This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: fujihashi@moleng.kyoto-u.ac.jpthanks: ishizaki@ims.ac.jp

Achieving two-dimensional optical spectroscopy with temporal and spectral resolution using quantum entangled three photons

Yuta Fujihashi Present address: Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan and PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan    Akihito Ishizaki Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan School of Physical Sciences, Graduate University for Advanced Studies, Okazaki 444-8585, Japan
Abstract

Recent advances in techniques for generating quantum light have stimulated research on novel spectroscopic measurements using quantum entangled photons. One such spectroscopy technique utilizes non-classical correlations among entangled photons to enable measurements with enhanced sensitivity and selectivity. Here, we investigate spectroscopic measurement utilizing entangled three photons. In this measurement, time-resolved entangled photon spectroscopy with monochromatic pumping [J. Chem. Phys. 153, 051102 (2020).] is integrated with the frequency-dispersed two-photon counting technique, which suppresses undesired accidental photon counts in the detector and thus allows one to separate the weak desired signal. This time-resolved frequency-dispersed two-photon counting signal, which is a function of two frequencies, is shown to provide the same information as that of coherent two-dimensional optical spectra. The spectral distribution of the phase-matching function works as a frequency filter to selectively resolve a specific region of the two-dimensional spectra, whereas the excited-state dynamics under investigation are temporally resolved in the time region longer than the entanglement time. The signal is not subject to Fourier limitations on the joint temporal and spectral resolution, and therefore, it is expected to be useful for investigating complex molecular systems in which multiple electronic states are present within a narrow energy range.

I Introduction

Quantum entanglement is one of the properties that is unique to quantum mechanics. When the state of the entire system cannot be described as a product of the quantum states of its constituent particles, such a system is referred to as being entangled. Schrödinger (1935) The most common types of entanglement are the polarization entanglement of photon pairs and the spin entanglement of electron pairs. They also include correlations related to continuous quantities such as the position-momentum of two particles,Ou et al. (1992); Eisert and Plenio (2003); Braunstein and Van Loock (2005); Weedbrook et al. (2012); Asavanant et al. (2019) which was first discussed in the Einstein-Podolsky-Rosen paradox.Einstein, Podolsky, and Rosen (1935) Energy and charge transports in photosynthetic proteins were also discussed from the perspective of quantum entanglement. Thorwart et al. (2009); Sarovar et al. (2010); Caruso et al. (2010); Ishizaki and Fleming (2010); Fassioli and Olaya-Castro (2010); Whaley, Sarovar, and Ishizaki (2011); Ishizaki and Fleming (2012)

Entangled states also play essential roles in state-of-the-art quantum technologies. Takeuchi (2014); Walmsley (2015); Simon, Jaeger, and Sergienko (2016); Pirandola et al. (2018); Moreau et al. (2019) In the past few decades, advances in techniques for generating broadband frequency-entangled photons and shaping the time-frequency structures of entangled photons have stimulated research on novel spectroscopic measurements using entangled photon pairs. Georgiades et al. (1995); Scarcelli et al. (2003); Yabushita and Kobayashi (2004); Dayan et al. (2004); Lee and Goodson, III (2006); Kalachev et al. (2007); Upton et al. (2013); Kalashnikov et al. (2016); Varnavski, Pinsky, and Goodson III (2017); Villabona-Monsalve et al. (2017); Villabona-Monsalve, Burdick, and Goodson III (2020); Paterova et al. (2018); Lee, Yoon, and Cho (2020); Szoke et al. (2020) One such entangled photon spectroscopy technique utilizes non-classical photon correlations to enable measurements with enhanced sensitivity and selectivity when compared to conventional techniques based on classical physics. For instance, two-photon absorption induced by entangled photon pairs varies linearly rather than quadratically with light intensity. Gea-Banacloche (1989); Javanainen and Gould (1990); Georgiades et al. (1995); Dayan et al. (2004); Kang et al. (2020) It has also been argued that two-photon excitation in molecules can be manipulated to specific electronic states. Fei et al. (1997); Saleh et al. (1998); Oka (2010, 2011); Schlawin et al. (2012); Schlawin and Mukamel (2013); Schlawin et al. (2013); Raymer et al. (2013); Dorfman and Mukamel (2014); Munkhbaatar and Myung-Whun (2017); Schlawin, Dorfman, and Mukamel (2018); Oka (2018); de J León-Montiel et al. (2019); Oka (2020); Bittner et al. (2020) Two-photon coincidence detection Hong, Ou, and Mandel (1987); Pittman et al. (1995) and double-crystal interference experiments Zou, Wang, and Mandel (1991); Lemos et al. (2014) have also been studied with respect to spectroscopic applications. In a typical coincidence scheme, one pair of entangled photons is employed as a probe field that is transmitted through the molecular sample. The remaining one is detected in coincidence. This type of measurement improves the signal-to-noise ratio. Scarcelli et al. (2003); Yabushita and Kobayashi (2004); Kalachev et al. (2007); Okamoto, Tokami, and Takeuchi (2020) It is also possible to conduct infrared spectroscopy using visible detectors by exploiting the non-classical correlations between entangled photon pairs. Kalashnikov et al. (2016); Paterova et al. (2018)

To date, experimental explorations have been limited to steady-state spectroscopic measurements as stated above. Given the growing need to understand dynamical processes in complex molecular systems and materials, it is important to extend entangled photon spectroscopy to time-resolved measurements. Pump-probe and stimulated Raman spectroscopic measurements with two-photon counting were theoretically proposed through a combination of biphoton spectroscopy with additional laser pulses. Dorfman, Schlawin, and Mukamel (2014); Schlawin, Dorfman, and Mukamel (2016) In a previous study, Ishizaki (2020a) we theoretically investigated the frequency-dispersed transmission measurement of an entangled photon pair that was generated using a monochromatic laser. It was demonstrated that the non-classical correlation between this photon pair enabled time-resolved spectroscopy using monochromatic pumping. However, transmission measurements are not background-free; weak nonlinear signals must be separated from the probe field that is transmitted through a sample. Therefore, the signal-to-noise ratio is limited by shot noise. Furthermore, it becomes difficult to detect nonlinear optical signals induced by photon pairs in regimes with low photon fluxes.

In this study, we investigate a spectroscopic method to overcome the difficulties associated with implementing time-resolved entangled photon spectroscopy. The central idea is to use entangled three photons Greenberger et al. (1990); Keller et al. (1998); Wen et al. (2007); Wen and Rubin (2009); Hübel et al. (2010); Shalm et al. (2013); Hamel et al. (2014); Agne et al. (2017); Corona, Garay-Palmett, and U’Ren (2011); Krapick et al. (2016); Moebius et al. (2016); Zhang et al. (2018); Cho (2018); Okoth et al. (2019); Dominguez-Serna, U’Ren, and Garay-Palmett (2020); Ye and Mukamel (2020) and frequency-dispersed two-photon coincidence counting measurements. In this scheme, two of the three photons are irradiated into the molecular sample to induce a nonlinear optical process, while the remaining photon is detected in coincidence with the probe field transmitted through the sample. Coincidence-based transmission measurements suppress undesired accidental photon counts in the detector which measures the probe field. Scarcelli et al. (2003); Yabushita and Kobayashi (2004); Kalachev et al. (2007) Thus, this technique enables us to separate the genuine spectroscopic signal. We show how the non-classical correlation among the entangled three photons can be exploited such that two-photon coincidence measurements can provide information on dynamical processes in molecules, similar to transmission measurements of an entangled photon pair. Ishizaki (2020a)

This paper is organized as follows: In Sec. II, we address the quantum states of the entangled three photons generated via cascaded PDC. Hübel et al. (2010); Shalm et al. (2013); Hamel et al. (2014); Agne et al. (2017) We also describe the frequency-dispersed two-photon coincidence counting signal in the three photon state. In Sec. III, we present numerical results to clarify the influence of entanglement times on the spectroscopic signals. Section IV is devoted to the concluding remarks.

II Theory

II.1 Generation of entangled three photons via cascaded PDC

One of the most widespread techniques for generating these quantum resources is parametric down-conversion (PDC). Mandel and Wolf (1995) In this process, a photon originating from an input laser is converted into an entangled photon pair in a way that satisfies the energy and momentum conservation laws. In this work, we address entangled three photons generated through the cascaded PDC process with two nonlinear crystals, Hübel et al. (2010); Shalm et al. (2013); Hamel et al. (2014); Agne et al. (2017) as shown in Fig. 1. In the primary PDC, the pump photon, which has a frequency of ωp\omega_{\mathrm{p}}, passes through the first crystal and is split into a pair of daughter photons (photons 0 and 1) with frequencies of ω0\omega_{0} and ω1\omega_{1}. In the second crystal, photon 0 serves as the pump field for the secondary conversion, creating a pair of granddaughter photons (photons 2 and 3) with frequencies of ω2\omega_{2} and ω3\omega_{3}. It is noted that the conversion efficiency in the cascaded PDC is typically very low. For instance, in cascaded PDC with a combination of periodically-poled lithium niobate (PPLN) and periodically-poled potassium titanyl phosphate, the detected rate of entangled three photons is approximately 7 counts per hour. Shalm et al. (2013) At this photon count rate, an unrealistically long signal collection time may be required to measure the frequencies of photon for extracting the spectroscopic information. However, the main purpose of this work is to give how the non-classical correlations among entangled three photons can be applied to time-resolved spectroscopy. A discussion on the experimental feasibility of the frequency-dispersed two-photon coincidence counting measurement using the cascaded PDC is beyond the scope of this paper.

For simplicity, we consider the electric fields inside the one-dimensional nonlinear crystals. In the weak down-conversion regime, the state vector of the generated three photons is written as Shalm et al. (2013); Zhang et al. (2018); Ye and Mukamel (2020)

|ψtrid3ωf(ω1,ω2,ω3)a^1(ω1)a^2(ω2)a^3(ω3)|vac.\displaystyle\lvert\psi_{\mathrm{tri}}\rangle\simeq\iiint d^{3}\omega f(\omega_{1},\omega_{2},\omega_{3})\hat{a}_{1}^{\dagger}(\omega_{1})\hat{a}_{2}^{\dagger}(\omega_{2})\hat{a}_{3}^{\dagger}(\omega_{3})\lvert\mathrm{vac}\rangle. (2.1)

The derivation is given in Appendix A. In the equation, a^σ(ω)\hat{a}_{\sigma}^{\dagger}(\omega) denotes the creation operator of a photon of frequency ω\omega against the vacuum state |vac\lvert\mathrm{vac}\rangle. The operator satisfies the commutation relation [a^σ(ω),a^σ(ω)]=δσσδ(ωω)[\hat{a}_{\sigma}(\omega),\hat{a}_{\sigma^{\prime}}^{\dagger}(\omega^{\prime})]=\delta_{\sigma\sigma^{\prime}}\delta(\omega-\omega^{\prime}). The three-photon amplitude, f(ω1,ω2,ω3)f(\omega_{1},\omega_{2},\omega_{3}), is expressed as

f(ω1,ω2,ω3)=ηAp(ω1+ω2+ω3)ϕ(ω1,ω2,ω3),\displaystyle f(\omega_{1},\omega_{2},\omega_{3})=\eta A_{\mathrm{p}}(\omega_{1}+\omega_{2}+\omega_{3})\phi(\omega_{1},\omega_{2},\omega_{3}), (2.2)

where Ap(ω)A_{\mathrm{p}}(\omega) is the normalized pump envelope and ϕ(ω1,ω2,ω3)=sinc[Δk1(ω2+ω3,ω1)L1/2]\phi(\omega_{1},\omega_{2},\omega_{3})=\mathrm{sinc}[\Delta k_{1}(\omega_{2}+\omega_{3},\omega_{1})L_{1}/2] ×sinc[Δk2(ω2,ω3)L2/2]\times\mathrm{sinc}[\Delta k_{2}(\omega_{2},\omega_{3})L_{2}/2] denotes the phase-matching function of the overall cascaded PDC process. The momentum mismatch between the input and output photons in the nn-th nonlinear crystal is expressed by Δk1(ω,ω)=kp(ω+ω)k0(ω)k1(ω)\Delta k_{1}(\omega,\omega^{\prime})=k_{\mathrm{p}}(\omega+\omega^{\prime})-k_{0}(\omega)-k_{1}(\omega^{\prime}) and Δk2(ω,ω)=k0(ω+ω)k2(ω)k3(ω)\Delta k_{2}(\omega,\omega^{\prime})=k_{0}(\omega+\omega^{\prime})-k_{2}(\omega)-k_{3}(\omega^{\prime}). The length of the nn-th crystal is given by LnL_{n}. The momentum mismatches may be linearly approximated around the central frequencies of the generated beams, ω¯σ\bar{\omega}_{\sigma}, as in Zhang et al. (2018); Ye and Mukamel (2020)

Δk1(ω0,ω1)L1\displaystyle\Delta k_{1}(\omega_{0},\omega_{1})L_{1} =(ω0ω¯0)Tp0+(ω1ω¯1)Tp1,\displaystyle=(\omega_{0}-\bar{\omega}_{0})T_{\mathrm{p}0}+(\omega_{1}-\bar{\omega}_{1})T_{\mathrm{p}1}, (2.3)
Δk2(ω2,ω3)L2\displaystyle\Delta k_{2}(\omega_{2},\omega_{3})L_{2} =(ω2ω¯2)T02+(ω3ω¯3)T03,\displaystyle=(\omega_{2}-\bar{\omega}_{2})T_{02}+(\omega_{3}-\bar{\omega}_{3})T_{03}, (2.4)

where Tpσ=L1/vpL1/vσT_{\mathrm{p}\sigma}=L_{1}/v_{\mathrm{p}}-L_{1}/v_{\sigma} and T0σ=L2/v0L2/vσT_{0\sigma}=L_{2}/v_{0}-L_{2}/v_{\sigma}. Here, vp=kp/ω|ω=ωpv_{\mathrm{p}}=\partial k_{\mathrm{p}}/\partial\omega|_{\omega=\omega_{\mathrm{p}}} and vσ=kσ/ω|ω=ω¯σv_{\sigma}=\partial k_{\sigma}/\partial\omega|_{\omega=\bar{\omega}_{\sigma}} represent the group velocities of the input laser and the generated beam at the frequency ω¯σ\bar{\omega}_{\sigma}, respectively. Without loss of generality, we assume that Tp0Tp1T_{\mathrm{p}0}\geq T_{\mathrm{p}1} and T02T03T_{02}\geq T_{03}. We merge all other constants into a factor, η\eta, in Eq. (2.2), which corresponds to the conversion efficiency of the cascaded PDC process.

In this study, we focus on monochromatic pumping with frequency ωp\omega_{\mathrm{p}} for the cascaded PDC process. In this situation, the energy conservation in the two processes is satisfied as ωp=ω1+ω2+ω3\omega_{\mathrm{p}}=\omega_{1}+\omega_{2}+\omega_{3}. The three-photon amplitude in Eq. (2.2) can be rewritten as Shalm et al. (2013)

f(ω1,ω2,ω3)\displaystyle f(\omega_{1},\omega_{2},\omega_{3}) =ηδ(ω1+ω2+ω3ωp)r(ω1,ω3),\displaystyle=\eta\delta(\omega_{1}+\omega_{2}+\omega_{3}-\omega_{\mathrm{p}})r(\omega_{1},\omega_{3}), (2.5)

where r(ω1,ω3)=ϕ(ω1,ωpω1ω3,ω3)r(\omega_{1},\omega_{3})=\phi(\omega_{1},\omega_{\mathrm{p}}-\omega_{1}-\omega_{3},\omega_{3}) is given by

r(ω1,ω3)\displaystyle r(\omega_{1},\omega_{3}) =sinc(ω1ω¯1)Te(01)2\displaystyle=\mathrm{sinc}\frac{(\omega_{1}-\bar{\omega}_{1})T_{\mathrm{e}}^{(01)}}{2}
×sinc(ω1ω¯1)T02+(ω3ω¯3)Te(23)2.\displaystyle\quad\times\mathrm{sinc}\frac{(\omega_{1}-\bar{\omega}_{1})T_{02}+(\omega_{3}-\bar{\omega}_{3})T_{\mathrm{e}}^{(23)}}{2}. (2.6)

The difference, Te(01)=Tp0Tp1T_{\mathrm{e}}^{(01)}=T_{\mathrm{p}0}-T_{\mathrm{p}1}, is the entanglement time between photons 0 and 1, Saleh et al. (1998) which represents the maximum relative delay between photons 0 and 1. Similarly, in the secondary PDC, the entanglement time between photons 2 and 3 is defined by Te(23)=T02T03T_{\mathrm{e}}^{(23)}=T_{02}-T_{03}.

