This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

]

α\alpha-decay half-lives for even-even isotopes of W to U

Yong-Beom Choi 1991.yb.choi@gmail.com Center for Innovative Physicist Education and Research, Extreme Physics Institute, and Department of Physics, Pusan National University, Busan 46241, Korea    Chang-Hwan Lee clee@pusan.ac.kr Department of Physics and Center for Innovative Physicist Education and Research, Pusan National University, Busan 46241, Korea    Myeong-Hwan Mun Department of Physics and Origin of Matter and Evolution of Galaxy Institute, Soongsil University, Seoul 06978, Korea    Soonchul Choi    Youngman Kim Center for Exotic Nuclear Studies, Institute for Basic Science, Daejeon 34126, Korea
([)
Abstract

We investigate α\alpha-decay half-lives for 74 \leq Z \leq 92 even-even nuclei within the semiclassical WKB approximation in deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc). The α\alpha-particle preformation factors are estimated from cluster-formation model using both empirical AME2020 binding energies and numerical ones obtained by a deep neural network (DNN) study in which the available DRHBc binding energies are used as training set. We find that our estimated α\alpha-decay half-lives are qualitatively in agree with experimental results. We also compare our results with the empirical formulae, ZZCW and UNIV. Based on these observation, we extend our predictions of α\alpha-decay half-lives for the isotopes whose experimental data are not available.

I Introduction

Worldwide, many radioactive ion beam (RIB) facilities have been built or are under construction, and new opportunities for the deep understanding of the nuclear structure are emerging. New RIB facilities include the RIB Factory (RIBF) at RIKEN in Japan Kamigaito:2020pll , the Facility for Rare Isotope Beams (FRIB) in the United States of America Davide2022 , the High Intensity heavy-ion Accelerator Facility (HIAF) in China Zhou:2022pxl , the Facility for Antiproton and Ion Research (FAIR) in Germany Sturm:2010yit , and the Rare isotope Accelerator complex for ON-line experiments (RAON) in Korea Jeong:2018qvi . With the help of these new RIB facilities, more exotic nuclei and their structure can be investigated, and the limits of the existence of exotic nuclei can be explored.

Alpha(α\alpha)-decay has been used as one of the important tools to understand the nuclear structure information. The α\alpha-decay can be relatively easily studied by calculating the half-lives of nuclei. A method of calculating the α\alpha-decay half-lives using the nuclear density distribution constructed is to adopt the semiclassical WKB approximation. In the WKB approximation, the potentials between nucleons are used in the calculation of the half-lives. As an example, cosh nuclear potential Buck:1992zz is employed to calculate the α\alpha-decay half-lives Deng:2017ids ; Sun:2016bbw . To consider the neutron and proton density distributions within the WKB approximation framework, the density-dependent cluster model with two-parameter Fermi distribution has been adopted in various studies Xu:2005hlv ; Xu:2005ukj ; Ismail:2010zza ; Ni:2010zza ; Coban:2012zz ; Maroufi:2019txx ; Rojas-Gamboa:2022zva ; Wang:2022axn .

In this work, deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc) is used to calculate the density distributions. The DRHBc was developed to predict the properties of exotic and stable nuclei by self-consistently incorporating the pairing correlation and continuum effects Zhou:2009sp ; Li:2012gv ; Meng:2015hta ; Zhang:2020wvp ; DRHBcMassTable:2022uhi ; DRHBcMassTable:2022rvn . The pairing interaction is essential to describe open-shell model. Thus, Hartree-Fock with the pairing interaction, such as BCS, had been employed to understand α\alpha-decay near shell closures as well as away from shell closure. However, since Hartree-Fock with BCS is not enough to properly handle exotic nuclei near or away from shell closure Teran:2002ax , the relativistic Hartree-Bogoliubov framework has been developed to provide a better description of the exotic nuclei far from β\beta-stability Vretenar:2005zz . In exotic nuclei, neutron or proton Fermi energy is close to continuum threshold. continuum effects are also treated in the DRHBc. In order to expand the applicability of the DRHBc, angular momentum projection Sun:2021nfb ; Sun:2021nyl , finite amplitude method Sun:2022gdu , and two-dimensional collective Hamiltonian Sun:2022qck have been implemented recently. The DRHBc with PK1 Long:2003dn or PC-PK1 density functional Zhao:2010hi is widely used to explore various attractive exotic phenomena, such as deformed halo structure Sun:2018ekv ; Sun:2020tas , neutron drip line shift by incorporating axial deformation degrees of freedom In:2020asf , bound nuclei beyond two-neutron drip line Zhang:2021ize ; Pan:2021oyq ; He:2021thz , bubble structure Choi:2022rdj , and shape coexistence Choi:2022rdj ; Kim:2021skf . In this study, we employ the DRHBc with PC-PK1 density functional to predict neutron or proton densities.

To calculate the α\alpha-decay half-lives, the preformation factor PαP_{\alpha}, the probability of the α\alpha-particle formation in the parent nucleus, should be also considered. Since it is still difficult to calculate microscopically the preformation factor in relativistic density functional theory, the cluster-formation model was suggested to estimate PαP_{\alpha} SalehAhmed:2013nwa ; Ahmed:2015kra . In the cluster-formation model, PαP_{\alpha} is relatively easy to estimate because only the binding energies of parent nucleus and its neighboring nuclei are required. In this model, α\alpha-particle formation inside the parent nucleus is considered to be the quantum mechanical cluster formation. The PαP_{\alpha} of 212Po in the cluster-formation model is estimated to be 0.221 Ahmed:2015kra . Considering that the PαP_{\alpha} of 212Po in the microscopic calculation is 0.3 Varga:1992zz , the preformation factor estimated by this model is acceptable. In the systematic studies using cluster-formation model, the unpaired nucleons in odd-AA or odd-odd nuclei are expected to be the origin of the reduction in PαP_{\alpha} due to the Pauli blocking Deng:2015qha ; Deng:2016ibo ; Wan:2021wny . It is also found that PαP_{\alpha} in magic number nuclei decreases. We estimate PαP_{\alpha} using the cluster-formation model SalehAhmed:2013nwa . Since the investigation of mass table for the odd-ZZ nuclei in the DRHBc is still in progress, PαP_{\alpha} of even-even nuclei cannot be estimated systematically at the moment. To obtain PαP_{\alpha} of even-even nuclei, we use the binding energies obtained through the results of deep neural network (DNN) study CK2 .

We calculate the α\alpha-decay half-lives for even-even isotopes of W to U using the predicted densities in the DRHBc within the WKB approximation framework. In this study only α\alpha-decay half-lives of even-even nuclei are considered, and therefore, the hindrance by the Pauli blocking will not be studied Deng:2015qha ; Deng:2016ibo ; Wan:2021wny . This article is organized as follows. In Sec. II, the neutron and proton density distributions by the DRHBc is briefly introduced, and the framework of the WKB approximation for calculating α\alpha-decay half-lives is discussed. In Sec. III, we compare the preformation factors obtained using the AME2020 data and deep-learning results, and show the estimated α\alpha-decay half-lives. We discuss the relation between including axial deformation degrees of freedom and the difference between neutron Fermi energy and proton Fermi energy. We finally summarize and discuss this work in Sec. IV.

II Theoretical framework

II.1 Deformed relativistic Hartree-Bogoliubov theory in continuum

In this section, we briefly introduce how the DRHBc includes deformations and pairing correlation. The α\alpha-decay half-lives in the WKB approximation require density distributions for a daughter nucleus and the α\alpha-particle. We introduce how the density distributions are described in the DRHBc.

The relativistic mean-field theory is built from the Lagrangian density Ring:1996qi . The Lagrangian density for point-coupling is described in detail in Ref. A_textbook_of_Jie_Meng . The relativistic Hartree-Bogoliubov equation which incorporates the mean-field and pairing field simultaneously is obtained with the variational method and the Bogoliubov transformation Kucharek:1991arbi ,

(hDλτΔΔhD+λτ)(UkVk)=Ek(UkVk),\displaystyle\begin{pmatrix}h_{\rm D}-\lambda_{\tau}&\Delta\\ -\Delta^{*}&-h^{*}_{\rm D}+\lambda_{\tau}\end{pmatrix}\begin{pmatrix}U_{k}\\ V_{k}\end{pmatrix}=E_{k}\,\begin{pmatrix}U_{k}\\ V_{k}\end{pmatrix}, (1)

where hDh_{\rm D} is Dirac Hamiltonian for the nucleons, λτ\lambda_{\tau} represents the Fermi energy of a nucleon, Δ\Delta is the pairing field, UkU_{k} and VkV_{k} correspond to the quasiparticle wave functions, and EkE_{k} means the energy of a quasiparticle state kk. The pairing potential for particle-particle channel is used

Δkk(𝒓,𝒓)=k~k~Vkk,k~k~pp(𝒓,𝒓)κk~k~(𝒓,𝒓),\displaystyle\Delta_{kk^{{}^{\prime}}}(\bm{r},\bm{r^{{}^{\prime}}})=-\sum_{\tilde{k}\tilde{k}^{{}^{\prime}}}\,V^{pp}_{kk^{{}^{\prime}},\tilde{k}\tilde{k}^{{}^{\prime}}}(\bm{r},\bm{r^{{}^{\prime}}})\kappa_{\tilde{k}\tilde{k}^{{}^{\prime}}}(\bm{r},\bm{r^{{}^{\prime}}}), (2)

where, kk, kk^{{}^{\prime}}, k~\tilde{k}, and k~\tilde{k}^{{}^{\prime}} denote the quasiparticle states and the pairing tensor is defined by κ=VUT\kappa=V^{\ast}U^{T} A_textbook_of_Peter_Ring . For pairing interaction in the particle-particle channel VppV^{pp}, in the DRHBc, the density-dependent zero-range pairing interaction is used

Vpp(𝒓,𝒓)=V02(1Pσ)δ(𝒓𝒓)(1ρ(𝒓)ρsat),\displaystyle V^{pp}(\bm{r},\bm{r^{{}^{\prime}}})=\frac{V_{0}}{2}\left(1-P^{\sigma}\right)\delta(\bm{r}-\bm{r^{{}^{\prime}}})\left(1-\frac{\rho(\bm{r})}{\rho_{\rm sat}}\right), (3)

where ρsat\rho_{\rm sat} is the nuclear saturation density. The Dirac Hamiltonian hDh_{\rm D} for the nucleons is given as A_textbook_of_Jie_Meng

hD=𝜶𝒑+β(M+S(𝒓))+V(𝒓)h_{\rm D}=\bm{\alpha}\cdot\bm{p}\,+\,\beta\left(M+S(\bm{r})\right)\,+\,V(\bm{r}) (4)

where S(𝒓)S(\bm{r}) and V(𝒓)V(\bm{r}) are scalar and vector potentials, which are expressed as

S(𝒓)\displaystyle S(\bm{r}) =\displaystyle= αSρS+βSρS2+γSρS3+δSΔρS,\displaystyle\alpha_{\rm S}\rho_{\rm S}+\beta_{\rm S}\rho^{2}_{\rm S}+\gamma_{\rm S}\rho^{3}_{\rm S}+\delta_{\rm S}\Delta\rho_{\rm S},
V(𝒓)\displaystyle V(\bm{r}) =\displaystyle= αVρV+γVρV3+δVΔρV+eA0+αTVτ3ρTV+δTVτ3ΔρTV.\displaystyle\alpha_{V}\rho_{V}+\gamma_{V}\rho^{3}_{V}+\delta_{V}\Delta\rho_{V}+eA_{0}+\alpha_{\rm TV}\tau_{3}\rho_{\rm TV}+\delta_{\rm TV}\tau_{3}\Delta\rho_{\rm TV}. (5)

The local densities ρS(𝒓)\rho_{\rm S}(\bm{r}), ρV(𝒓)\rho_{\rm V}(\bm{r}), and ρTV(𝒓)\rho_{\rm TV}(\bm{r}) are represented as

ρS(𝒓)=k>0Vk¯(𝒓)Vk(𝒓),\displaystyle\rho_{\rm S}(\bm{r})=\sum_{k>0}\,\bar{V_{k}}(\bm{r})V_{k}(\bm{r}),
ρV(𝒓)=k>0Vk(𝒓)Vk(𝒓),\displaystyle\rho_{\rm V}(\bm{r})=\sum_{k>0}\,V^{\dagger}_{k}(\bm{r})V_{k}(\bm{r}),
ρTV(𝒓)=k>0Vk(𝒓)τ3Vk(𝒓),\displaystyle\rho_{\rm TV}(\bm{r})=\sum_{k>0}\,V^{\dagger}_{k}(\bm{r})\tau_{3}V_{k}(\bm{r}), (6)

where the summation for kk is performed only in positive energy in Fermi sea with the no-sea approximation. In the DRHBc, spatial reflection symmetry is preserved. Thus, the densities (ρS(𝒓)\rho_{\rm S}(\bm{r}), ρV(𝒓)\rho_{\rm V}(\bm{r}), ρTV(𝒓)\rho_{\rm TV}(\bm{r})) are expanded using Legendre polynomials as Price:1987sf

ρ(𝒓)=λLρλL(r)PλL(cosθ).λL=0, 2, 4,.\rho(\bm{r})=\sum_{\lambda_{\rm L}}\,\rho_{\lambda_{\rm L}}(r)P_{\lambda_{\rm L}}(\cos\theta).\,\,\,\lambda_{\rm L}=0,\,2,\,4,\,\cdots. (7)

For the DRHBc, as described in Ref. Choi:2022rdj , the pairing strength V0=325V_{0}=-325 MeVfm3\cdot{\rm fm}^{3} and the angular momentum cutoff for the Dirac Woods-Saxon basis Jmax=23/2J_{\rm max}=23/2~{}\hbar are taken. Other are described in Ref. DRHBcMassTable:2022uhi .

