scheme. The sensing surface is pumped with a green laser at 532 nm for NV spin initialization and illuminated with transverse magnetic (TM) polarized probe light at λ0\lambda_{0} = 1042 nm for IR readout. The PQSM-NV layer causes a spin-dependent phase and amplitude of the IR reflection. The spatially well-defined signal beam is separated from the incident probe field in a dark-field excitation geometry (i.e., k-vector filtering). By interfering with a local oscillator, phase-sensitive homodyne detection at the camera enables measurement at the photon shot noise limit. The PQSM doubles as a wire array for NV microwave control Shalaginov et al. (2020); Ibrahim et al. (2020): with a subwavelength spacing, an array of the silver wires produces a homogeneous transverse magnetic field, B\vec{B}, as shown in Fig. 1b. Local excitation and probing of NVs within a pixel are possible by running a current through an individual wire.

II.2 Metasurface design

Here we discuss photonic design criteria to maximize the IR signal of spin ensemble sensors. The IR absorption readout has only been successfully implemented with bulk diamond samples due to the intrinsic absorption cross sectional area that is about an order of magnitude smaller than that of the triplet state transition Dumeige et al. (2013); Jensen et al. (2014). This weak light-matter interaction can be enhanced by modifying the electromagnetic environment of quantum emitters. The rate of absorption of a quantum emitter under an oscillating electromagnetic field with frequency, ω0\omega_{0}, can be expressed following Fermi’s golden rule.

Γabs=2π|5|μE|6|2ρ(ω0)\Gamma_{\text{abs}}=\frac{2\pi}{\hbar}|\braket{5}{\vec{\mu}\cdot\vec{E}}{6}|^{2}\rho(\omega_{0}) (1)

where μ=er\vec{\mu}=e\cdot\vec{r} is the transition dipole moment operator, E\vec{E} is the electric fields, and ρ(ω)=1π12γ(ωω0)2+(12γ)2\rho(\omega)=\frac{1}{\pi\hbar}\frac{\frac{1}{2}\gamma^{*}}{(\omega-\omega_{0})^{2}+(\frac{1}{2}\gamma^{*})^{2}} is the electronic density of states, which is modeled as a continuum of final states with a Lorentzian distribution centered at ω0\omega_{0} with linewidth γ\gamma^{*}. The equation shows that the rate can be enhanced by increasing the electric field at the emitter position. Plasmonic structures can focus light intensity at subwavelength scales, and thus, they have been used to increase spontaneous emission rates of single emitters or ensembles of emitters confined in a nanometer-scale volume Choy et al. (2013); Akselrod et al. (2014); Hoang et al. (2015); Karamlou et al. (2018); Bogdanov et al. (2017); De Leon et al. (2012); Hausmann et al. (2013); Jun et al. (2010); Russell et al. (2012). However, this field concentration comes with the trade-off of reducing the number of NV centers, NNVN_{\text{NV}}, that are coupled to the optical field. Balancing this trade-off depends on the use case: sensing applications with a spatial resolution below the grating period benefit from highly localized SPP-like modes, while applications with larger lateral resolution benefit from more RWA-like modes that average over a larger NNVN_{\text{NV}}. To guide the PQSM optimization, we adopt a figure of merit addressing the latter of |E/E0|2VpixelnNV\braket{}{E/E_{0}}{{}^{2}}V_{\text{pixel}}n_{\text{NV}}, where |E/E0|2=pixel|E/E0|2𝑑V/pixel𝑑V\braket{}{E/E_{0}}{{}^{2}}=\int_{\text{pixel}}|E/E_{0}|^{2}dV/\int_{\text{pixel}}dV is the spatially averaged optical field enhancement over the single-pass field without plasmonic structure, E0E_{0}, dNVd_{\text{NV}} is the thickness of the diamond sensing layer with NV density of nNVn_{\text{NV}} , and Vpixel=L2dNVV_{\text{pixel}}=L^{2}d_{\text{NV}} is the sensing volume.