II.2 Frequency-dispersed two-photon coincidence counting measurement

Refer to caption
Figure 1: Schematic of frequency-dispersed two-photon coincidence counting measurement using entangled three photons generated via cascaded PDC pumped with a monochromatic laser of frequency ωp\omega_{\mathrm{p}}. Photons 1 and 2 are directed onto a sample with the external time of the photon 1 beam delay, Δt\Delta t. Photon 3 does not interact with the sample and is detected in coincidence with photon 1, the latter of which is transmitted through the sample by the coincidence counter (CC).

We considered the frequency-dispersed two-photon coincidence counting measurement using the entangled three photons. The delay intervals between two of the three photons are innately determined when generated in the cascaded PDC. For example, the upper bound of the interval between photons 1 and 2 is given by (Te(01)+|T02|)/2(T_{\mathrm{e}}^{(01)}+\lvert T_{02}\rvert)/2. In a similar fashion to the two-photon interference experiments, Hong, Ou, and Mandel (1987); Franson (1989) the delay intervals among the three photons can be controlled by adjusting the path differences between the beams. Agne et al. (2017); Menssen et al. (2017) Therefore, the interval between photons 1 and 2 is experimentally controllable when the external time delay is sufficiently long compared to Te(01)T_{\mathrm{e}}^{(01)} and T02T_{02}. This external time delay is herein denoted as Δt\Delta t. As presented in Fig. 1, photon 2 is employed as the pump field, whereas photon 1 is used for the probe field with the time delay Δt0\Delta t\geq 0. Photon 3 does not interact with the sample; it serves as a reference for the coincidence measurement. We assume that the efficiency of the photon detectors is perfect. In this situation, the detection of photon 3 makes it possible to verify the generation of entangled three photons. Consequently, the coincidence measurements of photons 1 and 3 enable us to distinguish the genuine spectroscopic signal induced by two of the entangled three photons from undesired accidental photon counts in the photon 1 detector. This is a potential benefit of utilizing two-photon coincidence detection to conduct measurements.

We consider a system comprising molecules and light fields. The positive-frequency component of the electric field operator, which interacts with the molecules, is written as Hong, Ou, and Mandel (1987); Franson (1989); Ishizaki (2020a)

E^(t)=E^1(t)+E^2(t+Δt),\displaystyle\hat{E}(t)=\hat{E}_{1}(t)+\hat{E}_{2}(t+\Delta t), (2.7)

where E^σ(t)=(2π)1𝑑ωa^σ(ω)eiωt\hat{E}_{\sigma}(t)=(2\pi)^{-1}\int d\omega\,\hat{a}_{\sigma}(\omega)e^{-i\omega t}. Here, the slowly varying envelope approximation has been adapted with the bandwidth of the fields assumed to be negligible in comparison to the central frequency.Loudon (2000) Under the rotating-wave approximation, the molecule–field interaction can be written as H^mol–field(t)=μ^E^(t)μ^E^(t)\hat{H}_{\text{mol--field}}(t)=-\hat{\mu}^{\dagger}\hat{E}(t)-\hat{\mu}\hat{E}^{\dagger}(t), where the dipole operator μ^\hat{\mu} is defined by μ^=αμα0|0eα|+αγ¯μγ¯α|eαfγ¯|\hat{\mu}=\sum_{\alpha}\mu_{\alpha 0}\lvert 0\rangle\langle e_{\alpha}\rvert+\sum_{\alpha\bar{\gamma}}\mu_{\bar{\gamma}\alpha}\lvert e_{\alpha}\rangle\langle f_{\bar{\gamma}}\rvert. In the above, |0\lvert 0\rangle represents the electronic ground state in the molecules. The summations are performed on indices that run over electronic excited states in the single-excitation manifold {|eα}\{\lvert e_{\alpha}\rangle\} and double-excitation manifold {|fγ¯}\{\lvert f_{\bar{\gamma}}\rangle\}. The probe fields transmitted through the sample, E^1\hat{E}_{1}, and the reference field, E^3\hat{E}_{3}, are both frequency-dispersed. Then, changes in the two-photon counting rate, tr[a^3(ωr)a^1(ω)a^1(ω)a^3(ωr)ρ^()]\mathrm{tr}[\hat{a}_{3}^{\dagger}(\omega_{\rm r})\hat{a}_{1}^{\dagger}(\omega)\hat{a}_{1}(\omega)\hat{a}_{3}(\omega_{\rm r})\hat{\rho}(\infty)], are measured. Thus, the frequency-dispersed two-photon counting signal is written as Dorfman, Schlawin, and Mukamel (2016); Schlawin (2017); Ye and Mukamel (2020)

S(ω,ωr;Δt)\displaystyle S(\omega,\omega_{\rm r};\Delta t) =Im𝑑teiωt\displaystyle={\rm Im}\int^{\infty}_{-\infty}dt\,e^{i\omega t}
×tr[a^3(ωr)a^3(ωr)E^1(ω)μ^ρ^(t)].\displaystyle\quad\times\mathrm{tr}[\hat{a}_{3}^{\dagger}(\omega_{\rm r})\hat{a}_{3}(\omega_{\rm r})\hat{E}_{1}^{\dagger}(\omega)\hat{\mu}\hat{\rho}(t)]. (2.8)

The initial conditions are: ρ^()=|00||ψtriψtri|\hat{\rho}(-\infty)=\lvert 0\rangle\langle 0\rvert\otimes\lvert\psi_{\mathrm{tri}}\rangle\langle\psi_{\mathrm{tri}}\rvert. The lowest-order contribution of Eq. (2.8) only comprises the absorption of photon 1. However, the absorption signal is independent of the frequency of the input laser, ωp\omega_{\mathrm{p}}, and the delay time, Δt\Delta t, as shown in Appendix C. Moreover, when the entanglement time Te(23)T_{\mathrm{e}}^{(23)} is much shorter than the characteristic timescales of the dynamics under investigation, the absorption signal is independent of the frequency of the input laser, ωp\omega_{\mathrm{p}}, reference frequency, ωr\omega_{\text{r}}, and the delay time, Δt\Delta t. Thus, in the two-photon coincidence measurement, which improves the signal-to-noise ratio, this process can be separated from the pump-probe-type two-photon process. Consequently, the perturbative expansion of ρ^(t)\hat{\rho}(t) with respect to the molecule–field interaction, H^mol–field\hat{H}_{\text{mol--field}}, yields the third-order term as the leading order contribution. The resultant signal is expressed as the sum of eight contributions, which are classified into stimulated emission (SE), ground-state bleaching (GSB), excited-state absorption (ESA), and double-quantum coherence (DQC).

To obtain a concrete but simple expression of the signal, here the memory effect straddling different time intervals in the response function is ignored.Ishizaki and Fleming (2012) Hereafter, the reduced Planck constant, \hbar, is omitted. Consequently, Eq. (2.8) can be expressed as (see Appendix B)

S(ω,ωr;Δt)\displaystyle S(\omega,\omega_{\rm r};\Delta t) =SSE(ω,ωr;Δt)+SGSB(ω,ωr;Δt)\displaystyle=S_{\mathrm{SE}}(\omega,\omega_{\rm r};\Delta t)+S_{\mathrm{GSB}}(\omega,\omega_{\rm r};\Delta t)
+SESA(ω,ωr;Δt)\displaystyle\quad+S_{\mathrm{ESA}}(\omega,\omega_{\rm r};\Delta t)
+SDQC(ω,ωr;Δt)\displaystyle\quad+S_{\mathrm{DQC}}(\omega,\omega_{\rm r};\Delta t) (2.9)

in terms of the SE, GSB, ESA, and DQC contributions,

SSE(ω,ωr;Δt)\displaystyle S_{\mathrm{SE}}(\omega,\omega_{\rm r};\Delta t) =Reαβγδμγ0μδ0μβ0μα0\displaystyle=-{\rm Re}\sum_{\alpha\beta\gamma\delta}\mu_{\gamma 0}\mu_{\delta 0}\mu_{\beta 0}\mu_{\alpha 0}
×y=r,nrIγ0;γδαβ;α0(y)(ω,ωr;Δt)\displaystyle\quad\times\sum_{y={\rm r},{\rm nr}}I_{\gamma 0;\gamma\delta\leftarrow\alpha\beta;\alpha 0}^{(y)}(\omega,\omega_{\rm r};\Delta t)
+y=r,nrΔSSE(y)(ω,ωr),\displaystyle\quad+\sum_{y=\rm{r},\rm{nr}}\Delta S_{\mathrm{SE}}^{(y)}(\omega,\omega_{\rm r}), (2.10)
SGSB(ω,ωr;Δt)\displaystyle S_{\mathrm{GSB}}(\omega,\omega_{\rm r};\Delta t) =Reαβμβ02μα02\displaystyle=-{\rm Re}\sum_{\alpha\beta}\mu_{\beta 0}^{2}\mu_{\alpha 0}^{2}
×y=r,nrIβ0;0000;α0(y)(ω,ωr;Δt)\displaystyle\quad\times\sum_{y=\rm{r},\rm{nr}}I_{\beta 0;00\leftarrow 00;\alpha 0}^{(y)}(\omega,\omega_{\rm r};\Delta t)
+y=r,nrΔSGSB(y)(ω,ωr),\displaystyle\quad+\sum_{y={\rm r},{\rm nr}}\Delta S_{\mathrm{GSB}}^{(y)}(\omega,\omega_{\rm r}), (2.11)
SESA(ω,ωr;Δt)\displaystyle S_{\mathrm{ESA}}(\omega,\omega_{\rm r};\Delta t) =+Reαβγδϵ¯μϵ¯δμϵ¯γμβ0μα0\displaystyle=+{\rm Re}\sum_{\alpha\beta\gamma\delta\bar{\epsilon}}\mu_{\bar{\epsilon}\delta}\mu_{\bar{\epsilon}\gamma}\mu_{\beta 0}\mu_{\alpha 0}
×y=r,nrIϵ¯δ;γδαβ;α0(y)(ω,ωr;Δt),\displaystyle\quad\times\sum_{y=\rm{r},\rm{nr}}I_{\bar{\epsilon}\delta;\gamma\delta\leftarrow\alpha\beta;\alpha 0}^{(y)}(\omega,\omega_{\rm r};\Delta t), (2.12)
SDQC(ω,ωr;Δt)\displaystyle S_{\mathrm{DQC}}(\omega,\omega_{\rm r};\Delta t) =Reαβγ¯μγ¯βμβ0μγ¯αμα0\displaystyle=\mathrm{Re}\sum_{\alpha\beta\bar{\gamma}}\mu_{\bar{\gamma}\beta}\mu_{\beta 0}\mu_{\bar{\gamma}\alpha}\mu_{\alpha 0}
×{Gγ¯β[ω]Gγ¯0[ωpωr]Fα0(ω,ωr;Δt)\displaystyle\quad\times\left\{G_{\bar{\gamma}\beta}[\omega]G_{\bar{\gamma}0}[\omega_{\mathrm{p}}-\omega_{\rm r}]F^{\prime}_{\alpha 0}(\omega,\omega_{\rm r};\Delta t)\right.
Gβ0[ω]Gγ¯0[ωpωr]Fα0(ω,ωr;Δt)},\displaystyle\left.\quad-G_{\beta 0}[\omega]G_{\bar{\gamma}0}[\omega_{\mathrm{p}}-\omega_{\rm r}]F^{\prime}_{\alpha 0}(\omega,\omega_{\rm r};\Delta t)\right\}, (2.13)

where yy indicates “rephasing” (r) or “non-rephasing” (nr), and Gαβ(t)G_{\alpha\beta}(t) describes the time evolution of the |eαeβ|\lvert e_{\alpha}\rangle\langle e_{\beta}\rvert coherence. The Fourier-Laplace transform of Gαβ(t)G_{\alpha\beta}(t) is introduced as Gαβ[ω]=0𝑑teiωtGαβ(t)G_{\alpha\beta}[\omega]=\int^{\infty}_{0}dt\,e^{i\omega t}G_{\alpha\beta}(t). In Eqs. (2.10) – (2.12), the function Iϵζ;γδαβ;α0(y)(ω,ωr;Δt)I_{\epsilon\zeta;\gamma\delta\leftarrow\alpha\beta;\alpha 0}^{(y)}(\omega,\omega_{\rm r};\Delta t) is defined by

Iϵζ;γδαβ;α0(r)(ω,ωr;Δt)\displaystyle I_{\epsilon\zeta;\gamma\delta\leftarrow\alpha\beta;\alpha 0}^{\mathrm{(r)}}(\omega,\omega_{\rm r};\Delta t) =Gϵζ[ω]Fγδαβ(ω,ωr;Δt,0)\displaystyle=G_{\epsilon\zeta}[\omega]F_{\gamma\delta\leftarrow\alpha\beta}(\omega,\omega_{\rm r};\Delta t,0)
×Gα0[ωpωrω],\displaystyle\quad\times G_{\alpha 0}^{\ast}[\omega_{\mathrm{p}}-\omega_{\rm r}-\omega], (2.14)
Iϵζ;γδαβ;α0(nr)(ω,ωr;Δt)=Gϵζ[ω]0𝑑s1ei(ωpωrω)s1×Fγδαβ(ω,ωr;Δt,s1)Gα0(s1)I_{\epsilon\zeta;\gamma\delta\leftarrow\alpha\beta;\alpha 0}^{\mathrm{(nr)}}(\omega,\omega_{\rm r};\Delta t)=G_{\epsilon\zeta}[\omega]\int_{0}^{\infty}ds_{1}e^{i(\omega_{\mathrm{p}}-\omega_{\rm r}-\omega)s_{1}}\\ \times F_{\gamma\delta\leftarrow\alpha\beta}(\omega,\omega_{\rm r};\Delta t,s_{1})G_{\alpha 0}(s_{1}) (2.15)

in terms of

Fγδαβ(ω,ωr;Δt,s1)\displaystyle F_{\gamma\delta\leftarrow\alpha\beta}(\omega,\omega_{\rm r};\Delta t,s_{1})
=r(ω,ωr)0𝑑s2Gγδαβ(s2)\displaystyle\quad=r(\omega,\omega_{\rm r})\int_{0}^{\infty}ds_{2}G_{\gamma\delta\leftarrow\alpha\beta}(s_{2})
×ei(ωω¯1)Δt[D1(ωr,s2+s1Δt)ei(ωω¯1)(s2+s1)\displaystyle\quad\quad\times e^{-i(\omega-\bar{\omega}_{1})\Delta t}[D_{1}(\omega_{\rm r},s_{2}+s_{1}-\Delta t)e^{i(\omega-\bar{\omega}_{1})(s_{2}+s_{1})}
+D1(ωr,s2+s1+Δt)ei(ω+ωrω¯2ω¯3)(s2+s1)],\displaystyle\quad\quad+D_{1}(\omega_{\rm r},s_{2}+s_{1}+\Delta t)e^{i(\omega+\omega_{\rm r}-\bar{\omega}_{2}-\bar{\omega}_{3})(s_{2}+s_{1})}], (2.16)

where Gγδαβ(t)G_{\gamma\delta\leftarrow\alpha\beta}(t) is the matrix element of the time-evolution operator defined by ργδ(t)=αβGγδαβ(ts)ραβ(s)\rho_{\gamma\delta}(t)=\sum_{\alpha\beta}G_{\gamma\delta\leftarrow\alpha\beta}(t-s)\rho_{\alpha\beta}(s). In Eq. (2.13), Fαβ(ω,ωr;Δt)F^{\prime}_{\alpha\beta}(\omega,\omega_{\rm r};\Delta t) is defined by

Fαβ\displaystyle F^{\prime}_{\alpha\beta} (ω,ωr;Δt)\displaystyle(\omega,\omega_{\rm r};\Delta t)
=r(ω,ωr)0𝑑s1Gαβ(s1)\displaystyle\quad=r(\omega,\omega_{\rm r})\int_{0}^{\infty}ds_{1}G_{\alpha\beta}(s_{1})
×ei(ωω¯1)Δt[D1(ωr,s1+Δt)eiω¯1s1\displaystyle\quad\quad\times e^{-i(\omega-\bar{\omega}_{1})\Delta t}[D_{1}(\omega_{\rm r},s_{1}+\Delta t)e^{i\bar{\omega}_{1}s_{1}}
+D1(ωr,s1Δt)ei(ω¯2+ω¯3ωr)s1],\displaystyle\quad\quad+D_{1}(\omega_{\rm r},s_{1}-\Delta t)e^{i(\bar{\omega}_{2}+\bar{\omega}_{3}-\omega_{\rm r})s_{1}}], (2.17)

The function Dn(ω,t)D_{n}(\omega,t) (n=1,2,)(n=1,2,\dots) is introduced as

Dn(ω,t)=dξ2πeiξtr(ξ+ω¯1,ω)n.\displaystyle D_{n}(\omega,t)=\int^{\infty}_{-\infty}\frac{d\xi}{2\pi}e^{-i\xi t}r(\xi+\bar{\omega}_{1},\omega)^{n}. (2.18)

Note that D1(ωr,t)D_{1}(\omega_{\rm r},t) is non-zero when |t|(Te(01)+|T02|)/2\lvert t\rvert\leq(T_{\mathrm{e}}^{(01)}+\lvert T_{02}\rvert)/2, as illustrated in Fig. 2. The Δt\Delta t-independent term in Eqs. (2.10) and (2.11), ΔSx(y)(ω,ωr)\Delta S_{x}^{(y)}(\omega,\omega_{\rm r}), originates from the field commutator. Details of the Δt\Delta t-independent terms are given in Appendix D.

