This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

An explicit Milstein-type scheme for interacting particle systems and McKean–Vlasov SDEs with common noise and non-differentiable drift coefficients

Sani Biswaslabel=e1]sbiswas2@ma.iitr.ac.in [    Chaman Kumarlabel=e2]chaman.kumar@ma.iitr.ac.in [    Neelima label=e3]neelima_maths@ramjas.du.ac.in [    Gonçalo dos Reislabel=e4]G.dosReis@ed.ac.uk\orcid0000-0002-4993-2672 [    Christoph Reisingerlabel=e5]christoph.reisinger@maths.ox.ac.uk [ India Institute of Technology Roorkee, India presep=, ]e1 India Institute of Technology Roorkee, Indiapresep=, ]e2 Delhi University, Indiapresep=, ]e3 Edinburgh University, United Kingdom presep=, ]e4 Oxford University, United Kingdom presep=, ]e5
Abstract

We propose an explicit drift-randomised Milstein scheme for both McKean–Vlasov stochastic differential equations and associated high dimensional interacting particle systems with common noise. By using a drift randomisation step in space and measure, we establish the scheme’s strong convergence rate of 11 under reduced regularity assumptions on the drift coefficient: no classical (Euclidean) derivatives in space or measure derivatives (e.g., Lions/Fréchet) are required. The main result is established by enriching the concepts of bistability and consistency of numerical schemes used previously for standard SDE. We introduce certain Spijker-type norms (and associated Banach spaces) to deal with the interaction of particles present in the stochastic systems being analysed. A discussion of the scheme’s complexity is provided.

65C30, 60H35,
65C05, 65C35,
stochastic interacting particle systems,
McKean–Vlasov equations,
common noise,
Milstein scheme,
non-differentiable drift,
drift randomisation,
bistability,
keywords:
[class=MSC]
keywords:
\startlocaldefs\endlocaldefs

, and

1 Introduction

For a given T>0T>0, consider the following stochastic differential equation (SDE) of McKean–Vlasov type and with common noise,

Xt=X0+\displaystyle X_{t}=X_{0}+ 0tb(s,Xs,1(Xs))𝑑s+=1m10tσ1(s,Xs,1(Xs))𝑑Ws\displaystyle\int_{0}^{t}b(s,X_{s},\mathcal{L}^{1}(X_{s}))ds+\sum_{\ell=1}^{m_{1}}\int_{0}^{t}\sigma_{1}^{\ell}(s,X_{s},\mathcal{L}^{1}(X_{s}))dW_{s}^{\ell}
+=1m00tσ0(s,Xs,1(Xs))𝑑Ws0,,\displaystyle+\sum_{\ell=1}^{m_{0}}\int_{0}^{t}\sigma_{0}^{\ell}(s,X_{s},\mathcal{L}^{1}(X_{s}))dW_{s}^{0,\ell}, (1)

almost surely for all t[0,T]t\in[0,T], where W:={Wt}t[0,T]W:=\{W_{t}\}_{t\in[0,T]} and W0:={Wt0}t[0,T]W^{0}:=\{W_{t}^{0}\}_{t\in[0,T]} are, respectively, m1m_{1} and m0m_{0} dimensional independent Wiener processes and {1(Xt)}t[0,T]\{\mathcal{L}^{1}(X_{t})\}_{t\in[0,T]} denotes the stochastic flow of conditional marginal laws of X:={Xt}t[0,T]X:=\{X_{t}\}_{t\in[0,T]} given W0W^{0}. The initial value X0X_{0} is an 0\mathscr{F}^{0}- measurable random variable, independent of WW and W0W^{0}. The McKean–Vlasov SDE (1) can be viewed as an infinite-dimensional system of particles with WW representing the randomness inherent in the individual particle and W0W^{0} the randomness common to all the particles. When σ00\sigma_{0}\equiv 0, the particles are governed by only one source of randomness, WW, and the stochastic flow {1(Xt)}t[0,T]\{\mathcal{L}^{1}(X_{t})\}_{t\in[0,T]} becomes a deterministic one. Notice that McKean–Vlasov SDEs are different from standard SDEs due to the dependence of the coefficients on the (conditional) marginal law 1(Xt)\mathcal{L}^{1}(X_{t}) of XtX_{t} given W0W^{0}, which brings additional difficulties.

Due to their wide applications in areas such as Finance, mathematical neuroscience and biology, machine learning and physics — animal swarming, cell movement induced by chemotaxis, opinion dynamics, particle movement in porous media and electrical battery modelling, self-assembly of particles and dynamical density functional theory (see for example [31, 16, 8, 25, 2, 27, 33, 9, 13, 14, 28, 32])— McKean–Vlasov equations and associated interacting particle systems, with or without common noise, addressed via stochastic systems or associated Fokker Plank equations ([38, 22, 21]) have gained immense popularity.

As in the case of SDEs, explicit solutions of McKean–Vlasov SDEs are typically not available, which necessitates the development of numerical schemes to approximate them. The numerical approximation of McKean–Vlasov SDEs can be carried out in two steps, as explained below.

  • As a first step one builds the so-called interacting particle system, {Xi,N}i{1,,N}\{X^{i,N}\}_{i\in\{1,\ldots,N\}}, where one replaces the (conditional) marginal law appearing in the coefficients of (1) by the empirical law obtained from the particles. Concretely, taking NN i.i.d. copies {Wi}i{1,,N}\{W^{i}\}_{i\in\{1,\ldots,N\}} of WW and {X0i}i{1,,N}\{X^{i}_{0}\}_{i\in\{1,\ldots,N\}} of X0X_{0},

    one defines the interacting particle system associated with the above McKean–Vlasov SDE by

    Xti,N=X0i\displaystyle X_{t}^{i,N}=X_{0}^{i} +0tb(s,Xsi,N,μsX,N)𝑑s+=1m10tσ1(s,Xsi,N,μsX,N)𝑑Wsi,\displaystyle+\int_{0}^{t}b(s,X_{s}^{i,N},\mu_{s}^{X,N})\,ds+\sum_{\ell=1}^{m_{1}}\int_{0}^{t}\sigma_{1}^{\ell}(s,X_{s}^{i,N},\mu_{s}^{X,N})\,dW_{s}^{i,\ell}
    +=1m00tσ0(s,Xsi,N,μsX,N)𝑑Ws0,,\displaystyle+\sum_{\ell=1}^{m_{0}}\int_{0}^{t}\sigma_{0}^{\ell}(s,X^{i,N}_{s},\mu_{s}^{X,N})\,dW_{s}^{0,\ell}, (2)

    almost surely for any t[0,T]t\in[0,T] and i{1,,N}i\in\{1,\ldots,N\}, where

    μtX,N():=1Ni=1NδXti,N()\displaystyle\mu_{t}^{X,N}(\cdot):=\frac{1}{N}\sum_{i=1}^{N}\delta_{X_{t}^{i,N}}(\cdot)

    is the empirical measure of NN particles. Subsequently, one needs to show, roughly put, that Law(Xi,N)\textrm{Law}(X^{i,N}_{\cdot}) for some ii (fixed) convergences to Law(X)\textrm{Law}(X_{\cdot}) of (1) as NN\to\infty; see the seminal work by Sznitman [53] (and Proposition 2.5 below).

  • In the second step of approximation, the temporal discretization of the interacting particle system is performed to obtain fully implementable numerical schemes for the McKean–Vlasov SDEs such as Euler-type schemes and Milstein-type schemes. The main difficultly is to show that all estimates are independent of the number of particles NN (see Theorem 3.3 and Corollary 3.4 below). The direct application of results from classic SDE theory do not deliver this independence.

It is critical to note that the results of this manuscript double for either the numerical approximation of McKean–Vlasov SDEs if one’s starting point is (1), or for stand-alone systems of interacting particle SDE systems if one’s starting point is (2).

Results on the strong well-posedness and propagation of chaos for McKean–Vlasov SDEs are being extensively researched and we cannot possibly do justice to that growing body of literature. Nonetheless, we mention some of the milestones and more recent results fitting thematically with our manuscript: for PoC results, one starts from Sznitman’s seminal work [53] to the monographs [13, 14] and the recent developments by [23, 39, 40] to mention a few – overall, there are still gaps in the existing PoC results, especially across dimensions. Concretely, in [20, Section 3.5] the PoC rates across the dimension dd is estimated numerically for a diffusion σ\sigma of polynomial growth and a drift bb of polynomial growth (a setting outside the scope of this work) and the rates estimated are better than the rates found in any theoretical results at present. For a focus on well-posedness, one starts from the McKean’s seminal work [43], to again [13, 14] and the recent developments [6, 17, 37, 44, 45, 52, 20] (and references therein).

The second step of numerical approximation of McKean–Vlasov SDEs saw relatively little development after the first Euler-type scheme was proposed and analysed (in a weak sense) in [10], but experience rapid advances in a string of recent papers, [3, 4, 5, 18, 19, 36, 37, 41, 24, 49]. In particular, [24] proposed an Euler-type numerical scheme for the interacting particle system associated with the McKean–Vlasov SDE, and its strong convergence is investigated when the drift coefficient grows super-linearly in the state variable. More precisely, the drift is assumed to be one-sided Lipschitz continuous in the state variable and Lipschitz continuous in the measure variable, while the diffusion coefficient is assumed to be Lipschitz continuous in both the state and measure variables. The rate of strong convergence of the scheme is shown to be equal to 1/21/2. In [4, 36], a Milstein-type scheme for the interacting particle system associated with the McKean–Vlasov SDEs is proposed using the notion of Lions derivatives, introduced by P.-L. Lions in his lectures at the Collège de France and presented in [12], and its strong convergence is shown with rate 11. The drift coefficient is assumed to satisfy a one-sided Lipschitz condition in the state variable and a polynomial Lipschitz condition, and the diffusion coefficient to satisfy Lipschitz condition; both are assumed to be Lipschitz continuous in the measure variable. Furthermore, only the diffusion coefficient is required to be once differentiable (in both state and measure variables). In [4], the authors additionally require second order differentiability of the coefficients. In [37], an Euler-type scheme and a Milstein-type scheme are developed for the interacting particle system connected with McKean–Vlasov SDEs with common noise, where all the coefficients are allowed to grow super-linearly in the state variable.