The SPP-RWA resonance delocalizes the plasmonic modes, creating a large field enhancement within a few-micron-thick surface layer of diamond, as shown in the corresponding spatially-resolved electric field intensity profile (Fig. 1b). The structure dimensions can be chosen to find the desired balance between SPP modes and RWA modes: stronger SPP localization resulting in more localized sensing can be traded against better sensitivity, and vice versa. SPPs do not couple with free-space light without satisfying the momentum matching conditions. An incoming far-field optical excitation can excite SPPs modes via a grating structure with period pp given by G=2m/pG=2m/p where mm is an integer. To form a metallodielectric grating, the plasmonic nanostructures are arranged periodically with a period of λ0/n\lambda_{0}/n, where λ0\lambda_{0} is 1042 nm and nn is the refractive index of diamond. As evident in the dispersion relation of RWA (Eq. 2), this period satisfies the condition for first-diffraction-order RWA mode under normal incidence (i.e., kx=0k_{x}=0).

ωcn=kx+m2πp\frac{\omega}{c}n=k_{x}+m\frac{2\pi}{p} (2)

where cc is the speed of light in vacuum, kx=k0sin(θi)k_{x}=k_{0}\sin(\theta_{i}) is the momentum component of free-space light in the direction of grating period, and mm denotes the diffraction order Gao et al. (2009); Steele et al. (2003). When the RWA mode is excited, the incident electromagnetic wave diffracts parallel to the grating surface and creates a field profile that extends vertically away from the grating surface Wood (1935); Rayleigh (1907). Thus, the SPP-RWA hybrid mode shows the electric field intensity profile extending a few microns from the grating surface while maintaining a large field concentration near the Ag-diamond interface as shown in Fig. 1b. While the RWA mode alone does not depend on the properties of the plasmonic material (Eq. 2), the SPP-RWA hybrid mode is highly dependent on the dispersive permittivity of the plasmonic material. When silver is replaced with palladium (Pd), a weak plasmonic material, the electric field enhancement is heavily suppressed (refer to SI Section 1). As the SPP-RWA mode delocalizes the field away from the lossy material, this PQSM exhibits a quality factor of 935 at 1042 nm, an exceptionally high value for a plasmonic coupled mode.

To determine the signal from a pixel of the PQSM containing an ensemble of emitters, the rate of absorption is averaged over all four orientations of NV emitters. For a given angle, θ\theta, between the emitter’s transition dipole orientation and the electric field created by the PQSM in the diamond layer, Eq. 1 can be expressed as Eq. 3 in terms of the spontaneous emission rate of the singlet state transition, γ=ω03|5|μ|6|23πϵc3\gamma=\frac{\omega_{0}^{3}|\braket{5}{\vec{\mu}}{6}|^{2}}{3\pi\epsilon\hbar c^{3}}.

Γabs=3π2γγ(λ0n)312ϵ0ϵ|E|2cos2(θ)\Gamma_{\text{abs}}=\frac{3}{\pi^{2}\hbar}\frac{\gamma}{\gamma^{*}}(\frac{\lambda_{0}}{n})^{3}\cdot\frac{1}{2}\epsilon_{0}\epsilon|\vec{E}|^{2}\cos^{2}(\theta) (3)

where ϵ\epsilon is the relative permittivity of diamond. For a [100] diamond plane, all four orientations of NVs are expected to have equal contributions for the given SPP-RWA-induced field profile. The signal-to-noise ratio (SNR) of the pixelated plasmonic imaging surface is given by Eq. 4 under the assumption of the shot noise limit.

SNR=|N0N1|N0+N1=ΔtmeaL2ω0Iout(It,0)Iout(It,ΩR)Iout(It,0)+Iout(It,ΩR)\begin{split}\text{SNR}&=\frac{|N_{0}-N_{1}|}{\sqrt{N_{0}+N_{1}}}\\ &=\sqrt{\frac{\Delta t_{\text{mea}}L^{2}}{\hbar\omega_{0}}}\frac{I_{\text{out}}(I_{t},0)-I_{\text{out}}(I_{t},\Omega_{R})}{\sqrt{I_{\text{out}}(I_{t},0)+I_{\text{out}}(I_{t},\Omega_{R})}}\end{split} (4)

where N0N_{0} and N1N_{1} are the average numbers of photons detected from the ms{}_{\text{s}} = 0 and ms{}_{\text{s}} = ±1\pm 1 states, respectively, per measurement, Δtmea\Delta t_{\text{mea}} is the total readout time, and Iout(It,ΩR)I_{\text{out}}(I_{t},\Omega_{R}) is the reflected intensity under green laser intensity, ItI_{t}, and an applied microwave Rabi field, ΩR\Omega_{R}. In the limit of low contrast, the SNR can be re-written as follows:

SNR=Iout(0,0)ΔtmeaL22ω0(INV(It,ΩR)INV(It,0))|E/E0|2VpixelnNV\begin{split}\text{SNR}&=\sqrt{\frac{I_{\text{out}}(0,0)\Delta t_{\text{mea}}L^{2}}{2\hbar\omega_{0}}}(I_{\text{NV}}(I_{t},\Omega_{R})-I_{\text{NV}}(I_{t},0))\\ &\propto\braket{}{E/E_{0}}{{}^{2}}V_{\text{pixel}}n_{\text{NV}}\end{split} (5)

where INV(It,ΩR)=Iout(0,0)Iout(It,ΩR)Iout(0,0)I_{\text{NV}}(I_{t},\Omega_{R})=\frac{I_{\text{out}}(0,0)-I_{\text{out}}(I_{t},\Omega_{R})}{I_{\text{out}}(0,0)} is the fractional change in IR intensity due to NV absorption, and INV(It,ΩR)INV(It,0)|E/E0|2VpixelnNVI_{\text{NV}}(I_{t},\Omega_{R})-I_{\text{NV}}(I_{t},0)\propto\braket{}{E/E_{0}}{{}^{2}}V_{\text{pixel}}n_{\text{NV}} as described in detail in SI Section 3. Thus, the SNR scales with both spatially averaged electric field intensity enhancement factor and sensing volume for a given NV density. The PQSM combines a large field enhancement of the SPP mode and delocalization of the RWA mode, making the SPP-RWA hybrid mode well suited for ensemble-based sensing.

Refer to caption
Figure 2: (a) The population of the ground singlet state as a function of 532 nm laser intensity with (solid) and without (dotted) an applied microwave field at a given sensing depth of 5 µm. (b) Input-intensity-normalized NV absorption, ApixelA_{\text{pixel}}, per pixel (left y-axis) and corresponding phase changes of the spin-dependent reflected light, ΔϕNV\Delta\phi_{\text{NV}} (right y-axis). (c) SNR/ΔtmeaL2\sqrt{\Delta t_{\text{mea}}L^{2}} under steady state operation as a function of ItI_{t} with varying IsI_{s} for homodyne (solid) and direct (dotted) detection.

II.3 Metasurface spin-dependent response

The spin-dependent IR absorption depends on the population of the ground singlet state, and it can be obtained by calculating the local density of each sublevel, n|in_{\ket{i}}, based on the coupled rate equations described in SI Section 2. As shown in Fig. 1c, we use an eight-level rate equation model that accounts for photoionization. Under continuous wave (CW)-ODMR, Fig. 2a shows the calculated n|6n_{\ket{6}}, indicating that the population of the singlet states weakly depends on the IR probe intensity, IsI_{s}, until the absorption rate becomes comparable to the excited state decay rate. The SPP-RWA-induced field enhancement modifies the absorption rate as well as the radiative decay rate by γradFpγrad+γquenching\gamma_{\text{rad}}\rightarrow F_{p}\gamma_{\text{rad}}+\gamma_{\text{quenching}}, where FpF_{p} is the Purcell factor. However, due to the low intrinsic quantum efficiency of the singlet state transition (γradΓ\frac{\gamma_{\text{rad}}}{\Gamma}\approx0.1% Ulbricht and Loh (2018)), the plasmonic structures have minimal effect on the overall excited state decay rate, Γ\Gamma. Because the lifetime of the ground state is approximately two orders of magnitude longer than that of the excited state Acosta et al. (2010b), the singlet state transition has an exceptionally high saturation intensity, enabling each NV to absorb multiple photons per cycle. With resonant structures, the system can be brought to its saturation level at a lower incident intensity due to the transition rate enhanced by a factor of |E/E0|2\sim\braket{}{E/E_{0}}{{}^{2}}. Similarly, the current PQSM structure can induce a grating mode resonant at 532 nm with an off-normal back illumination (refer to SI Section 1).