II.2 α\alpha-decay in WKB approximation

The α\alpha-decay process is understood as the formation of α\alpha-particle inside the parent nucleus and penetrating the potential barrier of the daughter nucleus with a given QQ-value QαQ_{\alpha} as in Fig. 1. Therefore, the α\alpha-decay half-life can be calculated within the WKB approximation as Gurvitz:1986uv ; Xu:2006cr

T1/2\displaystyle T_{1/2} =\displaystyle= ln2Γ,\displaystyle\frac{\hbar\ln 2}{\Gamma}, (8)
Γ\displaystyle\Gamma =\displaystyle= PαNf24μPtotal,\displaystyle P_{\alpha}N_{\rm f}\frac{\hbar^{2}}{4\mu}P_{\rm total}, (9)

where Γ\Gamma, PαP_{\alpha}, NfN_{\rm f}, and PtotalP_{\rm total} are decay width, preformation factor of α\alpha-particle, normalization factor for bound-stated wave function, and the total penetration probability, respectively. To calculate the decay width Γ\Gamma, the preformation factor PαP_{\alpha} must be first calculated. However, the preformation factor PαP_{\alpha} in Eq. (9) cannot yet be calculated microscopically in the DRHBc framework. Instead we calculate PαP_{\alpha} as in the cluster-formation model SalehAhmed:2013nwa . The preformation factor of α\alpha-particle PαP_{\alpha} for even-even nuclei is calculated in the cluster-formation model Ahmed:2015kra ; Deng:2015qha as

Pα=2Sp+2SnSαSα,P_{\alpha}=\frac{2S_{\rm p}+2S_{\rm n}-S_{\alpha}}{S_{\alpha}}, (10)

where SpS_{\rm p}, SnS_{\rm n}, SαS_{\alpha} are one-proton, one-neutron, and α\alpha-particle separation energies, respectively. Separation energies can be obtained as

Sp(Z,N)\displaystyle S_{\rm p}(Z,N) =\displaystyle= Eb(Z,N)Eb(Z1,N),\displaystyle E_{\rm b}(Z,N)-E_{\rm b}(Z-1,N), (11)
Sn(Z,N)\displaystyle S_{\rm n}(Z,N) =\displaystyle= Eb(Z,N)Eb(Z,N1),\displaystyle E_{\rm b}(Z,N)-E_{\rm b}(Z,N-1), (12)
Sα(Z,N)\displaystyle S_{\alpha}(Z,N) =\displaystyle= Eb(Z,N)Eb(Z2,N2),\displaystyle E_{\rm b}(Z,N)-E_{\rm b}(Z-2,N-2), (13)

where Eb(Z,N)E_{\rm b}(Z,N) is the binding energy of given proton number ZZ and neutron number NN. We take Eb(Z,N)E_{\rm b}(Z,N) from both AME2020 and the results of the DNN study CK2 since, at the moment, the binding energies for odd-AA nuclei are not available in the DRHBc framework. The normalization factor and the total penetration probability for axially deformed nuclei in Eq. (9) are given as

Nf\displaystyle N_{\rm f} =\displaystyle= 120πNf(β)sinβdβ,\displaystyle\frac{1}{2}\int_{0}^{\pi}N_{\rm f}(\beta)\sin\beta d\beta, (14)
Ptotal\displaystyle P_{\rm total} =\displaystyle= 120πexp[2r2(β)r3(β)k(r,β)𝑑r]sinβdβ,\displaystyle\frac{1}{2}\int_{0}^{\pi}\exp\bigg{[}-2\int_{r_{2}(\beta)}^{r_{3}(\beta)}k(r^{\prime},\beta)d{r}^{\prime}\bigg{]}\sin\beta d\beta, (15)

where the normalization factor Nf(β)N_{\rm f}(\beta) for the orientation angle between the α\alpha-particle and the symmetry axis of the daughter nucleus β\beta and k(r,β)k(r,\beta) are expressed as

Nf(β)\displaystyle N_{\rm f}(\beta) =\displaystyle= [r1(β)r2(β)drk(r,β)cos2(r1(β)r𝑑r′′k(r′′,β)π4)]1[r1(β)r2(β)dr2k(r,β)]1,\displaystyle\bigg{[}\int_{r_{1}(\beta)}^{r_{2}(\beta)}\frac{d{r}^{\prime}}{k(r^{\prime},\beta)}\cos^{2}\bigg{(}\int_{r_{1}(\beta)}^{r^{\prime}}d{r}^{\prime\prime}k(r^{\prime\prime},\beta)-\frac{\pi}{4}\bigg{)}\bigg{]}^{-1}\simeq\bigg{[}\int_{r_{1}(\beta)}^{r_{2}(\beta)}\frac{dr^{\prime}}{2k(r^{\prime},\beta)}\bigg{]}^{-1}, (16)
k(r,β)\displaystyle k(r,\beta) =\displaystyle= 2μ2|QαV(r,β)|,\displaystyle\sqrt{\frac{2\mu}{\hbar^{2}}|Q_{\alpha}-V(r,\beta)|}, (17)

and μ\mu is the reduced mass of the α\alpha-particle and daughter nucleus, r1,2,3(β)r_{1,2,3}(\beta) are the classical turning points which are marked in Fig. 1, and β\beta is the azimuthal angle between the symmetry axis of daughter nucleus and the direction of the produced α\alpha-particle as in Fig. 2. Note that the outer turning point r3r_{3} is determined mostly by the Coulomb potential. We take empirical QαexpQ_{\alpha}^{\rm exp} from AME2020 Wang:2021xhn .

Refer to caption
Figure 1: The potentials between 208Pb and α\alpha-particle as a function of rr. The angular momentum l=0l=0 is adopted. The double-folding potential VNV_{N} is effective in the range of r10r\leq 10 fm. If a daughter nucleus is axially defomed, the potential between the daughter nucleus and α\alpha-particle is considered as a function of rr and the angle from the symmetry axis β\beta.
Refer to caption
Figure 2: Schematic picture to describe the coordinates used in the double-folding model. The letter β\beta is for the orientation angle between the α\alpha-particle and the symmetry axis of the daughter nucleus, and 𝒔=𝒓𝒓d+𝒓α{\bm{s}}={\bm{r}}-{\bm{r}}_{\rm d}+{\bm{r}}_{\alpha}.

In the density-dependent cluster model, the potential V(r,β)V(r,\beta) consists of centrifugal potential Vl(r)V_{l}(r), nucleus-nucleus double-folding potential VN(r,β)V_{\rm N}(r,\beta), and Coulomb potential VC(r,β)V_{\rm C}(r,\beta) Wan:2021wny , as plotted in Fig. 1,

V(r,β)=Vl(r)+VN(r,β)+VC(r,β).V(r,\beta)=V_{l}(r)+V_{\rm N}(r,\beta)+V_{\rm C}(r,\beta). (18)

The centrifugal potential is expressed using the Langer modified form Langer:1937qr ; Buck:1992zza ; Buck:1993sku

Vl(r)=22μ(l+1/2)2r2,V_{l}(r)=\frac{\hbar^{2}}{2\mu}\frac{(l+1/2)^{2}}{r^{2}}, (19)

where ll is the quantum number corresponding to the orbital angular momentum transferred by α\alpha-particle. As we only consider the α\alpha-decay of even-even nuclei, we apply l=0l=0 Xu:2006fq . The nuclear and Coulomb potentials are built from double-folding model Bertsch:1977sg ; Satchler:1979ni ; Kobos:1982pdw ; Kobos:1984zz :

VN(r,β)\displaystyle V_{\rm N}(r,\beta) =\displaystyle= λ𝑑𝒓d𝑑𝒓αρd(𝒓d)ρα(𝒓α)v(𝒔),\displaystyle\lambda\int d{\bm{r}}_{\rm d}d{\bm{r}}_{\alpha}\rho_{\rm d}({\bm{r}}_{\rm d})\rho_{\alpha}({\bm{r}}_{\alpha})v({\bm{s}}), (20)
VC(r,β)\displaystyle V_{\rm C}(r,\beta) =\displaystyle= 𝑑𝒓d𝑑𝒓αρdproton(𝒓d)ραproton(𝒓α)e2s,\displaystyle\int d{\bm{r}}_{\rm d}d{\bm{r}}_{\alpha}\rho_{\rm d}^{\rm proton}({\bm{r}}_{\rm d})\rho_{\alpha}^{\rm proton}({\bm{r}}_{\alpha})\frac{e^{2}}{s}, (21)

where we take e2=1.4399764e^{2}=1.4399764 MeV\cdotfm and plot 𝒔=𝒓+𝒓α𝒓d{\bm{s}}={\bm{r}}+{\bm{r}}_{\alpha}-{\bm{r}}_{\rm d} in Fig. 2. We set the density distribution of α\alpha-particle as standard Gaussian form ρα(r)=0.4229exp(0.7024r2)\rho_{\alpha}(r)=0.4229\exp(-0.7024r^{2}) Satchler:1979ni . From Eq. (15), it can be seen that α\alpha-decay half-lives depend largely on the wave number k(r,β)k(r,\beta) in the range of r=r2r3r=r_{2}\sim r_{3}. We use the M3Y effective nucleon-nucleon interaction v(𝐬)v({\bf s}) in MeV unit,

v(𝒔)=7999e4s/(4s)2134e2.5s/(2.5s)276(10.005Qα/Aα)δ(𝒔),v({\bm{s}})=7999e^{-4s}/(4s)-2134e^{-2.5s}/(2.5s)-276(1-0.005Q_{\alpha}/A_{\alpha})\delta({\bm{s}}), (22)

for considering the double-folding potential Bertsch:1977sg ; Kobos:1982pdw . In the above equation, AαA_{\alpha} is the mass number of α\alpha-particle and δ\delta is the delta function.