Refer to caption
Figure 2: Plot of D1(ω,t)D_{1}(\omega,t) from Eq. (2.18) as a function of tt. D1(ω,t)D_{1}(\omega,t) is expressed as: D1(ω,t)=exp[i(ωω¯3)(Te(23)/|T02|)t]/max(Te(01),|T02|)D_{1}(\omega,t)=\exp[{i(\omega-\bar{\omega}_{3})(T_{\mathrm{e}}^{(23)}/\lvert T_{02}\rvert)t}]/{\rm max}(T_{\mathrm{e}}^{(01)},\lvert T_{02}\rvert) in region A. Furthermore, D1(ω,t)=exp[i(ωω¯3)(Te(23)/|T02|)t](Te(01)+|T02|2|t|)/(2Te(01)|T02|)D_{1}(\omega,t)=\exp[i(\omega-\bar{\omega}_{3})(T_{\mathrm{e}}^{(23)}/\lvert T_{02}\rvert)t](T_{\mathrm{e}}^{(01)}+\lvert T_{02}\rvert-2\lvert t\rvert)/(2T_{\mathrm{e}}^{(01)}\lvert T_{02}\rvert) in region B, and D1(ω,t)=0D_{1}(\omega,t)=0 in region C.

To understand the influence of entanglement times on the spectrum in Eq. (2.9), here we investigate the limiting cases. When Te(01)T_{\mathrm{e}}^{(01)}, Te(23)T_{\mathrm{e}}^{(23)}, and T02T_{02} are much shorter than the characteristic timescales of the dynamics under investigation,Ishizaki (2020a); Fujihashi, Shimizu, and Ishizaki (2020) we approximately obtain r(ω1,ω3)=1r(\omega_{1},\omega_{3})=1 and Dn(ω,t)=δ(t)D_{n}(\omega,t)=\delta(t). Consequently, Eqs. (2.16) and (2.17) can be simplified as

Fγδαβ(ω,ωr;Δt,s)\displaystyle F_{\gamma\delta\leftarrow\alpha\beta}(\omega,\omega_{\rm r};\Delta t,s) =Gγδαβ(Δts),\displaystyle=G_{\gamma\delta\leftarrow\alpha\beta}(\Delta t-s), (2.19)
Fαβ(ω,ωr;Δt)\displaystyle F^{\prime}_{\alpha\beta}(\omega,\omega_{\rm r};\Delta t) =Gαβ(Δt)ei(ωpωωr)Δt,\displaystyle=G_{\alpha\beta}(\Delta t)e^{i(\omega_{p}-\omega-\omega_{\rm r})\Delta t}, (2.20)

and thus, Iϵζ;γδαβ;α0(y)(ω,ωr;Δt)I_{\epsilon\zeta;\gamma\delta\leftarrow\alpha\beta;\alpha 0}^{(y)}(\omega,\omega_{\rm r};\Delta t) is written as

Iϵζ;γδαβ;α0(y)(ω,ωr;Δt)=Gϵζ[ω]Gγδαβ(Δt)Gα0(y)[ωpωrω],I_{\epsilon\zeta;\gamma\delta\leftarrow\alpha\beta;\alpha 0}^{(y)}(\omega,\omega_{\rm r};\Delta t)\\ =G_{\epsilon\zeta}[\omega]G_{\gamma\delta\leftarrow\alpha\beta}(\Delta t)G_{\alpha 0}^{(y)}[\omega_{\mathrm{p}}-\omega_{\rm r}-\omega], (2.21)

where Gα0(r)[ω]=Gα0[ω]G_{\alpha 0}^{\mathrm{(r)}}[\omega]=G_{\alpha 0}^{\ast}[\omega] and Gα0(nr)[ω]=Gα0[ω]G_{\alpha 0}^{\mathrm{(nr)}}[\omega]=G_{\alpha 0}[\omega] have been introduced. In deriving Eq. (2.21), we assume that Gγδαβ(Δts1)Gα0(s1)Gγδαβ(Δt)Gα0(s1)G_{\gamma\delta\leftarrow\alpha\beta}(\Delta t-s_{1})G_{\alpha 0}(s_{1})\simeq G_{\gamma\delta\leftarrow\alpha\beta}(\Delta t)G_{\alpha 0}(s_{1}) in the non-rephasing case.Cervetto et al. (2004) This approximation is justified when the response function varies slowly as a function of the waiting time, Δt\Delta t. As was demonstrated in Ref. Ishizaki, 2020a, the signal S(ω,ωr;Δt)S(\omega,\omega_{\rm r};\Delta t) corresponds to the spectral information along the anti-diagonal line, ω1+ω3=ωpωr\omega_{1}+\omega_{3}=\omega_{\mathrm{p}}-\omega_{\rm r}, on the absorptive two-dimensional (2D) spectrum 𝒮2D(ω3,t2,ω1)\mathcal{S}_{\rm 2D}(\omega_{3},t_{2},\omega_{1}),

S(ω,ωr;Δt)𝒮2D(ω,Δt,ωpωrω),\displaystyle S(\omega,\omega_{\rm r};\Delta t)\simeq-\mathcal{S}_{\rm 2D}(\omega,\Delta t,\omega_{\mathrm{p}}-\omega_{\rm r}-\omega), (2.22)

except for the Δt\Delta t-independent terms in Eqs. (D.5) and (D.6), respectively. Equation (2.22) indicates that the two-photon counting signal S(ω,ωr;Δt)S(\omega,\omega_{\rm r};\Delta t), is homologous to the 2D spectrum, 𝒮2D(ω3,Δt,ω1)\mathcal{S}_{\rm 2D}(\omega_{3},\Delta t,\omega_{1}). This is true even when the frequency of the input laser, ωp\omega_{\mathrm{p}}, is fixed. This correspondence is similar to, but different from, the results reported by Ref. Ishizaki, 2020a, wherein the transmission signal was found to provide the same information as the 2D spectrum only when sweeping the frequency of the input laser, ωp\omega_{\mathrm{p}}. In addition, we consider the opposite limit, Te(01)T_{\mathrm{e}}^{(01)}\to\infty and Te(23)T_{\mathrm{e}}^{(23)}\to\infty. We obtain r(ω1,ω3)=δ(ω1ω¯1)δ(ω3ω¯3)r(\omega_{1},\omega_{3})=\delta(\omega_{1}-\bar{\omega}_{1})\delta(\omega_{3}-\bar{\omega}_{3}). Equations (2.16) and (2.17) can thus be written as

Fγδαβ(ω,ωr,Δt,s)δ(ωω¯1)δ(ωrω¯3)Gγδαβ[0],F_{\gamma\delta\leftarrow\alpha\beta}(\omega,\omega_{\rm r},\Delta t,s)\\ \propto\delta(\omega-\bar{\omega}_{1})\delta(\omega_{\rm r}-\bar{\omega}_{3})G_{\gamma\delta\leftarrow\alpha\beta}[0], (2.23)
Fαβ(ω,ωr;Δt)δ(ωω¯1)δ(ωrω¯3)(Gαβ[ω¯1]+Gαβ[ω¯2]),F^{\prime}_{\alpha\beta}(\omega,\omega_{\rm r};\Delta t)\\ \propto\delta(\omega-\bar{\omega}_{1})\delta(\omega_{\rm r}-\bar{\omega}_{3})\left(G_{\alpha\beta}[\bar{\omega}_{1}]+G_{\alpha\beta}[\bar{\omega}_{2}]\right), (2.24)

where Gγδαβ[0]=0𝑑tGγδαβ(t)G_{\gamma\delta\leftarrow\alpha\beta}[0]=\int_{0}^{\infty}dt\,G_{\gamma\delta\leftarrow\alpha\beta}(t) is defined. In this limit, the temporal resolution is eroded, and the spectrum in Eq. (2.9) does not provide any information on the excited-state dynamics.

III Numerical results and discussion

To numerically demonstrate Eq. (2.9) using Eqs. (2.10) – (2.18), we consider the electronic excitations in a coupled dimer, as depicted in Fig. 3. The electronic excitation Hamiltonian is expressed as H^ex=mΩmB^mB^m+mnJmnB^mB^n\hat{H}_{\rm ex}=\sum_{m}\hbar\Omega_{m}\hat{B}_{m}^{\dagger}\hat{B}_{m}+\sum_{m\neq n}\hbar J_{mn}\hat{B}_{m}^{\dagger}\hat{B}_{n}, where Ωm\hbar\Omega_{m} is the Franck-Condon transition energy of the mm-th molecule and Jmn\hbar J_{mn} is the electronic coupling between the mm-th and nn-th molecules. Ishizaki and Fleming (2012) In the Hamiltonian, the excitation creation operator B^m\hat{B}_{m}^{\dagger} is introduced for the excitation vacuum |0\lvert 0\rangle, such that |m=B^m|0\lvert m\rangle=\hat{B}_{m}^{\dagger}\lvert 0\rangle and |mn=B^mB^n|0\lvert mn\rangle=\hat{B}_{m}^{\dagger}\hat{B}_{n}^{\dagger}\lvert 0\rangle. In the eigenstate representation, the excitation Hamiltonian can be written as H^ex=ϵ0|00|+αϵα|eαeα|+γ¯ϵγ¯|fγ¯fγ¯|\hat{H}_{\rm ex}=\epsilon_{0}\lvert 0\rangle\langle 0\rvert+\sum_{\alpha}\epsilon_{\alpha}\lvert e_{\alpha}\rangle\langle e_{\alpha}\rvert+\sum_{\bar{\gamma}}\epsilon_{\bar{\gamma}}\lvert f_{\bar{\gamma}}\rangle\langle f_{\bar{\gamma}}\rvert, where |eα=mVmα|m\lvert e_{\alpha}\rangle=\sum_{m}V_{m\alpha}\lvert m\rangle and |fγ¯=mnWmn,γ¯|mn\lvert f_{\bar{\gamma}}\rangle=\sum_{mn}W_{mn,\bar{\gamma}}\lvert mn\rangle. Accordingly, the exciton transition dipole moments are expressed as μα0=mVαm1μm0\mu_{\alpha 0}=\sum_{m}V_{\alpha m}^{-1}\mu_{m0} and μγ¯α=mnWγ¯(mn)1Vαm1μn0\mu_{\bar{\gamma}\alpha}=\sum_{mn}W_{\bar{\gamma}(mn)}^{-1}V_{\alpha m}^{-1}\mu_{n0}. We assume that the environmentally-induced fluctuations in the electronic energies are described as a Gaussian process. By applying the second-order cumulant expansion for the fluctuations, the third-order response function is expressed in terms of the line-broadening function, gm(t)=0t𝑑s10s1𝑑s2Cm(s2)g_{m}(t)=\int_{0}^{t}ds_{1}\int_{0}^{s_{1}}ds_{2}C_{m}(s_{2}), where Cm(t)C_{m}(t) is expressed as Cm(t)=0𝑑ωJm(ω)[coth(ω/2kBT)cosωtisinωt]C_{m}(t)=\int^{\infty}_{0}d\omega J_{m}(\omega)[\coth(\hbar\omega/2k_{\rm B}T)\cos\omega t-i\sin\omega t] in terms of the spectral density, Jm(ω)J_{m}(\omega). In this study, the spectral density is modeled as Jm(ω)=8Eenvγenv3ω/(4ω2+γenv2)2J_{m}(\omega)=8E_{\rm env}\gamma_{\rm env}^{3}\omega/(4\omega^{2}+\gamma_{\rm env}^{2})^{2}, where EenvE_{\rm env} and γenv1\gamma_{\rm env}^{-1} represent the energy and timescale of the environmental reorganization, respectively. Ishizaki (2020b) To describe the time-evolution of the electronic excitations in the waiting time, the electronic coherence in the single excitation manifold is ignored, and hence, Gββαα(t)G_{\beta\beta\leftarrow\alpha\alpha}(t) in Eq. (2.16) is computed with the master equation,

ddtGββαα(t)\displaystyle\frac{d}{dt}G_{\beta\beta\leftarrow\alpha\alpha}(t) =ξ(β)kβξGξξαα(t)\displaystyle=\sum_{\xi(\neq\beta)}k_{\beta\leftarrow\xi}G_{\xi\xi\leftarrow\alpha\alpha}(t)
ξ(β)kξβGββαα(t),\displaystyle\quad-\sum_{\xi(\neq\beta)}k_{\xi\leftarrow\beta}G_{\beta\beta\leftarrow\alpha\alpha}(t), (3.1)

where the rate constant kβαk_{\beta\leftarrow\alpha} is obtained with the modified Redfield theory.Zhang et al. (1998); Yang and Fleming (2002) With the initial condition of Gββαα(0)=δβαG_{\beta\beta\leftarrow\alpha\alpha}(0)=\delta_{\beta\alpha}, the equation leads to

Gββαα(t)=ξgβα(ξ)eλξt,\displaystyle G_{\beta\beta\leftarrow\alpha\alpha}(t)=\sum_{\xi}g_{\beta\alpha}^{(\xi)}e^{-\lambda_{\xi}t}, (3.2)

with gβα(ξ)=Uβξ(U1)ξαg_{\beta\alpha}^{(\xi)}=U_{\beta\xi}(U^{-1})_{\xi\alpha}, where λξ\lambda_{\xi} is the ξ\xi-th eigenvalue of the matrix whose element is Kξξ=δξξγ(ξ)kγξ+(1δξξ)kξξK_{\xi\xi^{\prime}}=\delta_{\xi\xi^{\prime}}\sum_{\gamma(\neq\xi)}k_{\gamma\leftarrow\xi}+(1-\delta_{\xi\xi^{\prime}})k_{\xi\leftarrow\xi^{\prime}}, and UαξU_{\alpha\xi} is an element of the modal matrix as such λξ=(U1KU)ξξ\lambda_{\xi}=(U^{-1}KU)_{\xi\xi}.

For numerical calculations, we set the gap between the Franck-Condon transition energies of pigments 1 and 2 to Ω2Ω1=200cm1\Omega_{2}-\Omega_{1}=200{}\,\mathrm{cm}^{-1}. Furthermore, we set their electronic coupling to J12=50cm1J_{12}=50{}\,\mathrm{cm}^{-1}. For simplicity, we set the transition dipole strengths as μ10=μ20=1\mu_{10}=\mu_{20}=1. We set the reorganization energy, relaxation time, and temperature as Eenv=35cm1E_{\rm env}=35{}\,\mathrm{cm}^{-1}, γenv1=50fs\gamma_{\rm env}^{-1}=50{}\,\mathrm{fs}, and T=77KT=77\,{\rm K}, respectively. Under this condition, the energy gap between the eigenstates, ω20ω10=224cm1\omega_{20}-\omega_{10}=224{}\,\mathrm{cm}^{-1}, is much higher than the thermal energy. Therefore, the influence of the uphill excitation transfer, e1e2e_{1}\to e_{2}, on the signal can be considered to be small.

Refer to caption
Figure 3: Illustration of quantum superposition between the electronic transitions of molecules 1 and 2 in a coupled dimer.

III.1 Limit of short entanglement time

Refer to caption
Figure 4: (a) Difference spectra ΔS(ω,ωr;Δt)=S(ω,ωr;Δt)S(ω,ωr;0)\Delta S(\omega,\omega_{\rm r};\Delta t)=S(\omega,\omega_{\rm r};\Delta t)-S(\omega,\omega_{\rm r};0) for Te(01)=Te(23)=T02=0T_{\mathrm{e}}^{(01)}=T_{\mathrm{e}}^{(23)}=T_{02}=0. The waiting times are Δt=500fs\Delta t=500{}\,\mathrm{fs} and 2000fs2000{}\,\mathrm{fs}. The frequency of the input laser is fixed as ωp=3Ω2\omega_{\mathrm{p}}=3\Omega_{2}. The parameters in the dimer systems are Ω2Ω1=200cm1\Omega_{2}-\Omega_{1}=200{}\,\mathrm{cm}^{-1}, J12=50cm1J_{12}=50{}\,\mathrm{cm}^{-1}, Eenv=35cm1E_{\rm env}=35{}\,\mathrm{cm}^{-1}, γenv1=50fs\gamma_{\rm env}^{-1}=50{}\,\mathrm{fs}, and T=77KT=77\,{\rm K}. The normalization of the contour plot is such that the maximum value of the spectrum is unity, and equally-spaced contour levels (±0.1\pm 0.1, ±0.2\pm 0.2, …) are drawn. Panel (b) shows the amplitudes of peak A (ωrΩ1=258cm1\omega_{\rm r}-\Omega_{1}=258{}\,\mathrm{cm}^{-1}, ωΩ1=171cm1\omega-\Omega_{1}=171{}\,\mathrm{cm}^{-1}), peak B (ωrΩ1=479cm1\omega_{\rm r}-\Omega_{1}=479{}\,\mathrm{cm}^{-1}, ωΩ1=50cm1\omega-\Omega_{1}=-50{}\,\mathrm{cm}^{-1}), peak C (ωrΩ1=479cm1\omega_{\rm r}-\Omega_{1}=479{}\,\mathrm{cm}^{-1}, ωΩ1=171cm1\omega-\Omega_{1}=171{}\,\mathrm{cm}^{-1}), and peak D (ωrΩ1=700cm1\omega_{\rm r}-\Omega_{1}=700{}\,\mathrm{cm}^{-1}, ωΩ1=50cm1\omega-\Omega_{1}=-50{}\,\mathrm{cm}^{-1}) as a function of the waiting time, Δt\Delta t.