Under an applied microwave field, an increase in the population of the m=s±1{}_{\text{s}}=\pm 1 states incurs an increase in absorption at 1042 nm (i.e., INV(It,ΩR)>INV(It,0)I_{\text{NV}}(I_{t},\Omega_{R})>I_{\text{NV}}(I_{t},0)). This state-selective NV infrared absorption produces spin-dependent amplitude and phase changes in the IR probe field reflected from the PQSM. The input-intensity-normalized NV absorption, ApixelA_{\text{pixel}}, (equivalently, INV(It,ΩR)×Iout(0,0)IsI_{\text{NV}}(I_{t},\Omega_{R})\times\frac{I_{\text{out}}(0,0)}{I_{s}}) with varying sensing depth is shown in Fig. 2b. To account for stimulated emission, a net population (i.e., n|6n_{\ket{6}}-n|5n_{\ket{5}}) is used to calculate the net spin-dependent NV absorption. Based on the calculated ApixelA_{\text{pixel}}, the NV-induced corresponding phase change, ΔϕNV\Delta\phi_{\text{NV}}, is obtained from the complex reflection coefficients simulated with FDTD method (Fig. 2b).

The spin-dependent phase and amplitude changes of the signal allow for a phase-sensitive measurement. Here, we implement a phase-sensitive coherent homodyne detection, where a local oscillator interferes with the spin-dependent signal from the PQSM. A combination of RR and ΔϕLO\Delta\phi_{\text{LO}} is chosen to maximize the SNR (refer to SI Section 4) and the readout fidelity. The incident-intensity-normalized interfered intensity detected by the camera is given by Eq. 6.

Iout(It,ΩR,R,ΔϕLO)Is=(1R)+R|r(It,ΩR)|2+2(1R)R|r(It,ΩR)|cos(ΔϕLO+ΔϕNV(It,ΩR))\begin{split}&\frac{I_{\text{out}}(I_{t},\Omega_{R},R,\Delta\phi_{\text{LO}})}{I_{s}}=(1-R)+R|r(I_{t},\Omega_{R})|^{2}\\ &+2\sqrt{(1-R)R}|r(I_{t},\Omega_{R})|\cos(\Delta\phi_{\text{LO}}+\Delta\phi_{\text{NV}}(I_{t},\Omega_{R}))\end{split} (6)

where RR is the power splitting ratio of the beam splitter, r(It,ΩR)r(I_{t},\Omega_{R}) is the complex reflection coefficient of the PQSM, ΔϕLO\Delta\phi_{\text{LO}} is the relative phase difference between the LO and the reflected light of the PQSM when ItI_{t} = 0 and ΩR\Omega_{R} = 0, and ΔϕNV(It,ΩR)\Delta\phi_{\text{NV}}(I_{t},\Omega_{R}) is an additional phase change incurred by the NV absorption. Figure 2c shows SNR that is normalized by the measurement time and pixel area of L2L^{2}. Under the conditions considered in this work, the photon shot noise dominates, and a better SNR is achieved by biasing the interferometric readout with a controlled phase difference. Homodyne detection is particularly advantageous for fast imaging on focal plane arrays.

III Discussion

III.1 DC sensitivity

The shot-noise-limited sensitivity of a CW-ODMR-based magnetometer per root area based on IR absorption measurement is given by Eq. 7.

ηCWA=ΓMWgμBΔtmeaL2SNR\eta_{\text{CW}}^{A}=\frac{\hbar\Gamma_{\text{MW}}}{g\mu_{\text{B}}}\frac{\sqrt{\Delta t_{\text{mea}}L^{2}}}{\text{SNR}} (7)

where g2.003g\approx 2.003 is the electronic g-factor of the NV center, μB\mu_{\text{B}} is the Bohr magneton, and ΓMW\Gamma_{\text{MW}} is the magnetic-resonance linewidth which can be approximated as ΓMW=2/T2\Gamma_{\text{MW}}=2/T_{2}^{*}, assuming no power broadening from pump or microwaves. For a given NV density of \sim16 ppm, the dephasing time is limited by paramagnetic impurities with the conversion efficiency conservatively approximately as 16% Ulbricht and Loh (2018). An alternative magnetometry method to CW-ODMR, such as pulsed ODMR or Ramsey sequences, can be exploited to achieve T2T_{2}^{*}-limited performance.

