This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

An explicit classification of dual pairs in exceptional Lie algebras

Marisa Gaetz mgaetz@mit.edu
Abstract.

The primary goal of this paper is to explicitly write down all semisimple dual pairs in the exceptional Lie algebras. (A dual pair in a reductive Lie algebra 𝔀\mathfrak{g} is a pair of subalgebras such that each member equals the other’s centralizer in 𝔀\mathfrak{g}.) In a 1994 paper, H.Β Rubenthaler outlined a process for generating a complete list of candidate dual pairs in each of the exceptional Lie algebras. However, the process of checking whether each of these candidate dual pairs is in fact a dual pair is not easy, and requires several distinct insights and methods. In this paper, we carry out this process and explain the relevant concepts as we go. We also give plenty of examples with the hopes of making Rubenthaler’s 1994 result not only more complete but more usable and understandable.

The author was supported by the NSF Graduate Research Fellowship Program under Grant No.Β 2141064, and by the Fannie & John Hertz Foundation.

1. Introduction

The notion of a reductive dual pair111Italicized terms will be defined later in the paper. in a complex reductive Lie algebra was first introduced by Howe in his seminal 1989 paper [9], in which he also classified the reductive dual pairs in the symplectic Lie algebra 𝔰​𝔭2​m\mathfrak{sp}_{2m}. Since then, reductive dual pairs have been widely used and studied. For example, certain reductive dual pairs are implicitly used in some of the well-known constructions of the exceptional Lie algebras: (G21,A22β€²β€²)(G_{2}^{1},A_{2}^{2^{\prime\prime}}) and (G21,F41)(G_{2}^{1},F_{4}^{1}) correspond to the Freudenthal-Tits constructions of E6E_{6} and E8E_{8}, respectively [17], and (D4,D4)(D_{4},D_{4}) corresponds to the triality construction of E8E_{8} [1, 2]. Additionally, reductive dual pairs have some beautiful connections to the study of commuting nilpotent elements in complex semisimple Lie algebras as introduced by Ginzburg in [7]; see [14] for an explanation of these connections. More recently, the real forms of certain reductive dual pairs in exceptional Lie algebras have also drawn some attention [11, 12].

Some of the earliest work on reductive dual pairs appears in Rubenthaler’s 1994 paper [15]. In this paper, Rubenthaler outlines a classification of reductive dual pairs in complex reductive Lie algebras. While Rubenthaler’s paper provides a helpful framework, writing down all of these pairs explicitly requires a lot of additional nontrivial work. The primary goal of this paper is to explicitly write down all of the semisimple dual pairs in the exceptional Lie algebras. Here is how we will proceed:

  • β€’

    Section 2: We reduce the problem of classifying reductive dual pairs in reductive Lie algebras to the problem of classifying semisimple dual pairs in simple Lie algebras.

  • β€’

    Section 3: We classify dual pairs coming from maximal regular subalgebras of maximal rank.

  • β€’

    Section 4: We define and classify admissible subalgebras.

  • β€’

    Section 5: We introduce SS-irreducible dual pairs and admissible dual pairs, and describe how they nearly all arise from admissible subalgebras.

  • β€’

    Section 6: We classify the semisimple dual pairs in the complex classical simple Lie algebras that are SS-irreducible, admissible, or that arise from maximal regular subalgebras of maximal rank. We write out all such dual pairs for rank up to 6.

  • β€’

    Section 7: We explain how to obtain lists of candidate non-SS-irreducible dual pairs (including all actual non-SS-irreducible dual pairs).

  • β€’

    Section 8: We introduce methods for determining whether or not a candidate dual pair is actually a dual pair.

  • β€’

    Section 9: We classify all (SS-irreducible and non-SS-irreducible) semisimple dual pairs in the exceptional Lie algebras.

2. Preliminaries

In this section, we introduce several important notions and conventions, and we explain why we are focusing on semisimple dual pairs in simple Lie algebras.

Definition 1 ([9, p.Β 550]).

Let 𝔀\mathfrak{g} be a reductive Lie algebra. Then a pair (π”ž,π”Ÿ)(\mathfrak{a},\mathfrak{b}) of subalgebras of 𝔀\mathfrak{g} is a reductive dual pair if

  1. (1)

    π”ž\mathfrak{a} and π”Ÿ\mathfrak{b} are reductive in 𝔀\mathfrak{g}, and

  2. (2)

    π”ž=𝔷𝔀​(π”Ÿ)\mathfrak{a}=\mathfrak{z}_{\mathfrak{g}}(\mathfrak{b}) and π”Ÿ=𝔷𝔀​(π”ž)\mathfrak{b}=\mathfrak{z}_{\mathfrak{g}}(\mathfrak{a}),

where 𝔷𝔀​(β‹…)\mathfrak{z}_{\mathfrak{g}}(\cdot) denotes taking the centralizer in 𝔀\mathfrak{g}.

Since we will only be considering reductive dual pairs in this paper, we will just use β€œdual pair” to refer to a reductive dual pair.

2.1. Why we are focusing on semisimple dual pairs in simple Lie algebras

As discussed in [15, Section 5], we can reduce the study of reductive dual pairs in reductive Lie algebras to the study of semisimple dual pairs in simple Lie algebras. In particular, the following result reduces the problem to finding reductive dual pairs in semisimple Lie algebras:

Lemma 2 ([15, Lemma 5.1]).

Let 𝔀\mathfrak{g} be a reductive Lie algebra. Write 𝔀=Zπ”€βŠ•[𝔀,𝔀]\mathfrak{g}=Z_{\mathfrak{g}}\oplus[\mathfrak{g},\mathfrak{g}] (where Z𝔀Z_{\mathfrak{g}} denotes the center of 𝔀\mathfrak{g}). If (π”ž,π”Ÿ)(\mathfrak{a},\mathfrak{b}) is a dual pair in 𝔀\mathfrak{g}, then π”ž=Zπ”€βŠ•π”ž1\mathfrak{a}=Z_{\mathfrak{g}}\oplus\mathfrak{a}_{1} and π”Ÿ=Zπ”€βŠ•π”Ÿ1\mathfrak{b}=Z_{\mathfrak{g}}\oplus\mathfrak{b}_{1}, where (π”ž1,π”Ÿ1)(\mathfrak{a}_{1},\mathfrak{b}_{1}) is a dual pair in [𝔀,𝔀][\mathfrak{g},\mathfrak{g}]. Conversely, any dual pair in [𝔀,𝔀][\mathfrak{g},\mathfrak{g}] gives a dual pair of 𝔀\mathfrak{g} in this way.

Lemma 4 further shows that any reductive dual pair (π”ž,π”Ÿ)(\mathfrak{a},\mathfrak{b}) in a semisimple Lie algebra 𝔀\mathfrak{g} can be written in terms of Z:=π”žβˆ©π”ŸZ:=\mathfrak{a}\cap\mathfrak{b} and a semisimple dual pair in [β„“Z,β„“Z][\ell_{Z},\ell_{Z}], where β„“Z=𝔷𝔀​(Z)\ell_{Z}=\mathfrak{z}_{\mathfrak{g}}(Z) is a Levi subalgebra of 𝔀\mathfrak{g} with center ZZ. Before formally stating this result, let us introduce Levi subalgebras (following [15, Section 1.2]):

Let 𝔀\mathfrak{g} be a semisimple Lie algebra, and let π”₯\mathfrak{h} be a Cartan subalgebra of 𝔀\mathfrak{g}. Let Ξ¨=(Ξ±1,…,Ξ±n)\Psi=(\alpha_{1},\ldots,\alpha_{n}) be a choice of simple roots associated to (𝔀,π”₯)(\mathfrak{g},\mathfrak{h}). For a subset ΞΈ\theta of Ξ¨\Psi, let HΞΈH_{\theta} be the unique element of π”₯\mathfrak{h} defined by

{α​(HΞΈ)=0ifΒ β€‹Ξ±βˆˆΞΈΞ±β€‹(HΞΈ)=2ifΒ β€‹Ξ±βˆˆΞ¨βˆ–ΞΈ\left\{\begin{array}[]{ll}\alpha(H_{\theta})=0&\text{if }\alpha\in\theta\\ \alpha(H_{\theta})=2&\text{if }\alpha\in\Psi\setminus\theta\end{array}\right.

For pβˆˆβ„€p\in\mathbb{Z}, define

dp​(ΞΈ)={Xβˆˆπ”€|[HΞΈ,X]=2​p​X}Β so that 𝔀=⨁pβˆˆβ„€dp​(ΞΈ).d_{p}(\theta)=\{X\in\mathfrak{g}\;|\;[H_{\theta},X]=2pX\}\hskip 14.22636pt\text{ so that }\hskip 14.22636pt\mathfrak{g}=\bigoplus_{p\in\mathbb{Z}}d_{p}(\theta).
Definition 3 ([15, Section 1.2]).

The reductive algebra β„“ΞΈ:=d0​(ΞΈ)\ell_{\theta}:=d_{0}(\theta) is called the standard Levi subalgebra associated to ΞΈ\theta.

Lemma 4 ([15, Lemma 5.2]).

Let 𝔀\mathfrak{g} be a semisimple Lie algebra and let (π”ž,π”Ÿ)(\mathfrak{a},\mathfrak{b}) be a dual pair in 𝔀\mathfrak{g}. If π”ž\mathfrak{a} has nontrivial center Zπ”žZ_{\mathfrak{a}}, then π”žβˆ©π”Ÿ=Zπ”ž=Zπ”Ÿ=:Z\mathfrak{a}\cap\mathfrak{b}=Z_{\mathfrak{a}}=Z_{\mathfrak{b}}=:Z. Let β„“Z=𝔷𝔀​(Z)\ell_{Z}=\mathfrak{z}_{\mathfrak{g}}(Z). The algebra β„“Z\ell_{Z} is a Levi subalgebra of 𝔀\mathfrak{g} whose center is ZZ. If we write β„“Z=ZβŠ•[β„“Z,β„“Z]\ell_{Z}=Z\oplus[\ell_{Z},\ell_{Z}], π”ž=ZβŠ•[π”ž,π”ž]\mathfrak{a}=Z\oplus[\mathfrak{a},\mathfrak{a}], and π”Ÿ=ZβŠ•[π”Ÿ,π”Ÿ]\mathfrak{b}=Z\oplus[\mathfrak{b},\mathfrak{b}], then ([π”ž,π”ž],[π”Ÿ,π”Ÿ])([\mathfrak{a},\mathfrak{a}],[\mathfrak{b},\mathfrak{b}]) is a dual pair in [β„“Z,β„“Z][\ell_{Z},\ell_{Z}]. Conversely, any dual pair in [β„“Z,β„“Z][\ell_{Z},\ell_{Z}] gives a dual pair of 𝔀\mathfrak{g} in this way.

Finally, the following result further reduces the problem to finding semisimple dual pairs in simple Lie algebras:

Lemma 5 ([15, Lemma 5.3]).

Let 𝔀\mathfrak{g} be a semisimple Lie algebra and let 𝔀=𝔀1βŠ•β‹―βŠ•π”€n\mathfrak{g}=\mathfrak{g}_{1}\oplus\cdots\oplus\mathfrak{g}_{n} be its decomposition into simple ideals. If for each i∈{1,…,n}i\in\{1,\ldots,n\} we have a dual pair (π”ži,π”Ÿi)(\mathfrak{a}_{i},\mathfrak{b}_{i}) in 𝔀i\mathfrak{g}_{i}, then (∏i=1nπ”ži,∏i=1nπ”Ÿi)\left(\prod_{i=1}^{n}\mathfrak{a}_{i},\prod_{i=1}^{n}\mathfrak{b}_{i}\right) is a dual pair in 𝔀\mathfrak{g}. Conversely, any dual pair in 𝔀\mathfrak{g} is obtained in this way.

Note that we will often omit the adjective β€œsemisimple” in the following discussion of the semisimple dual pairs in the complex simple Lie algebras. (All subalgebras that follow can be assumed to be semisimple.)

2.2. Defining a normalized symmetric form on 𝔀\mathfrak{g}

Let 𝔀\mathfrak{g} be a complex simple Lie algebra, and fix a Cartan subalgebra π”₯\mathfrak{h}. Let β„›\mathcal{R} denote the root system corresponding to (𝔀,π”₯)(\mathfrak{g},\mathfrak{h}). Let 𝔀0\mathfrak{g}_{0} be a compact real form of 𝔀\mathfrak{g} with Cartan π”₯0\mathfrak{h}_{0} (defined over ℝ\mathbb{R}) satisfying (π”₯0)β„‚=π”₯(\mathfrak{h}_{0})_{\mathbb{C}}=\mathfrak{h}. Recall that any Ξ±βˆˆβ„›\alpha\in\mathcal{R} is determined (by β„‚\mathbb{C}-linearity) by its values on i​π”₯0i\mathfrak{h}_{0}, on which it is real-valued. Therefore, we can view β„›\mathcal{R} as sitting inside (i​π”₯0)βˆ—(i\mathfrak{h}_{0})^{*}. We identify (i​π”₯0)βˆ—(i\mathfrak{h}_{0})^{*} with a subset of ℝn\mathbb{R}^{n} such that the standard Euclidean inner product βŸ¨β‹…,β‹…βŸ©\langle\cdot,\cdot\rangle on ℝn\mathbb{R}^{n} restricts to a Weyl group-invariant form on (i​π”₯0)βˆ—(i\mathfrak{h}_{0})^{*}. In particular, we use the root system realizations described in [3, Plates I–IX], writing elements of i​π”₯0i\mathfrak{h}_{0} in terms of the standard Euclidean basis {e1,…,en}\{e_{1},\ldots,e_{n}\} with e1=(1,0,…,0)e_{1}=(1,0,\ldots,0), etc., and writing elements of (i​π”₯0)βˆ—(i\mathfrak{h}_{0})^{*} in terms of the corresponding standard basis of linear functionals {Ξ΅1,…,Ξ΅n}\{\varepsilon_{1},\ldots,\varepsilon_{n}\}.

Following [5, Section 2], we normalize a non-degenerate invariant symmetric bilinear form (,)𝔀(,)_{\mathfrak{g}} on 𝔀\mathfrak{g} as follows: for β∨\beta^{\vee} a short coroot in β„›βˆ¨\mathcal{R}^{\vee}, we require that (β∨,β∨)𝔀=2(\beta^{\vee},\beta^{\vee})_{\mathfrak{g}}=2. We also define a non-degenerate invariant symmetric bilinear form (,)π”€βˆ—(,)_{\mathfrak{g}^{*}} on π”€βˆ—\mathfrak{g}^{*} by the condition (Ξ²,Ξ²)π”€βˆ—=2(\beta,\beta)_{\mathfrak{g}^{*}}=2 for Ξ²\beta a long root in β„›\mathcal{R}. (Note that (,)π”€βˆ—(,)_{\mathfrak{g}^{*}} can also be defined as the dual form to the form on 𝔀\mathfrak{g}; this dual form automatically satisfies the aforementioned normalizing condition.)

2.3. Dynkin’s index notation

We now introduce Dynkin’s index notation (cf.Β [5, Section 2]). Let Ο†:π”žβ†’π”€\varphi:\mathfrak{a}\rightarrow\mathfrak{g} be a homomorphism of complex simple Lie algebras. For x,yβˆˆπ”žx,y\in\mathfrak{a}, the bilinear form (x,y)↦(φ​(x),φ​(y))𝔀(x,y)\mapsto(\varphi(x),\varphi(y))_{\mathfrak{g}} is proportional to (x,y)↦(x,y)π”ž(x,y)\mapsto(x,y)_{\mathfrak{a}}. The index iΟ†i_{\varphi} of Ο†\varphi is defined by

(φ​(x),φ​(y))𝔀=iΟ†β‹…(x,y)π”ž,x,yβˆˆπ”ž;(\varphi(x),\varphi(y))_{\mathfrak{g}}=i_{\varphi}\cdot(x,y)_{\mathfrak{a}},\hskip 7.11317ptx,y\in\mathfrak{a};

the index is always an integer [5, Theorem 2.2]. In particular, if π”ž\mathfrak{a} is a simple subalgebra of 𝔀\mathfrak{g}, then the index of π”ž\mathfrak{a} in 𝔀\mathfrak{g} is given by

iπ”žβ†ͺ𝔀=(x,x)𝔀(x,x)π”ž,xβˆˆπ”ž.i_{\mathfrak{a}\hookrightarrow\mathfrak{g}}=\frac{(x,x)_{\mathfrak{g}}}{(x,x)_{\mathfrak{a}}},\hskip 7.11317ptx\in\mathfrak{a}.

When we have a sequence of inclusions π”žβ†ͺπ”žβ€²β†ͺ𝔀\mathfrak{a}\hookrightarrow\mathfrak{a}^{\prime}\hookrightarrow\mathfrak{g}, the index satisfies the following multiplicative property:

iπ”žβ†ͺ𝔀=iπ”žβ†ͺπ”žβ€²β‹…iπ”žβ€²β†ͺ𝔀.i_{\mathfrak{a}\hookrightarrow\mathfrak{g}}=i_{\mathfrak{a}\hookrightarrow\mathfrak{a}^{\prime}}\cdot i_{\mathfrak{a}^{\prime}\hookrightarrow\mathfrak{g}}.

The index of π”ž\mathfrak{a} in 𝔀\mathfrak{g} often determines the conjugacy class of π”ž\mathfrak{a} (where the conjugation is by the adjoint group of 𝔀\mathfrak{g}). When the conjugacy class of π”ž\mathfrak{a} is fully specified by its type and index, we will follow Dynkin in writing Type​(π”ž)iπ”žβ†ͺ𝔀\text{Type}(\mathfrak{a})^{i_{\mathfrak{a}\hookrightarrow\mathfrak{g}}} to refer to the conjugacy class of π”ž\mathfrak{a}. If, on the other hand, the conjugacy class of π”ž\mathfrak{a} is not specified by its type and index, we will add β€œprimes” to distinguish the possible conjugacy classes. For example, by [5, Table 25], there are two conjugacy classes of subalgebras of the complex Lie algebra E7E_{7} that have type A2A_{2} and index 2; we will refer to them as A22β€²A_{2}^{2^{\prime}} and A22β€²β€²A_{2}^{2^{\prime\prime}} (by order of appearance in [5, Table 25]). Similarly, by Appendix B, there are two conjugacy classes of subalgebras of the complex Lie algebra B4B_{4} that have type B2B_{2} and index 1; we will refer to them as B21β€²B_{2}^{1^{\prime}} and B21β€²β€²B_{2}^{1^{\prime\prime}} (by order of appearance in Table 19). To know whether we need to add these β€œprimes,” we will continue to refer to [5] for subalgebras of the exceptional Lie algebras and to Appendices A and B for subalgebras of the classical simple Lie algebras.

Example 6.

Consider 𝔰​𝔭2βŠ•π”°β€‹π”­2​mβŠ‚π”°β€‹π”¬4​m\mathfrak{sp}_{2}\oplus\mathfrak{sp}_{2m}\subset\mathfrak{so}_{4m}. (Here, 𝔰​𝔭2β†ͺ𝔰​𝔬4​m\mathfrak{sp}_{2}\hookrightarrow\mathfrak{so}_{4m} can be thought of as a diagonal embedding with 2​m2m copies, and 𝔰​𝔭2​mβ†ͺ𝔰​𝔬4​m\mathfrak{sp}_{2m}\hookrightarrow\mathfrak{so}_{4m} can be thought of as β€œmultiplying” each entry by the 2Γ—22\times 2 identity matrix.) Let’s compute the index of 𝔰​𝔭2\mathfrak{sp}_{2} and 𝔰​𝔭2​m\mathfrak{sp}_{2m} in 𝔰​𝔬4​m\mathfrak{so}_{4m}. Following [3, Plate IV], 𝔰​𝔬4​m\mathfrak{so}_{4m} has

{Ξ΅1βˆ’Ξ΅2,Ξ΅2βˆ’Ξ΅3,…,Ξ΅2​mβˆ’1βˆ’Ξ΅2​m,Ξ΅2​mβˆ’1+Ξ΅2​m}\{\varepsilon_{1}-\varepsilon_{2},\,\varepsilon_{2}-\varepsilon_{3},\ldots,\,\varepsilon_{2m-1}-\varepsilon_{2m},\,\varepsilon_{2m-1}+\varepsilon_{2m}\}

as its simple roots, with corresponding simple coroots

{e1βˆ’e2,e2βˆ’e3,…,e2​mβˆ’1βˆ’e2​m,e2​mβˆ’1+e2​m}.\{e_{1}-e_{2},\,e_{2}-e_{3},\ldots,\,e_{2m-1}-e_{2m},\,e_{2m-1}+e_{2m}\}.

Set z:=e1βˆ’e2z:=e_{1}-e_{2}. This coroot corresponds to the diagonal matrix

diag​(1,βˆ’1,0,…,0;βˆ’1,1,0,…,0)\text{diag}(1,-1,0,\ldots,0;-1,1,0,\ldots,0)

in 𝔰​𝔬4​m\mathfrak{so}_{4m}, so we see that the normalizing condition on (β‹…,β‹…)𝔰​𝔬4​m(\cdot,\cdot)_{\mathfrak{so}_{4m}} is

(z,z)𝔰​𝔬4​m=2=12β€‹βŸ¨z,z⟩,(z,z)_{\mathfrak{so}_{4m}}=2=\frac{1}{2}\langle z,z\rangle,

where βŸ¨β‹…,β‹…βŸ©\langle\cdot,\cdot\rangle denotes the standard Euclidean inner product.

Now, following [3, Plate III], 𝔰​𝔭2\mathfrak{sp}_{2} has 2​Ρ12\varepsilon_{1} as its simple root, and has x:=e1x:=e_{1} as the corresponding simple coroot. Similarly, 𝔰​𝔭2​m\mathfrak{sp}_{2m} has simple roots

{Ξ΅1βˆ’Ξ΅2,Ξ΅2βˆ’Ξ΅3,…,Ξ΅mβˆ’1βˆ’Ξ΅m,2​Ρm},\{\varepsilon_{1}-\varepsilon_{2},\,\varepsilon_{2}-\varepsilon_{3},\ldots,\,\varepsilon_{m-1}-\varepsilon_{m},2\varepsilon_{m}\},

with corresponding simple coroots

{e1βˆ’e2,e2βˆ’e3,…,emβˆ’1βˆ’em,y:=em}.\{e_{1}-e_{2},\,e_{2}-e_{3},\ldots,\,e_{m-1}-e_{m},\,y:=e_{m}\}.

Thus, the normalizing conditions on (β‹…,β‹…)𝔰​𝔭2(\cdot,\cdot)_{\mathfrak{sp}_{2}} and (β‹…,β‹…)𝔰​𝔭2​m(\cdot,\cdot)_{\mathfrak{sp}_{2m}} are (x,x)𝔰​𝔭2=2(x,x)_{\mathfrak{sp}_{2}}=2 and (y,y)𝔰​𝔭2​m=2(y,y)_{\mathfrak{sp}_{2m}}=2.

Here, xx corresponds to the matrix diag​(1;βˆ’1)\text{diag}(1;-1) in 𝔰​𝔭2\mathfrak{sp}_{2} and yy corresponds to the matrix diag​(0,…,0,1;0,…,0,βˆ’1)\text{diag}(0,\ldots,0,1;0,\ldots,0,-1) in 𝔰​𝔭2​m\mathfrak{sp}_{2m}. Since 𝔰​𝔭2\mathfrak{sp}_{2} is embedded diagonally (with 2​m2m copies) in 𝔰​𝔬4​m\mathfrak{so}_{4m}, we see that

(x,x)𝔰​𝔬4​m=12⟨\displaystyle(x,x)_{\mathfrak{so}_{4m}}=\frac{1}{2}\Big{\langle} diag​(1,βˆ’1,…,1,βˆ’1;βˆ’1,1,…,βˆ’1,1),\displaystyle\text{diag}(1,-1,\ldots,1,-1;-1,1,\ldots,-1,1),
diag(1,βˆ’1,…,1,βˆ’1;βˆ’1,1,…,βˆ’1,1)⟩=2m.\displaystyle\text{diag}(1,-1,\ldots,1,-1;-1,1,\ldots,-1,1)\Big{\rangle}=2m.

Similarly, we see that

(y,y)𝔰​𝔬4​m=12⟨\displaystyle\displaystyle(y,y)_{\mathfrak{so}_{4m}}=\frac{1}{2}\Big{\langle} diag​(0,…,0,1,1;0,…,0,βˆ’1,βˆ’1),\displaystyle\text{diag}(0,\ldots,0,1,1;0,\ldots,0,-1,-1),
diag(0,…,0,1,1;0,…,0,βˆ’1,βˆ’1)⟩=2.\displaystyle\text{diag}(0,\ldots,0,1,1;0,\ldots,0,-1,-1)\Big{\rangle}=2.

It follows that

i𝔰​𝔭2β†ͺ𝔰​𝔬4​m=(x,x)𝔰​𝔬4​m(x,x)𝔰​𝔭2=2​m2=mΒ andΒ i𝔰​𝔭2​mβ†ͺ𝔰​𝔬4​m=(y,y)𝔰​𝔬4​m(y,y)𝔰​𝔭2​m=22=1.i_{\mathfrak{sp}_{2}\hookrightarrow\mathfrak{so}_{4m}}=\frac{(x,x)_{\mathfrak{so}_{4m}}}{(x,x)_{\mathfrak{sp}_{2}}}=\frac{2m}{2}=m\hskip 14.22636pt\text{ and }\hskip 14.22636pti_{\mathfrak{sp}_{2m}\hookrightarrow\mathfrak{so}_{4m}}=\frac{(y,y)_{\mathfrak{so}_{4m}}}{(y,y)_{\mathfrak{sp}_{2m}}}=\frac{2}{2}=1.

In this way, we see that 𝔰​𝔭2=C1m≃A1m\mathfrak{sp}_{2}=C_{1}^{m}\simeq A_{1}^{m} (possibly with β€œprimes”) and that 𝔰​𝔭2​m=Cm1\mathfrak{sp}_{2m}=C_{m}^{1} (possibly with β€œprimes”). This will appear in later examples of dual pairs; specifically, (A12β€²,B21β€²)(A_{1}^{2^{\prime}},B_{2}^{1^{\prime}}), (A12β€²β€²,B21β€²β€²)(A_{1}^{2^{\prime\prime}},B_{2}^{1^{\prime\prime}}), and (A12β€²β€²β€²,B21β€²β€²β€²)(A_{1}^{2^{\prime\prime\prime}},B_{2}^{1^{\prime\prime\prime}}) are dual pairs in D4D_{4}, and (A13β€²,C31β€²β€²)(A_{1}^{3^{\prime}},C_{3}^{1^{\prime\prime}}) and (A13β€²β€²,C31β€²)(A_{1}^{3^{\prime\prime}},C_{3}^{1^{\prime}}) are dual pairs in D6D_{6} (see Table 7).

2.4. Dynkin’s defining vector conventions and weighted diagrams

Let π”ž\mathfrak{a} be a three-dimensional semisimple subalgebra of a complex simple Lie algebra 𝔀\mathfrak{g}. (Any such subalgebra is isomorphic to 𝔰​𝔩2\mathfrak{sl}_{2}.) A vector Hβˆˆπ”žH\in\mathfrak{a} which can be supplemented with two vectors X,Yβˆˆπ”žX,Y\in\mathfrak{a} to form an 𝔰​𝔩2\mathfrak{sl}_{2}-triplet, i.e.Β a basis of π”ž\mathfrak{a} satisfying the commutator relations

[H,X]\displaystyle[H,X] =2​X\displaystyle=2X
[H,Y]\displaystyle[H,Y] =βˆ’2​Y\displaystyle=-2Y
[X,Y]\displaystyle[X,Y] =H,\displaystyle=H,

is called a defining vector of π”ž\mathfrak{a}.

Remark 7.

For a three-dimensional subalgebra π”ž\mathfrak{a} of 𝔀\mathfrak{g} with defining vector HH, the index can be computed as

iπ”žβ†ͺ𝔀=(H,H)𝔀(H,H)π”ž=(H,H)𝔀2.i_{\mathfrak{a}\hookrightarrow\mathfrak{g}}=\frac{(H,H)_{\mathfrak{g}}}{(H,H)_{\mathfrak{a}}}=\frac{(H,H)_{\mathfrak{g}}}{2}.

Fix a defining vector HH for π”ž\mathfrak{a}. Choose a Cartan subalgebra π”₯\mathfrak{h} containing HH, as well as a positive root system making HH weakly dominant (i.e. α​(H)β‰₯0\alpha(H)\geq 0 whenever Ξ±>0\alpha>0). Let Ξ \Pi be the corresponding system of simple roots. In [5], Dynkin often writes the defining vector of π”ž\mathfrak{a} in terms of the simple coroots of 𝔀\mathfrak{g} (appropriately normalized). In particular, let Ξ β„“\Pi_{\ell} denote the set of long simple roots in Ξ \Pi and let Ξ s\Pi_{s} denote the set of short simple roots in Ξ \Pi. Set r:=(Ξ²,Ξ²)𝔀/(Ξ³,Ξ³)𝔀r:=(\beta,\beta)_{\mathfrak{g}}/(\gamma,\gamma)_{\mathfrak{g}} for Ξ²βˆˆΞ β„“\beta\in\Pi_{\ell} and γ∈Πs\gamma\in\Pi_{s} (so that r=1r=1 if 𝔀\mathfrak{g} has only one root length, r=3r=3 if 𝔀\mathfrak{g} is of type G2G_{2}, and r=2r=2 in all other cases of two root lengths). Then Dynkin writes the defining vector HH of π”ž\mathfrak{a} as

H=βˆ‘Ξ²βˆˆΞ β„“aΞ²β€‹Ξ²βˆ¨+βˆ‘Ξ³βˆˆΞ saΞ³β€‹Ξ³βˆ¨r,H=\sum_{\beta\in\Pi_{\ell}}a_{\beta}\beta^{\vee}+\sum_{\gamma\in\Pi_{s}}a_{\gamma}\frac{\gamma^{\vee}}{r},

and he calls the coefficients {aΞ²,aΞ³}Ξ²βˆˆΞ β„“,γ∈Πs\{a_{\beta},a_{\gamma}\}_{\beta\in\Pi_{\ell},\,\gamma\in\Pi_{s}} the coordinates of the defining vector HH.

Now, consider the Dynkin diagram for 𝔀\mathfrak{g}. There is a unique correspondence between the nodes of this diagram and the elements of Ξ \Pi. Let us associate the number α​(H)\alpha(H) with the node corresponding to Ξ±\alpha. The resulting diagram (with numbers written in) is called the weighted diagram of the subalgebra π”ž\mathfrak{a}.

G2G_{2}Ξ±1\alpha_{1}Ξ±2\alpha_{2}F4F_{4}Ξ±1\alpha_{1}Ξ±2\alpha_{2}Ξ±3\alpha_{3}Ξ±4\alpha_{4}E6E_{6}Ξ±1\alpha_{1}Ξ±3\alpha_{3}Ξ±4\alpha_{4}Ξ±5\alpha_{5}Ξ±6\alpha_{6}Ξ±2\alpha_{2}E7E_{7}Ξ±1\alpha_{1}Ξ±3\alpha_{3}Ξ±4\alpha_{4}Ξ±5\alpha_{5}Ξ±6\alpha_{6}Ξ±7\alpha_{7}Ξ±2\alpha_{2}E8E_{8}Ξ±1\alpha_{1}Ξ±3\alpha_{3}Ξ±4\alpha_{4}Ξ±5\alpha_{5}Ξ±6\alpha_{6}Ξ±7\alpha_{7}Ξ±8\alpha_{8}Ξ±2\alpha_{2}
Figure 1. Root labeling conventions for types G2G_{2}, F4F_{4}, E6E_{6}, E7E_{7}, and E8E_{8}.
Example 8.

To illustrate the above definitions, let us verify some of the entries in [5, Table 16], which states the index, weighted diagram, and defining vector for the three-dimensional subalgebras of the exceptional Lie algebra 𝔀\mathfrak{g} of type G2G_{2}.

By [3, Plate IX], we can realize this root system as the hyperplane in ℝ3\mathbb{R}^{3} defined by the equation ΞΎ1+ΞΎ2+ΞΎ3=0\xi_{1}+\xi_{2}+\xi_{3}=0, with the following roots:

Β±(Ξ΅1βˆ’Ξ΅2),Β±(Ξ΅1βˆ’Ξ΅3),Β±(Ξ΅2βˆ’Ξ΅3),\displaystyle\pm(\varepsilon_{1}-\varepsilon_{2}),\hskip 7.11317pt\pm(\varepsilon_{1}-\varepsilon_{3}),\hskip 7.11317pt\pm(\varepsilon_{2}-\varepsilon_{3}),
Β±(2Ξ΅1\displaystyle\pm(2\varepsilon_{1} βˆ’Ξ΅2βˆ’Ξ΅3),Β±(2Ξ΅2βˆ’Ξ΅1βˆ’Ξ΅3),Β±(2Ξ΅3βˆ’Ξ΅1βˆ’Ξ΅2).\displaystyle-\varepsilon_{2}-\varepsilon_{3}),\hskip 7.11317pt\pm(2\varepsilon_{2}-\varepsilon_{1}-\varepsilon_{3}),\hskip 7.11317pt\pm(2\varepsilon_{3}-\varepsilon_{1}-\varepsilon_{2}).

This system has basis Ξ±1=βˆ’2​Ρ1+Ξ΅2+Ξ΅3\alpha_{1}=-2\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3} and Ξ±2=Ξ΅1βˆ’Ξ΅2\alpha_{2}=\varepsilon_{1}-\varepsilon_{2} (cf.Β Figure 1), with corresponding coroots Ξ±1∨=13​(βˆ’2,1,1)\alpha_{1}^{\vee}=\frac{1}{3}(-2,1,1) and Ξ±2∨=(1,βˆ’1,0)\alpha_{2}^{\vee}=(1,-1,0).

Let us consider the first subalgebra in [5, Table 16], with defining vector coordinates (2,3)(2,3). Then the defining vector is given by

H:=2​α1∨+3​(Ξ±2∨3)=(βˆ’13,βˆ’13,23).H:=2\alpha_{1}^{\vee}+3\left(\frac{\alpha_{2}^{\vee}}{3}\right)=\left(-\frac{1}{3},-\frac{1}{3},\frac{2}{3}\right).

So we see that

Ξ±1​(H)\displaystyle\alpha_{1}(H) =23βˆ’13+23=1,Β and\displaystyle=\frac{2}{3}-\frac{1}{3}+\frac{2}{3}=1,\text{ and }
Ξ±2​(H)\displaystyle\alpha_{2}(H) =βˆ’13+13+0=0.\displaystyle=-\frac{1}{3}+\frac{1}{3}+0=0.