To calculate VCV_{\rm C} and VNV_{\rm N}, we use ρd\rho_{\rm d} and ρdproton\rho_{\rm d}^{\rm proton} calculated from the DRHBc;

VNorC(r,β)\displaystyle V_{\rm N\ \textrm{or}\ C}(r,\beta) =\displaystyle= λL=0,2,4,VNorC,λL(r,β).\displaystyle\sum_{\lambda_{\rm L}=0,2,4,...}V_{{\rm N\ \textrm{or}\ C},\lambda_{\rm L}}(r,\beta). (23)

By using the Fourier transformation, one can derive VN,λLV_{\rm N,\lambda_{L}} and VC,λLV_{\rm C,\lambda_{L}} as

VN,λL(r,β)\displaystyle V_{{\rm N},\lambda_{\rm L}}(r,\beta) =\displaystyle= 2π0𝑑kk2jλL(kr)ρ~α(k)[0𝑑rdrd2ρd,λL(rd)jλL(krd)]v~(k)PλL(cosβ),\displaystyle\frac{2}{\pi}\int_{0}^{\infty}dkk^{2}j_{\lambda_{\rm L}}(kr)\tilde{\rho}_{\alpha}(k)\bigg{[}\int^{\infty}_{0}dr_{\rm d}r_{\rm d}^{2}\rho_{{\rm d},\lambda_{\rm L}}(r_{\rm d})j_{\lambda_{\rm L}}(kr_{\rm d})\bigg{]}\tilde{v}(k)P_{\lambda_{\rm L}}(\cos\beta), (24)
VC,λL(r,β)\displaystyle V_{{\rm C},\lambda_{\rm L}}(r,\beta) =\displaystyle= 8e20𝑑kjλL(kr)ρ~αproton(k)[0𝑑rdrd2ρd,λLproton(rd)jλL(krd)]PλL(cosβ),\displaystyle 8e^{2}\int_{0}^{\infty}dkj_{\lambda_{\rm L}}(kr)\tilde{\rho}_{\alpha}^{\rm proton}(k)\bigg{[}\int^{\infty}_{0}dr_{\rm d}r_{\rm d}^{2}\rho_{{\rm d},\lambda_{\rm L}}^{\rm proton}(r_{\rm d})j_{\lambda_{\rm L}}(kr_{\rm d})\bigg{]}P_{\lambda_{\rm L}}(\cos\beta), (25)

where jλL(kr)j_{\lambda_{\rm L}}(kr) is the spherical Bessel function. The terms ρ~α(k),ρ~d,λL(k)\tilde{\rho}_{\alpha}(k),\tilde{\rho}_{{\rm d},\lambda_{\rm L}}(k), and v~(k)\tilde{v}(k) are Fourier transformation of ρα(r),ρd,λL(r)\rho_{\alpha}(r),\rho_{{\rm d},\lambda_{\rm L}}(r), and v(r)v(r), respectively. The forms of ρ~α(k)\tilde{\rho}_{\alpha}(k) and v~(k)\tilde{v}(k) are written in Appendix A of Ref. Bai:2018hbe . The generalized equation is written in Ref. 1983ZPhyA.310..287R . The property exp(i𝒌𝒓)=λLiλL(2λL+1)jλL(kr)PλL(cosθ)\exp(i{\bm{k}}\cdot{\bm{r}})=\sum_{\lambda_{\rm L}}i^{\lambda_{\rm L}}(2\lambda_{\rm L}+1)j_{\lambda_{\rm L}}(kr)P_{\lambda_{\rm L}}(\cos\theta) is used for applying Fourier transformation. We take λL,max=8\lambda_{\rm L,max}=8 to be consistent with the current DRHBc results.

In Eq. (20), λ\lambda is the normalization factor and related to the strength of nuclear potential. It is determined by the Bohr-Sommerfeld quantization condition Xu:2006fq

0πr1(β)r2(β)2μ2[QαV(r,β)]sinβdrdβ=(2n+1)π2=(GL+1)π2,\int_{0}^{\pi}\int_{r_{1}(\beta)}^{r_{2}(\beta)}\sqrt{\frac{2\mu}{\hbar^{2}}[Q_{\alpha}-V(r,\beta)]}\sin\beta drd\beta=(2n+1)\frac{\pi}{2}=(G-L+1)\frac{\pi}{2}, (26)

where r1(β),r2(β)r_{1}(\beta),~{}r_{2}(\beta) are the set of classical turning points (Qα=V(r,β)Q_{\alpha}=V(r,\beta)), and QαQ_{\alpha} and GG are the α\alpha-decay energy and global quantum number, respectively. Note that there is no additional constraint to fix the global quantum number GG. We take GG as follows Buck:1992zz ; Buck:1996zza

G=22(Npar>126),\displaystyle G=22~{}(N_{\rm par}>126),
G=20(82<Npar126),\displaystyle G=20~{}(82<N_{\rm par}\leq 126),

where NparN_{\rm par} is the neutron number of parent nucleus.

III Results

III.1 Preformation factor

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3: Binding energies for selected nuclei. (a): Comparison of binding energies per nucleon between AME2020 and deep neural network (DNN) study in which the DRHBc results are used as training set as a function of parent neutron number NparN_{\rm par} for even-even isotopes. (b): Difference in the binding energies between DNN study and AME2020 for even-even nuclei. (c): Difference in the binding energies as a function of the quadrupole deformation β2,par\beta_{2,\rm par} of the parent nucleus. (d): same as (b) for even-odd and odd-even isotopes. Nuclei corresponding to each color in (a-c) are summarized in (b). The empty marks in (b) and (c) represent nuclei with Fermi energy difference larger than 6 MeV as shown in Fig. 4. Deformation parameters β2,par\beta_{2,{\rm par}} in the DRHBc are summarized in Fig. 5.

In order to obtain the decay width, in Eq. (9), the preformation factor PαP_{\alpha} has to be provided. As discussed in the previous section, we calculate PαP_{\alpha} using binding energies by following the cluster-formation model SalehAhmed:2013nwa as defined in Eq. (10). Since, at the moment, the binding energies for odd-even and odd-odd nuclei are not available in the DRHBc framework, SnS_{\rm n} and SpS_{\rm p} cannot be obtained in the DRHBc. Therefore, we use the binding energies obtained from a DNN study CK2 in which available results from the DRHBc calculations and the AME2020 data are used as a training set. When the binding energies are available both in the DRHBc and AME2020, those of AME2020 were used in the training set. To obtain the odd-even and odd-odd binding energies using a deep neural network, the binding energies of even-even and even-odd isotopes from the DRHBc calculations are used as a training set. In addition, to include some information about odd-odd and odd-even isotopes to the deep neural network the authors of  CK2 also use the binding energies in AME2020 Wang:2021xhn as a training set. The inputs of the neutral network are the proton number (ZZ), neutron number (NN), nuclear pairing (δ\delta) and shell effect (PP) which are defined by

δ\displaystyle\delta =\displaystyle= (1)Z+(1)N2,\displaystyle\frac{(-1)^{Z}+(-1)^{N}}{2}, (27)
P\displaystyle P =\displaystyle= νPνnνP+νn,\displaystyle\frac{\nu_{P}\nu_{n}}{\nu_{P}+\nu_{n}}\,, (28)

where νP\nu_{P} (νN\nu_{N}) is the difference between the proton (neutron) number of an isotope of interest and the nearest magic numbers. For more details of the neutral network to predict the odd-odd and odd-even masses based on the DRHBc and AME2020, we refer to CK2 . For the comparison, we also use the experimental binding energy and QαexpQ_{\alpha}^{\rm exp} from AME2020 Wang:2021xhn . Binding energies used in this work are summarized in Tables 1 and 2.

Figure 3 (a) summarizes the binding energy per nucleon for the selected even-even nuclei obtained by the DNN study. For the comparison, experimental binding energies Wang:2021xhn are plotted with black color. In Fig. 3 (b), differences in the binding energies between the DNN study and experimental results are given as a function of the parent neutron number. For nuclei with small neutron number (Npar<126N_{\rm par}<126), the differences between the DNN study and experiment are small compared to nuclei with large neutron number (Npar126N_{\rm par}\geq 126). This may indicate that DNN study results are more consistent with experiment values for the nuclei with Npar<N_{\rm par}< 126. In Fig. 3 (c), the differences in the binding energies between the DNN study and experimental results are summarized as a function of quadrupole deformation β2,par\beta_{2,\rm par}. This figure shows no strong correlation between the binding energy of the DNN study and the deformation. In Fig. 3 (d), the differences for even-odd and odd-even nuclei are summarized. Overall, it shows similar behavior as even-even nuclei in Fig. 3 (b), but the deviations of the DNN study results from experimental values for even-odd nuclei are relatively larger than those for odd-even nuclei. It may indicate that the DNN study is more sensitive to neutron distributions than proton distributions.

Refer to caption
Figure 4: Fermi energy difference between protons and neutrons in the DRHBc. Vertical dashed line correspond to the neutron magic number Npar=126N_{\rm par}=126. Horizontal dashed line corresponds to λpλn=6\lambda_{p}-\lambda_{n}=6 MeV. Empty marks are used for nuclei above the horizontal dashed line.
Refer to caption
Figure 5: Quadrupole deformation of parent nuclei β2,par\beta_{2,{\rm par}} in the DRHBc.

Figure 4 shows the Fermi energy differences and deformation parameters in the DRHBc. The Fermi energy differences are larger than 6 MeV for most of nuclei with Npar<126N_{\rm par}<126 except for 180W, 186Os, 190Pt, and 208Po as in Fig. 4. The experimental α\alpha-decay half-lives of 180W, 186Os, and 190Pt are important because the half-lives of nearby nuclei are dominated by other decay modes, such as β\beta-decay. The α\alpha-decay half-lives of 180W, 186Os, and 190Pt are longest in this study (1025.710^{25.7}, 1022.810^{22.8}, and 1019.18310^{19.183} s, respectively). These nuclei can be used for verifying whether the half-life calculation provides consistent results for long experimental α\alpha-decay half-lives. Also, these nuclei can be used to verify whether the half-life for defomed nuclei is accurate since quadrupole deformations of these nuclei are β2,par=0.243\beta_{2,\rm par}=0.243 for 180W, β2,par=0.209\beta_{2,\rm par}=0.209 for 186Os, and β2,par=0.163\beta_{2,\rm par}=0.163 for 190Pt, respectively Moller:2015fba . The relation, |β2,par||\beta_{2,\rm par}| for 180W >> |β2,par||\beta_{2,\rm par}| for 186Os >> |β2,par||\beta_{2,\rm par}| for 190Pt, can also be confirmed in Fig. 5. In this figure, one can confirm β2,par=0.0\beta_{2,{\rm par}}=0.0 for the nuclei with neutron magic number Npar=126N_{\rm par}=126.

Refer to caption
Refer to caption
Refer to caption
Figure 6: Preformation factors as a function of parent neutron number NparN_{\rm par}. (a) Estimated PαP_{\alpha} from DNN study. (b) Estimated PαP_{\alpha} with experimental binding energies (AME2020). In (a) nuclei with empty mark in (170Hg, 178Pb, 186Po, 208Th) correspond to the nuclei for which some of the experimental results are not available to obtain PαP_{\alpha}. (c) The difference between PαP_{\alpha} of (a) and (b).

In Fig. 6 (a) and (b), preformation factors obtained with the DNN study CK2 and experimental data (AME2020) are summarized. In Fig. 6 (a), nuclei with empty marks (170Hg, 178Pb, 186Po, 208Th) correspond to the nuclei for which experimental results are not enough to obtain PαP_{\alpha}. Note that binding energies for 169Hg, 177Pb, 185Po, and 207Th are missing in AME2020. In Fig. 6 (b), PαP_{\alpha} are relatively small at the magic number Npar=126N_{\rm par}=126 and increase as neutron number increases to Npar=128N_{\rm par}=128, independently of nuclei; i.e., Pα,exp(Np=128)>Pα,exp(Np=126)P_{\alpha,{\rm exp}}(N_{\rm p}=128)>P_{\alpha,\rm exp}(N_{\rm p}=126). Results with AME2012 also show the similar behavior Deng:2015qha . Except Rn, such a trend exists for the result of the DNN study as in Fig. 6 (a). The differences between the DNN study and experimental results are summarized in Fig. 6 (c). In this figure, below the neutron magic number of parent nuclei Npar=126N_{\rm par}=126, 202,210Ra isotopes show the largest PαP_{\alpha} diffenrece in the isotopes. For the magic number Npar=126N_{\rm par}=126, 210Po shows smallest preformation factor in the DNN study and experiment. Above the magic number, 214,216,218Po give largest differences in PαP_{\alpha}. If one compare Fig. 6 with Figs. 4 and 5, there are no direct correlations between PαP_{\alpha} and the properties of nuclei, such as the Fermi energy difference and the deformation parameter β2,par\beta_{2,{\rm par}}.

III.2 α\alpha-decay half-lives

In this section, we present our calculated α\alpha-decay half-lives with given preformation factors as discussed in the previous section. In order to assess the quality of our results, we use experimental binding energy and QαexpQ_{\alpha}^{\rm exp} from AME2020 Wang:2021xhn . For the comparison with experiment, we take the experimental α\alpha-decay half-lives from NUASE2020 Kondev:2021lzi . Because several decay modes can exist for each nucleus, we consider only 67 experimental data for which the branching ratio of α\alpha-decay are greater than 99%. The calculated α\alpha-decay half-lives are also summarized in Tables 1 and 2.