It is useful to compare the photon-shot-noise-limited sensitivity with the spin-projection-noise-limited sensitivity of an ensemble magnetometer consisting of non-interacting spins.

ηspA,ensemble=gμBnNVdNVτ\eta_{\text{sp}}^{A,\text{ensemble}}=\frac{\hbar}{g\mu_{\text{B}}\sqrt{n_{\text{NV}}d_{\text{NV}}\tau}} (8)

where τ\tau is the free precession time per measurement. Figure 3a shows that the PQSM can achieve sub-nT Hz12{}^{-\frac{1}{2}} sensitivity per µm2 sensing surface area for a given an NV layer thickness of dNVd_{\text{NV}} = 5 µm and remaining experimental parameters listed in Table 1. As expected, sensitivity improves with increasing green laser intensity until two-photon-mediated photo-ionization processes start to become considerable. Furthermore, as shown in Fig. 3b, increasing the sensing depth from 500 nm to 10 µm improves the sensitivity by a factor of up to \sim 9. There exists a trade-off between achievable sensitivity and spatial resolution.

Refer to caption
Figure 3: (a) Expected sensitivity per root sensing surface area with homodyne (solid) and direct (dotted) detection as a function of ItI_{t} with varying IsI_{s} for a given dNVd_{\text{NV}} = 5 µm. The dotted black line indicates 1 nT Hz12{}^{-\frac{1}{2}} sensitivity for a 1 µm2 sensing area. The solid black line indicates the spin-projection-noise-limited sensitivity. (b) Sensing-depth-dependent sensitivity with homodyne detection for a given IsI_{s} = 1 mW/µm2.
Table 1: Physical parameters used in this work.
Parameter Value Reference
k31k_{31}=k42k_{42} 66 µs-1 Tetienne et al. (2012)
k35k_{35} 7.9 µs-1 Tetienne et al. (2012)
k45k_{45} 53 µs-1 Tetienne et al. (2012)
k61k_{61} 1 µs-1 Tetienne et al. (2012)
k62k_{62} 0.7 µs-1 Tetienne et al. (2012)
k38k_{38}=k48k_{48} 41.8 MHz/mW Tetienne et al. (2012); Robledo et al. (2011)
k71k_{71}=k72k_{72} 35.5 MHz/mW Tetienne et al. (2012); Robledo et al. (2011)
Γ\Gamma 1 ns-1 Acosta et al. (2010b)
ΓNV0\Gamma_{\text{NV}^{0}} 53 µs-1 Tetienne et al. (2012); Robledo et al. (2011)
σt\sigma_{\text{t}} 3×\times10-21 m2 Wee et al. (2007)
σs\sigma_{\text{s}} 3×\times10-22 m2 Dumeige et al. (2013); Jensen et al. (2014)
σNV0\sigma_{\text{NV}^{0}} 6×\times10-21 m2 Tetienne et al. (2012); Robledo et al. (2011)
nNVn_{\text{NV}} 28×\times1023 m-3 Acosta et al. (2009)
T2T_{2}^{*} 200 ns Acosta et al. (2009); Barry et al. (2020)
T2T_{2} 2 µs Barry et al. (2020)
ΩR\Omega_{R} 2π\pi ×\times 1.5 MHz Acosta et al. (2010a)

III.2 AC sensitivity

Refer to caption
Figure 4: (a) Population of the singlet ground state with (solid) and without (dotted) an applied microwave field as a function of readout time at dNVd_{\text{NV}} = 5 µm for a given IsI_{s} = 1 mW/µm2. (b) Readout fidelity and (c) AC sensitivity per root sensing surface area as a function of ItI_{t} with varying IsI_{s} at dNVd_{\text{NV}} = 5 µm for homodyne (solid) and direct (dotted) detection. The solid black line indicates the spin-projection-noise-limited sensitivity given by Eq. 8.