In this article, we develop a Milstein-type scheme for the interacting particle system corresponding to the McKean–Vlasov SDE without assuming the differentiability of the drift coefficient (in space or measure component), which is therefore more relaxed than the corresponding results in [4, 36, 37]. It is out of the scope of this work to lift the differentiability conditions on the diffusion coefficient and hence those assumptions match those already existing in the most recent literature. The relaxation of the regularity requirement of the drift coefficient is achieved by a certain randomisation strategy that needs to be applied to both state and measure components: the technical developments necessary to deal with this difficulty are the second contribution of this manuscript. In the case of SDEs (when the coefficients do not depend on the law of the solution process), the technique of randomisation has been studied in [35] (also [7, 34] and and more recently in [46, 48]) to construct a Milstein-type scheme without assuming the first order differentiability of the drift coefficient. As the coefficients in our settings depend on the law of the solution process as well, we require a two-fold randomisation – one with respect to the state variable and the other with respect to the measure variable. For this, we use a uniform random variable to generate a random point in each sub-interval of the time mesh and the Euler scheme is used to obtain values of the particles’ states at these random points, which are then used in the drift coefficient of the Milstein scheme, both for the state and empirical measure. The precise details of this randomisation can be found in Section 3. Critically, the technique developed in [35] for the analysis cannot be used directly in our settings and a novel approach is required. We observe the following.

  • The interacting particle system associated with the McKean–Vlasov SDE can be treated as an (d)N(\mathbb{R}^{d})^{N}-dimensional SDE and thus the results of [35] could be applied directly. However, all estimates would depend on NN and hence “explode” as NN tends to infinity. This implies that to establish our results a new tool must be developed in order to show the independence on NN.

  • We propose a new notion of bistability and consistency of the numerical scheme that is appropriate for the context of high-dimensional interacting particle systems. Inspired by [35] we propose suitable stochastic Spijker norms capable of dealing with the interaction component of the particles. Further details can be found in Section 5.

  • A discussion on the practicalities of implementing our scheme is given in Section 3.1.1 which includes a critical view on complexity and the consequence of having common-noise.

  • In the simplest version possible of (1), three drift functions are well within the scope of our work are (linear interaction, convolution-functionals and linear interaction kernels)

    b(s,Xs,1(Xs))\displaystyle b(s,X_{s},\mathcal{L}^{1}(X_{s})) =f1(Xs)+f2(𝔼~1(g(Xs)),\displaystyle=f_{1}(X_{s})+f_{2}\big{(}\tilde{\mathbb{E}}^{1}(g(X_{s})\big{)},
    b^(s,Xs,1(Xs))\displaystyle\widehat{b}(s,X_{s},\mathcal{L}^{1}(X_{s})) =f1(Xs)+𝕕g(Xsy)1(Xs)(dy),\displaystyle=f_{1}(X_{s})+\int_{\mathbb{R^{d}}}g(X_{s}-y)\mathcal{L}^{1}(X_{s})(dy),
    b~(s,Xs,1(Xs))\displaystyle\tilde{b}(s,X_{s},\mathcal{L}^{1}(X_{s})) =f1(Xs)+𝕕g~(Xs,y)1(Xs)(dy),\displaystyle=f_{1}(X_{s})+\int_{\mathbb{R^{d}}}\tilde{g}(X_{s},y)\mathcal{L}^{1}(X_{s})(dy),

    for any real-valued functions f1,f2,g,g~f_{1},f_{2},g,\tilde{g} that satisfy a standard Lipschitz condition in space (but are not differentiable), e.g., g(x)=|x|g(x)=-|x| and more complex examples for g,g~g,\tilde{g} can be found in [16, 13, 14, 30, 32] and 𝔼~1\tilde{\mathbb{E}}^{1} represents the conditional expectation given the common noise W0W^{0}. The 2nd drift example, b^\hat{b}, corresponds to the usual convolution operator fairly common in modelling with McKean–Vlasov SDE and associated interacting particle systems (with or without common noise) [15, 30, 32, 1]. Lastly, we point the reader to Example 3.15 in [1] that intuitively highlights why b^\hat{b} is Lipschitz in the Wasserstein metric but is not Lions differentiable.

Organization

The main framework of the McKean–Vlasov equation and the interacting particle system including well-posedness and propagation of chaos is given in Section 2. The numerical scheme focusing on the approximation of the interacting particle system is found in Section 3 as are the main convergence results. All proofs are given in Section 5.

1.1 Notations

Both the Euclidean norm on d\mathbb{R}^{d} and the standard matrix norm on d×m\mathbb{R}^{d\times m} are denoted by |||\cdot|. The notation δx\delta_{x} stands for the Dirac measure centred at xdx\in\mathbb{R}^{d}. We use the same notation aa^{\ell} to denote the \ell-th column of a matrix ad×ma\in\mathbb{R}^{d\times m} and the \ell-th element of a vector ada\in\mathbb{R}^{d}. (χ)\mathscr{B}(\chi) stands for the Borel σ\sigma-algebra on a topological space χ\chi. Further, 𝒫2(d)\mathscr{P}_{2}(\mathbb{R}^{d}) denotes the space of all probability measures on (d,(d))(\mathbb{R}^{d},\mathscr{B}(\mathbb{R}^{d})) having finite second moment and equipped with the 2\mathscr{L}^{2}-Wasserstein metric given by

𝒲2(μ,ν):=infπΠ(μ,ν)[d×d|xy|2π(dx,dy)]1/2,\displaystyle\mathcal{W}_{2}(\mu,\nu):=\inf_{\pi\in\Pi(\mu,\nu)}\big{[}\int_{\mathbb{R}^{d}\times\mathbb{R}^{d}}|x-y|^{2}\pi(dx,dy)\big{]}^{1/2},

for any μ\mu, ν𝒫2(d)\nu\in\mathscr{P}_{2}(\mathbb{R}^{d}), where Π(μ,ν)\Pi(\mu,\nu) denotes the set of couplings of μ\mu and ν\nu. Clearly, 𝒫2(d)\mathscr{P}_{2}(\mathbb{R}^{d}) is a Polish space under this metric. We use p(Ω)\mathscr{L}^{p}(\Omega) to denote the Banach space of all d\mathbb{R}^{d}-valued random variables YY defined on a probability space (Ω,,)(\Omega,\mathscr{F},\mathbb{P}) and satisfies Yp(Ω):=[𝔼|Y|p]1/p<\|Y\|_{\mathscr{L}^{p}(\Omega)}:=\big{[}\mathbb{E}|Y|^{p}\big{]}^{1/p}<\infty, where 𝔼\mathbb{E} stands for expectation with respect to \mathbb{P}. Similarly, we use p([0,T]×Ω)\mathscr{L}^{p}([0,T]\times\Omega) to denote the Banach space of processes Y:[0,T]×ΩdY:[0,T]\times\Omega\mapsto\mathbb{R}^{d} having Yp([0,T]×Ω)=[0TY(s)p(Ω)p𝑑s]1/p<\|Y\|_{\mathscr{L}^{p}([0,T]\times\Omega)}=\big{[}\int_{0}^{T}\|Y(s)\|_{\mathscr{L}^{p}(\Omega)}^{p}ds\big{]}^{1/p}<\infty. Also, 𝒞α([0,T],p(Ω))\mathscr{C}^{\alpha}([0,T],\,\mathscr{L}^{p}(\Omega)) stands for the space of all α\alpha-Hölder continuous functions Y:[0,T]p(Ω)Y:[0,T]\mapsto\mathscr{L}^{p}(\Omega) with the following norm,

Y𝒞α([0,T],p(Ω))=supt[0,T]Y(t)p(Ω)+supt,t[0,T]ttY(t)Y(t)p(Ω)|tt|α.\displaystyle\|Y\|_{\mathscr{C}^{\alpha}([0,T],\,\mathscr{L}^{p}(\Omega))}=\sup_{t\in[0,T]}\|Y(t)\|_{\mathscr{L}^{p}(\Omega)}+\sup_{\underset{t\neq t^{\prime}}{t,t^{\prime}\in[0,T]}}\frac{\|Y(t)-Y(t^{\prime})\|_{\mathscr{L}^{p}(\Omega)}}{|t-t^{\prime}|^{\alpha}}. (3)

For a function f:[0,T]×d×𝒫2(d)f:[0,T]\times\mathbb{R}^{d}\times\mathscr{P}_{2}(\mathbb{R}^{d})\rightarrow\mathbb{R}, xf:[0,T]×d×𝒫2(d)d\partial_{x}f:[0,T]\times\mathbb{R}^{d}\times\mathscr{P}_{2}(\mathbb{R}^{d})\rightarrow\mathbb{R}^{d} is the derivative of ff with respect to the space variable and μf:[0,T]×d×𝒫2(d)×dd\partial_{\mu}f:[0,T]\times\mathbb{R}^{d}\times\mathscr{P}_{2}(\mathbb{R}^{d})\times\mathbb{R}^{d}\rightarrow\mathbb{R}^{d} is the Lions derivative with respect to the measure variable. IAI_{A} stands for the indicator function of a set AA and ¯={0}\bar{\mathbb{N}}=\mathbb{N}\cup\{0\}. The constants that appear in the paper vary from line to line, will depend on the problems data, for instance TT, m0,m1m_{0},m_{1}, etc., but critically are independent of the number of particle NN and the schemes timestep hh (given below).