Therefore, the weighted diagram of this three-dimensional subalgebra is

1 0

as expected. Since Ξ±1∨\alpha_{1}^{\vee} is our short coroot, the normalizing condition on (β‹…,β‹…)𝔀(\cdot,\cdot)_{\mathfrak{g}} is that (Ξ±1∨,Ξ±1∨)𝔀=2=3β‹…βŸ¨Ξ±1∨,Ξ±1∨⟩(\alpha_{1}^{\vee},\alpha_{1}^{\vee})_{\mathfrak{g}}=2=3\cdot\langle\alpha_{1}^{\vee},\alpha_{1}^{\vee}\rangle. Therefore, the index of this subalgebra in G2G_{2} is given by

(H,H)𝔀2=3β‹…(2/3)2=1,\frac{(H,H)_{\mathfrak{g}}}{2}=\frac{3\cdot(2/3)}{2}=1,

as expected.

3. Maximal and maximal-rank regular subalgebras

In this section, we introduce the notions of maximal regular subalgebras and maximal-rank regular subalgebras. We also classify the semisimple dual pairs coming from maximal regular subalgebras of maximal rank (see Proposition 15 and Table 3) and discuss briefly how maximal-rank regular subalgebras will play a crucial role later in the paper.

Definition 9 ([15, Definition 5.6]).

Let 𝔀\mathfrak{g} be a semisimple Lie algebra. A subalgebra 𝔲\mathfrak{u} of 𝔀\mathfrak{g} is called regular if there exists a Cartan subalgebra π”₯\mathfrak{h} of 𝔀\mathfrak{g} such that 𝔲\mathfrak{u} is invariant under ad𝔀​π”₯\text{ad}_{\mathfrak{g}}\mathfrak{h} (i.e. [π”₯,𝔲]βŠ‚π”²[\mathfrak{h},\mathfrak{u}]\subset\mathfrak{u}).

Definition 10.

Let 𝔀\mathfrak{g} be a semisimple Lie algebra.

  • β€’

    A maximal regular subalgebra of 𝔀\mathfrak{g} is a proper regular semisimple subalgebra 𝔀~\widetilde{\mathfrak{g}} of 𝔀\mathfrak{g} for which no regular semisimple subalgebra π”€βˆ—\mathfrak{g}^{*} exists such that 𝔀~βŠŠπ”€βˆ—βŠŠπ”€\widetilde{\mathfrak{g}}\subsetneq\mathfrak{g}^{*}\subsetneq\mathfrak{g}.

  • β€’

    A maximal-rank regular subalgebra of 𝔀\mathfrak{g} is a proper regular semisimple subalgebra with rank equal to the rank of 𝔀\mathfrak{g}.222In [5] and [15], Dynkin and Rubenthalter do not require maximal regular subalgebras or maximal-rank regular subalgebras to be semisimple. Since the maximal/maximal-rank regular subalgebras we consider in this paper will all be semisimple, we include the β€œsemisimple” qualifier in the definition for convenience.

As we will see below, a maximal-rank regular subalgebra need not be maximal, and a maximal regular subalgebra need not have maximal rank. It will be important to keep this in mind moving forward. In fact, mistakenly conflating these notions seems to have contributed to some errors in [5] and [15] that we will soon be discussing.

3.1. Maximal-rank regular subalgebras

Let 𝔀\mathfrak{g} be a simple Lie algebra. It was shown in [5, No.Β 17] that the maximal-rank regular subalgebras in 𝔀\mathfrak{g} are obtained (up to conjugation) by applying a finite number of elementary operations to the Dynkin diagram DD of 𝔀\mathfrak{g}.

In each elementary operation, we first pass from DD to the extended Dynkin diagram D~\widetilde{D} of 𝔀\mathfrak{g}, which is the diagram obtained from DD by adding a node corresponding to Ξ±~\widetilde{\alpha} (where Ξ±~\widetilde{\alpha} is the lowest root of 𝔀\mathfrak{g}). This new node gets connected to DD using the usual Dynkin diagram edge rules. The resulting diagram D~\widetilde{D} is not the Dynkin diagram of a semisimple algebra, but if we remove a node Ξ±k\alpha_{k} from D~\widetilde{D}, we obtain the Dynkin diagram DΞ±kD_{\alpha_{k}} of a semisimple algebra. When Ξ±k=Ξ±~\alpha_{k}=\widetilde{\alpha}, we simply recover the Dynkin diagram DD of 𝔀\mathfrak{g}. When Ξ±kβ‰ Ξ±~\alpha_{k}\neq\widetilde{\alpha}, it is not hard to check that the corresponding semisimple algebra, 𝔀​(Ξ±k)\mathfrak{g}(\alpha_{k}) (i.e.Β the subalgebra of 𝔀\mathfrak{g} generated by the root spaces 𝔀±α\mathfrak{g}^{\pm\alpha} for α∈DΞ±k\alpha\in D_{\alpha_{k}}), is a maximal-rank regular subalgebra of 𝔀\mathfrak{g}. For Ξ±kβ‰ Ξ±~\alpha_{k}\neq\widetilde{\alpha}, the process of passing from 𝔀\mathfrak{g} to 𝔀​(Ξ±k)\mathfrak{g}(\alpha_{k}) that we have just described is called an elementary operation. For 𝔀\mathfrak{g} a semisimple Lie algebra, an elementary operation is the process of applying the above process to a single simple factor of 𝔀\mathfrak{g}.

Remark 11.

It is not hard to see from this analysis that the simple factors of maximal-rank regular subalgebras almost always have index 1. As a result, we will often omit the index of these subalgebras for convenience. The exceptions to this rule are the subalgebras of rank 1 coming from a short root in BnB_{n}, G2G_{2}, or F4F_{4} (which have index 2, 3, and 2, respectively), and the subalgebra of type A2A_{2} coming from the short roots in F4F_{4} (which has index 2). We will follow the convention of denoting these exceptions with a tilde (e.g.Β A2~\widetilde{A_{2}} denotes the aforementioned index-2 subalgebra of F4F_{4}).

Example 12.

Consider the extended Dynkin diagram D~\widetilde{D} for 𝔀=E6\mathfrak{g}=E_{6} shown on the left (where the node corresponding to Ξ±~\widetilde{\alpha} is indicated with a triangle). Crossing out the node corresponding to Ξ±2\alpha_{2}, we obtain the diagram DΞ±2D_{\alpha_{2}} shown on the right, which has type A5βŠ•A1A_{5}\oplus A_{1}. This corresponds to the semisimple algebra 𝔀​(Ξ±2)=A5βŠ•A1\mathfrak{g}(\alpha_{2})=A_{5}\oplus A_{1} of E6E_{6} (where both A5A_{5} and A1A_{1} have index 1 in E6E_{6}). This is a maximal-rank regular subalgebra of E6E_{6}, which in fact turns out to be maximal regular as well.

β–½\triangledownΞ±2\alpha_{2}Ξ±4\alpha_{4}Ξ±1\alpha_{1}Ξ±3\alpha_{3}Ξ±5\alpha_{5}Ξ±6\alpha_{6}β–½\triangledownΓ—\times

Carrying out finitely many elementary operations like this, one can verify Table 1, which contains complete lists of the maximal-rank regular subalgebras of the classical simple and exceptional Lie algebras.

𝔀\mathfrak{g} Subalgebra
BnB_{n} Bm0βŠ•Dm1βŠ•β‹―βŠ•DmrB_{m_{0}}\oplus D_{m_{1}}\oplus\cdots\oplus D_{m_{r}} (rβ‰₯1r\geq 1, m1β‰₯β‹―β‰₯mr>1m_{1}\geq\cdots\geq m_{r}>1, βˆ‘imi=n\sum_{i}m_{i}=n)
CnC_{n} Cβ„“1βŠ•β‹―βŠ•Cβ„“rC_{\ell_{1}}\oplus\cdots\oplus C_{\ell_{r}} (rβ‰₯2r\geq 2, β„“1β‰₯β‹―β‰₯β„“r>0\ell_{1}\geq\cdots\geq\ell_{r}>0, βˆ‘iβ„“i=n\sum_{i}\ell_{i}=n)
DnD_{n} Dm1βŠ•β‹―βŠ•DmrD_{m_{1}}\oplus\cdots\oplus D_{m_{r}} (rβ‰₯2r\geq 2, m1β‰₯β‹―β‰₯mr>1m_{1}\geq\cdots\geq m_{r}>1, βˆ‘imi=n\sum_{i}m_{i}=n)
G2G_{2} F4F_{4} E6E_{6} E7E_{7} E8E_{8}
A2A_{2} B4B_{4} A5βŠ•A1A_{5}\oplus A_{1} D6βŠ•A1D_{6}\oplus A_{1} A8A_{8} E7βŠ•A1E_{7}\oplus A_{1}
A1βŠ•A1~A_{1}\oplus\widetilde{A_{1}} A3βŠ•A1~A_{3}\oplus\widetilde{A_{1}} 3​A23A_{2} A5β€²β€²βŠ•A2A_{5}^{{}^{\prime\prime}}\oplus A_{2} D8D_{8} D6βŠ•2​A1D_{6}\oplus 2A_{1}
A2βŠ•A2~A_{2}\oplus\widetilde{A_{2}} 2​A3βŠ•A12A_{3}\oplus A_{1} A7β€²βŠ•A1A_{7}^{{}^{\prime}}\oplus A_{1} D5βŠ•A3D_{5}\oplus A_{3}
C3βŠ•A1C_{3}\oplus A_{1} A7A_{7} A5βŠ•A2βŠ•A1A_{5}\oplus A_{2}\oplus A_{1} 2​D42D_{4}
D4D_{4} D4βŠ•3​A1D_{4}\oplus 3A_{1} 2​A42A_{4} D4βŠ•4​A1D_{4}\oplus 4A_{1}
B2βŠ•2​A1B_{2}\oplus 2A_{1} 7​A17A_{1} 4​A24A_{2} 2​A3βŠ•2​A12A_{3}\oplus 2A_{1}
4​A14A_{1} E6βŠ•A2E_{6}\oplus A_{2} 8​A18A_{1}
Table 1. Maximal-rank regular subalgebras of the simple Lie algebras (cf.Β [5, Tables 9, 11]).

Note that there are two conjugacy classes of subalgebras with index 1 and type A5A_{5} in E7E_{7}, as well as two conjugacy classes of subalgebras with index 1 and type A7A_{7} in E8E_{8}. However, there is a unique conjugacy class in E7E_{7} with type A5βŠ•A2A_{5}\oplus A_{2} and with both factors having index 1. Similarly, there is a unique conjugacy class in E8E_{8} with type A7βŠ•A1A_{7}\oplus A_{1} and with both factors having index 1. In these cases, we still include β€œprimes” to clarify which conjugacy classes A5A_{5} and A7A_{7} belong to: A5β€²β€²βŠ•A2A_{5}^{{}^{\prime\prime}}\oplus A_{2} and A7β€²βŠ•A1A_{7}^{{}^{\prime}}\oplus A_{1} [5, Table 25].

Note also that for certain values of nn, mim_{i}, and β„“i\ell_{i} as above, there are multiple conjugacy classes of subalgebras in BnB_{n}, CnC_{n}, or DnD_{n} with index 1 and type Bm0B_{m_{0}}, DmiD_{m_{i}}, or Cβ„“iC_{\ell_{i}}. However, as in the exceptional case, the conjugacy class of each maximal-rank regular subalgebra is uniquely determined by type and index [5, No.Β 17]. While β€œprimes” on simple factors are omitted from the classical portion of Table 1, we include them when describing the dual pairs in the classical simple Lie algebras of low rank in Section 6.

3.2. Maximal regular subalgebras of maximal rank

Some of the maximal-rank regular subalgebras shown in Table 1 are in fact maximal regular as well. By [5, No.Β 17], the regular subalgebras that are both maximal regular and maximal-rank are all obtained by means of only one elementary operation. Moreover, all of the subalgebras obtained by a single elementary operation are maximal-rank regular subalgebras, and most of them are maximal. (Note that Dynkin in [5, Theorem 5.5] mistakenly suggests that all maximal-rank regular subalgebras that are obtained by a single elementary operation are maximal. This seemingly led Dynkin to mistakenly include several non-maximal subalgebras in [5, Table 12]; in particular, he mistakenly includes A3βŠ•A1~A_{3}\oplus\widetilde{A_{1}} as maximal in F4F_{4}, includes 2​A3βŠ•A12A_{3}\oplus A_{1} as maximal in E7E_{7}, and includes A7βŠ•A1A_{7}\oplus A_{1}, A5βŠ•A2βŠ•A1A_{5}\oplus A_{2}\oplus A_{1}, and A5βŠ•A3A_{5}\oplus A_{3} as maximal in E8E_{8}.)333These errors in [5, Table 12] were also noted in [16, Section 3]. Fortunately, there is a straightforward way to check whether a maximal-rank regular subalgebra that is obtained via a single elementary operation is maximal regular as well:

Lemma 13.

Let 𝔀\mathfrak{g} be a simple Lie algebra, π”₯\mathfrak{h} a Cartan subalgebra of 𝔀\mathfrak{g}, and {Ξ±1,…,Ξ±n}\{\alpha_{1},\ldots,\alpha_{n}\} the set of simple roots corresponding to (𝔀,π”₯)(\mathfrak{g},\mathfrak{h}). Consider the extended Dynkin diagram of 𝔀\mathfrak{g} with the node corresponding to Ξ±k\alpha_{k} labeled with the coefficient mkm_{k} of Ξ±k\alpha_{k} in the highest root Ξ΄\delta, and the node corresponding to the lowest root Ξ±~\widetilde{\alpha} labeled 1. The regular subalgebras of 𝔀\mathfrak{g} that are both maximal regular and maximal-rank are exactly the subalgebras 𝔀​(Ξ±k)\mathfrak{g}(\alpha_{k}) with mkm_{k} prime.

Proof.

By [5, No.Β 17], the maximal regular subalgebras of maximal rank are all obtained by means of a single elementary operation, and any subalgebra obtained by elementary operations is a maximal-rank regular subalgebra. Therefore, it remains to show that for a simple root Ξ±k\alpha_{k}, 𝔀​(Ξ±k)\mathfrak{g}(\alpha_{k}) is maximal if and only if mkm_{k} is prime.

To this end, fix Ξ±k\alpha_{k} and let ΞΎk\xi_{k} denote the corresponding fundamental coweight (so that ΞΎk​(Ξ±k)=1\xi_{k}(\alpha_{k})=1 and ΞΎk​(Ξ±j)=0\xi_{k}(\alpha_{j})=0 for jβ‰ kj\neq k). Set

tk:=exp⁑(2​π​imk​ξk).t_{k}:=\exp\left(\frac{2\pi i}{m_{k}}\xi_{k}\right).

Then tkt_{k} acts on 𝔀\mathfrak{g} via the adjoint action, and hence defines an automorphism of 𝔀\mathfrak{g} satisfying tkmk=1t_{k}^{m_{k}}=1. We claim that 𝔷𝔀​(tk)=𝔀​(Ξ±k)\mathfrak{z}_{\mathfrak{g}}(t_{k})=\mathfrak{g}(\alpha_{k}). It suffices to show that {Ξ±~}βˆͺ{Ξ±j}jβ‰ k\{\widetilde{\alpha}\}\cup\{\alpha_{j}\}_{j\neq k} is the system of simple roots corresponding to (𝔷𝔀​(tk),π”₯)(\mathfrak{z}_{\mathfrak{g}}(t_{k}),\mathfrak{h}).

To start, note that Ξ±j​(tk)=1\alpha_{j}(t_{k})=1 for any jβ‰ kj\neq k. Additionally, note that Ξ±k​(tk)=e2​π​imk\alpha_{k}(t_{k})=e^{\frac{2\pi i}{m_{k}}}, which gives that Ξ±~​(tk)=Ξ±k​(tk)mk=e2​π​i=1\widetilde{\alpha}(t_{k})=\alpha_{k}(t_{k})^{m_{k}}=e^{2\pi i}=1. From this, it’s clear that 𝔀±α~\mathfrak{g}^{\pm\widetilde{\alpha}} and 𝔀±αj\mathfrak{g}^{\pm\alpha_{j}} (jβ‰ kj\neq k) are contained in 𝔷𝔀​(tk)\mathfrak{z}_{\mathfrak{g}}(t_{k}). For the other direction, suppose we have some Ξ²=βˆ‘j=1ncj​αj\beta=\sum_{j=1}^{n}c_{j}\alpha_{j} in 𝔷𝔀​(tk)\mathfrak{z}_{\mathfrak{g}}(t_{k}) (where βˆ’mj≀cj≀mj-m_{j}\leq c_{j}\leq m_{j} and where either cj≀0c_{j}\leq 0 for all jj or cjβ‰₯0c_{j}\geq 0 for all jj). Then

β​(tk)=e2​π​i​ckmk=1,\beta(t_{k})=e^{\frac{2\pi ic_{k}}{m_{k}}}=1,

meaning ckmkβˆˆβ„€\frac{c_{k}}{m_{k}}\in\mathbb{Z}. Since βˆ’mk≀ck≀mk-m_{k}\leq c_{k}\leq m_{k}, we see that ck∈{βˆ’mk,0,mk}c_{k}\in\{-m_{k},0,m_{k}\}. If ck=mkc_{k}=m_{k}, then cjβ‰₯0c_{j}\geq 0 for all jj and

Ξ²=βˆ‘jcj​αj=βˆ’Ξ±~βˆ’βˆ‘jβ‰ k(mjβˆ’cj)​αj\beta=\sum_{j}c_{j}\alpha_{j}=-\widetilde{\alpha}-\sum_{j\neq k}(m_{j}-c_{j})\alpha_{j}

is a non-positive linear combination of our proposed set of simple roots. Similarly, if ck=βˆ’mkc_{k}=-m_{k}, then cj≀0c_{j}\leq 0 for all jj and

Ξ²=βˆ‘jcj​αj=Ξ±~+βˆ‘jβ‰ k(mj+cj)​αj\beta=\sum_{j}c_{j}\alpha_{j}=\widetilde{\alpha}+\sum_{j\neq k}(m_{j}+c_{j})\alpha_{j}

is a non-negative linear combination of our proposed set of simple roots. Finally, if ck=0c_{k}=0, there is nothing to show. It follows that 𝔷𝔀​(tk)=𝔀​(Ξ±k)\mathfrak{z}_{\mathfrak{g}}(t_{k})=\mathfrak{g}(\alpha_{k}), as desired.

Now, suppose that mkm_{k} is prime. We would like to show that 𝔷𝔀​(tk)=𝔀​(Ξ±k)\mathfrak{z}_{\mathfrak{g}}(t_{k})=\mathfrak{g}(\alpha_{k}) is a maximal regular subalgebra. To this end, note that tkt_{k} induces a (β„€/mk​℀)(\mathbb{Z}/m_{k}\mathbb{Z})-grading on 𝔀\mathfrak{g}, where if β​(tk)=e2​π​i​rmk\beta(t_{k})=e^{\frac{2\pi ir}{m_{k}}} (with 0≀r≀mkβˆ’10\leq r\leq m_{k}-1), then 𝔀β\mathfrak{g}^{\beta} is in the rr-th level of the grading. Let’s call these levels 𝔀0,…,𝔀mkβˆ’1\mathfrak{g}_{0},\ldots,\mathfrak{g}_{m_{k}-1}. It’s clear that 𝔀0=𝔷𝔀​(tk)=𝔀​(Ξ±k)\mathfrak{g}_{0}=\mathfrak{z}_{\mathfrak{g}}(t_{k})=\mathfrak{g}(\alpha_{k}), and hence that each level is a module under the adjoint action of 𝔀​(Ξ±k)\mathfrak{g}(\alpha_{k}). Suppose we can show that each level is irreducible under this action. Then any subalgebra 𝔯\mathfrak{r} of 𝔀\mathfrak{g} properly containing 𝔀0\mathfrak{g}_{0} can be written as a sum of levels. Moreover, by the irreducibility of the levels, [𝔀i,𝔀j]=𝔀i+j(modmk)[\mathfrak{g}_{i},\mathfrak{g}_{j}]=\mathfrak{g}_{i+j\pmod{m_{k}}}. Since mkm_{k} is prime, closure under Lie bracket implies that 𝔯=𝔀\mathfrak{r}=\mathfrak{g}.

Thus, in the case of mkm_{k} prime, we have reduced to showing that the levels of the (β„€/mk​℀)(\mathbb{Z}/m_{k}\mathbb{Z})-grading on 𝔀\mathfrak{g} induced by tkt_{k} are irreducible as 𝔀​(Ξ±k)\mathfrak{g}(\alpha_{k})-modules. This is most straightforwardly proven by considering each case individually; we will not write out all of these cases, but instead will include an illustrative example. To this end, consider 𝔀​(Ξ±5)\mathfrak{g}(\alpha_{5}) in the case where 𝔀\mathfrak{g} is of type E8E_{8} (where Ξ±5\alpha_{5} is as in Figure 1). In this case, the extended Dynkin diagram with labels as described in the lemma statement is as follows:

2{2}4{4}6{6}5{5}4{4}3{3}2{2}1{1}3{3}

From this, we see that m5=5m_{5}=5 and that the root vector XΞ±5X_{\alpha_{5}} is the lowest weight for the irreducible representation ∧2β„‚5βŠ—β„‚5\wedge^{2}\mathbb{C}^{5}\otimes\mathbb{C}^{5} of 𝔀​(Ξ±5)\mathfrak{g}(\alpha_{5}). It follows that 𝔀1\mathfrak{g}_{1} has dimension at least (52)β‹…5=50\binom{5}{2}\cdot 5=50. Now, since t5t_{5} represents the unique conjugacy class of elements of order 5 with centralizer 𝔀​(Ξ±5)\mathfrak{g}(\alpha_{5}) – and since t52t_{5}^{2}, t53t_{5}^{3}, and t54t_{5}^{4} have the same property – we see that t5t_{5}, t52t_{5}^{2}, t53t_{5}^{3}, and t54t_{5}^{4} are all conjugate. It follows that 𝔀2\mathfrak{g}_{2}, 𝔀3\mathfrak{g}_{3}, and 𝔀4\mathfrak{g}_{4} also have irreducible components of dimension at least 50. Additionally, 𝔀0=𝔀​(Ξ±5)=𝔰​𝔩5βŠ•π”°β€‹π”©5\mathfrak{g}_{0}=\mathfrak{g}(\alpha_{5})=\mathfrak{sl}_{5}\oplus\mathfrak{sl}_{5} has dimension 48. Since 50β‹…4+48=248=dim𝔀50\cdot 4+48=248=\dim\mathfrak{g}, this shows that these containments are in fact equalities, and hence that 𝔀1\mathfrak{g}_{1}, 𝔀2\mathfrak{g}_{2}, 𝔀3\mathfrak{g}_{3}, and 𝔀4\mathfrak{g}_{4} are irreducible, as desired.

Finally, suppose that mkm_{k} is not prime, and that p∣mkp\mid m_{k}. It is clear that 𝔀​(Ξ±k)=𝔷𝔀​(tk)βŠ†π”·π”€β€‹(tkp)\mathfrak{g}(\alpha_{k})=\mathfrak{z}_{\mathfrak{g}}(t_{k})\subseteq\mathfrak{z}_{\mathfrak{g}}(t_{k}^{p}). Moreover, taking mkp\frac{m_{k}}{p} as the coefficient of Ξ±k\alpha_{k}, it is not difficult to construct roots of 𝔷𝔀​(tkp)\mathfrak{z}_{\mathfrak{g}}(t_{k}^{p}) that cannot be written as non-positive or non-negative linear combinations of {Ξ±~}βˆͺ{Ξ±j}jβ‰ k\{\widetilde{\alpha}\}\cup\{\alpha_{j}\}_{j\neq k}. It follows that 𝔷𝔀​(tk)βŠŠπ”·π”€β€‹(tkp)\mathfrak{z}_{\mathfrak{g}}(t_{k})\subsetneq\mathfrak{z}_{\mathfrak{g}}(t_{k}^{p}). Additionally, 𝔷𝔀​(tkp)\mathfrak{z}_{\mathfrak{g}}(t_{k}^{p}) is clearly regular. Therefore, 𝔀​(Ξ±k)\mathfrak{g}(\alpha_{k}) is not a maximal regular subalgebra in this case. ∎

Example 14.

For example, here is the extended diagram for E7E_{7}, which has highest root Ξ΄=2​α1+2​α2+3​α3+4​α4+3​α5+2​α6+Ξ±7\delta=2\alpha_{1}+2\alpha_{2}+3\alpha_{3}+4\alpha_{4}+3\alpha_{5}+2\alpha_{6}+\alpha_{7}:

1{1}2{2}3{3}4{4}3{3}2{2}1{1}2{2}

In this case, 𝔀​(Ξ±1)=𝔀​(Ξ±6)=A1βŠ•D6\mathfrak{g}(\alpha_{1})=\mathfrak{g}(\alpha_{6})=A_{1}\oplus D_{6}, which is maximal by Lemma 13 (since the relevant elementary operation involves removing a node with prime label 2). Similarly, Lemma 13 gives that 𝔀​(Ξ±3)=𝔀​(Ξ±5)=A2βŠ•A5β€²β€²\mathfrak{g}(\alpha_{3})=\mathfrak{g}(\alpha_{5})=A_{2}\oplus A_{5}^{{}^{\prime\prime}} is maximal. Removing either node with label 1, we get 𝔀​(Ξ±~)=𝔀​(Ξ±7)=E7\mathfrak{g}(\widetilde{\alpha})=\mathfrak{g}(\alpha_{7})=E_{7}, which is not a maximal regular subalgebra (since maximal regular subalgebras are defined to be proper). Finally, removing the node with label 4, we get 𝔀​(Ξ±4)=A1βŠ•A3βŠ•A3\mathfrak{g}(\alpha_{4})=A_{1}\oplus A_{3}\oplus A_{3}, which Lemma 13 says is not maximal regular. Indeed, since A3≃D3A_{3}\simeq D_{3}, we see from Table 2 that A1βŠ•A3βŠ•A3≃A1βŠ•D3βŠ•D3βŠ‚A1βŠ•D6A_{1}\oplus A_{3}\oplus A_{3}\simeq A_{1}\oplus D_{3}\oplus D_{3}\subset A_{1}\oplus D_{6}.

Computing 𝔀​(Ξ±k)\mathfrak{g}(\alpha_{k}) for simple 𝔀\mathfrak{g} and simple roots Ξ±k\alpha_{k} with prime label, we obtain the list of maximal regular subalgebras of maximal rank shown in Table 2.

𝔀\mathfrak{g} β€‚β€Šβ€ƒβ€ƒβ€‚β€„ Subalgebra 𝔀\mathfrak{g} β€‚β€Šβ€ƒβ€ƒβ€ƒβ€ƒβ€ƒβ€ƒβ€‚ Subalgebra
BnB_{n} 𝔀​(Ξ±k)=DkβŠ•Bnβˆ’k\mathfrak{g}(\alpha_{k})=D_{k}\oplus B_{n-k} E6E_{6} 𝔀​(Ξ±2)≃𝔀​(Ξ±3)≃𝔀​(Ξ±5)=A1βŠ•A5\mathfrak{g}(\alpha_{2})\simeq\mathfrak{g}(\alpha_{3})\simeq\mathfrak{g}(\alpha_{5})=A_{1}\oplus A_{5}
(k=2,3,…,nk=2,3,\ldots,n) 𝔀​(Ξ±4)=3​A2\mathfrak{g}(\alpha_{4})=3A_{2}
CnC_{n} 𝔀​(Ξ±k)=CkβŠ•Cnβˆ’k\mathfrak{g}(\alpha_{k})=C_{k}\oplus C_{n-k} E7E_{7} 𝔀​(Ξ±1)≃𝔀​(Ξ±6)=A1βŠ•D6\mathfrak{g}(\alpha_{1})\simeq\mathfrak{g}(\alpha_{6})=A_{1}\oplus D_{6}
(k=1,2,…,nk=1,2,\ldots,n) 𝔀​(Ξ±2)=A7\mathfrak{g}(\alpha_{2})=A_{7}
DnD_{n} 𝔀​(Ξ±k)=DkβŠ•Dnβˆ’k\mathfrak{g}(\alpha_{k})=D_{k}\oplus D_{n-k} 𝔀​(Ξ±3)≃𝔀​(Ξ±5)=A2βŠ•A5β€²β€²\mathfrak{g}(\alpha_{3})\simeq\mathfrak{g}(\alpha_{5})=A_{2}\oplus A_{5}^{{}^{\prime\prime}}
(k=2,3,…,nβˆ’2k=2,3,\ldots,n-2) E8E_{8} 𝔀​(Ξ±1)=D8\mathfrak{g}(\alpha_{1})=D_{8}
F4F_{4} 𝔀​(Ξ±1)=A1βŠ•C3\mathfrak{g}(\alpha_{1})=A_{1}\oplus C_{3} 𝔀​(Ξ±2)=A8\mathfrak{g}(\alpha_{2})=A_{8}
𝔀​(Ξ±2)=A2βŠ•A2~\mathfrak{g}(\alpha_{2})=A_{2}\oplus\widetilde{A_{2}} 𝔀​(Ξ±5)=2​A4\mathfrak{g}(\alpha_{5})=2A_{4}
𝔀​(Ξ±4)=B4\mathfrak{g}(\alpha_{4})=B_{4} 𝔀​(Ξ±7)=A2βŠ•E6\mathfrak{g}(\alpha_{7})=A_{2}\oplus E_{6}
G2G_{2} 𝔀​(Ξ±1)=A1βŠ•A1~\mathfrak{g}(\alpha_{1})=A_{1}\oplus\widetilde{A_{1}} 𝔀​(Ξ±8)=A1βŠ•E7\mathfrak{g}(\alpha_{8})=A_{1}\oplus E_{7}
𝔀​(Ξ±2)=A2\mathfrak{g}(\alpha_{2})=A_{2}
Table 2. Maximal regular subalgebras of maximal rank in simple Lie algebras (cf.Β [5, Table 12]). (In this table, the isomorphic subalgebras – e.g. 𝔀​(Ξ±1)≃𝔀​(Ξ±6)\mathfrak{g}(\alpha_{1})\simeq\mathfrak{g}(\alpha_{6}) in E7E_{7} – are not only isomorphic but conjugate by an inner automorphism.)

3.3. Dual pairs from maximal regular subalgebras of maximal rank

It turns out that maximal-rank maximal regular subalgebras lead to an important class of dual pairs.

Proposition 15 ([15, Proposition 5.15]).

Let 𝔀\mathfrak{g} be a simple Lie algebra. Let 𝔀1\mathfrak{g}_{1} and 𝔀2\mathfrak{g}_{2} be two semisimple subalgebras of 𝔀\mathfrak{g} such that 𝔀1βŠ•π”€2\mathfrak{g}_{1}\oplus\mathfrak{g}_{2} is a maximal regular subalgebra of maximal rank in 𝔀\mathfrak{g}. Then (𝔀1,𝔀2)(\mathfrak{g}_{1},\mathfrak{g}_{2}) is a dual pair in 𝔀\mathfrak{g}.

Note that the adjectives β€œmaximal-rank” and β€œmaximal” are both required here, although β€œmaximal-rank” was mistakenly omitted from the statement of [15, Proposition 5.15]. The original statement of [15, Proposition 5.15] would imply, for example, that there are dual pairs of the form (Ak,Anβˆ’1βˆ’k)(A_{k},A_{n-1-k}) in AnA_{n} (for k=1,…,nβˆ’2k=1,\ldots,n-2) coming from the maximal regular subalgebras AkβŠ•Anβˆ’1βˆ’kA_{k}\oplus A_{n-1-k} of rank nβˆ’1n-1 in AnA_{n}444These maximal regular subalgebras (along with other maximal regular subalgebras of non-maximal rank) are mistakenly omitted from [5, Table 12].; however, it is not hard to check that these fail to be dual pairs. Similarly, removing the β€œmaximal” adjective would imply, for example, that (A1,2​A3)(A_{1},2A_{3}) is a dual pair in E7E_{7}. However, from Table 2, it’s clear that 𝔷E7​(A1)βŠ‡D6βŠ‹2​A3\mathfrak{z}_{E_{7}}(A_{1})\supseteq D_{6}\supsetneq 2A_{3}. (In fact, Proposition 15 implies that 𝔷E7​(A1)=D6\mathfrak{z}_{E_{7}}(A_{1})=D_{6}.) Therefore, by consulting Table 2, we see that Proposition 15 gives us the dual pairs shown in Table 3.

𝔀\mathfrak{g} Dual Pair
BnB_{n} (Dk,Bnβˆ’k)(D_{k},B_{n-k}): k=2,3,…,nβˆ’1k=2,3,\ldots,n-1
(A1,A1βŠ•Bnβˆ’2)(A_{1},A_{1}\oplus B_{n-2})
CnC_{n} (Ck,Cnβˆ’k)(C_{k},C_{n-k}): k=1,2,…,nβˆ’1k=1,2,\ldots,n-1
DnD_{n} (Dk,Dnβˆ’k)(D_{k},D_{n-k}): k=2,3,…,nβˆ’2k=2,3,\ldots,n-2
(A1,A1βŠ•Dnβˆ’2)(A_{1},A_{1}\oplus D_{n-2})
G2G_{2} F4F_{4} E6E_{6} E7E_{7} E8E_{8}
(A1,A1~)(A_{1},\widetilde{A_{1}}) (A1,C3)(A_{1},C_{3}) (A1,A5)(A_{1},A_{5}) (A1,D6)(A_{1},D_{6}) (A4,A4)(A_{4},A_{4})
(A2,A2~)(A_{2},\widetilde{A_{2}}) (A2,2​A2)(A_{2},2A_{2}) (A2,A5β€²β€²)(A_{2},A_{5}^{{}^{\prime\prime}}) (A2,E6)(A_{2},E_{6})
(A1,E7)(A_{1},E_{7})
Table 3. Dual pairs coming from maximal regular subalgebras of maximal rank in simple Lie algebras.

Even though the adjective β€œmaximal” is required for Proposition 15 to be correct, it can happen that non-maximal maximal-rank regular subalgebras can lead to dual pairs. For example, we will later see that (B2,2​A1)(B_{2},2A_{1}) is a dual pair in F4F_{4}, that (D4,3​A1)(D_{4},3A_{1}) us a dual pair in E7E_{7}, and that (A5,A2βŠ•A1)(A_{5},A_{2}\oplus A_{1}), (D6,2​A1)(D_{6},2A_{1}), (D5,A3)(D_{5},A_{3}), (D4,D4)(D_{4},D_{4}), and (D4βŠ•A1,3​A1)(D_{4}\oplus A_{1},3A_{1}) are dual pairs in E8E_{8} (see Tables 10, 12, and LABEL:table:E8). We will later see that these dual pairs (along with the ones in Table 3) are examples of non-SS-irreducible dual pairs.

Maximal-rank regular subalgebras will continue to play a crucial role in the classification of dual pairs throughout the remainder of the paper. In particular, it will turn out that a dual pair in a simple Lie algebra 𝔀\mathfrak{g} is either SS-irreducible in 𝔀\mathfrak{g} or SS-irreducible in a maximal-rank regular subalgebra of 𝔀\mathfrak{g} (see Theorem 28).

