This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\contourlength

0.5pt

An equivariant generalisation of McDuff–Segal’s group–completion theorem

Kaif Hilman Max Planck Institute for Mathematics, Bonn
kaif@mpim-bonn.mpg.de
(November 22, 2023thanks: Date of publication in IMRN.)
Abstract

In this short note, we prove a GG–equivariant generalisation of McDuff–Segal’s group–completion theorem for finite groups GG. A new complication regarding genuine equivariant localisations arises and we resolve this by isolating a simple condition on the homotopy groups of 𝔼\mathbb{E}_{\infty}–rings in GG–spectra. We check that this condition is satisfied when our inputs are a suitable variant of 𝔼\mathbb{E}_{\infty}–monoids in GG–spaces via the existence of multiplicative norm structures, thus giving a localisation formula for their associated GG–spherical group rings.

1 Introduction

Group–completion is an important procedure in higher algebra for at least two reasons: (1) it is the main ingredient in constructing the K–theory of symmetric monoidal (\infty-)categories; (2) it allows one to port spectral methods to study questions regarding moduli spaces. The homotopy types of these group–completions are however mysterious in general, and the group–completion theorem of McDuff–Segal [MS76, Ran13] is a classical tool giving a homological formula for these objects. By now, the theorem has become a standard component, for example, in the active area burgeoning in the wake of the Madsen–Weiss theorem (cf. [GR14, §7.4] and [GR17, §7]) relating the homology of diffeomorphism groups to something amenable to stable homotopy theoretic methods. Very roughly speaking, the strategy is first to show that the group–completion of a geometrically defined cobordism category associated to the diffeomorphism groups is equivalent to a particular Thom spectrum. One then combines this identification with the group–completion theorem to compute, up to stabilisation, the homology of said diffeomorphism groups in terms of the homology of the Thom spectrum.

In this article, we investigate a GG–equivariant generalisation of this classical result for finite groups GG. This is not as contrived a question as it may first seem since one of the main steps for an equivariant generalisation of the “Madsen–Weiss program” above has already been explored in [GS21, Thm. 1.1] where they identified the group–completion of a certain equivariant cobordism category with an equivariant Madsen–Tillmann spectrum. Our hope is that the result we present here could provide one of the standard pieces in a future equivariant story and serve as a useful tool for making Bredon homological analyses of equivariant group–completions.

Convention 1.1.

In this paper, by a category we will always mean an \infty–category in the sense of [Lur17]. When emphasising that something is a category in the classical sense, we will term it as a 1–category.

Notation 1.2.

We will briefly introduce some notions so as to be able to state the main theorem. More details on all these can be found in Section 2. We write 𝒪G\mathcal{O}_{G} for the orbit category of the finite group GG and 𝒮GFun(𝒪Gop,𝒮)\mathcal{S}_{G}\coloneqq\mathrm{Fun}(\mathcal{O}_{G}^{\mathrm{op}},\mathcal{S}) for the category of genuine GG–spaces, and write CMon(𝒮G)Fun(𝒪Gop,CMon(𝒮))\mathrm{CMon}(\mathcal{S}_{G})\simeq\mathrm{Fun}(\mathcal{O}_{G}^{\mathrm{op}},\mathrm{CMon}(\mathcal{S})) for the category of 𝔼\mathbb{E}_{\infty}–monoid objects therein. An object MCMon(𝒮G)M\in\mathrm{CMon}(\mathcal{S}_{G}) consists of 𝔼\mathbb{E}_{\infty}–monoid spaces MHM^{H} for every subgroup HGH\leq G and the restriction map MHMKM^{H}\rightarrow M^{K} associated to a subconjugation KHK\leq H is a map of 𝔼\mathbb{E}_{\infty}–monoids.

There is a variant with more equivariant structure, namely the category CMonG(𝒮¯G)\mathrm{CMon}_{G}(\underline{\mathcal{S}}_{G}) of GG𝔼\mathbb{E}_{\infty}–monoids in genuine GG–spaces. An object MCMonG(𝒮¯G)M\in\mathrm{CMon}_{G}(\underline{\mathcal{S}}_{G}) consists of the data above together with “equivariant addition” maps H/K:MKMH\oplus_{H/K}\colon M^{K}\rightarrow M^{H} for every KHK\leq H satisfying double–coset formulas and higher coherences. This turns out, as we shall recall at the end of Construction 2.6, to be equivalent to the category MackG(𝒮)Fun×(Aeff(G),𝒮)\mathrm{Mack}_{G}(\mathcal{S})\coloneqq\mathrm{Fun}^{\times}(A^{\mathrm{eff}}(G),\mathcal{S}) of GG–Mackey functors valued in spaces defined as product–preserving presheaves on Barwick’s effective Burnside category (cf. [CMN+20, Rmk. 2.3]). There is a forgetful functor fgt:CMonG(𝒮¯G)CMon(𝒮G)\mathrm{fgt}\colon\mathrm{CMon}_{G}(\underline{\mathcal{S}}_{G})\rightarrow\mathrm{CMon}(\mathcal{S}_{G}) forgetting the equivariant addition maps.

While we reserve the more general - but notationally heavier - statement of the main result Theorem 3.3 in the body of the paper, we can however extract the following simple consequence on Bredon homology here (whose proof is given at the end of Section 3 after the proof of Theorem 3.3):

Theorem 1.3.

Let MCMonG(𝒮¯G)M\in\mathrm{CMon}_{G}(\underline{\mathcal{S}}_{G}) and N¯\underline{N} a GG–Mackey functor valued in abelian groups. For any KGK\leq G, we have a natural isomorphism of RO(K)RO(K)–graded Bredon homology with N¯\underline{N} coefficients

HK(ΩBM;N¯)HK(M;N¯)[(π0MK)1]H_{\star}^{K}(\Omega BM;\underline{N})\cong H_{\star}^{K}(M;\underline{N})[(\pi_{0}M^{K})^{-1}]

The reader might now justifiably wonder how common GG𝔼\mathbb{E}_{\infty}–monoid GG–spaces actually are. To address this point somewhat, we will recall a standard mechanism to produce plenty of interesting examples in Example 4.5.

We now look ahead slightly to say a few words about what is actually proved in Theorem 3.3 and the methods involved. The general formulation is in terms of higher algebraic localisations of spherical monoid rings (following that of Nikolaus [Nik17]) and the result will be in two parts: in part (i), we show using a direct adaptation of the proof in [Nik17, Thm. 1] that for MCMon(𝒮G)M\in\mathrm{CMon}(\mathcal{S}_{G}), the GG–suspension spectrum of its group completion is computed as an abstract localisation satisfying a universal property. The crux of the matter here is that, unlike the nonequivariant case where one can prove that the abstract localisation can always be identified with a telescopic localisation as appears in Theorem 1.3 (cf. for example [Nik17, App. A] for the proof of this in the general case of 𝔼1\mathbb{E}_{1}–rings satisfying the Ore condition), this is not so in the equivariant setting. However, we do show in part (ii) of Theorem 3.3 that when MM has the additional structure of a GG𝔼\mathbb{E}_{\infty}–monoid GG–space, the associated GG–spherical monoid ring attains the structure of the multiplicative norms (in the sense of [GM97, HHR16]) which in turn ensures that the abstract and telescopic localisations agree. In fact, we will isolate a simple condition on the equivariant homotopy groups of MM we call torsion–extension (cf. 3.4) which ensures that the abstract and telescopic localisations agree even in the absence of the norms. This might be usable and useful in specific cases of MM.

As far as we know, the theorem cannot be directly deduced from the classical group–completion theorem because the GG–suspension spectrum of a GG–space is not given simply by taking the suspension spectrum on each genuine fixed points of the GG–space. The first part of the theorem will require only standard \infty–category theory (essentially the same proof as [Nik17, Thm. 1] as pointed out above), whereas in the more highly structured second part of Theorem 3.3 we will need the language of GG–categories introduced in [BDG+16] in order to discuss GG𝔼\mathbb{E}_{\infty} structures succintly. To our untrained eyes, the relevance of the multiplicative norms came as a bit of a surprise, but in hindsight, this result is likely known or at least expected among experts. While we were not able to find this result in the literature, we very much welcome a reference to where this result might have previously appeared and give the appropriate credits.

Lastly, a few words on organisation: we will briefly record some foundational materials in Section 2 to orient the reader who might not be familiar with the formalism of GG–categories; in Section 3, we give a proof of the main Theorem 3.3; and in Section 4 we will end the main body of the article with some remarks on how norms and localisations managed to interplay well in our situation and how this result fits in with the nonequivariant group–completion theorem. Along the way, we will explain how geometric fixed points turn the mysterious localisation LS¯1RL_{\underline{S}^{-1}}R into something familiar. We also record a generic situation where this theorem might be useful and give a rich source of examples of GG𝔼\mathbb{E}_{\infty}–monoid GG–spaces. Finally, in Appendix A, we will prove a technical folklore result which we use in proving the main theorem, namely that GG𝔼\mathbb{E}_{\infty} algebras in GG–cartesian symmetric monoidal GG–categories are the same as GG𝔼\mathbb{E}_{\infty}–monoids in said GG–category. We have unfortunately not been able to find this in the literature and hope that this appendix will serve to fill in this gap.

Acknowledgements

We thank J.D. Quigley and Eva Belmont for posing the question as to what an “equivariant group–completion theorem” should be which directly led us to writing this note. We also thank Maxime Ramzi for going through a draft and for helpful suggestions. Finally, we are also grateful to the anonymous referee whose patient comments led to a minor correction, many expositional improvements, as well as the writing of the appendix.

2 Some preliminaries

Let GG be a finite group.

Notation 2.1.

Let 𝒪G\mathcal{O}_{G} be the orbit category of the finite group GG: this is a 1–category whose objects are transitive GG–sets and morphisms are GG–equivariant maps. We write 𝒮G\mathcal{S}_{G} for the category of genuine GG–spaces, which is defined to be 𝒮GFun(𝒪Gop,𝒮)\mathcal{S}_{G}\coloneqq\mathrm{Fun}(\mathcal{O}_{G}^{\mathrm{op}},\mathcal{S}) where 𝒮\mathcal{S} is the category of spaces, and we write SpG\mathrm{Sp}_{G} for the category of genuine GG–spectra, a model of which is given by GG–Mackey functors valued in spectra (cf. [Bar17, BGS20]). We will also denote by 𝕊G[]\mathbb{S}_{G}[-] for the functor Σ+G:𝒮GSpG{\Sigma}^{\infty}_{+G}\colon\mathcal{S}_{G}\rightarrow\mathrm{Sp}_{G} given by taking the GG–suspension spectrum.

Notation 2.2.

For a category 𝒞\mathcal{C} admitting finite products, we write CMon(𝒞)\mathrm{CMon}(\mathcal{C}) for the category of 𝔼\mathbb{E}_{\infty}–monoids in 𝒞\mathcal{C}; for a symmetric monoidal category 𝒟\mathcal{D}^{\otimes}, we write CAlg(𝒟)\mathrm{CAlg}(\mathcal{D}^{\otimes}) for the 𝔼\mathbb{E}_{\infty}–algebra objects in 𝒟\mathcal{D} under the endowed tensor product structure. Writing 𝒞×\mathcal{C}^{\times} for the cartesian symmetric monoidal structure, we then have by [Lur17, Prop. 2.4.2.5] that CAlg(𝒞×)CMon(𝒞)\mathrm{CAlg}(\mathcal{C}^{\times})\simeq\mathrm{CMon}(\mathcal{C}). Note that this means CAlg(SpG)\mathrm{CAlg}(\mathrm{Sp}_{G}^{\otimes}) denotes 𝔼\mathbb{E}_{\infty}–rings in genuine GG–spectra without the multiplicative norms.

We begin with the following observation, which requires no theory of GG–categories:

Observation 2.3.

It is a standard fact that the left adjoint in the adjunction

𝒮G{\mathcal{S}_{G}}SpG{\mathrm{Sp}_{G}}𝕊G[]\scriptstyle{\mathbb{S}_{G}{[}-{]}}ΩG\scriptstyle{\Omega^{\infty}_{G}}

refines to a symmetric monoidal functor with the cartesian symmetric monoidal structure on 𝒮G\mathcal{S}_{G} and the tensor product of GG–spectra on SpG\mathrm{Sp}_{G} (cf. for example [MNN17, §5.2] for the case of pointed GG–spaces, which can then be precomposed with the symmetric monoidal functor of adding a disjoint basepoint ()+:𝒮G𝒮G(-)_{+}\colon\mathcal{S}_{G}\rightarrow\mathcal{S}_{G*}). Thus by [Lur17, Cor. 7.3.2.7] the right adjoint ΩG\Omega^{\infty}_{G} automatically refines to a lax symmetric monoidal functor and hence, by [Lur17, Rmk. 7.3.2.13], applying the functor CAlg()\mathrm{CAlg}(-) yields an adjunction

CMon(𝒮G)CAlg(𝒮G×){\mathrm{CMon}(\mathcal{S}_{G})\simeq\mathrm{CAlg}(\mathcal{S}_{G}^{\times})}CAlg(SpG){\mathrm{CAlg}(\mathrm{Sp}_{G}^{\otimes})}𝕊G[]\scriptstyle{\mathbb{S}_{G}{[}-{]}}ΩG\scriptstyle{\Omega^{\infty}_{G}} (1)

Now, to set the stage for our discussions about the multiplicative norms, we collect here some basics on GG–categories. The reader uninsterested in this refinement can skip right away to the proof of the first part of Theorem 3.3 in the next section.

Setting 2.4 (The theory of GG–categories).

In keeping with the tradition of papers about group–completions, we aim to keep this article as compact as possible. As such, we have chosen to travel light in this document and we refrain from giving a self–contained exposition of the required theory on GG–categories. For the original sources of these materials, we refer the reader to [BDG+16, Nar16, Sha23], and a one–stop survey of GG–categories can be found for example in [Hil22, Chap. 1]. In short, a GG–category (resp. a GG–functor) is an object (resp. morphism) in Cat,GFun(𝒪Gop,Cat)\mathrm{Cat}_{\infty,G}\coloneqq\mathrm{Fun}(\mathcal{O}_{G}^{\mathrm{op}},\mathrm{Cat}_{\infty}) and we will use the underline notation 𝒟¯\underline{\mathcal{D}} to denote a GG–category and 𝒟H\mathcal{D}_{H} for its value at G/H𝒪GopG/H\in\mathcal{O}_{G}^{\mathrm{op}}. For subgroups KHK\leq H of GG, we should think of the datum 𝒟H𝒟K\mathcal{D}_{H}\rightarrow\mathcal{D}_{K} packaged in the GG–category 𝒟¯\underline{\mathcal{D}} as a “restriction” functor ResKH\mathrm{Res}^{H}_{K}. In particular, by definition of morphisms in functor categories, a GG–functor is always compatible with these “restriction” maps. Important examples of GG–categories include genuine GG–spaces {𝒮¯G:G/H𝒮H}\{\underline{\mathcal{S}}_{G}\colon G/H\mapsto\mathcal{S}_{H}\} and genuine GG–spectra {Sp\contourwhiteSpG:G/HSpH}\{\mathchoice{\mbox{\uline{\phantom{$\displaystyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\displaystyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\textstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\textstyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\scriptstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\scriptstyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\scriptscriptstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\scriptscriptstyle\mathrm{Sp}$}}}}_{G}\colon G/H\mapsto\mathrm{Sp}_{H}\}. Additionally, the functor 𝒪H(𝒪G)/(G/H)(𝒪G)/(G/G)𝒪G\mathcal{O}_{H}\simeq(\mathcal{O}_{G})_{/(G/H)}\rightarrow(\mathcal{O}_{G})_{/(G/G)}\simeq\mathcal{O}_{G} induces a functor Cat,GCat,H\mathrm{Cat}_{\infty,G}\rightarrow\mathrm{Cat}_{\infty,H} via restriction which we denote by ResHG\mathrm{Res}^{G}_{H}. Using Lurie’s notion of relative adjunctions [Lur17, §7.3.2], one can define the notion of GG–adjunctions (cf. [Sha23, Def. 8.3]): this roughly means a pair of GG–functors L:𝒞¯𝒟¯:RL\colon\underline{\mathcal{C}}\rightleftharpoons\underline{\mathcal{D}}:R together with the data of adjunctions when evaluated at each G/H𝒪GopG/H\in\mathcal{O}_{G}^{\mathrm{op}}.