Refer to caption
Refer to caption
Figure 7: Our calculated α\alpha-decay half-lives as a function of parent neutron number NparN_{\rm par}. For the easy comparison, Po and Rn are shown in (b) separately. Note that proton-rich nuclei (empty marks) correspond to λpλn>6\lambda_{p}-\lambda_{n}>6 MeV as in Fig. 4 and stable nuclei (filled marks) correspond to λpλn<6\lambda_{p}-\lambda_{n}<6 MeV as in Fig. 4. Vertical dashed lines correspond to the neutron magic number Npar=126N_{\rm par}=126. The width of the horizontal shaded region represents 2σ2\sigma where σ=0.437\sigma=0.437 is the standard deviation defined in Eq. (29).
Refer to caption
Refer to caption
Figure 8: Comparison of our calculated α\alpha-decay half-lives and those with empirical formulae (ZZCW and UNIV) with experimental results. (a) comparison between the results of the DRHBc combined with preformation factors estimated by the DNN study results and experimental values. (b) comparison between the results of empirical formulae and experimental results. Horizontal shaded regions are the same as in Fig. 7 with standard deviation σ=0.437\sigma=0.437. The calculated half-lives for 232Th show the biggest discrepancies with the experimental data even in calculations using empirical formulae.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 9: Comparison of our calculated α\alpha-decay half-lives between our approach and the empirical formulae (ZZCW and UNIV) for the nuclei whose α\alpha-decay half-lives are not measured experimentally. (a) as a function of QαQ_{\alpha} and (b) as a function of parent neutron number NparN_{\rm par}. Empty marks represent proton-rich nuclei. In this plot, all isotopes with Qα>0Q_{\alpha}>0 between W and U are included.

In Fig. 7, our calculated α\alpha-decay half-lives are compared with experimental values. In order to compare our calculated α\alpha-decay half-lives with experimental data, we evaluate the standard deviation σ\sigma,

σ=1Ni=1N(log10T1/2,icallog10T1/2,iexp)2,\sigma=\sqrt{\frac{1}{N}\sum_{i=1}^{N}\left(\log_{10}T_{1/2,i}^{\rm cal}-\log_{10}T_{1/2,i}^{\rm exp}\right)^{2}}, (29)

which are plotted as horizontal shaded regions in Fig. 7. Overall, considering the uncertainties in the binding energy estimations by the DNN study, our calculated α\alpha-decay half lives are consistent with the experimental values within ±σ\pm\sigma. If we compare Fig. 7 with Fig. 5, the calculated α\alpha-decay half lives are consistent with experimental values independently of deformation parameter β2,par\beta_{2,{\rm par}}. Below the neutron magic number Npar=126N_{\rm par}=126, 170Hg, 186Po, 202Ra, and 208Th lie out of the shaded region. The reason for this stems partly from limitation in PαP_{\alpha} calculations. Note that Pα,expP_{\alpha,{\rm exp}} for 170Hg, 186Po, and 208Th are not available because binding energies for 169Hg, 185Po, and 207Th are not available in AME2020. In the DRHBc, λp>0\lambda_{\rm p}>0 for 170Hg, 186Po, and 208Th, it may be more difficult to measure the binding energies of 169Hg, 185Po, and 208Th. The predictions from theoretical models such as the DRHBc will be important to study such nuclei. The discrepancy in the α\alpha-decay half-life of 202Ra is partly because Pα<Pα,expP_{\alpha}<P_{\alpha,{\rm exp}}. Incorrectly estimated PαP_{\alpha} is not the only cause of discrepancies in the half-lives. For example, the difference in preformation factor of 210Ra is large, but the half-life comparison result is very accurate. Beyond the neutron magic number of 130<Npar130<N_{\rm par} for Ra and Th isotopes, the predicted α\alpha-decay half-lives exceed experimental values, as shown in Fig. 7 (a). This mismatch can be hardly explained by overestimated PαP_{\alpha} and further study needs to be conducted. For 130<Npar<136130<N_{\rm par}<136 of Po and Rn isotopes (see Fig. 7 (b)), our calculated α\alpha-decay half-lives are larger than experimental values. This is partly because our estimated PαP_{\alpha} is smaller than the experimental value as in Fig. 6.

In Fig. 8, the comparion of our calculated α\alpha-decay half-lives with the experimental α\alpha-decay results (AME2020) is shown as function of the experimental α\alpha-decay results. In addition, the comparison of the results with empirical formulae, ZZCW Zhang:2017pwm and UNIV Poenaru:2011zz with the experimental α\alpha-decay results is also presented as function of the experimental α\alpha-decay results. The details of the empirical formulae are summarized in the Appendix and results from our study with DNN and empirical formulae are summarized in Tables 3 and 4. In Fig. 8 (b) σZZCW\sigma_{\rm ZZCW} = 0.671 and σUNIV\sigma_{\rm UNIV} = 0.403 which are comparable to σ=0.437\sigma=0.437 for our DRHBc++DNN study calculation. If we consider only proton-rich nuclei (empty marks in Fig. 8), σDRHBc+DNNstudy=0.405\sigma_{\rm DRHBc+DNNstudy}=0.405 and σUNIV\sigma_{\rm UNIV} = 0.467. This may indicate that DRHBc++DNN study is reasonably consistent with experiment for both stable and proton-rich nuclei. 232Th, the most stable isotope of Th, is exceptional because the estimated α\alpha-decay half-lives by empirical formulae as well as our method are much larger than experiment. Further study is required to investigate this largest discrepancy. Based on these observations, we extend our study to the nuclei whose α\alpha-decay half-lives are not measured experimentally.

In Fig. 9, we compare our predicted α\alpha-decay half-lives with empirical formulae results for the nuclei whose α\alpha-decay half-lives are not available in experiments. The differences between our prediction and empirical formulae become significant as QαQ_{\alpha} decreases. The difference is significant in the range roughly 110<Npar<140110<N_{\rm par}<140 mainly due to small QαQ_{\alpha}. Note that our calcultions are consistent with empirical formulae results within ±0.7\pm 0.7 for Ra, Th, and U isotopes. For Pb isotopes, the differences between our results and the empirical formulae tends to be more apparent.

IV Summary

In this work, we calculated α\alpha-decay half-lives of 74 \leq Z \leq 92 even-even isotopes in the framework of the semiclassical WKB approximation with the DRHBc.

In order to calculate the α\alpha-decay half-lives, it is first necessary to estimate PαP_{\alpha}. By adopting the cluster-formation model, we estimated PαP_{\alpha} using the binding energies of the parent nucleus and its neighboring nuclei. Since the mass table for odd-ZZ nuclei in the DRHBc is in progress, we used the binding energies obtained by DNN study. In this study, the available DRHBc binding energies for even-ZZ nuclei, and the AME2020 are used as training set for the missing odd-ZZ nuclei binding energies. When the binding energies are available both in the DRHBc and AME2020, those of AME2020 were used in the training set. Comparing the binding energies obtained by DNN study with AME2020 binding energies for both even-ZZ and odd-ZZ nuclei, we found that the binding energies obtained by DNN study are consistent with the AME2020 data within 0.1%\sim 0.1\% uncertainty. Using the binding energies from the DNN study, we calculated PαP_{\alpha}.

We found that our estimated α\alpha-decay half-lives are qualitatively in agreement with experimental data (NUBASE2020). In our calculation, since there exist several decay modes for each nucleus, we took only 67 experimental data for which the branching ratios of α\alpha-decay modes are greater than 99%\%. The standard deviation σ\sigma between our results and experimental data is 0.437, and those between empirical formulae and experimental data are 0.671 for ZZCW and 0.403 for UNIV. The α\alpha-decay half-life prediction for 232Th, the most stable isotope of Th, shows largest discrepancy both in our approach and in the empirical formulae. We noticed that the differences in α\alpha-decay half-lives estimated in our approach and experimental data are not so sensitive to quadrupole deformation of the parent nucleus β2,par\beta_{2,{\rm par}}.

Based on these observation, we extended our predictions of α\alpha-decay half-lives for the isotopes whose experimental data are not available. For these isotopes, we compare our results with those obtained using the empirical formulae ZZCW and UNIV, and found that the standard deviations of half-lives for the isotopes with small QαQ_{\alpha} increase roughly by a factor of two.

In this study, we focused on α\alpha-decay half-lives by using the density distributions calculated from the DRHBc within the WKB approximation. Extension to one-proton emission within the same approximation is in progress.

ACKNOWLEDGMENTS

The authors are grateful to the members of the DRHBc Mass Table Collaboration for useful discussions, to Kaiyuan Zhang for providing the DRHBc even-even mass table data, and to Seonghyun Kim for providing some of the DRHBc results. YBC and CHL were supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT and Ministry of Education) (No. 2023R1A2C1005398). M.-H.M. was supported by the NRF grant funded by the Korea government(MSIT) (Grants No. NRF-2020R1A2C3006177, No. NRF-2021R1F1A1060066, and No. NRF-2021R1A6A1A03043957). Y. K. was supported in part by the Institute for Basic Science (IBS-R031-D1). This work was supported by the National Supercomputing Center with supercomputing resources including technical support (KSC-2022-CRE-0333, KSC-2023-CRE-0170).