4. Admissible subalgebras

In this section, we introduce the notion of admissibility, which will play a crucial role in the classification of SS-irreducible dual pairs. To this end, let 𝔀\mathfrak{g} be a simple Lie algebra over β„‚\mathbb{C}, and let π”₯\mathfrak{h} be a Cartan subalgebra of 𝔀\mathfrak{g}. Let β„›\mathcal{R} denote the root system of (𝔀,π”₯)(\mathfrak{g},\mathfrak{h}). Let

Ξ¨={Ξ±1,…,Ξ±n}\Psi=\{\alpha_{1},\ldots,\alpha_{n}\}

be a basis (i.e.Β set of simple roots) for β„›\mathcal{R}.

Let ΞΈ\theta denote some subset of Ξ¨\Psi. Let DD denote the diagram obtained from the Dynkin diagram of Ξ¨\Psi by circling the nodes corresponding to elements of Ξ¨βˆ–ΞΈ\Psi\setminus\theta. We will say that DD is the diagram associated with (Ξ¨,ΞΈ)(\Psi,\theta). For each circled node Ξ³iβˆˆΞ¨βˆ–ΞΈ\gamma_{i}\in\Psi\setminus\theta, let DiD_{i} denote the maximal connected subdiagram of DD whose unique circled node is Ξ³i\gamma_{i}. Each DiD_{i} is called an irreducible component of DD. For example, consider the D9D_{9} Dynkin diagram with Ξ¨βˆ–ΞΈ={Ξ±2,Ξ±5}\Psi\setminus\theta=\{\alpha_{2},\alpha_{5}\}:


This diagram has the following irreducible components:

Definition 16 ([15, Definition 3.1]).

The couple (Ξ¨,ΞΈ)(\Psi,\theta) is said to be admissible if the irreducible components DiD_{i} of the diagram DD associated with (Ξ¨,ΞΈ)(\Psi,\theta) all appear in Figure 2. In this case DD will also be called admissible.

Remark 17.

The condition of admissibility corresponds to a certain associated prehomogeneous space being regular. See [15, Section 2] for more details.

1)A2​n+11)\;\;\;A_{2n+1}Ξ±1\alpha_{1}…\ldots…\ldotsΞ±n+1\alpha_{n+1}…\ldots…\ldotsΞ±2​n+1\alpha_{2n+1}2)Bn2)\;\;\;B_{n}\;\;\;\;Ξ±1\alpha_{1}…\ldots…\ldotsΞ±k\alpha_{k}…\ldots…\ldotsΞ±n\alpha_{n}nβ‰₯2, 3​k≀2​n+1n\geq 2,\;3k\leq 2n+13)Cn3)\;\;\;C_{n}\;\;\;\;Ξ±1\alpha_{1}…\ldots…\ldotsΞ±2​k\alpha_{2k}…\ldots…\ldotsΞ±n\alpha_{n}nβ‰₯3, 6​k≀2​nn\geq 3,\;6k\leq 2n4)Cn4)\;\;\;C_{n}\;\;\;\;Ξ±1\alpha_{1}…\ldots…\ldots…\ldots…\ldotsΞ±n\alpha_{n}nβ‰₯3n\geq 35)Dn5)\;\;\;D_{n}\;\;\;Ξ±1\alpha_{1}…\ldots…\ldotsΞ±k\alpha_{k}…\ldots…\ldotsnβ‰₯4, 3​k≀2​nn\geq 4,\;3k\leq 2n6)D2​m6)\;\;\;D_{2m}\;Ξ±1\alpha_{1}…\ldots…\ldots…\ldots…\ldots…\ldots…\ldots…\ldots..mβ‰₯2m\geq 27)E67)\;\;\;E_{6}\;\;\;8)E68)\;\;\;E_{6}\;\;\;9)E79)\;\;\;E_{7}\;\;\;10)E710)\;\;\;E_{7}\;\;\;11)E711)\;\;\;E_{7}\;\;\;12)E712)\;\;\;E_{7}\;\;\;13)E713)\;\;\;E_{7}\;\;\;14)E714)\;\;\;E_{7}\;\;\;15)E715)\;\;\;E_{7}\;\;\;16)E816)\;\;\;E_{8}\;\;\;17)E817)\;\;\;E_{8}\;\;\;18)E818)\;\;\;E_{8}\;\;\;19)E819)\;\;\;E_{8}\;\;\;20)E820)\;\;\;E_{8}\;\;\;21)E821)\;\;\;E_{8}\;\;\;22)F422)\;\;\;F_{4}\;\;\;23)F423)\;\;\;F_{4}\;\;\;24)F424)\;\;\;F_{4}\;\;\;25)G225)\;\;\;G_{2}\;\;\;
Figure 2. A complete list of irreducible admissible diagrams [15, Table 1].

For a subset ΞΈ\theta of Ξ¨\Psi, set

π”₯ΞΈ={H∈π”₯|α​(H)=0​ for allΒ β€‹Ξ±βˆˆΞΈ}.\mathfrak{h}_{\theta}=\{H\in\mathfrak{h}\;|\;\alpha(H)=0\text{ for all }\alpha\in\theta\}.

Additionally, let Hθ∈π”₯ΞΈH_{\theta}\in\mathfrak{h}_{\theta} be uniquely defined by

α​(HΞΈ)={0ifΒ β€‹Ξ±βˆˆΞΈ2ifΒ β€‹Ξ±βˆˆΞ¨βˆ–ΞΈ.\alpha(H_{\theta})=\left\{\begin{array}[]{ll}0&\text{if }\alpha\in\theta\\ 2&\text{if }\alpha\in\Psi\setminus\theta.\end{array}\right.

The following theorem shows that for each irreducible component DiD_{i} of the diagram DD associated with (Ξ¨,ΞΈ)(\Psi,\theta), the condition of appearing in Figure 2 is precisely the same as the existence of a certain 𝔰​𝔩2\mathfrak{sl}_{2}-triplet.

Theorem 18 ([15, Theorem 2.3]).

Suppose Card​(Ξ¨βˆ–ΞΈ)=1\text{Card}(\Psi\setminus\theta)=1. Then the diagram DD associated with (Ξ¨,ΞΈ)(\Psi,\theta) appears in Figure 2 if and only if HΞΈH_{\theta} is a defining vector (i.e.Β if and only if there exist XΞΈ,YΞΈβˆˆπ”€X_{\theta},Y_{\theta}\in\mathfrak{g} such that (XΞΈ,HΞΈ,YΞΈ)(X_{\theta},H_{\theta},Y_{\theta}) is an 𝔰​𝔩2\mathfrak{sl}_{2}-triplet).

In this way, we see that if (Ξ¨,ΞΈ)(\Psi,\theta) is admissible, then we obtain a family of 𝔰​𝔩2\mathfrak{sl}_{2}-triplets, one for each irreducible component DiD_{i} of the diagram DD associated with (Ξ¨,ΞΈ)(\Psi,\theta).

Remark 19.

Note that for each irreducible component of a weighted diagram, the corresponding weighted diagram will have label 0 at every node except for the circled node, which will have label 2.

Theorem 20 ([15, Theorem 3.3]).

If the pair (Ξ¨,ΞΈ)(\Psi,\theta) is admissible, then the family of 𝔰​𝔩2\mathfrak{sl}_{2}-triplets (Yi,Hi,Xi)(Y_{i},H_{i},X_{i}) generates a simple subalgebra 𝔀θ~\widetilde{\mathfrak{g}_{\theta}} of 𝔀\mathfrak{g} with Cartan subalgebra π”₯ΞΈ\mathfrak{h}_{\theta}.

Example 21.

Let 𝔀\mathfrak{g} be the complex Lie algebra of type E8E_{8} with Cartan subalgebra π”₯=β„‚8\mathfrak{h}=\mathbb{C}^{8}. By [3, Plate VII], the root system corresponding to (𝔀,π”₯)(\mathfrak{g},\mathfrak{h}) has the following simple roots:

Ξ¨={Ξ±1\displaystyle\Psi=\Big{\{}\alpha_{1} =12​(Ξ΅1+Ξ΅8)βˆ’12​(Ξ΅2+Ξ΅3+Ξ΅4+Ξ΅5+Ξ΅6+Ξ΅7),\displaystyle=\frac{1}{2}(\varepsilon_{1}+\varepsilon_{8})-\frac{1}{2}(\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}+\varepsilon_{6}+\varepsilon_{7}),
Ξ±2\displaystyle\alpha_{2} =Ξ΅1+Ξ΅2,Ξ±3=Ξ΅2βˆ’Ξ΅1,Ξ±4=Ξ΅3βˆ’Ξ΅2,Ξ±5=Ξ΅4βˆ’Ξ΅3,\displaystyle=\varepsilon_{1}+\varepsilon_{2},\;\alpha_{3}=\varepsilon_{2}-\varepsilon_{1},\;\alpha_{4}=\varepsilon_{3}-\varepsilon_{2},\;\alpha_{5}=\varepsilon_{4}-\varepsilon_{3},
Ξ±6\displaystyle\alpha_{6} =Ξ΅5βˆ’Ξ΅4,Ξ±7=Ξ΅6βˆ’Ξ΅5,Ξ±8=Ξ΅7βˆ’Ξ΅6}.\displaystyle=\varepsilon_{5}-\varepsilon_{4},\;\alpha_{7}=\varepsilon_{6}-\varepsilon_{5},\;\alpha_{8}=\varepsilon_{7}-\varepsilon_{6}\Big{\}}.

Let ΞΈ={Ξ±2,Ξ±3,Ξ±4,Ξ±5,Ξ±6,Ξ±7,Ξ±8}\theta=\{\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{5},\alpha_{6},\alpha_{7},\alpha_{8}\} so that Ξ¨βˆ–ΞΈ={Ξ±1}\Psi\setminus\theta=\{\alpha_{1}\}. The diagram associated to (Ξ¨,ΞΈ)(\Psi,\theta) appears as 16) in Figure 2, and is consequently admissible. It is not hard to check that

π”₯ΞΈ={H∈π”₯|α​(H)=0​ for allΒ β€‹Ξ±βˆˆΞΈ}={(0,0,0,0,0,0,0,x)|xβˆˆβ„‚}.\mathfrak{h}_{\theta}=\{H\in\mathfrak{h}\;|\;\alpha(H)=0\text{ for all }\alpha\in\theta\}=\left\{(0,0,0,0,0,0,0,x)\;|\;x\in\mathbb{C}\right\}.

Additionally, Hθ∈π”₯ΞΈH_{\theta}\in\mathfrak{h}_{\theta} is given by HΞΈ=(0,0,0,0,0,0,0,4)H_{\theta}=(0,0,0,0,0,0,0,4). By Theorem 20, 𝔀θ~=⟨XΞΈ,HΞΈ,YΞΈβŸ©β‰ƒπ”°β€‹π”©2\widetilde{\mathfrak{g}_{\theta}}=\langle X_{\theta},H_{\theta},Y_{\theta}\rangle\simeq\mathfrak{sl}_{2} is a simple subalgebra of 𝔀\mathfrak{g} with Cartan subalgebra π”₯ΞΈ\mathfrak{h}_{\theta} (and defining vector HΞΈH_{\theta}). Moreover, as explained in Remark 19, 𝔀θ~\widetilde{\mathfrak{g}_{\theta}} has the following weighted diagram:

2{2}0{0}0{0}0{0}0{0}0{0}0{0}0{0}

Therefore, [5, Table 20] gives that 𝔀θ~=A18\widetilde{\mathfrak{g}_{\theta}}=A_{1}^{8}.

5. SS-irreducible and admissible dual pairs

The goal of this section is to define the notion of an SS-irreducible dual pair, and to list all of the SS-irreducible dual pairs of the exceptional Lie algebras. To start, we define the notion of an SS-subalgebra, which was initially introduced in [5, No.Β 23].

Definition 22 ([15, Definition 5.9]).

Let 𝔀\mathfrak{g} be a semisimple Lie algebra. An SS-subalgebra of 𝔀\mathfrak{g} is a semisimple subalgebra that is not contained in a proper regular subalgebra of 𝔀\mathfrak{g}.

With this notion of SS-subalgebra, we can define a notion of irreducibility for dual pairs:

Definition 23 ([15, Definition 5.11]).

Let (π”ž,π”Ÿ)(\mathfrak{a},\mathfrak{b}) be a semisimple dual pair of a semisimple algebra 𝔀\mathfrak{g}. We say that the pair (π”ž,π”Ÿ)(\mathfrak{a},\mathfrak{b}) is SS-irreducible if the algebra π”žβŠ•π”Ÿ\mathfrak{a}\oplus\mathfrak{b} is an SS-subalgebra.

Remark 24.

In [8], Howe considers semisimple dual pairs in 𝔰​𝔭2​n\mathfrak{sp}_{2n}, and defines a notion of dual pair irreducibility in that setting. While the notion of dual pair irreducibility in Definition 23 a priori seems possibly different, it turns out that the two notions coincide in the setting of 𝔰​𝔭2​n\mathfrak{sp}_{2n} [15, Remark 5.13].

Figures 3 and 4 show all of the SS-subalgebras of the classical simple Lie algebras up to rank 6. Similarly, Figure 5 shows all of the SS-subalgebras of the exceptional Lie algebras, along with their inclusion relations. These figures, together with the following proposition, give us a method for easily identifying lots of SS-irreducible dual pairs:

A2A_{2}A14A_{1}^{4}B2≃C2B_{2}\simeq C_{2}A110A_{1}^{10}
A3≃D3A_{3}\simeq D_{3}B21B_{2}^{1}A12βŠ•A12A_{1}^{2}\oplus A_{1}^{2}A110A_{1}^{10}B3B_{3}G21G_{2}^{1}A128A_{1}^{28}C3C_{3}A135A_{1}^{35}A18βŠ•A13A_{1}^{8}\oplus A_{1}^{3}
A4A_{4}B22B_{2}^{2}A120A_{1}^{20}B4B_{4}A160A_{1}^{60}A16βŠ•A16A_{1}^{6}\oplus A_{1}^{6}C4C_{4}A184A_{1}^{84}A14βŠ•A14βŠ•A14A_{1}^{4}\oplus A_{1}^{4}\oplus A_{1}^{4}D4D_{4}B31B_{3}^{1}A23A_{2}^{3}B21β€²βŠ•A12β€²B_{2}^{1^{\prime}}\oplus A_{1}^{2^{\prime}}B21β€²β€²βŠ•A12β€²β€²B_{2}^{1^{\prime\prime}}\oplus A_{1}^{2^{\prime\prime}}B21β€²β€²β€²βŠ•A12β€²β€²β€²B_{2}^{1^{\prime\prime\prime}}\oplus A_{1}^{2^{\prime\prime\prime}}A110β€²β€²β€²βŠ•A12β€²β€²β€²A_{1}^{10^{\prime\prime\prime}}\oplus A_{1}^{2^{\prime\prime\prime}}G21G_{2}^{1}A128A_{1}^{28}A110β€²βŠ•A12β€²A_{1}^{10^{\prime}}\oplus A_{1}^{2^{\prime}}A112A_{1}^{12}A110β€²β€²βŠ•A12β€²β€²A_{1}^{10^{\prime\prime}}\oplus A_{1}^{2^{\prime\prime}}
Figure 3. Inclusion relations among the SS-subalgebras of the classical simple Lie algebras up to rank 4 (cf.Β [13, Table XII]).
A5A_{5}A25A_{2}^{5}A32A_{3}^{2}C31C_{3}^{1}A22βŠ•A13A_{2}^{2}\oplus A_{1}^{3}A135A_{1}^{35}A18βŠ•A13A_{1}^{8}\oplus A_{1}^{3}B5B_{5}A1110A_{1}^{110}C5C_{5}A1165A_{1}^{165}B24βŠ•A15B_{2}^{4}\oplus A_{1}^{5}A140βŠ•A15A_{1}^{40}\oplus A_{1}^{5}D5D_{5}B23B_{2}^{3}B31βŠ•A12β€²β€²B_{3}^{1}\oplus A_{1}^{2^{\prime\prime}}B41B_{4}^{1}B21β€²β€²βŠ•B21β€²β€²B_{2}^{1^{\prime\prime}}\oplus B_{2}^{1^{\prime\prime}}B21β€²β€²βŠ•A110β€²β€²B_{2}^{1^{\prime\prime}}\oplus A_{1}^{10^{\prime\prime}}A110β€²β€²βŠ•A110β€²β€²A_{1}^{10^{\prime\prime}}\oplus A_{1}^{10^{\prime\prime}}G21βŠ•A12β€²β€²G_{2}^{1}\oplus A_{1}^{2^{\prime\prime}}A128βŠ•A12β€²β€²A_{1}^{28}\oplus A_{1}^{2^{\prime\prime}}A160A_{1}^{60}A16βŠ•A16A_{1}^{6}\oplus A_{1}^{6}A130A_{1}^{30}
A6A_{6}B32B_{3}^{2}G22G_{2}^{2}A156A_{1}^{56}B6B_{6}A1182A_{1}^{182}C6C_{6}A1286A_{1}^{286}A34βŠ•A16A_{3}^{4}\oplus A_{1}^{6}B21βŠ•A116B_{2}^{1}\oplus A_{1}^{16}A130βŠ•A116A_{1}^{30}\oplus A_{1}^{16}D6D_{6}B51B_{5}^{1}A1110A_{1}^{110}B41βŠ•A12β€²β€²B_{4}^{1}\oplus A_{1}^{2^{\prime\prime}}A160βŠ•A12β€²β€²A_{1}^{60}\oplus A_{1}^{2^{\prime\prime}}A162A_{1}^{62}A16βŠ•A16βŠ•A12β€²β€²A_{1}^{6}\oplus A_{1}^{6}\oplus A_{1}^{2^{\prime\prime}}A18βŠ•A16A_{1}^{8}\oplus A_{1}^{6}C31β€²βŠ•A13β€²β€²C_{3}^{1^{\prime}}\oplus A_{1}^{3^{\prime\prime}}A135β€²βŠ•A13β€²β€²A_{1}^{35^{\prime}}\oplus A_{1}^{3^{\prime\prime}}C31β€²β€²βŠ•A13β€²C_{3}^{1^{\prime\prime}}\oplus A_{1}^{3^{\prime}}A18βŠ•A13β€²βŠ•A13β€²β€²A_{1}^{8}\oplus A_{1}^{3^{\prime}}\oplus A_{1}^{3^{\prime\prime}}A135β€²β€²βŠ•A13β€²A_{1}^{35^{\prime\prime}}\oplus A_{1}^{3^{\prime}}B31βŠ•B21β€²β€²B_{3}^{1}\oplus B_{2}^{1^{\prime\prime}}G21βŠ•B21β€²β€²G_{2}^{1}\oplus B_{2}^{1^{\prime\prime}}B31βŠ•A110β€²β€²B_{3}^{1}\oplus A_{1}^{10^{\prime\prime}}A128βŠ•B21β€²β€²A_{1}^{28}\oplus B_{2}^{1^{\prime\prime}}G21βŠ•A110β€²β€²G_{2}^{1}\oplus A_{1}^{10^{\prime\prime}}A128βŠ•A110β€²β€²A_{1}^{28}\oplus A_{1}^{10^{\prime\prime}}A138A_{1}^{38}
Figure 4. Inclusion relations among the SS-subalgebras of the classical simple Lie algebras of ranks 5 and 6 (cf.Β [13, Table XII]).
Proposition 25 ([15, Proposition 5.19]).

Suppose 𝔀\mathfrak{g} is simple. Let π”ž\mathfrak{a} and π”Ÿ\mathfrak{b} be semisimple subalgebras of 𝔀\mathfrak{g} such that π”žβŠ•π”Ÿ\mathfrak{a}\oplus\mathfrak{b} is a maximal SS-subalgebra. Then (π”ž,π”Ÿ)(\mathfrak{a},\mathfrak{b}) is an SS-irreducible dual pair in 𝔀\mathfrak{g}.

It is important to note that the converse of Proposition 25 does not hold (i.e.Β not all SS-irreducible dual pairs come from maximal SS-subalgebras).

Example 26.

As we saw in Example 21, A18A_{1}^{8} is an admissible subalgebra of E8E_{8} with Ξ¨βˆ–ΞΈ={Ξ±1}\Psi\setminus\theta=\{\alpha_{1}\}. By [10, Example 25, p.Β 146], we can deduce that 𝔷E8​(A18)=G21βŠ•G21\mathfrak{z}_{E_{8}}(A_{1}^{8})=G_{2}^{1}\oplus G_{2}^{1} (cf.Β [15, Section 6.10]). From Figure 5, we see that A18βŠ•G21βŠ•G21A_{1}^{8}\oplus G_{2}^{1}\oplus G_{2}^{1} is a (non-maxial) SS-subalgebra in E8E_{8}. Additionally, Figure 5 and Proposition 25 imply that (A18,G21)(A_{1}^{8},G_{2}^{1}) is a dual pair in F4F_{4} and that (G21,F41)(G_{2}^{1},F_{4}^{1}) is a dual pair in E8E_{8}. Therefore,

𝔷E8​(G21βŠ•G21)=𝔷F4​(G21)=A18.\mathfrak{z}_{E_{8}}(G_{2}^{1}\oplus G_{2}^{1})=\mathfrak{z}_{F_{4}}(G_{2}^{1})=A_{1}^{8}.

In this way, we see that (A18,G21βŠ•G21)(A_{1}^{8},G_{2}^{1}\oplus G_{2}^{1}) is an SS-irreducible dual pair in E8E_{8}.

As we will see in Theorem 27, this is where the notion of admissibility becomes useful.

Theorem 27 ([15, Theorem 8.1]).

Let 𝔀\mathfrak{g} be a simple Lie algebra and let (π”ž,π”Ÿ)(\mathfrak{a},\mathfrak{b}) be an SS-irreducible dual pair in 𝔀\mathfrak{g}. Then with the exception of the following cases, at least one of π”ž\mathfrak{a} and π”Ÿ\mathfrak{b} is admissible:

  1. (i)

    𝔀\mathfrak{g} is of type DnD_{n} and (π”ž,π”Ÿ)(\mathfrak{a},\mathfrak{b}) is of type (Dk,Dβ„“)(D_{k},D_{\ell}), where n=2​k​ℓn=2k\ell and k,β„“β‰₯2k,\ell\geq 2.

  2. (ii)

    𝔀\mathfrak{g} is of type DnD_{n} and (π”ž,π”Ÿ)(\mathfrak{a},\mathfrak{b}) is of type (Bp1βŠ•Bq1,Bp2βŠ•Bq2)(B_{p_{1}}\oplus B_{q_{1}},B_{p_{2}}\oplus B_{q_{2}}), where (Bp1,Bp2)(B_{p_{1}},B_{p_{2}}) is an SS-irreducible dual pair in BpB_{p} (with 2​p+1=(2​p1+1)​(2​p2+1)2p+1=(2p_{1}+1)(2p_{2}+1)), where (Bq1,Bq2)(B_{q_{1}},B_{q_{2}}) is an SS-irreducible dual pair in BqB_{q} (with 2​q+1=(2​q1+1)​(2​q2+1)2q+1=(2q_{1}+1)(2q_{2}+1)), and where n=p+q+1n=p+q+1.

Therefore, to generate a full list of SS-irreducible dual pairs in a given simple Lie algebra 𝔀\mathfrak{g} of any type other than DnD_{n}, it suffices to consider all admissible diagrams associated with an appropriate (Ξ¨,ΞΈ)(\Psi,\theta), and for each such diagram compute the corresponding subalgebra 𝔀θ~\widetilde{\mathfrak{g}_{\theta}}. Finally, compute 𝔷𝔀​(𝔀θ~)\mathfrak{z}_{\mathfrak{g}}(\widetilde{\mathfrak{g}_{\theta}}) and check whether 𝔀θ~βŠ•π”·π”€β€‹(𝔀θ~)\widetilde{\mathfrak{g}_{\theta}}\oplus\mathfrak{z}_{\mathfrak{g}}(\widetilde{\mathfrak{g}_{\theta}}) appears in Figure 5, 3, or 4 as an SS-subalgebra of 𝔀\mathfrak{g}. For 𝔀\mathfrak{g} of type DnD_{n}, the SS-irreducibles are those obtained in this way in addition to those of the forms (i) and (ii) in Theorem 27 (see [15, Theorem 7.3.2] and [15, Proposition 7.3.3]). (Note that some admissible subalgebras are members of dual pairs that are not SS-irreducible. These dual pairs – along with the SS-irreducible dual pairs with an admissible factor – will be called admissible dual pairs).

Note that the β€œcompute 𝔷𝔀​(𝔀θ~)\mathfrak{z}_{\mathfrak{g}}(\widetilde{\mathfrak{g}_{\theta}})” step in this process is very nontrivial. Fortunately, the type of many of these centralizers can be deduced from [10]. Using this source, Rubenthaler carries out this process to classify the admissible dual pairs in the classical simple Lie algebras (see [15, Sections 6.3–6.7]) and in the exceptional Lie algebras (see [15, Sections 6.8–6.12]). These dual pairs will be included later on in the paper (see Section 6 for the classical simple Lie algebras and Section 9 for the exceptional Lie algebras).

6. Some of the dual pairs in the classical simple Lie algebras

Using what we have done so far, we can classify all of the dual pairs in simple Lie algebras coming from maximal regular subalgebras of maximal rank or having an admissible factor (which includes all SS-irreducible dual pairs for algebras of types other than DnD_{n}).

Recall that the dual pairs coming from maximal regular subalgebras of maximal rank are summarized in Table 3. In this section, we follow Rubenthaler in classifying the admissible dual pairs in the classical simple Lie algebras. Additionally, we explicitly write out these dual pairs (including index and β€œprimes”) for the classical simple Lie algebras up to rank 6. These explicit dual pairs will be useful later on for our classification of dual pairs in the exceptional Lie algebras. Note that in the below tables and in what follows, whenever we encounter subalgebras of types B1B_{1}, C1C_{1}, D1D_{1}, C2C_{2}, or D3D_{3}, we will instead write A1A_{1}, B2B_{2}, or A3A_{3} so as to make these table entries more easily findable in Appendices A and B.

While we follow Rubenthaler’s classification approach in this section for notational consistency, it is worth noting that the dual pairs in the classical simple Lie algebras can also be understood more comprehensively using elementary methods. See [6] for more details.

6.1. Type AnA_{n}

Recall that the complex Lie algebra of type AnA_{n} has no maximal-rank regular subalgebras. As we will soon see from Theorem 28, this means that all semisimple dual pairs in AnA_{n} are SS-irreducible. By Theorem 27, any such dual pair has at least one factor that is an admissible subalgebra of AnA_{n}. Moreover, it turns out that all admissible subalgebras of AnA_{n} are SS-irreducible. Consequently, we obtain exactly the dual pairs outlined below (with the first factor having the following admissible diagram), where n=(k+1)​pβˆ’1n=(k+1)p-1, kβ‰₯1k\geq 1, nβ‰₯1n\geq 1, and pβ‰₯2p\geq 2:

Ξ±1\alpha_{1}…\ldotsΞ±p\alpha_{p}…\ldotsΞ±2​p\alpha_{2p}…\ldots…\ldots…\ldotsΞ±k​p\alpha_{kp}…\ldotsΞ±n\alpha_{n}
  • β€’

    SS-irreducible:

    • –

      (Ak,Apβˆ’1)(A_{k},A_{p-1})

The index of these subalgebras can be computed by hand or can be found in [13, Table XII] for n≀6n\leq 6. Putting this all together, we get that the following is a complete list of dual pairs in AnA_{n} (for 3≀n≀63\leq n\leq 6).

Rank Dual Pair Rank Dual Pair Rank Dual Pair Rank Dual Pair
3 (A12,A12)(A_{1}^{2},A_{1}^{2}) 4 N/A 5 (A13,A22)(A_{1}^{3},A_{2}^{2}) 6 N/A
Table 4. A complete list of semisimple dual pairs in AnA_{n} (for 3≀n≀63\leq n\leq 6).

6.2. Type BnB_{n}

Recall that the complex Lie algebra of type BnB_{n} has (A1,A1βŠ•Bnβˆ’2)(A_{1},A_{1}\oplus B_{n-2}) and (Bnβˆ’k,Dk)(B_{n-k},D_{k}) (k=2,3,…,nk=2,3,\ldots,n) as dual pairs arising from maximal regular subalgebras of maximal rank (see Table 3). By Theorem 27, any SS-irreducible dual pair in BnB_{n} has at least one factor that is an admissible subalgebra of BnB_{n}. Additionally, it turns out that some of the non-SS-irreducible dual pairs in BnB_{n} have a factor that is an admissible subalgebra of BnB_{n}. In particular, as we will see below, the Bnβˆ’kB_{n-k} factor of the dual pairs (Bnβˆ’k,Dk)(B_{n-k},D_{k}) (k=2,3,…,nk=2,3,\ldots,n) is an admissible subalgebra of BnB_{n}. In total, for type BnB_{n} (with nβ‰₯4n\geq 4), the admissible dual pairs are outlined below (with the first factor having the following admissible diagram), where nβ‰₯k​pn\geq kp, (2​k+1)​p≀2​n+1(2k+1)p\leq 2n+1, pβ‰₯1p\geq 1, and pβ‰ 2p\neq 2:

Ξ±1\alpha_{1}…\ldotsΞ±p\alpha_{p}…\ldotsΞ±2​p\alpha_{2p}…\ldots…\ldots…\ldotsΞ±k​p\alpha_{kp}…\ldotsΞ±n\alpha_{n}
  • β€’

    SS-irreducible:

    1. (a)

      (Bk,Bβ„“)(B_{k},B_{\ell}): p=2​ℓ+1p=2\ell+1; k,β„“β‰₯1k,\ell\geq 1; 2​k​ℓ+k+β„“=n2k\ell+k+\ell=n.

  • β€’

    Non-SS-irreducible:

    1. (i)

      (Bk,Dβ„“βŠ•Bnβˆ’2​kβ€‹β„“βˆ’β„“)(B_{k},D_{\ell}\oplus B_{n-2k\ell-\ell}): p=2​ℓp=2\ell; kβ‰₯1k\geq 1; β„“β‰₯2\ell\geq 2; 2​k​ℓ+ℓ≀n2k\ell+\ell\leq n.

    2. (ii)

      (Bk,Bβ„“βŠ•Dnβˆ’2​kβ€‹β„“βˆ’kβˆ’β„“)(B_{k},B_{\ell}\oplus D_{n-2k\ell-k-\ell}): p=2​ℓ+1p=2\ell+1; kβ‰₯1k\geq 1; β„“β‰₯0\ell\geq 0; 2​k​ℓ+k+β„“+1<n2k\ell+k+\ell+1<n.

The index of these subalgebras can be computed by hand or can be found in [13, Table XII] for n≀6n\leq 6. Putting this all together, we get the following partial list of dual pairs in BnB_{n} (for 2≀n≀62\leq n\leq 6), including all SS-irreducible dual pairs and all dual pairs coming from maximal regular subalgebras of maximal rank.

Rank Dual Pair Rank Dual Pair Rank Dual Pair Rank Dual Pair
2 (A1,A1)(A_{1},A_{1}) 4 (A1,A1βŠ•B21β€²β€²)(A_{1},A_{1}\oplus B_{2}^{1^{\prime\prime}}) 5 (A1,A1βŠ•B3)(A_{1},A_{1}\oplus B_{3}) 6 (A1,A1βŠ•B4)(A_{1},A_{1}\oplus B_{4})
3 (A1~,2​A1)(\widetilde{A_{1}},2A_{1}) 4(ii) (A12β€²β€²,A31β€²β€²)(A_{1}^{2^{\prime\prime}},A_{3}^{1^{\prime\prime}}) 5(ii) (A12β€²β€²,D4)(A_{1}^{2^{\prime\prime}},D_{4}) 6(i) (A18,2​A13β€²)(A_{1}^{8},2A_{1}^{3^{\prime}})
3 (A1,A1βŠ•A1~)(A_{1},A_{1}\oplus\widetilde{A_{1}}) 4(ii) (B21β€²β€²,2​A1)(B_{2}^{1^{\prime\prime}},2A_{1}) 5(ii) (B21β€²β€²,A31β€²β€²)(B_{2}^{1^{\prime\prime}},A_{3}^{1^{\prime\prime}}) 6(ii) (A12β€²β€²,D5)(A_{1}^{2^{\prime\prime}},D_{5})
4(a) (A16,A16)(A_{1}^{6},A_{1}^{6}) 5(ii) (B3,2​A1)(B_{3},2A_{1}) 6(ii) (B21β€²β€²,D4)(B_{2}^{1^{\prime\prime}},D_{4})
6(ii) (B3,A31β€²β€²)(B_{3},A_{3}^{1^{\prime\prime}})
6(ii) (B4,2​A1)(B_{4},2A_{1})
6(ii) (A16,A16βŠ•2​A1)(A_{1}^{6},A_{1}^{6}\oplus 2A_{1})
Table 5. A partial list of dual pairs in BnB_{n} (for 2≀n≀62\leq n\leq 6).

To find the remaining non-SS-irreducible dual pairs, one can carry out the process described in Section 7.

6.3. Type CnC_{n}

Recall that the complex Lie algebra of type CnC_{n} has (Ck,Cnβˆ’k)(C_{k},C_{n-k}) (k=1,2,…,nβˆ’1k=1,2,\ldots,n-1) as dual pairs arising from maximal regular subalgebras (see Table 3). By Theorem 27, any SS-irreducible dual pair in CnC_{n} has at least one factor that is an admissible subalgebra of CnC_{n}. Additionally, it turns out that some of the non-SS-irreducible dual pairs in CnC_{n} have a factor that is an admissible subalgebra of CnC_{n}. For type CnC_{n} (with nβ‰₯3n\geq 3), the admissible dual pairs arise from two different admissible diagrams, as outlined below.

Type 1: We require that p=2​ℓp=2\ell and that (2​k+1)​ℓ≀n(2k+1)\ell\leq n.

Ξ±1\alpha_{1}…\ldotsΞ±p\alpha_{p}…\ldotsΞ±2​p\alpha_{2p}…\ldots…\ldots…\ldotsΞ±k​p\alpha_{kp}…\ldotsΞ±n\alpha_{n}
  • β€’

    SS-irreducible:

    1. (a)

      (Bk,Cβ„“)(B_{k},C_{\ell}): k,β„“β‰₯1k,\ell\geq 1; (2​k+1)​ℓ=n(2k+1)\ell=n.

  • β€’

    Non-SS-irreducible:

    1. (i)

      (Bk,Cβ„“βŠ•Cnβˆ’2​kβ€‹β„“βˆ’β„“)(B_{k},C_{\ell}\oplus C_{n-2k\ell-\ell}): kβ‰₯1k\geq 1; β„“β‰₯1\ell\geq 1; (2​k+1)​ℓ<n(2k+1)\ell<n.

Type 2: We require that n=(k+1)​pn=(k+1)p, kβ‰₯0k\geq 0, and pβ‰₯1p\geq 1.