Central to this theory is the notion of GG–(co)limits, and among these the special cases of indexed (co)products find a distinguished place. In this article, we will only need these special cases, and so we briefly explain them now. Intuitively, they should be thought of as taking (co)products with respect to finite GG–sets so that for example, for 𝒞¯Cat,G\underline{\mathcal{C}}\in\mathrm{Cat}_{\infty,G}, HGH\leq G and a HH–equivariant object X𝒞HX\in\mathcal{C}_{H}, G/HX\prod_{G/H}X is now a GG–equivariant object. We refer the reader to [Sha23, §5] for more details on this. When 𝒞¯\underline{\mathcal{C}} is pointed (which just means that 𝒞K\mathcal{C}_{K} is pointed for every KGK\leq G and all the restriction maps preserve the zero objects), one can construct a canonical comparison map G/HG/H\coprod_{G/H}\rightarrow\prod_{G/H} (cf. [Nar16, Cons. 5.2]). If this map is an equivalence, then we say that 𝒞¯\underline{\mathcal{C}} is GG–semiadditive. As in the nonequivariant case, for a GG–category 𝒞¯\underline{\mathcal{C}} with finite indexed products, we may construct (see for instance [Nar16, Def. 5.9]) the GG–semiadditive GG–category CMon¯G(𝒞¯)\underline{\mathrm{CMon}}_{G}(\underline{\mathcal{C}}) of GG–commutative monoids in 𝒞¯\underline{\mathcal{C}} whose objects should roughly be thought of as objects M𝒞¯M\in\underline{\mathcal{C}} equipped with “equivariant addition maps” G/HResHGMM\prod_{G/H}\mathrm{Res}^{G}_{H}M\rightarrow M for all HGH\leq G on top of the usual addition maps M×MMM\times M\rightarrow M. Observe that this version of the equivariant addition maps recovers the one mentioned in Notation 1.2 upon applying ()G(-)^{G} since MH(G/HResHGM)GMGM^{H}\simeq(\prod_{G/H}\mathrm{Res}^{G}_{H}M)^{G}\rightarrow M^{G}.

Now, denote by Fin¯\underline{\mathrm{Fin}}_{*} for the GG–category of finite pointed GG–sets. That is, it is the GG–category {G/HFinHFun(BH,Fin)}\{G/H\mapsto\mathrm{Fin}_{*H}\coloneqq\mathrm{Fun}(BH,\mathrm{Fin}_{*})\} where BHBH is the groupoid with one object and morphism set given by the group HH. Nardin used this to give a definition of GG–symmetric monoidal categories in [Nar17, §3\S 3] much like the nonequivariant situation from [Lur17]. See also [NS22, §2] for a comprehensive, more recent treatment and [QS22, §5.1] for a summary of these matters. Suffice to say, in this setting, a GG–symmetric monoidal category is a GG–category 𝒟¯¯\underline{\mathcal{D}}^{\underline{\otimes}} equipped with a map to Fin¯\underline{\mathrm{Fin}}_{*} satisfying appropriate cocartesianness and GG–operadic conditions, and GG𝔼\mathbb{E}_{\infty}–ring objects CAlgG(𝒟¯¯)FunG/Fin¯int(Fin¯,𝒟¯¯)\mathrm{CAlg}_{G}(\underline{\mathcal{D}}^{\underline{\otimes}})\coloneqq\mathrm{Fun}_{G/\underline{\mathrm{Fin}}_{*}}^{\mathrm{int}}(\underline{\mathrm{Fin}}_{*},\underline{\mathcal{D}}^{\underline{\otimes}}) are then GG–inert sections to this map (see also Recollection A.21 for slightly more details to this). An object RCAlgG(𝒟\contourwhite𝒟¯)R\in\mathrm{CAlg}_{G}(\mathchoice{\mbox{\uline{\phantom{$\displaystyle\mathcal{D}$}}\hbox to0.0pt{\hss\contour{white}{$\displaystyle\mathcal{D}$}}}}{\mbox{\uline{\phantom{$\textstyle\mathcal{D}$}}\hbox to0.0pt{\hss\contour{white}{$\textstyle\mathcal{D}$}}}}{\mbox{\uline{\phantom{$\scriptstyle\mathcal{D}$}}\hbox to0.0pt{\hss\contour{white}{$\scriptstyle\mathcal{D}$}}}}{\mbox{\uline{\phantom{$\scriptscriptstyle\mathcal{D}$}}\hbox to0.0pt{\hss\contour{white}{$\scriptscriptstyle\mathcal{D}$}}}}^{\underline{\otimes}}) should be thought of as an object RCAlg(𝒟G)R\in\mathrm{CAlg}(\mathcal{D}_{G}^{\otimes}) equipped with 𝔼\mathbb{E}_{\infty}–algebra maps HGResHGRR\bigotimes^{G}_{H}\mathrm{Res}^{G}_{H}R\rightarrow R encoding “equivariant multiplication”. In this notation, CAlgG(Sp\contourwhiteSpG¯)\mathrm{CAlg}_{G}(\mathchoice{\mbox{\uline{\phantom{$\displaystyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\displaystyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\textstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\textstyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\scriptstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\scriptstyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\scriptscriptstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\scriptscriptstyle\mathrm{Sp}$}}}}_{G}^{\underline{\otimes}}) will therefore mean those 𝔼\mathbb{E}_{\infty}–rings in genuine GG–spectra equipped with multiplicative norms, to be contrasted with objects in CAlg(SpG)\mathrm{CAlg}(\mathrm{Sp}_{G}^{\otimes}) which do not have norms. Moreover, following [HHR16], we use the notation NHG\mathrm{N}^{G}_{H} instead of HG\bigotimes^{G}_{H} in the special case of SpG\mathrm{Sp}_{G}.

Analogously to Notation 2.2, denoting by 𝒞¯×¯\underline{\mathcal{C}}^{\underline{\times}} the GG–cartesian symmetric monoidal structure on a GG–category 𝒞¯\underline{\mathcal{C}} which admits finite indexed products, we also have that CAlgG(𝒞¯×¯)CMonG(𝒞¯)\mathrm{CAlg}_{G}(\underline{\mathcal{C}}^{\underline{\times}})\simeq\mathrm{CMon}_{G}(\underline{\mathcal{C}}). This is essentially because for MCAlgG(𝒞¯×¯)M\in\mathrm{CAlg}_{G}(\underline{\mathcal{C}}^{\underline{\times}}), the structure G/HResHGM=HGResHGMM\prod_{G/H}\mathrm{Res}^{G}_{H}M=\bigotimes^{G}_{H}\mathrm{Res}^{G}_{H}M\rightarrow M supplies precisely the “equivariant addition” structure to be an object in CMonG(𝒞¯)\mathrm{CMon}_{G}(\underline{\mathcal{C}}). While this is a folklore result, we have not been able to find a proof of this in the literature and so we have indicated a proof in the appendix, see Proposition A.23, where we also give more precise explanations and references for some of the matters discussed above.

Lemma 2.5.

The GG–adjunction 𝕊G[]:𝒮¯GSp\contourwhiteSpG:ΩG\mathbb{S}_{G}[-]\colon\underline{\mathcal{S}}_{G}\rightleftharpoons\mathchoice{\mbox{\uline{\phantom{$\displaystyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\displaystyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\textstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\textstyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\scriptstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\scriptstyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\scriptscriptstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\scriptscriptstyle\mathrm{Sp}$}}}}_{G}:{\Omega}^{\infty}_{G} induces an adjunction 𝕊G[]:CMonG(𝒮¯G)CAlgG(Sp\contourwhiteSpG¯):ΩG\mathbb{S}_{G}[-]\colon{\mathrm{CMon}}_{G}(\underline{\mathcal{S}}_{G})\rightleftarrows{\mathrm{CAlg}}_{G}(\mathchoice{\mbox{\uline{\phantom{$\displaystyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\displaystyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\textstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\textstyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\scriptstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\scriptstyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\scriptscriptstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\scriptscriptstyle\mathrm{Sp}$}}}}_{G}^{\underline{\otimes}}):{\Omega}^{\infty}_{G}.

Proof.

We know by [Nar17, §3\S 3] that the map 𝕊G[]\mathbb{S}_{G}[-] refines to a GG–symmetric monoidal functor 𝕊G[]:𝒮¯GׯSp\contourwhiteSpG¯\mathbb{S}_{G}[-]\colon\underline{\mathcal{S}}_{G}^{\underline{\times}}\longrightarrow\mathchoice{\mbox{\uline{\phantom{$\displaystyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\displaystyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\textstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\textstyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\scriptstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\scriptstyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\scriptscriptstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\scriptscriptstyle\mathrm{Sp}$}}}}_{G}^{\underline{\otimes}}. This means that ΩG{\Omega}^{\infty}_{G} canonically refines to a GG–lax symmetric monoidal functor. Hence using that CAlgG(𝒮¯Gׯ)CMonG(𝒮¯G){\mathrm{CAlg}}_{G}(\underline{\mathcal{S}}_{G}^{\underline{\times}})\simeq{\mathrm{CMon}}_{G}(\underline{\mathcal{S}}_{G}) from Proposition A.23 and [Hil22, Lem. 1.3.11] that applying CAlgG\mathrm{CAlg}_{G} yields another adjunction analogously to [Lur17, Rmk. 7.3.2.13], we get the desired adjunction. ∎

Construction 2.6 (Equivariant group–completions).

As explained for instance in [GGN15, §1], it makes sense to speak of objects in arbitrary semiadditive categories (or preadditive, as it was termed in that paper) having the property of being group–complete by requiring a certain canonically constructed shear map to be an equivalence. In the case of the semiadditive category CMon(𝒮)\mathrm{CMon}(\mathcal{S}), we will write CGrp(𝒮)\mathrm{CGrp}(\mathcal{S}) for the full subcategory of group–complete objects. One characterisation for some MCMon(𝒮)M\in\mathrm{CMon}(\mathcal{S}) to lie in CGrp(𝒮)\mathrm{CGrp}(\mathcal{S}) is that the abelian monoid π0M\pi_{0}M has the property of being a group.

If we write BB for the suspension in the category CMon(𝒮)\mathrm{CMon}(\mathcal{S}) (which is very different from the suspension on the underlying space!), then we know that we have the adjunction ΩB:CMon(𝒮)CGrp(𝒮):incl\Omega B\colon\mathrm{CMon}(\mathcal{S})\rightleftharpoons\mathrm{CGrp}(\mathcal{S}):\mathrm{incl} so that ΩB\Omega B implements the group–completion functor on CMon(𝒮)\mathrm{CMon}(\mathcal{S}). In fact, as slickly explained in [CDH+20, Prop. 3.3.5], ΩB\Omega B always implements group–completions in any semiadditive category with pullbacks and pushouts. We can then cofreely make this into a GG–adjunction of GG–categories

Cofree¯G(CMon(𝒮)){\underline{\mathrm{Cofree}}_{G}\big{(}\mathrm{CMon}(\mathcal{S})\big{)}}Cofree¯G(CGrp(𝒮)){\underline{\mathrm{Cofree}}_{G}\big{(}\mathrm{CGrp}(\mathcal{S})\big{)}}ΩB\scriptstyle{\Omega B} (2)

Here for a nonequivariant category 𝒞\mathcal{C}, Cofree¯G(𝒞)Cat,G\underline{\mathrm{Cofree}}_{G}(\mathcal{C})\in\mathrm{Cat}_{\infty,G} is the GG–category given by {G/HFun(𝒪Hop,𝒞)}HG\{G/H\mapsto\mathrm{Fun}(\mathcal{O}_{H}^{\mathrm{op}},\mathcal{C})\}_{H\leq G} (cf. [Nar16, Def. 2.7] for instance, where the notation was just an underline instead of the word “cofree”). In this notation, the GG–category of GG–spaces is therefore given by 𝒮¯G=Cofree¯G(𝒮)\underline{\mathcal{S}}_{G}=\underline{\mathrm{Cofree}}_{G}(\mathcal{S}). Both GG–categories in the adjunction are GG–semiadditive, and so in particular ΩB\Omega B preserves GG–biproducts. Now if 𝒞\mathcal{C} admits finite products, then writing MackG()Fun×(Aeff(G),)\mathrm{Mack}_{G}(-)\coloneqq\mathrm{Fun}^{\times}(A^{\mathrm{eff}}(G),-) for GG–Mackey functors, we have

CMonG(Cofree¯G(𝒞))MackG(𝒞)MackG(CMon(𝒞))\mathrm{CMon}_{G}(\underline{\mathrm{Cofree}}_{G}(\mathcal{C}))\simeq\mathrm{Mack}_{G}(\mathcal{C})\simeq\mathrm{Mack}_{G}(\mathrm{CMon}(\mathcal{C}))

where the first equivalence is by [Nar16, Thm. 6.5] and the second is well–known and can be deduced for example from [HW21, Thm. II.19], using that Aeff(G)A^{\mathrm{eff}}(G) is semiadditive by [Bar17, Prop. 4.3, Ex. B.3]. Using this, we can then apply CMonG(){\mathrm{CMon}}_{G}(-) to the adjunction Eq. 2 to get an adjunction

CMonG(𝒮¯G){{\mathrm{CMon}}_{G}(\underline{\mathcal{S}}_{G})}CGrpG(𝒮¯G){{\mathrm{CGrp}}_{G}(\underline{\mathcal{S}}_{G})}ΩB\scriptstyle{\Omega B}

Concretely, this implements group–completion pointwise, and this is what we mean by equivariant group–completion.

Construction 2.7 (Forgetting norms).