References

  • (1) O. Kamigaito et al., in 22nd International Conference on Cyclotrons and their Applications (CYC2019) p. MOB01.
  • (2) C. Davide, Nature 605, 10.1038/d41586-022-00711-5 (2022).
  • (3) X. Zhou and J. Yang, AAPPS Bulletin 32 (2022).
  • (4) C. Sturm, B. Sharkov, and H. Stöcker, Nucl. Phys. A 834, 682c (2010).
  • (5) S. Jeong, P. Papakonstantinou, H. Ishiyama, and Y. Kim, J. Korean Phys. Soc. 73, 516 (2018).
  • (6) B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. C 45, 2247 (1992).
  • (7) J.-G. Deng, J.-C. Zhao, D. Xiang, and X.-H. Li, Phys. Rev. C 96, 024318 (2017).
  • (8) X.-D. Sun, J.-G. Deng, D. Xiang, P. Guo, and X.-H. Li, Phys. Rev. C 95, 044303 (2017).
  • (9) C. Xu and Z. Ren, Nucl. Phys. A 760, 303 (2005).
  • (10) C. Xu and Z. Ren, Nucl. Phys. A 753, 174 (2005).
  • (11) M. Ismail, A. Y. Ellithi, M. M. Botros, and A. Adel, Phys. Rev. C 81, 024602 (2010).
  • (12) D. Ni and Z. Ren, Phys. Rev. C 81, 024315 (2010).
  • (13) A. Coban, O. Bayrak, A. Soylu, and I. Boztosun, Phys. Rev. C 85, 044324 (2012).
  • (14) N. Maroufi, V. Dehghani, and S. A. Alavi, Nucl. Phys. A 983, 77 (2019).
  • (15) D. F. Rojas-Gamboa, J. E. P. Velasquez, N. G. Kelkar, and N. J. Upadhyay, Phys. Rev. C 105, 034311 (2022).
  • (16) Z. Wang and Z. Ren, Phys. Rev. C 106, 024311 (2022).
  • (17) S.-G. Zhou, J. Meng, P. Ring, and E.-G. Zhao, Phys. Rev. C 82, 011301 (2010).
  • (18) L. Li, J. Meng, P. Ring, E.-G. Zhao, and S.-G. Zhou, Phys. Rev. C 85, 024312 (2012).
  • (19) J. Meng and S. G. Zhou, J. Phys. G 42, 093101 (2015).
  • (20) K. Zhang et al., Phys. Rev. C 102, 024314 (2020).
  • (21) K. Zhang et al., Atom. Data Nucl. Data Tabl. 144, 101488 (2022).
  • (22) C. Pan et al., Phys. Rev. C 106, 014316 (2022).
  • (23) E. Teran, V. E. Oberacker, and A. S. Umar, Phys. Rev. C 67, 064314 (2003).
  • (24) D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Phys. Rept. 409, 101 (2005).
  • (25) X.-X. Sun and S.-G. Zhou, Phys. Rev. C 104, 064319 (2021).
  • (26) X.-X. Sun and S.-G. Zhou, Sci. Bull. 66, 2072 (2021).
  • (27) X. Sun and J. Meng, Phys. Rev. C 105, 044312 (2022).
  • (28) W. Sun et al., Chin. Phys. C 46, 064103 (2022).
  • (29) W.-h. Long, J. Meng, N. Van Giai, and S.-G. Zhou, Phys. Rev. C 69, 034319 (2004).
  • (30) P. Zhao, Z. Li, J. Yao, and J. Meng, Phys. Rev. C 82, 054319 (2010).
  • (31) X.-X. Sun, J. Zhao, and S.-G. Zhou, Phys. Lett. B 785, 530 (2018).
  • (32) X.-X. Sun, J. Zhao, and S.-G. Zhou, Nucl. Phys. A 1003, 122011 (2020).
  • (33) E. J. In, Y. Kim, P. Papakonstantinou, and S.-W. Hong, Int. J. Mod. Phys. E 30, 2150009 (2021).
  • (34) K. Zhang et al., Phys. Rev. C 104, 021301 (2021).
  • (35) C. Pan et al., Phys. Rev. C 104, 024331 (2021).
  • (36) X.-T. He, C. Wang, K.-Y. Zhang, and C.-W. Shen, Chin. Phys. C 45, 101001 (2021).
  • (37) Y.-B. Choi, C.-H. Lee, M.-H. Mun, and Y. Kim, Phys. Rev. C 105, 024306 (2022).
  • (38) S. Kim, M.-H. Mun, M.-K. Cheoun, and E. Ha, Phys. Rev. C 105, 034340 (2022).
  • (39) S. M. Saleh Ahmed, R. Yahaya, S. Radiman, and M. Samudi Yasir, J. Phys. G 40, 065105 (2013).
  • (40) S. M. S. Ahmed et al., Eur. Phys. J. A 51, 13 (2015).
  • (41) K. Varga, R. G. Lovas, and R. J. Liotta, Phys. Rev. Lett. 69, 37 (1992).
  • (42) D. Deng, Z. Ren, D. Ni, and Y. Qian, J. Phys. G 42, 075106 (2015).
  • (43) D. Deng and Z. Ren, Phys. Rev. C 93, 044326 (2016).
  • (44) N. Wan and J. Fan, Phys. Rev. C 104, 064320 (2021).
  • (45) S.-C. Choi, K. Kim, and Y. Kim, Deep learning for nuclear masses in deformed relativistic hartree-bogoliubov theory in continuum, in preparation.
  • (46) P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).
  • (47) J. Meng, Relativistic Density Functional for Nuclear Structure, (World Scientific, Singapore, 2016).
  • (48) H. Kucharek and P. Ring, Hadrons and Nuclei 339, 23 (1991).
  • (49) P. Ring and P. Schuck, The Nuclear Many-body Problem, (Springer, Heidelberg 1980).
  • (50) C. Price and G. Walker, Phys. Rev. C 36, 354 (1987).
  • (51) S. A. Gurvitz and G. Kaelbermann, Phys. Rev. Lett. 59, 262 (1987).
  • (52) C. Xu, Z. Ren, and Z. Ren, Phys. Rev. C 73, 041301 (2006).
  • (53) M. Wang, W. J. Huang, F. G. Kondev, G. Audi, and S. Naimi, Chin. Phys. C 45, 030003 (2021).
  • (54) R. E. Langer, Phys. Rev. 51, 669 (1937).
  • (55) B. Buck, A. C. Merchant, and S. M. Perez, Phys. Rev. C 45, 1688 (1992).
  • (56) B. Buck, A. C. Merchant, and S. M. Perez, Atom. Data Nucl. Data Tabl. 54, 53 (1993).
  • (57) C. Xu and Z. Ren, Phys. Rev. C 74, 014304 (2006).
  • (58) G. Bertsch, J. Borysowicz, H. McManus, and W. G. Love, Nucl. Phys. A 284, 399 (1977).
  • (59) G. R. Satchler and W. G. Love, Phys. Rept. 55, 183 (1979).
  • (60) A. M. Kobos, B. A. Brown, P. E. Hodgson, G. R. Satchler, and A. Budzanowski, Nucl. Phys. A 384, 65 (1982).
  • (61) A. M. Kobos, B. A. Brown, R. Lindsay, and G. R. Satchler, Nucl. Phys. A 425, 205 (1984).
  • (62) D. Bai and Z. Ren, Chin. Phys. C 42, 124102 (2018).
  • (63) M. J. Rhoades-Brown, V. E. Oberacker, M. Seiwert, and W. Greiner, Z. Phys. 310, 287 (1983).
  • (64) B. Buck, J. C. Johnston, A. C. Merchant, and S. M. Perez, Phys. Rev. C 53, 2841 (1996).
  • (65) P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, Atom. Data Nucl. Data Tabl. 109-110, 1 (2016).
  • (66) F. G. Kondev, M. Wang, W. J. Huang, S. Naimi, and G. Audi, Chin. Phys. C 45, 030001 (2021).
  • (67) S. Zhang, Y. Zhang, J. Cui, and Y. Wang, Phys. Rev. C 95, 014311 (2017).
  • (68) D. N. Poenaru, R. A. Gherghescu, and W. Greiner, Phys. Rev. C 83, 014601 (2011).
  • (69) B. Sahu, R. Paira, and B. Rath, Nucl. Phys. A 908, 40 (2013).
  • (70) D. T. Akrawy and D. N. Poenaru, J. Phys. G 44, 105105 (2017).
Table 1: The calculated half-lives with our method, ZZCW, and UNIV. The experimental data QαexpQ_{\alpha}^{\rm exp} and T1/2expT^{\rm exp}_{1/2} is taken from AME2020 Wang:2021xhn and NUBASE2020 Kondev:2021lzi , respectively. The units of QαexpQ_{\alpha}^{\rm exp}, T1/2T_{1/2}, and EbE_{\rm b} are MeV, s, and MeV/c2/c^{2}, respectively.
Parent nucleus Experimental data β2,p\beta_{2,{\rm p}} (DRHBc) EbE_{\rm b} Preformation factor T1/2calT^{\rm cal}_{1/2}
a QαexpQ_{\alpha}^{\rm exp} a T1/2expT^{\rm exp}_{1/2} AME2020 DNN study AME2020 DNN study Our result ZZCW UNIV
158W 6.612 (1.43 ±\pm~{}0.18) ×103\times~{}10^{-3} - 0.064 - 1241.090 1241.344 0.243 0.243 1.74 ×103\times~{}10^{-3} 2.53 ×104\times~{}10^{-4} 1.49 ×103\times~{}10^{-3}
180W 2.515 (5.02 ±\pm~{}2) ×1025\times~{}10^{25} - 0.296 - 1444.580 1444.079 0.162 0.142 6.61 ×1025\times~{}10^{25} 4.80 ×1025\times~{}10^{25} 2.54 ×1025\times~{}10^{25}
162Os 6.768 (2.1 ±\pm~{}0.1) ×103\times~{}10^{-3} - 0.109 - 1262.628 1262.576 0.248 0.272 2.91 ×103\times~{}10^{-3} 5.39 ×104\times~{}10^{-4} 2.65 ×103\times~{}10^{-3}
186Os 2.821 (6.3 ±\pm~{}3.5) ×1022\times~{}10^{22} - 0.261 - 1484.807 1484.272 0.157 0.159 1.15 ×1023\times~{}10^{23} 8.64 ×1022\times~{}10^{22} 4.15 ×1022\times~{}10^{22}
166Pt 7.292 (2.94 ±\pm~{}0.62) ×104\times~{}10^{-4} - 0.000 - 1283.678 1283.769 0.266 0.259 3.32 ×104\times~{}10^{-4} 6.18 ×105\times~{}10^{-5} 3.13 ×104\times~{}10^{-4}
168Pt 6.990 (2.02 ±\pm~{}0.1) ×103\times~{}10^{-3} - 0.121 - 1305.968 1305.688 0.278 0.262 2.61 ×103\times~{}10^{-3} 6.03 ×104\times~{}10^{-4} 2.56 ×103\times~{}10^{-3}
170Pt 6.707 (1.393 ±\pm~{}0.016) ×102\times~{}10^{-2} - 0.135 - 1327.400 1327.420 0.241 0.260 2.12 ×102\times~{}10^{-2} 5.79 ×103\times~{}10^{-3} 2.09 ×102\times~{}10^{-2}
190Pt 3.269 (1.52 ±\pm~{}0.01) ×1019\times~{}10^{19}

-

0.159 -
1509.834 1509.868 0.203 0.178 1.38 ×1019\times~{}10^{19} 1.17 ×1019\times~{}10^{19} 5.60 ×1018\times~{}10^{18}
170Hg 7.773 (3.1 ±\pm~{}2.5) ×104\times~{}10^{-4}

-

0.083 -
1304.070 1304.988 0.257 6.89 ×105\times~{}10^{-5} 1.21 ×105\times~{}10^{-5} 6.15 ×105\times~{}10^{-5}
172Hg 7.524 (2.31 ±\pm~{}0.09) ×104\times~{}10^{-4}

-

0.088 -
1326.740 1326.931 0.273 0.250 3.40 ×104\times~{}10^{-4} 6.73 ×105\times~{}10^{-5} 2.97 ×104\times~{}10^{-4}
174Hg 7.233 (2.0 ±\pm~{}0.4) ×103\times~{}10^{-3}

-

0.093 -
1348.463 1348.616 0.247 0.242 2.55 ×103\times~{}10^{-3} 5.68 ×104\times~{}10^{-4} 2.12 ×103\times~{}10^{-3}
178Pb 7.789 (2.5 ±\pm~{}0.8) ×104\times~{}10^{-4} - 0.000 - 1368.969 1369.559 0.246 3.16 ×104\times~{}10^{-4} 5.73 ×105\times~{}10^{-5} 2.25 ×104\times~{}10^{-4}
180Pb 7.419 (4.1 ±\pm~{}0.3) ×103\times~{}10^{-3} - 0.000 - 1390.626 1390.864 0.248 0.250 3.98 ×103\times~{}10^{-3} 8.46 ×104\times~{}10^{-4} 2.69 ×103\times~{}10^{-3}
182Pb 7.066 (5.5 ±\pm~{}0.5) ×102\times~{}10^{-2} - 0.000 - 1411.652 1412.208 0.234 0.289 4.68 ×102\times~{}10^{-2} 1.34 ×102\times~{}10^{-2} 3.48 ×102\times~{}10^{-2}
186Po 8.501 (3.4 ±\pm~{}1.2) ×105\times~{}10^{-5} - 0.327 - 1431.446 1431.001 0.311 1.20 ×105\times~{}10^{-5} 2.21 ×106\times~{}10^{-6} 9.89 ×106\times~{}10^{-6}
188Po 8.082 (2.7 ±\pm~{}0.3) ×104\times~{}10^{-4} - 0.313 - 1452.235 1452.182 0.275 0.306 1.65 ×104\times~{}10^{-4} 3.43 ×105\times~{}10^{-5} 1.21 ×104\times~{}10^{-4}
190Po 7.693 (2.45 ±\pm~{}0.05) ×103\times~{}10^{-3}

-

0.212 -
1472.396 1472.482 0.262 0.251 1.70 ×103\times~{}10^{-3} 5.34 ×104\times~{}10^{-4} 1.51 ×103\times~{}10^{-3}
192Po 7.320 (3.22 ±\pm~{}0.03) ×102\times~{}10^{-2}

-

0.204 -
1492.042 1491.907 0.257 0.244 2.68 ×102\times~{}10^{-2} 9.20 ×103\times~{}10^{-3} 2.10 ×102\times~{}10^{-2}
194Po 6.987 (3.92 ±\pm~{}0.04) ×101\times~{}10^{-1}