Ξ±1\alpha_{1}…\ldotsΞ±p\alpha_{p}…\ldotsΞ±2​p\alpha_{2p}…\ldots…\ldots…\ldotsΞ±k​p\alpha_{kp}…\ldotsΞ±n\alpha_{n}
  • β€’

    SS-irreducible:

    1. (a)

      (Ck+1,Bβ„“)(C_{k+1},B_{\ell}): p=2​ℓ+1p=2\ell+1; kβ‰₯0k\geq 0; β„“β‰₯1\ell\geq 1.

    2. (b)

      (Ck+1,Dβ„“)(C_{k+1},D_{\ell}): p=2​ℓp=2\ell; kβ‰₯0k\geq 0; β„“β‰₯2\ell\geq 2.

The index of these subalgebras can be computed by hand or can be found in [13, Table XII] for n≀6n\leq 6.

Putting this all together, we get the following partial list of dual pairs in CnC_{n} (for 3≀n≀63\leq n\leq 6), including all SS-irreducible dual pairs and all dual pairs coming from maximal regular subalgebras of maximal rank.

Rank Dual Pair Rank Dual Pair Rank Dual Pair Rank Dual Pair
3 (A1,B2)(A_{1},B_{2}) 4 (A1,C3)(A_{1},C_{3}) 5 (A1,C4)(A_{1},C_{4}) 6 (A1,C5)(A_{1},C_{5})
3(1a) (A18,A13)(A_{1}^{8},A_{1}^{3}) 4 (B2,B2)(B_{2},B_{2}) 5 (B2,C3)(B_{2},C_{3}) 6 (B2,C4)(B_{2},C_{4})
4(1i) (A18,A13βŠ•A1)(A_{1}^{8},A_{1}^{3}\oplus A_{1}) 5(1i) (A18,A13βŠ•B2)(A_{1}^{8},A_{1}^{3}\oplus B_{2}) 6 (C3,C3)(C_{3},C_{3})
4(2b) (A14,2​A14)(A_{1}^{4},2A_{1}^{4}) 5(1a) (B24,A15)(B_{2}^{4},A_{1}^{5}) 6(1i) (A18,A13βŠ•C3)(A_{1}^{8},A_{1}^{3}\oplus C_{3})
6(1i) (B24,A15βŠ•A1)(B_{2}^{4},A_{1}^{5}\oplus A_{1})
6(1a) (A116,B23)(A_{1}^{16},B_{2}^{3})
6(2b) (A16,A34)(A_{1}^{6},A_{3}^{4})
Table 6. A partial list of dual pairs in CnC_{n} (for 3≀n≀63\leq n\leq 6).

To find the remaining non-SS-irreducible dual pairs, one can carry out the process described in Section 7.

6.4. Type DnD_{n}

Recall that the complex Lie algebra of type DnD_{n} has (A1,A1βŠ•Dnβˆ’2)(A_{1},A_{1}\oplus D_{n-2}) and (Dk,Dnβˆ’k)(D_{k},D_{n-k}) (k=2,3,…,nβˆ’2k=2,3,\ldots,n-2) as dual pairs arising from maximal regular subalgebras (see Table 3). For type DnD_{n}, Theorem 27 suggests that there are certain SS-irreducible dual pairs in DnD_{n} that do not have admissible factors. In particular, DnD_{n} has SS-irreducible dual pairs of type (Dk,Dβ„“)(D_{k},D_{\ell}), where n=2​k​ℓn=2k\ell and k,β„“β‰₯2k,\ell\geq 2 [15, Theorem 7.3.2]. Additionally, DnD_{n} has SS-irreducible dual pairs of type (Bp1βŠ•Bq1,Bp2βŠ•Bq2)(B_{p_{1}}\oplus B_{q_{1}},B_{p_{2}}\oplus B_{q_{2}}), where (Bp1,Bp2)(B_{p_{1}},B_{p_{2}}) is an SS-irreducible dual pair in BpB_{p} (with 2​p+1=(2​p1+1)​(2​p2+1)2p+1=(2p_{1}+1)(2p_{2}+1)), where (Bq1,Bq2)(B_{q_{1}},B_{q_{2}}) is an SS-irreducible dual pair in BqB_{q} (with 2​q+1=(2​q1+1)​(2​q2+1)2q+1=(2q_{1}+1)(2q_{2}+1)), and where n=p+q+1n=p+q+1 [15, Proposition 7.3.3]. However, note that neither of these types of dual pairs appear for n≀6n\leq 6.

For all other SS-irreducible dual pairs in DnD_{n}, Theorem 27 implies that at least one factor of the pair is an admissible subalgebra of DnD_{n}. Additionally, it turns out that some of the non-SS-irreducible dual pairs in DnD_{n} have a factor that is an admissible subalgebra of DnD_{n}. For type DnD_{n} (with nβ‰₯4n\geq 4), the admissible dual pairs arise from two different admissible diagrams, as outlined below.

Type 1: We require that nβ‰₯k​p+2n\geq kp+2 and that (2​k+1)​p≀2​n(2k+1)p\leq 2n.

Ξ±1\alpha_{1}…\ldotsΞ±p\alpha_{p}…\ldotsΞ±2​p\alpha_{2p}…\ldots…\ldots…\ldotsΞ±k​p\alpha_{kp}…\ldots
  • β€’

    SS-irreducible:

    1. (a)

      (Bk,Dβ„“)(B_{k},D_{\ell}): p=2​ℓp=2\ell; kβ‰₯1k\geq 1; β„“β‰₯2\ell\geq 2; (2​k+1)​ℓ=n(2k+1)\ell=n.

    2. (b)

      (Bk,Bβ„“βŠ•Bnβˆ’2​kβ€‹β„“βˆ’kβˆ’β„“βˆ’1)(B_{k},B_{\ell}\oplus B_{n-2k\ell-k-\ell-1}): p=2​ℓ+1p=2\ell+1; kβ‰₯1k\geq 1; β„“β‰₯0\ell\geq 0; 2​k​ℓ+k+β„“<n2k\ell+k+\ell<n.

  • β€’

    Non-SS-irreducible:

    1. (i)

      (Bk,Dβ„“βŠ•Dnβˆ’2​kβ€‹β„“βˆ’β„“)(B_{k},D_{\ell}\oplus D_{n-2k\ell-\ell}): p=2​ℓp=2\ell; kβ‰₯1k\geq 1; β„“β‰₯3\ell\geq 3; (2​k+1)​ℓ+1<n(2k+1)\ell+1<n.

Type 2: We require that n=(k+1)​pn=(k+1)p and that p=2​ℓp=2\ell.

Ξ±1\alpha_{1}…\ldotsΞ±p\alpha_{p}…\ldotsΞ±2​p\alpha_{2p}…\ldots…\ldots…\ldotsΞ±k​p\alpha_{kp}…\ldots
  • β€’

    SS-irreducible:

    1. (a)

      (Ck+1,Cβ„“)(C_{k+1},C_{\ell}): kβ‰₯0k\geq 0; β„“β‰₯1\ell\geq 1.

The index of these subalgebras can be computed by hand or can be found in [13, Table XII] for n≀6n\leq 6.

Putting this all together, we get the following partial list of dual pairs in DnD_{n} (for 4≀n≀64\leq n\leq 6), including all SS-irreducible dual pairs and all dual pairs coming from maximal regular subalgebras of maximal rank.

Rank Dual Pair Rank Dual Pair Rank Dual Pair
4 (A1,3​A1)(A_{1},3A_{1}) 5 (A1,A1βŠ•A3β€²β€²)(A_{1},A_{1}\oplus A_{3}^{{}^{\prime\prime}}) 6 (A1,A1βŠ•D4)(A_{1},A_{1}\oplus D_{4})
4 (2​A1,2​A1)(2A_{1},2A_{1}) 5 (2​A1,A3β€²β€²)(2A_{1},A_{3}^{{}^{\prime\prime}}) 6 (2​A1,D4)(2A_{1},D_{4})
4(1b) (A12β€²,B21β€²)(A_{1}^{2^{\prime}},B_{2}^{1^{\prime}}) 5(1b) (A12β€²β€²,B31)(A_{1}^{2^{\prime\prime}},B_{3}^{1}) 6 (A3β€²β€²,A3β€²β€²)(A_{3}^{{}^{\prime\prime}},A_{3}^{{}^{\prime\prime}})
4(1b) (A12β€²β€²,B21β€²β€²)(A_{1}^{2^{\prime\prime}},B_{2}^{1^{\prime\prime}}) 5(1b) (B21β€²β€²,B21β€²β€²)(B_{2}^{1^{\prime\prime}},B_{2}^{1^{\prime\prime}}) 6(1a) (A18,A13β€²βŠ•A13β€²β€²)(A_{1}^{8},A_{1}^{3^{\prime}}\oplus A_{1}^{3^{\prime\prime}})
4(1b) (A12β€²β€²β€²,B21β€²β€²β€²)(A_{1}^{2^{\prime\prime\prime}},B_{2}^{1^{\prime\prime\prime}}) 5(1b) (A16,A16)(A_{1}^{6},A_{1}^{6}) 6(1b) (A12β€²β€²,B41)(A_{1}^{2^{\prime\prime}},B_{4}^{1})
6(1b) (B21β€²β€²,B31)(B_{2}^{1^{\prime\prime}},B_{3}^{1})
6(1b) (A16,A16βŠ•A12β€²β€²)(A_{1}^{6},A_{1}^{6}\oplus A_{1}^{2^{\prime\prime}})
6(2a) (A13β€²,C31β€²β€²)(A_{1}^{3^{\prime}},C_{3}^{1^{\prime\prime}})
6(2a) (A13β€²β€²,C31β€²)(A_{1}^{3^{\prime\prime}},C_{3}^{1^{\prime}})
Table 7. A partial list of dual pairs in DnD_{n} (for 4≀n≀64\leq n\leq 6).

To find the remaining non-SS-irreducible dual pairs, one can carry out the process described in Section 7.

7. Non-SS-irreducible dual pairs

So far, we have established how to classify dual pairs coming from maximal regular subalgebras of maximal rank (see Table 3) and how to classify all dual pairs with an admissible factor (see Section 5). In this section, we discuss how to classify the remaining non-SS-irreducible dual pairs.

Theorem 28 ([15, Theorem 5.12]).

Let (π”ž,π”Ÿ)(\mathfrak{a},\mathfrak{b}) be a semisimple non-SS-irreducible dual pair in a semisimple 𝔀\mathfrak{g}. Then there exists a maximal-rank regular semisimple subalgebra 𝔲\mathfrak{u} in 𝔀\mathfrak{g} such that π”žβŠ•π”ŸβŠ‚π”²βŠ‚π”€\mathfrak{a}\oplus\mathfrak{b}\subset\mathfrak{u}\subset\mathfrak{g} and such that π”žβŠ•π”Ÿ\mathfrak{a}\oplus\mathfrak{b} is an SS-subalgebra of 𝔲\mathfrak{u}.

Note that the subalgebra 𝔲\mathfrak{u} in this theorem is maximal-rank and regular but need not be maximal regular. This theorem shows that to find all of the non-SS-irreducible dual pairs in a simple Lie algebra 𝔀\mathfrak{g}, one can carry out the following process:

  1. (1)

    Write down all of the maximal-rank regular subalgebras of 𝔀\mathfrak{g} (found in Table 1).

  2. (2)

    For each maximal-rank regular subalgebra 𝔲\mathfrak{u} of 𝔀\mathfrak{g}, find all SS-subalgebras π”žβŠ•π”Ÿ\mathfrak{a}\oplus\mathfrak{b} of 𝔲\mathfrak{u}.

  3. (3)

    For each pair (π”ž,π”Ÿ)(\mathfrak{a},\mathfrak{b}) from step 2, determine whether (π”ž,π”Ÿ)(\mathfrak{a},\mathfrak{b}) is a dual pair in 𝔀\mathfrak{g}.

Using Table 3, step 1 is straightforward. For step 2, the SS-subalgebras of 𝔲\mathfrak{u} can be found in Figure 3 or 4 if 𝔲\mathfrak{u} is a classical simple Lie algebra of rank at most 6 and can be found in Figure 5 if 𝔲\mathfrak{u} is an exceptional Lie algebra. This information (together with the following lemma) can be used to find the SS-subalgebras of the semisimple Lie algebras 𝔲\mathfrak{u} we will consider.

Lemma 29.

Let 𝔲1\mathfrak{u}_{1} and 𝔲2\mathfrak{u}_{2} be complex semisimple Lie algebras.

  1. (a)

    Let s1s_{1} (resp.Β s2s_{2}) be an SS-subalgebra of 𝔲1\mathfrak{u}_{1} (resp. 𝔲2\mathfrak{u}_{2}). Then s1βŠ•s2s_{1}\oplus s_{2} is an SS-subalgebra of 𝔲1βŠ•π”²2\mathfrak{u}_{1}\oplus\mathfrak{u}_{2}.

  2. (b)

    Let s1βŠ•s2s_{1}\oplus s_{2} be an SS-subalgebra of 𝔲1βŠ•π”²2\mathfrak{u}_{1}\oplus\mathfrak{u}_{2}. Then s1s_{1} is an SS-subalgebra of 𝔲1\mathfrak{u}_{1} and s2s_{2} is an SS-subalgebra of 𝔲2\mathfrak{u}_{2}.

Proof of (a).

Suppose, for the sake of contradiction, that s1βŠ•s2s_{1}\oplus s_{2} is contained in some proper regular subalgebra r1βŠ•r2r_{1}\oplus r_{2} of 𝔲1βŠ•π”²2\mathfrak{u}_{1}\oplus\mathfrak{u}_{2}. Then there exists a Cartan subalgebra π”₯1βŠ•π”₯2\mathfrak{h}_{1}\oplus\mathfrak{h}_{2} of 𝔲1βŠ•π”²2\mathfrak{u}_{1}\oplus\mathfrak{u}_{2} such that

[π”₯1βŠ•π”₯2,r1βŠ•r2]=[π”₯1,r1]βŠ•[π”₯2,r2]βŠ‚r1βŠ•r2.[\mathfrak{h}_{1}\oplus\mathfrak{h}_{2},r_{1}\oplus r_{2}]=[\mathfrak{h}_{1},r_{1}]\oplus[\mathfrak{h}_{2},r_{2}]\subset r_{1}\oplus r_{2}.

It is not hard to see that π”₯1\mathfrak{h}_{1} and π”₯2\mathfrak{h}_{2} are Cartan subalgebras of 𝔲1\mathfrak{u}_{1} and 𝔲2\mathfrak{u}_{2}, respectively, and hence that r1r_{1} and r2r_{2} are regular subalgebras of 𝔲1\mathfrak{u}_{1} and 𝔲2\mathfrak{u}_{2} containing s1s_{1} and s2s_{2}, respectively. Moreover, since r1βŠ•r2r_{1}\oplus r_{2} is proper in 𝔲1βŠ•π”²2\mathfrak{u}_{1}\oplus\mathfrak{u}_{2}, at least one of r1r_{1} and r2r_{2} has to be proper. This then gives a contradiction, proving that s1βŠ•s2s_{1}\oplus s_{2} is an SS-subalgebra of 𝔲1βŠ•π”²2\mathfrak{u}_{1}\oplus\mathfrak{u}_{2}. ∎

Proof of (b).

Suppose, for the sake of contradiction, that s1s_{1} is contained in a proper regular subalgebra r1r_{1} of 𝔲1\mathfrak{u}_{1}. Then r1βŠ•π”²2r_{1}\oplus\mathfrak{u}_{2} is clearly a proper regular subalgebra of 𝔲1βŠ•π”²2\mathfrak{u}_{1}\oplus\mathfrak{u}_{2} containing s1βŠ•s2s_{1}\oplus s_{2}, a contradiction. Repeating this argument with the roles of 𝔲1\mathfrak{u}_{1} and 𝔲2\mathfrak{u}_{2} reversed, we again obtain a contradiction. ∎

For step 3, we first need to view the SS-subalgebras of 𝔲\mathfrak{u} as subalgebras of 𝔀\mathfrak{g}. For a simple SS-subalgebra π”ž\mathfrak{a} of a simple factor of 𝔲\mathfrak{u}, we can apply the formula iπ”žβ†ͺ𝔀=iπ”žβ†ͺ𝔲⋅i𝔲β†ͺ𝔀i_{\mathfrak{a}\hookrightarrow\mathfrak{g}}=i_{\mathfrak{a}\hookrightarrow\mathfrak{u}}\cdot i_{\mathfrak{u}\hookrightarrow\mathfrak{g}} to find the index of π”ž\mathfrak{a} in 𝔀\mathfrak{g}. Note that since the simple factors of 𝔲\mathfrak{u} will almost always have index 1 in 𝔀\mathfrak{g} (see Remark 11), we will usually have that iπ”žβ†ͺ𝔲=iπ”žβ†ͺ𝔀i_{\mathfrak{a}\hookrightarrow\mathfrak{u}}=i_{\mathfrak{a}\hookrightarrow\mathfrak{g}}. While the value of iπ”žβ†ͺ𝔀i_{\mathfrak{a}\hookrightarrow\mathfrak{g}} is easy to find, it can often be more challenging to figure out the conjugacy class of π”ž\mathfrak{a} in situations where the conjugacy class is not uniquely determined by the type and index of π”ž\mathfrak{a}. This challenge will be addressed in several of the examples in the following section. Finally, the remainder of step 3 (i.e.Β determining whether a candidate dual pair is actually a dual pair) is even more invovled. The next section is primarily dedicated to discussing different methods for confirming and eliminating these candidate dual pairs for the exceptional Lie algebras.

8. Eliminating and confirming candidate dual pairs

8.1. Straightforward eliminations

Perhaps the most straightforward approach for ruling out a candidate dual pair (π”ž,π”Ÿ)(\mathfrak{a},\mathfrak{b}) in 𝔀\mathfrak{g} is to show that 𝔷𝔀​(π”ž)βŠ‹π”Ÿ\mathfrak{z}_{\mathfrak{g}}(\mathfrak{a})\supsetneq\mathfrak{b} using information about subalgebras and dual pairs that have already been confirmed. For example, whenever π”žβŠ•π”žβ€²\mathfrak{a}\oplus\mathfrak{a}^{\prime} is a subalgebra of 𝔀\mathfrak{g} with π”žβ€²βŠ‹π”Ÿ\mathfrak{a}^{\prime}\supsetneq\mathfrak{b}, this gives that

𝔷𝔀​(π”ž)βŠ‡π”žβ€²βŠ‹π”Ÿ,\mathfrak{z}_{\mathfrak{g}}(\mathfrak{a})\supseteq\mathfrak{a}^{\prime}\supsetneq\mathfrak{b},

so we can conclude that (π”ž,π”Ÿ)(\mathfrak{a},\mathfrak{b}) is not a dual pair in 𝔀\mathfrak{g}.

Similarly, suppose that (π”ž,π”Ÿ)(\mathfrak{a},\mathfrak{b}) is a dual pair in 𝔀\mathfrak{g} and that π”Ÿ1βŠ•π”Ÿ2\mathfrak{b}_{1}\oplus\mathfrak{b}_{2} is a subalgebra of π”Ÿ\mathfrak{b}. This situation often leads to a candidate dual pair in 𝔀\mathfrak{g} of the form (π”žβŠ•π”Ÿ1,π”Ÿ2)(\mathfrak{a}\oplus\mathfrak{b}_{1},\mathfrak{b}_{2}) (e.g.Β when π”žβŠ•π”Ÿ\mathfrak{a}\oplus\mathfrak{b} is regular of maximal rank in 𝔀\mathfrak{g} and π”Ÿ1βŠ•π”Ÿ2\mathfrak{b}_{1}\oplus\mathfrak{b}_{2} is an SS-subalgebra of π”Ÿ\mathfrak{b}). Since (π”ž,π”Ÿ)(\mathfrak{a},\mathfrak{b}) is a dual pair in 𝔀\mathfrak{g}, we have that

𝔷𝔀​(π”žβŠ•π”Ÿ1)=π”·π”Ÿβ€‹(π”Ÿ1)\mathfrak{z}_{\mathfrak{g}}(\mathfrak{a}\oplus\mathfrak{b}_{1})=\mathfrak{z}_{\mathfrak{b}}(\mathfrak{b}_{1})

and that

𝔷𝔀​(π”Ÿ2)βŠ‡π”·π”žβŠ•π”Ÿβ€‹(π”Ÿ2)=π”žβŠ•π”·π”Ÿβ€‹(π”Ÿ2).\mathfrak{z}_{\mathfrak{g}}(\mathfrak{b}_{2})\supseteq\mathfrak{z}_{\mathfrak{a}\oplus\mathfrak{b}}(\mathfrak{b}_{2})=\mathfrak{a}\oplus\mathfrak{z}_{\mathfrak{b}}(\mathfrak{b}_{2}).

In this way, we see that for (π”žβŠ•π”Ÿ1,π”Ÿ2)(\mathfrak{a}\oplus\mathfrak{b}_{1},\mathfrak{b}_{2}) to be a dual pair in 𝔀\mathfrak{g}, it is necessary that (π”Ÿ1,π”Ÿ2)(\mathfrak{b}_{1},\mathfrak{b}_{2}) is a dual pair in π”Ÿ\mathfrak{b}. (Note, however, that this condition is not enough to guarantee that (π”žβŠ•π”Ÿ1,π”Ÿ2)(\mathfrak{a}\oplus\mathfrak{b}_{1},\mathfrak{b}_{2}) is a dual pair in 𝔀\mathfrak{g}.) This idea is demonstrated in the following example:

Example 30 ((A12βŠ•3​A1,B21)(A_{1}^{2}\oplus 3A_{1},B_{2}^{1}) is not a dual pair in E7E_{7}).

Since (B21β€²β€²,B31)(B_{2}^{1^{\prime\prime}},B_{3}^{1}) is an SS-irreducible dual pair in D6D_{6}, we have that B21βŠ•B31βŠ•A1B_{2}^{1}\oplus B_{3}^{1}\oplus A_{1} is an SS-subalgebra of E7E_{7}, and hence that

𝔷E7​(B21)βŠ‡B31βŠ•A1βŠ‹A12βŠ•3​A1.\mathfrak{z}_{E_{7}}(B_{2}^{1})\supseteq B_{3}^{1}\oplus A_{1}\supsetneq A_{1}^{2}\oplus 3A_{1}.

Therefore, (A12βŠ•3​A1,B21)(A_{1}^{2}\oplus 3A_{1},B_{2}^{1}) is not a dual pair in E7E_{7}.

8.2. Eliminating and confirming using Dynkin’s and Carter’s tables

To augment our strategy of using information about known dual pairs to make straightforward eliminations of candidate dual pairs, we can reference [5, Table 25] and the tables in [4, pp.Β 401–405]. The tables in [4, pp.Β 401–405] indicate the type of the centralizer of each 3-dimensional subalgebra of the exceptional Lie algebras, and [5, Table 25] lists all of the conjugacy classes of subalgebras of the exceptional Lie algebras.

Example 31 ((A3,A1~)(A_{3},\widetilde{A_{1}}) is a dual pair in F4F_{4}).

Recall that A3βŠ•A1~A_{3}\oplus\widetilde{A_{1}} is a maximal-rank regular subalgebra in F4F_{4}, but not a maximal regular subalgebra. Therefore, (A3,A1~)(A_{3},\widetilde{A_{1}}) is a candidate dual pair in F4F_{4}, but Proposition 15 does not apply. Fortunately, by [4, p.Β 401], we have that the centralizer of A1~\widetilde{A_{1}} in F4F_{4} has type A3A_{3}. Moreover, by [5, Table 25], there is a unique (up to conjugation) subalgebra of type A3A_{3} in F4F_{4}, and it has index 1. On the other hand, the centralizer of A3A_{3} in F4F_{4} clearly contains A1~\widetilde{A_{1}} and has rank at most 1, so we can conclude that 𝔷F4​(A3)=A1~\mathfrak{z}_{F_{4}}(A_{3})=\widetilde{A_{1}}. It follows that (A3,A1~)(A_{3},\widetilde{A_{1}}) is a dual pair in F4F_{4}.

Example 32 ((A1~,B21)(\widetilde{A_{1}},B_{2}^{1}) and (A1~,2​A1~)(\widetilde{A_{1}},2\widetilde{A_{1}}) are not dual pairs in F4F_{4}).

Recall that (A12β€²β€²,B21β€²β€²)(A_{1}^{2^{\prime\prime}},B_{2}^{1^{\prime\prime}}) is an SS-irreducible dual pair in D4D_{4} (see Table 7). Since D4D_{4} is a maximal-rank regular subalgebra of index 1 in F4F_{4}, (A12,B21)(A_{1}^{2},B_{2}^{1}) is a candidate dual pair in F4F_{4}. However, by [5, Table 20], there is a unique (up to conjugation) subalgebra of type A1A_{1} and index 2 in F4F_{4} (namely, A1~\widetilde{A_{1}}). Since we already know that the centralizer of A1~\widetilde{A_{1}} in F4F_{4} is A3A_{3} (by [4, p.Β 401] or Example 31), it follows that (A12,B21)=(A1~,B21)(A_{1}^{2},B_{2}^{1})=(\widetilde{A_{1}},B_{2}^{1}) is not a dual pair in F4F_{4}. Similarly, (A12,2​A12)=(A1~,2​A1~)(A_{1}^{2},2A_{1}^{2})=(\widetilde{A_{1}},2\widetilde{A_{1}}) is not a dual pair in F4F_{4}.

8.3. Eliminating and confirming using dimension of the centralizer

Let 𝔀\mathfrak{g} be a complex simple Lie algebra, and let 𝔀~\widetilde{\mathfrak{g}} be a semisimple subalgebra of 𝔀\mathfrak{g}. The representation which is induced on 𝔀~\widetilde{\mathfrak{g}} by the adjoint representation of 𝔀\mathfrak{g} splits into two components: one component acts on 𝔀~\widetilde{\mathfrak{g}} and can be thought of as the adjoint representation of 𝔀~\widetilde{\mathfrak{g}}; the complementary component, called the characteristic representation of 𝔀~\widetilde{\mathfrak{g}}, is denoted by χ𝔀~\chi_{\widetilde{\mathfrak{g}}} [5, No.Β 6].

Lemma 33.

Let MM denote the number of copies of the trivial representation in χ𝔀~\chi_{\widetilde{\mathfrak{g}}}. Then

M=dim𝔷𝔀​(𝔀~).M=\dim\mathfrak{z}_{\mathfrak{g}}(\widetilde{\mathfrak{g}}).
Proof.

Let GG be the simply connected Lie group associated to 𝔀\mathfrak{g}, and let G~βŠ‚G\widetilde{G}\subset G be the simply connected Lie group associated to 𝔀~\widetilde{\mathfrak{g}}. We have that

ResG~G⁑(AdG)=AdG~βŠ•Ο‡G~,\operatorname{Res}^{G}_{\widetilde{G}}(\text{Ad}_{G})=\text{Ad}_{\widetilde{G}}\oplus\chi_{\widetilde{G}},

where AdG:Gβ†’Aut​(𝔀)\text{Ad}_{G}:G\rightarrow\text{Aut}(\mathfrak{g}) is the adjoint representation of GG, where AdG~:G~β†’Aut​(𝔀~)\text{Ad}_{\widetilde{G}}:\widetilde{G}\rightarrow\text{Aut}(\widetilde{\mathfrak{g}}) is the adjoint representation of G~\widetilde{G}, and where Ο‡G~:G~β†’Aut​(𝔀/𝔀~)\chi_{\widetilde{G}}:\widetilde{G}\rightarrow\text{Aut}(\mathfrak{g}/\widetilde{\mathfrak{g}}) is the resulting complementary component. Noting that χ𝔀~=d​χG~\chi_{\widetilde{\mathfrak{g}}}=d\chi_{\widetilde{G}}, we see that the number of copies of the trivial representation in χ𝔀~\chi_{\widetilde{\mathfrak{g}}} equals the number of copies of the trivial representation in Ο‡G~\chi_{\widetilde{G}}.

The set of copies of the trivial representation in Ο‡G~\chi_{\widetilde{G}} correspond to a set of linearly independent vectors, each of which is fixed by all of Ο‡G~​(G~)\chi_{\widetilde{G}}(\widetilde{G}). Indeed, any vector that is fixed by all of Ο‡G~​(G~)\chi_{\widetilde{G}}(\widetilde{G}) spans a one-dimensional subrepresentation, which is necessarily the trivial representation. Moreover, we note that each such fixed vector corresponds to an element of 𝔷𝔀​(𝔀~)\mathfrak{z}_{\mathfrak{g}}(\widetilde{\mathfrak{g}}). Indeed, for Yβˆˆπ”€/𝔀~Y\in\mathfrak{g}/\widetilde{\mathfrak{g}}, we have that

eX​Y​eβˆ’X=Y​ for all ​Xβˆˆπ”€~⇔[X,Y]=0​ for all ​Xβˆˆπ”€~.e^{X}Ye^{-X}=Y\;\text{ for all }X\in\widetilde{\mathfrak{g}}\hskip 14.22636pt\iff\hskip 14.22636pt[X,Y]=0\;\text{ for all }X\in\widetilde{\mathfrak{g}}.

Finally, since 𝔀~\widetilde{\mathfrak{g}} is semisimple, we have that 𝔀~βˆ©π”·π”€β€‹(𝔀~)=βˆ…\widetilde{\mathfrak{g}}\cap\mathfrak{z}_{\mathfrak{g}}(\widetilde{\mathfrak{g}})=\varnothing, so these elements of 𝔀/𝔀~\mathfrak{g}/\widetilde{\mathfrak{g}} span 𝔷𝔀​(𝔀~)\mathfrak{z}_{\mathfrak{g}}(\widetilde{\mathfrak{g}}). It follows that M=dim𝔷𝔀​(𝔀~)M=\dim\mathfrak{z}_{\mathfrak{g}}(\widetilde{\mathfrak{g}}), as desired. ∎

The decomposition of χ𝔀~\chi_{\widetilde{\mathfrak{g}}} into irreducibles is included in [5, Table 25] for subalgebras of the exceptional Lie algebras. The number MM in the previous lemma can be read off of this table as the coefficient of the trivial representation, which Dynkin denotes by NN. This gives us an easy way to look up the dimension of 𝔷𝔀​(𝔀~)\mathfrak{z}_{\mathfrak{g}}(\widetilde{\mathfrak{g}}) for such subalgebras, which in some cases allows us to confirm or eliminate candidate dual pairs.

Example 34 ((A23,A23)(A_{2}^{3},A_{2}^{3}) is not a dual pair in E8E_{8}).

By Subsection 6.1, there is an SS-irreducible dual pair in A8A_{8} where both factors have type A2A_{2} and index 3. By [5, Table 25], E8E_{8} has two non-conjugate subalgebras of type A2A_{2} and index 3 (i.e.Β A23β€²A_{2}^{3^{\prime}} and A23β€²β€²A_{2}^{3^{\prime\prime}}). However, by the same table, 𝔷E8​(A23β€²)\mathfrak{z}_{E_{8}}(A_{2}^{3^{\prime}}) has dimension 28 and 𝔷E8​(A23β€²β€²)\mathfrak{z}_{E_{8}}(A_{2}^{3^{\prime\prime}}) has dimension 14. Since dimA2=8\dim A_{2}=8, we therefore see that neither of these possibilities leads to a dual pair in E8E_{8}.

Example 35 ((B31,B41)(B_{3}^{1},B_{4}^{1}) is a dual pair in E8E_{8}).

By Subsection 6.4, there is an SS-irreducible dual pair in D8D_{8} where one factor has type B3B_{3} and index 1 and the other factor has type B4B_{4} and index 1. By [5, Table 25], these types and index values uniquely specify subalgebras of E8E_{8} (up to conjugation). By the same table, dim𝔷E8​(B31)=36=dimB4\dim\mathfrak{z}_{E_{8}}(B_{3}^{1})=36=\dim B_{4} and dim𝔷E8​(B41)=21=dimB3\dim\mathfrak{z}_{E_{8}}(B_{4}^{1})=21=\dim B_{3}. From this, it’s clear that (B31,B41)(B_{3}^{1},B_{4}^{1}) is a dual pair in E8E_{8}.

Example 36 ((A13,A22β€²β€²βŠ•A1)(A_{1}^{3},A_{2}^{2^{\prime\prime}}\oplus A_{1}) is a dual pair in E6E_{6}).

By Table 4, (A13,A22)(A_{1}^{3},A_{2}^{2}) is an SS-irreducible dual pair in A5A_{5}. Since A5βŠ•A1A_{5}\oplus A_{1} is a maximal regular subalgebra of maximal rank in E6E_{6}, (A5,A1)(A_{5},A_{1}) is a dual pair in E6E_{6} and there is a candidate dual pair in E6E_{6} with the following types and index values: (A13,A22βŠ•A1)(A_{1}^{3},A_{2}^{2}\oplus A_{1}). By [5, Table 25], there is a unique (up to conjugation) subalgebra of type A1A_{1} and index 3 in E6E_{6}, as well as a unique (up to conjugation) subalgebra of type A1A_{1} and index 1 in E6E_{6}; however, there are two conjugacy classes of subalgebras of type A2A_{2} and index 2. Fortunately, with Lemma 33, [5, Table 25], and some further investigation, we can determine which conjugacy class we are dealing with here.

To this end, consider the extended Dynkin diagram for E6E_{6}:

β–½\triangledownΞ±2\alpha_{2}Ξ±4\alpha_{4}Ξ±1\alpha_{1}Ξ±3\alpha_{3}Ξ±5\alpha_{5}Ξ±6\alpha_{6}

Crossing out the node corresponding to Ξ±2\alpha_{2}, we obtain the maximal regular subalgebra of type A5βŠ•A1A_{5}\oplus A_{1} in E6E_{6}. To understand A13A_{1}^{3} and this A22A_{2}^{2} as subalgebras of E6E_{6}, we can consider the following diagram (where the admissible diagram corresponding to A13A_{1}^{3} in A5A_{5} is indicated in blue):

β–½\triangledownΓ—\times

Realizing the A5A_{5} root system as in [3, Plate I], it is not hard to show that the defining vector for A13A_{1}^{3} is (1,1,1,βˆ’1,βˆ’1,βˆ’1)(1,1,1,-1,-1,-1). With this, we see that the centralizer of A13A_{1}^{3} in A5A_{5} has type A2A_{2} and is diagonally embedded in the subalgebra of type A2βŠ•A2A_{2}\oplus A_{2} coming from Ξ±1\alpha_{1}, Ξ±2\alpha_{2}, Ξ±5\alpha_{5}, and Ξ±6\alpha_{6} in E6E_{6}. In this way, we see that the centralizer of this A22A_{2}^{2} in E6E_{6} should contain A13A_{1}^{3} in addition to a subalgebra of type A2A_{2} coming from Ξ±2\alpha_{2} and Ξ±~\widetilde{\alpha} (since the nodes corresponding to Ξ±2\alpha_{2} and Ξ±~\widetilde{\alpha} are not adjacent to Ξ±1\alpha_{1}, Ξ±2\alpha_{2}, Ξ±5\alpha_{5}, or Ξ±6\alpha_{6}). Therefore, the dimension of the centralizer of this A22A_{2}^{2} is at least 11. Consulting [5, Table 25], we see that this subalgebra must therefore be A22β€²β€²A_{2}^{2^{\prime\prime}}.