To demonstrate how the spectrum provides time-resolved information on the state-to-state dynamics, we first investigate the limit of the short entanglement time, Te(01)=Te(23)=T02=0T_{\mathrm{e}}^{(01)}=T_{\mathrm{e}}^{(23)}=T_{02}=0, although it may be unrealistic for the cascaded PDC process. As shown in Eqs. (2.10) and (2.11), the spectrum contains Δt\Delta t-independent contributions. Therefore, we consider the difference spectrum,

ΔS(ω,ωr;Δt)=S(ω,ωr;Δt)S(ω,ωr;0).\displaystyle\Delta S(\omega,\omega_{\rm r};\Delta t)=S(\omega,\omega_{\rm r};\Delta t)-S(\omega,\omega_{\rm r};0). (3.3)

Figure 4(a) presents the difference spectra of the model dimer for two different waiting times, Δt\Delta t, when the frequency of the input laser is ωp=3Ω2\omega_{\mathrm{p}}=3\Omega_{2}. The waiting times are Δt=500fs\Delta t=500{}\,\mathrm{fs} and 2000fs2000{}\,\mathrm{fs}. Figure 4(a) shows strong signatures of the ESA signal at the location A, and strong signatures of the SE signal at the location labeled B. As was clarified in Eq. (2.21), the possible pairs of optical transitions probed at frequency ω=ωϵζ\omega=\omega_{\epsilon\zeta} are restricted by the resonance condition, ωα0+ωϵζ+ωrωp\omega_{\alpha 0}+\omega_{\epsilon\zeta}+\omega_{\rm r}\simeq\omega_{\mathrm{p}}, which is imposed by the non-classical correlations among the entangled three photons. Hence, the negative peak at A corresponds to the pair of optical transitions (0e20\to e_{2}, e1f3¯e_{1}\to f_{\bar{3}}), while the positive peak at B corresponds to the pair of optical transitions (0e20\to e_{2}, e10e_{1}\to 0). The increases in these signal amplitudes during the waiting period Δt\Delta t reflect the excitation relaxation e2e1e_{2}\to e_{1}, as shown in Fig. 4(b). Therefore, the two-photon counting signal temporally resolves the excitation relaxation e2e1e_{2}\to e_{1} through the changes in the amplitudes of peaks A or B during the waiting period, Δt\Delta t.

In Fig. 4(a), strong ESA and SE signals can also be observed at locations C and D, respectively. These ESA and SE signals correspond to the pairs of optical transitions (0e10\to e_{1}, e1f3¯e_{1}\to f_{\bar{3}}) and (0e10\to e_{1}, e10e_{1}\to 0), respectively. As shown in Fig. 4(b), the difference spectrum exhibited changes in the amplitudes of peaks C and  D occurring within 500fs500{}\,\mathrm{fs}; these peaks are much faster than the excitation relaxation, e2e1e_{2}\to e_{1}. Moreover, Fig. 4(b) exhibits the oscillatory transients of peaks A and B, which persisted up to Δt<500fs\Delta t<500{}\,\mathrm{fs}. However, the electronic coherence in the single-excitation manifold is not considered in this instance. To understand these transient behaviors, we consider the non-rephasing contribution of the ESA signal in Eq. (2.15). For demonstration purposes, we assume that the time evolution in the t1t_{1} period is denoted by Gα0(t1)=e(iωα0+Γα0)t1G_{\alpha 0}(t_{1})=e^{-(i\omega_{\alpha 0}+\Gamma_{\alpha 0})t_{1}}. With the use of Eqs. (2.19) and (3.2), the expression of Iϵ¯β;ββαα;α0(nr)(ω,ωr;Δt)I_{\bar{\epsilon}\beta;\beta\beta\leftarrow\alpha\alpha;\alpha 0}^{\mathrm{(nr)}}(\omega,\omega_{\rm r};\Delta t) in Eq. (2.15) can be expressed as

Iϵ¯β;ββαα;α0(nr)(ω,ωr;Δt)=iGϵ¯β[ω]ξ=1,2gβα(ξ)eiΔωα0ΔtΓα0ΔteλξΔtΔωα0+i(Γα0λξ),I_{\bar{\epsilon}\beta;\beta\beta\leftarrow\alpha\alpha;\alpha 0}^{\mathrm{(nr)}}(\omega,\omega_{\rm r};\Delta t)\\ =-iG_{\bar{\epsilon}\beta}[\omega]\sum_{\xi=1,2}g_{\beta\alpha}^{(\xi)}\frac{e^{i{\Delta\omega_{\alpha 0}}\Delta t-\Gamma_{\alpha 0}\Delta t}-e^{-\lambda_{\xi}\Delta t}}{{\Delta\omega_{\alpha 0}}+i(\Gamma_{\alpha 0}-\lambda_{\xi})}, (3.4)

where λ1=0\lambda_{1}=0, λ2=k12+k21\lambda_{2}=k_{1\leftarrow 2}+k_{2\leftarrow 1}, and Δωα0=ωpωrωωα0\Delta\omega_{\alpha 0}=\omega_{\mathrm{p}}-\omega_{\rm r}-\omega-\omega_{\alpha 0}. Equation (3.4) demonstrates that the amplitude of peak A oscillates at the frequency Δω20\Delta\omega_{20}. This is the detuning of the 0e20\to e_{2} transition from the frequency of photon 2. Similarly, the transient dynamics in peak C reflect the decay of the |e10|\lvert e_{1}\rangle\langle 0\rvert coherence. Therefore, the transient dynamics in peaks A and C are not directly related to the dynamics in the single-excitation manifold during the t2t_{2} period. The SE contributions to peaks B and D in the short-time region can also be understood in the same manner. If coherence |eαeβ|\lvert e_{\alpha}\rangle\langle e_{\beta}\rvert is considered, the time-evolution operator is modeled as Gαβαβ(t2)=e(iωαβ+Γαβ)t2G_{\alpha\beta\leftarrow\alpha\beta}(t_{2})=e^{-(i\omega_{\alpha\beta}+\Gamma_{\alpha\beta})t_{2}}. Thus, Eq. (2.15) yields

Iϵ¯β;αβαβ;α0(nr)(ω,ωr;Δt)=iGϵ¯β[ω]eiΔωβ0ΔtΓα0Δte(iωαβ+Γαβ)ΔtΔωβ0+i(Γα0Γαβ).I_{\bar{\epsilon}\beta;\alpha\beta\leftarrow\alpha\beta;\alpha 0}^{\mathrm{(nr)}}(\omega,\omega_{\rm r};\Delta t)\\ =-iG_{\bar{\epsilon}\beta}[\omega]\frac{e^{i{\Delta\omega_{\beta 0}}\Delta t-\Gamma_{\alpha 0}\Delta t}-e^{-(i\omega_{\alpha\beta}+\Gamma_{\alpha\beta})\Delta t}}{{\Delta\omega_{\beta 0}}+i(\Gamma_{\alpha 0}-\Gamma_{\alpha\beta})}. (3.5)

Equation (3.5) includes the oscillating component at the detuning frequency Δωβ0\Delta\omega_{\beta 0}, as well as the oscillation originating from the |eαeβ|\lvert e_{\alpha}\rangle\langle e_{\beta}\rvert coherence. In complex molecular systems such as photosynthetic light-harvesting proteins, the lifetime of the electronic coherence is typically a few hundred femtoseconds. On this time scale, the contribution of the |eα0|\lvert e_{\alpha}\rangle\langle 0\rvert coherence during the t1t_{1} period to the signal in Eq. (3.5) cannot be ignored. In this respect, Eq. (3.5) indicates that it is difficult to extract relevant information on the electronic coherence from the oscillatory dynamics in the signal.

III.2 Cases of finite entanglement times

Refer to caption
Figure 5: Difference spectra ΔS(ω,ωr;Δt)=S(ω,ωr;Δt)S(ω,ωr;0)\Delta S(\omega,\omega_{\rm r};\Delta t)=S(\omega,\omega_{\rm r};\Delta t)-S(\omega,\omega_{\rm r};0) for various values of the entanglement time, TeTe(01)=Te(23)=2T02T_{\mathrm{e}}\equiv T_{\mathrm{e}}^{(01)}=T_{\mathrm{e}}^{(23)}=2T_{02}: (a) Te=10fsT_{\mathrm{e}}=10{}\,\mathrm{fs}, (b) Te=50fsT_{\mathrm{e}}=50{}\,\mathrm{fs}, (c) Te=100fsT_{\mathrm{e}}=100{}\,\mathrm{fs}, and (d) Te=500fsT_{\mathrm{e}}=500{}\,\mathrm{fs}. The waiting times are Δt=500fs\Delta t=500{}\,\mathrm{fs} and 2000fs2000{}\,\mathrm{fs}. The central frequencies of photons  1,  2, and  3 are ω¯1=ω¯2=ω¯3=ωp/3=Ω2\bar{\omega}_{1}=\bar{\omega}_{2}=\bar{\omega}_{3}=\omega_{\mathrm{p}}/3=\Omega_{2}. The other parameters are the same as in Fig. 4.
Refer to caption
Figure 6: The phase-matching function r(ω,ωr)r(\omega,\omega_{\rm r}) in Eq. (2.6) for the cases of (a) Te=10fsT_{\mathrm{e}}=10{}\,\mathrm{fs}, (b) Te=50fsT_{\mathrm{e}}=50{}\,\mathrm{fs}, (c) Te=100fsT_{\mathrm{e}}=100{}\,\mathrm{fs}, and (d) Te=500fsT_{\mathrm{e}}=500{}\,\mathrm{fs}. We set the central frequencies of the entangled three photons to ω¯1=ω¯2=ω¯3=ωp/3=Ω2\bar{\omega}_{1}=\bar{\omega}_{2}=\bar{\omega}_{3}=\omega_{\mathrm{p}}/3=\Omega_{2}.
Refer to caption
Figure 7: Time evolution of the amplitude of (a) peak A (ωrΩ1=258cm1\omega_{\rm r}-\Omega_{1}=258{}\,\mathrm{cm}^{-1}, ωΩ1=171cm1\omega-\Omega_{1}=171{}\,\mathrm{cm}^{-1}) in the case of Te=10fsT_{\mathrm{e}}=10{}\,\mathrm{fs} and (b) peak A (ωrΩ1=198cm1\omega_{\rm r}-\Omega_{1}=198{}\,\mathrm{cm}^{-1}, ωΩ1=198cm1\omega-\Omega_{1}=198{}\,\mathrm{cm}^{-1}) in the case of Te=500fsT_{\mathrm{e}}=500{}\,\mathrm{fs}. In both panels, the gray dashed line shows the amplitude of peak A (ωrΩ1=258cm1\omega_{\rm r}-\Omega_{1}=258{}\,\mathrm{cm}^{-1}, ωΩ1=171cm1\omega-\Omega_{1}=171{}\,\mathrm{cm}^{-1}) in the limit of Te=0fsT_{\mathrm{e}}=0{}\,\mathrm{fs} as a reference. The normalization of the plots is such that the maximum value of peak A is unity.

We investigate the effects of finite entanglement times on the spectrum. The central frequencies of the entangled three photons that have been generated can be varied by tuning the phase-matching conditions for the two PDC processes. Krapick et al. (2016); Antonosyan, Gevorgyan, and Kryuchkyan (2011) Therefore, we set the three central frequencies of the entangled three photons, that is, ω¯1=ω¯2=ω¯3=ωp/3=Ω2\bar{\omega}_{1}=\bar{\omega}_{2}=\bar{\omega}_{3}=\omega_{\mathrm{p}}/3=\Omega_{2}, which nearly resonate with the 0e20\to e_{2} transition. It is noted that Te(01)T_{\mathrm{e}}^{(01)}, Te(23)T_{\mathrm{e}}^{(23)}, and T02T_{02} are not independent because the group velocities vσ=kσ/ω|ω=ω¯σv_{\sigma}=\partial k_{\sigma}/\partial\omega|_{\omega=\bar{\omega}_{\sigma}} depend on the central frequencies of the three photons, as presented in Eqs. (2.3) and (2.4). For simplicity, we consider cases that satisfy TeTe(01)=Te(23)=2T02T_{\mathrm{e}}\equiv T_{\mathrm{e}}^{(01)}=T_{\mathrm{e}}^{(23)}=2T_{02} in what follows. This condition corresponds to the equalities of k1/ω|ω=ωp/3=k0/ω|ω=ωp/3\partial k_{1}/\partial\omega|_{\omega=\omega_{\mathrm{p}}/3}=-\partial k_{0}/\partial\omega|_{\omega=\omega_{\mathrm{p}}/3} and k2/ω|ω=ωp/3=k3/ω|ω=ωp/3\partial k_{2}/\partial\omega|_{\omega=\omega_{\mathrm{p}}/3}=-\partial k_{3}/\partial\omega|_{\omega=\omega_{\mathrm{p}}/3}. In practical perspective, this requires us to explore the design of quasi-phase-matched crystals that can hold the equalities of the group velocities, which is beyond the scope of the present paper.

Figure 5 presents the difference spectra of the molecular dimer in the cases of (a) Te=10fsT_{\mathrm{e}}=10{}\,\mathrm{fs}, (b) Te=50fsT_{\mathrm{e}}=50{}\,\mathrm{fs}, (c) Te=100fsT_{\mathrm{e}}=100{}\,\mathrm{fs}, and (d) Te=500fsT_{\mathrm{e}}=500{}\,\mathrm{fs}. The other parameters are the same as those shown in Fig. 4. The signal in Fig. 5(a) appears to be identical to the signal obtained under the three photon state in the limit of Te=0T_{\mathrm{e}}=0, illustrated in Fig. 4(a). However, the intensities of peaks B, C, and D decrease with increasing entanglement time, TeT_{\mathrm{e}}, as presented in Figs. 5(b) – (d), respectively. In the case of Te=500fsT_{\mathrm{e}}=500{}\,\mathrm{fs}, peaks B, C, and D almost disappear. To understand this dependence on the entanglement time, the rephasing contribution in Eq. (2.16) is considered as an example. Here, we note that D1(ωr,t)D_{1}(\omega_{\rm r},t) is non-zero when |t|0.75Te\lvert t\rvert\leq 0.75\,T_{\mathrm{e}}, as shown in Fig. 2. In the case of Δt>0.75Te\Delta t>0.75\,T_{\mathrm{e}}, the expression of Fββαα(ω,ωr;Δt,0)F_{\beta\beta\leftarrow\alpha\alpha}(\omega,\omega_{\rm r};\Delta t,0) is obtained as

Fββαα(ω,ωr;Δt,0)=r(ω,ωr)ξ=1,2r(ω+iλξ,ωr)gβα(ξ)eλξΔt.F_{\beta\beta\leftarrow\alpha\alpha}(\omega,\omega_{\rm r};\Delta t,0)\\ =r(\omega,\omega_{\rm r})\sum_{\xi=1,2}r(\omega+i\lambda_{\xi},\omega_{\rm r})g_{\beta\alpha}^{(\xi)}e^{-\lambda_{\xi}\Delta t}. (3.6)

The bandwidth of the phase-matching function in Eq. (2.6) is related to the inverse of the entanglement time, TeT_{\mathrm{e}}. Equation (3.6) indicates that the finite entanglement time acts as a frequency filter through the spectral distribution of the phase-matching function, which limits the accessible spectral range. Figure 6 presents the spectral distribution of the phase-matching function in Eq. (2.6). Comparing Figs. 5 and 6 reveals that all optical transitions that are outside the bandwidth of the phase-matching function are suppressed. Therefore, the finite entanglement times can be used to selectively enhance specific Liouville pathways when the center frequencies of the entangled three photons are tuned to resonate with certain optical transitions. It is noteworthy that a similar property in terms of the finite entanglement time was discussed in the context of entangled two-photon spectroscopy.Munkhbaatar and Myung-Whun (2017)

Further, we investigate the time-evolution of peak A observed in the difference spectra (illustrated in Fig. 5). In the case of Δt>0.75Te\Delta t>0.75\,T_{\mathrm{e}}, the contribution of the ESA signal at peak A in Eq. (3.6) is written as