Sources of the NV spin dephasing can be largely eliminated with coherent control techniques such as the Hahn echo sequence. With an added π\pi-pulse halfway through the interrogation time, a net phase accumulated due to a static or slowly varying magnetic field cancels out, and the interrogation time can be extended to a value of \sim T2T_{2}. Thus, the AC sensitivity can improve by a factor of approximately T2/T2\sqrt{T_{2}^{*}/T_{2}} at the cost of a reduced bandwidth and insensitivity to magnetic field with an oscillating period longer than T2T_{2}. The sensitivity per root area for an ensemble-based AC magnetometer is given by Eq. 9 Barry et al. (2020).

ηa.c.A=σReτ/T2gμBnNVdNVτ1+tI+tRτ\eta_{\text{a.c.}}^{A}=\frac{\hbar\sigma_{\text{R}}e^{\tau/T_{2}}}{g\mu_{\text{B}}\sqrt{n_{\text{NV}}d_{\text{NV}}\tau}}\sqrt{1+\frac{t_{\text{I}}+t_{\text{R}}}{\tau}} (9)

where T2T_{2} is the characteristic dephasing time, tIt_{\text{I}} is the initialization time, tRt_{\text{R}} is the readout time, and σR\sigma_{\text{R}} is the readout fidelity. For a given NV density of \sim 16 ppm, T2T_{2} is about an order of magnitude longer than T2T_{2}^{*} Barry et al. (2020). Rate equations are solved as a function of time to obtain time-dependent population evolution as shown in Fig. 4a. The system loses spin polarization after a few microseconds of readout time. For given ItI_{t} and IsI_{s}, an optimal readout time that maximizes the time-integrated signal is calculated and is shown to be near 500 ns (refer to SI Section 5). An additional shot noise introduced by the optical readout is quantified with the parameter σR\sigma_{\text{R}} (Eq. 10), which is equivalent to an inverse of readout fidelity Barry et al. (2020).

σR=1+2(a+b)(ab)2\sigma_{\text{R}}=\sqrt{1+\frac{2(a+b)}{(a-b)^{2}}} (10)

where aa and bb are the average numbers of photons detected from the ms{}_{\text{s}} = 0 and ms{}_{\text{s}} = ±1\pm 1 states per spin per measurement, respectively. The PQSM achieves spin readout fidelity near 0.5 per shot. Figure 4c shows the AC sensitivity down to 10 pT Hz12{}^{-\frac{1}{2}} per 1-µm2 sensing surface area.

IV Conclusion

In summary, we report a diamond quantum sensing surface consisting of plasmonic nanostructures, which shows a sub-nT Hz12{}^{-\frac{1}{2}} sensitivity per a 1-µm2 sensing surface. This exceptional performance is achieved by the SPP-RWA resonance that optimizes an electric field enhancement within a micron-scale NV layer. The plasmonic structures of the PQSM also provide an optimal microwave control by generating a homogeneous magnetic field across a large sensing area. Combined with a homodyne detection, the PQSM makes a new type of quantum microscope that enables high-speed imaging measurements at the photon shot noise limit.

This PQSM has far-reaching implications in quantum science. The metasurface-coupled quantum emitter arrays can enable manipulation of accumulated phase and polarization at each position of a quantum emitter. By superposing spin-dependent reflection or transmission, it may even be possible to entangle different regions of the metasurface. The entangled quantum metasurface is useful in applications that demand measurements of correlated quantum fluctuation such as quantum spin liquids in quantum materials Meng et al. (2010); Takagi et al. (2019). Such an approach can exploit entanglement-enhanced quantum sensing protocols to achieve performance beyond the standard quantum limit Cappellaro and Lukin (2009); Choi et al. (2017).

V Acknowledgements

L.K. acknowledges support through an appointment to the Intelligence Community Postdoctoral Research Fellowship Program at the Massachusetts Institute of Technology, administered by Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the Office of the Director of National Intelligence. H. C. acknowledges support through Claude E. Shannon Fellowship and the DARPA DRINQS, D18AC00014 program. M.E.T. acknowledges support through the Army Research Laboratory ENIAC Distinguished Postdoctoral Fellowship. D.E. acknowledges support from the Bose Research Fellowship, the Army Research Office W911NF-17-1-0435, and the NSF CUA. We thank Dr. Jennifer Schloss and Jordan Goldstein for helpful discussions.