-

0.192 -
1511.123 1510.906 0.235 0.232 3.93 ×101\times~{}10^{-1} 1.40 ×101\times~{}10^{-1} 2.62 ×101\times~{}10^{-1}
208Po 5.216 (9.145 ±\pm~{}0.006) ×107\times~{}10^{7} - 0.000 - 1630.586 1631.017 0.135 0.152 7.16 ×107\times~{}10^{7} 1.76 ×107\times~{}10^{7} 1.15 ×107\times~{}10^{7}
210Po 5.408 (1.19557 ±\pm~{}0.00002) ×107\times~{}10^{7} - 0.000 - 1645.213 1644.833 0.105 0.087 9.59 ×106\times~{}10^{6} 1.30 ×106\times~{}10^{6} 9.37 ×105\times~{}10^{5}
212Po 8.954 (2.944 ±\pm~{}0.008) ×107\times~{}10^{-7} - 0.000 - 1655.772 1656.192 0.221 0.167 2.97 ×107\times~{}10^{-7} 4.44 ×108\times~{}10^{-8} 2.52 ×107\times~{}10^{-7}
214Po 7.834 (1.6347 ±\pm~{}0.0003) ×104\times~{}10^{-4} - 0.000 - 1666.015 1665.734 0.213 0.142 3.59 ×104\times~{}10^{-4} 7.11 ×105\times~{}10^{-5} 2.06 ×104\times~{}10^{-4}
216Po 6.906 (1.440 ±\pm~{}0.006) ×101\times~{}10^{-1} - 0.089 - 1675.905 1675.435 0.205 0.122 4.89 ×101\times~{}10^{-1} 1.19 ×101\times~{}10^{-1} 1.99 ×101\times~{}10^{-1}
218Po 6.115 (1.858 ±\pm~{}0.007) ×102\times~{}10^{2} - 0.107 - 1685.474 1685.046 0.196 0.111 8.26 ×102\times~{}10^{2} 2.45 ×102\times~{}10^{2} 2.57 ×102\times~{}10^{2}
194Rn 7.862 (7.8 ±\pm~{}1.6) ×104\times~{}10^{-4} - 0.166 - 1492.829 1492.661 0.261 0.249 2.57 ×103\times~{}10^{-3} 9.70 ×104\times~{}10^{-4} 2.34 ×103\times~{}10^{-3}
196Rn 7.617 (4.7 ±\pm~{}1.1) ×103\times~{}10^{-3} - 0.155 - 1512.721 1512.443 0.256 0.236 1.58 ×102\times~{}10^{-2} 5.88 ×103\times~{}10^{-3} 1.23 ×102\times~{}10^{-2}
212Rn 6.385 (1.43 ±\pm~{}0.07) ×103\times~{}10^{3} - 0.000 - 1652.497 1652.796 0.121 0.227 6.13 ×102\times~{}10^{2} 1.92 ×102\times~{}10^{2} 1.90 ×102\times~{}10^{2}
214Rn 9.208 (2.59 ±\pm~{}0.03) ×107\times~{}10^{-7} - 0.000 - 1664.300 1665.136 0.228 0.224 2.63 ×107\times~{}10^{-7} 5.54 ×108\times~{}10^{-8} 2.82 ×107\times~{}10^{-7}
216Rn 8.198 (2.9 ±\pm~{}0.4) ×105\times~{}10^{-5} - 0.060 - 1675.870 1675.719 0.237 0.197 1.25 ×104\times~{}10^{-4} 3.48 ×105\times~{}10^{-5} 9.71 ×105\times~{}10^{-5}
218Rn 7.262 (3.375 ±\pm~{}0.015) ×102\times~{}10^{-2} - 0.106 - 1687.048 1687.230 0.234 0.248 8.65 ×102\times~{}10^{-2} 4.36 ×102\times~{}10^{-2} 7.01 ×102\times~{}10^{-2}
220Rn 6.405 (5.56 ±\pm~{}0.01) ×101\times~{}10^{1} - 0.126 - 1697.796 1697.858 0.221 0.196 1.50 ×102\times~{}10^{2} 1.16 ×102\times~{}10^{2} 1.12 ×102\times~{}10^{2}
222Rn 5.590 (3.3018 ±\pm~{}0.0002) ×105\times~{}10^{5} - 0.142 - 1708.179 1708.144 0.222 0.185 9.37 ×105\times~{}10^{5} 1.06 ×106\times~{}10^{6} 6.35 ×105\times~{}10^{5}
202Ra 7.880 (4.1 ±\pm~{}1.1) ×103\times~{}10^{-3} - 0.144 - 1552.485 1551.693 0.248 0.181 1.89 ×102\times~{}10^{-2} 4.61 ×103\times~{}10^{-3} 8.64 ×103\times~{}10^{-3}
204Ra 7.637 (6 ±\pm~{}0.9) ×102\times~{}10^{-2} - 0.131 - 1571.641 1571.806 0.231 0.256 8.14 ×102\times~{}10^{-2} 2.86 ×102\times~{}10^{-2} 4.65 ×102\times~{}10^{-2}
206Ra 7.415 (2.4 ±\pm~{}0.2) ×101\times~{}10^{-1} - 0.115 - 1590.279 1590.252 0.219 0.207 5.59 ×101\times~{}10^{-1} 1.62 ×101\times~{}10^{-1} 2.31 ×101\times~{}10^{-1}
210Ra 7.151 (4.0 ±\pm~{}0.1) ×100\times~{}10^{0} - 0.049 - 1625.687 1626.120 0.187 0.255 3.90 ×100\times~{}10^{0} 1.34 ×100\times~{}10^{0} 1.63 ×100\times~{}10^{0}
214Ra 7.273 (2.437 ±\pm~{}0.016) ×100\times~{}10^{0} - 0.000 - 1658.323 1658.615 0.138 0.204 1.58 ×100\times~{}10^{0} 3.95 ×101\times~{}10^{-1} 5.08 ×101\times~{}10^{-1}
216Ra 9.526 (1.72 ±\pm~{}0.07) ×107\times~{}10^{-7} - 0.000 - 1671.267 1671.962 0.239 0.228 2.19 ×107\times~{}10^{-7} 4.79 ×108\times~{}10^{-8} 2.27 ×107\times~{}10^{-7}
218Ra 8.540 (2.591 ±\pm~{}0.014) ×105\times~{}10^{-5} - 0.059 - 1684.055 1684.379 0.243 0.264 5.53 ×105\times~{}10^{-5} 2.09 ×105\times~{}10^{-5} 5.53 ×105\times~{}10^{-5}
220Ra 7.594 (1.81 ±\pm~{}0.12) ×102\times~{}10^{-2} - 0.093 - 1696.571 1696.703 0.239 0.210 4.61 ×102\times~{}10^{-2} 2.13 ×102\times~{}10^{-2} 3.25 ×102\times~{}10^{-2}
222Ra 6.678 (3.36 ±\pm~{}0.04) ×101\times~{}10^{1} - 0.122 - 1708.666 1709.011 0.199 0.209 7.94 ×101\times~{}10^{1} 6.89 ×101\times~{}10^{1} 6.14 ×101\times~{}10^{1}
224Ra 5.789 (3.1377 ±\pm~{}0.0012) ×105\times~{}10^{5} - 0.151 - 1720.303 1720.964 0.184 0.187 8.38 ×105\times~{}10^{5} 1.04 ×106\times~{}10^{6} 5.54 ×105\times~{}10^{5}
226Ra 4.871 (5.049 ±\pm~{}0.02) ×1010\times~{}10^{10} - 0.187 - 1731.604 1731.951 0.182 0.158 1.98 ×1011\times~{}10^{11} 3.16 ×1011\times~{}10^{11} 9.84 ×1010\times~{}10^{10}
208Th 8.202 (2.4 ±\pm~{}1.2) ×103\times~{}10^{-3} - 0.118 - 1591.735 1591.922 0.251 7.38 ×103\times~{}10^{-3} 2.39 ×103\times~{}10^{-3} 4.16 ×103\times~{}10^{-3}
210Th 8.069 (1.60 ±\pm~{}0.36) ×102\times~{}10^{-2} - 0.085 - 1610.506 1610.464 0.234 0.227 2.04 ×102\times~{}10^{-2} 5.94 ×103\times~{}10^{-3} 9.55 ×103\times~{}10^{-3}
212Th 7.958 (3.17 ±\pm~{}0.13) ×102\times~{}10^{-2} - 0.040 - 1628.597 1628.480 0.196 0.227 4.61 ×102\times~{}10^{-2} 1.28 ×102\times~{}10^{-2} 1.92 ×102\times~{}10^{-2}
214Th 7.827 (8.7 ±\pm~{}1) ×102\times~{}10^{-2} - 0.000 - 1646.156 1646.998 0.195 0.276 9.85 ×102\times~{}10^{-2} 3.28 ×102\times~{}10^{-2} 4.55 ×102\times~{}10^{-2}
216Th 8.072 (2.628 ±\pm~{}0.016) ×102\times~{}10^{-2} - 0.000 - 1662.695 1662.952 0.159 0.209 2.00 ×102\times~{}10^{-2} 4.55 ×103\times~{}10^{-3} 7.22 ×103\times~{}10^{-3}
218Th 9.849 (1.22 ±\pm~{}0.05) ×107\times~{}10^{-7} - 0.000 - 1676.769 1677.516 0.251 0.256 1.63 ×107\times~{}10^{-7} 4.07 ×108\times~{}10^{-8} 1.80 ×107\times~{}10^{-7}
220Th 8.973 (1.02 ±\pm~{}0.03) ×105\times~{}10^{-5} - 0.018 - 1690.589 1690.809 0.243 0.229 2.28 ×105\times~{}10^{-5} 7.25 ×106\times~{}10^{-6} 1.92 ×105\times~{}10^{-5}
222Th 8.133 (2.24 ±\pm~{}0.03) ×103\times~{}10^{-3} - 0.067 - 1704.218 1704.640 0.232 0.249 4.50 ×103\times~{}10^{-3} 2.28 ×103\times~{}10^{-3} 3.71 ×103\times~{}10^{-3}

Table 2: (Continued.)(Continued.)
Parent nucleus Experimental data β2,p\beta_{2,{\rm p}} (DRHBc) EbE_{\rm b} Preformation factor T1/2calT^{\rm cal}_{1/2}
a QαexpQ_{\alpha}^{\rm exp} a T1/2expT^{\rm exp}_{1/2} AME2020 DNN study AME2020 DNN study Our result ZZCW UNIV
224Th 7.299 (1.04 ±\pm~{}0.02) ×100\times~{}10^{0} - 0.081 - 1717.568 1717.850 0.198 0.204 2.83 ×100\times~{}10^{0} 1.81 ×100\times~{}10^{0} 1.81 ×100\times~{}10^{0}
226Th 6.453 (1.842 ±\pm~{}0.002) ×103\times~{}10^{3} - 0.184 - 1730.509 1730.909 0.182 0.188 5.84 ×103\times~{}10^{3} 5.81 ×103\times~{}10^{3} 3.56 ×103\times~{}10^{3}
228Th 5.520 (3.1951 ±\pm~{}0.002) ×107\times~{}10^{7} - 0.227 - 1743.078 1743.705 0.183 0.213 1.70 ×108\times~{}10^{8} 3.47 ×108\times~{}10^{8} 1.24 ×108\times~{}10^{8}
230Th 4.770 (2.38 ±\pm~{}0.01) ×1012\times~{}10^{12} - 0.243 - 1755.129 1755.316 0.183 0.176 6.62 ×1012\times~{}10^{12} 2.30 ×1013\times~{}10^{13} 5.31 ×1012\times~{}10^{12}
232Th 4.082 (4.40 ±\pm~{}0.3) ×1016\times~{}10^{16} - 0.263 - 1766.688 1766.413 0.160 0.140 1.56 ×1018\times~{}10^{18} 8.25 ×1018\times~{}10^{18} 1.27 ×1018\times~{}10^{18}
216U 8.531 (6.9 ±\pm~{}2.9) ×103\times~{}10^{-3} - 0.000 - 1648.362 1649.859 0.206 0.225 4.73 ×103\times~{}10^{-3} 1.13 ×103\times~{}10^{-3} 1.83 ×103\times~{}10^{-3}
218U 8.775 (3.54 ±\pm~{}0.91) ×104\times~{}10^{-4} - 0.000 - 1665.677 1666.961 0.183 0.234 8.62 ×104\times~{}10^{-4} 1.90 ×104\times~{}10^{-4} 3.53 ×104\times~{}10^{-4}
222U 9.481 (4.7 ±\pm~{}0.7) ×106\times~{}10^{-6} - 0.000 - 1695.584 1696.134 0.245 0.238 5.57 ×106\times~{}10^{-6} 1.73 ×106\times~{}10^{-6} 4.79 ×106\times~{}10^{-6}
224U 8.628 (3.96 ±\pm~{}0.17) ×104\times~{}10^{-4} - 0.000 - 1710.257 1710.541 0.247 0.210 1.08 ×103\times~{}10^{-3} 4.13 ×104\times~{}10^{-4} 6.97 ×104\times~{}10^{-4}
226U 7.701 (2.69 ±\pm~{}0.06) ×101\times~{}10^{-1} - 0.000 - 1724.813 1724.947 0.207 0.221 7.27 ×101\times~{}10^{-1} 4.44 ×101\times~{}10^{-1} 4.38 ×101\times~{}10^{-1}
230U 5.992 (1.748 ±\pm~{}0.002) ×106\times~{}10^{6} - 0.246 - 1752.812 1752.545 0.187 0.184 3.61 ×106\times~{}10^{6} 9.83 ×106\times~{}10^{6} 3.63 ×106\times~{}10^{6}
232U 5.414 (2.17 ±\pm~{}0.01) ×109\times~{}10^{9} - 0.258 - 1765.960 1765.870 0.169 0.200 2.37 ×109\times~{}10^{9} 1.73 ×1010\times~{}10^{10} 4.55 ×109\times~{}10^{9}
234U 4.858 (7.747 ±\pm~{}0.02) ×1012\times~{}10^{12} - 0.276 - 1778.568 1778.714 0.150 0.183 9.06 ×1012\times~{}10^{12} 7.76 ×1013\times~{}10^{13} 1.48 ×1013\times~{}10^{13}
236U 4.573 (7.391 ±\pm~{}0.01) ×1014\times~{}10^{14} - 0.290 - 1790.411 1790.047 0.153 0.131 1.34 ×1015\times~{}10^{15} 9.99 ×1015\times~{}10^{15} 1.60 ×1015\times~{}10^{15}
238U 4.270 (1.408 ±\pm~{}0.001) ×1017\times~{}10^{17} - 0.288 - 1801.690 1800.749 0.137 0.104 4.26 ×1017\times~{}10^{17} 3.02 ×1018\times~{}10^{18} 4.04 ×1017\times~{}10^{17}