F1122(ω¯1,ω¯3;Δt,0)=g12(1)+Λg12(2)eλ2Δt\displaystyle F_{11\leftarrow 22}(\bar{\omega}_{1},\bar{\omega}_{3};\Delta t,0)=g_{12}^{(1)}+\Lambda g_{12}^{(2)}e^{-\lambda_{2}\Delta t} (3.7)

with Λ=8(λ2Te)2sinh(λ2Te/2)sinh(λ2Te/4)\Lambda=8(\lambda_{2}T_{\mathrm{e}})^{-2}\sinh({\lambda_{2}T_{\mathrm{e}}}/{2})\sinh({\lambda_{2}T_{\mathrm{e}}}/{4}), where the approximations of ω¯1ω3¯1\bar{\omega}_{1}\simeq\omega_{\bar{3}1} and ω¯3ωpω3¯1ω20\bar{\omega}_{3}\simeq\omega_{\mathrm{p}}-\omega_{\bar{3}1}-\omega_{20} are employed. The Δt\Delta t-dependence of Eq. (3.7) reflects the monotonous decay governed by the rate of the excitation transfer λ2=k12+k21\lambda_{2}=k_{1\leftarrow 2}+k_{2\leftarrow 1}. Therefore, the signal provides information on the dynamics of e2e1e_{2}\to e_{1} when Δt>0.75Te\Delta t>0.75\,T_{\mathrm{e}}, as shown in Fig. 7(b). When the entanglement time, TeT_{\mathrm{e}}, is sufficiently short compared to the timescales of the excited-state dynamics, Eq. (3.7) becomes F1122(ω¯1,ω¯3;Δt,0)G1122(Δt)F_{11\leftarrow 22}(\bar{\omega}_{1},\bar{\omega}_{3};\Delta t,0)\simeq G_{11\leftarrow 22}(\Delta t), as presented in Fig. 7(a). In contrast, in the case of Δt<0.75Te\Delta t<0.75\,T_{\mathrm{e}}, Eq. (2.16) becomes

F1122(ω¯1,ω¯3;Δt,0)=g12(1)2g12(2)λ22Te2eλ2Te×[(1+λ2Δt)eλ2Δt+(1λ2Δt)eλ2Δt].F_{11\leftarrow 22}(\bar{\omega}_{1},\bar{\omega}_{3};\Delta t,0)=-g_{12}^{(1)}-\frac{2g_{12}^{(2)}}{\lambda_{2}^{2}T_{\mathrm{e}}^{2}}e^{-\lambda_{2}T_{\mathrm{e}}}\\ \times[(1+\lambda_{2}\Delta t)e^{-\lambda_{2}\Delta t}+(1-\lambda_{2}\Delta t)e^{\lambda_{2}\Delta t}]. (3.8)

Equation (3.8) demonstrates the complicated time-evolution, making it impossible to extract relevant information on the excited-state dynamics from the signal. This can clearly be seen in Fig. 7(b), where it is not possible to temporally resolve the fast oscillatory transients within 0.75Te=375fs0.75\,T_{\mathrm{e}}=375{}\,\mathrm{fs}. Figures 57 suggest that the manipulation of the phase-matching function enables filtering out a specific frequency region of the spectra while maintaining ultrafast temporal resolution, resulting in the achievement of the joint temporal and frequency resolution.

However, it is noted that the spectral and temporal resolution of the signal depends on the spectral shape of the entangled three photons. For example, replacing the phase-matching function in Eq. (2.6) with a Gaussian distribution of the same bandwidth can improve the temporal resolution, as discussed in Appendix E.

IV Concluding remarks

The time-resolved spectroscopic measurement using the entangled photon pairs investigated in the preceding study Ishizaki (2020a) faces the challenge in that it is difficult to separate the weak nonlinear optical signals from the linear absorption signal. In this work, we theoretically investigated the time-resolved spectroscopy utilizing entangled three photons generated via the cascaded PDC to overcome this difficulty. In this measurement, time-resolved spectroscopy with monochromatic pumping was integrated with the two-photon counting technique, which suppresses the undesired accidental photon counts in the detector and thus allows one to separate the weak nonlinear optical components from the remaining signals. It was also demonstrated that the frequency-dispersed two-photon counting signal provides the same spectral information as in a coherent 2D optical spectrum that requires the control of multiple laser pulses. Furthermore, we investigated the influence of the finite entanglement times on the two-photon counting signal. The spectral distribution of the phase-matching function acts as a frequency filter to selectively resolve a specific region of the 2D spectrum, while the excited state dynamics under investigation are temporally resolved in a time domain that is longer than the entanglement time. This results in the achievement of the joint temporal and frequency resolution. It is thus anticipated that the time-resolved spectroscopy using the entangled three-photon system may be useful for investigating the dynamical processes in complex molecular systems, such as photosystem II reaction center, in which multiple electronic states are present within a narrow energy region.Fuller et al. (2014); Romero et al. (2014); Fujihashi, Fleming, and Ishizaki (2015); Fujihashi, Higashi, and Ishizaki (2018) However, it is still necessary to address several practical challenges in implementing the proposed spectroscopic scheme. The first issue is the low efficiency of three-photon generation via the cascaded PDC process, as pointed out in Sec. IIA. Second, the performance of the coincidence measurement is very sensitive to the efficiency of the photon detector. Okamoto, Tokami, and Takeuchi (2020) These issues could be overcome by devising a new entangled three-photon source, Corona, Garay-Palmett, and U’Ren (2011); Krapick et al. (2016); Moebius et al. (2016); Okoth et al. (2019); Dominguez-Serna, U’Ren, and Garay-Palmett (2020) and by using the double-crystal interference technique, Lemos et al. (2014); Kalashnikov et al. (2016); Paterova et al. (2018) which does not require detection of photons transmitted through the sample. The extensions of the present work in these directions are to be explored in future studies.

Acknowledgements.
YF would like to thank Ryosuke Shimizu for his valuable comments on this manuscript. This work was supported by JST PRESTO Grant No. JPMJPR19G8, JSPS KAKENHI, Grant No. 17H02946; MEXT KAKENHI Grant No. 17H06437 in Innovative Areas “Innovations for Light–Energy Conversion,” and MEXT Quantum Leap Flagship Program Grant Nos. JPMXS0118069242.

Appendix A Derivation of the quantum state of entangled three photons via cascaded PDC

For simplicity, we consider the electric fields inside the one-dimensional nonlinear crystals. The positive-frequency component of the electric field operator is expressed as

E^j(z,t)=C𝑑ωeikj(ω)ziωta^j(ω),\displaystyle\hat{E}_{j}(z,t)=C\int d\omega e^{ik_{j}(\omega)z-i\omega t}\hat{a}_{j}(\omega), (A.1)

where the slowly varying envelope approximation has been adopted, and all constants have been combined into a factor CC. We treat the strong electric field of the input laser as a classical field

Ep(z,t)=𝑑ωeikp(ω)ziωtAp(ω),\displaystyle E_{\mathrm{p}}(z,t)=\int d\omega e^{ik_{\mathrm{p}}(\omega)z-i\omega t}A_{\mathrm{p}}(\omega), (A.2)

where Ap(ω)A_{\mathrm{p}}(\omega) denotes the envelope of the input laser. The Hamiltonian govering the cascaded PDC process can be written as Zhang et al. (2018); Ye and Mukamel (2020)

H^CPDC(t)=H^1(t)+H^2(t).\displaystyle\hat{H}_{\text{CPDC}}(t)=\hat{H}_{1}(t)+\hat{H}_{2}(t). (A.3)

In the above equation, H^n(t)\hat{H}_{n}(t) is the Hamiltonian for the PDC process in the nn-th crystal

H^1(t)\displaystyle\hat{H}_{1}(t) =L1/2L1/2𝑑zχ1(2)Ep(z,t)E^0(z,t)E^1(z,t)\displaystyle=\int_{-L_{1}/2}^{L_{1}/2}dz\chi_{1}^{(2)}E_{p}(z,t)\hat{E}_{0}^{\dagger}(z,t)\hat{E}_{1}^{\dagger}(z,t)
+h.c.,\displaystyle\quad+\text{h.c.}, (A.4)
H^2(t)\displaystyle\hat{H}_{2}(t) =L2/2L2/2𝑑zχ2(2)E^0(z,t)E^2(z,t)E^3(z,t)\displaystyle=\int_{-L_{2}/2}^{L_{2}/2}dz\chi_{2}^{(2)}\hat{E}_{0}(z,t)\hat{E}_{2}^{\dagger}(z,t)\hat{E}_{3}^{\dagger}(z,t)
+h.c.,\displaystyle\quad+\text{h.c.}, (A.5)

where χn(2)\chi_{n}^{(2)} is the second-order susceptibility of the nn-th crystal. We perform the integration over the length of the crystal and obtain

H^1(t)\displaystyle\hat{H}_{1}(t) =C1𝑑ω3ϕ1(ω,ω0,ω1)ei(ωω0ω1)t\displaystyle=C_{1}\iiint d\omega^{3}\phi_{1}(\omega,\omega_{0},\omega_{1})e^{-i(\omega-\omega_{0}-\omega_{1})t}
×Ap(ω)a^0(ω0)a^1(ω1)+h.c.,\displaystyle\quad\times A_{\mathrm{p}}(\omega)\hat{a}_{0}^{\dagger}(\omega_{0})\hat{a}_{1}^{\dagger}(\omega_{1})+\text{h.c.}, (A.6)
H^2(t)\displaystyle\hat{H}_{2}(t) =C2𝑑ω3ϕ2(ω0,ω2,ω3)ei(ω0ω2ω3)t\displaystyle=C_{2}\iiint d\omega^{3}\phi_{2}(\omega_{0},\omega_{2},\omega_{3})e^{-i(\omega_{0}-\omega_{2}-\omega_{3})t}
×a^0(ω0)a^2(ω2)a^3(ω3)+h.c.,\displaystyle\quad\times\hat{a}_{0}(\omega_{0})\hat{a}_{2}^{\dagger}(\omega_{2})\hat{a}_{3}^{\dagger}(\omega_{3})+\text{h.c.}, (A.7)

in terms of the phase-matching functions

ϕ1(ω,ω0,ω1)=sinc[kp(ω)k0(ω0)k1(ω1)]L12,\displaystyle\phi_{1}(\omega,\omega_{0},\omega_{1})=\mathrm{sinc}\frac{[k_{\mathrm{p}}(\omega)-k_{0}(\omega_{0})-k_{1}(\omega_{1})]L_{1}}{2}, (A.8)
ϕ2(ω0,ω2,ω3)=sinc[k0(ω0)k2(ω2)k3(ω3)]L22.\displaystyle\phi_{2}(\omega_{0},\omega_{2},\omega_{3})=\mathrm{sinc}\frac{[k_{0}(\omega_{0})-k_{2}(\omega_{2})-k_{3}(\omega_{3})]L_{2}}{2}. (A.9)

In Eqs. (A.6) and (A.7), C1C_{1} and C2C_{2} accumulate all constants.

The unitary evolution of a state vector can be expressed as

|ψCPDC\displaystyle\lvert\psi_{\text{CPDC}}\rangle =Texp[idtH^CPDC(t)]|vac,\displaystyle=\mathrm{T}\exp\left[-\frac{i}{\hbar}\int_{-\infty}^{\infty}dt\hat{H}_{\text{CPDC}}(t)\right]\lvert\mathrm{vac}\rangle, (A.10)

where the symbol “T\mathrm{T}” denotes the time-ordering operator. We focus on the low-downconversion regime. In this situation, the time-ordering can be ignored,Quesada and Sipe (2014) and thus the vector state in Eq. (A.10) is approximately described in the Taylor series as

|ψCPDC\displaystyle\lvert\psi_{\text{CPDC}}\rangle exp[idtH^CPDC(t)]|vac\displaystyle\simeq\exp\left[-\frac{i}{\hbar}\int_{-\infty}^{\infty}dt\hat{H}_{\text{CPDC}}(t)\right]\lvert\mathrm{vac}\rangle
=|vac+(i)dtH^1(t)|vac\displaystyle=\lvert\mathrm{vac}\rangle+\left(-\frac{i}{\hbar}\right)\int_{-\infty}^{\infty}dt\hat{H}_{1}(t)\lvert\mathrm{vac}\rangle
+12!(i)2dtdt′′H^2(t)H^1(t′′)|vac\displaystyle\quad+\frac{1}{2!}\left(-\frac{i}{\hbar}\right)^{2}\int_{-\infty}^{\infty}dt^{\prime}\int_{-\infty}^{\infty}dt^{\prime\prime}\hat{H}_{2}(t^{\prime})\hat{H}_{1}(t^{\prime\prime})\lvert\mathrm{vac}\rangle
+12!(i)2dtdt′′H^1(t)H^1(t′′)|vac\displaystyle\quad+\frac{1}{2!}\left(-\frac{i}{\hbar}\right)^{2}\int_{-\infty}^{\infty}dt^{\prime}\int_{-\infty}^{\infty}dt^{\prime\prime}\hat{H}_{1}(t^{\prime})\hat{H}_{1}(t^{\prime\prime})\lvert\mathrm{vac}\rangle
+.\displaystyle\quad+\cdots. (A.11)

The second term in Eq. (A.11) represents the photon pair creation in the primary PDC, and the fourth term is the process where photon pairs are generated twice in the first crystal. These terms are ignored because they do not contribute to the two-photon counting signal between photons 1 and 3. The third term in Eq. (A.11) describes the quantum state of the entangled three photons, which can be computed as

|ψtri\displaystyle\lvert\psi_{\mathrm{tri}}\rangle =12!(i)2dtdt′′H^2(t)H^1(t′′)|vac\displaystyle=\frac{1}{2!}\left(-\frac{i}{\hbar}\right)^{2}\int_{-\infty}^{\infty}dt^{\prime}\int_{-\infty}^{\infty}dt^{\prime\prime}\hat{H}_{2}(t^{\prime})\hat{H}_{1}(t^{\prime\prime})\lvert\mathrm{vac}\rangle
=C1C222𝑑ω5Ap(ω)ϕ1(ω,ω0,ω1)ϕ2(ω0,ω2,ω3)\displaystyle=-\frac{C_{1}C_{2}}{2\hbar^{2}}\int\!\!\!\int\!\!\!\int\!\!\!\int\!\!\!\int d\omega^{5}A_{\mathrm{p}}(\omega)\phi_{1}(\omega,\omega_{0},\omega_{1})\phi_{2}(\omega_{0},\omega_{2},\omega_{3})
×dtei(ω0ω2ω3)t\displaystyle\quad\times\int_{-\infty}^{\infty}dt^{\prime}e^{-i(\omega_{0}-\omega_{2}-\omega_{3})t^{\prime}}
×dt′′ei(ωω0ω1)t′′a^1(ω1)a^2(ω2)a^3(ω3)|vac.\displaystyle\quad\times\int_{-\infty}^{\infty}dt^{\prime\prime}e^{-i(\omega-\omega_{0}-\omega_{1})t^{\prime\prime}}\hat{a}_{1}^{\dagger}(\omega_{1})\hat{a}_{2}^{\dagger}(\omega_{2})\hat{a}_{3}^{\dagger}(\omega_{3})\lvert\mathrm{vac}\rangle. (A.12)

We take the time integral to find 𝑑t′′ei(ωω0ω1)t′′=2πδ(ωω0ω1)\int_{-\infty}^{\infty}dt^{\prime\prime}e^{-i(\omega-\omega_{0}-\omega_{1})t^{\prime\prime}}=2\pi\delta(\omega-\omega_{0}-\omega_{1}) and 𝑑tei(ω0ω2ω3)t=2πδ(ω0ω2ω3)\int_{-\infty}^{\infty}dt^{\prime}e^{-i(\omega_{0}-\omega_{2}-\omega_{3})t^{\prime}}=2\pi\delta(\omega_{0}-\omega_{2}-\omega_{3}), which give the energy conservation condition ω=ω1+ω2+ω3\omega=\omega_{1}+\omega_{2}+\omega_{3}. Finally, the state vector of the generated three photon can be re-expressed as

|ψtri\displaystyle\lvert\psi_{\mathrm{tri}}\rangle =dω3f(ω1,ω2,ω3)a^1(ω1)a^2(ω2)a^3(ω3)|vac,\displaystyle=\iiint d\omega^{3}f(\omega_{1},\omega_{2},\omega_{3})\hat{a}_{1}^{\dagger}(\omega_{1})\hat{a}_{2}^{\dagger}(\omega_{2})\hat{a}_{3}^{\dagger}(\omega_{3})\lvert\mathrm{vac}\rangle, (A.13)

where f(ω1,ω2,ω3)f(\omega_{1},\omega_{2},\omega_{3}) is given by Eq. (2.1) in Sec. IIA.

Refer to caption
Figure 8: Double-sided Feynman diagrams which represent the Liouville space pathways contributing to the third-order responses in the rotating-wave approximation.