Finally, [4, p.Β 402] gives that 𝔷E6​(A13)\mathfrak{z}_{E_{6}}(A_{1}^{3}) has type A2βŠ•A1A_{2}\oplus A_{1}, and

𝔷E6​(A22β€²β€²βŠ•A1)=𝔷A5​(A22)=A13,\mathfrak{z}_{E_{6}}(A_{2}^{2^{\prime\prime}}\oplus A_{1})=\mathfrak{z}_{A_{5}}(A_{2}^{2})=A_{1}^{3},

so we can conclude that (A13,A22β€²β€²βŠ•A1)(A_{1}^{3},A_{2}^{2^{\prime\prime}}\oplus A_{1}) is a dual pair in E6E_{6}.

8.4. Eliminating and confirming based on fixed vectors of χ𝔀~\chi_{\widetilde{\mathfrak{g}}}

While looking up the dimension of centralizers in [5, Table 25] (using Lemma 33) helps us confirm and eliminate many candidate dual pairs, there are a few cases in which we need to compute χ𝔀~\chi_{\widetilde{\mathfrak{g}}} more explicitly. For example, consider the candidate dual pair in E7E_{7} with types and index values (A22,A13βŠ•A2)(A_{2}^{2},A_{1}^{3}\oplus A_{2}) (to be explored in more detail in Example 38). By [5, Table 25], there are two conjugacy classes of subalgebras of type A2A_{2} and index 2 in E7E_{7}. Moreover, while we know that the centralizer of the A22A_{2}^{2} in question contains A13βŠ•A2A_{1}^{3}\oplus A_{2}, Lemma 33 and [5, Table 25] show that the centralizers of both A22β€²A_{2}^{2^{\prime}} and A22β€²β€²A_{2}^{2^{\prime\prime}} have dimension at least 11 (so we cannot conclude whether we’re working with A22β€²A_{2}^{2^{\prime}} or A22β€²β€²A_{2}^{2^{\prime\prime}} based on this information).

Remark 37.

In situations like the one just described, we can calculate χ𝔀~\chi_{\widetilde{\mathfrak{g}}} by hand to check for copies of the trivial representation in χ𝔀~\chi_{\widetilde{\mathfrak{g}}} and to determine the conjugacy class of 𝔀~\widetilde{\mathfrak{g}}.

Example 38 ((A22β€²,A13β€²β€²βŠ•A2)(A_{2}^{2^{\prime}},A_{1}^{3^{\prime\prime}}\oplus A_{2}) is a dual pair in E7E_{7}).

Consider once again the candidate dual pair in E7E_{7} with types and index values (A22,A13βŠ•A2)(A_{2}^{2},A_{1}^{3}\oplus A_{2}). To determine the conjugacy class of A13A_{1}^{3}, we can look at the embeddings A13βŠ‚A5β€²β€²βŠ‚E7A_{1}^{3}\subset A_{5}^{{}^{\prime\prime}}\subset E_{7}. To this end, consider the extended Dynkin diagram for E7E_{7}:

β–½\triangledownΞ±2\alpha_{2}Ξ±4\alpha_{4}Ξ±1\alpha_{1}Ξ±3\alpha_{3}Ξ±5\alpha_{5}Ξ±6\alpha_{6}Ξ±7\alpha_{7}

Crossing out the node corresponding to Ξ±3\alpha_{3}, we obtain the maximal regular subalgebra of type A2βŠ•A5β€²β€²A_{2}\oplus A_{5}^{{}^{\prime\prime}} in E7E_{7}. To understand this index-3 subalgebra of type A1A_{1}, we can consider the following diagram (where the admissible diagram corresponding to A13A_{1}^{3} in A5β€²β€²A_{5}^{{}^{\prime\prime}} is indicated in blue):

β–½\triangledownΓ—\times

We can realize the A5A_{5} root system as in [3, Plate I]. With this, it is not hard to show that this A13A_{1}^{3} has defining vector (1,1,1,βˆ’1,βˆ’1,βˆ’1)(1,1,1,-1,-1,-1). Putting this vector in dominant form, we see that this subalgebra has weighted diagram

0{0}0{0}0{0}0{0}0{0}2{2}0{0}

in E7E_{7}, meaning the subalgebra in question is A13β€²β€²A_{1}^{3^{\prime\prime}} [5, Table 19].

For A22A_{2}^{2}, it is a bit more difficult to figure out which conjugacy class we’re working with. However, the information about how this A22A_{2}^{2} sits inside of E7E_{7} allows us to determine the number of copies of the trivial representation in Ο‡A22\chi_{A_{2}^{2}} without knowing beforehand which conjugacy class this A22A_{2}^{2} belongs to. To this end, let 𝔰=A22βŠ•A13β€²β€²βŠ•A2\mathfrak{s}=A_{2}^{2}\oplus A_{1}^{3^{\prime\prime}}\oplus A_{2}, and let

S=S​U​(3,β„‚)Γ—S​U​(2,β„‚)Γ—S​U​(3,β„‚).S=SU(3,\mathbb{C})\times SU(2,\mathbb{C})\times SU(3,\mathbb{C}).

Note that by the same reasoning as in Lemma 33, ResA22𝔰⁑(χ𝔰)\operatorname{Res}^{\mathfrak{s}}_{A_{2}^{2}}(\chi_{\mathfrak{s}}) has no copies of the trivial representation if and only if ResS​U​(3,β„‚)S⁑(Ο‡S)\operatorname{Res}^{S}_{SU(3,\mathbb{C})}(\chi_{S}) has no fixed vectors if and only if 𝔷E7​(A22)=A13β€²β€²βŠ•A2\mathfrak{z}_{E_{7}}(A_{2}^{2})=A_{1}^{3^{\prime\prime}}\oplus A_{2}. We have that Ο‡S\chi_{S} acts on the space E7/(A22βŠ•A13β€²β€²βŠ•A2)E_{7}/(A_{2}^{2}\oplus A_{1}^{3^{\prime\prime}}\oplus A_{2}), and that

E7/(A22βŠ•A13β€²β€²βŠ•A2)≃[E7/(A5β€²β€²βŠ•A2)]βŠ•[A5β€²β€²/(A22βŠ•A13)].E_{7}/(A_{2}^{2}\oplus A_{1}^{3^{\prime\prime}}\oplus A_{2})\simeq[E_{7}/(A_{5}^{{}^{\prime\prime}}\oplus A_{2})]\oplus[A_{5}^{{}^{\prime\prime}}/(A_{2}^{2}\oplus A_{1}^{3})].

Now, since (A22,A13)(A_{2}^{2},A_{1}^{3}) is a dual pair in A5A_{5}, ResS​U​(3,β„‚)S⁑(Ο‡S)\operatorname{Res}^{S}_{SU(3,\mathbb{C})}(\chi_{S}) will not have any fixed vectors coming from A5β€²β€²/(A22βŠ•A13)A_{5}^{{}^{\prime\prime}}/(A_{2}^{2}\oplus A_{1}^{3}). The E7/(A5β€²β€²βŠ•A2)E_{7}/(A_{5}^{{}^{\prime\prime}}\oplus A_{2})-factor of Ο‡S\chi_{S} decomposes in terms of fundamental representations of S​U​(3,β„‚)SU(3,\mathbb{C}) and S​U​(2,β„‚)SU(2,\mathbb{C}) as follows:

[∧2(β„‚3βŠ—β„‚2)βŠ—β„‚3]βŠ•[(∧2(β„‚3βŠ—β„‚2))βˆ—βŠ—(β„‚3)βˆ—].[\wedge^{2}(\mathbb{C}^{3}\otimes\mathbb{C}^{2})\otimes\mathbb{C}^{3}]\oplus[(\wedge^{2}(\mathbb{C}^{3}\otimes\mathbb{C}^{2}))^{*}\otimes(\mathbb{C}^{3})^{*}].

Letting {(1,0,0),(0,1,0),(0,0,1)}\{(1,0,0),(0,1,0),(0,0,1)\} and {(1,0),(0,1)}\{(1,0),(0,1)\} be the standard weight bases for β„‚3\mathbb{C}^{3} and β„‚2\mathbb{C}^{2}, respectively, we get the following weight basis for β„‚3βŠ—β„‚2\mathbb{C}^{3}\otimes\mathbb{C}^{2}:

{\displaystyle\{ (1,0,0,1,0),(0,1,0,1,0),(0,0,1,1,0),\displaystyle(1,0,0,1,0),\,(0,1,0,1,0),\,(0,0,1,1,0),
(1,0,0,0,1),(0,1,0,0,1),(0,0,1,0,1)}.\displaystyle(1,0,0,0,1),\,(0,1,0,0,1),\,(0,0,1,0,1)\}.

A weight basis for ∧2(β„‚3βŠ—β„‚2)\wedge^{2}(\mathbb{C}^{3}\otimes\mathbb{C}^{2}) is then obtained by taking sums of any two distinct elements from the β„‚3βŠ—β„‚2\mathbb{C}^{3}\otimes\mathbb{C}^{2} weight basis. We get (2,0,0,1,1)(2,0,0,1,1) and (1,1,0,2,0)(1,1,0,2,0) as highest weights, which have weight spaces of dimensions 6 and 9, respectively (by the Weyl dimension formula). In particular, when decomposing the E7/(A5β€²β€²βŠ•A2)E_{7}/(A_{5}^{{}^{\prime\prime}}\oplus A_{2})-factor of Ο‡S\chi_{S} into irreducibles, we do not get any copies of the trivial representation of the S​U​(3,β„‚)SU(3,\mathbb{C}) corresponding to A22A_{2}^{2}. It follows that 𝔷E7​(A22)=A13β€²β€²βŠ•A2\mathfrak{z}_{E_{7}}(A_{2}^{2})=A_{1}^{3^{\prime\prime}}\oplus A_{2}. Finally, by [5, Table 25] and Lemma 33, we see that this index-2 subalgebra of type A2A_{2} is A22β€²A_{2}^{2^{\prime}}.

9. All of the semisimple dual pairs in the exceptional Lie algebras

9.1. SS-irreducible dual pairs in the exceptional Lie algebras

As described in Section 5, one can generate a complete list of the SS-irreducible dual pairs in an exceptional Lie algebra 𝔀\mathfrak{g} by considering all admissible diagrams associated with an appropriate (Ξ¨,ΞΈ)(\Psi,\theta), computing the subalgebra 𝔀θ~\widetilde{\mathfrak{g}_{\theta}} corresponding to (Ξ¨,ΞΈ)(\Psi,\theta), computing 𝔷𝔀​(𝔀θ~)\mathfrak{z}_{\mathfrak{g}}(\widetilde{\mathfrak{g}_{\theta}}) and checking whether 𝔀θ~βŠ•π”·π”€β€‹(𝔀θ~)\widetilde{\mathfrak{g}_{\theta}}\oplus\mathfrak{z}_{\mathfrak{g}}(\widetilde{\mathfrak{g}_{\theta}}) appears in Figure 5 as an SS-subalgebra of 𝔀\mathfrak{g}. Rubenthaler carries out this process in [15, Sections 6.8–6.12], and the results are summarized in Table 8.

G2G_{2}A128A_{1}^{28}F4F_{4}A1156A_{1}^{156}G21βŠ•A18G_{2}^{1}\oplus A_{1}^{8}A128βŠ•A18A_{1}^{28}\oplus A_{1}^{8}
E6E_{6}A29A_{2}^{9}G23G_{2}^{3}A184A_{1}^{84}C41C_{4}^{1}G21βŠ•A22β€²β€²G_{2}^{1}\oplus A_{2}^{2^{\prime\prime}}F41F_{4}^{1}A128βŠ•A22β€²β€²A_{1}^{28}\oplus A_{2}^{2^{\prime\prime}}G21βŠ•A18G_{2}^{1}\oplus A_{1}^{8}A128βŠ•A18A_{1}^{28}\oplus A_{1}^{8}A1156A_{1}^{156}
E7E_{7}A1399A_{1}^{399}A1231A_{1}^{231}A221A_{2}^{21}G21βŠ•C31β€²β€²G_{2}^{1}\oplus C_{3}^{1^{\prime\prime}}F41βŠ•A13β€²β€²F_{4}^{1}\oplus A_{1}^{3^{\prime\prime}}G22βŠ•A17G_{2}^{2}\oplus A_{1}^{7}A124βŠ•A115A_{1}^{24}\oplus A_{1}^{15}A128βŠ•C31β€²β€²A_{1}^{28}\oplus C_{3}^{1^{\prime\prime}}A128βŠ•A135β€²β€²A_{1}^{28}\oplus A_{1}^{35^{\prime\prime}}G21βŠ•A18βŠ•A13β€²β€²G_{2}^{1}\oplus A_{1}^{8}\oplus A_{1}^{3^{\prime\prime}}A128βŠ•A18βŠ•A13β€²β€²A_{1}^{28}\oplus A_{1}^{8}\oplus A_{1}^{3^{\prime\prime}}A131βŠ•A18A_{1}^{31}\oplus A_{1}^{8}A1156βŠ•A13β€²β€²A_{1}^{156}\oplus A_{1}^{3^{\prime\prime}}A1159A_{1}^{159}A156βŠ•A17A_{1}^{56}\oplus A_{1}^{7}G21βŠ•A135β€²β€²G_{2}^{1}\oplus A_{1}^{35^{\prime\prime}}
E8E_{8}A11240A_{1}^{1240}A1760A_{1}^{760}A1520A_{1}^{520}G21βŠ•F41G_{2}^{1}\oplus F_{4}^{1}A26β€²βŠ•A116A_{2}^{6^{\prime}}\oplus A_{1}^{16}B212B_{2}^{12}A128βŠ•F41A_{1}^{28}\oplus F_{4}^{1}G21βŠ•G21βŠ•A18G_{2}^{1}\oplus G_{2}^{1}\oplus A_{1}^{8}A128βŠ•G21βŠ•A18A_{1}^{28}\oplus G_{2}^{1}\oplus A_{1}^{8}A128βŠ•A128βŠ•A18A_{1}^{28}\oplus A_{1}^{28}\oplus A_{1}^{8}G21βŠ•A1156G_{2}^{1}\oplus A_{1}^{156}A128βŠ•A1156A_{1}^{28}\oplus A_{1}^{156}
Figure 5. Inclusion relations among the SS-subalgebras of the exceptional Lie algebras [5, Table 39].
𝔀\mathfrak{g} Dual Pair (𝔀θ~,𝔷𝔀​(𝔀θ~))(\widetilde{\mathfrak{g}_{\theta}},\mathfrak{z}_{\mathfrak{g}}(\widetilde{\mathfrak{g}_{\theta}})) Ξ¨βˆ–ΞΈ\Psi\setminus\theta Maximal SS-Subalgebra?
F4F_{4} (A18,G21)(A_{1}^{8},G_{2}^{1}) {Ξ±4}\{\alpha_{4}\} Yes
E6E_{6} (G21,A22β€²β€²)(G_{2}^{1},A_{2}^{2^{\prime\prime}}) {Ξ±2,Ξ±4}\{\alpha_{2},\alpha_{4}\} Yes
E7E_{7} (G21,C31β€²β€²)(G_{2}^{1},C_{3}^{1^{\prime\prime}}) {Ξ±1,Ξ±3}\{\alpha_{1},\alpha_{3}\} Yes
(A17,G22)(A_{1}^{7},G_{2}^{2}) {Ξ±2}\{\alpha_{2}\} Yes
(A124,A115)(A_{1}^{24},A_{1}^{15}) {Ξ±4}\{\alpha_{4}\} Yes
(A13β€²β€²,F41)(A_{1}^{3^{\prime\prime}},F_{4}^{1}) {Ξ±7}\{\alpha_{7}\} Yes
(A18,G21βŠ•A13β€²β€²)(A_{1}^{8},G_{2}^{1}\oplus A_{1}^{3^{\prime\prime}}) {Ξ±6}\{\alpha_{6}\} No (βŠ‚F41βŠ•A13β€²β€²)(\subset F_{4}^{1}\oplus A_{1}^{3^{\prime\prime}})
E8E_{8} (A116,A26β€²)(A_{1}^{16},A_{2}^{6^{\prime}}) {Ξ±2}\{\alpha_{2}\} Yes
(G21,F41)(G_{2}^{1},F_{4}^{1}) {Ξ±7,Ξ±8}\{\alpha_{7},\alpha_{8}\} Yes
(A18,G21βŠ•G21)(A_{1}^{8},G_{2}^{1}\oplus G_{2}^{1}) {Ξ±1}\{\alpha_{1}\} No (βŠ‚G21βŠ•F41)(\subset G_{2}^{1}\oplus F_{4}^{1})
Table 8. SS-irreducible dual pairs in the exceptional Lie algebras.

9.2. Non-SS-irreducible dual pairs in the exceptional Lie algebras

The SS-irreducible dual pairs in the exceptional Lie algebras are shown in Table 8. To find the non-SS-irreducible dual pairs in the exceptional Lie algebras, we will carry out the process described in Section 7.

9.2.1. Dual pairs in G2G_{2}

Recall that G2G_{2} has no SS-irreducible dual pairs (see Table 8). Additionally, recall that by Table 2 and Proposition 15, (A1,A1~)(A_{1},\widetilde{A_{1}}) is a dual pair in G2G_{2}. By Theorem 28, to find any remaining non-SS-irreducible dual pairs, it suffices to consider the proper SS-subalgebras of A1βŠ•A1~A_{1}\oplus\widetilde{A_{1}}, of which there are none. Therefore, (A1,A1~)(A_{1},\widetilde{A_{1}}) is the only dual pair in G2G_{2}.

Max-Rank Reg.Β Subalgebra Dual Pair How to Verify
A1βŠ•A1~A_{1}\oplus\widetilde{A_{1}} (A1,A1~)(A_{1},\widetilde{A_{1}}) Proposition 15
Table 9. A complete list of dual pairs in G2G_{2}.

9.2.2. Dual pairs in F4F_{4}

By Table 8, (A18,G21)(A_{1}^{8},G_{2}^{1}) is an SS-irreducible dual pair in F4F_{4}. Additionally, as indicated in Table 3, we have that (A1,C3)(A_{1},C_{3}) and (A2,A2~)(A_{2},\widetilde{A_{2}}) are dual pairs in F4F_{4}. By Theorem 28, to find the remaining non-SS-irreducible dual pairs of F4F_{4}, it suffices to consider the SS-subalgebras of the maximal-rank regular subalgebras of F4F_{4} and to eliminate or confirm the resulting candidate dual pairs. The results of this analysis are summarized in Table 10.

Max-Rank Reg.Β Subalgebra Dual Pair How to Verify
B4B_{4} (A16,A16)(A_{1}^{6},A_{1}^{6}) [4, p.Β 401]
A2βŠ•A2~A_{2}\oplus\widetilde{A_{2}} (A2,A2~)(A_{2},\widetilde{A_{2}}) Proposition 15
C3βŠ•A1C_{3}\oplus A_{1} (C3,A1)(C_{3},A_{1}) Proposition 15
(A13,A18βŠ•A1)(A_{1}^{3},A_{1}^{8}\oplus A_{1}) Table 6, [4, p.Β 401]
A3βŠ•A1~A_{3}\oplus\widetilde{A_{1}} (A3,A1~)(A_{3},\widetilde{A_{1}}) Example 31
B2βŠ•2​A1B_{2}\oplus 2A_{1} (B2,2​A1)(B_{2},2A_{1}) Table 6, Lemma 33/[5, Table 25]
Table 10. A complete list of the non-SS-irreducible dual pairs in F4F_{4}.

9.2.3. Dual pairs in E6E_{6}

Recall from Table 8 that (G21,A22β€²β€²)(G_{2}^{1},A_{2}^{2^{\prime\prime}}) is an SS-irreducible dual pair in E6E_{6}. Additionally, as indicated in Table 3, we have that (A1,A5)(A_{1},A_{5}) and (A2,2​A2)(A_{2},2A_{2}) are dual pairs in E6E_{6}. By Theorem 28, to find the remaining non-SS-irreducible dual pairs of E6E_{6}, it suffices to consider the SS-subalgebras of the maximal-rank regular subalgebras of E6E_{6} and to eliminate or confirm the resulting candidate dual pairs. Carrying out this process, we get a complete list of non-SS-irreducible dual pairs in E6E_{6} as shown in Table 11.

Max-Rank Reg.Β Subalgebra Dual Pair How to Verify
A5βŠ•A1A_{5}\oplus A_{1} (A5,A1)(A_{5},A_{1}) Proposition 15
(A13,A22β€²β€²βŠ•A1)(A_{1}^{3},A_{2}^{2^{\prime\prime}}\oplus A_{1}) Example 36
3​A23A_{2} (A2,2​A2)(A_{2},2A_{2}) Proposition 15
Table 11. A complete list of the non-SS-irreducible dual pairs in E6E_{6}.

9.2.4. Dual pairs in E7E_{7}

By Table 8, (G21,C31β€²β€²)(G_{2}^{1},C_{3}^{1^{\prime\prime}}), (A17,G22)(A_{1}^{7},G_{2}^{2}), (A124,A115)(A_{1}^{24},A_{1}^{15}), (A13β€²β€²,F41)(A_{1}^{3^{\prime\prime}},F_{4}^{1}), and (A18,G21βŠ•A13β€²β€²)(A_{1}^{8},G_{2}^{1}\oplus A_{1}^{3^{\prime\prime}}) are SS-irreducible dual pairs in E7E_{7}. Additionally, as indicated in Table 3, we have that (A1,D6)(A_{1},D_{6}) and (A2,A5β€²β€²)(A_{2},A_{5}^{{}^{\prime\prime}}) are dual pairs in E7E_{7}. By Theorem 28, to find the remaining non-SS-irreducible dual pairs of E7E_{7}, it suffices to consider the SS-subalgebras of the maximal-rank regular subalgebras of E7E_{7} and to eliminate or confirm the resulting candidate dual pairs. The results of this analysis are summarized in Table 12.

Max-Rank Reg.Β Subalgebra Dual Pair How to Verify
D6βŠ•A1D_{6}\oplus A_{1} (D6,A1)(D_{6},A_{1}) Proposition 15
(B21,B31βŠ•A1)(B_{2}^{1},B_{3}^{1}\oplus A_{1}) Table 7, Lemma 33/[5, Table 25]
(B31,(B21βŠ•A1)β€²β€²)(B_{3}^{1},(B_{2}^{1}\oplus A_{1})^{{}^{\prime\prime}}) Table 7, Lemma 33/[5, Table 25]
(C31β€²,A13β€²βŠ•A1)(C_{3}^{1^{\prime}},A_{1}^{3^{\prime}}\oplus A_{1}) Table 7, Remark 37
(A13β€²,C31β€²βŠ•A1)(A_{1}^{3^{\prime}},C_{3}^{1^{\prime}}\oplus A_{1}) Table 7, Lemma 33/[5, Table 25]
(A13β€²βŠ•A13β€²β€²,A18βŠ•A1)(A_{1}^{3^{\prime}}\oplus A_{1}^{3^{\prime\prime}},A_{1}^{8}\oplus A_{1}) Previous entry, Tables 6 & 7
(B41,(A12βŠ•A1)β€²β€²)(B_{4}^{1},(A_{1}^{2}\oplus A_{1})^{{}^{\prime\prime}}) Table 7, Lemma 33/[5, Table 25]
(A12,B41βŠ•A1)(A_{1}^{2},B_{4}^{1}\oplus A_{1}) Table 7, [4, p.Β 403]
(A16,A16βŠ•A12βŠ•A1)(A_{1}^{6},A_{1}^{6}\oplus A_{1}^{2}\oplus A_{1}) Table 7, [4, p.Β 403]
(A16βŠ•A12,A16βŠ•A1)(A_{1}^{6}\oplus A_{1}^{2},A_{1}^{6}\oplus A_{1}) Previous entry, [4, p.Β 403]
A5β€²β€²βŠ•A2A_{5}^{\prime\prime}\oplus A_{2} (A5β€²β€²,A2)(A_{5}^{\prime\prime},A_{2}) Proposition 15
(A22β€²,A13β€²β€²βŠ•A2)(A_{2}^{2^{\prime}},A_{1}^{3^{\prime\prime}}\oplus A_{2}) Example 38
D4βŠ•3​A1D_{4}\oplus 3A_{1} (D4,3​A1)(D_{4},3A_{1}) Table 7, Lemma 33/[5, Table 25]
(D4βŠ•A1,2​A1)(D_{4}\oplus A_{1},2A_{1}) Proposition 15 for D6D_{6}
((B21βŠ•A1)β€²,A12βŠ•2​A1)((B_{2}^{1}\oplus A_{1})^{{}^{\prime}},A_{1}^{2}\oplus 2A_{1}) Previous entry, Tables 7 & 19
((A12βŠ•A1)β€²,B21βŠ•2​A1)((A_{1}^{2}\oplus A_{1})^{{}^{\prime}},B_{2}^{1}\oplus 2A_{1}) Table 7, (D4βŠ•A1,2​A1)(D_{4}\oplus A_{1},2A_{1})
2​A3βŠ•A12A_{3}\oplus A_{1} (A3,A3βŠ•A1)(A_{3},A_{3}\oplus A_{1}) Table 7, Lemma 33/[5, Table 25]
Table 12. A complete list of the non-SS-irreducible dual pairs in E7E_{7}. Here, (B21βŠ•A1)β€²(B_{2}^{1}\oplus A_{1})^{{}^{\prime}} (resp.Β (B21βŠ•A1)β€²β€²(B_{2}^{1}\oplus A_{1})^{{}^{\prime\prime}}) refers to the subalgebra of E7E_{7} that restricts to B21β€²βŠ•A1B_{2}^{1^{\prime}}\oplus A_{1} (resp.Β B21β€²β€²βŠ•A1B_{2}^{1^{\prime\prime}}\oplus A_{1}) in D6βŠ•A1D_{6}\oplus A_{1}. Similarly, (A12βŠ•A1)β€²(A_{1}^{2}\oplus A_{1})^{{}^{\prime}} (resp.Β (A12βŠ•A1)β€²β€²(A_{1}^{2}\oplus A_{1})^{{}^{\prime\prime}}) restricts to A12β€²βŠ•A1A_{1}^{2^{\prime}}\oplus A_{1} (resp.Β A12β€²β€²βŠ•A1A_{1}^{2^{\prime\prime}}\oplus A_{1}) in D6βŠ•A1D_{6}\oplus A_{1}.

9.2.5. Dual pairs in E8E_{8}

Finally, recall from Table 8 that (A116,A26β€²)(A_{1}^{16},A_{2}^{6^{\prime}}), (G21,F41)(G_{2}^{1},F_{4}^{1}), and (A18,G21βŠ•G21)(A_{1}^{8},G_{2}^{1}\oplus G_{2}^{1}) are SS-irreducible dual pairs in E8E_{8}. Additionally, as indicated in Table 3, we have that (A4,A4)(A_{4},A_{4}), (A2,E6)(A_{2},E_{6}), and (A1,E7)(A_{1},E_{7}) are dual pairs in E8E_{8}. By considering the list of admissible subalgebras of E8E_{8}, we also get that (A124,A115βŠ•A1)(A_{1}^{24},A_{1}^{15}\oplus A_{1}) and (G22,A17βŠ•A1)(G_{2}^{2},A_{1}^{7}\oplus A_{1}) are non-SS-irreducible dual pairs [15, Section 6.10]. By Theorem 28, to find the remaining non-SS-irreducible dual pairs of E8E_{8}, it suffices to consider the SS-subalgebras of the maximal-rank regular subalgebras of E8E_{8} and to eliminate or confirm the resulting candidate dual pairs. Carrying out this process, we get the following complete list of non-SS-irreducible dual pairs in E8E_{8}.

Table 13. A complete list of the non-SS-irreducible dual pairs in E8E_{8}. Here, (A13βŠ•A1)β€²(A_{1}^{3}\oplus A_{1})^{{}^{\prime}} and (C31βŠ•A1)β€²(C_{3}^{1}\oplus A_{1})^{{}^{\prime}} refer to the subalgebras of E8E_{8} that restrict to A13β€²A_{1}^{3^{\prime}} and C31β€²C_{3}^{1^{\prime}}, respectively, in E7βŠ•A1E_{7}\oplus A_{1}. Similarly, (B21βŠ•A12)β€²(B_{2}^{1}\oplus A_{1}^{2})^{{}^{\prime}} restricts to B21β€²B_{2}^{1^{\prime}} in B6B_{6} and to A12β€²A_{1}^{2^{\prime}} in B5B_{5}.
Max-Rank Reg.Β Subalgebra Dual Pair How to Verify
D8D_{8} (A12,B61)(A_{1}^{2},B_{6}^{1}) [4, p.Β 405], Lemma 33/[5, Table 25]
(A16,A16βŠ•B31)(A_{1}^{6},A_{1}^{6}\oplus B_{3}^{1}) [4, p.Β 405], (B31,B41)(B_{3}^{1},B_{4}^{1}), Table 5
(A110β€²β€²,B23β€²β€²)(A_{1}^{10^{\prime\prime}},B_{2}^{3^{\prime\prime}}) [4, p.Β 405], Remark 37
(B21,B51)(B_{2}^{1},B_{5}^{1}) Lemma 33/[5, Table 25]
(B31,B41)(B_{3}^{1},B_{4}^{1}) Example 35
(B22β€²β€²,B22β€²β€²)(B_{2}^{2^{\prime\prime}},B_{2}^{2^{\prime\prime}}) Remark 37
(C41β€²β€²,A14β€²)(C_{4}^{1^{\prime\prime}},A_{1}^{4^{\prime}}) [4, p.Β 405], Remark 37
E7βŠ•A1E_{7}\oplus A_{1} (E7,A1)(E_{7},A_{1}) Proposition 15
(C31,G21βŠ•A1)(C_{3}^{1},G_{2}^{1}\oplus A_{1}) Table 8, Lemma 33/[5, Table 25]
(A13,F41βŠ•A1)(A_{1}^{3},F_{4}^{1}\oplus A_{1}) Table 8, [4, p.Β 405]
(G22,A17βŠ•A1)(G_{2}^{2},A_{1}^{7}\oplus A_{1}) [15, Section 6.10]
(A17,G22βŠ•A1)(A_{1}^{7},G_{2}^{2}\oplus A_{1}) Table 8, [4, p.Β 405]
(A124,A115βŠ•A1)(A_{1}^{24},A_{1}^{15}\oplus A_{1}) [15, Section 6.10]
(A115,A124βŠ•A1)(A_{1}^{15},A_{1}^{24}\oplus A_{1}) Table 8, [4, p.Β 405]
(G21βŠ•A13,A18βŠ•A1)(G_{2}^{1}\oplus A_{1}^{3},A_{1}^{8}\oplus A_{1}) (A13,F41βŠ•A1)(A_{1}^{3},F_{4}^{1}\oplus A_{1}), Table 8, [4, p.Β 403]
E6βŠ•A2E_{6}\oplus A_{2} (E6,A2)(E_{6},A_{2}) Proposition 15
(A22,G21βŠ•A2)(A_{2}^{2},G_{2}^{1}\oplus A_{2}) Table 8, Lemma 33/[5, Table 25]
2​A42A_{4} (A4,A4)(A_{4},A_{4}) Proposition 15
D5βŠ•A3D_{5}\oplus A_{3} (D5,A3)(D_{5},A_{3}) Lemma 33/[5, Table 25]
A5βŠ•A2βŠ•A1A_{5}\oplus A_{2}\oplus A_{1} (A5,A2βŠ•A1)(A_{5},A_{2}\oplus A_{1}) Table 12, Lemma 33/[5, Table 25]
(A13βŠ•A2,A22βŠ•A1)(A_{1}^{3}\oplus A_{2},A_{2}^{2}\oplus A_{1}) Tables 11 & 12
D6βŠ•2​A1D_{6}\oplus 2A_{1} (D6,2​A1)(D_{6},2A_{1}) Table 12, Lemma 33/[5, Table 25]
(B41βŠ•A1,A12βŠ•A1)(B_{4}^{1}\oplus A_{1},A_{1}^{2}\oplus A_{1}) Table 12
(B31βŠ•A1,B21βŠ•A1)(B_{3}^{1}\oplus A_{1},B_{2}^{1}\oplus A_{1}) Table 12
(A16βŠ•A12,A16βŠ•2​A1)(A_{1}^{6}\oplus A_{1}^{2},A_{1}^{6}\oplus 2A_{1}) (A12,B61)(A_{1}^{2},B_{6}^{1}), Tables 5 & 7
(A16βŠ•A12βŠ•A1,A16βŠ•A1)(A_{1}^{6}\oplus A_{1}^{2}\oplus A_{1},A_{1}^{6}\oplus A_{1}) Table 12
(A18βŠ•2​A1,2​A13)(A_{1}^{8}\oplus 2A_{1},2A_{1}^{3}) (A13,F41βŠ•A1)(A_{1}^{3},F_{4}^{1}\oplus A_{1}), Tables 10 & 7
((A13βŠ•A1)β€²,(C31βŠ•A1)β€²)((A_{1}^{3}\oplus A_{1})^{{}^{\prime}},(C_{3}^{1}\oplus A_{1})^{{}^{\prime}}) [4, p.Β 403], [5, Table 25]
4​A24A_{2} (2​A2,2​A2)(2A_{2},2A_{2}) Table 11
2​D42D_{4} (D4,D4)(D_{4},D_{4}) Lemma 33/[5, Table 25]
((B21βŠ•A12)β€²,(B21βŠ•A12)β€²)((B_{2}^{1}\oplus A_{1}^{2})^{{}^{\prime}},(B_{2}^{1}\oplus A_{1}^{2})^{{}^{\prime}}) (A12,B61)(A_{1}^{2},B_{6}^{1}), (B21,B51)(B_{2}^{1},B_{5}^{1}), Table 19
D4βŠ•4​A1D_{4}\oplus 4A_{1} (D4βŠ•A1,3​A1)(D_{4}\oplus A_{1},3A_{1}) Tables 12 & 7

Acknowledgements

The author would like to thank David Vogan for suggesting this topic of study and for his helpful comments on the manuscript.