2 McKean–Vlasov Stochastic Differential Equations and the interacting particle systems

Let T>0T>0 be a fixed constant. Consider probability spaces (Ω1,1,1)(\Omega^{1},\mathscr{F}^{1},\mathbb{P}^{1}) and (Ω0,0,0)(\Omega^{0},\mathscr{F}^{0},\mathbb{P}^{0}) equipped with filtrations 𝔽1:={t1}t[0,T]\mathbb{F}^{1}:=\{\mathscr{F}_{t}^{1}\}_{t\in[0,T]} and 𝔽0:={t0}t[0,T]\mathbb{F}^{0}:=\{\mathscr{F}_{t}^{0}\}_{t\in[0,T]}, respectively. The filtrations 𝔽1\mathbb{F}^{1} and 𝔽0\mathbb{F}^{0} satisfy the usual conditions, i.e., they are complete and right continuous. Assume that W:={Wtm1}t[0,T]W:=\{W_{t}{\in\mathbb{R}^{m_{1}}}\}_{t\in[0,T]} and W0:={Wt0m0}t[0,T]W^{0}:=\{W_{t}^{0}{\in\mathbb{R}^{m_{0}}}\}_{t\in[0,T]} are independent Brownian motions defined on (Ω1,1,𝔽1,1)(\Omega^{1},\mathscr{F}^{1},\mathbb{F}^{1},\mathbb{P}^{1}) and (Ω0,0,𝔽0,0)(\Omega^{0},\mathscr{F}^{0},\mathbb{F}^{0},\mathbb{P}^{0}), respectively. In what follows, the interacting particles are governed by i.i.d. copies of WW and W0W^{0} represents the noise common to all the particles. Let us define a product probability space (Ω~,~,~)(\tilde{\Omega},\tilde{\mathscr{F}},\tilde{\mathbb{P}}), where Ω~:=Ω1×Ω0\tilde{\Omega}:=\Omega^{1}\times\Omega^{0}, (~,~)(\tilde{\mathscr{F}},\tilde{\mathbb{P}}) is the completion of (10,10)(\mathscr{F}^{1}\otimes\mathscr{F}^{0},\mathbb{P}^{1}\otimes\mathbb{P}^{0}) and 𝔽~:={~t}t[0,T]\tilde{\mathbb{F}}:=\{\tilde{\mathscr{F}}_{t}\}_{t\in[0,T]} is the completion and right-continuous augmentation of {t1t0}t[0,T]\{\mathscr{F}_{t}^{1}\otimes\mathscr{F}_{t}^{0}\}_{t\in[0,T]}. The expectation with respect to ~\tilde{\mathbb{P}} is denoted by 𝔼~\tilde{\mathbb{E}}.

Let b:[0,T]×d×𝒫2(d)db:[0,T]\times\mathbb{R}^{d}\times\mathscr{P}_{2}(\mathbb{R}^{d})\mapsto\mathbb{R}^{d}, σ1:[0,T]×d×𝒫2(d)d×m1\sigma_{1}:[0,T]\times\mathbb{R}^{d}\times\mathscr{P}_{2}(\mathbb{R}^{d})\mapsto\mathbb{R}^{d\times m_{1}} and σ0:[0,T]×d×𝒫2(d)d×m0\sigma_{0}:[0,T]\times\mathbb{R}^{d}\times\mathscr{P}_{2}(\mathbb{R}^{d})\mapsto\mathbb{R}^{d\times m_{0}} be ([0,T])(d)(𝒫2(d))\mathscr{B}([0,T])\otimes\mathscr{B}(\mathbb{R}^{d})\otimes\mathscr{B}(\mathscr{P}_{2}(\mathbb{R}^{d}))-measurable functions.

In this article, we consider the following d\mathbb{R}^{d}-valued McKean–Vlasov stochastic differential equations (SDEs) with common noise defined on (Ω~,~,𝔽~,~)(\tilde{\Omega},\tilde{\mathscr{F}},\tilde{\mathbb{F}},\tilde{\mathbb{P}}),

Xt=X0+\displaystyle X_{t}=X_{0}+ 0tb(s,Xs,1(Xs))𝑑s+=1m10tσ1(s,Xs,1(Xs))𝑑Ws\displaystyle\int_{0}^{t}b(s,X_{s},\mathcal{L}^{1}(X_{s}))ds+\sum_{\ell=1}^{m_{1}}\int_{0}^{t}\sigma_{1}^{\ell}(s,X_{s},\mathcal{L}^{1}(X_{s}))dW_{s}^{\ell}
+=1m00tσ0(s,Xs,1(Xs))𝑑Ws0,,\displaystyle+\sum_{\ell=1}^{m_{0}}\int_{0}^{t}\sigma_{0}^{\ell}(s,X_{s},\mathcal{L}^{1}(X_{s}))dW_{s}^{0,\ell}, (4)

almost surely for all t[0,T]t\in[0,T], where {1(Xt)}t[0,T]\{\mathcal{L}^{1}(X_{t})\}_{t\in[0,T]} is the flow of conditional laws of XtX_{t} given W0W^{0} and X0X_{0}. A priori, it is not certain that the flow of conditional marginals {1(Xt)}t[0,T]\{\mathcal{L}^{1}(X_{t})\}_{t\in[0,T]} is an 𝔽0\mathbb{F}^{0}-adapted continuous process. However, due to Lemma 2.5 in [14], when the McKean–Vlasov SDE (2) has a unique 𝔽~\tilde{\mathbb{F}}-adapted continuous solution with uniformly bounded second moment, then {1(Xt)}t[0,T]\{\mathcal{L}^{1}(X_{t})\}_{t\in[0,T]} is an 𝔽0\mathbb{F}^{0}-adapted continuous process.

We make the following assumptions.

Assumption H–​​ 1.

X0p¯(Ω~)X_{0}\in\mathscr{L}^{\bar{p}}(\tilde{\Omega}) for some p¯2\bar{p}\geq 2.

Assumption H–​​ 2.

There exists a constant L>0L>0 such that

|b(t,x,μ)b(t,x,μ)|+u=01|σu(t,x,μ)σu(t,x,μ)|L{|xx|+𝒲2(μ,μ)},\displaystyle|b(t,x,\mu)-b(t,x^{\prime},\mu^{\prime})|+\sum_{u=0}^{1}|\sigma_{u}(t,x,\mu)-\sigma_{u}(t,x^{\prime},\mu^{\prime})|\leq L\{|x-x^{\prime}|+\mathcal{W}_{2}(\mu,\mu^{\prime})\},

for all t[0,T]t\in[0,T], x,xdx,x^{\prime}\in\mathbb{R}^{d} and μ,μ𝒫2(d)\mu,\mu^{\prime}\in\mathscr{P}_{2}(\mathbb{R}^{d}).

Assumption H–​​ 3.

There exists a constant L>0L>0 such that

|b(t,x,μ)b(t,x,μ)|\displaystyle|b(t,x,\mu)-b(t^{\prime},x,\mu)| L{1+|x|+𝒲2(μ,δ0)}|tt|1/2,\displaystyle\leq L\{1+|x|+\mathcal{W}_{2}(\mu,\delta_{0})\}|t-t^{\prime}|^{1/2},
u=01|σu(t,x,μ)σu(t,x,μ)|\displaystyle\sum_{u=0}^{1}|\sigma_{u}(t,x,\mu)-\sigma_{u}(t^{\prime},x,\mu)| L{1+|x|+𝒲2(μ,δ0)}|tt|,\displaystyle\leq L\{1+|x|+\mathcal{W}_{2}(\mu,\delta_{0})\}|t-t^{\prime}|,

for all t,t[0,T]t,t^{\prime}\in[0,T], xdx\in\mathbb{R}^{d} and μ𝒫2(d)\mu\in\mathscr{P}_{2}(\mathbb{R}^{d}).

Remark 2.1.

From Assumptions H–2 and H–3, for all t[0,T]t\in[0,T], xdx\in\mathbb{R}^{d} and μ𝒫2(d)\mu\in\mathscr{P}_{2}(\mathbb{R}^{d}),

|b(t,x,μ)|+u=01|σu(t,x,μ)|\displaystyle|b(t,x,\mu)|+\sum_{u=0}^{1}|\sigma_{u}(t,x,\mu)| L¯{1+|x|+𝒲2(μ,δ0)},\displaystyle\leq\bar{L}\{1+|x|+\mathcal{W}_{2}(\mu,\delta_{0})\},

where L¯=max{L,LT,LT,b(0,0,δ0),σ0(0,0,δ0),σ1(0,0,δ0)}\bar{L}=\max\big{\{}L,LT,L\sqrt{T},b(0,0,\delta_{0}),\sigma_{0}(0,0,\delta_{0}),\sigma_{1}(0,0,\delta_{0})\big{\}}.

The proof of the following proposition can be found in [14, 37] and Appendix A.1.

Proposition 2.2 (Well-posedness and Moment Bounds).

If Assumptions H–1 with p¯2\bar{p}\geq 2, H–2 and H–3 are satisfied, then the McKean–Vlasov SDE (2) has a unique 𝔽~\tilde{\mathbb{F}}-adapted solution {Xt}t[0,T]\{X_{t}\}_{t\in[0,T]} and

supt[0,T]|Xt|p¯(Ω~)p¯C1(1+X0p¯(Ω~)p¯),\displaystyle\big{\|}\sup_{t\in[0,T]}|X_{t}|\big{\|}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}\leq C_{1}(1+\|X_{0}\|_{{}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}}^{\bar{p}}),

for C1:=4p¯1max{1,3p¯1L¯p¯(Tp¯+2(p¯3T2(p¯1))p¯/2)}exp(12p¯1L¯p¯(2T ̉p¯+4(p¯3T2(p¯1))p¯/2))C_{1}:=4^{\bar{p}-1}\max\big{\{}1,3^{\bar{p}-1}\bar{L}^{\bar{p}}\big{(}T^{\bar{p}}+2\big{(}\frac{\bar{p}^{3}T}{2(\bar{p}-1)}\big{)}^{\bar{p}/2}\big{)}\big{\}}\exp\big{(}12^{\bar{p}-1}\bar{L}^{\bar{p}}\big{(}2T^{%̄ ̉\bar{p}}+4\big{(}\frac{\bar{p}^{3}T}{2(\bar{p}-1)}\big{)}^{\bar{p}/2}\big{)}\big{)}.