We explain here the compatibility of forgetting multiplicative norms with GG–lax symmetric monoidal functors. First note that we have an adjunction i:𝒪Gop:pi\colon\ast\rightleftharpoons\mathcal{O}_{G}^{\mathrm{op}}\>:p where ii is the inclusion of G/GG/G, which is the initial object in 𝒪Gop\mathcal{O}_{G}^{\mathrm{op}}. Hence, applying Fun(,Cat)\mathrm{Fun}(-,\mathrm{Cat}_{\infty}) we obtain an adjunction of (,2)(\infty,2)–categories p:CatCat,G:ip^{*}\colon\mathrm{Cat}_{\infty}\rightleftharpoons\mathrm{Cat}_{\infty,G}\>:i^{*}. Consequently, since p(𝒞)=const¯G(𝒞)𝒞×𝒪Gopp^{*}(\mathcal{C})=\underline{\mathrm{const}}_{G}(\mathcal{C})\coloneqq\mathcal{C}\times\mathcal{O}_{G}^{\mathrm{op}} and i(𝒟¯)=𝒟G=evG/G𝒟¯i^{*}(\underline{\mathcal{D}})=\mathcal{D}_{G}=\mathrm{ev}_{G/G}\underline{\mathcal{D}}, we see that

FunG(const¯G(𝒞),𝒟¯)Fun(𝒞,𝒟G)\mathrm{Fun}_{G}\big{(}\underline{\mathrm{const}}_{G}(\mathcal{C}),\underline{\mathcal{D}}\big{)}\simeq\mathrm{Fun}\big{(}\mathcal{C},{\mathcal{D}}_{G}\big{)} (3)

In particular, the fully faithful functor of 1–categories FinFinGFun(BG,Fin)\mathrm{Fin}_{*}\rightarrow\mathrm{Fin}_{*G}\coloneqq\mathrm{Fun}(BG,\mathrm{Fin}_{*}) given by nnG/Gn\mapsto\coprod^{n}G/G induces a GG–functor q:const¯G(Fin)Fin¯q\colon\underline{\mathrm{const}}_{G}(\mathrm{Fin}_{*})\longrightarrow\underline{\mathrm{Fin}}_{*} given by (n,G/H)nH/H(n,G/H)\mapsto\coprod^{n}H/H. Therefore, for a GG–symmetric monoidal category 𝒟¯¯CMonG(Cat¯,G)\underline{\mathcal{D}}^{\underline{\otimes}}\in\mathrm{CMon}_{G}(\underline{\mathrm{Cat}}_{\infty,G}), we obtain the map

CAlgG(𝒟¯¯)FunG/Fin¯int(Fin¯,𝒟¯¯)\xlongrightarrowqFun/Finint(Fin,𝒟G)=:CAlg(𝒟G)\quad\quad\mathrm{CAlg}_{G}(\underline{\mathcal{D}}^{\underline{\otimes}})\coloneqq\mathrm{Fun}_{G/\underline{\mathrm{Fin}}_{*}}^{\mathrm{int}}(\underline{\mathrm{Fin}}_{*},\underline{\mathcal{D}}^{\underline{\otimes}})\xlongrightarrow{q^{*}}\mathrm{Fun}^{\mathrm{int}}_{/\mathrm{Fin}_{*}}(\mathrm{Fin}_{*},\mathcal{D}_{G}^{\otimes})=:\mathrm{CAlg}(\mathcal{D}_{G}^{\otimes})

where, to analyse the target, we have used that

FunG/Fin¯(const¯G(Fin),𝒟¯¯)FunG(const¯G(Fin),𝒟¯¯)×FunG(const¯G(Fin),Fin¯){q}Fun(Fin,𝒟G)×Fun(Fin,FinG){q}Fun(Fin,𝒟G)×Fun(Fin,Fin){q}=:Fun/Fin(Fin,𝒟G)\begin{split}\mathrm{Fun}_{G/\underline{\mathrm{Fin}}_{*}}(\underline{\mathrm{const}}_{G}(\mathrm{Fin}_{*}),\underline{\mathcal{D}}^{\underline{\otimes}})&\coloneqq\mathrm{Fun}_{G}(\underline{\mathrm{const}}_{G}(\mathrm{Fin}_{*}),\underline{\mathcal{D}}^{\underline{\otimes}})\times_{\mathrm{Fun}_{G}(\underline{\mathrm{const}}_{G}(\mathrm{Fin}_{*}),\underline{\mathrm{Fin}}_{*})}\{q\}\\ &\simeq\mathrm{Fun}(\mathrm{Fin}_{*},\mathcal{D}_{G}^{\otimes})\times_{\mathrm{Fun}(\mathrm{Fin}_{*},{\mathrm{Fin}}_{*G})}\{q\}\\ &\simeq\mathrm{Fun}(\mathrm{Fin}_{*},\mathcal{D}_{G}^{\otimes})\times_{\mathrm{Fun}(\mathrm{Fin}_{*},{\mathrm{Fin}}_{*})}\{q\}=:\mathrm{Fun}_{/\mathrm{Fin}_{*}}(\mathrm{Fin}_{*},\mathcal{D}_{G}^{\otimes})\end{split}

where the second equivalence is by Eq. 3 and the third since qFun(Fin,FinG)q\in\mathrm{Fun}(\mathrm{Fin}_{*},\mathrm{Fin}_{*G}) lies in the full subcategory Fun(Fin,Fin)\mathrm{Fun}(\mathrm{Fin}_{*},\mathrm{Fin}_{*}) via the fully faithful functor q:FinFinGq\colon\mathrm{Fin}_{*}\subseteq\mathrm{Fin}_{*G}. Intuitively, the functor qq^{*} forgets the norm structures on a GG𝔼\mathbb{E}_{\infty}–ring object in 𝒟¯\underline{\mathcal{D}} and so we will also denote it by fgt\mathrm{fgt} in the sequel.

All in all, as a consequence, for a GG–lax symmetric monoidal functor F:𝒞¯¯𝒟¯¯F\colon\underline{\mathcal{C}}^{\underline{\otimes}}\rightarrow\underline{\mathcal{D}}^{\underline{\otimes}}, since F:CAlgG(𝒞¯¯)CAlgG(𝒟¯¯)F\colon\mathrm{CAlg}_{G}(\underline{\mathcal{C}}^{\underline{\otimes}})\rightarrow\mathrm{CAlg}_{G}(\underline{\mathcal{D}}^{\underline{\otimes}}) is given by postcomposition and the forgetful functor is given by precomposition along q:const¯G(Fin)Fin¯q\colon\underline{\mathrm{const}}_{G}(\mathrm{Fin}_{*})\rightarrow\underline{\mathrm{Fin}}_{*}, we obtain a commuting square

CAlgG(𝒞¯¯){\mathrm{CAlg}_{G}(\underline{\mathcal{C}}^{\underline{\otimes}})}CAlgG(𝒟¯¯){\mathrm{CAlg}_{G}(\underline{\mathcal{D}}^{\underline{\otimes}})}CAlg(𝒞G){\mathrm{CAlg}({\mathcal{C}}_{G}^{{\otimes}})}CAlg(𝒟G){\mathrm{CAlg}({\mathcal{D}}_{G}^{{\otimes}})}F\scriptstyle{F}fgt\scriptstyle{\mathrm{fgt}}fgt\scriptstyle{\mathrm{fgt}}F\scriptstyle{F}

3 The main theorem

In order to state and prove the theorem, we will need a few more terminologies and observations.

Notation 3.1.

In this note, two kinds of ring localisations will feature and we define and relate them here. Let RCAlg(SpG)R\in\mathrm{CAlg}(\mathrm{Sp}_{G}) and S¯={SH}HG\underline{S}=\{S_{H}\}_{H\leq G} be a GG–subset of the zeroth equivariant homotopy Mackey functor π¯0R\underline{\pi}_{0}R of RR. That is, for any HGH\leq G, S¯\underline{S} satisfies ResHGSGSHπ0HRπ0RH\mathrm{Res}^{G}_{H}S_{G}\subseteq S_{H}\subseteq\pi_{0}^{H}R\coloneqq\pi_{0}R^{H}. Now for any ACAlg(SpG)A\in\mathrm{CAlg}(\mathrm{Sp}_{G}), we define

MapCAlg(SpG)S¯1(R,A) and MapCAlg(SpG)SG1(R,A)\mathrm{Map}_{\mathrm{CAlg}(\mathrm{Sp}_{G})}^{\underline{S}^{-1}}(R,A)\quad\quad\text{ and }\quad\quad\mathrm{Map}_{\mathrm{CAlg}(\mathrm{Sp}_{G})}^{S_{G}^{-1}}(R,A)

to be subcomponents of MapCAlg(SpG)(R,A)\mathrm{Map}_{\mathrm{CAlg}(\mathrm{Sp}_{G})}(R,A) of 𝔼\mathbb{E}_{\infty}–algebra maps RAR\rightarrow A which send elements in S¯\underline{S} to units in π¯0A\underline{\pi}_{0}A and send elements in SGS_{G} to units in π0GA\pi_{0}^{G}A, respectively. By general theory (cf. [Nik17, Appen. A] for example), we know that the latter mapping space is corepresented by a telescopic localisation SG1RS_{G}^{-1}R of RR against elements in SGπ0GRS_{G}\subseteq\pi_{0}^{G}R (ie. MapCAlg(SpG)SG1(R,A)MapCAlg(SpG)(SG1R,A)\mathrm{Map}_{\mathrm{CAlg}(\mathrm{Sp}_{G})}^{S_{G}^{-1}}(R,A)\simeq\mathrm{Map}_{\mathrm{CAlg}(\mathrm{Sp}_{G})}(S_{G}^{-1}R,A)). In particular, we have that π¯SG1RSG1π¯R\underline{\pi}_{\star}S_{G}^{-1}R\cong S_{G}^{-1}\underline{\pi}_{\star}R.

On the other hand, if the former mapping space is corepresentable, then we will write the corepresenting object as LS¯1RL_{\underline{S}^{-1}}R. In general, this need not be given by a nice formula in terms of a telescopic localisation since we need to invert different sets of elements at different subgroups HGH\leq G that do not all come from restricting elements from SGS_{G} (ie. the inclusion ResHGSGSH\mathrm{Res}^{G}_{H}S_{G}\subseteq S_{H} might be proper), and so π¯LS¯1R\underline{\pi}_{*}L_{\underline{S}^{-1}}R need not admit a nice description as a Mackey functor with elements in S¯\underline{S} inverted. However, since maps RAR\rightarrow A which invert S¯\underline{S} must necessarily invert SGS_{G}, we do have an inclusion

MapCAlg(SpG)S¯1(R,)MapCAlg(SpG)SG1(R,)\mathrm{Map}_{\mathrm{CAlg}(\mathrm{Sp}_{G})}^{\underline{S}^{-1}}(R,-)\xhookrightarrow{\phantom{\quad}}\mathrm{Map}_{\mathrm{CAlg}(\mathrm{Sp}_{G})}^{S_{G}^{-1}}(R,-)

Thus, when LS¯1RL_{\underline{S}^{-1}}R exists, this inclusion is induced by a canonical comparison map in CAlg(SpG)\mathrm{CAlg}(\mathrm{Sp}_{G})

SG1RLS¯1R.S_{G}^{-1}R\longrightarrow L_{\underline{S}^{-1}}R. (4)
Notation 3.2.

Let MCMon(𝒮G)M\in\mathrm{CMon}(\mathcal{S}_{G}). We write π¯Mπ¯0𝕊G[M]\underline{\pi}_{M}\subseteq\underline{\pi}_{0}\mathbb{S}_{G}[M] for the image of the Hurewicz map on the equivariant homotopy groups π¯0Mπ¯0ΩG𝕊G[M]=π¯0𝕊G[M]\underline{\pi}_{0}M\rightarrow\underline{\pi}_{0}{\Omega}^{\infty}_{G}\mathbb{S}_{G}[M]=\underline{\pi}_{0}\mathbb{S}_{G}[M] induced by the adjunction unit idΩG𝕊G\mathrm{id}\Rightarrow\Omega^{\infty}_{G}\mathbb{S}_{G}. This is clearly a GG–subset in the sense defined above.

We are now ready to state the main theorem of this note:

Theorem 3.3.

Let MCMon(𝒮G)M\in\mathrm{CMon}(\mathcal{S}_{G}) be an 𝔼\mathbb{E}_{\infty}–monoid GG–space.

  1. (i)

    The object L(π¯M)1𝕊G[M]L_{(\underline{\pi}_{M})^{-1}}\mathbb{S}_{G}[M] exists and the group–completion map MΩBMM\rightarrow\Omega BM induces an equivalence in CAlg(SpG)\mathrm{CAlg}({\mathrm{Sp}}_{G})

    L(π¯M)1𝕊G[M]\xlongrightarrow𝕊G[ΩBM]L_{(\underline{\pi}_{M})^{-1}}\mathbb{S}_{G}[M]\xlongrightarrow{\simeq}\mathbb{S}_{G}[\Omega BM]
  2. (ii)

    Moreover, if MM additionally has the structure of a GG𝔼\mathbb{E}_{\infty}–monoid GG–space - ie. MCMonG(𝒮G)M\in\mathrm{CMon}_{G}({\mathcal{S}}_{G}) - then 𝕊G[ΩBM]L(π¯M)1𝕊G[M]\mathbb{S}_{G}[\Omega BM]\simeq L_{(\underline{\pi}_{M})^{-1}}\mathbb{S}_{G}[M] refines to a GG𝔼\mathbb{E}_{\infty}–ring object. In other words, it lifts to an object in CAlgG(SpG)\mathrm{CAlg}_{G}({\mathrm{Sp}}_{G}). Furthermore, in this case, the canonical map from Eq. 4

    (πMG)1𝕊G[M]L(π¯M)1𝕊G[M]𝕊G[ΩBM](\pi_{M}^{G})^{-1}\mathbb{S}_{G}[M]\longrightarrow L_{(\underline{\pi}_{M})^{-1}}\mathbb{S}_{G}[M]\simeq\mathbb{S}_{G}[\Omega BM]

    is an equivalence so that we have the expected localisation effect on homotopy groups, ie. π¯𝕊G[ΩBM](πMG)1π¯𝕊G[M]\underline{\pi}_{\star}\mathbb{S}_{G}[\Omega BM]\cong(\pi_{M}^{G})^{-1}\underline{\pi}_{\star}\mathbb{S}_{G}[M].

We now turn to the proof of the first part of the theorem. We emphasise again that the theory of GG–categories is not required in this part.

Proof of Theorem 3.3 (i).

The proof is exactly the same as that of [Nik17, Thm. 1]. To wit, we first claim that ΩBMCMon(𝒮G)\Omega BM\in\mathrm{CMon}(\mathcal{S}_{G}) satisfies the following universal property: for every XCMon(𝒮G)X\in\mathrm{CMon}(\mathcal{S}_{G}), the map

MapCMon(𝒮G)(ΩBM,X)MapCMon(𝒮G)(π¯0M)1(M,X){\mathrm{Map}}_{{\mathrm{CMon}}(\mathcal{S}_{G})}(\Omega BM,X)\rightarrow{\mathrm{Map}}_{{\mathrm{CMon}}(\mathcal{S}_{G})}^{(\underline{\pi}_{0}M)^{-1}}(M,X)

induced by η:MΩBM\eta\colon M\rightarrow\Omega BM is an equivalence, where MapCMon(𝒮G)(π¯0M)1MapCMon(𝒮G){\mathrm{Map}}^{(\underline{\pi}_{0}M)^{-1}}_{\mathrm{CMon}(\mathcal{S}_{G})}\subseteq{\mathrm{Map}}_{\mathrm{CMon}(\mathcal{S}_{G})} means the subcomponents of maps where π¯0M\underline{\pi}_{0}M is sent to elements that admit additive inverses in π¯0X\underline{\pi}_{0}X. The map lands in this subcomponent since ΩBM\Omega BM is group–complete. To prove the claim, define X×X^{\times} as the pullback in CMon(𝒮G)\mathrm{CMon}(\mathcal{S}_{G})

X×{X^{\times}}X{X}(π¯0X)×{(\underline{\pi}_{0}X)^{\times}}π¯0X{\underline{\pi}_{0}X}i\scriptstyle{i}{\lrcorner}

so that X×CGrp(𝒮G)X^{\times}\in\mathrm{CGrp}(\mathcal{S}_{G}). Now consider the commuting diagram

MapCMon(𝒮G)(ΩBM,X){{\mathrm{Map}}_{{\mathrm{CMon}}(\mathcal{S}_{G})}(\Omega BM,X)}MapCMon(𝒮G)(π¯0M)1(M,X){{\mathrm{Map}}_{{\mathrm{CMon}}(\mathcal{S}_{G})}^{(\underline{\pi}_{0}M)^{-1}}(M,X)}MapCMon(𝒮G)(ΩBM,X×){{\mathrm{Map}}_{{\mathrm{CMon}}(\mathcal{S}_{G})}(\Omega BM,X^{\times})}MapCMon(𝒮G)(M,X×){{\mathrm{Map}}_{\mathrm{CMon}(\mathcal{S}_{G})}(M,X^{\times})}η\scriptstyle{\eta^{*}}i\scriptstyle{i_{*}}η\scriptstyle{\eta^{*}}i\scriptstyle{i_{*}}

The left vertical ii_{*} is an equivalence since ΩBM\Omega BM is group–complete and ()×(-)^{\times} is the right adjoint to the inclusion CGrp(𝒮G)CMon(𝒮G)\mathrm{CGrp}(\mathcal{S}_{G})\subseteq\mathrm{CMon}(\mathcal{S}_{G}); the bottom η\eta^{*} is an equivalence since X×X^{\times} is group–complete and ΩBM\Omega BM is the group–completion of MM by Construction 2.6; the right vertical ii_{*} is an equivalence because maps in Map(π¯0M)1\mathrm{Map}^{(\underline{\pi}_{0}M)^{-1}} are precisely those that land in X×X^{\times} by definition. Therefore, all in all, the top horizontal η\eta^{*} is also an equivalence, as claimed.