References

  • Acosta et al. (2010a) V. M. Acosta, E. Bauch, A. Jarmola, L. J. Zipp, M. P. Ledbetter,  and D. Budker, Appl. Phys. Lett. 97 (2010a).
  • Bougas et al. (2018) L. Bougas, A. Wilzewski, Y. Dumeige, D. Antypas, T. Wu, A. Wickenbrock, E. Bourgeois, M. Nesladek, H. Clevenson, D. Braje, D. Englund,  and D. Budker, Micromachines (Basel) 9 (2018).
  • Dumeige et al. (2013) Y. Dumeige, M. Chipaux, V. Jacques, F. Treussart, J.-F. Roch, T. Debuisschert, V. M. Acosta, A. Jarmola, K. Jensen, P. Kehayias,  and D. Budker, Phys. Rev. B Condens. Matter 87, 155202 (2013).
  • Barry et al. (2016) J. F. Barry, M. J. Turner, J. M. Schloss, D. R. Glenn, Y. Song, M. D. Lukin, H. Park,  and R. L. Walsworth, Proceedings of the National Academy of Sciences 113, 14133 (2016).
  • Turner et al. (2020) M. J. Turner, N. Langellier, R. Bainbridge, D. Walters, S. Meesala, T. M. Babinec, P. Kehayias, A. Yacoby, E. Hu, M. Lončar, R. L. Walsworth,  and E. V. Levine, arXiv  (2020), arXiv:2004.03707 [quant-ph] .
  • Thiel et al. (2016) L. Thiel, D. Rohner, M. Ganzhorn, P. Appel, E. Neu, B. Müller, R. Kleiner, D. Koelle,  and P. Maletinsky, Nat. Nanotechnol. 11, 677 (2016).
  • Tetienne et al. (2015) J.-P. Tetienne, T. Hingant, L. J. Martínez, S. Rohart, A. Thiaville, L. H. Diez, K. Garcia, J.-P. Adam, J.-V. Kim, J.-F. Roch, I. M. Miron, G. Gaudin, L. Vila, B. Ocker, D. Ravelosona,  and V. Jacques, Nat. Commun. 6, 6733 (2015).
  • Du et al. (2017) C. Du, T. van der Sar, T. X. Zhou, P. Upadhyaya, F. Casola, H. Zhang, M. C. Onbasli, C. A. Ross, R. L. Walsworth, Y. Tserkovnyak,  and A. Yacoby, Science 357, 195 (2017).
  • Ku et al. (2020) M. J. H. Ku, T. X. Zhou, Q. Li, Y. J. Shin, J. K. Shi, C. Burch, L. E. Anderson, A. T. Pierce, Y. Xie, A. Hamo, U. Vool, H. Zhang, F. Casola, T. Taniguchi, K. Watanabe, M. M. Fogler, P. Kim, A. Yacoby,  and R. L. Walsworth, Nature 583, 537 (2020).
  • Barry et al. (2020) J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pham,  and R. L. Walsworth, Rev. Mod. Phys. 92, 015004 (2020).
  • Chatzidrosos et al. (2017) G. Chatzidrosos, A. Wickenbrock, L. Bougas, N. Leefer, T. Wu, K. Jensen, Y. Dumeige,  and D. Budker, Phys. Rev. Applied 8, 044019 (2017).
  • Jensen et al. (2014) K. Jensen, N. Leefer, A. Jarmola, Y. Dumeige, V. M. Acosta, P. Kehayias, B. Patton,  and D. Budker, Phys. Rev. Lett. 112, 160802 (2014).
  • Gao et al. (2009) H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz,  and T. W. Odom, Opt. Express 17, 2334 (2009).
  • Steele et al. (2003) J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre,  and N. J. Halas, Phys. Rev. B Condens. Matter 68, 205103 (2003).
  • Acosta et al. (2010b) V. M. Acosta, A. Jarmola, E. Bauch,  and D. Budker, Phys. Rev. B Condens. Matter 82, 201202 (2010b).