To introduce the interacting particle system connected with the McKean–Vlasov SDEs (2), let us consider NN\in\mathbb{N} i.i.d. copies of WW and X0X_{0}, denoted by WiW^{i} and X0iX_{0}^{i} for i{1,,N}i\in\{1,\ldots,N\}, respectively. Define the following system of equations,

Xti=X0i\displaystyle X^{i}_{t}=X^{i}_{0} +0tb(s,Xsi,1(Xsi))𝑑s+=1m10tσ1(s,Xsi,1(Xsi))𝑑Wsi,\displaystyle+\int_{0}^{t}b(s,X^{i}_{s},\mathcal{L}^{1}(X_{s}^{i}))ds+\sum_{\ell=1}^{m_{1}}\int_{0}^{t}\sigma_{1}^{\ell}(s,X^{i}_{s},\mathcal{L}^{1}(X_{s}^{i}))dW^{i,\ell}_{s}
+=1m00tσ0(s,Xsi,1(Xsi))𝑑Ws0,,\displaystyle+\sum_{\ell=1}^{m_{0}}\int_{0}^{t}\sigma_{0}^{\ell}(s,X^{i}_{s},\mathcal{L}^{1}(X_{s}^{i}))dW^{0,\ell}_{s}, (5)

almost surely for any t[0,T]t\in[0,T] and i{1,,N}i\in\{1,\ldots,N\}. Notice that due to Proposition 2.11 in [14], 0(1(Xt1)=1(Xti) for all t[0,T])=1\mathbb{P}^{0}\big{(}\mathcal{L}^{1}(X_{t}^{1})=\mathcal{L}^{1}(X_{t}^{i})\mbox{ for all }t\in[0,T]\big{)}=1. We remark that the proof of Proposition 2.11 in [14], which establishes the result in a more restrictive setting, uses (only) the well-posedness of the system (2) and Theorem 1.33 from [14] (Yamada Watanabe Theorem) and thus particles have the same law under our settings also. The system (2) is popularly known as the conditional non-interacting particle system. On approximating 1(Xt1)\mathcal{L}^{1}(X_{t}^{1}) by the empirical measure of the states {Xti}i{1,,N}\{X_{t}^{i}\}_{i\in\{1,\ldots,N\}} of NN particles at time tt, and denoted μtX,N\mu_{t}^{X,N}, one obtains the following system of interacting particles,

Xti,N=X0i\displaystyle X_{t}^{i,N}=X_{0}^{i} +0tb(s,Xsi,N,μsX,N)𝑑s+=1m10tσ1(s,Xsi,N,μsX,N)𝑑Wsi,\displaystyle+\int_{0}^{t}b(s,X_{s}^{i,N},\mu_{s}^{X,N})ds+\sum_{\ell=1}^{m_{1}}\int_{0}^{t}\sigma_{1}^{\ell}(s,X_{s}^{i,N},\mu_{s}^{X,N})dW_{s}^{i,\ell}
+=1m00tσ0(s,Xsi,N,μsX,N)𝑑Ws0,,\displaystyle+\sum_{\ell=1}^{m_{0}}\int_{0}^{t}\sigma_{0}^{\ell}(s,X^{i,N}_{s},\mu_{s}^{X,N})dW_{s}^{0,\ell}, (6)

almost surely for any t[0,T]t\in[0,T] and i{1,,N}i\in\{1,\ldots,N\}, where

μtX,N():=1Ni=1NδXti,N(),\displaystyle\mu_{t}^{X,N}(\cdot):=\frac{1}{N}\sum_{i=1}^{N}\delta_{X_{t}^{i,N}}(\cdot),

is the empirical measure of NN particles.

Remark 2.3.

The system (2) can be understood as an d×N\mathbb{R}^{d\times N}-dimensional SDE and thus its well-posedness and moment stability up to order p¯\bar{p} follow from [29] under Assumptions H–1 (with p¯2\bar{p}\geq 2), H–2 and H–3. In other words, the interacting particle system (2) connected with the McKean–Vlasov SDE (2) has a unique strong solution {Xti,N}t[0,T]\{X_{t}^{i,N}\}_{t\in[0,T]} adapted to the filtration {~t}t[0,T]\{\tilde{\mathscr{F}}_{t}\}_{t\in[0,T]} and one can show that

maxi{1,,N}supt[0,T]|Xti,N|p¯(Ω~)p¯C1(1+maxi{1,,N}X0ip¯(Ω~)p¯),\displaystyle\max_{i\in\{1,\ldots,N\}}\big{\|}\sup_{t\in[0,T]}|X_{t}^{i,N}|\big{\|}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}\leq C_{1}\Big{(}1+\max_{i\in\{1,\ldots,N\}}\|X_{0}^{i}\|_{{}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}}^{\bar{p}}\Big{)},

where C1C_{1} is the same constant as in Proposition 2.2. Note that the RHS of the moment estimate above is critically independent of NN – this follows from [37] but does not from [29].

The following lemma gives the time-regularity of the interacting particle system (2) and its proof is given in Appendix A.2.

Lemma 2.4.

Let Assumptions H–1 with p¯2\bar{p}\geq 2, H–2 and H–3 hold. Then,

maxi{1,,N}Xti,NXti,Np¯(Ω~)p¯\displaystyle\max_{i\in\{1,\ldots,N\}}\big{\|}X_{t}^{i,N}-X_{t^{\prime}}^{i,N}\big{\|}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}} C2|tt|p¯/2(1+maxi{1,,N}X0i,Np¯(Ω~)p¯),\displaystyle\leq C_{2}|t-t^{\prime}|^{\bar{p}/2}\big{(}1+\max_{i\in\{1,\ldots,N\}}\big{\|}X_{0}^{i,N}\big{\|}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}\big{)},

for all t>t[0,T]t>t^{\prime}\in[0,T] and NN\in\mathbb{N}, where C2:=(1+2C1)9p¯1Lp¯(Tp¯/2+2(p¯(p¯1)2)p¯/2)C_{2}:=(1+2C_{1})9^{\bar{p}-1}L^{\bar{p}}\big{(}T^{\bar{p}/2}+2\big{(}\frac{\bar{p}(\bar{p}-1)}{2}\big{)}^{\bar{p}/2}\big{)} and the constant C1C_{1} is defined in Proposition 2.2.

The convergence of the interacting particle system (2) to the non-interacting particle system (2) is popularly known in the literature as the propagation of chaos and is stated in the following proposition (see Theorem 2.12 in [14] for details or Appendix A.3). For this, let us define the empirical measure of the non-interacting particle system (2) as

μtX():=1Ni=1NδXti()\displaystyle\mu_{t}^{X}(\cdot):=\frac{1}{N}\sum_{i=1}^{N}\delta_{X_{t}^{i}}(\cdot)

almost surely for any t[0,T]t\in[0,T] and NN\in\mathbb{N}. Further, use Theorem 5.8 in [13] and Proposition 2.2 to obtain the following estimate,

𝒲2(1(Xt1),μtX)2(Ω~)2\displaystyle\big{\|}\mathcal{W}_{2}(\mathcal{L}^{1}(X_{t}^{1}),\mu_{t}^{X})\big{\|}_{\mathscr{L}^{2}(\tilde{\Omega})}^{2} C3{N1/2, if d<4,N1/2log2N, if d=4,N2/d, if d>4,\displaystyle\leq C_{3}\begin{cases}N^{-1/2},&\mbox{ if }d<4,\\ N^{-1/2}\log_{2}N,&\mbox{ if }d=4,\\ N^{-2/d},&\mbox{ if }d>4,\end{cases} (7)

for any t[0,T]t\in[0,T] and NN\in\mathbb{N}, where C3:=C3(d,p¯,X0p¯(Ω~)p¯)C_{3}:=C_{3}(d,\bar{p},\|X_{0}\|_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}) is a positive constant.

Proposition 2.5 (Propagation of Chaos).

Let Assumptions H–1 with p¯>4\bar{p}>4, H–2 and H–3 hold. Then,

maxi{1,,N}supt[0,T]\displaystyle\max_{i\in\{1,\ldots,N\}}\big{\|}\sup_{t\in[0,T]} |XtiXti,N|2(Ω~)2C4{N1/2, if d<4,N1/2log2N, if d=4,N2/d, if d>4,\displaystyle|X_{t}^{i}-X_{t}^{i,N}|\big{\|}_{\mathscr{L}^{2}(\tilde{\Omega})}^{2}\leq C_{4}\begin{cases}N^{-1/2},&\mbox{ if }d<4,\\ N^{-1/2}\ \log_{2}N,&\mbox{ if }d=4,\\ N^{-2/d},&\mbox{ if }d>4,\end{cases}

where C4:=4(3T+24)TL2e6(3T+24)TL2C3(d,p¯,X0p¯(Ω~)p¯)C_{4}:=4(3T+24)TL^{2}e^{6(3T+24)TL^{2}}C_{3}(d,\bar{p},\|X_{0}\|_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}), where the constant C3C_{3} appears in (7).

The proof of this result can be found in Appendix A.3.

All in all, the PoC rates here are in line with the PoC results found in the numerics for McKean Vlasov SDE literature [3, 4, 5, 18, 19, 52, 36, 37, 41, 24, 49]. There are improved results obtaining rate of 1/N1/N and 1/N21/N^{2} (e.g., [23, 39]) that hold under stricter conditions that do not fit the scope of the work presented in the manuscript. We have added text to this effect in the main body of the paper.

3 Main Result

The drift-randomised Milstein scheme was originally proposed and analysed for standard SDEs with non-differentiable drift coefficient in [35]. In the case of McKean–Vlasov SDEs, for which the coefficients depend on the law of the solution process as well, one needs additional randomisation of the drift coefficient with respect to the measure component and a way to deal with the implications from interacting particles. The associated difficulties are tackled in this paper.