References

  • [1] B.N. Allison. Structurable algebras. Math. Ann., 237(2):133–156, 1978.
  • [2] C.H. Barton and A.Β Sudbery. Magic squares and matrix models of Lie algebras. Adv. Math., 180(2):596–647, 2003.
  • [3] N.Β Bourbaki. Lie Groups and Lie Algebras: Chapters 1-3. Springer Berlin, Heidelberg, 1989.
  • [4] R.W. Carter. Finite Groups of Lie Type: Conjugacy Classes and Complex Characters. Wiley Classics Library. Wiley, 1993.
  • [5] E.Β B. Dynkin. Semisimple subalgebras of semisimple Lie algebras. Trans. Am. Math. Soc. Ser. 2, 6:111–244, 1957.
  • [6] M.Β Gaetz. Dual pairs in complex classical groups and Lie algebras. https://arxiv.org/abs/1910.07592.
  • [7] V.Β Ginzburg. Principal nilpotent pairs in a semisimple Lie algebra. I. Invent. Math., 140(3):511–561, 2000.
  • [8] R.E. Howe. ΞΈ\theta-series and invariant theory in Automorphic Forms, Representations and L-functions. Proc. Symp. Pure Math., 33:275–285, 1979.
  • [9] R.E. Howe. Remarks on classical invariant theory. Trans. Amer. Math. Soc., 313:539–570, 1989.
  • [10] T.Β Kimura and M.Β Sato. A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J., 65:1–155, 1977.
  • [11] D.Β KovačeviΔ‡. Exceptional dual pair correspondences. Thesis (Ph.D.) – The University of Utah, ISBN: 978-1109-90760-5, 2007.
  • [12] D.Β KovačeviΔ‡. Real forms of dual pairs 𝔀2Γ—π”₯\mathfrak{g}_{2}\times\mathfrak{h} in 𝔀\mathfrak{g} of type E6E_{6}, E7E_{7} and E8E_{8}. J. Lie Theory, 21(2):417–426, 2011.
  • [13] M.Β Lorente and B.Β Gruber. Classification of semisimple subalgebras of simple Lie algebras. J. Math. Phys., 13(10):1639–1663, 1972.
  • [14] D.I. Panyushev. Nilpotent pairs, dual pairs, and sheets. J. Algebra, 240(2):635–664, 2001.
  • [15] H.Β Rubenthaler and SociΓ©tΓ© mathΓ©matiqueΒ de France. Les paires duales dans les algΓ¨bres de Lie rΓ©ductives, volume 219 of AstΓ©risque. Societes mathΓ©matique de France, 1994.
  • [16] J.Β Tits. Sous-algΓ¨bres des algΓ¨bres de Lie semi-simples. NumberΒ 3 in SΓ©minaire Bourbaki. SociΓ©tΓ© mathΓ©matique de France, 1956.
  • [17] J.Β Tits. AlgΓ©bres alternatives, algΓ©bres de Jordan et algΓ©bres de Lie exceptionnelles. I. Construction in Nederl. Akad. Wetensch. Proc. Ser. A. Indag. Math., 28:223–237, 1966.

Appendix A: Subalgebras of type A1A_{1}

In this appendix, we describe all of the conjugacy classes of subalgebras of type A1A_{1} in the complex simple Lie algebras of rank up to 6.555Much of this information is also available in [13], which was used as a reference when compiling these tables. However, while [13] is concerned with O​(n,β„‚)O(n,\mathbb{C}) conjugacy classes, we are concerned with S​O​(n,β„‚)SO(n,\mathbb{C}) conjugacy classes. For example, the subalgebras A12β€²A_{1}^{2^{\prime}} and A12β€²β€²A_{1}^{2^{\prime\prime}} of D4D_{4} appear in two non-conjugate dual pairs of S​O​(8,β„‚)SO(8,\mathbb{C}) (see Table 7) but they are not listed as distinct conjugacy classes in [13].

Subalgebras of type A1A_{1} in A2A_{2}

Index Defining Vector Diagram
11 [1,0][1,0] [1,1][1,1]
4 [2,0][2,0] [2,2][2,2]

Subalgebras of type A1A_{1} in A3A_{3}

Index Defining Vector Diagram
11 β€‚β€Šβ€„β€„β€„β€„β€„β€„[1,0,0][1,0,0] [1,0,1][1,0,1]
2 β€‚β€Šβ€„β€„β€„β€„β€„β€„[1,1,βˆ’1][1,1,-1] [0,2,0][0,2,0]
4 β€‚β€Šβ€„β€„β€„β€„β€„β€„[2,0,0][2,0,0] [2,0,2][2,0,2]
10 β€‚β€Šβ€„β€„β€„β€„β€„β€„[3,1,βˆ’1][3,1,-1] [2,2,2][2,2,2]

Subalgebras of type A1A_{1} in A4A_{4}

Index Defining Vector Diagram
11 β€‚β€Šβ€„β€„β€„β€„[1,0,0,0][1,0,0,0] [1,0,0,1][1,0,0,1]
2 β€‚β€Šβ€„β€„β€„β€„[1,1,0,βˆ’1][1,1,0,-1] [0,1,1,0][0,1,1,0]
4 β€‚β€Šβ€„β€„β€„β€„[2,0,0,0][2,0,0,0] [2,0,0,2][2,0,0,2]
5 β€‚β€Šβ€„β€„β€„β€„[2,1,0,βˆ’1][2,1,0,-1] [1,1,1,1][1,1,1,1]
10 β€‚β€Šβ€„β€„β€„β€„[3,1,0,βˆ’1][3,1,0,-1] [2,1,1,2][2,1,1,2]
20 β€‚β€Šβ€„β€„β€„β€„[4,2,0,βˆ’2][4,2,0,-2] [2,2,2,2][2,2,2,2]

Subalgebras of type A1A_{1} in A5A_{5}

Index Defining Vector Diagram
11 [1,0,0,0,0][1,0,0,0,0] [1,0,0,0,1][1,0,0,0,1]
2 [1,1,0,0,βˆ’1][1,1,0,0,-1] [0,1,0,1,0][0,1,0,1,0]
3 [1,1,1,βˆ’1,βˆ’1][1,1,1,-1,-1] [0,0,2,0,0][0,0,2,0,0]
4 [2,0,0,0,0][2,0,0,0,0] [2,0,0,0,2][2,0,0,0,2]
5 [2,1,0,0,βˆ’1][2,1,0,0,-1] [1,1,0,1,1][1,1,0,1,1]
8 [2,2,0,0,βˆ’2][2,2,0,0,-2] [0,2,0,2,0][0,2,0,2,0]
10 [3,1,0,0,βˆ’1][3,1,0,0,-1] [2,1,0,1,2][2,1,0,1,2]
11 [3,1,1,βˆ’1,βˆ’1][3,1,1,-1,-1] [2,0,2,0,2][2,0,2,0,2]
20 [4,2,0,0,βˆ’2][4,2,0,0,-2] [2,2,0,2,2][2,2,0,2,2]
35 [5,3,1,βˆ’1,βˆ’3][5,3,1,-1,-3] [2,2,2,2,2][2,2,2,2,2]

Subalgebras of type A1A_{1} in A6A_{6}

Index Defining Vector Diagram
11 [1,0,0,0,0,0][1,0,0,0,0,0] [1,0,0,0,0,1][1,0,0,0,0,1]
2 [1,1,0,0,0,βˆ’1][1,1,0,0,0,-1] [0,1,0,0,1,0][0,1,0,0,1,0]
3 [1,1,1,0,βˆ’1,βˆ’1][1,1,1,0,-1,-1] [0,0,1,1,0,0][0,0,1,1,0,0]
4 [2,0,0,0,0,0][2,0,0,0,0,0] [2,0,0,0,0,2][2,0,0,0,0,2]
5 [2,1,0,0,0,βˆ’1][2,1,0,0,0,-1] [1,1,0,0,1,1][1,1,0,0,1,1]
6 [2,1,1,0,βˆ’1,βˆ’1][2,1,1,0,-1,-1] [1,0,1,1,0,1][1,0,1,1,0,1]
8 [2,2,0,0,0,βˆ’2][2,2,0,0,0,-2] [0,2,0,0,2,0][0,2,0,0,2,0]
10 [3,1,0,0,0,βˆ’1][3,1,0,0,0,-1] [2,1,0,0,1,2][2,1,0,0,1,2]
11 [3,1,1,0,βˆ’1,βˆ’1][3,1,1,0,-1,-1] [2,0,1,1,0,2][2,0,1,1,0,2]
14 [3,2,1,0,βˆ’1,βˆ’2][3,2,1,0,-1,-2] [1,1,1,1,1,1][1,1,1,1,1,1]
20 [4,2,0,0,0,βˆ’2][4,2,0,0,0,-2] [2,2,0,0,2,2][2,2,0,0,2,2]
21 [4,2,1,0,βˆ’1,βˆ’2][4,2,1,0,-1,-2] [2,1,1,1,1,2][2,1,1,1,1,2]
35 [5,3,1,0,βˆ’1,βˆ’3][5,3,1,0,-1,-3] [2,2,1,1,2,2][2,2,1,1,2,2]
56 [6,4,2,0,βˆ’2,βˆ’4][6,4,2,0,-2,-4] [2,2,2,2,2,2][2,2,2,2,2,2]

Subalgebras of type A1A_{1} in B2B_{2}

Index Defining Vector Diagram
11 [1,1][1,1] [0,1][0,1]
2 [2,0][2,0] [2,0][2,0]
10 [4,2][4,2] [2,2][2,2]

Subalgebras of type A1A_{1} in B3B_{3}

Index Defining Vector Diagram
11 [1,1,0][1,1,0] [0,1,0][0,1,0]
2 [2,0,0][2,0,0] [2,0,0][2,0,0]
3 [2,1,1][2,1,1] [1,0,1][1,0,1]
4 [2,2,0][2,2,0] [0,2,0][0,2,0]
10 [4,2,0][4,2,0] [2,2,0][2,2,0]
28 [6,4,2][6,4,2] [2,2,2][2,2,2]

Subalgebras of type A1A_{1} in B4B_{4}

Index Defining Vector Diagram
11 [1,1,0,0][1,1,0,0] [0,1,0,0][0,1,0,0]
2β€²2^{\prime} [1,1,1,1][1,1,1,1] [0,0,0,1][0,0,0,1]
2β€²β€²2^{\prime\prime} [2,0,0,0][2,0,0,0] [2,0,0,0][2,0,0,0]
3 [2,1,1,0][2,1,1,0] [1,0,1,0][1,0,1,0]
4 [2,2,0,0][2,2,0,0] [0,2,0,0][0,2,0,0]
6 [2,2,2,0][2,2,2,0] [0,0,2,0][0,0,2,0]
10β€²10^{\prime} [3,3,1,1][3,3,1,1] [0,2,0,1][0,2,0,1]
10β€²β€²10^{\prime\prime} [4,2,0,0][4,2,0,0] [2,2,0,0][2,2,0,0]
11 [4,2,1,1][4,2,1,1] [2,1,0,1][2,1,0,1]
12 [4,2,2,0][4,2,2,0] [2,0,2,0][2,0,2,0]
28 [6,4,2,0][6,4,2,0] [2,2,2,0][2,2,2,0]
60 [8,6,4,2][8,6,4,2] [2,2,2,2][2,2,2,2]

Subalgebras of type A1A_{1} in B5B_{5}

Index Defining Vector Diagram
11 [1,1,0,0,0][1,1,0,0,0] [0,1,0,0,0][0,1,0,0,0]
2β€²2^{\prime} [1,1,1,1,0][1,1,1,1,0] [0,0,0,1,0][0,0,0,1,0]
2β€²β€²2^{\prime\prime} [2,0,0,0,0][2,0,0,0,0] [2,0,0,0,0][2,0,0,0,0]
3 [2,1,1,0,0][2,1,1,0,0] [1,0,1,0,0][1,0,1,0,0]
4β€²4^{\prime} [2,1,1,1,1][2,1,1,1,1] [1,0,0,0,1][1,0,0,0,1]
4β€²β€²4^{\prime\prime} [2,2,0,0,0][2,2,0,0,0] [0,2,0,0,0][0,2,0,0,0]
5 [2,2,1,1,0][2,2,1,1,0] [0,1,0,1,0][0,1,0,1,0]
6 [2,2,2,0,0][2,2,2,0,0] [0,0,2,0,0][0,0,2,0,0]
10β€²10^{\prime} [3,3,1,1,0][3,3,1,1,0] [0,2,0,1,0][0,2,0,1,0]
10β€²β€²10^{\prime\prime} [4,2,0,0,0][4,2,0,0,0] [2,2,0,0,0][2,2,0,0,0]
11 [4,2,1,1,0][4,2,1,1,0] [2,1,0,1,0][2,1,0,1,0]
12β€²12^{\prime} [3,3,2,1,1][3,3,2,1,1] [0,1,1,0,1][0,1,1,0,1]
12β€²β€²12^{\prime\prime} [4,2,2,0,0][4,2,2,0,0] [2,0,2,0,0][2,0,2,0,0]
14 [4,2,2,2,0][4,2,2,2,0] [2,0,0,2,0][2,0,0,2,0]
20 [4,4,2,2,0][4,4,2,2,0] [0,2,0,2,0][0,2,0,2,0]
28 [6,4,2,0,0][6,4,2,0,0] [2,2,2,0,0][2,2,2,0,0]
29 [6,4,2,1,1][6,4,2,1,1] [2,2,1,0,1][2,2,1,0,1]
30 [6,4,2,2,0][6,4,2,2,0] [2,2,0,2,0][2,2,0,2,0]
60 [8,6,4,2,0][8,6,4,2,0] [2,2,2,2,0][2,2,2,2,0]
110 [10,8,6,4,2][10,8,6,4,2] [2,2,2,2,2][2,2,2,2,2]

Subalgebras of type A1A_{1} in B6B_{6}

Index Defining Vector Diagram Index Defining Vector Diagram
1 [1,1,0,0,0,0][1,1,0,0,0,0] [0,1,0,0,0,0][0,1,0,0,0,0] 12β€²β€²β€²12^{\prime\prime\prime} [4,2,2,0,0,0][4,2,2,0,0,0] [2,0,2,0,0,0][2,0,2,0,0,0]
2β€²2^{\prime} [1,1,1,1,0,0][1,1,1,1,0,0] [0,0,0,1,0,0][0,0,0,1,0,0] 13 [4,2,2,1,1,0][4,2,2,1,1,0] [2,0,1,0,1,0][2,0,1,0,1,0]
2β€²β€²2^{\prime\prime} [2,0,0,0,0,0][2,0,0,0,0,0] [2,0,0,0,0,0][2,0,0,0,0,0] 14 [4,2,2,2,0,0][4,2,2,2,0,0] [2,0,0,2,0,0][2,0,0,2,0,0]
3β€²3^{\prime} [1,1,1,1,1,1][1,1,1,1,1,1] [0,0,0,0,0,1][0,0,0,0,0,1] 20β€²20^{\prime} [4,3,3,2,1,1][4,3,3,2,1,1] [1,0,1,1,0,1][1,0,1,1,0,1]
3β€²β€²3^{\prime\prime} [2,1,1,0,0,0][2,1,1,0,0,0] [1,0,1,0,0,0][1,0,1,0,0,0] 20β€²β€²20^{\prime\prime} [4,4,2,2,0,0][4,4,2,2,0,0] [0,2,0,2,0,0][0,2,0,2,0,0]
4β€²4^{\prime} [2,1,1,1,1,0][2,1,1,1,1,0] [1,0,0,0,1,0][1,0,0,0,1,0] 22 [4,4,2,2,2,0][4,4,2,2,2,0] [0,2,0,0,2,0][0,2,0,0,2,0]
4β€²β€²4^{\prime\prime} [2,2,0,0,0,0][2,2,0,0,0,0] [0,2,0,0,0,0][0,2,0,0,0,0] 28 [6,4,2,0,0,0][6,4,2,0,0,0] [2,2,2,0,0,0][2,2,2,0,0,0]
5 [2,2,1,1,0,0][2,2,1,1,0,0] [0,1,0,1,0,0][0,1,0,1,0,0] 29 [6,4,2,1,1,0][6,4,2,1,1,0] [2,2,1,0,1,0][2,2,1,0,1,0]
6 [2,2,2,0,0,0][2,2,2,0,0,0] [0,0,2,0,0,0][0,0,2,0,0,0] 30 [6,4,2,2,0,0][6,4,2,2,0,0] [2,2,0,2,0,0][2,2,0,2,0,0]
7 [2,2,2,1,1,0][2,2,2,1,1,0] [0,0,1,0,1,0][0,0,1,0,1,0] 32 [6,4,2,2,2,0][6,4,2,2,2,0] [2,2,0,0,2,0][2,2,0,0,2,0]
8 [2,2,2,2,0,0][2,2,2,2,0,0] [0,0,0,2,0,0][0,0,0,2,0,0] 35 [5,5,3,3,1,1][5,5,3,3,1,1] [0,2,0,2,0,1][0,2,0,2,0,1]
10β€²10^{\prime} [3,3,1,1,0,0][3,3,1,1,0,0] [0,2,0,1,0,0][0,2,0,1,0,0] 38 [6,4,4,2,2,0][6,4,4,2,2,0] [2,0,2,0,2,0][2,0,2,0,2,0]
10β€²β€²10^{\prime\prime} [4,2,0,0,0,0][4,2,0,0,0,0] [2,2,0,0,0,0][2,2,0,0,0,0] 60 [8,6,4,2,0,0][8,6,4,2,0,0] [2,2,2,2,0,0][2,2,2,2,0,0]
11β€²11^{\prime} [3,3,1,1,1,1][3,3,1,1,1,1] [0,2,0,0,0,1][0,2,0,0,0,1] 61 [8,6,4,2,1,1][8,6,4,2,1,1] [2,2,2,1,0,1][2,2,2,1,0,1]
11β€²β€²11^{\prime\prime} [4,2,1,1,0,0][4,2,1,1,0,0] [2,1,0,1,0,0][2,1,0,1,0,0] 62 [8,6,4,2,2,0][8,6,4,2,2,0] [2,2,2,0,2,0][2,2,2,0,2,0]
12β€²12^{\prime} [3,3,2,1,1,0][3,3,2,1,1,0] [0,1,1,0,1,0][0,1,1,0,1,0] 110 [10,8,6,4,2,0][10,8,6,4,2,0] [2,2,2,2,2,0][2,2,2,2,2,0]
12β€²β€²12^{\prime\prime} [4,2,1,1,1,1][4,2,1,1,1,1] [2,1,0,0,0,1][2,1,0,0,0,1] 182 [12,10,8,6,4,2][12,10,8,6,4,2] [2,2,2,2,2,2][2,2,2,2,2,2]

Subalgebras of type A1A_{1} in C2C_{2}

Index Defining Vector Diagram
1 [1,0][1,0] [1,0][1,0]
2 [1,1][1,1] [0,2][0,2]
10 [3,1][3,1] [2,2][2,2]

Subalgebras of type A1A_{1} in C3C_{3}

Index Defining Vector Diagram
1 [1,0,0][1,0,0] [1,0,0][1,0,0]
2 [1,1,0][1,1,0] [0,1,0][0,1,0]
3 [1,1,1][1,1,1] [0,0,2][0,0,2]
8 [2,2,0][2,2,0] [0,2,0][0,2,0]
10 [3,1,0][3,1,0] [2,1,0][2,1,0]
11 [3,1,1][3,1,1] [2,0,2][2,0,2]
35 [5,3,1][5,3,1] [2,2,2][2,2,2]

Subalgebras of type A1A_{1} in C4C_{4}

Index Defining Vector Diagram
1 [1,0,0,0][1,0,0,0] [1,0,0,0][1,0,0,0]
2 [1,1,0,0][1,1,0,0] [0,1,0,0][0,1,0,0]
3 [1,1,1,0][1,1,1,0] [0,0,1,0][0,0,1,0]
4 [1,1,1,1][1,1,1,1] [0,0,0,2][0,0,0,2]
8 [2,2,0,0][2,2,0,0] [0,2,0,0][0,2,0,0]
9 [2,2,1,0][2,2,1,0] [0,1,1,0][0,1,1,0]
10 [3,1,0,0][3,1,0,0] [2,1,0,0][2,1,0,0]
11 [3,1,1,0][3,1,1,0] [2,0,1,0][2,0,1,0]
12 [3,1,1,1][3,1,1,1] [2,0,0,2][2,0,0,2]
20 [3,3,1,1][3,3,1,1] [0,2,0,2][0,2,0,2]
35 [5,3,1,0][5,3,1,0] [2,2,1,0][2,2,1,0]
36 [5,3,1,1][5,3,1,1] [2,2,0,2][2,2,0,2]
84 [7,5,3,1][7,5,3,1] [2,2,2,2][2,2,2,2]

Subalgebras of type A1A_{1} in C5C_{5}

Index Defining Vector Diagram
1 [1,0,0,0,0][1,0,0,0,0] [1,0,0,0,0][1,0,0,0,0]
2 [1,1,0,0,0][1,1,0,0,0] [0,1,0,0,0][0,1,0,0,0]
3 [1,1,1,0,0][1,1,1,0,0] [0,0,1,0,0][0,0,1,0,0]
4 [1,1,1,1,0][1,1,1,1,0] [0,0,0,1,0][0,0,0,1,0]
5 [1,1,1,1,1][1,1,1,1,1] [0,0,0,0,2][0,0,0,0,2]
8 [2,2,0,0,0][2,2,0,0,0] [0,2,0,0,0][0,2,0,0,0]
9 [2,2,1,0,0][2,2,1,0,0] [0,1,1,0,0][0,1,1,0,0]
10β€²10^{\prime} [2,2,1,1,0][2,2,1,1,0] [0,1,0,1,0][0,1,0,1,0]
10β€²β€²10^{\prime\prime} [3,1,0,0,0][3,1,0,0,0] [2,1,0,0,0][2,1,0,0,0]
11 [3,1,1,0,0][3,1,1,0,0] [2,0,1,0,0][2,0,1,0,0]
12 [3,1,1,1,0][3,1,1,1,0] [2,0,0,1,0][2,0,0,1,0]
13 [3,1,1,1,1][3,1,1,1,1] [2,0,0,0,2][2,0,0,0,2]
18 [3,2,2,1,0][3,2,2,1,0] [1,0,1,1,0][1,0,1,1,0]
20 [3,3,1,1,0][3,3,1,1,0] [0,2,0,1,0][0,2,0,1,0]
21 [3,3,1,1,1][3,3,1,1,1] [0,2,0,0,2][0,2,0,0,2]
35 [5,3,1,0,0][5,3,1,0,0] [2,2,1,0,0][2,2,1,0,0]
36 [5,3,1,1,0][5,3,1,1,0] [2,2,0,1,0][2,2,0,1,0]
37 [5,3,1,1,1][5,3,1,1,1] [2,2,0,0,2][2,2,0,0,2]
40 [4,4,2,2,0][4,4,2,2,0] [0,2,0,2,0][0,2,0,2,0]
45 [5,3,3,1,1][5,3,3,1,1] [2,0,2,0,2][2,0,2,0,2]
84 [7,5,3,1,0][7,5,3,1,0] [2,2,2,1,0][2,2,2,1,0]
85 [7,5,3,1,1][7,5,3,1,1] [2,2,2,0,2][2,2,2,0,2]
165 [9,7,5,3,1][9,7,5,3,1] [2,2,2,2,2][2,2,2,2,2]

Subalgebras of type A1A_{1} in C6C_{6}

Index Defining Vector Diagram Index Defining Vector Diagram
1 [1,0,0,0,0,0][1,0,0,0,0,0] [1,0,0,0,0,0][1,0,0,0,0,0] 22 [3,3,1,1,1,1][3,3,1,1,1,1] [0,2,0,0,0,2][0,2,0,0,0,2]
2 [1,1,0,0,0,0][1,1,0,0,0,0] [0,1,0,0,0,0][0,1,0,0,0,0] 30 [3,3,3,1,1,1][3,3,3,1,1,1] [0,0,2,0,0,2][0,0,2,0,0,2]
3 [1,1,1,0,0,0][1,1,1,0,0,0] [0,0,1,0,0,0][0,0,1,0,0,0] 35 [5,3,1,0,0,0][5,3,1,0,0,0] [2,2,1,0,0,0][2,2,1,0,0,0]
4 [1,1,1,1,0,0][1,1,1,1,0,0] [0,0,0,1,0,0][0,0,0,1,0,0] 36 [5,3,1,1,0,0][5,3,1,1,0,0] [2,2,0,1,0,0][2,2,0,1,0,0]
5 [1,1,1,1,1,0][1,1,1,1,1,0] [0,0,0,0,1,0][0,0,0,0,1,0] 37 [5,3,1,1,1,0][5,3,1,1,1,0] [2,2,0,0,1,0][2,2,0,0,1,0]
6 [1,1,1,1,1,1][1,1,1,1,1,1] [0,0,0,0,0,2][0,0,0,0,0,2] 38 [5,3,1,1,1,1][5,3,1,1,1,1] [2,2,0,0,0,2][2,2,0,0,0,2]
8 [2,2,0,0,0,0][2,2,0,0,0,0] [0,2,0,0,0,0][0,2,0,0,0,0] 40 [4,4,2,2,0,0][4,4,2,2,0,0] [0,2,0,2,0,0][0,2,0,2,0,0]
9 [2,2,1,0,0,0][2,2,1,0,0,0] [0,1,1,0,0,0][0,1,1,0,0,0] 41 [4,4,2,2,1,0][4,4,2,2,1,0] [0,2,0,1,1,0][0,2,0,1,1,0]
10β€²10^{\prime} [2,2,1,1,0,0][2,2,1,1,0,0] [0,1,0,1,0,0][0,1,0,1,0,0] 43 [5,3,2,2,1,0][5,3,2,2,1,0] [2,1,0,1,1,0][2,1,0,1,1,0]
10β€²β€²10^{\prime\prime} [3,1,0,0,0,0][3,1,0,0,0,0] [2,1,0,0,0,0][2,1,0,0,0,0] 45 [5,3,3,1,1,0][5,3,3,1,1,0] [2,0,2,0,1,0][2,0,2,0,1,0]
11β€²11^{\prime} [2,2,1,1,1,0][2,2,1,1,1,0] [0,1,0,0,1,0][0,1,0,0,1,0] 46 [5,3,3,1,1,1][5,3,3,1,1,1] [2,0,2,0,0,2][2,0,2,0,0,2]
11β€²β€²11^{\prime\prime} [3,1,1,0,0,0][3,1,1,0,0,0] [2,0,1,0,0,0][2,0,1,0,0,0] 70 [5,5,3,3,1,1][5,5,3,3,1,1] [0,2,0,2,0,2][0,2,0,2,0,2]
12 [3,1,1,1,0,0][3,1,1,1,0,0] [2,0,0,1,0,0][2,0,0,1,0,0] 84 [7,5,3,1,0,0][7,5,3,1,0,0] [2,2,2,1,0,0][2,2,2,1,0,0]
13 [3,1,1,1,1,0][3,1,1,1,1,0] [2,0,0,0,1,0][2,0,0,0,1,0] 85 [7,5,3,1,1,0][7,5,3,1,1,0] [2,2,2,0,1,0][2,2,2,0,1,0]
14 [3,1,1,1,1,1][3,1,1,1,1,1] [2,0,0,0,0,2][2,0,0,0,0,2] 86 [7,5,3,1,1,1][7,5,3,1,1,1] [2,2,2,0,0,2][2,2,2,0,0,2]
16 [2,2,2,2,0,0][2,2,2,2,0,0] [0,0,0,2,0,0][0,0,0,2,0,0] 94 [7,5,3,3,1,1][7,5,3,3,1,1] [2,2,0,2,0,2][2,2,0,2,0,2]
18 [3,2,2,1,0,0][3,2,2,1,0,0] [1,0,1,1,0,0][1,0,1,1,0,0] 165 [9,7,5,3,1,0][9,7,5,3,1,0] [2,2,2,2,1,0][2,2,2,2,1,0]
19 [3,2,2,1,1,0][3,2,2,1,1,0] [1,0,1,0,1,0][1,0,1,0,1,0] 166 [9,7,5,3,1,1][9,7,5,3,1,1] [2,2,2,2,0,2][2,2,2,2,0,2]
20 [3,3,1,1,0,0][3,3,1,1,0,0] [0,2,0,1,0,0][0,2,0,1,0,0] 286 [11,9,7,5,3,1][11,9,7,5,3,1] [2,2,2,2,2,2][2,2,2,2,2,2]
21 [3,3,1,1,1,0][3,3,1,1,1,0] [0,2,0,0,1,0][0,2,0,0,1,0]

Subalgebras of type A1A_{1} in D2D_{2}

Index Defining Vector Diagram
1β€²1^{\prime} [1,βˆ’1][1,-1] [2,0][2,0]
1β€²β€²1^{\prime\prime} [1,1][1,1] [0,2][0,2]
2 [2,0][2,0] [2,2][2,2]

Subalgebras of type A1A_{1} in D3D_{3}

Index Defining Vector Diagram
1 [1,1,0][1,1,0] [0,1,1][0,1,1]
2 [2,0,0][2,0,0] [2,0,0][2,0,0]
4 [2,2,0][2,2,0] [0,2,2][0,2,2]
10 [4,2,0][4,2,0] [2,2,2][2,2,2]

Subalgebras of type A1A_{1} in D4D_{4}

Index Defining Vector Diagram
1 β€‚β€Šβ€„β€„β€„β€„β€‰[1,1,0,0][1,1,0,0] [0,1,0,0][0,1,0,0]
2β€²2^{\prime} β€‚β€Šβ€„β€„β€„β€„β€‰[1,1,1,βˆ’1][1,1,1,-1] [0,0,2,0][0,0,2,0]
2β€²β€²2^{\prime\prime} β€‚β€Šβ€„β€„β€„β€„β€‰[1,1,1,1][1,1,1,1] [0,0,0,2][0,0,0,2]
2β€²β€²β€²2^{\prime\prime\prime} β€‚β€Šβ€„β€„β€„β€„β€‰[2,0,0,0][2,0,0,0] [2,0,0,0][2,0,0,0]
3 β€‚β€Šβ€„β€„β€„β€„β€‰[2,1,1,0][2,1,1,0] [1,0,1,1][1,0,1,1]
4 β€‚β€Šβ€„β€„β€„β€„β€‰[2,2,0,0][2,2,0,0] [0,2,0,0][0,2,0,0]
10β€²10^{\prime} β€‚β€Šβ€„β€„β€„β€„β€‰[3,3,1,βˆ’1][3,3,1,-1] [0,2,2,0][0,2,2,0]
10β€²β€²10^{\prime\prime} β€‚β€Šβ€„β€„β€„β€„β€‰[3,3,1,1][3,3,1,1] [0,2,0,2][0,2,0,2]
10β€²β€²β€²10^{\prime\prime\prime} β€‚β€Šβ€„β€„β€„β€„β€‰[4,2,0,0][4,2,0,0] [2,2,0,0][2,2,0,0]
12 β€‚β€Šβ€„β€„β€„β€„β€‰[4,2,2,0][4,2,2,0] [2,0,2,2][2,0,2,2]
28 β€‚β€Šβ€„β€„β€„β€„β€‰[6,4,2,0][6,4,2,0] [2,2,2,2][2,2,2,2]

Subalgebras of type A1A_{1} in D5D_{5}

Index Defining Vector Diagram
1 [1,1,0,0,0][1,1,0,0,0] [0,1,0,0,0][0,1,0,0,0]
2β€²2^{\prime} [1,1,1,1,0][1,1,1,1,0] [0,0,0,1,1][0,0,0,1,1]
2β€²β€²2^{\prime\prime} [2,0,0,0,0][2,0,0,0,0] [2,0,0,0,0][2,0,0,0,0]
3 [2,1,1,0,0][2,1,1,0,0] [1,0,1,0,0][1,0,1,0,0]
4 [2,2,0,0,0][2,2,0,0,0] [0,2,0,0,0][0,2,0,0,0]
5 [2,2,1,1,0][2,2,1,1,0] [0,1,0,1,1][0,1,0,1,1]
6 [2,2,2,0,0][2,2,2,0,0] [0,0,2,0,0][0,0,2,0,0]
10β€²10^{\prime} [3,3,1,1,0][3,3,1,1,0] [0,2,0,1,1][0,2,0,1,1]
10β€²β€²10^{\prime\prime} [4,2,0,0,0][4,2,0,0,0] [2,2,0,0,0][2,2,0,0,0]
11 [4,2,1,1,0][4,2,1,1,0] [2,1,0,1,1][2,1,0,1,1]
12 [4,2,2,0,0][4,2,2,0,0] [2,0,2,0,0][2,0,2,0,0]
20 [4,4,2,2,0][4,4,2,2,0] [0,2,0,2,2][0,2,0,2,2]
28 [6,4,2,0,0][6,4,2,0,0] [2,2,2,0,0][2,2,2,0,0]
30 [6,4,2,2,0][6,4,2,2,0] [2,2,0,2,2][2,2,0,2,2]
60 [8,6,4,2,0][8,6,4,2,0] [2,2,2,2,2][2,2,2,2,2]

Subalgebras of type A1A_{1} in D6D_{6}

Index Defining Vector Diagram Index Defining Vector Diagram
1 [1,1,0,0,0,0][1,1,0,0,0,0] [0,1,0,0,0,0][0,1,0,0,0,0] 11β€²β€²β€²11^{\prime\prime\prime} [4,2,1,1,0,0][4,2,1,1,0,0] [2,1,0,1,0,0][2,1,0,1,0,0]
2β€²2^{\prime} [1,1,1,1,0,0][1,1,1,1,0,0] [0,0,0,1,0,0][0,0,0,1,0,0] 12β€²12^{\prime} [3,3,2,1,1,0][3,3,2,1,1,0] [0,1,1,0,1,1][0,1,1,0,1,1]
2β€²β€²2^{\prime\prime} [2,0,0,0,0,0][2,0,0,0,0,0] [2,0,0,0,0,0][2,0,0,0,0,0] 12β€²β€²12^{\prime\prime} [4,2,2,0,0,0][4,2,2,0,0,0] [2,0,2,0,0,0][2,0,2,0,0,0]
3β€²3^{\prime} [1,1,1,1,1,βˆ’1][1,1,1,1,1,-1] [0,0,0,0,2,0][0,0,0,0,2,0] 13 [4,2,2,1,1,0][4,2,2,1,1,0] [2,0,1,0,1,1][2,0,1,0,1,1]
3β€²β€²3^{\prime\prime} [1,1,1,1,1,1][1,1,1,1,1,1] [0,0,0,0,0,2][0,0,0,0,0,2] 14 [4,2,2,2,0,0][4,2,2,2,0,0] [2,0,0,2,0,0][2,0,0,2,0,0]
3β€²β€²β€²3^{\prime\prime\prime} [2,1,1,0,0,0][2,1,1,0,0,0] [1,0,1,0,0,0][1,0,1,0,0,0] 20 [4,4,2,2,0,0][4,4,2,2,0,0] [0,2,0,2,0,0][0,2,0,2,0,0]
4β€²4^{\prime} [2,1,1,1,1,0][2,1,1,1,1,0] [1,0,0,0,1,1][1,0,0,0,1,1] 28 [6,4,2,0,0,0][6,4,2,0,0,0] [2,2,2,0,0,0][2,2,2,0,0,0]
4β€²β€²4^{\prime\prime} [2,2,0,0,0,0][2,2,0,0,0,0] [0,2,0,0,0,0][0,2,0,0,0,0] 29 [6,4,2,1,1,0][6,4,2,1,1,0] [2,2,1,0,1,1][2,2,1,0,1,1]
5 [2,2,1,1,0,0][2,2,1,1,0,0] [0,1,0,1,0,0][0,1,0,1,0,0] 30 [6,4,2,2,0,0][6,4,2,2,0,0] [2,2,0,2,0,0][2,2,0,2,0,0]
6 [2,2,2,0,0,0][2,2,2,0,0,0] [0,0,2,0,0,0][0,0,2,0,0,0] 35β€²35^{\prime} [5,5,3,3,1,βˆ’1][5,5,3,3,1,-1] [0,2,0,2,2,0][0,2,0,2,2,0]
8 [2,2,2,2,0,0][2,2,2,2,0,0] [0,0,0,2,0,0][0,0,0,2,0,0] 35β€²β€²35^{\prime\prime} [5,5,3,3,1,1][5,5,3,3,1,1] [0,2,0,2,0,2][0,2,0,2,0,2]
10β€²10^{\prime} [3,3,1,1,0,0][3,3,1,1,0,0] [0,2,0,1,0,0][0,2,0,1,0,0] 38 [6,4,4,2,2,0][6,4,4,2,2,0] [2,0,2,0,2,2][2,0,2,0,2,2]
10β€²β€²10^{\prime\prime} [4,2,0,0,0,0][4,2,0,0,0,0] [2,2,0,0,0,0][2,2,0,0,0,0] 60 [8,6,4,2,0,0][8,6,4,2,0,0] [2,2,2,2,0,0][2,2,2,2,0,0]
11β€²11^{\prime} [3,3,1,1,1,βˆ’1][3,3,1,1,1,-1] [0,2,0,0,2,0][0,2,0,0,2,0] 62 [8,6,4,2,2,0][8,6,4,2,2,0] [2,2,2,0,2,2][2,2,2,0,2,2]
11β€²β€²11^{\prime\prime} [3,3,1,1,1,1][3,3,1,1,1,1] [0,2,0,0,0,2][0,2,0,0,0,2] 110 [10,8,6,4,2,0][10,8,6,4,2,0] [2,2,2,2,2,2][2,2,2,2,2,2]

Appendix B: Subalgebras of ranks 2 and 3

In this appendix, we describe all of the conjugacy classes of subalgebras of ranks 2 and 3 in the complex simple Lie algebras of rank up to 6.666Much of this information is also available in [13], which was used as a reference when compiling these tables. However, while [13] is concerned with O​(n,β„‚)O(n,\mathbb{C}) conjugacy classes, we are concerned with S​O​(n,β„‚)SO(n,\mathbb{C}) conjugacy classes. For example, the subalgebras B21β€²B_{2}^{1^{\prime}} and B21β€²β€²B_{2}^{1^{\prime\prime}} of D4D_{4} appear in two non-conjugate dual pairs of S​O​(8,β„‚)SO(8,\mathbb{C}) (see Table 7) but they are not listed as distinct conjugacy classes in [13].