Appendix B Derivation of two-photon coincidence counting signal

We consider a system comprising molecules and light fields. The total Hamiltonian is written as

H^total=H^mol+H^field+H^molfield.\displaystyle\hat{H}_{\rm total}=\hat{H}_{\rm mol}+\hat{H}_{\rm field}+\hat{H}_{\rm mol-field}. (B.1)

The first term represents the Hamiltonian of photoactive degrees of freedom in the molecules, and the second term is the free Hamiltonian of the field. The electronic states are grouped into well-separated manifolds: electronic ground states |0\lvert 0\rangle, the single-excitation manifold {|eα}\{\lvert e_{\alpha}\rangle\}, and double-excitation manifold {|fγ¯}\{\lvert f_{\bar{\gamma}}\rangle\}. The optical transitions are described by the dipole operator, μ^=αμα0|0eα|+αγ¯μγ¯α|eαfγ¯|\hat{\mu}=\sum_{\alpha}\mu_{\alpha 0}\lvert 0\rangle\langle e_{\alpha}\rvert+\sum_{\alpha\bar{\gamma}}\mu_{\bar{\gamma}\alpha}\lvert e_{\alpha}\rangle\langle f_{\bar{\gamma}}\rvert. Under the rotating-wave approximation, the molecule–field interaction can be written as H^mol–field(t)=μ^E^(t)μ^E^(t)\hat{H}_{\text{mol--field}}(t)=-\hat{\mu}^{\dagger}\hat{E}(t)-\hat{\mu}\hat{E}^{\dagger}(t).

The density operator of the total system, ρ^(t)\hat{\rho}(t), is expanded in powers of the molecular-field interaction, H^mol–field(t)\hat{H}_{\text{mol--field}}(t), i.e.,Dorfman, Schlawin, and Mukamel (2016)

ρ^(t)=ρ^(1)(t)+ρ^(2)(t)+ρ^(3)(t)+,\displaystyle\hat{\rho}(t)=\hat{\rho}^{(1)}(t)+\hat{\rho}^{(2)}(t)+\hat{\rho}^{(3)}(t)+\cdots, (B.2)

where

ρ^(n)(t)\displaystyle\hat{\rho}^{(n)}(t) =(i)nt𝑑τnτn𝑑τn1τ2𝑑τ1\displaystyle=\left(-\frac{i}{\hbar}\right)^{n}\int_{-\infty}^{t}d\tau_{n}\int_{-\infty}^{\tau_{n}}d\tau_{n-1}\cdots\int_{-\infty}^{\tau_{2}}d\tau_{1}
×G^(tτn)H^mol–field×(τn)G^(τnτn1)\displaystyle\quad\times\hat{G}(t-\tau_{n})\hat{H}_{\text{mol--field}}^{\times}(\tau_{n})\hat{G}(\tau_{n}-\tau_{n-1})
×H^mol–field×(τn1)G^(τ2τ1)\displaystyle\quad\times\hat{H}_{\text{mol--field}}^{\times}(\tau_{n-1})\cdots\hat{G}(\tau_{2}-\tau_{1})
×H^mol–field×(τ1)ρ^()\displaystyle\quad\times\hat{H}_{\text{mol--field}}^{\times}(\tau_{1})\hat{\rho}(-\infty) (B.3)

with the initial condition ρ^()=|00||ψtriψtri|\hat{\rho}(-\infty)=\lvert 0\rangle\langle 0\rvert\otimes\lvert\psi_{\mathrm{tri}}\rangle\langle\psi_{\mathrm{tri}}\rvert. In this equation, G^(t)\hat{G}(t) denotes the Liouville space time-evolution operator used to describe the molecular excitation and the superoperator notation, O^1×O^2=[O^1,O^2]\hat{O}_{1}^{\times}\hat{O}_{2}=[\hat{O}_{1},\hat{O}_{2}], has been introduced for any operators O^1\hat{O}_{1} and O^2\hat{O}_{2}. We change the time variables: s1=τ2τ1s_{1}=\tau_{2}-\tau_{1}, \cdots, sn1=τnτn1s_{n-1}=\tau_{n}-\tau_{n-1} and sn=tτns_{n}=t-\tau_{n}. Thus, Eq. (B.3) can be re-expressed as

ρ^(n)(t)\displaystyle\hat{\rho}^{(n)}(t) =(i)n0𝑑sn0𝑑sn10𝑑s1\displaystyle=\left(-\frac{i}{\hbar}\right)^{n}\int_{0}^{\infty}ds_{n}\int_{0}^{\infty}ds_{n-1}\cdots\int_{0}^{\infty}ds_{1}
×G^(sn)H^mol–field×(tsn)G^(sn1)\displaystyle\quad\times\hat{G}(s_{n})\hat{H}_{\text{mol--field}}^{\times}(t-s_{n})\hat{G}(s_{n-1})
×H^mol–field×(tsnsn1)G^(s1)\displaystyle\quad\times\hat{H}_{\text{mol--field}}^{\times}(t-s_{n}-s_{n-1})\cdots\hat{G}(s_{1})
×H^mol–field×(tsns1)ρ^().\displaystyle\quad\times\hat{H}_{\text{mol--field}}^{\times}(t-s_{n}\cdots-s_{1})\hat{\rho}(-\infty). (B.4)

Upon the substitution of Eq. (B.4) into Eq. (2.8), we obtain the perturbative expansion of the two-photon counting signal in powers of the molecular-field interaction,

S(ω,ωr;Δt)\displaystyle S(\omega,\omega_{\rm r};\Delta t) =S(1)(ω,ωr;Δt)+S(2)(ω,ωr;Δt)\displaystyle=S^{(1)}(\omega,\omega_{\rm r};\Delta t)+S^{(2)}(\omega,\omega_{\rm r};\Delta t)
+S(3)(ω,ωr;Δt)+,\displaystyle\quad+S^{(3)}(\omega,\omega_{\rm r};\Delta t)+\cdots, (B.5)

where

S(n)(ω,ωr;Δt)\displaystyle S^{(n)}(\omega,\omega_{\rm r};\Delta t) =Im𝑑teiωt\displaystyle={\rm Im}\int^{\infty}_{-\infty}dt\,e^{i\omega t}
×tr[a^3(ωr)a^3(ωr)E^1(ω)μ^ρ^(n)(t)].\displaystyle\quad\times\mathrm{tr}[\hat{a}_{3}^{\dagger}(\omega_{\rm r})\hat{a}_{3}(\omega_{\rm r})\hat{E}_{1}^{\dagger}(\omega)\hat{\mu}\hat{\rho}^{(n)}(t)]. (B.6)

We suppose that the molecular system is isotropic. An even-order response function, such as a second-order response function, disappears in an isotropic medium due to symmetry. Hence, the lowest non-vanishing nonlinear signal contribution is the third-order term, S(3)(ω,ωr;Δt)S^{(3)}(\omega,\omega_{\rm r};\Delta t). In addition, the first-order contribution to the total signal, S(1)(ω,ωr;Δt)S^{(1)}(\omega,\omega_{\rm r};\Delta t), can be removed by considering the difference spectrum in Eq. (3.3), as discussed in Appendix C. The resultant third-order signal is expressed as the sum of eight contributions. Each contribution is written as

Sx(ω,ωr;Δt)\displaystyle S_{x}(\omega,\omega_{\rm r};\Delta t) =Im𝑑teiωt0d3sΦx(s3,s2,s1)\displaystyle=\mathrm{Im}\int^{\infty}_{-\infty}dt\,e^{i\omega t}\iiint^{\infty}_{0}d^{3}s\,\Phi_{x}(s_{3},s_{2},s_{1})
×Cx(ω,ωr,t;s3,s2,s1).\displaystyle\quad\times C_{x}(\omega,\omega_{\rm r},t;s_{3},s_{2},s_{1}). (B.7)

In Eq. (B.7), the function Φx(s3,s2,s1)\Phi_{x}(s_{3},s_{2},s_{1}) indicates the third-order response function associated with the Liouville pathways which are represented by the double-sided Feynman diagrams in Fig. 8. The six-body correlation function of field operators, Cx(ω,ωr,t;s3,s2,s1)C_{x}(\omega,\omega_{\rm r},t;s_{3},s_{2},s_{1}), are computed as follows:

Ci\displaystyle C_{\mathrm{i}} (ω,ωr,t;s3,s2,s1)\displaystyle(\omega,\omega_{\rm r},t;s_{3},s_{2},s_{1})
=E^(ts3s2s1)E^(ts3)\displaystyle=\langle\hat{E}^{\dagger}(t-s_{3}-s_{2}-s_{1})\hat{E}(t-s_{3})
×E^1(ω)a^3(ωr)a^3(ωr)E^(ts3s2),\displaystyle\quad\times\hat{E}^{\dagger}_{1}(\omega)\hat{a}_{3}^{\dagger}(\omega_{\rm r})\hat{a}_{3}(\omega_{\rm r})\hat{E}(t-s_{3}-s_{2})\rangle, (B.8)
Cii\displaystyle C_{\mathrm{ii}} (ω,ωr,t;s3,s2,s1)\displaystyle(\omega,\omega_{\rm r},t;s_{3},s_{2},s_{1})
=E^(ts3s2s1)E^(ts3s2)\displaystyle=\langle\hat{E}^{\dagger}(t-s_{3}-s_{2}-s_{1})\hat{E}(t-s_{3}-s_{2})
×E^1(ω)a^3(ωr)a^3(ωr)E^(ts3),\displaystyle\quad\times\hat{E}^{\dagger}_{1}(\omega)\hat{a}_{3}^{\dagger}(\omega_{\rm r})\hat{a}_{3}(\omega_{\rm r})\hat{E}(t-s_{3})\rangle, (B.9)
Ciii\displaystyle C_{\mathrm{iii}} (ω,ωr,t;s3,s2,s1)\displaystyle(\omega,\omega_{\rm r},t;s_{3},s_{2},s_{1})
=E^(ts3s2s1)E^1(ω)a^3(ωr)a^3(ωr)\displaystyle=\langle\hat{E}^{\dagger}(t-s_{3}-s_{2}-s_{1})\hat{E}^{\dagger}_{1}(\omega)\hat{a}_{3}^{\dagger}(\omega_{\rm r})\hat{a}_{3}(\omega_{\rm r})
×E^(ts3)E^(ts3s2),\displaystyle\quad\times\hat{E}(t-s_{3})\hat{E}(t-s_{3}-s_{2})\rangle, (B.10)
Civ\displaystyle C_{\mathrm{iv}} (ω,ωr,t;s3,s2,s1)\displaystyle(\omega,\omega_{\rm r},t;s_{3},s_{2},s_{1})
=E^(ts3s2)E^1(ω)a^3(ωr)a^3(ωr)\displaystyle=\langle\hat{E}^{\dagger}(t-s_{3}-s_{2})\hat{E}^{\dagger}_{1}(\omega)\hat{a}_{3}^{\dagger}(\omega_{\rm r})\hat{a}_{3}(\omega_{\rm r})
×E^(ts3)E^(ts3s2s1),\displaystyle\quad\times\hat{E}^{\dagger}(t-s_{3})\hat{E}(t-s_{3}-s_{2}-s_{1})\rangle, (B.11)
Cv\displaystyle C_{\mathrm{v}} (ω,ωr,t;s3,s2,s1)\displaystyle(\omega,\omega_{\rm r},t;s_{3},s_{2},s_{1})
=E^1(ω)a^3(ωr)a^3(ωr)E^(ts3)\displaystyle=\langle\hat{E}^{\dagger}_{1}(\omega)\hat{a}_{3}^{\dagger}(\omega_{\rm r})\hat{a}_{3}(\omega_{\rm r})\hat{E}(t-s_{3})
×E^(ts3s2)E^(ts3s2s1),\displaystyle\quad\times\hat{E}^{\dagger}(t-s_{3}-s_{2})\hat{E}(t-s_{3}-s_{2}-s_{1})\rangle, (B.12)
Cvi\displaystyle C_{\mathrm{vi}} (ω,ωr,t;s3,s2,s1)\displaystyle(\omega,\omega_{\rm r},t;s_{3},s_{2},s_{1})
=E^(ts3s2)E^1(ω)a^3(ωr)a^3(ωr)\displaystyle=\langle\hat{E}^{\dagger}(t-s_{3}-s_{2})\hat{E}^{\dagger}_{1}(\omega)\hat{a}_{3}^{\dagger}(\omega_{\rm r})\hat{a}_{3}(\omega_{\rm r})
×E^(ts3)E^(ts3s2s1),\displaystyle\quad\times\hat{E}(t-s_{3})\hat{E}(t-s_{3}-s_{2}-s_{1})\rangle, (B.13)
Cvii\displaystyle C_{\mathrm{vii}} (ω,ωr,t;s3,s2,s1)\displaystyle(\omega,\omega_{\rm r},t;s_{3},s_{2},s_{1})
=E^(ts3)E^1(ω)a^3(ωr)a^3(ωr)\displaystyle=\langle\hat{E}^{\dagger}(t-s_{3})\hat{E}^{\dagger}_{1}(\omega)\hat{a}_{3}^{\dagger}(\omega_{\rm r})\hat{a}_{3}(\omega_{\rm r})
×E^(ts3s2)E^(ts3s2s1),\displaystyle\quad\times\hat{E}(t-s_{3}-s_{2})\hat{E}(t-s_{3}-s_{2}-s_{1})\rangle, (B.14)
Cviii\displaystyle C_{\mathrm{viii}} (ω,ωr,t;s3,s2,s1)\displaystyle(\omega,\omega_{\rm r},t;s_{3},s_{2},s_{1})
=E^1(ω)a^3(ωr)a^3(ωr)E^(ts3)\displaystyle=\langle\hat{E}^{\dagger}_{1}(\omega)\hat{a}_{3}^{\dagger}(\omega_{\rm r})\hat{a}_{3}(\omega_{\rm r})\hat{E}^{\dagger}(t-s_{3})
×E^(ts3s2)E^(ts3s2s1),\displaystyle\quad\times\hat{E}(t-s_{3}-s_{2})\hat{E}(t-s_{3}-s_{2}-s_{1})\rangle, (B.15)

where the bracket denotes the expectation value in terms of the three photon state, namely, =ψtri||ψtri\langle\dots\rangle=\langle\psi_{\mathrm{tri}}\rvert\dots\lvert\psi_{\mathrm{tri}}\rangle.

To obtain a concrete expression of the signal, here the memory effect straddling different time intervals in the response function is ignored.Ishizaki and Fleming (2012) For example, the rephasing contribution of the ESA signal is written as Φiii(t3,t2,t1)=(i/)3αβγδϵ¯μδϵ¯μϵ¯γμα0μ0βGϵ¯δ(t3)Gγδαβ(t2)G0β(t1)\Phi_{\mathrm{iii}}(t_{3},t_{2},t_{1})=-(i/\hbar)^{3}\sum_{\alpha\beta\gamma\delta\bar{\epsilon}}\mu_{\delta\bar{\epsilon}}\mu_{\bar{\epsilon}\gamma}\mu_{\alpha 0}\mu_{0\beta}G_{\bar{\epsilon}\delta}(t_{3})G_{\gamma\delta\leftarrow\alpha\beta}(t_{2})G_{0\beta}(t_{1}), where Gγδαβ(t)G_{\gamma\delta\leftarrow\alpha\beta}(t) is the matrix element of the time-evolution operator defined by ργδ(t)=αβGγδαβ(ts)ραβ(s)\rho_{\gamma\delta}(t)=\sum_{\alpha\beta}G_{\gamma\delta\leftarrow\alpha\beta}(t-s)\rho_{\alpha\beta}(s), and Gαβ(t)G_{\alpha\beta}(t) describes the time evolution of the |eαeβ|\lvert e_{\alpha}\rangle\langle e_{\beta}\rvert coherence. The Fourier-Laplace transform of Gαβ(t)G_{\alpha\beta}(t) is introduced as Gαβ[ω]=0𝑑teiωtGαβ(t)G_{\alpha\beta}[\omega]=\int^{\infty}_{0}dt\,e^{i\omega t}G_{\alpha\beta}(t).