3.1 The Scheme

In order to propose the randomised Milstein scheme for the interacting particle system (2) connected with the McKean–Vlasov SDEs (2), the map (x,μ)(σ1(t,x,μ),σ0(t,x,μ))(x,\mu)\mapsto(\sigma_{1}(t,x,\mu),\sigma_{0}(t,x,\mu)) is assumed to be continuously differentiable for every t[0,T]t\in[0,T]. The notion of Lions derivative (see Appendix A.4 for details) is used to differentiate these functions with respect to the measure component. For u{0,1}u\in\{0,1\}, let us define d×dd\times d matrices Λσuσ1\Lambda_{\sigma_{u}\sigma_{1}} and Λσuσ0\Lambda_{\sigma_{u}\sigma_{0}} whose \ell-th column are given by,

Λσuσ1(t,s,xi,μ):=\displaystyle\Lambda_{\sigma_{u}\sigma_{1}}^{\ell}(t,s,x^{i},\mu):= 1=1m1stxσu(s,xi,μ)σ11(s,xi,μ)dWri,1\displaystyle\sum_{\ell_{1}=1}^{m_{1}}\int_{s}^{t}\partial_{x}\sigma_{u}^{\ell}(s,x^{i},\mu)\sigma_{1}^{\ell_{1}}(s,x^{i},\mu)dW^{i,\ell_{1}}_{r}
+1Nk=1N1=1m1stμσu(s,xi,μ,xk)σ11(s,xk,μ)dWrk,1,\displaystyle+\frac{1}{N}\sum_{k=1}^{N}\sum_{\ell_{1}=1}^{m_{1}}\int_{s}^{t}\partial_{\mu}\sigma_{u}^{\ell}(s,x^{i},\mu,x^{k})\sigma_{1}^{\ell_{1}}(s,x^{k},\mu)dW^{k,\ell_{1}}_{r}, (8)
Λσuσ0(t,s,xi,μ):=\displaystyle\Lambda^{\ell}_{\sigma_{u}\sigma_{0}}(t,s,x^{i},\mu):= 1=1m0stxσu(s,xi,μ)σ01(s,xi,μ)dWr0,1\displaystyle\sum_{\ell_{1}=1}^{m_{0}}\int_{s}^{t}\partial_{x}\sigma_{u}^{\ell}(s,x^{i},\mu)\sigma_{0}^{\ell_{1}}(s,x^{i},\mu)dW_{r}^{0,\ell_{1}}
+1Nk=1N1=1m0stμσu(s,xi,μ,xk)σ01(s,xk,μ)dWr0,1,\displaystyle+\frac{1}{N}\sum_{k=1}^{N}\sum_{\ell_{1}=1}^{m_{0}}\int_{s}^{t}\partial_{\mu}\sigma_{u}^{\ell}(s,x^{i},\mu,x^{k})\sigma_{0}^{\ell_{1}}(s,x^{k},\mu)dW_{r}^{0,\ell_{1}}, (9)

for all s,t[0,T]s,t\in[0,T], {1,,mu}\ell\in\{1,\ldots,m_{u}\}, xidx^{i}\in\mathbb{R}^{d}, i{1,,N}i\in\{1,\ldots,N\}, μ𝒫2(d)\mu\in\mathscr{P}_{2}(\mathbb{R}^{d}). Also, define the dd-dimensional vectors σ~1\tilde{\sigma}_{1}^{\ell} and σ~01\tilde{\sigma}_{0}^{\ell_{1}} for any {1,,m1}\ell\in\{1,\ldots,m_{1}\} and 1{1,,m0}\ell_{1}\in\{1,\ldots,m_{0}\} as

σ~1(t,s,xi,μ):=σ1(s,xi,μ)+Λσ1σ1(t,s,xi,μ)+Λσ1σ0(t,s,xi,μ)σ~01(t,s,xi,μ):=σ01(s,xi,μ)+Λσ0σ11(t,s,xi,μ)+Λσ0σ01(t,s,xi,μ)}\displaystyle\left.\begin{aligned} \tilde{\sigma}_{1}^{\ell}(t,s,x^{i},\mu):=&\sigma_{1}^{\ell}(s,x^{i},\mu)+\Lambda^{\ell}_{\sigma_{1}\sigma_{1}}(t,s,x^{i},\mu)+\Lambda^{\ell}_{\sigma_{1}\sigma_{0}}(t,s,x^{i},\mu)\\ \tilde{\sigma}_{0}^{\ell_{1}}(t,s,x^{i},\mu):=&\sigma^{\ell_{1}}_{0}(s,x^{i},\mu)+\Lambda^{\ell_{1}}_{\sigma_{0}\sigma_{1}}(t,s,x^{i},\mu)+\Lambda^{\ell_{1}}_{\sigma_{0}\sigma_{0}}(t,s,x^{i},\mu)\end{aligned}\right\} (10)

for all i{1,,nh}i\in\{1,\ldots,n_{h}\}.

Now, consider a sequence η:={ηj}j\eta:=\{\eta_{j}\}_{j\in\mathbb{N}} of i.i.d. standard uniformly distributed random variables defined on a probability space (Ωη,η,η)(\Omega^{\eta},\mathscr{F}^{\eta},\mathbb{P}^{\eta}), equipped with the natural filtration 𝔽η:={jη}j\mathbb{F}^{\eta}:=\{\mathscr{F}_{j}^{\eta}\}_{j\in\mathbb{N}} of {ηj}j\{\eta_{j}\}_{j\in\mathbb{N}}. Let 𝔼η\mathbb{E}^{\eta} stand for the expectation with respect to η\mathbb{P}^{\eta}. The random variables {ηj}j\{\eta_{j}\}_{j\in\mathbb{N}} are assumed to be independent of WW, W0W^{0}, WiW^{i} and X0iX_{0}^{i} for all i{1,,N}i\in\{1,\ldots,N\}. Now consider the general non-equidistant temporal grid ϱh\varrho_{h} of [0,T][0,T] with nhn_{h} subintervals,

ϱh={(t0,t1,,tnh):0=t0<t1<<tnh=T},\displaystyle\varrho_{h}=\{(t_{0},t_{1},\ldots,t_{n_{h}}):0=t_{0}<t_{1}<\cdots<t_{n_{h}}=T\}, (11)

with hj:=(tjtj1)>0h_{j}:=(t_{j}-t_{j-1})>0 for j{1,,nh}j\in\{1,\ldots,n_{h}\}, nhn_{h}\in\mathbb{N} and h:=maxj{1,,nh}hjmin(1,T)h:=\max_{j\in\{1,\ldots,n_{h}\}}h_{j}\leq\min(1,T). Now, consider a new probability space (Ω,,)=(Ω~×Ωη,~η,~η)(\Omega,\mathscr{F},\mathbb{P})=(\tilde{\Omega}\times\Omega^{\eta},\tilde{\mathscr{F}}\otimes\mathscr{F}^{\eta},\tilde{\mathbb{P}}\otimes\mathbb{P}^{\eta}) equipped with a filtration 𝔽:={jh}j{0,,nh}\mathbb{F}:=\{\mathscr{F}_{j}^{h}\}_{j\in\{0,\ldots,n_{h}\}}; where jh=~tjjη\mathscr{F}_{j}^{h}=\tilde{\mathscr{F}}_{t_{j}}\otimes\mathscr{F}_{j}^{\eta}. We will denote the expectation with respect to \mathbb{P} by 𝔼\mathbb{E}.

The drift-randomised Milstein scheme for the interacting particle system (2) of the McKean–Vlasov SDE (2) is given by

Xj,ηi,N,h=\displaystyle X_{j,\eta}^{i,N,h}= Xj1i,N,h+ηjhjb(tj1,Xj1i,N,h,μj1X,N,h)\displaystyle X_{j-1}^{i,N,h}+\eta_{j}h_{j}b(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})
+=1m1σ1(tj1,Xj1i,N,h,μj1X,N,h)tj1tj1+ηjhj𝑑Wsi,\displaystyle+\sum_{\ell=1}^{m_{1}}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\int_{t_{j-1}}^{t_{j-1}+\eta_{j}h_{j}}dW_{s}^{i,\ell}
+=1m0σ0(tj1,Xj1i,N,h,μj1X,N,h)tj1tj1+ηjhj𝑑Ws0,,\displaystyle+\sum_{\ell=1}^{m_{0}}\sigma_{0}^{\ell}(t_{j-1},X^{i,N,h}_{j-1},\mu_{j-1}^{X,N,h})\int_{t_{j-1}}^{t_{j-1}+\eta_{j}h_{j}}dW_{s}^{0,\ell}, (12)
Xji,N,h=\displaystyle X_{j}^{i,N,h}= Xj1i,N,h+hjb(tj1+ηjhj,Xj,ηi,N,h,μj,ηX,N,h)\displaystyle X_{j-1}^{i,N,h}+h_{j}b(t_{j-1}+\eta_{j}h_{j},X_{j,\eta}^{i,N,h},\mu_{j,\eta}^{X,N,h})
+=1m1tj1tjσ~1(s,tj1,Xj1i,N,h,μj1X,N,h)𝑑Wsi,\displaystyle+\sum_{\ell=1}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})dW^{i,\ell}_{s}
+=1m0tj1tjσ~0(s,tj1,Xj1i,N,h,μj1X,N,h)𝑑Ws0,,\displaystyle+\sum_{\ell=1}^{m_{0}}\int_{t_{j-1}}^{t_{j}}\tilde{\sigma}_{0}^{\ell}(s,t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})dW_{s}^{0,\ell}, (13)

almost surely for all j{1,,nh}j\in\{1,\ldots,n_{h}\} and i{1,,N}i\in\{1,\ldots,N\} with the initial value X0i,N,h=X0iX_{0}^{i,N,h}=X_{0}^{i}, where the empirical measures μj1X,N,h\mu_{j-1}^{X,N,h} and μj,ηX,N,h\mu_{j,\eta}^{X,N,h} are defined as

μj1X,N,h()\displaystyle\mu_{j-1}^{X,N,h}(\cdot) :=1Ni=1NδXj1i,N,h() and μj,ηX,N,h():=1Ni=1NδXj,ηi,N,h().\displaystyle:=\frac{1}{N}\sum_{i=1}^{N}\delta_{X_{j-1}^{i,N,h}}(\cdot)\quad\mbox{ and }\quad\mu_{j,\eta}^{X,N,h}(\cdot):=\frac{1}{N}\sum_{i=1}^{N}\delta_{X_{j,\eta}^{i,N,h}}(\cdot). (14)
Remark 3.1 (Comparison to prior art: classical case).