Note that there are some examples where the same conjugacy class can be specified by multiple non-conjugate maps. For example, A21A_{2}^{1} in A4A_{4} can be obtained either as the image of V3βŠ•V1βŠ•2V_{3}\oplus V_{1}^{\oplus 2} with Cartan embedding

[x,y,βˆ’xβˆ’y]↦[x,y,βˆ’xβˆ’y,0,0][x,y,-x-y]\mapsto[x,y,-x-y,0,0]

or as the image of V3βˆ—βŠ•V1βŠ•2V_{3}^{*}\oplus V_{1}^{\oplus 2} with Cartan embedding

[x,y,βˆ’xβˆ’y]↦[βˆ’x,βˆ’y,x+y,0,0].[x,y,-x-y]\mapsto[-x,-y,x+y,0,0].

In these situations, we will include the conjugacy class twice and will include both maps in the table.

For the highest weights and Cartan subalgebras in this appendix, we will use the realizations from [3, Plates I-IX].

Subalgebras of type A2A_{2}

We denote the irreducible representations of A2A_{2} of dimension at most 13 as follows:

Label Highest Weight Dimension Symplectic or Orthogonal?
V1V_{1} β€‚β€Šβ€„β€„β€„β€‰[0,0,0][0,0,0] 1 Orthogonal
V3V_{3} β€‚β€Šβ€„β€„β€„β€‰[23,βˆ’13,βˆ’13]\left[\frac{2}{3},-\frac{1}{3},-\frac{1}{3}\right] 3 Neither
V3βˆ—V_{3}^{*} β€‚β€Šβ€„β€„β€„β€‰[13,13,βˆ’23]\left[\frac{1}{3},\frac{1}{3},-\frac{2}{3}\right] 3 Neither
VAdV_{\text{Ad}} β€‚β€Šβ€„β€„β€„β€‰[1,0,βˆ’1][1,0,-1] 8 Orthogonal
Sym2⁑V3\operatorname{Sym}^{2}V_{3} β€‚β€Šβ€„β€„β€„β€‰[43,βˆ’23,βˆ’23]\left[\frac{4}{3},-\frac{2}{3},-\frac{2}{3}\right] 6 Neither
Sym2⁑V3βˆ—\operatorname{Sym}^{2}V_{3}^{*} β€‚β€Šβ€„β€„β€„β€‰[23,23,βˆ’43]\left[\frac{2}{3},\frac{2}{3},-\frac{4}{3}\right] 6 Neither
Sym3⁑V3\operatorname{Sym}^{3}V_{3} β€‚β€Šβ€„β€„β€„β€‰[2,βˆ’1,βˆ’1]\left[2,-1,-1\right] 10 Neither
Sym3⁑V3βˆ—\operatorname{Sym}^{3}V_{3}^{*} β€‚β€Šβ€„β€„β€„β€‰[1,1,βˆ’2]\left[1,1,-2\right] 10 Neither
Table 14. Irreducible representations of A2A_{2} of dimension at most 13.

Using this notation, the following table classifies all of the conjugacy classes of subalgebras π”₯\mathfrak{h} of type A2A_{2} in 𝔀\mathfrak{g} for various 𝔀\mathfrak{g}.

𝔀\mathfrak{g} Dynkin Standard rep.Β of β€‚β€Šβ€ƒβ€ƒβ€‚β€„Cartan embedding
index 𝔀\mathfrak{g} restricted to π”₯\mathfrak{h}
A3A_{3} β€‚β€Šβ€„β€„β€„β€„β€‰1β€²1^{\prime} V3βŠ•V1V_{3}\oplus V_{1} [x,y,βˆ’xβˆ’y]↦[x,y,βˆ’xβˆ’y,0][x,y,-x-y]\mapsto[x,y,-x-y,0]
β€‚β€Šβ€„β€„β€„β€„β€‰1β€²β€²1^{\prime\prime} V3βˆ—βŠ•V1V_{3}^{*}\oplus V_{1} [x,y,βˆ’xβˆ’y]↦[βˆ’x,βˆ’y,x+y,0][x,y,-x-y]\mapsto[-x,-y,x+y,0]
B3B_{3} β€‚β€Šβ€„β€„β€„β€„β€‰1 V3βŠ•V3βˆ—V_{3}\oplus V_{3}^{*} [x,y,βˆ’xβˆ’y]↦[x,y,βˆ’xβˆ’y][x,y,-x-y]\mapsto[x,y,-x-y]
C3C_{3} β€‚β€Šβ€„β€„β€„β€„β€‰2 V3βŠ•V3βˆ—V_{3}\oplus V_{3}^{*} [x,y,βˆ’xβˆ’y]↦[x,y,βˆ’xβˆ’y][x,y,-x-y]\mapsto[x,y,-x-y]
A4A_{4} β€‚β€Šβ€„β€„β€„β€„β€‰1  V3βŠ•V1βŠ•2V_{3}\oplus V_{1}^{\oplus 2} [x,y,βˆ’xβˆ’y]↦[x,y,βˆ’xβˆ’y,0,0][x,y,-x-y]\mapsto[x,y,-x-y,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰1  V3βˆ—βŠ•V1βŠ•2V_{3}^{*}\oplus V_{1}^{\oplus 2} [x,y,βˆ’xβˆ’y]↦[βˆ’x,βˆ’y,x+y,0,0][x,y,-x-y]\mapsto[-x,-y,x+y,0,0]
B4B_{4} β€‚β€Šβ€„β€„β€„β€„β€‰1 V3βŠ•V3βˆ—βŠ•V1βŠ•3V_{3}\oplus V_{3}^{*}\oplus V_{1}^{\oplus 3} [x,y,βˆ’xβˆ’y]↦[x,y,βˆ’xβˆ’y,0][x,y,-x-y]\mapsto[x,y,-x-y,0]
β€‚β€Šβ€„β€„β€„β€„β€‰3 VAdβŠ•V1V_{\text{Ad}}\oplus V_{1} [x,y,βˆ’xβˆ’y]↦[xβˆ’y,x+2​y,βˆ’2​xβˆ’y,0][x,y,-x-y]\mapsto[x-y,x+2y,-2x-y,0]
C4C_{4} β€‚β€Šβ€„β€„β€„β€„β€‰2 V3βŠ•V3βˆ—βŠ•V1βŠ•2V_{3}\oplus V_{3}^{*}\oplus V_{1}^{\oplus 2} [x,y,βˆ’xβˆ’y]↦[x,y,βˆ’xβˆ’y,0][x,y,-x-y]\mapsto[x,y,-x-y,0]
D4D_{4} β€‚β€Šβ€„β€„β€„β€„β€‰1 V3βŠ•V3βˆ—βŠ•V1βŠ•2V_{3}\oplus V_{3}^{*}\oplus V_{1}^{\oplus 2} [x,y,βˆ’xβˆ’y]↦[x,y,βˆ’xβˆ’y,0][x,y,-x-y]\mapsto[x,y,-x-y,0]
β€‚β€Šβ€„β€„β€„β€„β€‰3 VAdV_{\text{Ad}} [x,y,βˆ’xβˆ’y]↦[xβˆ’y,x+2​y,βˆ’2​xβˆ’y,0][x,y,-x-y]\mapsto[x-y,x+2y,-2x-y,0]
A5A_{5} β€‚β€Šβ€„β€„β€„β€„β€‰1  V3βŠ•V1βŠ•3V_{3}\oplus V_{1}^{\oplus 3} [x,y,βˆ’xβˆ’y]↦[x,y,βˆ’xβˆ’y,0,0,0][x,y,-x-y]\mapsto[x,y,-x-y,0,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰1  V3βˆ—βŠ•V1βŠ•3V_{3}^{*}\oplus V_{1}^{\oplus 3} [x,y,βˆ’xβˆ’y]↦[βˆ’x,βˆ’y,x+y,0,0,0][x,y,-x-y]\mapsto[-x,-y,x+y,0,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰2 V3βŠ•V3V_{3}\oplus V_{3} [x,y,βˆ’xβˆ’y]↦[x,x,y,y,βˆ’xβˆ’y,βˆ’xβˆ’y][x,y,-x-y]\mapsto[x,x,y,y,-x-y,-x-y]
β€‚β€Šβ€„β€„β€„β€„β€‰2 V3βŠ•V3βˆ—V_{3}\oplus V_{3}^{*} [x,y,βˆ’xβˆ’y]↦[x,βˆ’x,y,βˆ’y,βˆ’xβˆ’y,x+y][x,y,-x-y]\mapsto[x,-x,y,-y,-x-y,x+y]
β€‚β€Šβ€„β€„β€„β€„β€‰2 V3βˆ—βŠ•V3βˆ—V_{3}^{*}\oplus V_{3}^{*} [x,y,βˆ’xβˆ’y]↦[βˆ’x,βˆ’x,βˆ’y,βˆ’y,x+y,x+y][x,y,-x-y]\mapsto[-x,-x,-y,-y,x+y,x+y]
β€‚β€Šβ€„β€„β€„β€„β€‰5 Sym2⁑V3\operatorname{Sym}^{2}V_{3} [x,y,βˆ’xβˆ’y]↦[2​x,2​y,βˆ’2​xβˆ’2​y,βˆ’x,βˆ’y,x+y][x,y,-x-y]\mapsto[2x,2y,-2x-2y,-x,-y,x+y]
β€‚β€Šβ€„β€„β€„β€„β€‰5 Sym2⁑V3βˆ—\operatorname{Sym}^{2}V_{3}^{*} [x,y,βˆ’xβˆ’y]↦[βˆ’2​x,βˆ’2​y,2​x+2​y,x,y,βˆ’xβˆ’y][x,y,-x-y]\mapsto[-2x,-2y,2x+2y,x,y,-x-y]
B5B_{5} β€‚β€Šβ€„β€„β€„β€„β€‰1 V3βŠ•V3βˆ—βŠ•V1βŠ•5V_{3}\oplus V_{3}^{*}\oplus V_{1}^{\oplus 5} [x,y,βˆ’xβˆ’y]↦[x,y,βˆ’xβˆ’y,0,0][x,y,-x-y]\mapsto[x,y,-x-y,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰3  VAdβŠ•V1βŠ•3V_{\text{Ad}}\oplus V_{1}^{\oplus 3} [x,y,βˆ’xβˆ’y]↦[xβˆ’y,x+2​y,βˆ’2​xβˆ’y,0,0][x,y,-x-y]\mapsto[x-y,x+2y,-2x-y,0,0]
C5C_{5} β€‚β€Šβ€„β€„β€„β€„β€‰2 V3βŠ•V3βˆ—βŠ•V1βŠ•4V_{3}\oplus V_{3}^{*}\oplus V_{1}^{\oplus 4} [x,y,βˆ’xβˆ’y]↦[x,y,βˆ’xβˆ’y,0,0][x,y,-x-y]\mapsto[x,y,-x-y,0,0]
D5D_{5} β€‚β€Šβ€„β€„β€„β€„β€‰1 V3βŠ•V3βˆ—βŠ•V1βŠ•4V_{3}\oplus V_{3}^{*}\oplus V_{1}^{\oplus 4} [x,y,βˆ’xβˆ’y]↦[x,y,βˆ’xβˆ’y,0,0][x,y,-x-y]\mapsto[x,y,-x-y,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰3  VAdβŠ•V1βŠ•2V_{\text{Ad}}\oplus V_{1}^{\oplus 2} [x,y,βˆ’xβˆ’y]↦[xβˆ’y,x+2​y,βˆ’2​xβˆ’y,0,0][x,y,-x-y]\mapsto[x-y,x+2y,-2x-y,0,0]
A6A_{6} β€‚β€Šβ€„β€„β€„β€„β€‰1  V3βŠ•V1βŠ•4V_{3}\oplus V_{1}^{\oplus 4} [x,y,βˆ’xβˆ’y]↦[x,y,βˆ’xβˆ’y,0,0,0,0][x,y,-x-y]\mapsto[x,y,-x-y,0,0,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰1  V3βˆ—βŠ•V1βŠ•4V_{3}^{*}\oplus V_{1}^{\oplus 4} [x,y,βˆ’xβˆ’y]↦[βˆ’x,βˆ’y,x+y,0,0,0,0][x,y,-x-y]\mapsto[-x,-y,x+y,0,0,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰2 V3βŠ•V3βŠ•V1V_{3}\oplus V_{3}\oplus V_{1} [x,y,βˆ’xβˆ’y]↦[x,x,y,y,βˆ’xβˆ’y,βˆ’xβˆ’y,0][x,y,-x-y]\mapsto[x,x,y,y,-x-y,-x-y,0]
β€‚β€Šβ€„β€„β€„β€„β€‰2 V3βŠ•V3βˆ—βŠ•V1V_{3}\oplus V_{3}^{*}\oplus V_{1} [x,y,βˆ’xβˆ’y]↦[x,βˆ’x,y,βˆ’y,βˆ’xβˆ’y,x+y,0][x,y,-x-y]\mapsto[x,-x,y,-y,-x-y,x+y,0]
β€‚β€Šβ€„β€„β€„β€„β€‰2 V3βˆ—βŠ•V3βˆ—βŠ•V1V_{3}^{*}\oplus V_{3}^{*}\oplus V_{1} [x,y,βˆ’xβˆ’y]↦[βˆ’x,βˆ’x,βˆ’y,βˆ’y,x+y,x+y,0][x,y,-x-y]\mapsto[-x,-x,-y,-y,x+y,x+y,0]
β€‚β€Šβ€„β€„β€„β€„β€‰5 Sym2⁑V3βŠ•V1\operatorname{Sym}^{2}V_{3}\oplus V_{1} [x,y,βˆ’xβˆ’y]↦[2​x,2​y,βˆ’2​xβˆ’2​y,βˆ’x,βˆ’y,x+y,0][x,y,-x-y]\mapsto[2x,2y,-2x-2y,-x,-y,x+y,0]
β€‚β€Šβ€„β€„β€„β€„β€‰5 Sym2⁑V3βˆ—βŠ•V1\operatorname{Sym}^{2}V_{3}^{*}\oplus V_{1} [x,y,βˆ’xβˆ’y]↦[βˆ’2​x,βˆ’2​y,2​x+2​y,x,y,βˆ’xβˆ’y,0][x,y,-x-y]\mapsto[-2x,-2y,2x+2y,x,y,-x-y,0]
B6B_{6} β€‚β€Šβ€„β€„β€„β€„β€‰1 V3βŠ•V3βˆ—βŠ•V1βŠ•7V_{3}\oplus V_{3}^{*}\oplus V_{1}^{\oplus 7} [x,y,βˆ’xβˆ’y]↦[x,y,βˆ’xβˆ’y,0,0,0][x,y,-x-y]\mapsto[x,y,-x-y,0,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰2 V3βŠ•V3βŠ•V3βˆ—βŠ•V3βˆ—βŠ•V1V_{3}\oplus V_{3}\oplus V_{3}^{*}\oplus V_{3}^{*}\oplus V_{1} [x,y,βˆ’xβˆ’y]↦[x,x,y,y,βˆ’xβˆ’y,βˆ’xβˆ’y][x,y,-x-y]\mapsto[x,x,y,y,-x-y,-x-y]
β€‚β€Šβ€„β€„β€„β€„β€‰3  VAdβŠ•V1βŠ•5V_{\text{Ad}}\oplus V_{1}^{\oplus 5} [x,y,βˆ’xβˆ’y]↦[xβˆ’y,x+2​y,βˆ’2​xβˆ’y,0,0,0][x,y,-x-y]\mapsto[x-y,x+2y,-2x-y,0,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰5 Sym2⁑V3βŠ•Sym2⁑V3βˆ—βŠ•V1\operatorname{Sym}^{2}V_{3}\oplus\operatorname{Sym}^{2}V_{3}^{*}\oplus V_{1} [x,y,βˆ’xβˆ’y]↦[2​x,2​y,βˆ’2​xβˆ’2​y,βˆ’x,βˆ’y,x+y][x,y,-x-y]\mapsto[2x,2y,-2x-2y,-x,-y,x+y]
C6C_{6} β€‚β€Šβ€„β€„β€„β€„β€‰2 V3βŠ•V3βˆ—βŠ•V1βŠ•6V_{3}\oplus V_{3}^{*}\oplus V_{1}^{\oplus 6} [x,y,βˆ’xβˆ’y]↦[x,y,βˆ’xβˆ’y,0,0,0][x,y,-x-y]\mapsto[x,y,-x-y,0,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰4 V3βŠ•V3βŠ•V3βˆ—βŠ•V3βˆ—V_{3}\oplus V_{3}\oplus V_{3}^{*}\oplus V_{3}^{*} [x,y,βˆ’xβˆ’y]↦[x,x,y,y,βˆ’xβˆ’y,βˆ’xβˆ’y][x,y,-x-y]\mapsto[x,x,y,y,-x-y,-x-y]
β€‚β€Šβ€„β€„β€„β€‰10 Sym2⁑V3βŠ•Sym2⁑V3βˆ—\operatorname{Sym}^{2}V_{3}\oplus\operatorname{Sym}^{2}V_{3}^{*} [x,y,βˆ’xβˆ’y]↦[2​x,2​y,βˆ’2​xβˆ’2​y,βˆ’x,βˆ’y,x+y][x,y,-x-y]\mapsto[2x,2y,-2x-2y,-x,-y,x+y]
Table 16. Conjugacy classes of subalgebras of type A2A_{2} in various 𝔀\mathfrak{g}.

Subalgebras of type B2≃C2B_{2}\simeq C_{2}

We denote the irreducible representations of B2≃C2B_{2}\simeq C_{2} of dimension at most 13 as follows:

Label Highest Weight Highest Weight Dimension Symplectic or
(B2B_{2} coords.) (C2C_{2} coords.) Orthogonal?
V1V_{1} [0,0][0,0] [0,0][0,0] 1 Orthogonal
V4V_{4} [12,12]\left[\frac{1}{2},\frac{1}{2}\right] [1,0][1,0] 4 Symplectic
V5V_{5} [1,0][1,0] [1,1][1,1] 5 Orthogonal
V10V_{10} [1,1][1,1] [2,0][2,0] 10 Orthogonal
Table 17. Irreducible representations of B2≃C2B_{2}\simeq C_{2} of dimension at most 13.

Using this notation, the following table classifies all of the conjugacy classes of subalgebras π”₯\mathfrak{h} of type B2≃C2B_{2}\simeq C_{2} in 𝔀\mathfrak{g} for various 𝔀\mathfrak{g}.

𝔀\mathfrak{g} Dynkin Standard rep.Β of Cartan embedding Cartan embedding
index 𝔀\mathfrak{g} restricted to π”₯\mathfrak{h} (B2B_{2} coords.) (C2C_{2} coords.)
A3A_{3} β€‚β€Šβ€„β€„β€„β€„β€‰1 V4V_{4} [x,y]↦[x+y2,xβˆ’y2,βˆ’x+y2,βˆ’xβˆ’y2][x,y]\mapsto\left[\frac{x+y}{2},\frac{x-y}{2},-\frac{x+y}{2},-\frac{x-y}{2}\right] [p,q]↦[p,q,βˆ’p,βˆ’q][p,q]\mapsto[p,q,-p,-q]
B3B_{3} β€‚β€Šβ€„β€„β€„β€„β€‰1    V5βŠ•V1βŠ•2V_{5}\oplus V_{1}^{\oplus 2} [x,y]↦[x,y,0][x,y]\mapsto[x,y,0] [p,q]↦[p+q,pβˆ’q,0][p,q]\mapsto[p+q,p-q,0]
C3C_{3} β€‚β€Šβ€„β€„β€„β€„β€‰1    V4βŠ•V1βŠ•2V_{4}\oplus V_{1}^{\oplus 2} [x,y]↦[x+y2,xβˆ’y2,0][x,y]\mapsto\left[\frac{x+y}{2},\frac{x-y}{2},0\right] [p,q]↦[p,q,0][p,q]\mapsto[p,q,0]
D3D_{3} β€‚β€Šβ€„β€„β€„β€„β€‰1 V5βŠ•V1V_{5}\oplus V_{1} [x,y]↦[x,y,0][x,y]\mapsto[x,y,0] [p,q]↦[p+q,pβˆ’q,0][p,q]\mapsto[p+q,p-q,0]
A4A_{4} β€‚β€Šβ€„β€„β€„β€„β€‰1 V4βŠ•V1V_{4}\oplus V_{1} [x,y]↦[x+y2,xβˆ’y2,βˆ’x+y2,βˆ’xβˆ’y2,0][x,y]\mapsto\left[\frac{x+y}{2},\frac{x-y}{2},-\frac{x+y}{2},-\frac{x-y}{2},0\right] [p,q]↦[p,q,βˆ’p,βˆ’q,0][p,q]\mapsto[p,q,-p,-q,0]
β€‚β€Šβ€„β€„β€„β€„β€‰2 V5V_{5} [x,y]↦[x,y,βˆ’x,βˆ’y,0][x,y]\mapsto[x,y,-x,-y,0] [p,q]↦[p+q,pβˆ’q,βˆ’pβˆ’q,qβˆ’p,0][p,q]\mapsto[p+q,p-q,-p-q,q-p,0]
B4B_{4} β€‚β€Šβ€„β€„β€„β€„β€‰1β€²1^{\prime} V4βŠ•V4βŠ•V1V_{4}\oplus V_{4}\oplus V_{1} [x,y]↦[x+y2,x+y2,xβˆ’y2,xβˆ’y2][x,y]\mapsto\left[\frac{x+y}{2},\frac{x+y}{2},\frac{x-y}{2},\frac{x-y}{2}\right] [p,q]↦[p,p,q,q][p,q]\mapsto[p,p,q,q]
β€‚β€Šβ€„β€„β€„β€„β€‰1β€²β€²1^{\prime\prime}    V5βŠ•V1βŠ•4V_{5}\oplus V_{1}^{\oplus 4} [x,y]↦[x,y,0,0][x,y]\mapsto[x,y,0,0] [p,q]↦[p+q,pβˆ’q,0,0][p,q]\mapsto\left[p+q,p-q,0,0\right]
C4C_{4} β€‚β€Šβ€„β€„β€„β€„β€‰1    V4βŠ•V1βŠ•4V_{4}\oplus V_{1}^{\oplus 4} [x,y]↦[x+y2,xβˆ’y2,0,0][x,y]\mapsto\left[\frac{x+y}{2},\frac{x-y}{2},0,0\right] [p,q]↦[p,q,0,0][p,q]\mapsto[p,q,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰2 V4βŠ•V4V_{4}\oplus V_{4} [x,y]↦[x+y2,x+y2,xβˆ’y2,xβˆ’y2][x,y]\mapsto\left[\frac{x+y}{2},\frac{x+y}{2},\frac{x-y}{2},\frac{x-y}{2}\right] [p,q]↦[p,p,q,q][p,q]\mapsto[p,p,q,q]
D4D_{4} β€‚β€Šβ€„β€„β€„β€„β€‰1β€²1^{\prime} V4βŠ•V4V_{4}\oplus V_{4} [x,y]↦[x+y2,x+y2,xβˆ’y2,βˆ’xβˆ’y2][x,y]\mapsto\left[\frac{x+y}{2},\frac{x+y}{2},\frac{x-y}{2},-\frac{x-y}{2}\right] [p,q]↦[p,p,q,βˆ’q][p,q]\mapsto[p,p,q,-q]
β€‚β€Šβ€„β€„β€„β€„β€‰1β€²β€²1^{\prime\prime} V4βŠ•V4V_{4}\oplus V_{4} [x,y]↦[x+y2,x+y2,xβˆ’y2,xβˆ’y2][x,y]\mapsto\left[\frac{x+y}{2},\frac{x+y}{2},\frac{x-y}{2},\frac{x-y}{2}\right] [p,q]↦[p,p,q,q][p,q]\mapsto[p,p,q,q]
β€‚β€Šβ€„β€„β€„β€„β€‰1β€²β€²β€²1^{\prime\prime\prime}    V5βŠ•V1βŠ•3V_{5}\oplus V_{1}^{\oplus 3} [x,y]↦[x,y,0,0][x,y]\mapsto[x,y,0,0] [p,q]↦[p+q,pβˆ’q,0,0][p,q]\mapsto[p+q,p-q,0,0]
A5A_{5} β€‚β€Šβ€„β€„β€„β€„β€‰1    V4βŠ•V1βŠ•2V_{4}\oplus V_{1}^{\oplus 2} [x,y]↦[x+y2,xβˆ’y2,βˆ’x+y2,βˆ’xβˆ’y2,0,0][x,y]\mapsto\left[\frac{x+y}{2},\frac{x-y}{2},-\frac{x+y}{2},-\frac{x-y}{2},0,0\right] [p,q]↦[p,q,βˆ’p,βˆ’q,0,0][p,q]\mapsto[p,q,-p,-q,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰2 V5βŠ•V1V_{5}\oplus V_{1} [x,y]↦[x,y,βˆ’x,βˆ’y,0,0][x,y]\mapsto[x,y,-x,-y,0,0] [p,q]↦[p+q,pβˆ’q,βˆ’pβˆ’q,qβˆ’p,0,0][p,q]\mapsto[p+q,p-q,-p-q,q-p,0,0]
B5B_{5} β€‚β€Šβ€„β€„β€„β€„β€‰1β€²1^{\prime} V4βŠ•V4βŠ•V1βŠ•3V_{4}\oplus V_{4}\oplus V_{1}^{\oplus 3} [x,y]↦[x+y2,x+y2,xβˆ’y2,xβˆ’y2,0][x,y]\mapsto\left[\frac{x+y}{2},\frac{x+y}{2},\frac{x-y}{2},\frac{x-y}{2},0\right] [p,q]↦[p,p,q,q,0][p,q]\mapsto[p,p,q,q,0]
β€‚β€Šβ€„β€„β€„β€„β€‰1β€²β€²1^{\prime\prime}    V5βŠ•V1βŠ•6V_{5}\oplus V_{1}^{\oplus 6} [x,y]↦[x,y,0,0,0][x,y]\mapsto[x,y,0,0,0] [p,q]↦[p+q,pβˆ’q,0,0,0][p,q]\mapsto[p+q,p-q,0,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰2 V5βŠ•V5βŠ•V1V_{5}\oplus V_{5}\oplus V_{1} [x,y]↦[x,x,y,y,0][x,y]\mapsto[x,x,y,y,0] [p,q]↦[p+q,p+q,pβˆ’q,pβˆ’q,0][p,q]\mapsto[p+q,p+q,p-q,p-q,0]
β€‚β€Šβ€„β€„β€„β€„β€‰3 V10βŠ•V1V_{10}\oplus V_{1} [x,y]↦[x,y,x+y,xβˆ’y,0][x,y]\mapsto[x,y,x+y,x-y,0] [p,q]↦[p+q,pβˆ’q,2​p,2​q,0][p,q]\mapsto[p+q,p-q,2p,2q,0]
C5C_{5} β€‚β€Šβ€„β€„β€„β€„β€‰1    V4βŠ•V1βŠ•6V_{4}\oplus V_{1}^{\oplus 6} [x,y]↦[x+y2,xβˆ’y2,0,0,0][x,y]\mapsto\left[\frac{x+y}{2},\frac{x-y}{2},0,0,0\right] [p,q]↦[p,q,0,0,0][p,q]\mapsto[p,q,0,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰2 V4βŠ•V4βŠ•V1βŠ•2V_{4}\oplus V_{4}\oplus V_{1}^{\oplus 2} [x,y]↦[x+y2,x+y2,xβˆ’y2,xβˆ’y2,0][x,y]\mapsto\left[\frac{x+y}{2},\frac{x+y}{2},\frac{x-y}{2},\frac{x-y}{2},0\right] [p,q]↦[p,p,q,q,0][p,q]\mapsto[p,p,q,q,0]
β€‚β€Šβ€„β€„β€„β€„β€‰4 V5βŠ•V5V_{5}\oplus V_{5} [x,y]↦[x,x,y,y,0][x,y]\mapsto[x,x,y,y,0] [p,q]↦[p+q,p+q,pβˆ’q,pβˆ’q,0][p,q]\mapsto[p+q,p+q,p-q,p-q,0]
D5D_{5} β€‚β€Šβ€„β€„β€„β€„β€‰1β€²1^{\prime} V4βŠ•V4βŠ•V1βŠ•2V_{4}\oplus V_{4}\oplus V_{1}^{\oplus 2} [x,y]↦[x+y2,x+y2,xβˆ’y2,xβˆ’y2,0][x,y]\mapsto\left[\frac{x+y}{2},\frac{x+y}{2},\frac{x-y}{2},\frac{x-y}{2},0\right] [p,q]↦[p,p,q,q,0][p,q]\mapsto[p,p,q,q,0]
β€‚β€Šβ€„β€„β€„β€„β€‰1β€²β€²1^{\prime\prime}    V5βŠ•V1βŠ•5V_{5}\oplus V_{1}^{\oplus 5} [x,y]↦[x,y,0,0,0][x,y]\mapsto[x,y,0,0,0] [p,q]↦[p+q,pβˆ’q,0,0,0][p,q]\mapsto[p+q,p-q,0,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰2 V5βŠ•V5V_{5}\oplus V_{5} [x,y]↦[x,x,y,y,0][x,y]\mapsto[x,x,y,y,0] [p,q]↦[p+q,p+q,pβˆ’q,pβˆ’q,0][p,q]\mapsto[p+q,p+q,p-q,p-q,0]
β€‚β€Šβ€„β€„β€„β€„β€‰3 V10V_{10} [x,y]↦[x,y,x+y,xβˆ’y,0][x,y]\mapsto[x,y,x+y,x-y,0] [p,q]↦[p+q,pβˆ’q,2​p,2​q,0][p,q]\mapsto[p+q,p-q,2p,2q,0]
A6A_{6} β€‚β€Šβ€„β€„β€„β€„β€‰1    V4βŠ•V1βŠ•3V_{4}\oplus V_{1}^{\oplus 3} [x,y]↦[x+y2,xβˆ’y2,βˆ’x+y2,βˆ’xβˆ’y2,0,0,0][x,y]\mapsto\left[\frac{x+y}{2},\frac{x-y}{2},-\frac{x+y}{2},-\frac{x-y}{2},0,0,0\right] [p,q]↦[p,q,βˆ’p,βˆ’q,0,0,0][p,q]\mapsto[p,q,-p,-q,0,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰2    V5βŠ•V1βŠ•2V_{5}\oplus V_{1}^{\oplus 2} [x,y]↦[x,y,βˆ’x,βˆ’y,0,0,0][x,y]\mapsto[x,y,-x,-y,0,0,0] [p,q]↦[p+q,pβˆ’q,βˆ’pβˆ’q,qβˆ’p,0,0,0][p,q]\mapsto[p+q,p-q,-p-q,q-p,0,0,0]
B6B_{6} β€‚β€Šβ€„β€„β€„β€„β€‰1β€²1^{\prime} V4βŠ•V4βŠ•V1βŠ•5V_{4}\oplus V_{4}\oplus V_{1}^{\oplus 5} [x,y]↦[x+y2,x+y2,xβˆ’y2,xβˆ’y2,0,0][x,y]\mapsto\left[\frac{x+y}{2},\frac{x+y}{2},\frac{x-y}{2},\frac{x-y}{2},0,0\right] [p,q]↦[p,p,q,q,0,0][p,q]\mapsto[p,p,q,q,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰1β€²β€²1^{\prime\prime}    V5βŠ•V1βŠ•8V_{5}\oplus V_{1}^{\oplus 8} [x,y]↦[x,y,0,0,0,0][x,y]\mapsto[x,y,0,0,0,0] [p,q]↦[p+q,pβˆ’q,0,0,0,0][p,q]\mapsto[p+q,p-q,0,0,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰2β€²2^{\prime} V5βŠ•V5βŠ•V1βŠ•3V_{5}\oplus V_{5}\oplus V_{1}^{\oplus 3} [x,y]↦[x,x,y,y,0,0][x,y]\mapsto[x,x,y,y,0,0] [p,q]↦[p+q,p+q,pβˆ’q,pβˆ’q,0,0][p,q]\mapsto[p+q,p+q,p-q,p-q,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰2β€²β€²2^{\prime\prime} V5βŠ•V4βŠ•V4V_{5}\oplus V_{4}\oplus V_{4} [x,y]↦[x,y,x+y2,x+y2,xβˆ’y2,xβˆ’y2][x,y]\mapsto\left[x,y,\frac{x+y}{2},\frac{x+y}{2},\frac{x-y}{2},\frac{x-y}{2}\right] [p,q]↦[p+q,pβˆ’q,p,p,q,q][p,q]\mapsto[p+q,p-q,p,p,q,q]
β€‚β€Šβ€„β€„β€„β€„β€‰3    V10βŠ•V1βŠ•3V_{10}\oplus V_{1}^{\oplus 3} [x,y]↦[x,y,x+y,xβˆ’y,0,0][x,y]\mapsto[x,y,x+y,x-y,0,0] [p,q]↦[p+q,pβˆ’q,2​p,2​q,0,0][p,q]\mapsto[p+q,p-q,2p,2q,0,0]
C6C_{6} β€‚β€Šβ€„β€„β€„β€„β€‰1    V4βŠ•V1βŠ•8V_{4}\oplus V_{1}^{\oplus 8} [x,y]↦[x+y2,xβˆ’y2,0,0,0,0][x,y]\mapsto\left[\frac{x+y}{2},\frac{x-y}{2},0,0,0,0\right] [p,q]↦[p,q,0,0,0,0][p,q]\mapsto[p,q,0,0,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰2 V4βŠ•V4βŠ•V1βŠ•4V_{4}\oplus V_{4}\oplus V_{1}^{\oplus 4} [x,y]↦[x+y2,x+y2,xβˆ’y2,xβˆ’y2,0,0][x,y]\mapsto\left[\frac{x+y}{2},\frac{x+y}{2},\frac{x-y}{2},\frac{x-y}{2},0,0\right] [p,q]↦[p,p,q,q,0,0][p,q]\mapsto[p,p,q,q,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰3 V4βŠ•V4βŠ•V4V_{4}\oplus V_{4}\oplus V_{4} [x,y]↦[x+y2,x+y2,x+y2,xβˆ’y2,xβˆ’y2,xβˆ’y2][x,y]\mapsto\left[\frac{x+y}{2},\frac{x+y}{2},\frac{x+y}{2},\frac{x-y}{2},\frac{x-y}{2},\frac{x-y}{2}\right] [p,q]↦[p,p,p,q,q,q][p,q]\mapsto[p,p,p,q,q,q]
β€‚β€Šβ€„β€„β€„β€„β€‰4 V5βŠ•V5βŠ•V1βŠ•2V_{5}\oplus V_{5}\oplus V_{1}^{\oplus 2} [x,y]↦[x,x,y,y,0,0][x,y]\mapsto[x,x,y,y,0,0] [p,q]↦[p+q,p+q,pβˆ’q,pβˆ’q,0,0][p,q]\mapsto[p+q,p+q,p-q,p-q,0,0]
D6D_{6} β€‚β€Šβ€„β€„β€„β€„β€‰1β€²1^{\prime} V4βŠ•V4βŠ•V1βŠ•4V_{4}\oplus V_{4}\oplus V_{1}^{\oplus 4} [x,y]↦[x+y2,x+y2,xβˆ’y2,xβˆ’y2,0,0][x,y]\mapsto\left[\frac{x+y}{2},\frac{x+y}{2},\frac{x-y}{2},\frac{x-y}{2},0,0\right] [p,q]↦[p,p,q,q,0,0][p,q]\mapsto[p,p,q,q,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰1β€²β€²1^{\prime\prime}    V5βŠ•V1βŠ•7V_{5}\oplus V_{1}^{\oplus 7} [x,y]↦[x,y,0,0,0,0][x,y]\mapsto[x,y,0,0,0,0] [p,q]↦[p+q,pβˆ’q,0,0,0,0][p,q]\mapsto[p+q,p-q,0,0,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰2 V5βŠ•V5βŠ•V1βŠ•2V_{5}\oplus V_{5}\oplus V_{1}^{\oplus 2} [x,y]↦[x,x,y,y,0,0][x,y]\mapsto[x,x,y,y,0,0] [p,q]↦[p+q,p+q,pβˆ’q,pβˆ’q,0,0][p,q]\mapsto[p+q,p+q,p-q,p-q,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰3    V10βŠ•V1βŠ•2V_{10}\oplus V_{1}^{\oplus 2} [x,y]↦[x,y,x+y,xβˆ’y,0,0][x,y]\mapsto[x,y,x+y,x-y,0,0] [p,q]↦[p+q,pβˆ’q,2​p,2​q,0,0][p,q]\mapsto[p+q,p-q,2p,2q,0,0]
Table 19. Conjugacy classes of subalgebras of type B2≃C2B_{2}\simeq C_{2} in various 𝔀\mathfrak{g}.