To calculate the signal, the six-body correlation functions of the field operators need to be computed. For example, the six-body correlation function in the rephasing ESA signal is computed as

Ciii\displaystyle C_{\mathrm{iii}} (ω,ωr,t;s3,s2,s1)\displaystyle(\omega,\omega_{\rm r},t;s_{3},s_{2},s_{1})
=r(ω,ωr)eiωt+iωs3i(ωpωωr)s1i(ωω¯1)Δt\displaystyle=r(\omega,\omega_{\rm r})e^{-i\omega t+i\omega s_{3}-i(\omega_{\mathrm{p}}-\omega-\omega_{\rm r})s_{1}-i(\omega-\bar{\omega}_{1})\Delta t}
×[D1(ωr,s2Δt)ei(ωω¯1)s2\displaystyle\quad\times[D_{1}(\omega_{\rm r},s_{2}-\Delta t)e^{i(\omega-\bar{\omega}_{1})s_{2}}
+D1(ωr,s2+Δt)ei(ω+ωrω¯2ω¯3)s2],\displaystyle\quad+D_{1}(\omega_{\rm r},s_{2}+\Delta t)e^{i(\omega+\omega_{\rm r}-\bar{\omega}_{2}-\bar{\omega}_{3})s_{2}}], (B.16)

where the expression of D1(ω,t)D_{1}(\omega,t) has been defined by Eq. (2.18). Unlike the ESA and DQC pathways (pathways iii and vi – viii), which contains only normally-ordered field correlation functions, the SE and GSB pathways (pathways i, ii, iv, and v) need to be treated separately. For example, by using the commutation relation [E^1(t),E^1(t)]=δ(tt)[\hat{E}_{1}(t),\hat{E}_{1}^{\dagger}(t^{\prime})]=\delta(t-t^{\prime}), the six-body correlation function in the rephasing SE signal in Eq. (B.8) can be recast as two normally-ordered six-body correlations plus a four-body correlation function:

Ci\displaystyle C_{\mathrm{i}} (ω,ωr,t;s3,s2,s1)\displaystyle(\omega,\omega_{\rm r},t;s_{3},s_{2},s_{1})
=a^3(ωr)E^2(ts3s2s1+Δt)\displaystyle=\langle\hat{a}_{3}^{\dagger}(\omega_{\rm r})\hat{E}_{2}^{\dagger}(t-s_{3}-s_{2}-s_{1}+\Delta t)
×E^1(ω)E^1(ts3s2)E^2(ts3+Δt)a^3(ωr)\displaystyle\quad\times\hat{E}^{\dagger}_{1}(\omega)\hat{E}_{1}(t-s_{3}-s_{2})\hat{E}_{2}(t-s_{3}+\Delta t)\hat{a}_{3}(\omega_{\rm r})\rangle
+a^3(ωr)E^2(ts3s2s1+Δt)\displaystyle\quad+\langle\hat{a}_{3}^{\dagger}(\omega_{\rm r})\hat{E}_{2}^{\dagger}(t-s_{3}-s_{2}-s_{1}+\Delta t)
×E^1(ω)E^1(ts3)E^2(ts3s2+Δt)a^3(ωr)\displaystyle\quad\times\hat{E}^{\dagger}_{1}(\omega)\hat{E}_{1}(t-s_{3})\hat{E}_{2}(t-s_{3}-s_{2}+\Delta t)\hat{a}_{3}(\omega_{\rm r})\rangle
+eiω(ts3)a^3(ωr)E^2(ts3s2s1+Δt)\displaystyle\quad+e^{-i\omega(t-s_{3})}\langle\hat{a}_{3}^{\dagger}(\omega_{\rm r})\hat{E}_{2}^{\dagger}(t-s_{3}-s_{2}-s_{1}+\Delta t)
×E^2(ts3s2+Δt)a^3(ωr).\displaystyle\quad\times\hat{E}_{2}(t-s_{3}-s_{2}+\Delta t)\hat{a}_{3}(\omega_{\rm r})\rangle. (B.17)

Using Eq. (2.18), Eq. (B.17) can be computed as follows:

Ci\displaystyle C_{\mathrm{i}} (ω,ωr,t;s3,s2,s1)\displaystyle(\omega,\omega_{\rm r},t;s_{3},s_{2},s_{1})
=r(ω,ωr)eiωt+iωs3i(ωpωωr)s1i(ωω¯1)Δt\displaystyle=r(\omega,\omega_{\rm r})e^{-i\omega t+i\omega s_{3}-i(\omega_{\mathrm{p}}-\omega-\omega_{\rm r})s_{1}-i(\omega-\bar{\omega}_{1})\Delta t}
×[D1(ωr,s2Δt)ei(ωω¯1)s2\displaystyle\quad\times[D_{1}(\omega_{\rm r},s_{2}-\Delta t)e^{i(\omega-\bar{\omega}_{1})s_{2}}
+D1(ωr,s2+Δt)ei(ω+ωrω¯2ω¯3)s2]\displaystyle\quad+D_{1}(\omega_{\rm r},s_{2}+\Delta t)e^{i(\omega+\omega_{\rm r}-\bar{\omega}_{2}-\bar{\omega}_{3})s_{2}}]
+D2(ωr,s1)ei(ωpωrω¯1)s1eiω(ts3).\displaystyle\quad+D_{2}(\omega_{\rm r},s_{1})e^{-i(\omega_{\mathrm{p}}-\omega_{\rm r}-\bar{\omega}_{1})s_{1}}e^{-i\omega(t-s_{3})}. (B.18)

The first and second terms in the above equation correspond to the normally-ordered six-body correlation contribution, and the third term is the four-body correlation contribution, which is independent of Δt\Delta t.

The two-photon coincidence counting signal in Eq. (B.5) is finally expressed as

S(ω,ωr;Δt)\displaystyle S(\omega,\omega_{\rm r};\Delta t) =SSE(ω,ωr;Δt)+SGSB(ω,ωr;Δt)\displaystyle=S_{\mathrm{SE}}(\omega,\omega_{\rm r};\Delta t)+S_{\mathrm{GSB}}(\omega,\omega_{\rm r};\Delta t)
+SESA(ω,ωr;Δt)\displaystyle\quad+S_{\mathrm{ESA}}(\omega,\omega_{\rm r};\Delta t)
+SDQC(ω,ωr;Δt)\displaystyle\quad+S_{\mathrm{DQC}}(\omega,\omega_{\rm r};\Delta t) (B.19)

in terms of the SE, GSB, ESA, and DQC contributions,

SSE(ω,ωr;Δt)\displaystyle S_{\mathrm{SE}}(\omega,\omega_{\rm r};\Delta t)
=Si(ω,ωr;Δt)+Siv(ω,ωr;Δt),\displaystyle\quad\quad=S_{\mathrm{i}}(\omega,\omega_{\rm r};\Delta t)+S_{\mathrm{iv}}(\omega,\omega_{\rm r};\Delta t), (B.20)
SGSB(ω,ωr;Δt)\displaystyle S_{\mathrm{GSB}}(\omega,\omega_{\rm r};\Delta t)
=Sii(ω,ωr;Δt)+Sv(ω,ωr;Δt),\displaystyle\quad\quad=S_{\mathrm{ii}}(\omega,\omega_{\rm r};\Delta t)+S_{\mathrm{v}}(\omega,\omega_{\rm r};\Delta t), (B.21)
SESA(ω,ωr;Δt)\displaystyle S_{\mathrm{ESA}}(\omega,\omega_{\rm r};\Delta t)
=Siii(ω,ωr;Δt)+Svi(ω,ωr;Δt),\displaystyle\quad\quad=S_{\mathrm{iii}}(\omega,\omega_{\rm r};\Delta t)+S_{\mathrm{vi}}(\omega,\omega_{\rm r};\Delta t), (B.22)
SDQC(ω,ωr;Δt)\displaystyle S_{\mathrm{DQC}}(\omega,\omega_{\rm r};\Delta t)
=Svii(ω,ωr;Δt)+Sviii(ω,ωr;Δt).\displaystyle\quad\quad=S_{\mathrm{vii}}(\omega,\omega_{\rm r};\Delta t)+S_{\mathrm{viii}}(\omega,\omega_{\rm r};\Delta t). (B.23)

The expressions in Eqs. (B.20) – (B.23) are given by Eqs. (2.10) – (2.13) in Sec. IIB.

Appendix C Linear absorption contribution

The first-order term in Eq. (B.5) is written as

S(1)(ω,ωr)\displaystyle S^{(1)}(\omega,\omega_{\rm r}) =Imαμα02𝑑teiωt0𝑑s1Gα0(s1)\displaystyle={\rm Im}\sum_{\alpha}\mu_{\alpha 0}^{2}\int_{-\infty}^{\infty}dt\,e^{i\omega t}\int_{0}^{\infty}ds_{1}G_{\alpha 0}(s_{1})
×E^1(ω)a^3(ωr)a^3(ωr)E^(ts1).\displaystyle\quad\times\langle\hat{E}^{\dagger}_{1}(\omega)\hat{a}_{3}^{\dagger}(\omega_{\rm r})\hat{a}_{3}(\omega_{\rm r})\hat{E}(t-s_{1})\rangle. (C.1)

The four-body correlation function of the electric field operator in Eq. (C.1) is computed as E^1(ω)a^3(ωr)a^3(ωr)E^1(ts1)=eiω(ts1)r(ω,ωr)2\langle\hat{E}^{\dagger}_{1}(\omega)\hat{a}_{3}^{\dagger}(\omega_{\rm r})\hat{a}_{3}(\omega_{\rm r})\hat{E}_{1}(t-s_{1})\rangle=e^{-i\omega(t-s_{1})}r(\omega,\omega_{\rm r})^{2}. Consequently, Eq. (C.1) is obtained as

S(1)(ω,ωr)=r(ω,ωr)2Reαμα02Gα0[ω].\displaystyle S^{(1)}(\omega,\omega_{\rm r})=r(\omega,\omega_{\rm r})^{2}{\rm Re}\sum_{\alpha}\mu_{\alpha 0}^{2}G_{\alpha 0}[\omega]. (C.2)

Equation (C.2) is independent of the frequency of the input laser, ωp\omega_{\mathrm{p}}, and the delay time, Δt\Delta t. Hence, this contribution to the total signal in Eqs. (2.8) can be removed by considering the difference spectrum in Eq. (3.3). When Te(23)T_{\mathrm{e}}^{(23)} is much shorter than the characteristic timescales of the dynamics under investigation, Eq. (C.2) reduces to

S(1)(ω)\displaystyle S^{(1)}(\omega) =sinc2(ωω¯1)Te(01)2sinc2(ωω¯1)T022\displaystyle={\rm sinc}^{2}\frac{(\omega-\bar{\omega}_{1})T_{\mathrm{e}}^{(01)}}{2}{\rm sinc}^{2}\frac{(\omega-\bar{\omega}_{1})T_{02}}{2}
×Reαμα02Gα0[ω].\displaystyle\quad\times{\rm Re}\sum_{\alpha}\mu_{\alpha 0}^{2}G_{\alpha 0}[\omega]. (C.3)

Equation (C.3) is independent of the frequency of the input laser, ωp\omega_{\mathrm{p}}, the reference frequency, ωr\omega_{\text{r}}, and the delay time, Δt\Delta t. By removing this constant background, the linear absorption process can be separated from the pump-probe-type two-photon process.

Appendix D Δt\Delta t-independent terms in SE and GSB contributions

The Δt\Delta t-independent terms in Eqs. (2.10) and (2.11) are computed as follows:

Δ\displaystyle\Delta SSE(r)(ω,ωr)\displaystyle S_{\mathrm{SE}}^{\mathrm{(r)}}(\omega,\omega_{\rm r})
=Reαβγδμδ0μγ0μβ0μα0Gγ0[ω]Gγδαβ[0]\displaystyle=-{\rm Re}\sum_{\alpha\beta\gamma\delta}\mu_{\delta 0}\mu_{\gamma 0}\mu_{\beta 0}\mu_{\alpha 0}G_{\gamma 0}[\omega]G_{\gamma\delta\leftarrow\alpha\beta}[0]
×0ds1ei(ωpωrω¯1)s1G0β(s1)D2(ωr,s1),\displaystyle\quad\times\int_{0}^{\infty}ds_{1}e^{-i(\omega_{\mathrm{p}}-\omega_{\rm r}-\bar{\omega}_{1})s_{1}}G_{0\beta}(s_{1})D_{2}(\omega_{\rm r},s_{1}), (D.1)
Δ\displaystyle\Delta SSE(nr)(ω,ωr)\displaystyle S_{\mathrm{SE}}^{\mathrm{(nr)}}(\omega,\omega_{\rm r})
=Reαβγδμδ0μγ0μβ0μα0Gγ0[ω]Gγδαβ[0]\displaystyle=-{\rm Re}\sum_{\alpha\beta\gamma\delta}\mu_{\delta 0}\mu_{\gamma 0}\mu_{\beta 0}\mu_{\alpha 0}G_{\gamma 0}[\omega]G_{\gamma\delta\leftarrow\alpha\beta}[0]
×0ds1ei(ωpωrω¯1)s1Gα0(s1)D2(ωr,s1),\displaystyle\quad\times\int_{0}^{\infty}ds_{1}e^{i(\omega_{\mathrm{p}}-\omega_{\rm r}-\bar{\omega}_{1})s_{1}}G_{\alpha 0}(s_{1})D_{2}(\omega_{\rm r},s_{1}), (D.2)
Δ\displaystyle\Delta SGSB(r)(ω,ωr)\displaystyle S_{\mathrm{GSB}}^{\mathrm{(r)}}(\omega,\omega_{\rm r})
=Reαβμβ02μα02Gβ0[ω]0𝑑s1eiωs1G0α(s1)\displaystyle=-{\rm Re}\sum_{\alpha\beta}\mu_{\beta 0}^{2}\mu_{\alpha 0}^{2}G_{\beta 0}[\omega]\int_{0}^{\infty}ds_{1}e^{-i\omega s_{1}}G_{0\alpha}(s_{1})
×0ds2ei(ωωp+ωr+ω¯1)(s2+s1)D2(ωr,s2+s1),\displaystyle\quad\times\int_{0}^{\infty}ds_{2}e^{i(\omega-\omega_{\mathrm{p}}+\omega_{\rm r}+\bar{\omega}_{1})(s_{2}+s_{1})}D_{2}(\omega_{\rm r},s_{2}+s_{1}), (D.3)
Δ\displaystyle\Delta SGSB(nr)(ω,ωr)\displaystyle S_{\mathrm{GSB}}^{\mathrm{(nr)}}(\omega,\omega_{\rm r})
=r(ω,ωr)2Reαβμβ02μα02Gβ0[ω]Gα0[ω].\displaystyle=-r(\omega,\omega_{\rm r})^{2}{\rm Re}\sum_{\alpha\beta}\mu_{\beta 0}^{2}\mu_{\alpha 0}^{2}G_{\beta 0}[\omega]G_{\alpha 0}[\omega]. (D.4)

The contributions to the total signal in Eq. (2.9) can be removed by considering the difference spectrum in Eq. (3.3). In the limits of Te(01)0T_{\mathrm{e}}^{(01)}\to 0, Te(23)0T_{\mathrm{e}}^{(23)}\to 0, and T020T_{02}\to 0, we obtain r(ω1,ω3)=1r(\omega_{1},\omega_{3})=1 and D2(ω,t)=δ(t)D_{2}(\omega,t)=\delta(t). Hence, Eqs. (D.1) – (D.4) are simplified as follows:

ΔSSE(y)(ω)\displaystyle\Delta S_{\mathrm{SE}}^{(y)}(\omega) =Reαβγδμδ0μγ0μβ0μα0\displaystyle=-{\rm Re}\sum_{\alpha\beta\gamma\delta}\mu_{\delta 0}\mu_{\gamma 0}\mu_{\beta 0}\mu_{\alpha 0}
×Gγ0[ω]Gγδαβ[0],\displaystyle\quad\times G_{\gamma 0}[\omega]G_{\gamma\delta\leftarrow\alpha\beta}[0], (D.5)
ΔSGSB(y)(ω)\displaystyle\Delta S_{\mathrm{GSB}}^{(y)}(\omega) =Reαβμβ02μα02Gβ0[ω]Gα0(y)[ω].\displaystyle=-{\rm Re}\sum_{\alpha\beta}\mu_{\beta 0}^{2}\mu_{\alpha 0}^{2}G_{\beta 0}[\omega]G_{\alpha 0}^{(y)}[\omega]. (D.6)

Appendix E Influence of the spectral shape on the temporal resolution

While typical nonlinear crystals yield sinc-shaped phase-matching functions, the phase-matching functions can be shaped using custom-poling methods in quasi-phase-matched crystals. Brańczyk et al. (2011) Here, we investigate the influence of the spectral shape on the temporal resolution of the two-photon counting signal. For demonstration purposes, we model the phase-matching function as a Gaussian distribution by approximating the sinc function with a Gaussian of the same width:

r(Gauss)(ω1,ω3)=eγ(ω1ω¯1)2Te2eγ[(ω1ω¯1)T02+(ω3ω¯3)Te(23)]2r^{(\mathrm{Gauss})}(\omega_{1},\omega_{3})\\ =e^{-\gamma(\omega_{1}-\bar{\omega}_{1})^{2}T_{\mathrm{e}}^{2}}e^{-\gamma\left[(\omega_{1}-\bar{\omega}_{1})T_{02}+(\omega_{3}-\bar{\omega}_{3})T_{\mathrm{e}}^{(23)}\right]^{2}} (E.1)

with γ=0.04825\gamma=0.04825. We consider the case that satisfy TeTe(01)=Te(23)=2T02T_{\mathrm{e}}\equiv T_{\mathrm{e}}^{(01)}=T_{\mathrm{e}}^{(23)}=2T_{02}, and obtain

D1(Gauss)(ω,t)\displaystyle D_{1}^{(\mathrm{Gauss})}(\omega,t)
=dξ2πeiξtr(Gauss)(ξ+ω¯1,ω)\displaystyle\quad=\int^{\infty}_{-\infty}\frac{d\xi}{2\pi}e^{-i\xi t}r^{(\mathrm{Gauss})}(\xi+\bar{\omega}_{1},\omega)
=12πσexp[t22σ2]\displaystyle\quad=\frac{1}{\sqrt{2\pi}\sigma}\exp\left[-\frac{t^{2}}{2\sigma^{2}}\right]
×exp[2i5(ωω¯3)t4γTe25(ωω¯3)2]\displaystyle\quad\quad\times\exp\left[-\frac{2i}{5}(\omega-\bar{\omega}_{3})t-\frac{4\gamma T_{\mathrm{e}}^{2}}{5}(\omega-\bar{\omega}_{3})^{2}\right] (E.2)

with the standard deviation σ=5γ/2Te\sigma=\sqrt{5\gamma/2}T_{\mathrm{e}}. In terms of the full width at half maximum (FWHM), for the Gaussian phase-matching function in Eq. (E.1), the spreading of the interval between the arrival times of photons 1 and 2 at the molecular sample is estimated to be 22ln2σ0.8176Te2\sqrt{2\ln 2}\sigma\simeq 0.8176T_{\mathrm{e}}. Whereas, in the case of the sinc-shaped phase-matching functions in Eq. (2.6), the interval between the arrival times of photons 1 and 2 becomes blurred within the time window of FWHM=Te\text{FWHM}=T_{\mathrm{e}}, as shown in Fig. 2. This implies that the temporal resolution of the signal can be improved when the spectral distribution of the phase-matching function in Eq. (2.6) can be shaped into a Gaussian distribution of the same bandwidth.