When σ00\sigma_{0}\equiv 0, the conditional law 1()\mathcal{L}^{1}(\cdot) becomes the unconditional law of the solution process. If either 1()\mathcal{L}^{1}(\cdot) is known or bb and σ1\sigma_{1} do not depend on 1()\mathcal{L}^{1}(\cdot), then the McKean–Vlasov SDE (2) becomes a standard SDE. In such a case, the randomised Milstein scheme (13) considered here reduces to the one considered in [35]. Indeed, the terms involving measure derivatives in (8) and hence in (10), (12) and (13) vanish in this case. Additional terms that appear in (12) and (13) are due to the dependence of the coefficients bb, σ1\sigma_{1} and σ0\sigma_{0} on the law of the solution process (measure variable).

3.1.1 Practical Implementation

In this section, we comment on implementation issues, specifically the sampling of the random time mesh and simulation of the Lévy area. The latter results explicitly from the presence of common noise and is not specific to our randomisation method, the former is an essential aspect of the scheme.

We first note that in Equations (12) and (13) the same uniform random variables η1\eta_{1}, \ldots, ηnh\eta_{n_{h}} are used for each particle in the system to identify random points in each sub-interval of the temporal grid ρh\rho_{h}. This approach is similar to the adaptive time-stepping Euler scheme of [49] where the same random points (arising due to adaptive step-sizes) are used for each particle of the system. A refined version uses different time meshes for individual particles, but common, uniform timesteps for the definition of the empirical measure. In our setting, for each realisation of the common noise, a single path of random timesteps is simulated, so that the computational effort of the randomisation is comparable to the simulation of a discrete Brownian path, but negligible compared to the simulation of iterated stochastic integrals as required for the Milstein scheme, which we discuss further now.

If the following, commutative conditions are imposed on the diffusion coefficients,

xσ1(t,x,μ)σ11(t,x,μ)\displaystyle\partial_{x}\sigma_{1}^{\ell}(t,x,\mu)\sigma_{1}^{\ell_{1}}(t,x,\mu) =xσ11(t,x,μ)σ1(t,x,μ),\displaystyle=\partial_{x}\sigma_{1}^{\ell_{1}}(t,x,\mu)\sigma_{1}^{\ell}(t,x,\mu),

for any ,1=1,,m1\ell,\ell_{1}=1,\ldots,m_{1}, t[0,T]t\in[0,T], xdx\in\mathbb{R}^{d} and μ𝒫2(d)\mu\in\mathcal{P}_{2}(\mathbb{R}^{d}), then

=1m11=1m1tj1tjtj1sxσ1(tj1,Xj1i,N,h,μj1X,N,h)σ11(tj1,Xj1i,N,h,μj1X,N,h)dWri,1dWsi,\displaystyle\sum_{\ell=1}^{m_{1}}\sum_{\ell_{1}=1}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\int_{t_{j-1}}^{s}\partial_{x}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\sigma_{1}^{\ell_{1}}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})dW^{i,\ell_{1}}_{r}dW^{i,\ell}_{s}
=\displaystyle= =1m1tj1tjtj1sxσ1(tj1,Xj1i,N,h,μj1X,N,h)σ1(tj1,Xj1i,N,h,μj1X,N,h)dWri,dWsi,\displaystyle\sum_{\ell=1}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\int_{t_{j-1}}^{s}\partial_{x}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})dW^{i,\ell}_{r}dW^{i,\ell}_{s}
+=1m11>m1tj1tjtj1s(xσ1(tj1,Xj1i,N,h,μj1X,N,h)σ11(tj1,Xj1i,N,h,μj1X,N,h)dWri,1dWsi,\displaystyle+\sum_{\ell=1}^{m_{1}}\sum_{\ell_{1}>\ell}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\int_{t_{j-1}}^{s}\Big{(}\partial_{x}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\sigma_{1}^{\ell_{1}}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})dW^{i,\ell_{1}}_{r}dW^{i,\ell}_{s}
+xσ11(tj1,Xj1i,N,h,μj1X,N,h)σ1(tj1,Xj1i,N,h,μj1X,N,h)dWri,dWsi,1)\displaystyle\qquad+\partial_{x}\sigma_{1}^{\ell_{1}}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})dW^{i,\ell}_{r}dW^{i,\ell_{1}}_{s}\Big{)}
==1m1xσ1(tj1,Xj1i,N,h,μj1X,N,h)σ1(tj1,Xj1i,N,h,μj1X,N,h)12((ΔWi,)2hj)\displaystyle=\sum_{\ell=1}^{m_{1}}\partial_{x}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\frac{1}{2}\big{(}(\Delta W^{i,\ell})^{2}-h_{j}\big{)}
+=1m11>m1xσ1(tj1,Xj1i,N,h,μj1X,N,h)σ11(tj1,Xj1i,N,h,μj1X,N,h)ΔWi,ΔWi,1\displaystyle+\sum_{\ell=1}^{m_{1}}\sum_{\ell_{1}>\ell}^{m_{1}}\partial_{x}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\sigma_{1}^{\ell_{1}}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\Delta W^{i,\ell}\Delta W^{i,\ell_{1}}
=\displaystyle= 12=1m11=1m1xσ1(tj1,Xj1i,N,h,μj1X,N,h)σ11(tj1,Xj1i,N,h,μj1X,N,h)(ΔWi,ΔWi,1hjI{=1}),\displaystyle\frac{1}{2}\sum_{\ell=1}^{m_{1}}\sum_{\ell_{1}=1}^{m_{1}}\partial_{x}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\sigma_{1}^{\ell_{1}}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})(\Delta W^{i,\ell}\Delta W^{i,\ell_{1}}-h_{j}I_{\{\ell=\ell_{1}}\}),

almost surely for any j{1,,nh}j\in\{1,\ldots,n_{h}\} and i{1,,N}i\in\{1,\ldots,N\}, and thus one can write the third term on the right-hand side of (13) as

=1m1tj1tjσ~1(s,tj1,Xj1i,N,h,μj1X,N,h)𝑑Wsi,==1m1σ1(tj1,Xj1i,N,h,μj1X,N,h)ΔWi,\displaystyle\sum_{\ell=1}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})dW^{i,\ell}_{s}=\sum_{\ell=1}^{m_{1}}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\Delta W^{i,\ell}
+12=1m11=1m1xσ1(tj1,Xj1i,N,h,μj1X,N,h)σ11(tj1,Xj1i,N,h,μj1X,N,h)(ΔWi,ΔWi,1hjI{=1})\displaystyle+\frac{1}{2}\sum_{\ell=1}^{m_{1}}\sum_{\ell_{1}=1}^{m_{1}}\partial_{x}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\sigma_{1}^{\ell_{1}}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})(\Delta W^{i,\ell}\Delta W^{i,\ell_{1}}-h_{j}I_{\{\ell=\ell_{1}}\})
+=1m1tj1tj1Nk=1N1=1m1tj1sμσ1(tj1,Xj1i,N,h,μj1X,N,h,Xj1k,N,h)\displaystyle+\sum_{\ell=1}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\frac{1}{N}\sum_{k=1}^{N}\sum_{\ell_{1}=1}^{m_{1}}\int_{t_{j-1}}^{s}\partial_{\mu}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h},X_{j-1}^{k,N,h})
σ11(tj1,Xj1k,N,h,μj1X,N,h)dWrk,1dWsi,\displaystyle\qquad\qquad\sigma_{1}^{\ell_{1}}(t_{j-1},X_{j-1}^{k,N,h},\mu_{j-1}^{X,N,h})dW^{k,\ell_{1}}_{r}dW^{i,\ell}_{s}
+=1m11=1m0tj1tjtj1sxσ1(tj1,Xj1i,N,h,μj1X,N,h)σ01(tj1,Xj1i,N,h,μj1X,N,h)dWr0,1dWsi,\displaystyle+\sum_{\ell=1}^{m_{1}}\sum_{\ell_{1}=1}^{m_{0}}\int_{t_{j-1}}^{t_{j}}\int_{t_{j-1}}^{s}\partial_{x}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\sigma_{0}^{\ell_{1}}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})dW^{0,\ell_{1}}_{r}dW^{i,\ell}_{s}
+=1m1tj1tj1Nk=1N1=1m0tj1sμσ1(tj1,Xj1i,N,h,μj1X,N,h,Xj1k,N,h)\displaystyle+\sum_{\ell=1}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\frac{1}{N}\sum_{k=1}^{N}\sum_{\ell_{1}=1}^{m_{0}}\int_{t_{j-1}}^{s}\partial_{\mu}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h},X_{j-1}^{k,N,h})
σ01(tj1,Xj1k,N,h,μj1X,N,h)dWr0,1dWsi,.\displaystyle\qquad\qquad\sigma_{0}^{\ell_{1}}(t_{j-1},X_{j-1}^{k,N,h},\mu_{j-1}^{X,N,h})dW^{0,\ell_{1}}_{r}dW^{i,\ell}_{s}.

In the above, the last three terms require the approximation of the Lévy area, which can be done with the help of the techniques developed in [54]. A similar conclusion holds for the fourth term on the right-hand side of (13). Furthermore, the terms involving Lions derivatives are of order 𝒪(1/N)\mathcal{O}(1/N), as shown in [4, Proof of Proposition 2.3] for the regular case, and hence can be ignored when NN is large. In addition, if σ00\sigma_{0}\equiv 0, i.e., the common noise term is not present, the fourth term on the right-hand side of the above equation can also be dropped and thus we have

=1m1tj1tjσ~1(s,tj1,Xj1i,N,h,μj1X,N,h)𝑑Wsi,==1m1σ1(tj1,Xj1i,N,h,μj1X,N,h)ΔWi,\displaystyle\sum_{\ell=1}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})dW^{i,\ell}_{s}=\sum_{\ell=1}^{m_{1}}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\Delta W^{i,\ell}
+12=1m11=1m1xσ1(tj1,Xj1i,N,h,μj1X,N,h)σ11(tj1,Xj1i,N,h,μj1X,N,h)(ΔWi,ΔWi,1hjI{=1}),\displaystyle+\frac{1}{2}\sum_{\ell=1}^{m_{1}}\sum_{\ell_{1}=1}^{m_{1}}\partial_{x}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\sigma_{1}^{\ell_{1}}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})(\Delta W^{i,\ell}\Delta W^{i,\ell_{1}}-h_{j}I_{\{\ell=\ell_{1}}\}),

which leads to a fully implementable randomised Milstein scheme. Summing up, when NN is large and σ00\sigma_{0}\equiv 0, the randomised Milstein scheme can be reduced to