Table 3: The predicted half-lives with our method, ZZCW, and UNIV. The experimental data QαexpQ_{\alpha}^{\rm exp} for the DRHBc, ZZCW, and UNIV is taken from AME2020 Wang:2021xhn . The units of QαexpQ_{\alpha}^{\rm exp} and T1/2calT^{\rm cal}_{1/2} are MeV and s, respectively.
Parent nucleus a QαexpQ_{\alpha}^{\rm exp} a Our result ZZCW UNIV
a PαP_{\alpha} a T1/2calT^{\rm cal}_{1/2} T1/2calT^{\rm cal}_{1/2} T1/2calT^{\rm cal}_{1/2}
160W 6.066 0.273 1.39 ×101\times~{}10^{-1} 1.02 ×101\times~{}10^{-1} 1.27 ×101\times~{}10^{-1}
162W 5.678 0.259 4.33 ×100\times~{}10^{0} 3.19 ×100\times~{}10^{0} 4.36 ×100\times~{}10^{0}
164W 5.278 0.244 2.59 ×102\times~{}10^{2} 1.77 ×102\times~{}10^{2} 2.62 ×102\times~{}10^{2}
166W 4.856 0.255 3.51 ×104\times~{}10^{4} 2.27 ×104\times~{}10^{4} 3.54 ×104\times~{}10^{4}
168W 4.501 0.202 4.90 ×106\times~{}10^{6} 2.37 ×106\times~{}10^{6} 3.81 ×106\times~{}10^{6}
170W 4.143 0.184 1.09 ×109\times~{}10^{9} 4.86 ×108\times~{}10^{8} 7.89 ×108\times~{}10^{8}
172W 3.838 0.186 1.58 ×1011\times~{}10^{11} 8.48 ×1010\times~{}10^{10} 1.36 ×1011\times~{}10^{11}
174W 3.602 0.219 8.00 ×1012\times~{}10^{12} 7.49 ×1012\times~{}10^{12} 1.15 ×1013\times~{}10^{13}
176W 3.336 0.171 2.94 ×1015\times~{}10^{15} 2.13 ×1015\times~{}10^{15} 3.07 ×1015\times~{}10^{15}
178W 3.013 0.143 1.13 ×1019\times~{}10^{19} 5.71 ×1018\times~{}10^{18} 7.65 ×1018\times~{}10^{18}
182W 1.764 0.171 6.30 ×1040\times~{}10^{40} 1.37 ×1040\times~{}10^{40} 1.62 ×1040\times~{}10^{40}
184W 1.649 0.157 1.04 ×1044\times~{}10^{44} 2.04 ×1043\times~{}10^{43} 2.09 ×1043\times~{}10^{43}
186W 1.116 0.158 5.96 ×1064\times~{}10^{64} 6.08 ×1063\times~{}10^{63} 5.93 ×1063\times~{}10^{63}
164Os 6.479 0.266 2.39 ×102\times~{}10^{-2} 2.08 ×102\times~{}10^{-2} 2.40 ×102\times~{}10^{-2}
166Os 6.143 0.263 3.79 ×101\times~{}10^{-1} 3.18 ×101\times~{}10^{-1} 3.96 ×101\times~{}10^{-1}
168Os 5.816 0.240 8.18 ×100\times~{}10^{0} 5.93 ×100\times~{}10^{0} 7.76 ×100\times~{}10^{0}
170Os 5.537 0.238 1.29 ×102\times~{}10^{2} 9.02 ×101\times~{}10^{1} 1.21 ×102\times~{}10^{2}
172Os 5.224 0.241 3.66 ×103\times~{}10^{3} 2.61 ×103\times~{}10^{3} 3.53 ×103\times~{}10^{3}
174Os 4.871 0.210 1.45 ×105\times~{}10^{5} 1.85 ×105\times~{}10^{5} 2.47 ×105\times~{}10^{5}
176Os 4.541 0.197 1.37 ×107\times~{}10^{7} 1.59 ×107\times~{}10^{7} 2.04 ×107\times~{}10^{7}
178Os 4.258 0.209 9.37 ×108\times~{}10^{8} 1.14 ×109\times~{}10^{9} 1.38 ×109\times~{}10^{9}
180Os 3.860 0.194 1.05 ×1012\times~{}10^{12} 1.07 ×1012\times~{}10^{12} 1.19 ×1012\times~{}10^{12}
182Os 3.373 0.185 3.38 ×1016\times~{}10^{16} 2.49 ×1016\times~{}10^{16} 2.54 ×1016\times~{}10^{16}
184Os 2.959 0.165 1.80 ×1021\times~{}10^{21} 9.15 ×1020\times~{}10^{20} 8.35 ×1020\times~{}10^{20}
188Os 2.143 0.176 1.25 ×1034\times~{}10^{34} 4.45 ×1033\times~{}10^{33} 3.10 ×1033\times~{}10^{33}
190Os 1.376 0.190 3.74 ×1055\times~{}10^{55} 7.22 ×1054\times~{}10^{54} 4.69 ×1054\times~{}10^{54}
172Pt 6.463 0.235 1.62 ×101\times~{}10^{-1} 1.31 ×101\times~{}10^{-1} 1.44 ×101\times~{}10^{-1}
174Pt 6.183 0.260 1.63 ×100\times~{}10^{0} 1.41 ×100\times~{}10^{0} 1.55 ×100\times~{}10^{0}
176Pt 5.885 0.245 1.16 ×101\times~{}10^{1} 2.24 ×101\times~{}10^{1} 2.42 ×101\times~{}10^{1}
178Pt 5.573 0.206 3.18 ×102\times~{}10^{2} 5.32 ×102\times~{}10^{2} 5.54 ×102\times~{}10^{2}
180Pt 5.276 0.222 8.09 ×103\times~{}10^{3} 1.46 ×104\times~{}10^{4} 1.43 ×104\times~{}10^{4}
182Pt 4.951 0.201 5.15 ×105\times~{}10^{5} 8.07 ×105\times~{}10^{5} 7.28 ×105\times~{}10^{5}
184Pt 4.599 0.193 7.96 ×107\times~{}10^{7} 1.04 ×108\times~{}10^{8} 8.46 ×107\times~{}10^{7}
186Pt 4.320 0.212 5.97 ×109\times~{}10^{9} 7.73 ×109\times~{}10^{9} 5.54 ×109\times~{}10^{9}
188Pt 4.007 0.195 1.56 ×1012\times~{}10^{12} 1.69 ×1012\times~{}10^{12} 1.05 ×1012\times~{}10^{12}
192Pt 2.424 0.178 4.96 ×1030\times~{}10^{30} 2.54 ×1030\times~{}10^{30} 1.19 ×1030\times~{}10^{30}
194Pt 1.523 0.160 5.56 ×1052\times~{}10^{52} 9.82 ×1051\times~{}10^{51} 4.21 ×1051\times~{}10^{51}
196Pt 0.813 0.168 7.85 ×1091\times~{}10^{91} 3.52 ×1090\times~{}10^{90} 1.53 ×1090\times~{}10^{90}
206Pt 0.865 0.127 2.07 ×1087\times~{}10^{87} 3.35 ×1086\times~{}10^{86} 4.22 ×1085\times~{}10^{85}
176Hg 6.897 0.234 3.25 ×102\times~{}10^{-2} 2.81 ×102\times~{}10^{-2} 2.49 ×102\times~{}10^{-2}
178Hg 6.577 0.286 1.35 ×101\times~{}10^{-1} 3.59 ×101\times~{}10^{-1} 3.13 ×101\times~{}10^{-1}
180Hg 6.258 0.262 2.19 ×100\times~{}10^{0} 5.76 ×100\times~{}10^{0} 4.84 ×100\times~{}10^{0}
182Hg 5.996 0.236 2.86 ×101\times~{}10^{1} 6.88 ×101\times~{}10^{1} 5.43 ×101\times~{}10^{1}
184Hg 5.660 0.234 9.62 ×102\times~{}10^{2} 2.19 ×103\times~{}10^{3} 1.59 ×103\times~{}10^{3}
186Hg 5.204 0.234 2.12 ×105\times~{}10^{5} 4.28 ×105\times~{}10^{5} 2.82 ×105\times~{}10^{5}
188Hg 4.709 0.222 1.98 ×108\times~{}10^{8} 3.28 ×108\times~{}10^{8} 1.92 ×108\times~{}10^{8}
190Hg 4.069 0.176 9.48 ×1012\times~{}10^{12} 1.07 ×1013\times~{}10^{13} 5.51 ×1012\times~{}10^{12}
192Hg 3.385 0.179 1.98 ×1019\times~{}10^{19} 1.80 ×1019\times~{}10^{19} 8.03 ×1018\times~{}10^{18}
194Hg 2.698 0.178 1.78 ×1028\times~{}10^{28} 6.50 ×1027\times~{}10^{27} 2.49 ×1027\times~{}10^{27}
196Hg 2.038 0.175 3.05 ×1040\times~{}10^{40} 7.84 ×1039\times~{}10^{39} 2.57 ×1039\times~{}10^{39}
198Hg 1.381 0.175 4.38 ×1060\times~{}10^{60} 6.15 ×1059\times~{}10^{59} 1.78 ×1059\times~{}10^{59}
208Hg 1.930 0.141 6.74 ×1042\times~{}10^{42} 6.90 ×1042\times~{}10^{42} 5.35 ×1041\times~{}10^{41}
210Hg 1.515 0.132 1.67 ×1055\times~{}10^{55} 1.02 ×1055\times~{}10^{55} 8.59 ×1053\times~{}10^{53}
212Hg 1.095 0.114 3.04 ×1074\times~{}10^{74} 7.97 ×1073\times~{}10^{73} 7.55 ×1072\times~{}10^{72}
Table 4: (Continued.)(Continued.)
Parent nucleus a QαexpQ_{\alpha}^{\rm exp} a Our result ZZCW UNIV
a PαP_{\alpha} a T1/2calT^{\rm cal}_{1/2} T1/2calT^{\rm cal}_{1/2} T1/2calT^{\rm cal}_{1/2}
184Pb 6.774 0.265 1.56 ×101\times~{}10^{-1} 7.92 ×101\times~{}10^{-1} 3.35 ×101\times~{}10^{-1}
186Pb 6.471 0.238 2.53 ×100\times~{}10^{0} 9.16 ×100\times~{}10^{0} 4.23 ×100\times~{}10^{0}
188Pb 6.109 0.253 7.73 ×101\times~{}10^{1} 2.43 ×102\times~{}10^{2} 1.17 ×102\times~{}10^{2}
190Pb 5.698 0.236 6.79 ×103\times~{}10^{3} 1.61 ×104\times~{}10^{4} 7.75 ×103\times~{}10^{3}
192Pb 5.222 0.194 2.50 ×106\times~{}10^{6} 4.19 ×106\times~{}10^{6} 1.93 ×106\times~{}10^{6}
194Pb 4.738 0.201 4.41 ×109\times~{}10^{9} 3.05 ×109\times~{}10^{9} 1.28 ×109\times~{}10^{9}
196Pb 4.238 0.207 1.41 ×1013\times~{}10^{13} 9.51 ×1012\times~{}10^{12} 3.50 ×1012\times~{}10^{12}
198Pb 3.692 0.156 8.85 ×1017\times~{}10^{17} 4.25 ×1017\times~{}10^{17} 1.31 ×1017\times~{}10^{17}
200Pb 3.150 0.146 6.27 ×1023\times~{}10^{23} 2.65 ×1023\times~{}10^{23} 6.59 ×1022\times~{}10^{22}
202Pb 2.589 0.143 5.40 ×1031\times~{}10^{31} 1.98 ×1031\times~{}10^{31} 3.83 ×1030\times~{}10^{30}
204Pb 1.969 0.126 1.97 ×1044\times~{}10^{44} 4.92 ×1043\times~{}10^{43} 7.26 ×1042\times~{}10^{42}
206Pb 1.135 0.118 2.85 ×1075\times~{}10^{75} 2.59 ×1074\times~{}10^{74} 3.16 ×1073\times~{}10^{73}
210Pb 3.792 0.111 6.14 ×1016\times~{}10^{16} 1.30 ×1016\times~{}10^{16} 9.17 ×1015\times~{}10^{15}
212Pb 3.292 0.098 8.14 ×1021\times~{}10^{21} 8.04 ×1020\times~{}10^{20} 8.98 ×1020\times~{}10^{20}
214Pb 2.692 0.115 5.61 ×1029\times~{}10^{29} 3.30 ×1028\times~{}10^{28} 5.48 ×1028\times~{}10^{28}
216Pb 2.065 0.095 4.24 ×1041\times~{}10^{41} 9.76 ×1039\times~{}10^{39} 2.30 ×1040\times~{}10^{40}
218Pb 1.434 0.079 6.26 ×1060\times~{}10^{60} 4.89 ×1058\times~{}10^{58} 1.59 ×1059\times~{}10^{59}
196Po 6.658 0.249 6.15 ×100\times~{}10^{0} 6.05 ×100\times~{}10^{0} 3.91 ×100\times~{}10^{0}
198Po 6.310 0.180 2.17 ×102\times~{}10^{2} 1.58 ×102\times~{}10^{2} 8.87 ×101\times~{}10^{1}
200Po 5.982 0.200 5.40 ×103\times~{}10^{3} 4.71 ×103\times~{}10^{3} 2.18 ×103\times~{}10^{3}
202Po 5.701 0.164 1.41 ×105\times~{}10^{5} 1.16 ×105\times~{}10^{5} 4.21 ×104\times~{}10^{4}
204Po 5.485 0.184 2.23 ×106\times~{}10^{6} 1.75 ×106\times~{}10^{6} 4.76 ×105\times~{}10^{5}
206Po 5.327 0.164 1.68 ×107\times~{}10^{7} 1.56 ×107\times~{}10^{7} 3.03 ×106\times~{}10^{6}
220Po 5.329 0.178 3.98 ×106\times~{}10^{6} 7.82 ×105\times~{}10^{5} 1.63 ×106\times~{}10^{6}
222Po 4.432 0.103 3.60 ×1012\times~{}10^{12} 2.65 ×1011\times~{}10^{11} 6.50 ×1011\times~{}10^{11}
224Po 3.355 0.088 2.83 ×1022\times~{}10^{22} 1.04 ×1021\times~{}10^{21} 2.85 ×1021\times~{}10^{21}
198Rn 7.349 0.211 1.37 ×101\times~{}10^{-1} 7.93 ×102\times~{}10^{-2} 8.37 ×102\times~{}10^{-2}
200Rn 7.043 0.242 1.43 ×100\times~{}10^{0} 9.71 ×101\times~{}10^{-1} 8.86 ×101\times~{}10^{-1}
202Rn 6.774 0.197 1.79 ×101\times~{}10^{1} 1.08 ×101\times~{}10^{1} 8.11 ×100\times~{}10^{0}
204Rn 6.547 0.191 1.44 ×102\times~{}10^{2} 9.85 ×101\times~{}10^{1} 5.80 ×101\times~{}10^{1}
206Rn 6.384 0.205 8.14 ×102\times~{}10^{2} 5.68 ×102\times~{}10^{2} 2.50 ×102\times~{}10^{2}
208Rn 6.261 0.209 2.65 ×103\times~{}10^{3} 2.45 ×103\times~{}10^{3} 7.66 ×102\times~{}10^{2}
210Rn 6.159 0.167 9.16 ×103\times~{}10^{3} 9.29 ×103\times~{}10^{3} 1.97 ×103\times~{}10^{3}
224Rn 4.757 0.190 7.89 ×1010\times~{}10^{10} 2.14 ×1010\times~{}10^{10} 4.65 ×1010\times~{}10^{10}
226Rn 3.836 0.159 1.80 ×1018\times~{}10^{18} 3.18 ×1017\times~{}10^{17} 7.61 ×1017\times~{}10^{17}
228Rn 2.908 0.135 7.96 ×1028\times~{}10^{28} 1.30 ×1028\times~{}10^{28} 3.23 ×1028\times~{}10^{28}
230Rn 2.196 0.094 3.66 ×1041\times~{}10^{41} 4.08 ×1040\times~{}10^{40} 9.91 ×1040\times~{}10^{40}
208Ra 7.273 0.210 1.72 ×100\times~{}10^{0} 9.22 ×101\times~{}10^{-1} 6.54 ×101\times~{}10^{-1}
212Ra 7.032 0.179 1.49 ×101\times~{}10^{1} 1.19 ×101\times~{}10^{1} 4.07 ×100\times~{}10^{0}
228Ra 4.070 0.156 2.32 ×1017\times~{}10^{17} 4.90 ×1016\times~{}10^{16} 1.04 ×1017\times~{}10^{17}
230Ra 3.344 0.130 5.84 ×1024\times~{}10^{24} 9.80 ×1023\times~{}10^{23} 2.13 ×1024\times~{}10^{24}
232Ra 2.829 0.096 4.79 ×1031\times~{}10^{31} 7.56 ×1030\times~{}10^{30} 1.55 ×1031\times~{}10^{31}
234Ra 2.336 0.088 2.03 ×1040\times~{}10^{40} 3.59 ×1039\times~{}10^{39} 6.50 ×1039\times~{}10^{39}
234Th 3.672 0.135 1.26 ×1022\times~{}10^{22} 6.00 ×1021\times~{}10^{21} 1.04 ×1022\times~{}10^{22}
236Th 3.333 0.099 9.51 ×1025\times~{}10^{25} 4.14 ×1025\times~{}10^{25} 6.15 ×1025\times~{}10^{25}
238Th 3.169 0.100 1.28 ×1028\times~{}10^{28} 5.70 ×1027\times~{}10^{27} 6.66 ×1027\times~{}10^{27}
220U 10.290 0.221 8.95 ×108\times~{}10^{-8} 2.70 ×107\times~{}10^{-7} 8.24 ×108\times~{}10^{-8}
228U 6.800 0.219 1.15 ×103\times~{}10^{3} 6.87 ×102\times~{}10^{2} 8.81 ×102\times~{}10^{2}
240U 4.035 0.107 5.99 ×1019\times~{}10^{19} 4.46 ×1019\times~{}10^{19} 4.43 ×1019\times~{}10^{19}
242U 3.670 0.080 4.11 ×1023\times~{}10^{23} 2.41 ×1023\times~{}10^{23} 1.76 ×1023\times~{}10^{23}