References

  • Schrödinger (1935) E. Schrödinger, Naturwissenschaften 23, 807 (1935).
  • Ou et al. (1992) Z. Y. Ou, S. F. Pereira, H. J. Kimble,  and K. C. Peng, Phys. Rev. Lett. 68, 3663 (1992).
  • Eisert and Plenio (2003) J. Eisert and M. B. Plenio, Int. J. Quantum. Inform. 1, 479 (2003).
  • Braunstein and Van Loock (2005) S. L. Braunstein and P. Van Loock, Rev. Mod. Phys. 77, 513 (2005).
  • Weedbrook et al. (2012) C. Weedbrook, S. Pirandola, R. Garcia-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro,  and S. Lloyd, Rev. Mod. Phys. 84, 621 (2012).
  • Asavanant et al. (2019) W. Asavanant, Y. Shiozawa, S. Yokoyama, B. Charoensombutamon, H. Emura, R. N. Alexander, S. Takeda, J.-i. Yoshikawa, N. C. Menicucci, H. Yonezawa, et al., Science 366, 373 (2019).
  • Einstein, Podolsky, and Rosen (1935) A. Einstein, B. Podolsky,  and N. Rosen, Phys. Rev. 47, 777 (1935).
  • Thorwart et al. (2009) M. Thorwart, J. Eckel, J. H. Reina, P. Nalbach,  and S. Weiss, Chem. Phys. Lett. 478, 234 (2009).
  • Sarovar et al. (2010) M. Sarovar, A. Ishizaki, G. R. Fleming,  and K. B. Whaley, Nat. Phys. 6, 462 (2010).
  • Caruso et al. (2010) F. Caruso, A. W. Chin, A. Datta, S. F. Huelga,  and M. B. Plenio, Phys. Rev. A 81, 062346 (2010).
  • Ishizaki and Fleming (2010) A. Ishizaki and G. R. Fleming, New J. Phys. 12, 055004 (2010).
  • Fassioli and Olaya-Castro (2010) F. Fassioli and A. Olaya-Castro, New J. Phys. 12, 085006 (2010).
  • Whaley, Sarovar, and Ishizaki (2011) K. B. Whaley, M. Sarovar,  and A. Ishizaki, Procedia Chem. 3, 152 (2011).
  • Ishizaki and Fleming (2012) A. Ishizaki and G. R. Fleming, Annu. Rev. Condens. Matter Phys. 3, 333 (2012).
  • Takeuchi (2014) S. Takeuchi, Jpn. J. Appl. Phys. 53, 030101 (2014).
  • Walmsley (2015) I. A. Walmsley, Science 348, 525 (2015).
  • Simon, Jaeger, and Sergienko (2016) D. S. Simon, G. Jaeger,  and A. V. Sergienko, Quantum Metrology, Imaging, and Communication (Springer, Cham, 2016).
  • Pirandola et al. (2018) S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook,  and S. Lloyd, Nat. Photonics 12, 724 (2018).
  • Moreau et al. (2019) P.-A. Moreau, E. Toninelli, T. Gregory,  and M. J. Padgett, Nat. Rev. Phys. 1, 367 (2019).
  • Georgiades et al. (1995) N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble,  and A. S. Parkins, Phys. Rev. Lett. 75, 3426 (1995).
  • Scarcelli et al. (2003) G. Scarcelli, A. Valencia, S. Gompers,  and Y. Shih, Appl. Phys. Lett. 83, 5560 (2003).
  • Yabushita and Kobayashi (2004) A. Yabushita and T. Kobayashi, Phys. Rev. A 69, 013806 (2004).
  • Dayan et al. (2004) B. Dayan, A. Pe’er, A. A. Friesem,  and Y. Silberberg, Phys. Rev. Lett. 93, 023005 (2004).
  • Lee and Goodson, III (2006) D.-I. Lee and T. Goodson, III, J. Phys. Chem. B 110, 25582 (2006).
  • Kalachev et al. (2007) A. A. Kalachev, D. A. Kalashnikov, A. A. Kalinkin, T. G. Mitrofanova, A. V. Shkalikov,  and V. V. Samartsev, Laser Phys. Lett. 4, 722 (2007).
  • Upton et al. (2013) L. Upton, M. Harpham, O. Suzer, M. Richter, S. Mukamel,  and T. Goodson III, J. Phys. Chem. Lett. 4, 2046 (2013).
  • Kalashnikov et al. (2016) D. A. Kalashnikov, A. V. Paterova, S. P. Kulik,  and L. A. Krivitsky, Nat. Photon. 10, 98 (2016).
  • Varnavski, Pinsky, and Goodson III (2017) O. Varnavski, B. Pinsky,  and T. Goodson III, J. Phys. Chem. Lett. 8, 388 (2017).
  • Villabona-Monsalve et al. (2017) J. P. Villabona-Monsalve, O. Calderón-Losada, M. Nuñez Portela,  and A. Valencia, J. Phys. Chem. A 121, 7869 (2017).
  • Villabona-Monsalve, Burdick, and Goodson III (2020) J. P. Villabona-Monsalve, R. K. Burdick,  and T. Goodson III, J. Phys. Chem. C 124, 24526 (2020).
  • Paterova et al. (2018) A. Paterova, H. Yang, C. An, D. Kalashnikov,  and L. Krivitsky, New J. Phys. 20, 043015 (2018).
  • Lee, Yoon, and Cho (2020) S. K. Lee, T. H. Yoon,  and M. Cho, Phys. Rev. Applied 14, 014045 (2020).
  • Szoke et al. (2020) S. Szoke, H. Liu, B. P. Hickam, M. He,  and S. K. Cushing, J. Mater. Chem. C 8, 10732 (2020).
  • Gea-Banacloche (1989) J. Gea-Banacloche, Phys. Rev. Lett. 62, 1603 (1989).
  • Javanainen and Gould (1990) J. Javanainen and P. L. Gould, Phys. Rev. A 41, 5088 (1990).
  • Kang et al. (2020) G. Kang, K. Nasiri Avanaki, M. A. Mosquera, R. K. Burdick, J. P. Villabona-Monsalve, T. Goodson III,  and G. C. Schatz, J. Am. Chem. Soc. 142, 10446 (2020).
  • Fei et al. (1997) H.-B. Fei, B. M. Jost, S. Popescu, B. E. A. Saleh,  and M. C. Teich, Phys. Rev. Lett. 78, 1679 (1997).
  • Saleh et al. (1998) B. E. A. Saleh, B. M. Jost, H.-B. Fei,  and M. C. Teich, Phys. Rev. Lett. 80, 3483 (1998).
  • Oka (2010) H. Oka, Phys. Rev. A 81, 063819 (2010).
  • Oka (2011) H. Oka, J. Chem. Phys. 135, 164304 (2011).
  • Schlawin et al. (2012) F. Schlawin, K. E. Dorfman, B. P. Fingerhut,  and S. Mukamel, Phys. Rev. A 86, 023851 (2012).
  • Schlawin and Mukamel (2013) F. Schlawin and S. Mukamel, J. Chem. Phys. 139, 244110 (2013).
  • Schlawin et al. (2013) F. Schlawin, K. E. Dorfman, B. P. Fingerhut,  and S. Mukamel, Nat. Commun. 4, 1782 (2013).
  • Raymer et al. (2013) M. G. Raymer, A. H. Marcus, J. R. Widom,  and D. L. P. Vitullo, J. Phys. Chem. B 117, 15559 (2013).
  • Dorfman and Mukamel (2014) K. E. Dorfman and S. Mukamel, New J. Phys. 16, 033013 (2014).
  • Munkhbaatar and Myung-Whun (2017) P. Munkhbaatar and K. Myung-Whun, Opt. Commun. 383, 581 (2017).
  • Schlawin, Dorfman, and Mukamel (2018) F. Schlawin, K. E. Dorfman,  and S. Mukamel, Acc. Chem. Res. 51, 2207 (2018).
  • Oka (2018) H. Oka, Phys. Rev. A 97, 063859 (2018).
  • de J León-Montiel et al. (2019) R. de J León-Montiel, J. Svozilik, J. P. Torres,  and A. B. URen, Phys. Rev. Lett. 123, 023601 (2019).
  • Oka (2020) H. Oka, J. Chem. Phys. 152, 044106 (2020).
  • Bittner et al. (2020) E. R. Bittner, H. Li, A. Piryatinski, A. R. Srimath Kandada,  and C. Silva, J. Chem. Phys. 152, 071101 (2020).
  • Hong, Ou, and Mandel (1987) C. K. Hong, Z. Y. Ou,  and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).
  • Pittman et al. (1995) T. B. Pittman, Y. H. Shih, D. V. Strekalov,  and A. V. Sergienko, Phys. Rev. A 52, R3429 (1995).
  • Zou, Wang, and Mandel (1991) X. Y. Zou, L. J. Wang,  and L. Mandel, Phys. Rev. Lett. 67, 318 (1991).
  • Lemos et al. (2014) G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz,  and A. Zeilinger, Nature 512, 409 (2014).
  • Okamoto, Tokami, and Takeuchi (2020) R. Okamoto, Y. Tokami,  and S. Takeuchi, New J. Phys. 22, 103016 (2020).
  • Dorfman, Schlawin, and Mukamel (2014) K. E. Dorfman, F. Schlawin,  and S. Mukamel, J. Phys. Chem. Lett. 5, 2843 (2014).
  • Schlawin, Dorfman, and Mukamel (2016) F. Schlawin, K. E. Dorfman,  and S. Mukamel, Phys. Rev. A 93, 023807 (2016).
  • Ishizaki (2020a) A. Ishizaki, J. Chem. Phys. 153, 051102 (2020a).
  • Greenberger et al. (1990) D. M. Greenberger, M. A. Horne, A. Shimony,  and A. Zeilinger, Am. J. Phys. 58, 1131 (1990).
  • Keller et al. (1998) T. E. Keller, M. H. Rubin, Y. Shih,  and L.-A. Wu, Phys. Rev. A 57, 2076 (1998).
  • Wen et al. (2007) J. Wen, P. Xu, M. H. Rubin,  and Y. Shih, Phys. Rev. A 76, 023828 (2007).
  • Wen and Rubin (2009) J. Wen and M. H. Rubin, Phys. Rev. A 79, 025802 (2009).
  • Hübel et al. (2010) H. Hübel, D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch,  and T. Jennewein, Nature 466, 601 (2010).
  • Shalm et al. (2013) L. K. Shalm, D. R. Hamel, Z. Yan, C. Simon, K. J. Resch,  and T. Jennewein, Nat. Phys. 9, 19 (2013).
  • Hamel et al. (2014) D. R. Hamel, L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma, R. P. Mirin, S. W. Nam, K. J. Resch,  and T. Jennewein, Nat. Photonics 8, 801 (2014).
  • Agne et al. (2017) S. Agne, T. Kauten, J. Jin, E. Meyer-Scott, J. Z. Salvail, D. R. Hamel, K. J. Resch, G. Weihs,  and T. Jennewein, Phys. Rev. Lett. 118, 153602 (2017).
  • Corona, Garay-Palmett, and U’Ren (2011) M. Corona, K. Garay-Palmett,  and A. B. U’Ren, Opt. Lett. 36, 190 (2011).
  • Krapick et al. (2016) S. Krapick, B. Brecht, H. Herrmann, V. Quiring,  and C. Silberhorn, Opt. Express 24, 2836 (2016).
  • Antonosyan, Gevorgyan, and Kryuchkyan (2011) D. A. Antonosyan, T. V. Gevorgyan,  and G. Y. Kryuchkyan, Phys. Rev. A 83, 043807 (2011).
  • Moebius et al. (2016) M. G. Moebius, F. Herrera, S. Griesse-Nascimento, O. Reshef, C. C. Evans, G. G. Guerreschi, A. Aspuru-Guzik,  and E. Mazur, Opt. Express 24, 9932 (2016).
  • Zhang et al. (2018) Q.-Y. Zhang, G.-T. Xue, P. Xu, Y.-X. Gong, Z. Xie,  and S. Zhu, Phys. Rev. A 97, 022327 (2018).
  • Cho (2018) M. Cho, J. Chem. Phys. 148, 184111 (2018).
  • Okoth et al. (2019) C. Okoth, A. Cavanna, N. Y. Joly,  and M. V. Chekhova, Phys. Rev. A 99, 043809 (2019).
  • Dominguez-Serna, U’Ren, and Garay-Palmett (2020) F. A. Dominguez-Serna, A. B. U’Ren,  and K. Garay-Palmett, Phys. Rev. A 101, 033813 (2020).
  • Ye and Mukamel (2020) L. Ye and S. Mukamel, Appl. Phys. Lett. 116, 174003 (2020).
  • Mandel and Wolf (1995) L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995).
  • Franson (1989) J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989).
  • Menssen et al. (2017) A. J. Menssen, A. E. Jones, B. J. Metcalf, M. C. Tichy, S. Barz, W. S. Kolthammer,  and I. A. Walmsley, Phys. Rev. Lett. 118, 153603 (2017).
  • Loudon (2000) R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University Press, Oxford, 2000).
  • Dorfman, Schlawin, and Mukamel (2016) K. E. Dorfman, F. Schlawin,  and S. Mukamel, Rev. Mod. Phys. 88, 045008 (2016).
  • Schlawin (2017) F. Schlawin, J. Phys. B: At. Mol. Opt. Phys. 50, 203001 (2017).
  • Fujihashi, Shimizu, and Ishizaki (2020) Y. Fujihashi, R. Shimizu,  and A. Ishizaki, Phys. Rev. Research 2, 023256 (2020).
  • Cervetto et al. (2004) V. Cervetto, J. Helbing, J. Bredenbeck,  and P. Hamm, J. Chem. Phys. 121, 5935 (2004).
  • Ishizaki (2020b) A. Ishizaki, J. Phys. Soc. Jpn. 89, 015001 (2020b).
  • Zhang et al. (1998) W.-M. Zhang, T. Meier, V. Chernyak,  and S. Mukamel, J. Chem. Phys. 108, 7763 (1998).
  • Yang and Fleming (2002) M. Yang and G. R. Fleming, Chem. Phys. 282, 163 (2002).
  • Fuller et al. (2014) F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius,  and J. P. Ogilvie, Nat. Chem. 6, 706 (2014).
  • Romero et al. (2014) E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas,  and R. van Grondelle, Nat. Phys. 10, 676 (2014).
  • Fujihashi, Fleming, and Ishizaki (2015) Y. Fujihashi, G. R. Fleming,  and A. Ishizaki, J. Chem. Phys. 142, 212403 (2015).
  • Fujihashi, Higashi, and Ishizaki (2018) Y. Fujihashi, M. Higashi,  and A. Ishizaki, J. Phys. Chem. Lett. 9, 4921 (2018).
  • Quesada and Sipe (2014) N. Quesada and J. Sipe, Phys. Rev. A 90, 063840 (2014).
  • Brańczyk et al. (2011) A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph,  and A. G. White, Opt. Express 19, 55 (2011).