Now by the adjunction Eq. 1, for any ACAlg(SpG)A\in\mathrm{CAlg}({\mathrm{Sp}}_{G}), we have

MapCAlg(SpG)(𝕊G[ΩBM],A)MapCMon(𝒮G)(ΩBM,ΩGA)MapCMon(𝒮G)(π¯0M)1(M,ΩGA)MapCAlg(SpG)(π¯M)1(𝕊G[M],A)\begin{split}{\mathrm{Map}}_{{\mathrm{CAlg}}({\mathrm{Sp}}_{G})}(\mathbb{S}_{G}[\Omega BM],A)&\simeq{\mathrm{Map}}_{{\mathrm{CMon}}(\mathcal{S}_{G})}(\Omega BM,{\Omega}^{\infty}_{G}A)\\ &\simeq{\mathrm{Map}}_{{\mathrm{CMon}}(\mathcal{S}_{G})}^{(\underline{\pi}_{0}M)^{-1}}(M,{\Omega}^{\infty}_{G}A)\\ &\simeq{\mathrm{Map}}_{{\mathrm{CAlg}}({\mathrm{Sp}}_{G})}^{(\underline{\pi}_{M})^{-1}}(\mathbb{S}_{G}[M],A)\end{split} (5)

where the second equivalence is by the claim above. By Notation 3.1, 𝕊G[ΩBM]\mathbb{S}_{G}[\Omega BM] therefore computes L(π¯M)1𝕊G[M]L_{(\underline{\pi}_{M})^{-1}}\mathbb{S}_{G}[M], as desired. ∎

We now turn to the task of refining to normed structures when the input is more highly structured, ie. when MCMonG(𝒮¯G)M\in\mathrm{CMon}_{G}(\underline{\mathcal{S}}_{G}). Before that, it would be useful to formulate the following intermediate notion together with a couple of easy consequences which would help us identify the homotopy groups of the abstract localisation we have so far.

Condition 3.4 (Torsion–extensions).

Let RCAlg(SpG)R\in\mathrm{CAlg}(\mathrm{Sp}_{G}) and S¯π¯0R\underline{S}\subseteq\underline{\pi}_{0}R be a GG–subset of the zeroth equivariant homotopy groups of RR. We say that S¯\underline{S} satisfies the torsion–extension condition if for any HGH\leq G, the inclusion ResHGSGSH\mathrm{Res}^{G}_{H}S_{G}\subseteq S_{H} is a torsion–extension, ie. for any aSHa\in S_{H}, there exists a rπ0HRr\in\pi_{0}^{H}R such that raResHGSGr\cdot a\in\mathrm{Res}^{G}_{H}S_{G}.

Remark 3.5.

The reason for this choice of terminology was an analogy in the case of modules: if IJRI\subseteq J\subseteq R are RR–submodules satisfying the analogous condition, then J/IJ/I is a torsion RR–module. In any case, the next three lemmas should clarify our interest in this condition.

Lemma 3.6.

If RCAlg(SpG)R\in\mathrm{CAlg}({\mathrm{Sp}}_{G}) and S¯π¯0R\underline{S}\subseteq\underline{\pi}_{0}R is a multiplicatively closed GG–subset satisfying 3.4, then LS¯1RL_{\underline{S}^{-1}}R exists and the canonical map SG1RLS¯1RS_{G}^{-1}R\longrightarrow L_{\underline{S}^{-1}}R from Eq. 4 is an equivalence. Furthermore, in this case, for any KGK\leq G, we have that ResKGSG1RSK1ResKGR\mathrm{Res}^{G}_{K}S^{-1}_{G}R\simeq S^{-1}_{K}\mathrm{Res}^{G}_{K}R.

Proof.

As explained in Notation 3.1, the canonical map in the statement induces an inclusion of subcomponents MapCAlg(SpG)S¯1(R,A)MapCAlg(SpG)SG1(R,A)\mathrm{Map}_{\mathrm{CAlg}(\mathrm{Sp}_{G})}^{\underline{S}^{-1}}(R,A)\hookrightarrow\mathrm{Map}_{\mathrm{CAlg}(\mathrm{Sp}_{G})}^{S_{G}^{-1}}(R,A). Hence all we have to do is to show that all components in the target are hit. So suppose φ:RA\varphi\colon R\rightarrow A inverts elements in SGS_{G}. We need to show that for all HGH\leq G, φ|H:ResHGRResHGA\varphi|_{H}\colon\mathrm{Res}^{G}_{H}R\rightarrow\mathrm{Res}^{G}_{H}A sends elements in SHπ0HRS_{H}\subseteq\pi_{0}^{H}R to units in π0HA\pi_{0}^{H}A.

Thus, fix HGH\leq G and let aSHa\in S_{H}. By hypothesis, there exists an rπ0HRr\in\pi_{0}^{H}R such that raResHGSGr\cdot a\in\mathrm{Res}^{G}_{H}S_{G}. Since φ|H\varphi|_{H} inverts rar\cdot a, let xπ0HAx\in\pi_{0}^{H}A such that 1=xφ|H(ra)=xφ|H(r)φ|H(a)1=x\cdot\varphi|_{H}(r\cdot a)=x\cdot\varphi|_{H}(r)\cdot\varphi|_{H}(a). In particular, since everything is commutative, xφ|H(r)x\cdot\varphi|_{H}(r) is the inverse of φ|H(a)\varphi|_{H}(a), and so φ|H\varphi|_{H} inverts aa too. Therefore, since aa was arbitrary, we see that φ|H\varphi|_{H} must have inverted all of SHS_{H} as required.

For the last statement, first observe that ResKGSG1R(ResKGSG)1ResKGR\mathrm{Res}^{G}_{K}S^{-1}_{G}R\simeq(\mathrm{Res}^{G}_{K}S_{G})^{-1}\mathrm{Res}^{G}_{K}R. Hence, since ResKGSGSKπ0KR\mathrm{Res}^{G}_{K}S_{G}\subseteq S_{K}\subseteq\pi_{0}^{K}R, we see that a priori ResKGSG1R\mathrm{Res}^{G}_{K}S^{-1}_{G}R has inverted possibly fewer elements than has SK1ResKGRS^{-1}_{K}\mathrm{Res}^{G}_{K}R. However, the same argument as in the previous paragraph shows that under our hypothesis on RR, we indeed have ResKGSG1RSK1ResKGR\mathrm{Res}^{G}_{K}S^{-1}_{G}R\simeq S^{-1}_{K}\mathrm{Res}^{G}_{K}R as wanted. ∎

Lemma 3.7.

Let RCAlgG(Sp\contourwhiteSpG)R\in\mathrm{CAlg}_{G}(\mathchoice{\mbox{\uline{\phantom{$\displaystyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\displaystyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\textstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\textstyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\scriptstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\scriptstyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\scriptscriptstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\scriptscriptstyle\mathrm{Sp}$}}}}_{G}) be a GG𝔼\mathbb{E}_{\infty}–ring object and S¯π¯0R\underline{S}\subseteq\underline{\pi}_{0}R be a GG–subset that is closed under the norms. Then S¯\underline{S} satisfies 3.4.

Proof.

Fix HGH\leq G and let aSHa\in S_{H}. We want to show that there is an rπ0HRr\in\pi_{0}^{H}R such that raResHGSGr\cdot a\in\mathrm{Res}^{G}_{H}S_{G}. For this, consider NHGaπ0GR\mathrm{N}^{G}_{H}a\in\pi_{0}^{G}R which is in fact in SGπ0GRS_{G}\subseteq\pi_{0}^{G}R by the norm–closure hypothesis. Then by the norm double coset formula, we get

ResHGNHGa=gH\G/HNHgHHgResHHgHaResHGSG\mathrm{Res}^{G}_{H}\mathrm{N}^{G}_{H}a=\prod_{g\in H\backslash G/H}\mathrm{N}^{H}_{H^{g}\cap H}g_{*}\mathrm{Res}^{H}_{H\cap H^{g}}a\in\mathrm{Res}^{G}_{H}S_{G}

where aa is a factor on the right (ie. when g=eg=e), whence the claim. ∎

Lemma 3.8.

If MCMonG(𝒮¯G)M\in\mathrm{CMon}_{G}(\underline{\mathcal{S}}_{G}), then π¯Mπ¯0𝕊G[M]\underline{\pi}_{M}\subseteq\underline{\pi}_{0}\mathbb{S}_{G}[M] is closed under the norms.

Proof.

First of all, by Lemma 2.5 we know 𝕊G[M]\mathbb{S}_{G}[M] refines to a GG𝔼\mathbb{E}_{\infty}–ring object. Now fix HGH\leq G and suppose we have nπ0HMn\in\pi_{0}^{H}M with associated element n¯π0H𝕊G[M]\overline{n}\in\pi_{0}^{H}\mathbb{S}_{G}[M]. Thus by definition the normed element NHGn¯π0G𝕊G[M]\mathrm{N}^{G}_{H}\overline{n}\in\pi_{0}^{G}\mathbb{S}_{G}[M] is given by

𝕊G=NHG𝕊H\xlongrightarrowNHGn¯NHGResHG𝕊G[M]𝕊G[G/HResHGM]\xlongrightarrow𝕊[G/H]𝕊G[M]\mathbb{S}_{G}=\mathrm{N}^{G}_{H}\mathbb{S}_{H}\xlongrightarrow{\mathrm{N}^{G}_{H}\overline{n}}\mathrm{N}^{G}_{H}\mathrm{Res}^{G}_{H}\mathbb{S}_{G}[M]\simeq\mathbb{S}_{G}[\prod_{G/H}\mathrm{Res}^{G}_{H}M]\xlongrightarrow{\mathbb{S}[\oplus_{G/H}]}\mathbb{S}_{G}[M]

Here G/H:G/HResHGMM\oplus_{G/H}\colon\prod_{G/H}\mathrm{Res}^{G}_{H}M\rightarrow M is the GG–semiadditivity adjunction counit of an object MCMonG(𝒮¯G)M\in\mathrm{CMon}_{G}(\underline{\mathcal{S}}_{G}). The middle equivalence is since 𝕊G[G/H]NHG𝕊H[]\mathbb{S}_{G}[\prod_{G/H}-]\simeq\mathrm{N}^{G}_{H}\mathbb{S}_{H}[-] from the GG–symmetric monoidality of the functor 𝕊G[]\mathbb{S}_{G}[-] from Lemma 2.5

Now, the natural transformation ()ΩG𝕊G()(-)\Rightarrow\Omega^{\infty}_{G}\mathbb{S}_{G}(-) from Lemma 2.5 together with the adjunction counit HGResHGMG/HM\prod^{G}_{H}\mathrm{Res}^{G}_{H}M\xrightarrow{\oplus_{G/H}}M yield the commuting diagram

{\ast}ΩG𝕊G{\Omega^{\infty}_{G}\mathbb{S}_{G}}HGResHGM{\prod^{G}_{H}\mathrm{Res}^{G}_{H}M}ΩG𝕊G[HGResHGM]ΩGNHGResHG𝕊G[M]{\Omega^{\infty}_{G}\mathbb{S}_{G}[\prod^{G}_{H}\mathrm{Res}^{G}_{H}M]\simeq\Omega^{\infty}_{G}\mathrm{N}^{G}_{H}\mathrm{Res}^{G}_{H}\mathbb{S}_{G}[M]}M{M}ΩG𝕊G[M]{\Omega^{\infty}_{G}\mathbb{S}_{G}[M]}n\scriptstyle{n}ΩGNHGn¯\scriptstyle{\Omega^{\infty}_{G}\mathrm{N}^{G}_{H}\overline{n}}G/H\scriptstyle{\oplus_{G/H}}ΩG𝕊G[G/H]\scriptstyle{\Omega^{\infty}_{G}\mathbb{S}_{G}{[}\oplus_{G/H}{]}}

This implies that the normed up element NHGn¯π0G𝕊G[M]\mathrm{N}^{G}_{H}\overline{n}\in\pi_{0}^{G}\mathbb{S}_{G}[M] already came from the element G/Hnπ0GM\oplus_{G/H}n\in\pi_{0}^{G}M and so π¯Mπ¯0𝕊G[M]\underline{\pi}_{M}\subseteq\underline{\pi}_{0}\mathbb{S}_{G}[M] is closed under norms. ∎

We now cash in all the work we have done to complete the proof of the theorem.

Proof of Theorem 3.3 (ii).

The main point is that we have commuting squares

CMonG(𝒮¯G){\mathrm{CMon}_{G}(\underline{\mathcal{S}}_{G})}CAlgG(Sp\contourwhiteSpG¯){\mathrm{CAlg}_{G}(\mathchoice{\mbox{\uline{\phantom{$\displaystyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\displaystyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\textstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\textstyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\scriptstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\scriptstyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\scriptscriptstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\scriptscriptstyle\mathrm{Sp}$}}}}_{G}^{\underline{\otimes}})}CMon(𝒮G){\mathrm{CMon}({\mathcal{S}}_{G})}CAlg(SpG){\mathrm{CAlg}({\mathrm{Sp}}_{G}^{\otimes})}𝕊G[]\scriptstyle{\mathbb{S}_{G}{[}-{]}}fgt\scriptstyle{\mathrm{fgt}}ΩG\scriptstyle{\Omega^{\infty}_{G}}fgt\scriptstyle{\mathrm{fgt}}𝕊G[]\scriptstyle{\mathbb{S}_{G}{[}-{]}}ΩG\scriptstyle{\Omega^{\infty}_{G}}

obtained by using the GG–lax symmetric monoidality of the adjunction 𝕊G[]ΩG\mathbb{S}_{G}[-]\dashv\Omega^{\infty}_{G} from Lemma 2.5 together with the commuting square in Construction 2.7. In fact, for this proof we only need that the (𝕊G[],fgt)(\mathbb{S}_{G}[-],\mathrm{fgt}) square commutes. Thus, if MCMonG(𝒮¯G)M\in\mathrm{CMon}_{G}(\underline{\mathcal{S}}_{G}) so that ΩBM\Omega BM is again in CMonG(𝒮¯G)\mathrm{CMon}_{G}(\underline{\mathcal{S}}_{G}) by Construction 2.6, then 𝕊G[ΩBM]\mathbb{S}_{G}[\Omega BM] - which is equivalent to L(π¯M)1𝕊G[M]L_{(\underline{\pi}_{M})^{-1}}\mathbb{S}_{G}[M] by part (i) of the theorem - naturally refines to the structure of an object in CAlgG(Sp\contourwhiteSpG¯)\mathrm{CAlg}_{G}(\mathchoice{\mbox{\uline{\phantom{$\displaystyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\displaystyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\textstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\textstyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\scriptstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\scriptstyle\mathrm{Sp}$}}}}{\mbox{\uline{\phantom{$\scriptscriptstyle\mathrm{Sp}$}}\hbox to0.0pt{\hss\contour{white}{$\scriptscriptstyle\mathrm{Sp}$}}}}_{G}^{\underline{\otimes}}), ie. it canonically attains the multiplicative norms. The final statement of part (ii) is then a direct combination of Lemmas 3.6, 3.7 and 3.8. ∎

Remark 3.9.

The norm closure of the subset π¯Mπ¯0𝕊G[M]\underline{\pi}_{M}\subseteq\underline{\pi}_{0}\mathbb{S}_{G}[M] from Lemma 3.8 should have indicated why the localisation (π¯M)1𝕊G[M](\underline{\pi}_{M})^{-1}\mathbb{S}_{G}[M] even had a chance of attaining the multiplicative norms. In general, a localisation on a GG𝔼\mathbb{E}_{\infty}–ring need not refine again to a GG𝔼\mathbb{E}_{\infty}–ring, as is well documented for instance in [HH13]. Nonetheless, the norm closure of a multiplicative subset is a necessary and sufficient property for the localisation to refine to the structure of a GG𝔼\mathbb{E}_{\infty}–ring. This can be deduced for example from [QS22, Lem. 5.27].

Finally, we use Theorem 3.3 to quickly deduce Theorem 1.3.

Proof of Theorem 1.3.