  • Shalaginov et al. (2020) M. Y. Shalaginov, S. I. Bogdanov, A. S. Lagutchev, A. V. Kildishev, A. Boltasseva,  and V. M. Shalaev, ACS Photonics 7, 2018 (2020).
  • Ibrahim et al. (2020) M. I. Ibrahim, C. Foy, D. R. Englund,  and R. Han,  (2020), arXiv:2005.05638 [physics.app-ph] .
  • Choy et al. (2013) J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I.-C. Huang,  and M. Lončar, Appl. Phys. Lett. 103, 161101 (2013).
  • Akselrod et al. (2014) G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith,  and M. H. Mikkelsen, Nature Photonics 8, 835 (2014).
  • Hoang et al. (2015) T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith,  and M. H. Mikkelsen, Nat. Commun. 6, 7788 (2015).
  • Karamlou et al. (2018) A. Karamlou, M. E. Trusheim,  and D. Englund, Opt. Express 26, 3341 (2018).
  • Bogdanov et al. (2017) S. Bogdanov, M. Y. Shalaginov, A. Akimov, A. S. Lagutchev, P. Kapitanova, J. Liu, D. Woods, M. Ferrera, P. Belov, J. Irudayaraj, A. Boltasseva,  and V. M. Shalaev, Phys. Rev. B Condens. Matter 96, 035146 (2017).
  • De Leon et al. (2012) N. P. De Leon, B. J. Shields, L. Y. Chun, D. E. Englund, A. V. Akimov, M. D. Lukin,  and H. Park, Phys. Rev. Lett. 108, 226803 (2012).
  • Hausmann et al. (2013) B. J. M. Hausmann, B. J. Shields, Q. Quan, Y. Chu, N. P. de Leon, R. Evans, M. J. Burek, A. S. Zibrov, M. Markham, D. J. Twitchen, H. Park, M. D. Lukin,  and M. Lončar, Nano Lett. 13, 5791 (2013).
  • Jun et al. (2010) Y. C. Jun, R. Pala,  and M. L. Brongersma, J. Phys. Chem. C 114, 7269 (2010).
  • Russell et al. (2012) K. J. Russell, T.-L. Liu, S. Cui,  and E. L. Hu, Nat. Photonics 6, 459 (2012).
  • Wood (1935) R. W. Wood, Phys. Rev. 48, 928 (1935).
  • Rayleigh (1907) L. Rayleigh, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 14, 60 (1907).
  • Ulbricht and Loh (2018) R. Ulbricht and Z.-H. Loh, Physical Review B 98 (2018).
  • Tetienne et al. (2012) J.-P. Tetienne, L. Rondin, P. Spinicelli, M. Chipaux, T. Debuisschert, J.-F. Roch,  and V. Jacques, New J. Phys. 14, 103033 (2012).
  • Robledo et al. (2011) L. Robledo, H. Bernien, T. van der Sar,  and R. Hanson, New J. Phys. 13, 025013 (2011).
  • Wee et al. (2007) T.-L. Wee, Y.-K. Tzeng, C.-C. Han, H.-C. Chang, W. Fann, J.-H. Hsu, K.-M. Chen,  and Y.-C. Yu, The Journal of Physical Chemistry A 111, 9379 (2007).
  • Acosta et al. (2009) V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik,  and D. Budker, Phys. Rev. B Condens. Matter 80, 115202 (2009).
  • Meng et al. (2010) Z. Y. Meng, T. C. Lang, S. Wessel, F. F. Assaad,  and A. Muramatsu, Nature 464, 847 (2010).
  • Takagi et al. (2019) H. Takagi, T. Takayama, G. Jackeli, G. Khaliullin,  and S. E. Nagler, Nature Reviews Physics 1, 264 (2019).
  • Cappellaro and Lukin (2009) P. Cappellaro and M. D. Lukin, Phys. Rev. A 80, 032311 (2009).
  • Choi et al. (2017) S. Choi, N. Y. Yao,  and M. D. Lukin, arXiv  (2017), arXiv:1801.00042 [quant-ph] .