Xj,ηi,N,h=Xj1i,N,h+ηjhjb(tj1,Xj1i,N,h,μj1X,N,h)+=1m1σ1(tj1,Xj1i,N,h,μj1X,N,h)(Wtj1+ηjhji,Wtj1i,),\displaystyle X_{j,\eta}^{i,N,h}=X_{j-1}^{i,N,h}+\eta_{j}h_{j}b(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})+\sum_{\ell=1}^{m_{1}}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})(W^{i,\ell}_{t_{j-1}+\eta_{j}h_{j}}-W^{i,\ell}_{t_{j-1}}),
Xji,N,h=Xj1i,N,h+hjb(tj1+ηjhj,Xj,ηi,N,h,μj,ηX,N,h)+=1m1σ1(tj1,Xj1i,N,h,μj1X,N,h)ΔWi,\displaystyle X_{j}^{i,N,h}=X_{j-1}^{i,N,h}+h_{j}b(t_{j-1}+\eta_{j}h_{j},X_{j,\eta}^{i,N,h},\mu_{j,\eta}^{X,N,h})+\sum_{\ell=1}^{m_{1}}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\Delta W^{i,\ell}
+12=1m11=1m1xσ1(tj1,Xj1i,N,h,μj1X,N,h)σ11(tj1,Xj1i,N,h,μj1X,N,h)(ΔWi,ΔWi,1hjI{=1}),\displaystyle+\frac{1}{2}\sum_{\ell=1}^{m_{1}}\sum_{\ell_{1}=1}^{m_{1}}\partial_{x}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\sigma_{1}^{\ell_{1}}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})(\Delta W^{i,\ell}\Delta W^{i,\ell_{1}}-h_{j}I_{\{\ell=\ell_{1}}\}),

almost surely for any j{1,,nh}j\in\{1,\ldots,n_{h}\} and i{1,,N}i\in\{1,\ldots,N\}.

3.2 The Main Convergence Result and Its Assumptions

In order to investigate the rate of convergence of the randomised Milstein scheme (13), we make the following additional assumptions.

Assumption H–​​ 4.

There exists a constant L>0L>0 such that

|xσu(t,x,μ)xσu(t,x,μ)|\displaystyle|\partial_{x}\sigma_{u}^{\ell}(t,x,\mu)-\partial_{x}\sigma_{u}^{\ell}(t,x^{\prime},\mu^{\prime})| L{|xx|+𝒲2(μ,μ)},\displaystyle\leq L\big{\{}|x-x^{\prime}|+\mathcal{W}_{2}(\mu,\mu^{\prime})\big{\}},
|μσu(t,x,μ,y)μσu(t,x,μ,y)|\displaystyle|\partial_{\mu}\sigma_{u}^{\ell}(t,x,\mu,y)-\partial_{\mu}\sigma_{u}^{\ell}(t,x^{\prime},\mu^{\prime},y^{\prime})| L{|xx|+|yy|+𝒲2(μ,μ)},\displaystyle\leq L\big{\{}|x-x^{\prime}|+|y-y^{\prime}|+\mathcal{W}_{2}(\mu,\mu^{\prime})\big{\}},

for all u{0,1}u\in\{0,1\}, {1,,mu}\ell\in\{1,\ldots,m_{u}\}, t[0,T]t\in[0,T], x,x,y,ydx,x^{\prime},y,y^{\prime}\in\mathbb{R}^{d} and μ,μ𝒫2(d)\mu,\mu^{\prime}\in\mathcal{P}_{2}(\mathbb{R}^{d}).

Assumption H–​​ 5.

There exists a constant L>0L>0 such that

|xσu(t,x,μ)σv1(t,x,μ)xσu(t,x,μ)σv1(t,x,μ)|\displaystyle|\partial_{x}\sigma_{u}^{\ell}(t,x,\mu)\sigma_{v}^{\ell_{1}}(t,x,\mu)-\partial_{x}\sigma_{u}^{\ell}(t,x^{\prime},\mu^{\prime})\sigma_{v}^{\ell_{1}}(t,x^{\prime},\mu^{\prime})|\leq L{|xx|+𝒲2(μ,μ)},\displaystyle L\{|x-x^{\prime}|+\mathcal{W}_{2}(\mu,\mu^{\prime})\},
|μσu(t,x,μ,y)σv1(t,y,μ)μσu(t,x,μ,y)σv1(t,y,μ)|\displaystyle|\partial_{\mu}\sigma_{u}^{\ell}(t,x,\mu,y)\sigma_{v}^{\ell_{1}}(t,y,\mu)-\partial_{\mu}\sigma_{u}^{\ell}(t,x^{\prime},\mu^{\prime},y^{\prime})\sigma_{v}^{\ell_{1}}(t,y^{\prime},\mu^{\prime})|\leq L{|xx|+|yy|+𝒲2(μ,μ)},\displaystyle L\{|x-x^{\prime}|+|y-y^{\prime}|+\mathcal{W}_{2}(\mu,\mu^{\prime})\},

for all u,v{0,1}u,v\in\{0,1\}, {1,,mu}\ell\in\{1,\ldots,m_{u}\}, 1{1,,mv}\ell_{1}\in\{1,\ldots,m_{v}\}, t[0,T]t\in[0,T], x,x,y,ydx,x^{\prime},y,y^{\prime}\in\mathbb{R}^{d} and μ,μ𝒫2(d)\mu,\mu^{\prime}\in\mathcal{P}_{2}(\mathbb{R}^{d}).

Remark 3.2.

Due to Assumption H–2, we have

|xσu(t,x,μ)|+|μσu(t,x,μ,y)|\displaystyle|\partial_{x}\sigma_{u}^{\ell}(t,x,\mu)|+|\partial_{\mu}\sigma_{u}^{\ell}(t,x,\mu,y)| L,\displaystyle\leq L,

for all u{0,1}u\in\{0,1\}, {1,,mu}\ell\in\{1,\ldots,m_{u}\}, t[0,T]t\in[0,T], x,ydx,y\in\mathbb{R}^{d} and μ𝒫2(d)\mu\in\mathcal{P}_{2}(\mathbb{R}^{d}).

Below, we state the main result of this paper containing the error rate for the approximation of the scheme to the interacting particle system (2). For notational simplicity, we use Xji,NX_{j}^{i,N} to represent Xtji,NX_{t_{j}}^{i,N} for any i{1,,N}i\in\{1,\ldots,N\} and j{1,,nh}j\in\{1,\ldots,n_{h}\}. This result is proved in Section 5.4.

Theorem 3.3.

Let Assumptions H–1 with p¯4\bar{p}\geq 4, H–2 to H–5 hold. Then, the drift-randomised Milstein scheme (13) converges in the strong sense to the true solution of the interacting particle system (2) with order 1. Concretely, for q=p¯/2q=\bar{p}/2 and hmin(1,T)h\leq\min(1,T) we have

maxi{1,,N}maxj{0,,nh}|Xji,NXji,N,h|q(Ω)C7C10h,\displaystyle\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{j\in\{0,\ldots,n_{h}\}}|X_{j}^{i,N}-X_{j}^{i,N,h}|\big{\|}_{\mathscr{L}^{q}(\Omega)}\leq C_{7}C_{10}h,

where the positive constants C7C_{7} and C10C_{10} appear in Proposition 5.5 and Proposition 5.9, respectively.

A direct combination of Proposition 2.5 and Theorem 3.3 delivers the control on the error for the numerical approximation of the McKean–Vlasov Equation SDE (2) (and (2)). For convenience of notation, XjiX_{j}^{i} is used to denote XtjiX_{t_{j}}^{i} for any i{1,,N}i\in\{1,\ldots,N\} and j{1,,nh}j\in\{1,\ldots,n_{h}\}.

Corollary 3.4.

Let assumptions of Theorem 3.3 hold with p¯>4\bar{p}>4. Then, the drift randomized Milstein scheme (13) converges in the strong sense to the true solution of the McKean–Vlasov SDE (2),

maxi{1,,N}maxj{0,,nh}|XjiXji,N,h|2(Ω){C4N1/4+C7C10h, if d<4C4N1/4log2N+C7C10h, if d=4C4N1/d+C7C10h, if d>4\displaystyle\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{j\in\{0,\ldots,n_{h}\}}|X_{j}^{i}-X_{j}^{i,N,h}|\big{\|}_{\mathscr{L}^{2}(\Omega)}\leq\begin{cases}\sqrt{C_{4}}N^{-1/4}+C_{7}C_{10}h,&\mbox{ if }d<4\\ \sqrt{C_{4}}N^{-1/4}\sqrt{\log_{2}N}+C_{7}C_{10}h,&\mbox{ if }d=4\\ \sqrt{C_{4}}N^{-1/d}+C_{7}C_{10}h,&\mbox{ if }d>4\end{cases}

with hmin{1,T}h\leq\min\{1,T\} and C4:=2(3T+24)TL2e4(3T+24)TL2C3(d,p¯,X0p¯(Ω~)p¯)C_{4}:=2(3T+24)TL^{2}e^{4(3T+24)TL^{2}}C_{3}(d,\bar{p},\|X_{0}\|_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}) where the constant C3C_{3} appears in (7), and C7C_{7} and C10C_{10} come from Proposition 5.5 and Proposition 5.9 respectively.

Remark 3.5 (Application to optimal control and machine learning).