Let KGK\leq G and N¯\underline{N} a GG–Mackey functor, thought of as an Eilenberg–Mac Lane genuine GG–spectrum (see for example [Sch22, Ex. 4.41]). Then by definition of RO(G)RO(G)–graded Bredon homology (loc. cit.), we have HK(ΩBM;N¯)=πK(N¯𝕊G[ΩBM])H_{\star}^{K}(\Omega BM;\underline{N})=\pi_{\star}^{K}\big{(}\underline{N}\otimes\mathbb{S}_{G}[\Omega BM]\big{)}. Moreover, by the second part of Lemma 3.6, we know that ResKG(πMG)1𝕊G[M](πMK)1ResKG𝕊G[M]\mathrm{Res}^{G}_{K}(\pi^{G}_{M})^{-1}\mathbb{S}_{G}[M]\simeq(\pi^{K}_{M})^{-1}\mathrm{Res}^{G}_{K}\mathbb{S}_{G}[M] and so we get

HK(M;N¯)[(π0KM)1]=(πMK)1πK(N¯𝕊G[M])πK(N¯(πMG)1𝕊G[M])H_{\star}^{K}(M;\underline{N})[(\pi_{0}^{K}M)^{-1}]=(\pi^{K}_{M})^{-1}\pi^{K}_{\star}\big{(}\underline{N}\otimes\mathbb{S}_{G}[M]\big{)}\cong\pi^{K}_{\star}\big{(}\underline{N}\otimes(\pi^{G}_{M})^{-1}\mathbb{S}_{G}[M]\big{)}

whence the result by Theorem 3.3. ∎

4 Final remarks

In this last section, we will comment on three points:

  • We analyse the geometric fixed points of the abstract localisation from Notation 3.1 and show that it has an easy description,

  • we explain a generic situation where the theorem might be applied,

  • and we give a plentiful source of examples of GG𝔼\mathbb{E}_{\infty}–monoid GG–spaces.

For the first point, as we have remarked in Notation 3.1, the abstract localisation LS¯1RL_{\underline{S}^{-1}}R, if it exists, has no reason to have a nice description in general. Notwithstanding, it does interact well with the geometric fixed points, as we now explain.

Observation 4.1.

Let S¯π¯0R\underline{S}\subseteq\underline{\pi}_{0}R be a multiplicative GG–subset for some RCAlg(SpG)R\in\mathrm{CAlg}(\mathrm{Sp}_{G}). Recall for instance from [MNN17, Cons. 6.10, Thm. 6.11] that we have a lax symmetric monoidal Bousfield localisation ΦG:SpGSp:ΞG\Phi^{G}\colon\mathrm{Sp}_{G}\rightleftharpoons\mathrm{Sp}\>:\Xi^{G} which then induces a Bousfield localisation ΦG:CAlg(SpG)CAlg(Sp):ΞG\Phi^{G}\colon\mathrm{CAlg}(\mathrm{Sp}_{G})\rightleftharpoons\mathrm{CAlg}(\mathrm{Sp})\>:\Xi^{G}. Here for XSpX\in\mathrm{Sp}, ΞGX\Xi^{G}X is the GG–spectrum such that (ΞGX)GX(\Xi^{G}X)^{G}\simeq X and (ΞGX)H0(\Xi^{G}X)^{H}\simeq 0 for HGH\lneq G. Classically, this is also written as E𝒫~X\widetilde{E\mathcal{P}}\otimes X where 𝒫\mathcal{P} is the proper family of subgroups of GG. We claim that the resulting equivalence MapCAlg(SpG)(R,ΞGA)MapCAlg(Sp)(ΦGR,A)\mathrm{Map}_{\mathrm{CAlg}(\mathrm{Sp}_{G})}(R,\Xi^{G}A)\simeq\mathrm{Map}_{\mathrm{CAlg}(\mathrm{Sp})}(\Phi^{G}R,A) restricts to an equivalence

MapCAlg(SpG)S¯1(R,ΞGA)MapCAlg(Sp)(ΦGSG)1(ΦGR,A)\mathrm{Map}_{\mathrm{CAlg}(\mathrm{Sp}_{G})}^{\underline{S}^{-1}}(R,\Xi^{G}A)\simeq\mathrm{Map}_{\mathrm{CAlg}(\mathrm{Sp})}^{(\Phi^{G}S_{G})^{-1}}(\Phi^{G}R,A)

To see this, since ΦGΞGid\Phi^{G}\Xi^{G}\simeq\mathrm{id}, we know ΦG\Phi^{G} induces an inclusion

MapCAlg(SpG)S¯1(R,ΞGA)MapCAlg(Sp)(ΦGSG)1(ΦGR,A)\mathrm{Map}_{\mathrm{CAlg}(\mathrm{Sp}_{G})}^{\underline{S}^{-1}}(R,\Xi^{G}A)\xhookrightarrow{\phantom{\quad}}\mathrm{Map}_{\mathrm{CAlg}(\mathrm{Sp})}^{(\Phi^{G}S_{G})^{-1}}(\Phi^{G}R,A)

To see that this is even an equivalence, suppose we have φ:ΦGRA\varphi\colon\Phi^{G}R\rightarrow A which inverts ΦGSGπ0ΦGR\Phi^{G}S_{G}\subseteq\pi_{0}\Phi^{G}R. The adjoint φ¯:RΞGA\overline{\varphi}\colon R\rightarrow\Xi^{G}A is given by the composite

φ¯:R\xlongrightarrowηΞGΦGR\xlongrightarrowΞGφΞGA\overline{\varphi}\colon R\xlongrightarrow{\eta}\Xi^{G}\Phi^{G}R\xlongrightarrow{\Xi^{G}\varphi}\Xi^{G}A

where the adjunction unit η\eta is a map of 𝔼\mathbb{E}_{\infty}–rings and sends elements in SGS_{G} to elements in ΦGSG\Phi^{G}S_{G}. Therefore, φ¯\overline{\varphi} must invert all elements in SGS_{G}. Moreover, since for HGH\lneq G, (ΞGA)H(\Xi^{G}A)^{H} are equivalent to the zero rings, the maps ResHGφ¯:ResHGRResHGΞGA0\mathrm{Res}^{G}_{H}\overline{\varphi}\colon\mathrm{Res}^{G}_{H}R\rightarrow\mathrm{Res}^{G}_{H}\Xi^{G}A\simeq 0 send everything to units for trivial reasons, and so in total φ¯\overline{\varphi} indeed inverts elements in S¯\underline{S} as was to be shown.

Proposition 4.2.

Let RCAlg(SpG)R\in\mathrm{CAlg}(\mathrm{Sp}_{G}), S¯π¯0R\underline{S}\subseteq\underline{\pi}_{0}R a multiplicative subset, and suppose LS¯1RL_{\underline{S}^{-1}}R exists. Then the canonical map ΦGRΦGLS¯1R\Phi^{G}R\rightarrow\Phi^{G}L_{\underline{S}^{-1}}R induces an equivalence (ΦGSG)1ΦGRΦGLS¯1R(\Phi^{G}S_{G})^{-1}\Phi^{G}R\simeq\Phi^{G}L_{\underline{S}^{-1}}R.

Proof.

Let ACAlg(Sp)A\in\mathrm{CAlg}(\mathrm{Sp}). Then

MapCAlg(Sp)(ΦGLS¯1R,A)MapCAlg(SpG)(LS¯1R,ΞGA)MapCAlg(SpG)S¯1(R,ΞGA)MapCAlg(Sp)(ΦGSG)1(ΦGR,A)MapCAlg(Sp)((ΦGSG)1ΦGR,A)\begin{split}\mathrm{Map}_{\mathrm{CAlg}(\mathrm{Sp})}(\Phi^{G}L_{\underline{S}^{-1}}R,A)&\simeq\mathrm{Map}_{\mathrm{CAlg}(\mathrm{Sp}_{G})}(L_{\underline{S}^{-1}}R,\Xi^{G}A)\\ &\simeq\mathrm{Map}_{\mathrm{CAlg}(\mathrm{Sp}_{G})}^{\underline{S}^{-1}}(R,\Xi^{G}A)\\ &\simeq\mathrm{Map}_{\mathrm{CAlg}(\mathrm{Sp})}^{(\Phi^{G}S_{G})^{-1}}(\Phi^{G}R,A)\\ &\simeq\mathrm{Map}_{\mathrm{CAlg}(\mathrm{Sp})}((\Phi^{G}S_{G})^{-1}\Phi^{G}R,A)\\ \end{split}

where the third equivalence is by Observation 4.1. ∎

Remark 4.3.

Let MCMon(𝒮G)M\in\mathrm{CMon}(\mathcal{S}_{G}). We claim that ΦGπMG=πMGπ0𝕊[MG]\Phi^{G}\pi_{M}^{G}=\pi_{M^{G}}\subseteq\pi_{0}\mathbb{S}[M^{G}] where πMG\pi_{M^{G}} is the image of the nonequivariant Hurewicz map π0MGπ0𝕊[MG]\pi_{0}M^{G}\rightarrow\pi_{0}\mathbb{S}[M^{G}]. Given this, we see by Proposition 4.2 that

ΦG(π¯M1𝕊G[M])(πMG)1𝕊[MG]\Phi^{G}(\underline{\pi}_{M}^{-1}\mathbb{S}_{G}[M])\simeq(\pi_{M^{G}})^{-1}\mathbb{S}[M^{G}]

and so applying ΦG\Phi^{G} reduces Theorem 3.3 (i) to the classical group–completion theorem formulated for example in [Nik17, Thm. 1]. To prove the claim, we want to show that the inclusion ΦGπMGπMG\Phi^{G}\pi_{M}^{G}\subseteq\pi_{M^{G}} is surjective. By one of the defining properties of ΦG\Phi^{G}, we know that there is a commuting square

𝒮G{\mathcal{S}_{G}}SpG{\mathrm{Sp}_{G}}𝒮{\mathcal{S}}Sp{\mathrm{Sp}}𝕊G[]\scriptstyle{\mathbb{S}_{G}{[}-{]}}()G\scriptstyle{(-)^{G}}ΦG\scriptstyle{\Phi^{G}}𝕊\scriptstyle{\mathbb{S}}

which yields a commuting square

π0GM=π0Map𝒮G(,M){\pi_{0}^{G}M=\pi_{0}\mathrm{Map}_{\mathcal{S}_{G}}(\ast,M)}π0G𝕊G[M]=π0MapSpG(𝕊G,𝕊G[M]){\pi_{0}^{G}\mathbb{S}_{G}[M]=\pi_{0}\mathrm{Map}_{{\mathrm{Sp}_{G}}}\big{(}\mathbb{S}_{G},\mathbb{S}_{G}[M]\big{)}}π0(MG)=π0Map𝒮(,MG){\pi_{0}(M^{G})=\pi_{0}\mathrm{Map}_{\mathcal{S}}(\ast,M^{G})}π0𝕊[MG]=π0MapSp(𝕊,𝕊[MG]){\pi_{0}\mathbb{S}[M^{G}]=\pi_{0}\mathrm{Map}_{{\mathrm{Sp}}}\big{(}\mathbb{S},\mathbb{S}[M^{G}]\big{)}}𝕊G[]\scriptstyle{\mathbb{S}_{G}{[}-{]}}\scriptstyle{\cong}ΦG\scriptstyle{\Phi^{G}}𝕊[]\scriptstyle{\mathbb{S}{[}-{]}}

This implies that ΦGπMGπMG\Phi^{G}\pi_{M}^{G}\subseteq\pi_{M^{G}} is surjective, as desired.

Next, we turn to the matter of recording a generic toy situation where our theorem might be useful. This manoeuvre is an immediate generalisation of its (standard) nonequivariant analogue.

Proposition 4.4 (Equivariant simply–connected homology Whitehead theorem).

Suppose we have a map f:XYf\colon X\rightarrow Y of GG–spaces which induces an equivalence 𝕊Gf:𝕊G[X]𝕊G[Y]\mathbb{S}_{G}f\colon\mathbb{S}_{G}[X]\rightarrow\mathbb{S}_{G}[Y]. Suppose moreover that X,YX,Y are both GG–simply–connected (ie. XHX^{H} and YHY^{H} are simply–connected for all HGH\leq G). Then the map f:XYf\colon X\rightarrow Y was already a GG–equivalence.

Proof.

To see this, we need to show that we have an equivalence for all fixed points. So let HGH\leq G. Applying the HH–geometric fixed points ΦH\Phi^{H} to the equivalence 𝕊Gf\mathbb{S}_{G}f gives us an equivalence ΦH𝕊Gf𝕊[fH]:𝕊[XH]\xlongrightarrow𝕊[YH]\Phi^{H}\mathbb{S}_{G}f\simeq\mathbb{S}[f^{H}]\colon\mathbb{S}[X^{H}]\xlongrightarrow{\simeq}\mathbb{S}[Y^{H}]. Hence, by the ordinary simply–connected homology Whitehead theorem, the map of spaces fH:XHYHf^{H}\colon X^{H}\rightarrow Y^{H} is an equivalence, as was to be shown. ∎

Our Theorem 3.3 can then potentially be used in conjunction with this in the following way. Suppose we have a map of GG𝔼\mathbb{E}_{\infty}–monoids NΩBMN\rightarrow\Omega BM where we already understand 𝕊G[N]\mathbb{S}_{G}[N] and where ΩBM\Omega BM and NN are GG–simply–connected. Since the theorem gives a formula for 𝕊G[ΩBM]\mathbb{S}_{G}[\Omega BM], we might be able to use it to show that 𝕊G[N]𝕊G[ΩBM]\mathbb{S}_{G}[N]\rightarrow\mathbb{S}_{G}[\Omega BM] is an equivalence. If this were true, then by the equivariant Whitehead proposition above, we can deduce that NΩBMN\rightarrow\Omega BM is an equivalence, thus giving a computation of ΩBM\Omega BM in terms of NN.

Of course, this toy situation might not be so applicable since GG–simply connectedness is an unreasonable condition to demand in general. Our intention for this was only to indicate a template over which other variations might be beneficial in specific circumstances.

Lastly, we end the main body of this note by recording a huge standard source of potentially interesting examples of GG𝔼\mathbb{E}_{\infty}–monoid GG–spaces to consider.

Example 4.5.

GG𝔼\mathbb{E}_{\infty}–monoid GG–spaces, for which the localisation formula of Theorem 3.3 (ii) holds, are in abundant supply. One fertile source is small semiadditive \infty–categories (which include stable \infty–categories) equipped with GG–actions, ie. objects in Fun(BG,Cat)\mathrm{Fun}(BG,\mathrm{Cat}^{\oplus}_{\infty}). If 𝒞\mathcal{C} were one such instance, then {𝒞hH}HG\{\mathcal{C}^{hH}\}_{H\leq G} assembles to a GG𝔼\mathbb{E}_{\infty}–monoid GG–category. In other words, it is an object in MackG(Cat)\mathrm{Mack}_{G}(\mathrm{Cat}_{\infty}^{\oplus}) (cf. [BGS20, §8\S 8] for an explanation of this). Then taking the groupoid core yields a GG𝔼\mathbb{E}_{\infty}–monoid GG–space {(𝒞hH)}HGMackG(𝒮)CMonG(𝒮¯G)\{(\mathcal{C}^{hH})^{\simeq}\}_{H\leq G}\in\mathrm{Mack}_{G}(\mathcal{S})\simeq\mathrm{CMon}_{G}(\underline{\mathcal{S}}_{G}). In fact, this procedure of producing GG𝔼\mathbb{E}_{\infty}–monoid GG–spaces by taking groupoid cores works more generally for any GG–semiadditive GG–category.