V Appendix: empirical formulae for α\alpha-decay half-lives

In the absence of experimental data to compare, our results must be discussed using alternative calculations. We introduce two recent empirical formulae as tools to simple calculate α\alpha-decay half-lives and compare our results.

  • ZZCW: Sahu et al. Sahu:2013jla introduced a semi-empirical relationship based on the resonance phenomenon by considering the parent nucleus as a quantum two-body system of the ejected particle and the daughter nucleus. However, their calculated α\alpha-decay half-lives are unsatisfactorily compared to the experimental results. Based on the Sahu formula Sahu:2013jla , by considering a precise radius formula and an analytic expression for preformation factor, Zhang et al. Zhang:2017pwm proposed an improved semi-empirical relationship for α\alpha-decay half-lives (denoted as ZZCW). ZZCW is given as

    log10(T1/2ZZCW[s])=aZαZdμA/Qα+bμAZαZd+c+d,\log_{10}\left(T^{\rm ZZCW}_{1/2}[\text{s}]\right)=aZ_{\alpha}Z_{\rm d}\sqrt{\mu_{A}/Q_{\alpha}}+b\sqrt{\mu_{A}Z_{\alpha}Z_{\rm d}}+c+d\,, (30)

    where Tcal[s]T_{\rm cal}[\text{s}] is the half-life measured in seconds and ZαZ_{\alpha} and ZdZ_{\rm d} denote the proton number of alpha particle and daughter nucleus, respectively. The reduced mass number μA\mu_{A} is defined by μA=AαAd/Apar\mu_{A}=A_{\alpha}A_{\rm d}/A_{\rm par}, where Aα,AdA_{\alpha},A_{\rm d}, and AparA_{\rm par} are the mass number of the alpha particle, daughter nucleus, and parent nucleus, respectively. For the detailed description of the parameters aa, bb, cc, and dd we refer to Zhang et al. Zhang:2017pwm . They found that ZZCW significantly improved the accuracy of the α\alpha-decay half-lives in comparison with experimental results. Based on the success, they predicted α\alpha-decay half-lives of the Z=118121Z=118-121 isotopes and a magic number effect at Npar=184N_{\rm par}=184.

  • UNIV: Single universal curve for cluster radioactivities and α\alpha-decay was proposed by Poenaru et al. Poenaru:2011zz for even-even, even-odd, and odd-even parent nuclei. Due to the lack of successful experiment on cluster radioactivities of odd-odd parent nuclei, parameters for odd-odd parent nuclei were not provided. The proposed formula for even-even isotopes (denoted as UNIV) is given as

    log10(T1/2UNIV[s])=log10Plog10S+cee,\log_{10}\left(T^{\rm UNIV}_{1/2}[\text{s}]\right)=-\log_{10}P-\log_{10}S+c_{ee}, (31)

    where log10P=0.22873μAZdZαRb(arccosrr(1r))-\log_{10}P=0.22873\sqrt{\mu_{A}Z_{\rm d}Z_{\alpha}R_{b}}(\arccos\sqrt{r}-\sqrt{r(1-r)}), log10S=0.598(Aα1)\log_{10}S=-0.598(A_{\alpha}-1), and cee=22.16917c_{ee}=-22.16917. r=Rt/Rbr=R_{t}/R_{b}, Rt=1.2249(Ad1/3+Aα1/3)R_{t}=1.2249(A_{\rm d}^{1/3}+A_{\alpha}^{1/3}), and Rb=1.43998ZdZα/QαR_{b}=1.43998Z_{\rm d}Z_{\alpha}/Q_{\alpha}. This formula was obtained by plotting the sum of the decimal logarithm of the half-life and cluster preformation factor versus the decimal logarithm of the penetrability of external barrier Poenaru:2011zz . Akrawy and Poenaru Akrawy:2017lpn found that UNIV gives quite good results for the α\alpha-decays of even-even nuclei and suggest that UNIV may be good for the α\alpha-decay half-lives of superheavy nuclei.