Subalgebras of type G2G_{2}

We denote the irreducible representations of G2G_{2} of dimension at most 13 as follows:

Label Highest Weight Dimension Symplectic or Orthogonal?
V1V_{1} [0,0,0][0,0,0] 1 Orthogonal
V7V_{7} [0,βˆ’1,1]\left[0,-1,1\right] 7 Orthogonal
Table 20. Irreducible representations of G2G_{2} of dimension at most 13.

Using this notation, the following table classifies all of the conjugacy classes of subalgebras π”₯\mathfrak{h} of type G2G_{2} in 𝔀\mathfrak{g} for various 𝔀\mathfrak{g}.

𝔀\mathfrak{g} Dynkin Standard rep.Β of β€‚β€Šβ€ƒβ€ƒβ€‚β€„Cartan embedding
index 𝔀\mathfrak{g} restricted to π”₯\mathfrak{h}
B3B_{3} β€‚β€Šβ€„β€„β€„β€„β€‰1 V7V_{7} [x,y,βˆ’xβˆ’y]↦[xβˆ’y,2​x+y,x+2​y][x,y,-x-y]\mapsto[x-y,2x+y,x+2y]
B4B_{4} β€‚β€Šβ€„β€„β€„β€„β€‰1    V7βŠ•V1βŠ•2V_{7}\oplus V_{1}^{\oplus 2} [x,y,βˆ’xβˆ’y]↦[xβˆ’y,2​x+y,x+2​y,0][x,y,-x-y]\mapsto[x-y,2x+y,x+2y,0]
D4D_{4} β€‚β€Šβ€„β€„β€„β€„β€‰1 V7βŠ•V1V_{7}\oplus V_{1} [x,y,βˆ’xβˆ’y]↦[xβˆ’y,2​x+y,x+2​y,0][x,y,-x-y]\mapsto[x-y,2x+y,x+2y,0]
B5B_{5} β€‚β€Šβ€„β€„β€„β€„β€‰1    V7βŠ•V1βŠ•4V_{7}\oplus V_{1}^{\oplus 4} [x,y,βˆ’xβˆ’y]↦[xβˆ’y,2​x+y,x+2​y,0,0][x,y,-x-y]\mapsto[x-y,2x+y,x+2y,0,0]
D5D_{5} β€‚β€Šβ€„β€„β€„β€„β€‰1    V7βŠ•V1βŠ•3V_{7}\oplus V_{1}^{\oplus 3} [x,y,βˆ’xβˆ’y]↦[xβˆ’y,2​x+y,x+2​y,0,0][x,y,-x-y]\mapsto[x-y,2x+y,x+2y,0,0]
A6A_{6} β€‚β€Šβ€„β€„β€„β€„β€‰2 V7V_{7} [x,y,βˆ’xβˆ’y]↦[xβˆ’y,2​x+y,x+2​y,yβˆ’x,βˆ’2​xβˆ’y,βˆ’xβˆ’2​y,0][x,y,-x-y]\mapsto[x-y,2x+y,x+2y,y-x,-2x-y,-x-2y,0]
B6B_{6} β€‚β€Šβ€„β€„β€„β€„β€‰1    V7βŠ•V1βŠ•6V_{7}\oplus V_{1}^{\oplus 6} [x,y,βˆ’xβˆ’y]↦[xβˆ’y,2​x+y,x+2​y,0,0,0][x,y,-x-y]\mapsto[x-y,2x+y,x+2y,0,0,0]
D6D_{6} β€‚β€Šβ€„β€„β€„β€„β€‰1    V7βŠ•V1βŠ•5V_{7}\oplus V_{1}^{\oplus 5} [x,y,βˆ’xβˆ’y]↦[xβˆ’y,2​x+y,x+2​y,0,0,0][x,y,-x-y]\mapsto[x-y,2x+y,x+2y,0,0,0]
Table 22. Conjugacy classes of subalgebras of type G2G_{2} in various 𝔀\mathfrak{g}.

Subalgebras of type A3≃D3A_{3}\simeq D_{3}

We denote the irreducible representations of A3≃D3A_{3}\simeq D_{3} of dimension at most 13 as follows:

Label Highest Weight Highest Weight Dimension Symplectic or
(A3A_{3} coords.) (D3D_{3} coords.) Orthogonal?
V1V_{1} [0,0,0,0][0,0,0,0] β€‚β€Šβ€„β€„β€„β€„β€„[0,0,0][0,0,0] 1 Orthogonal
V4V_{4} [34,βˆ’14,βˆ’14,βˆ’14]\left[\frac{3}{4},-\frac{1}{4},-\frac{1}{4},-\frac{1}{4}\right] β€‚β€Šβ€„β€„β€„β€„β€„[12,12,12]\left[\frac{1}{2},\frac{1}{2},\frac{1}{2}\right] 4 Neither
V4βˆ—V_{4}^{*} [14,14,14,βˆ’34]\left[\frac{1}{4},\frac{1}{4},\frac{1}{4},-\frac{3}{4}\right] β€‚β€Šβ€„β€„β€„β€„β€„[12,12,βˆ’12]\left[\frac{1}{2},\frac{1}{2},-\frac{1}{2}\right] 4 Neither
β‹€2V4\bigwedge^{2}V_{4} [12,12,βˆ’12,βˆ’12]\left[\frac{1}{2},\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right] β€‚β€Šβ€„β€„β€„β€„β€„[1,0,0][1,0,0] 6 Orthogonal
Sym2⁑V4\operatorname{Sym}^{2}V_{4} [32,βˆ’12,βˆ’12,βˆ’12]\left[\frac{3}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right] β€‚β€Šβ€„β€„β€„β€„β€„[1,1,1][1,1,1] 10 Neither
Sym2⁑V4βˆ—\operatorname{Sym}^{2}V_{4}^{*} [12,12,12,βˆ’32]\left[\frac{1}{2},\frac{1}{2},\frac{1}{2},-\frac{3}{2}\right] β€‚β€Šβ€„β€„β€„β€„β€„[1,1,βˆ’1][1,1,-1] 10 Neither
Table 23. Irreducible representations of A3≃D3A_{3}\simeq D_{3} of dimension at most 13. (Note that β‹€2V4\bigwedge^{2}V_{4} can also be viewed as the standard representation of D3D_{3}.)

Using this notation, the following table classifies all of the conjugacy classes of subalgebras π”₯\mathfrak{h} of type A3≃D3A_{3}\simeq D_{3} in 𝔀\mathfrak{g} for various 𝔀\mathfrak{g}.

𝔀\mathfrak{g} Dynkin Standard rep.Β of Cartan embedding
index 𝔀\mathfrak{g} restricted to π”₯\mathfrak{h}
B3B_{3} β€‚β€Šβ€„β€„β€„β€„β€‰1 β‹€2V4βŠ•V1\bigwedge^{2}V_{4}\oplus V_{1} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[xβˆ’z,yβˆ’z,x+y][x,y,z,-x-y-z]\mapsto[x-z,y-z,x+y] (A3A_{3} coords.)
[p,q,r]↦[p,q,r][p,q,r]\mapsto[p,q,r] (D3D_{3} coords.)
A4A_{4} β€‚β€Šβ€„β€„β€„β€„β€‰1 V4βŠ•V1V_{4}\oplus V_{1} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[x,y,z,βˆ’xβˆ’yβˆ’z,0][x,y,z,-x-y-z]\mapsto[x,y,z,-x-y-z,0] (A3A_{3} coords.)
[p,q,r]↦12​[βˆ’p+qβˆ’r,pβˆ’qβˆ’r,βˆ’pβˆ’q+r,p+q+r,0][p,q,r]\mapsto\frac{1}{2}\left[-p+q-r,p-q-r,-p-q+r,p+q+r,0\right] (D3D_{3} coords.)
β€‚β€Šβ€„β€„β€„β€„β€‰1 V4βˆ—βŠ•V1V_{4}^{*}\oplus V_{1} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[βˆ’x,βˆ’y,βˆ’z,x+y+z,0][x,y,z,-x-y-z]\mapsto[-x,-y,-z,x+y+z,0] (A3A_{3} coords.)
[p,q,r]↦12​[pβˆ’q+r,βˆ’p+q+r,p+qβˆ’r,βˆ’pβˆ’qβˆ’r,0][p,q,r]\mapsto\frac{1}{2}\left[p-q+r,-p+q+r,p+q-r,-p-q-r,0\right] (D3D_{3} coords.)
B4B_{4} β€‚β€Šβ€„β€„β€„β€„β€‰1β€²1^{\prime} V4βŠ•V4βˆ—βŠ•V1V_{4}\oplus V_{4}^{*}\oplus V_{1} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[x,y,z,βˆ’xβˆ’yβˆ’z][x,y,z,-x-y-z]\mapsto[x,y,z,-x-y-z] (A3A_{3} coords.)
[p,q,r]↦12​[βˆ’p+qβˆ’r,pβˆ’qβˆ’r,βˆ’pβˆ’q+r,p+q+r][p,q,r]\mapsto\frac{1}{2}\left[-p+q-r,p-q-r,-p-q+r,p+q+r\right] (D3D_{3} coords.)
β€‚β€Šβ€„β€„β€„β€„β€‰1β€²β€²1^{\prime\prime} β‹€2V4βŠ•V1βŠ•3\bigwedge^{2}V_{4}\oplus V_{1}^{\oplus 3} [x,y,z,βˆ’zβˆ’yβˆ’z]↦[xβˆ’z,yβˆ’z,x+y,0][x,y,z,-z-y-z]\mapsto[x-z,y-z,x+y,0] (A3A_{3} coords.)
[p,q,r]↦[p,q,r,0][p,q,r]\mapsto[p,q,r,0] (D3D_{3} coords.)
C4C_{4} β€‚β€Šβ€„β€„β€„β€„β€‰2 V4βŠ•V4βˆ—V_{4}\oplus V_{4}^{*} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[x,y,z,βˆ’xβˆ’yβˆ’z][x,y,z,-x-y-z]\mapsto[x,y,z,-x-y-z] (A3A_{3} coords.)
[p,q,r]↦12​[βˆ’p+qβˆ’r,pβˆ’qβˆ’r,βˆ’pβˆ’q+r,p+q+r][p,q,r]\mapsto\frac{1}{2}\left[-p+q-r,p-q-r,-p-q+r,p+q+r\right] (D3D_{3} coords.)
D4D_{4} β€‚β€Šβ€„β€„β€„β€„β€‰1β€²1^{\prime} V4βŠ•V4βˆ—V_{4}\oplus V_{4}^{*} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[x,y,z,βˆ’xβˆ’yβˆ’z][x,y,z,-x-y-z]\mapsto[x,y,z,-x-y-z] (A3A_{3} coords.)
[p,q,r]↦12​[βˆ’p+qβˆ’r,pβˆ’qβˆ’r,βˆ’pβˆ’q+r,p+q+r][p,q,r]\mapsto\frac{1}{2}\left[-p+q-r,p-q-r,-p-q+r,p+q+r\right] (D3D_{3} coords.)
β€‚β€Šβ€„β€„β€„β€„β€‰1β€²β€²1^{\prime\prime} β‹€2V4βŠ•V1βŠ•2\bigwedge^{2}V_{4}\oplus V_{1}^{\oplus 2} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[xβˆ’z,yβˆ’z,x+y,0][x,y,z,-x-y-z]\mapsto[x-z,y-z,x+y,0] (A3A_{3} coords.)
[p,q,r]↦[p,q,r,0][p,q,r]\mapsto[p,q,r,0] (D3D_{3} coords.)
A5A_{5} β€‚β€Šβ€„β€„β€„β€„β€‰1 V4βŠ•V1βŠ•2V_{4}\oplus V_{1}^{\oplus 2} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[x,y,z,βˆ’xβˆ’yβˆ’z,0,0][x,y,z,-x-y-z]\mapsto[x,y,z,-x-y-z,0,0] (A3A_{3} coords.)
[p,q,r]↦12​[βˆ’p+qβˆ’r,pβˆ’qβˆ’r,βˆ’pβˆ’q+r,p+q+r,0,0][p,q,r]\mapsto\frac{1}{2}\left[-p+q-r,p-q-r,-p-q+r,p+q+r,0,0\right] (D3D_{3} coords.)
β€‚β€Šβ€„β€„β€„β€„β€‰1 V4βˆ—βŠ•V1βŠ•2V_{4}^{*}\oplus V_{1}^{\oplus 2} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[βˆ’x,βˆ’y,βˆ’z,x+y+z,0,0][x,y,z,-x-y-z]\mapsto[-x,-y,-z,x+y+z,0,0] (A3A_{3} coords.)
[p,q,r]↦12​[pβˆ’q+r,βˆ’p+q+r,p+qβˆ’r,βˆ’pβˆ’qβˆ’r,0,0][p,q,r]\mapsto\frac{1}{2}\left[p-q+r,-p+q+r,p+q-r,-p-q-r,0,0\right] (D3D_{3} coords.)
β€‚β€Šβ€„β€„β€„β€„β€‰2 β‹€2V4\bigwedge^{2}V_{4} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[xβˆ’z,yβˆ’z,x+y,βˆ’x+z,βˆ’y+z,βˆ’xβˆ’y][x,y,z,-x-y-z]\mapsto[x-z,y-z,x+y,-x+z,-y+z,-x-y] (A3A_{3} coords.)
[p,q,r]↦[p,q,r,βˆ’p,βˆ’q,βˆ’r][p,q,r]\mapsto[p,q,r,-p,-q,-r] (D3D_{3} coords.)
B5B_{5} β€‚β€Šβ€„β€„β€„β€„β€‰1β€²1^{\prime} V4βŠ•V4βˆ—βŠ•V1βŠ•3V_{4}\oplus V_{4}^{*}\oplus V_{1}^{\oplus 3} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[x,y,z,βˆ’xβˆ’yβˆ’z,0][x,y,z,-x-y-z]\mapsto[x,y,z,-x-y-z,0] (A3A_{3} coords.)
[p,q,r]↦12​[βˆ’p+qβˆ’r,pβˆ’qβˆ’r,βˆ’pβˆ’q+r,p+q+r,0][p,q,r]\mapsto\frac{1}{2}\left[-p+q-r,p-q-r,-p-q+r,p+q+r,0\right] (D3D_{3} coords.)
β€‚β€Šβ€„β€„β€„β€„β€‰1β€²β€²1^{\prime\prime} β‹€2V4βŠ•V1βŠ•5\bigwedge^{2}V_{4}\oplus V_{1}^{\oplus 5} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[xβˆ’z,yβˆ’z,x+y,0,0][x,y,z,-x-y-z]\mapsto[x-z,y-z,x+y,0,0] (A3A_{3} coords.)
[p,q,r]↦[p,q,r,0,0][p,q,r]\mapsto[p,q,r,0,0] (D3D_{3} coords.)
C5C_{5} β€‚β€Šβ€„β€„β€„β€„β€‰2 V4βŠ•V4βˆ—βŠ•V1βŠ•2V_{4}\oplus V_{4}^{*}\oplus V_{1}^{\oplus 2} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[x,y,z,βˆ’xβˆ’yβˆ’z,0][x,y,z,-x-y-z]\mapsto[x,y,z,-x-y-z,0] (A3A_{3} coords.)
[p,q,r]↦12​[βˆ’p+qβˆ’r,pβˆ’qβˆ’r,βˆ’pβˆ’q+r,p+q+r,0][p,q,r]\mapsto\frac{1}{2}\left[-p+q-r,p-q-r,-p-q+r,p+q+r,0\right] (D3D_{3} coords.)
D5D_{5} β€‚β€Šβ€„β€„β€„β€„β€‰1β€²1^{\prime} V4βŠ•V4βˆ—βŠ•V1βŠ•2V_{4}\oplus V_{4}^{*}\oplus V_{1}^{\oplus 2} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[x,y,z,βˆ’xβˆ’yβˆ’z,0][x,y,z,-x-y-z]\mapsto[x,y,z,-x-y-z,0] (A3A_{3} coords.)
[p,q,r]↦12​[βˆ’p+qβˆ’r,pβˆ’qβˆ’r,βˆ’pβˆ’q+r,p+q+r,0][p,q,r]\mapsto\frac{1}{2}\left[-p+q-r,p-q-r,-p-q+r,p+q+r,0\right] (D3D_{3} coords.)
β€‚β€Šβ€„β€„β€„β€„β€‰1β€²β€²1^{\prime\prime} β‹€2V4βŠ•V1βŠ•4\bigwedge^{2}V_{4}\oplus V_{1}^{\oplus 4} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[xβˆ’z,yβˆ’z,x+y,0,0][x,y,z,-x-y-z]\mapsto[x-z,y-z,x+y,0,0] (A3A_{3} coords.)
[p,q,r]↦[p,q,r,0,0][p,q,r]\mapsto[p,q,r,0,0] (D3D_{3} coords.)
A6A_{6} β€‚β€Šβ€„β€„β€„β€„β€‰1 V4βŠ•V1βŠ•3V_{4}\oplus V_{1}^{\oplus 3} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[x,y,z,βˆ’xβˆ’yβˆ’z,0,0,0][x,y,z,-x-y-z]\mapsto[x,y,z,-x-y-z,0,0,0] (A3A_{3} coords.)
[p,q,r]↦12​[βˆ’p+qβˆ’r,pβˆ’qβˆ’r,βˆ’pβˆ’q+r,p+q+r,0,0,0][p,q,r]\mapsto\frac{1}{2}\left[-p+q-r,p-q-r,-p-q+r,p+q+r,0,0,0\right] (D3D_{3} coords.)
β€‚β€Šβ€„β€„β€„β€„β€‰1 V4βˆ—βŠ•V1βŠ•3V_{4}^{*}\oplus V_{1}^{\oplus 3} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[βˆ’x,βˆ’y,βˆ’z,x+y+z,0,0,0][x,y,z,-x-y-z]\mapsto[-x,-y,-z,x+y+z,0,0,0] (A3A_{3} coords.)
[p,q,r]↦12​[pβˆ’q+r,βˆ’p+q+r,p+qβˆ’r,βˆ’pβˆ’qβˆ’r,0,0,0][p,q,r]\mapsto\frac{1}{2}\left[p-q+r,-p+q+r,p+q-r,-p-q-r,0,0,0\right] (D3D_{3} coords.)
β€‚β€Šβ€„β€„β€„β€„β€‰2 β‹€2V4βŠ•V1\bigwedge^{2}V_{4}\oplus V_{1} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[xβˆ’z,yβˆ’z,x+y,βˆ’x+z,βˆ’y+z,βˆ’xβˆ’y,0][x,y,z,-x-y-z]\mapsto[x-z,y-z,x+y,-x+z,-y+z,-x-y,0] (A3A_{3} coords.)
[p,q,r]↦[p,q,r,βˆ’p,βˆ’q,βˆ’r,0][p,q,r]\mapsto[p,q,r,-p,-q,-r,0] (D3D_{3} coords.)
B6B_{6} β€‚β€Šβ€„β€„β€„β€„β€‰1β€²1^{\prime} V4βŠ•V4βˆ—βŠ•V1βŠ•5V_{4}\oplus V_{4}^{*}\oplus V_{1}^{\oplus 5} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[x,y,z,βˆ’xβˆ’yβˆ’z,0,0][x,y,z,-x-y-z]\mapsto[x,y,z,-x-y-z,0,0] (A3A_{3} coords.)
[p,q,r]↦12​[βˆ’p+qβˆ’r,pβˆ’qβˆ’r,βˆ’pβˆ’q+r,p+q+r,0,0][p,q,r]\mapsto\frac{1}{2}\left[-p+q-r,p-q-r,-p-q+r,p+q+r,0,0\right] (D3D_{3} coords.)
β€‚β€Šβ€„β€„β€„β€„β€‰1β€²β€²1^{\prime\prime} β‹€2V4βŠ•V1βŠ•7\bigwedge^{2}V_{4}\oplus V_{1}^{\oplus 7} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[xβˆ’z,yβˆ’z,x+y,0,0,0][x,y,z,-x-y-z]\mapsto[x-z,y-z,x+y,0,0,0] (A3A_{3} coords.)
[p,q,r]↦[p,q,r,0,0,0][p,q,r]\mapsto[p,q,r,0,0,0] (D3D_{3} coords.)
β€‚β€Šβ€„β€„β€„β€„β€‰2 β‹€2V4βŠ•β‹€2V4βŠ•V1\bigwedge^{2}V_{4}\oplus\bigwedge^{2}V_{4}\oplus V_{1} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[xβˆ’z,xβˆ’z,yβˆ’z,yβˆ’z,x+y,x+y][x,y,z,-x-y-z]\mapsto[x-z,x-z,y-z,y-z,x+y,x+y] (A3A_{3} coords.)
[p,q,r]↦[p,p,q,q,r,r][p,q,r]\mapsto[p,p,q,q,r,r] (D3D_{3} coords.)
C6C_{6} β€‚β€Šβ€„β€„β€„β€„β€‰2 V4βŠ•V4βˆ—βŠ•V1βŠ•4V_{4}\oplus V_{4}^{*}\oplus V_{1}^{\oplus 4} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[x,y,z,βˆ’xβˆ’yβˆ’z,0,0][x,y,z,-x-y-z]\mapsto[x,y,z,-x-y-z,0,0] (A3A_{3} coords.)
[p,q,r]↦12​[βˆ’p+qβˆ’r,pβˆ’qβˆ’r,βˆ’pβˆ’q+r,p+q+r,0,0][p,q,r]\mapsto\frac{1}{2}\left[-p+q-r,p-q-r,-p-q+r,p+q+r,0,0\right] (D3D_{3} coords.)
β€‚β€Šβ€„β€„β€„β€„β€‰4 β‹€2V4βŠ•β‹€2V4\bigwedge^{2}V_{4}\oplus\bigwedge^{2}V_{4} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[xβˆ’z,xβˆ’z,yβˆ’z,yβˆ’z,x+y,x+y][x,y,z,-x-y-z]\mapsto[x-z,x-z,y-z,y-z,x+y,x+y] (A3A_{3} coords.)
[p,q,r]↦[p,p,q,q,r,r][p,q,r]\mapsto[p,p,q,q,r,r] (D3D_{3} coords.)
D6D_{6} β€‚β€Šβ€„β€„β€„β€„β€‰1β€²1^{\prime} V4βŠ•V4βˆ—βŠ•V1βŠ•4V_{4}\oplus V_{4}^{*}\oplus V_{1}^{\oplus 4} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[x,y,z,βˆ’xβˆ’yβˆ’z,0,0][x,y,z,-x-y-z]\mapsto[x,y,z,-x-y-z,0,0] (A3A_{3} coords.)
[p,q,r]↦12​[βˆ’p+qβˆ’r,pβˆ’qβˆ’r,βˆ’pβˆ’q+r,p+q+r,0,0][p,q,r]\mapsto\frac{1}{2}\left[-p+q-r,p-q-r,-p-q+r,p+q+r,0,0\right] (D3D_{3} coords.)
β€‚β€Šβ€„β€„β€„β€„β€‰1β€²β€²1^{\prime\prime} β‹€2V4βŠ•V1βŠ•6\bigwedge^{2}V_{4}\oplus V_{1}^{\oplus 6} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[xβˆ’z,yβˆ’z,x+y,0,0,0][x,y,z,-x-y-z]\mapsto[x-z,y-z,x+y,0,0,0] (A3A_{3} coords.)
[p,q,r]↦[p,q,r,0,0,0][p,q,r]\mapsto[p,q,r,0,0,0] (D3D_{3} coords.)
β€‚β€Šβ€„β€„β€„β€„β€‰2 β‹€2V4βŠ•β‹€2V4\bigwedge^{2}V_{4}\oplus\bigwedge^{2}V_{4} [x,y,z,βˆ’xβˆ’yβˆ’z]↦[xβˆ’z,xβˆ’z,yβˆ’z,yβˆ’z,x+y,x+y][x,y,z,-x-y-z]\mapsto[x-z,x-z,y-z,y-z,x+y,x+y] (A3A_{3} coords.)
[p,q,r]↦[p,p,q,q,r,r][p,q,r]\mapsto[p,p,q,q,r,r] (D3D_{3} coords.)
Table 25. Conjugacy classes of subalgebras of type A3≃D3A_{3}\simeq D_{3} in various 𝔀\mathfrak{g}.

Subalgebras of type B3B_{3}

We denote the irreducible representations of B3B_{3} of dimension at most 13 as follows:

Label Highest Weight Dimension Symplectic or Orthogonal?
V1V_{1} [0,0,0][0,0,0] 1 Orthogonal
V7V_{7} [1,0,0]\left[1,0,0\right] 7 Orthogonal
Table 26. Irreducible representations of B3B_{3} of dimension at most 13.

Using this notation, the following table classifies all of the conjugacy classes of subalgebras π”₯\mathfrak{h} of type B3B_{3} in 𝔀\mathfrak{g} for various 𝔀\mathfrak{g}.

𝔀\mathfrak{g} Dynkin Standard rep.Β of Cartan embedding
index 𝔀\mathfrak{g} restricted to π”₯\mathfrak{h}
B4B_{4} β€‚β€Šβ€„β€„β€„β€„β€‰1    V7βŠ•V1βŠ•2V_{7}\oplus V_{1}^{\oplus 2} [x,y,z]↦[x,y,z,0][x,y,z]\mapsto[x,y,z,0]
D4D_{4} β€‚β€Šβ€„β€„β€„β€„β€‰1 V7βŠ•V1V_{7}\oplus V_{1} [x,y,z]↦[x,y,z,0][x,y,z]\mapsto[x,y,z,0]
B5B_{5} β€‚β€Šβ€„β€„β€„β€„β€‰1    V7βŠ•V1βŠ•4V_{7}\oplus V_{1}^{\oplus 4} [x,y,z]↦[x,y,z,0,0][x,y,z]\mapsto[x,y,z,0,0]
D5D_{5} β€‚β€Šβ€„β€„β€„β€„β€‰1    V7βŠ•V1βŠ•3V_{7}\oplus V_{1}^{\oplus 3} [x,y,z]↦[x,y,z,0,0][x,y,z]\mapsto[x,y,z,0,0]
A6A_{6} β€‚β€Šβ€„β€„β€„β€„β€‰2 V7V_{7} [x,y,z]↦[x,y,z,βˆ’x,βˆ’y,βˆ’z,0][x,y,z]\mapsto[x,y,z,-x,-y,-z,0]
B6B_{6} β€‚β€Šβ€„β€„β€„β€„β€‰1    V7βŠ•V1βŠ•6V_{7}\oplus V_{1}^{\oplus 6} [x,y,z]↦[x,y,z,0,0,0][x,y,z]\mapsto[x,y,z,0,0,0]
D6D_{6} β€‚β€Šβ€„β€„β€„β€„β€‰1    V7βŠ•V1βŠ•5V_{7}\oplus V_{1}^{\oplus 5} [x,y,z]↦[x,y,z,0,0,0][x,y,z]\mapsto[x,y,z,0,0,0]
Table 28. Conjugacy classes of subalgebras of type B3B_{3} in various 𝔀\mathfrak{g}.

Subalgebras of type C3C_{3}

We denote the irreducible representations of C3C_{3} of dimension at most 13 as follows:

Label Highest Weight Dimension Symplectic or Orthogonal?
V1V_{1} [0,0,0][0,0,0] 1 Orthogonal
V6V_{6} [1,0,0]\left[1,0,0\right] 6 Symplectic
Table 29. Irreducible representations of C3C_{3} of dimension at most 13.

Using this notation, the following table classifies all of the conjugacy classes of subalgebras π”₯\mathfrak{h} of type C3C_{3} in 𝔀\mathfrak{g} for various 𝔀\mathfrak{g}.

𝔀\mathfrak{g} Dynkin Standard rep.Β of Cartan embedding
index 𝔀\mathfrak{g} restricted to π”₯\mathfrak{h}
C4C_{4} β€‚β€Šβ€„β€„β€„β€„β€‰1    V6βŠ•V1βŠ•2V_{6}\oplus V_{1}^{\oplus 2} [p,q,r]↦[p,q,r,0][p,q,r]\mapsto[p,q,r,0]
A5A_{5} β€‚β€Šβ€„β€„β€„β€„β€‰1 V6V_{6} [p,q,r]↦[p,q,r,βˆ’p,βˆ’q,βˆ’r][p,q,r]\mapsto[p,q,r,-p,-q,-r]
C5C_{5} β€‚β€Šβ€„β€„β€„β€„β€‰1    V6βŠ•V1βŠ•4V_{6}\oplus V_{1}^{\oplus 4} [p,q,r]↦[p,q,r,0,0][p,q,r]\mapsto[p,q,r,0,0]
A6A_{6} β€‚β€Šβ€„β€„β€„β€„β€‰1 V6βŠ•V1V_{6}\oplus V_{1} [p,q,r]↦[p,q,r,βˆ’p,βˆ’q,βˆ’r,0][p,q,r]\mapsto[p,q,r,-p,-q,-r,0]
B6B_{6} β€‚β€Šβ€„β€„β€„β€„β€‰1 V6βŠ•V6βŠ•V1V_{6}\oplus V_{6}\oplus V_{1} [p,q,r]↦[p,p,q,q,r,r][p,q,r]\mapsto[p,p,q,q,r,r]
C6C_{6} β€‚β€Šβ€„β€„β€„β€„β€‰1    V6βŠ•V1βŠ•6V_{6}\oplus V_{1}^{\oplus 6} [p,q,r]↦[p,q,r,0,0,0][p,q,r]\mapsto[p,q,r,0,0,0]
β€‚β€Šβ€„β€„β€„β€„β€‰2 V6βŠ•V6V_{6}\oplus V_{6} [p,q,r]↦[p,p,q,q,r,r][p,q,r]\mapsto[p,p,q,q,r,r]
D6D_{6} β€‚β€Šβ€„β€„β€„β€„β€‰1β€²1^{\prime} V6βŠ•V6V_{6}\oplus V_{6} [p,q,r]↦[p,p,q,q,r,βˆ’r][p,q,r]\mapsto[p,p,q,q,r,-r]
β€‚β€Šβ€„β€„β€„β€„β€‰1β€²β€²1^{\prime\prime} V6βŠ•V6V_{6}\oplus V_{6} [p,q,r]↦[p,p,q,q,r,r][p,q,r]\mapsto[p,p,q,q,r,r]
Table 31. Conjugacy classes of subalgebras of type C3C_{3} in various 𝔀\mathfrak{g}.