Concrete examples belonging to this template include equipping the trivial GG–action on categories like finitely generated projective RR–modules ProjR\mathrm{Proj}_{R} for RCRingR\in\mathrm{CRing} or perfect AA–modules PerfA\mathrm{Perf}_{A} for ACAlg(Sp)A\in\mathrm{CAlg}(\mathrm{Sp}). These yield the objects {Map(BH,ProjR)}HG\{\mathrm{Map}(BH,\mathrm{Proj}_{R}^{\simeq})\}_{H\leq G} and {Map(BH,PerfA)}HG\{\mathrm{Map}(BH,\mathrm{Perf}_{A}^{\simeq})\}_{H\leq G} in CMonG(𝒮¯G)\mathrm{CMon}_{G}(\underline{\mathcal{S}}_{G}), the group–completions of which give the so–called Swan equivariant K–theories. Familiar examples of GG–spectra obtained in this manner include kuG\mathrm{ku}_{G} and koG\mathrm{ko}_{G}. Another interesting source of semiadditive categories equipped with GG–actions come from finite Galois extensions of fields KLK\subseteq L. In this case, the GG–Galois action on VectLfd\mathrm{Vect}_{L}^{\mathrm{fd}} yields the GG𝔼\mathbb{E}_{\infty}–monoid GG–space {(VectLHfd)}HG\{(\mathrm{Vect}_{L^{H}}^{\mathrm{fd}})^{\simeq}\}_{H\leq G}.

Appendix A Algebras in equivariant cartesian symmetric monoidal structures

We will provide in this appendix a proof of the folklore result that CMonG(𝒞¯)CAlgG(𝒞¯×¯)\mathrm{CMon}_{G}(\underline{\mathcal{C}})\simeq\mathrm{CAlg}_{G}(\underline{\mathcal{C}}^{\underline{\times}}), which heuristic intuition we explain at the end of 2.4. The proof will be a straightforward - if a bit tedious - adaptation of the proof by Lurie from [Lur17, Prop. 2.4.2.5] as organised by Chu and Haugseng [CH22] in the language of so–called cartesian patterns. The main idea of Lurie’s proof is that there is a nice model for the cartesian symmetric monoidal structure which embeds inside a larger category which in turn admits a convenient universal property of being mapped into. In the interest of space and as this is a necessarily technical result, we will assume some familiarity with the formalism and underpinnings of parametrised homotopy theory (cf. [Sha23, Nar16]), as well as the associated factorisation system and operad theory as laid out in [Sha22, §3, §4] and [NS22, §2.1-§2.3]. We will however provide basic recollections and precise references for the sake of comprehensibility. Lastly, we should also mention that this is an extremely brisk and minimalistic account sufficient for our purposes, and it might be interesting to investigate the notion of parametrised cartesian patterns along the level of generality in [CH22].

Our first order of business is to set up the basic theory of GG–cartesian patterns and their associated monoids.

Notation A.1.

It will be convenient to adopt the following conventions to lighten our notational load: for 𝒞¯\underline{\mathcal{C}} a GG–category, HGH\leq G, and a HH–object X𝒞HX\in\mathcal{C}_{H} (which can equivalently be viewed as a HH–functor ¯ResHG𝒞¯\underline{\ast}\rightarrow\mathrm{Res}^{G}_{H}\underline{\mathcal{C}}),

  • we write 𝒞¯H\underline{\mathcal{C}}_{H} for the HH–category ResHG𝒞¯\mathrm{Res}^{G}_{H}\underline{\mathcal{C}}. Note that this does not conflict with the notation 𝒞H\mathcal{C}_{H} from 2.4. As such, we will also write HH–objects as X𝒞¯HX\in\underline{\mathcal{C}}_{H},

  • we will write 𝒞¯X/\underline{\mathcal{C}}_{X/} to mean the HH–category (𝒞¯H)X/(\underline{\mathcal{C}}_{H})_{X/},

  • for a GG–functor 𝒟¯𝒞¯\underline{\mathcal{D}}\rightarrow\underline{\mathcal{C}}, we will write 𝒟¯X\underline{\mathcal{D}}_{X} for the HH–category ¯×𝒞¯H𝒟¯H\underline{\ast}\times_{\underline{\mathcal{C}}_{H}}\underline{\mathcal{D}}_{H}, where ¯𝒞¯H\underline{\ast}\rightarrow\underline{\mathcal{C}}_{H} is the HH–functor picking out XX.

For a map f:VWf\colon V\rightarrow W in 𝒪G\mathcal{O}_{G}, we write f:𝒞W𝒞Vf^{*}\colon\mathcal{C}_{W}\rightarrow\mathcal{C}_{V} for the restriction functor. If they exist, we write f!,f:𝒞V𝒞Wf_{!},f_{*}\colon\mathcal{C}_{V}\rightarrow\mathcal{C}_{W} for the indexed coproduct and indexed product associated to ff, respectively (note that in [Nar16] the notations for f!,ff_{!},f_{*} are given respectively by f,f\coprod_{f},\prod_{f}). In this case, we have f!fff_{!}\dashv f^{*}\dashv f_{*}.

Definition A.2 (“[CH22, Def. 2.1]”).

Let 𝒪¯CatG\underline{\mathcal{O}}\in\mathrm{Cat}_{G}. A GG–algebraic pattern structure on 𝒪¯\underline{\mathcal{O}} is a GG–factorisation system (that is, a fibrewise factorisation system closed under the restriction functors, cf. [Sha22, Def. 3.1]) on 𝒪¯\underline{\mathcal{O}} together with a collection of objects which are termed elementary objects. We term the left (resp. right) class as the fibrewise inert (resp. fibrewise active) morphisms. A morphism of GG–algebraic patterns is a GG–functor 𝒪¯𝒫¯\underline{\mathcal{O}}\rightarrow\underline{\mathcal{P}} which preserves the fibrewise inert and active morphisms as well as the elementary objects. Write 𝒪¯int\underline{\mathcal{O}}^{\mathrm{int}} for the subcategory of 𝒪¯\underline{\mathcal{O}} containing only the fibrewise inert morphisms, and write 𝒪¯el𝒪¯int\underline{\mathcal{O}}^{\mathrm{el}}\subseteq\underline{\mathcal{O}}^{\mathrm{int}} for the full subcategory of elementary objects and fibrewise inert morphisms.

Notation A.3.

Fix HGH\leq G and O𝒪¯HO\in\underline{\mathcal{O}}_{H} a HH–object. Write 𝒪¯O/el𝒪¯el×𝒪¯int𝒪¯O/int\underline{\mathcal{O}}_{O/}^{\mathrm{el}}\coloneqq\underline{\mathcal{O}}^{\mathrm{el}}\times_{\underline{\mathcal{O}}^{\mathrm{int}}}\underline{\mathcal{O}}_{O/}^{\mathrm{int}} for the category of fibrewise inert maps from OO to elementary objects, and morphisms are fibrewise inert maps between these.

Notation A.4.

We will follow Chu and Haugseng’s notation from [CH21, CH22] and use \rightarrowtail to denote inert maps and \rightsquigarrow to denote active maps.

Example A.5.

Recall from [NS22, Def. 2.1.2] the GG–category of finite pointed GG–sets Fin¯\underline{\mathrm{Fin}}_{*}. This is given at level HH by Fun(BH,Fin)\mathrm{Fun}(BH,\mathrm{Fin}_{*}). It can also be described explicitly as follows: the objects in level HH for some HGH\leq G look like [UG/H][U\rightarrow G/H] where UU is a finite GG–set, and a morphism from [UG/H][U\rightarrow G/H] to [WG/K][W\rightarrow G/K] looks like

U{U}Z{Z}W{W}G/H{G/H}G/K{G/K}G/K{G/K}

where all maps in sight are GG–equivariant and the induced map ZU×G/HG/KZ\rightarrow U\times_{G/H}G/K is a summand inclusion.

This is the prime example of a GG–algebraic pattern, using that algebraic patterns are closed under limits in Cat\mathrm{Cat}_{\infty} by [CH21, Cor. 5.5]. Concretely, when K=HK=H, the fibrewise inert maps are the ones where ZWZ\rightarrow W is an equivalence, and the fibrewise active maps are those where the induced map ZU×G/HG/KZ\rightarrow U\times_{G/H}G/K is an equivalence (see [NS22, Def. 2.1.3]); the elementary objects are the objects [G/H=G/H][G/H\xrightarrow{=}G/H] at level HH for each HGH\leq G.

Following [CH21, Def. 6.1], we may make the following:

Definition A.6.

We say that a morphism f:𝒪¯𝒫¯f\colon\underline{\mathcal{O}}\rightarrow\underline{\mathcal{P}} of GG–algebraic patterns has unique lifting of fibrewise active morphisms if for every HGH\leq G and fibrewise active morphism ϕ:Pf(O)\phi\colon P\rightarrow f(O) in 𝒫H{\mathcal{P}}_{H}, the space of lifts of ϕ\phi to a fibrewise active morphism OOO^{\prime}\rightarrow O in 𝒪H{\mathcal{O}}_{H} is contractible.

Since GG–coinitiality is a fibrewise statement by the dual of [Sha23, Thm. 6.7] and Definition A.6 is also fibrewise, we may deduce immediately from [CH21, Lem. 6.2] the following:

Lemma A.7.

A morphism of GG–algebraic patterns f:𝒪¯𝒫¯f\colon\underline{\mathcal{O}}\rightarrow\underline{\mathcal{P}} has unique lifting of fibrewise active morphisms if and only if for every HGH\leq G and all P𝒫HP\in{\mathcal{P}}_{H}, the functor 𝒪¯P/int𝒪¯P/\underline{\mathcal{O}}^{\mathrm{int}}_{P/}\rightarrow\underline{\mathcal{O}}_{P/} is GG–coinitial.

Definition A.8 (“[CH22, Def. 2.6]”).

A GG–cartesian pattern is a GG–algebraic pattern 𝒪¯\underline{\mathcal{O}} equipped with a morphism of GG–algebraic patterns ||:𝒪¯Fin¯|-|\colon\underline{\mathcal{O}}\rightarrow\underline{\mathrm{Fin}}_{*} such that for every HGH\leq G and O𝒪¯HO\in\underline{\mathcal{O}}_{H}, the induced map 𝒪¯O/elFin¯,|O|/el\underline{\mathcal{O}}^{\mathrm{el}}_{O/}\rightarrow\underline{\mathrm{Fin}}_{*,|O|/}^{\mathrm{el}} is an equivalence. A morphism of GG–cartesian patterns is a morphism of GG–algebraic patterns over Fin¯\underline{\mathrm{Fin}}_{*}.

Construction A.9.

Recall the characteristic morphisms from [NS22, Defn. 2.1.6], i.e. maps in Fin¯\underline{\mathrm{Fin}}_{*} that look like

U{U}W{W}W{W}G/H{G/H}W{W}W{W}w\scriptstyle{w}

where W=G/KW=G/K is a GG–orbit in UU. We write such maps as χ[WU]\chi_{[W\subseteq U]}. These should be thought of as the analogue of the Segal maps ρi\rho^{i} (cf. [Lur17, Nota. 2.0.0.2]) in the parametrised setting. For any GG–functor F:Fin¯𝒞¯F\colon\underline{\mathrm{Fin}}_{*}\rightarrow\underline{\mathcal{C}} where 𝒞¯\underline{\mathcal{C}} has finite indexed products, the map χ[WU]\chi_{[W\subseteq U]} induces a canonical map of HH–objects in 𝒞¯\underline{\mathcal{C}}

F([UG/H])wF([W=W])F([U\rightarrow G/H])\longrightarrow w_{*}F([W\xrightarrow{=}W])

since we have

F(χ[WU])Map𝒞¯(F([UG/H]),F([W=W]))Map𝒞K(wF([UG/H]),F([W=W]))Map𝒞H(F([UG/H]),wF([W=W]))\begin{split}F(\chi_{[W\subseteq U]})\in\mathrm{Map}_{\underline{\mathcal{C}}}\Big{(}F([U\rightarrow G/H]),F([W\xrightarrow{=}W])\Big{)}&\simeq\mathrm{Map}_{\mathcal{C}_{K}}\Big{(}w^{*}F([U\rightarrow G/H]),F([W\xrightarrow{=}W])\Big{)}\\ &\simeq\mathrm{Map}_{\mathcal{C}_{H}}\Big{(}F([U\rightarrow G/H]),w_{*}F([W\xrightarrow{=}W])\Big{)}\end{split}

by the fact that 𝒞¯\underline{\mathcal{C}} has indexed products.

Definition A.10 (“[CH22, Def. 2.9]”).

Let 𝒪¯\underline{\mathcal{O}} be a GG–cartesian pattern and suppose 𝒞¯\underline{\mathcal{C}} has finite indexed products. A GG–functor F:𝒪¯𝒞¯F\colon\underline{\mathcal{O}}\rightarrow\underline{\mathcal{C}} is said to be an 𝒪¯\underline{\mathcal{O}}–monoid if for every [UG/H]Fin¯H[U\rightarrow G/H]\in\underline{\mathrm{Fin}}_{*H} and O𝒪¯HO\in\underline{\mathcal{O}}_{H} lying over [UG/H][U\rightarrow G/H], writing U=j=1nUjU=\coprod_{j=1}^{n}U_{j} for the GG–orbital decomposition, uj:UjG/Hu_{j}\colon U_{j}\rightarrow G/H for the structure maps, and χ[UjU]:OOj\chi_{[U_{j}\subseteq U]}\colon O\rightarrow O_{j} with OjO_{j} lying over [Uj=Uj][U_{j}=U_{j}] afforded by the equivalence 𝒪¯O/elFin¯,|O|/el\underline{\mathcal{O}}^{\mathrm{el}}_{O/}\xrightarrow{\simeq}\underline{\mathrm{Fin}}_{*,|O|/}^{\mathrm{el}}, the canonical map of HH–objects in 𝒞¯\underline{\mathcal{C}}

F(O)j=1nujF(Oj)F(O)\longrightarrow\prod_{j=1}^{n}u_{j*}F(O_{j})

is an equivalence. By the GG–cartesian pattern condition, this is equivalent to the following: writing j:𝒪¯el𝒪¯intj\colon\underline{\mathcal{O}}^{\mathrm{el}}\hookrightarrow\underline{\mathcal{O}}^{\mathrm{int}} for the inclusion, FF is an 𝒪¯\underline{\mathcal{O}}–monoid if and only if the canonical map F|𝒪¯intjj(F|𝒪¯int)F|_{\underline{\mathcal{O}}^{\mathrm{int}}}\rightarrow j_{*}j^{*}(F|_{\underline{\mathcal{O}}^{\mathrm{int}}}) is an equivalence. We write Mon𝒪¯(𝒞¯)FunG(𝒪¯,𝒞¯)\mathrm{Mon}_{\underline{\mathcal{O}}}(\underline{\mathcal{C}})\subseteq\mathrm{Fun}_{G}(\underline{\mathcal{O}},\underline{\mathcal{C}}) for the full subcategory of 𝒪¯\underline{\mathcal{O}}–monoids in 𝒞¯\underline{\mathcal{C}}.

Remark A.11.

In the case 𝒪¯=Fin¯\underline{\mathcal{O}}=\underline{\mathrm{Fin}}_{*}, by an easy comparison of definitions with [Nar16, Def. 5.9], we get that MonFin¯(𝒞¯)CMonG(𝒞¯)\mathrm{Mon}_{\underline{\mathrm{Fin}}_{*}}(\underline{\mathcal{C}})\simeq\mathrm{CMon}_{G}(\underline{\mathcal{C}}) where CMonG(𝒞¯)\mathrm{CMon}_{G}(\underline{\mathcal{C}}) is in the sense discussed in the body of the paper.

The exact same argument as in [CH21, Prop. 6.3], which uses only formalities about Kan extensions such as fully faithfulness of Kan extensions along fully faithful functors [Sha23, Prop. 10.6] as well as Lemma A.7, applies here to yield the following:

Lemma A.12.

If f:𝒪¯𝒫¯f\colon\underline{\mathcal{O}}\rightarrow\underline{\mathcal{P}} is a morphism of GG–algebraic patterns that has unique fibrewise active lifting, then the right Kan extension f:FunG(𝒪¯,𝒞¯)FunG(𝒫¯,𝒞¯)f_{*}\colon{\mathrm{Fun}}_{G}(\underline{\mathcal{O}},\underline{\mathcal{C}})\rightarrow{\mathrm{Fun}}_{G}(\underline{\mathcal{P}},\underline{\mathcal{C}}) restricts to f:Mon𝒪¯(𝒞¯)Mon𝒫¯(𝒞¯)f_{*}\colon\mathrm{Mon}_{\underline{\mathcal{O}}}(\underline{\mathcal{C}})\rightarrow\mathrm{Mon}_{\underline{\mathcal{P}}}(\underline{\mathcal{C}}).

Next, we work towards constructing the equivariant generalisation of Lurie’s model [Lur17, Prop. 2.4.1.5] for the cartesian symmetric monoidal structure for a GG–category with finite indexed products.

Construction A.13.

Let Γ¯×¯\underline{\Gamma}^{\underline{\times}} denote the full subcategory of Fin¯Δ1\underline{\mathrm{Fin}}_{*}^{\Delta^{1}} spanned by the fibrewise inert morphisms. It will be convenient to denote by [UV]G/HΓ¯Hׯ[U\rightarrowtail V]_{G/H}\in\underline{\Gamma}^{\underline{\times}}_{H} the HH–object

U{U}Z{Z}V{V}G/H{G/H}G/H{G/H}G/H{G/H}\scriptstyle{\simeq}

By [Sha22, Prop. 3.5 (1)], we know that ev0:Γ¯×¯Fin¯\mathrm{ev}_{0}\colon\underline{\Gamma}^{\underline{\times}}\longrightarrow\underline{\mathrm{Fin}}_{*} is a GG–cartesian fibration. By the proof of said result, we see that for a HH–map f:UVf\colon U\rightarrow V in Fin¯\underline{\mathrm{Fin}}_{*}, the HH–functor f!:Γ¯[VG/H]×¯Γ¯[UG/H]ׯf^{!}\colon\underline{\Gamma}^{\underline{\times}}_{[V\rightarrow G/H]}\rightarrow\underline{\Gamma}^{\underline{\times}}_{[U\rightarrow G/H]} associated to the GG–cartesian fibration is given concretely as follows: for KHK\leq H and [VW]G/K[V\rightarrowtail W]_{G/K} a KK–object in Γ¯[VG/H]ׯ\underline{\Gamma}^{\underline{\times}}_{[V\rightarrow G/H]}, the KK–object f!([VW]G/K)Γ¯[UG/H]ׯf^{!}([V\rightarrowtail W]_{G/K})\in\underline{\Gamma}^{\underline{\times}}_{[U\rightarrow G/H]} is given by the unique dashed fibrewise inert map in

U{U}V{V}W{W^{\prime}}W{W}f\scriptstyle{f} (6)

obtained by virtue of the unique fibrewise inert–active factorisation.

Observe also that for [UG/H]Fin¯H[U\rightarrow G/H]\in\underline{\mathrm{Fin}}_{*H}, Γ¯[UG/H]ׯ\underline{\Gamma}^{\underline{\times}}_{[U\rightarrow G/H]} is a HH–category such that for any KHK\leq H, the fibre over H/KH/K is given by the opposite of the poset of KK–subsets of the HH–set UU (compare with [Lur17, Cons. 2.4.1.4]): this is because the fibrewise inert maps pick out the orbits in UU.

Construction A.14 (“[Lur17, Cons. 2.4.1.4]”).

Applying [Sha23, Thm. 9.3 (2)] or [Sha22, Recoll. 4.3] to the GG–cartesian fibration ev0:Γ¯×¯Fin¯\mathrm{ev}_{0}\colon\underline{\Gamma}^{\underline{\times}}\longrightarrow\underline{\mathrm{Fin}}_{*} and the GG–cocartesian fibration 𝒞¯×Fin¯Fin¯\underline{\mathcal{C}}\times\underline{\mathrm{Fin}}_{*}\rightarrow\underline{\mathrm{Fin}}_{*} we obtain a GG–cocartesian fibration 𝒞¯¯×¯Fin¯\overline{\underline{\mathcal{C}}}^{\underline{\times}}\rightarrow\underline{\mathrm{Fin}}_{*}. By [Sha22, Thm. 4.9], this construction satisfies a universal property which implies in particular that

Fun¯/Fin¯(Fin¯,𝒞¯¯×¯)Fun¯(Γ¯×¯,𝒞¯)\underline{\mathrm{Fun}}_{/\underline{\mathrm{Fin}}_{*}}(\underline{\mathrm{Fin}}_{*},\underline{\overline{\mathcal{C}}}^{\underline{\times}})\simeq\underline{\mathrm{Fun}}(\underline{\Gamma}^{\underline{\times}},\underline{\mathcal{C}}) (7)

Furthermore, by [Sha23, Prop. 9.7], we have

𝒞¯¯[UG/H]ׯFun¯[UG/H](Γ¯[UG/H]ׯ,(𝒞¯×Fin¯)[UG/H])Fun¯(Γ¯[UG/H]ׯ,𝒞¯H)\underline{\overline{\mathcal{C}}}^{\underline{\times}}_{[U\rightarrow G/H]}\simeq\underline{\mathrm{Fun}}_{[U\rightarrow G/H]}\big{(}\underline{\Gamma}^{\underline{\times}}_{[U\rightarrow G/H]},(\underline{\mathcal{C}}\times\underline{\mathrm{Fin}}_{*})_{[U\rightarrow G/H]}\big{)}\simeq\underline{\mathrm{Fun}}(\underline{\Gamma}^{\underline{\times}}_{[U\rightarrow G/H]},\underline{\mathcal{C}}_{H})

If 𝒞¯\underline{\mathcal{C}} has all finite indexed products, we define 𝒞¯×¯\underline{\mathcal{C}}^{\underline{\times}} to be the full subcategory of 𝒞¯¯×¯\overline{\underline{\mathcal{C}}}^{\underline{\times}} whose objects over [UG/H][U\rightarrow G/H] are the HH–functors F:Γ¯[UG/H]ׯ𝒞¯HF\colon\underline{\Gamma}^{\underline{\times}}_{[U\rightarrow G/H]}\rightarrow\underline{\mathcal{C}}_{H} such that for every KHK\leq H and KK–object [UV]G/K[U\rightarrowtail V]_{G/K} with GG–orbit decomposition V=j=1nVjV=\coprod_{j=1}^{n}V_{j} and structure maps vj:VjG/Kv_{j}\colon V_{j}\rightarrow G/K, the map

F([UV]G/K)j=1nvjF([UVVj]Vj)F([U\rightarrowtail V]_{G/K})\longrightarrow\prod_{j=1}^{n}{v_{j*}}F([U\rightarrowtail V\rightarrowtail V_{j}]_{V_{j}}) (8)

induced by the characteristic maps χ[VjV]:VVj\chi_{[V_{j}\subseteq V]}\colon V\rightarrowtail V_{j} is an equivalence.

Now observe that, writing U=jUjU=\coprod_{j}U_{j} for the GG–orbital decomposition with structure maps uj:UjG/Hu_{j}\colon U_{j}\rightarrow G/H, we have the full subcategory juj!¯Γ¯[UG/H]ׯ\coprod_{j}{u_{j!}}\underline{\ast}\subseteq\underline{\Gamma}^{\underline{\times}}_{[U\rightarrow G/H]} consisting of the single GG–orbits of UU. A straightforward unwinding of definitions show that 𝒞¯[UG/H]ׯ𝒞¯¯[UG/H]ׯ\underline{\mathcal{C}}^{\underline{\times}}_{[U\rightarrow G/H]}\subseteq\underline{\overline{\mathcal{C}}}^{\underline{\times}}_{[U\rightarrow G/H]} is identified with the full subcategory

jujuj𝒞¯Fun¯(juj!¯,𝒞¯)Fun¯(Γ¯[UG/H]ׯ,𝒞¯H)\prod_{j}{u_{j*}}u_{j}^{*}\underline{\mathcal{C}}\simeq\underline{\mathrm{Fun}}(\coprod_{j}{u_{j!}}\underline{\ast},\underline{\mathcal{C}})\subseteq\underline{\mathrm{Fun}}(\underline{\Gamma}^{\underline{\times}}_{[U\rightarrow G/H]},\underline{\mathcal{C}}_{H})

where the inclusion is by right Kan extension (compare with the proof of [Lur17, Prop. 2.4.1.5 (4)]). This in particular means that we have an identification 𝒞[UG/H]ׯj𝒞Uj{\mathcal{C}}^{\underline{\times}}_{[U\rightarrow G/H]}\simeq\prod_{j}\mathcal{C}_{U_{j}}.

Remark A.15.

By [Sha22, Recoll. 4.3] and using that the cocartesian pushforward functors to the constant GG–cocartesian fibration 𝒞¯×Fin¯Fin¯\underline{\mathcal{C}}\times\underline{\mathrm{Fin}}_{*}\rightarrow\underline{\mathrm{Fin}}_{*} are just the identity functors, we see that for a morphism of HH–objects f:UVf\colon U\rightarrow V in Fin¯H\underline{\mathrm{Fin}}_{*H}, the associated cocartesian pushforward functor on the GG–cocartesian fibration 𝒞¯¯×¯Fin¯\underline{\overline{\mathcal{C}}}^{\underline{\times}}\rightarrow\underline{\mathrm{Fin}}_{*} looks like

Fun¯H(Γ¯[UG/H]ׯ,𝒞¯H)Fun¯H(Γ¯[VG/H]ׯ,𝒞¯H)::FFf!\underline{\mathrm{Fun}}_{H}(\underline{\Gamma}^{\underline{\times}}_{[U\rightarrow G/H]},\underline{\mathcal{C}}_{H})\longrightarrow\underline{\mathrm{Fun}}_{H}(\underline{\Gamma}^{\underline{\times}}_{{[V\rightarrow G/H]}},\underline{\mathcal{C}}_{H})\quad::\quad F\mapsto F\circ f^{!}

where f!:Γ¯[VG/H]×¯Γ¯[UG/H]ׯf^{!}\colon\underline{\Gamma}^{\underline{\times}}_{{[V\rightarrow G/H]}}\rightarrow\underline{\Gamma}^{\underline{\times}}_{[U\rightarrow G/H]} is the HH–functor described in Construction A.13.

Proposition A.16 (“[Lur17, Prop. 2.4.1.5]”).

Let 𝒞¯\underline{\mathcal{C}} be a GG–category with finite indexed products. The composite 𝒞¯×¯𝒞¯¯×¯Fin¯\underline{\mathcal{C}}^{\underline{\times}}\subseteq\overline{\underline{\mathcal{C}}}^{\underline{\times}}\rightarrow\underline{\mathrm{Fin}}_{*} is a GG–symmetric monoidal structure on the GG–category 𝒞¯\underline{\mathcal{C}}.

Proof.

By the definition of GG–symmetric monoidal categories [NS22, Def. 2.1.7 and Def. 2.2.3], first note that it would suffice to show that the composite is a GG–cocartesian fibration and that the characteristic maps associated to any orbital decomposition U=j=1nUjU=\coprod_{j=1}^{n}U_{j} induce equivalences 𝒞[UG/H]ׯj=1n𝒞Uj{\mathcal{C}}^{\underline{\times}}_{[U\rightarrow G/H]}\xrightarrow{\simeq}\prod_{j=1}^{n}\mathcal{C}_{U_{j}} since these two conditions together ensure that [NS22, Def. 2.1.7 (3)] holds. The second point has been dealt with at the end of Construction A.14 and so we are left to show that the composite is indeed a GG–cocartesian fibration.

More precisely, we need to show that the condition Eq. 8 is stable under the pushforward functors described in Remark A.15. To this end, suppose FFun¯H(Γ¯[UG/H]ׯ,𝒞¯H)F\in\underline{\mathrm{Fun}}_{H}(\underline{\Gamma}^{\underline{\times}}_{[U\rightarrow G/H]},\underline{\mathcal{C}}_{H}) satisfies the condition Eq. 8. We need to show that for any KHK\leq H and any [VW]G/KΓ¯[VG/H]ׯ[V\rightarrowtail W]_{G/K}\in\underline{\Gamma}^{\underline{\times}}_{{[V\rightarrow G/H]}} with structure maps wj:WjG/Kw_{j}\colon W_{j}\rightarrow G/K, the map

Ff!([VW]G/K)j=1nwjFf!([VWWj]Wj)Ff^{!}([V\rightarrowtail W]_{G/K})\longrightarrow\prod_{j=1}^{n}{w_{j*}}Ff^{!}([V\rightarrowtail W\rightarrowtail W_{j}]_{W_{j}})

is an equivalence.

To set up notation, writing f1WjUf^{-1}W_{j}\subseteq U for the preimage (which might be empty) and f1Wj=i=1njWjif^{-1}W_{j}=\sqcup_{i=1}^{n_{j}}W_{ji} its orbital decomposition, we know from Eq. 6 that f!f^{!} is computed as the left inert map in the left square in

U{U}V{V}Wji{W_{ji}}Wj{W_{j}}jf1Wj{\sqcup_{j}f^{-1}W_{j}}W{W}G/K{G/K}f\scriptstyle{f}αji\scriptstyle{\alpha_{ji}}wji\scriptstyle{w_{ji}}wj\scriptstyle{w_{j}}α\scriptstyle{\alpha}

together with the associated structure maps notated on the right triangle. Using that wjiwjαji{w_{ji*}}\simeq{w_{j*}}{\alpha_{ji*}} by composability of right Kan extensions, we now simply contemplate the following commuting diagram

Ff!([VW]G/K){Ff^{!}([V\rightarrowtail W]_{G/K})}j=1nwjFf!([VWj]Wj)=j=1nwjF([Ui=1njWji]Wj){\prod_{j=1}^{n}{w_{j*}}Ff^{!}([V\rightarrowtail W_{j}]_{W_{j}})=\prod_{j=1}^{n}{w_{j*}}F([U\rightarrowtail\sqcup_{i=1}^{n_{j}}W_{ji}]_{W_{j}})}j=1nwji=1njαjiF([UWji]Wji){\prod_{j=1}^{n}{w_{j*}}\prod_{i=1}^{n_{j}}{\alpha_{ji*}}F([U\rightarrowtail W_{ji}]_{W_{ji}})}F([Uji=1njWji]G/K){F([U\rightarrowtail\sqcup_{j}\sqcup_{i=1}^{n_{j}}W_{ji}]_{G/K})}j=1ni=1njwjiF([UWji]Wji){\prod_{j=1}^{n}\prod_{i=1}^{n_{j}}{w_{ji*}}F([U\rightarrowtail W_{ji}]_{W_{ji}})}\scriptstyle{\simeq}\scriptstyle{\simeq}

where the equivalences are by our hypothesis on FF. Hence the top horizontal map is also an equivalence, as desired. ∎

Our next goal is to show that Γ¯×¯\underline{\Gamma}^{\underline{\times}} can be endowed with the structure of a GG–cartesian pattern and to show in Lemma A.20 that its monoid theory is equivalent to that associated to Fin¯\underline{\mathrm{Fin}}_{*}.

Lemma A.17.

There is a natural factorisation system on Γ¯×¯Fin¯Δ1\underline{\Gamma}^{\underline{\times}}\subseteq\underline{\mathrm{Fin}}_{*}^{\Delta^{1}} where the fibrewise inert (resp. fibrewise active) morphisms are those which are pointwise fibrewise inert (resp. fibrewise active).

Proof.

The exact same argument of [CH22, Lem. 5.8] works here since that argument only uses composability of inert morphisms and uniqueness of the fibrewise inert–active factorisations, both of which are true in Fin¯\underline{\mathrm{Fin}}_{*}. ∎

Construction A.18 (“[CH22, Rmk. 5.11]”).

We endow Γ¯×¯\underline{\Gamma}^{\underline{\times}} with a GG–algebraic pattern structure using the factorisation system above with [G/H=G/H]G/H[G/H=G/H]_{G/H} for all HGH\leq G as the elementary objects. Moreover, it is not hard to see that ev1:Γ¯×¯Fin¯\mathrm{ev}_{1}\colon\underline{\Gamma}^{\underline{\times}}\rightarrow\underline{\mathrm{Fin}}_{*} endows Γ¯×¯\underline{\Gamma}^{\underline{\times}} with a GG–cartesian pattern structure. To wit, for any HH–object [UV]G/H[U\rightarrowtail V]_{G/H} in Γ¯×¯\underline{\Gamma}^{\underline{\times}}, any inert map to an elementary object [W=W]W[W=W]_{W}

U{U}W{W}V{V}W{W}

is totally determined by the inert map VWV\rightarrowtail W, and hence the map (Γ¯×¯)[UV]G/H/elev1Fin¯,V/el(\underline{\Gamma}^{\underline{\times}})^{\mathrm{el}}_{[U\rightarrowtail V]_{G/H}/}\xrightarrow{\mathrm{ev}_{1}}\underline{\mathrm{Fin}}^{\mathrm{el}}_{*,V/} in the definition of a GG–cartesian structure is indeed an equivalence.

Construction A.19.

Let i:Fin¯Γ¯×¯i\colon\underline{\mathrm{Fin}}_{*}\hookrightarrow\underline{\Gamma}^{\underline{\times}} be the functor that takes a finite HH–set UU, for any HGH\leq G, to [U=U]G/H[U\xrightarrow{=}U]_{G/H}. In other words, it is the right Kan extension along the inclusion {1}Δ1\{1\}\hookrightarrow\Delta^{1} and hence is fully faithful by [Sha23, Prop. 10.6]. This is immediately seen to be a morphism of GG–cartesian patterns. By the same argument as in [CH22, Rmk. 5.13], which uses only the uniqueness of the fibrewise inert–active factorisation in Γ¯×¯\underline{\Gamma}^{\underline{\times}}, we see that ii has unique lifting of fibrewise active morphisms in the sense of Definition A.6.

Now, note that a functor M:Γ¯×¯𝒞¯M\colon\underline{\Gamma}^{\underline{\times}}\rightarrow\underline{\mathcal{C}} is a Γ¯×¯\underline{\Gamma}^{\underline{\times}}–monoid in the sense of Definition A.10 if and only if for any HH–object [UW]G/H[U\rightarrowtail W]_{G/H} of Γ¯×¯\underline{\Gamma}^{\underline{\times}} with orbital decomposition W=j=1nWjW=\coprod_{j=1}^{n}W_{j} and structure maps wj:WjG/Hw_{j}\colon W_{j}\rightarrow G/H, the canonical map of HH–objects

M([UW]G/H)j=1nwjM([Wj=Wj]Wj)M([U\rightarrowtail W]_{G/H})\longrightarrow\prod^{n}_{j=1}{w_{j*}}M([W_{j}=W_{j}]_{W_{j}}) (9)

is an equivalence. Taking this description as well as Lemma A.12 as the appropriate replacements, the proof of [CH22, Lem. 5.14] now works in our setting mutatis mutandis to yield:

Lemma A.20.

Let 𝒞¯\underline{\mathcal{C}} have finite indexed products. The adjunction i:MonΓ¯×¯(𝒞¯)MonFin¯(𝒞¯):ii^{*}\colon\mathrm{Mon}_{\underline{\Gamma}^{\underline{\times}}}(\underline{\mathcal{C}})\rightleftharpoons\mathrm{Mon}_{\underline{\mathrm{Fin}}_{*}}(\underline{\mathcal{C}}):i_{*} is an equivalence.

Lastly, we relate the notion of monoids explored so far with that of algebras, which we recall now.

Recollections A.21.

Let 𝒞¯¯Fin¯\underline{\mathcal{C}}^{\underline{\otimes}}\rightarrow\underline{\mathrm{Fin}}_{*} be a GG–symmetric monoidal category (cf. for instance [NS22, Def. 2.2.3]). Then the category of GG–commutative algebras CAlgG(𝒞¯¯)\mathrm{CAlg}_{G}(\underline{\mathcal{C}}^{\underline{\otimes}}) is defined to be Fun/Fin¯int(Fin¯,𝒞¯¯)\mathrm{Fun}_{/\underline{\mathrm{Fin}}_{*}}^{\mathrm{int}}(\underline{\mathrm{Fin}}_{*},\underline{\mathcal{C}}^{\underline{\otimes}}), that is, the category of Fin¯\underline{\mathrm{Fin}}_{*}–sections Fin¯𝒞¯¯\underline{\mathrm{Fin}}_{*}\rightarrow\underline{\mathcal{C}}^{\underline{\otimes}} which send inert morphisms to Fin¯\underline{\mathrm{Fin}}_{*}–cocartesian morphisms (cf. [NS22, Def. 2.2.1] for a definition). Observe now that any inert morphism in Fin¯\underline{\mathrm{Fin}}_{*} (cf. [NS22, Def. 2.1.3])

U{U}Z{Z}W{W}G/H{G/H}G/K{G/K}G/K{G/K}\scriptstyle{\simeq}

can be factored as the composition of the two inert morphisms

U×G/HG/K{U\times_{G/H}G/K}Z{Z}W{W}U{U}U×G/HG/K{U\times_{G/H}G/K}U×G/HG/K{U\times_{G/H}G/K}G/K{G/K}G/K{G/K}G/K{G/K}G/H{G/H}G/K{G/K}G/K{G/K}\scriptstyle{\simeq}{\circ}

where the left one is fibrewise, i.e. it lives in the fibre over G/KG/K. Since by definition any GG–functor A:Fin¯𝒞¯¯A\colon\underline{\mathrm{Fin}}_{*}\rightarrow\underline{\mathcal{C}}^{\underline{\otimes}} must send the inert morphisms of the type on the right to Fin¯\underline{\mathrm{Fin}}_{*}–cocartesian morphisms, the requirement for AA to be in CAlgG(𝒞¯¯)\mathrm{CAlg}_{G}(\underline{\mathcal{C}}^{\underline{\otimes}}) can equivalently be formulated as sending the fibrewise inert morphisms to Fin¯\underline{\mathrm{Fin}}_{*}–cocartesian morphisms.

The following lemma, which is an immediate modification of [CH22, Lem. 5.15], will be the bridge connecting the theory of monoids and that of algebras.

Lemma A.22.

Under the natural equivalence Fun¯/Fin¯(Fin¯,𝒞¯¯×¯)Fun¯(Γ¯×¯,𝒞¯)\underline{\mathrm{Fun}}_{/\underline{\mathrm{Fin}}_{*}}(\underline{\mathrm{Fin}}_{*},\underline{\overline{\mathcal{C}}}^{\underline{\times}})\simeq\underline{\mathrm{Fun}}(\underline{\Gamma}^{\underline{\times}},\underline{\mathcal{C}}) from Eq. 7, the full subcategory MonΓ¯×¯(𝒞¯)\mathrm{Mon}_{\underline{\Gamma}^{\underline{\times}}}(\underline{\mathcal{C}}) from the right hand side is identified with Fun/Fin¯int(Fin¯,𝒞¯×¯)\mathrm{Fun}_{/\underline{\mathrm{Fin}}_{*}}^{\mathrm{int}}(\underline{\mathrm{Fin}}_{*},\underline{\mathcal{C}}^{\underline{\times}}) from the left hand side.

Proof.

By Recollection A.21, a functor F:Fin¯𝒞¯¯×¯F\colon\underline{\mathrm{Fin}}_{*}\rightarrow\overline{\underline{\mathcal{C}}}^{\underline{\times}} over Fin¯\underline{\mathrm{Fin}}_{*} lies in Fun/Fin¯int(Fin¯,𝒞¯×¯)\mathrm{Fun}_{/\underline{\mathrm{Fin}}_{*}}^{\mathrm{int}}(\underline{\mathrm{Fin}}_{*},\underline{\mathcal{C}}^{\underline{\times}}) if and only if FF factors through the full subcategory 𝒞¯×¯\underline{\mathcal{C}}^{\underline{\times}} and FF takes fibrewise inert morphisms to cocartesian morphisms. We can translate these requirements in terms of the corresponding functor F:Γ¯×¯𝒞¯F^{\prime}\colon\underline{\Gamma}^{\underline{\times}}\rightarrow\underline{\mathcal{C}} as the following pair of conditions: for any HGH\leq G and HH–object [UW]G/H[U\rightarrowtail W]_{G/H} in Γ¯×¯\underline{\Gamma}^{\underline{\times}},

  1. 1.

    Writing the orbital decomposition W=j=1nWjW=\coprod_{j=1}^{n}W_{j} with structure maps wj:WjG/Hw_{j}\colon W_{j}\rightarrow G/H, the canonical map

    F([UW]G/H)j=1nwjF([UWWj]Wj)F^{\prime}([U\rightarrowtail W]_{G/H})\longrightarrow\prod^{n}_{j=1}{w_{j*}}F^{\prime}([U\rightarrowtail W\rightarrowtail W_{j}]_{W_{j}})

    is an equivalence.

  2. 2.

    For every HH–inert map YUY\rightarrowtail U in Fin¯\underline{\mathrm{Fin}}_{*}, the morphism

    F([YUW]G/H)F([UW]G/H)F^{\prime}([Y\rightarrowtail U\rightarrowtail W]_{G/H})\rightarrow F^{\prime}([U\rightarrowtail W]_{G/H})

    is an equivalence. This reinterpretation of fibrewise inerts being sent to cocartesian morphisms is again by Remark A.15.

On the other hand, FF^{\prime} is a monoid if for any HGH\leq G and HH–object [UW]G/H[U\rightarrowtail W]_{G/H} in Fin¯\underline{\mathrm{Fin}}_{*} and using the notations above, the map Eq. 9 is an equivalence. To see that this is equivalent to the first pair of conditions, observe that we have the following commuting triangles

F([UW]G/H){F^{\prime}([U\rightarrowtail W]_{G/H})}j=1nwjF([UWj]Wj){\prod^{n}_{j=1}{w_{j*}}F^{\prime}([U\rightarrowtail W_{j}]_{W_{j}})}j=1nwjF([Wj=Wj]Wj){\prod^{n}_{j=1}{w_{j*}}F^{\prime}([W_{j}=W_{j}]_{W_{j}})}F([YUW]G/H){F^{\prime}([Y\rightarrowtail U\rightarrowtail W]_{G/H})}F([UW]G/H){F^{\prime}([U\rightarrowtail W]_{G/H})}j=1nwjF([Wj=Wj]Wj){\prod^{n}_{j=1}{w_{j*}}F^{\prime}([W_{j}=W_{j}]_{W_{j}})}

With the ingredients set up, the rest of the proof of [CH22, Lem. 5.15] now goes through word–for–word. ∎

We may now deduce the desired equivalence:

Proposition A.23.

Let 𝒞¯\underline{\mathcal{C}} be a GG–category with finite indexed products. There is a canonical equivalence CMonG(𝒞¯)CAlgG(𝒞¯×¯)\mathrm{CMon}_{G}(\underline{\mathcal{C}})\simeq\mathrm{CAlg}_{G}(\underline{\mathcal{C}}^{\underline{\times}}).

Proof.

Immediate combination of Lemma A.20 and Lemma A.22, using also that CAlgG(𝒞¯×¯)=Fun/Fin¯int(Fin¯,𝒞¯×¯)\mathrm{CAlg}_{G}(\underline{\mathcal{C}}^{\underline{\times}})=\mathrm{Fun}_{/\underline{\mathrm{Fin}}_{*}}^{\mathrm{int}}(\underline{\mathrm{Fin}}_{*},\underline{\mathcal{C}}^{\underline{\times}}) by definition. ∎

References

  • [Bar17] C. Barwick “Spectral Mackey Functors and Equivariant Algebraic K-theory (I)” In Adv. Math. 304, 2017, pp. 646–727
  • [BDG+16] C. Barwick et al. “Parametrized higher category theory and higher algebra: a general introduction” In Preprint available as arXiv:1608.03654, 2016
  • [BGS20] C. Barwick, S. Glasman and J. Shah “Spectral Mackey functors and equivariant algebraic K-theory, II” In Tunis. J. Math. 2, no. 1, 2020, pp. 97–146
  • [CDH+20] B. Calmès et al. “Hermitian K-theory for stable \infty-categories II: cobordism categories and additivity” In Preprint available as arXiv:2009.07224, 2020
  • [CH21] H. Chu and R. Haugseng “Homotopy-coherent algebra via Segal conditions” In Adv. Math. 385, 2021, pp. 107733
  • [CH22] H. Chu and R. Haugseng “Free algebras through Day convolution” In Algebr. Geom. Topol. 22 (7), 2022, pp. 3401–3458
  • [CMN+20] D. Clausen, A. Mathew, N. Naumann and J. Noel “Spectral Mackey functors and equivariant algebraic K-theory, II” In To appear in Ann. Sci. Éc. Norm. Supér. (4)., 2020
  • [GGN15] D. Gepner, M. Groth and T. Nikolaus “niversality of Multiplicative Infinite Loop Space Machines” In Algebr. Geom. Topol. 15, 2015, pp. 3107–3153
  • [GM97] J.P.C. Greenlees and J.P. May “Localization and Completion Theorems for MU–module Spectra” In Ann. of Math. (2) 146, 1997, pp. 509–544
  • [GR14] S. Galatius and O. Randal–Williams “Stable moduli spaces of high-dimensional manifolds” In Acta Math. 212, 2014, pp. 257–377
  • [GR17] S. Galatius and O. Randal–Williams “Homological stability for moduli spaces of high dimensional manifolds. II” In Ann. of Math. (2) 186, 2017, pp. 127–204
  • [GS21] S. Galatius and G. Szűcs “The equivariant cobordism category” In J. Topol. 14 (1), 2021, pp. 215–257
  • [HH13] M. Hill and M. Hopkins “Equivariant multiplicative closure” In Preprint available as arXiv:1303.4479, 2013
  • [HHR16] M. Hill, M. Hopkins and D. Ravenel “On the Non-Existence of Elements of Kervaire Invariant One” In Ann. of Math. (2) 184, 2016, pp. 1–262
  • [Hil22] K. Hilman “Norms and periodicities in genuine equivariant hermitian K–theory” In PhD Thesis, University of Copenhagen, available on the author’s webpage, 2022
  • [HW21] F. Hebestreit and F. Wagner “Lecture Notes for Algebraic and Hermitian K-Theory” In Available on the author’s webpage, 2021
  • [Lur17] J. Lurie “Higher Algebra” In Available on the author’s webpage, 2017
  • [MNN17] A. Mathew, N. Naumann and J. Noel “Nilpotence and Descent in Equivariant Stable Homotopy Theory” In Adv. Math. 305, 2017, pp. 994–1084
  • [MS76] D. McDuff and G. Segal “Homology fibrations and the ‘group-completion’ theorem” In Invent. Math. 31, 1976, pp. 279–284
  • [Nar16] D. Nardin “Parametrized higher category theory and higher algebra: Exposé IV – Stability with respect to an orbital \infty–category” In Preprint available as arXiv:1608.07704, 2016
  • [Nar17] D. Nardin “Stability and distributivity over orbital \infty-categories” In PhD Thesis, MIT, 2017
  • [Nik17] T. Nikolaus “The group–completion theorem via localizations of ring spectra” In Available on author’s webpage, 2017
  • [NS22] D. Nardin and J. Shah “Parametrized and equivariant higher algebra” In Preprint available as arXiv:2203.00072, 2022
  • [QS22] J.D. Quigley and J. Shah “On the parametrized Tate construction” In Preprint available as arXiv:2110.07707, 2022
  • [Ran13] O. Randal–Williams “‘Group–Completion’, local coefficient systems, and perfection” In Q. J. Math. (Quillen Memorial Issue) 64 (3), 2013, pp. 795–803
  • [Sch22] S. Schwede “Lecture notes on equivariant stable homotopy theory” In Available on author’s webpage, 2022
  • [Sha22] J. Shah “Parametrized higher category theory II: universal constructions” In Preprint available as arXiv:2109.11954, 2022
  • [Sha23] J. Shah “Parametrized higher category theory” In Algebr. Geom. Topol. 23 (2), 2023, pp. 509–644