In an nn-player stochastic differential game with an (d)n\left(\mathbb{R}^{d}\right)^{n}-valued state process 𝐗=(X1,,Xn)\boldsymbol{X}=\left(X^{1},\ldots,X^{n}\right), agent ii chooses a control process (αti)(\alpha^{i}_{t}) with values in an action space AA so as to minimize some target functional (see, e.g., the framework considered in [23, (1.1)]). For a Markovian control αti=αi(t,𝐗t)\alpha^{i}_{t}=\alpha^{i}\left(t,\boldsymbol{X}_{t}\right), the resulting dynamics can be described by a (controlled) McKean–Vlasov SDE,

dXti=b^(Xti,m𝑿tn,αi(t,𝑿t))dt+σdBti+σ0dWt.\displaystyle dX_{t}^{i}=\widehat{b}\big{(}X_{t}^{i},m_{\boldsymbol{X}_{t}}^{n},\alpha^{i}\left(t,\boldsymbol{X}_{t}\right)\big{)}\,dt+\sigma\,dB_{t}^{i}+\sigma_{0}\,dW_{t}. (15)

Throughout, WW and B1,,BnB^{1},\ldots,B^{n} are independent Wiener processes, and we write

m𝒙n=1nk=1nδxk\displaystyle m_{\boldsymbol{x}}^{n}=\frac{1}{n}\sum_{k=1}^{n}\delta_{x_{k}}

to denote the empirical measure of a vector 𝐱=(x1,,xn)\boldsymbol{x}=\left(x_{1},\ldots,x_{n}\right) in (d)n\left(\mathbb{R}^{d}\right)^{n}. A similar situation arises in mean-field control, where a central agent chooses the same feedback control α(t,𝐗t)\alpha\left(t,\boldsymbol{X}_{t}\right) for each agent so as to minimise their (the central agent’s) objective.

In both these situations, for a non-differentiable control of (Markovian) type, α(t,Xt)\alpha(t,X_{t}), appearing in b^\widehat{b} and not appearing in σ\sigma or σ0\sigma_{0} (as Assumption H-4 and H-5 require differentiability), then our approximation scheme will be applicable to the simulation of the controlled (mean-field) SDE and still produce an approximation of strong order 11 as long as one can establish sufficient regularity of α\alpha^{\cdot} such that Assumption H-2 and H-3 holds for the modified drift bb

[0,T]×d×𝒫2(d)(t,x,μ)b(t,x,μ):=b^(t,x,μ,α(t,x)).[0,T]\times\mathbb{R}^{d}\times\mathcal{P}_{2}(\mathbb{R}^{d})\ni(t,x,\mu)\mapsto b(t,x,\mu):=\widehat{b}\big{(}t,x,\mu,\alpha(t,x)\big{)}.

This exact same argument would work for controlled SDE in classical settings where the control is non-differentiable, e.g., when (adapting from (15))

dXt=b^(t,Xt,α(t,Xt))dt+σ(t,Xt)dWt.\displaystyle dX_{t}=\widehat{b}\big{(}t,X_{t},\alpha\left(t,{X}_{t}\right)\big{)}\,dt+\sigma(t,X_{t})\,dW_{t}.

In situations when α\alpha is a random field our theory would not apply directly (Kruse et al.’s [7, 34, 35] or [46, 48] as well). It might be possible to address space-measure mean-field controls α(t,Xt,μt)\alpha(t,X_{t},\mu_{t}) as in [47] but [47] also shows that proving regularity properties for α\alpha in its measure component is involved.

Lastly, our method also fits into a situation where machine learning is applied, via tools like reinforcement learning or policy iteration, to solve the optimal control problem. The requirement is a suitable choice of control/policy iteration class that would ensure Assumption H-2 and H-3 holds. A popular choice, especially in the moderate- to high-dimensional context, are deep neural networks, and a commonly used activation function therein is a ReLU, which makes the resulting parametric ansatz function Lipschitz but not everywhere differentiable; see [50] for applications of such a policy gradient method to non-smooth mean-field control, and to [51] for a proof that the resulting feedback control remains uniformly Lipschitz over the iterations, in a setting with controlled drift but without mean-field interaction.

4 Moment Bound

In this section, we assume throughout that the conditions of Theorem 3.3 are in force. Here, we establish moment bounds for the scheme (13), but before proving it (Lemma 4.3), we state and prove the following auxiliary result.

Lemma 4.1.

Let Assumptions H–2 and H–3 be satisfied. For some p2p\geq 2, if Xj1i,N,hp(Ω)X_{j-1}^{i,N,h}\in\mathscr{L}^{p}(\Omega) for any i{1,,N}i\in\{1,\ldots,N\} and j{1,,nh}j\in\{1,\ldots,n_{h}\}, then

Xj,ηi,N,hp(Ω) and Xji,N,hp(Ω),X_{j,\eta}^{i,N,h}\in\mathscr{L}^{p}(\Omega)\mbox{ and }X_{j}^{i,N,h}\in\mathscr{L}^{p}(\Omega),

for all j{1,,nh}j\in\{1,\ldots,n_{h}\} and i{1,,N}i\in\{1,\ldots,N\}.

Proof.

Notice that for every i{1,,N}i\in\{1,\ldots,N\}, Xj1i,N,hX_{j-1}^{i,N,h} is j1h\mathscr{F}_{j-1}^{h}-measurable and Assumption H–2 gives the continuity of bb and σu\sigma_{u} for u{0,1}u\in\{0,1\}, which in turn implies that Xj,ηi,N,hX_{j,\eta}^{i,N,h} defined in (12) is jh\mathscr{F}_{j}^{h}-measurable for any j{1,,nh}j\in\{1,\ldots,n_{h}\}. Also, continuity of xσu\partial_{x}\sigma_{u}^{\ell} and μσu\partial_{\mu}\sigma_{u}^{\ell} for u{0,1}u\in\{0,1\} and {1,2,,mu}\ell\in\{1,2,\ldots,m_{u}\} implies Xji,N,hX_{j}^{i,N,h} in (13) is jh\mathscr{F}_{j}^{h}-measurable for any j{1,,nh}j\in\{1,\ldots,n_{h}\} and i{1,,N}i\in\{1,\ldots,N\}.

As Xj1i,N,hp(Ω)X_{j-1}^{i,N,h}\in\mathscr{L}^{p}(\Omega), we have from Remark 2.1 and Minkowski’s inequality that

b(tj1,Xj1i,N,h,μj1X,N,h)p(Ω)\displaystyle\big{\|}b(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\big{\|}_{\mathscr{L}^{p}(\Omega)} L¯{1+Xj1i,N,hp(Ω)+𝒲2(μj1X,N,h,δ0)p(Ω)}\displaystyle\leq\bar{L}\big{\{}1+\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{p}(\Omega)}+\big{\|}\mathcal{W}_{2}(\mu_{j-1}^{X,N,h},\delta_{0})\big{\|}_{\mathscr{L}^{p}(\Omega)}\big{\}}
L¯{1+2maxi{1,,N}Xj1i,N,hp(Ω)}<,\displaystyle\leq\bar{L}\big{\{}1+2\max_{i\in\{1,\ldots,N\}}\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{p}(\Omega)}\big{\}}<\infty, (16)

where the last inequality is obtained by using

𝒲2(μj1X,N,h,δ0)p(Ω)1Ni=1NXj1i,N,hp(Ω)maxi{1,,N}Xj1i,N,hp(Ω).\displaystyle\big{\|}\mathcal{W}_{2}(\mu_{j-1}^{X,N,h},\delta_{0})\big{\|}_{\mathscr{L}^{p}(\Omega)}\leq\frac{1}{N}\sum_{i=1}^{N}\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{p}(\Omega)}\leq\max_{i\in\{1,\ldots,N\}}\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{p}(\Omega)}.

Similarly, we get for u{0,1}u\in\{0,1\},

σu(tj1,Xj1i,N,h,μj1X,N,h)p(Ω)L¯{1+2maxi{1,,N}Xj1i,N,hp(Ω)}<,\displaystyle\big{\|}\sigma_{u}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\big{\|}_{\mathscr{L}^{p}(\Omega)}\leq\bar{L}\big{\{}1+2\max_{i\in\{1,\ldots,N\}}\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{p}(\Omega)}\big{\}}<\infty, (17)

which along with (12) further implies

Xj,ηi,N,hp(Ω)\displaystyle\big{\|}X_{j,\eta}^{i,N,h}\big{\|}_{\mathscr{L}^{p}(\Omega)}\leq Xj1i,N,hp(Ω)+hjb(tj1,Xj1i,N,h,μj1X,N,h)p(Ω)\displaystyle\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{p}(\Omega)}+h_{j}\big{\|}b(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\big{\|}_{\mathscr{L}^{p}(\Omega)}
+hj1/2(p(p1)2)1/2u=01σu(tj1,Xj1i,N,h,μj1X,N,h)p(Ω)<,\displaystyle+h_{j}^{1/2}\Big{(}\frac{p(p-1)}{2}\Big{)}^{1/2}\sum_{u=0}^{1}\big{\|}\sigma_{u}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\big{\|}_{\mathscr{L}^{p}(\Omega)}<\infty,

for any j{1,,nh}j\in\{1,\ldots,n_{h}\} and i{1,,N}i\in\{1,\ldots,N\}. Thus, on using Remark 2.1, one also obtains

b(tj1+ηjhj,Xj,ηi,N,h,μj,ηX,N,h)p(Ω)\displaystyle\big{\|}b(t_{j-1}+\eta_{j}h_{j},X_{j,\eta}^{i,N,h},\mu_{j,\eta}^{X,N,h})\big{\|}_{\mathscr{L}^{p}(\Omega)} L¯{1+Xj,ηi,N,hp(Ω)+𝒲2(μj,ηX,N,h,δ0)p(Ω)}\displaystyle\leq\bar{L}\big{\{}1+\big{\|}X_{j,\eta}^{i,N,h}\big{\|}_{\mathscr{L}^{p}(\Omega)}+\big{\|}\mathcal{W}_{2}(\mu_{j,\eta}^{X,N,h},\delta_{0})\big{\|}_{\mathscr{L}^{p}(\Omega)}\big{\}}
L¯{1+2maxi{1,,N}Xj,ηi,N,hp(Ω)}<,\displaystyle\leq\bar{L}\big{\{}1+2\max_{i\in\{1,\ldots,N\}}\big{\|}X_{j,\eta}^{i,N,h}\big{\|}_{\mathscr{L}^{p}(\Omega)}\big{\}}<\infty, (18)

for all j{1,,nh}j\in\{1,\ldots,n_{h}\} and i{1,,N}i\in\{1,\ldots,N\}. Moreover, recall (8) and use Remarks 2.1 and 3.2 along with (4) and (17) to obtain the following,

=1muΛσuσ1(s,tj1,Xj1i,N,h,μj1X,N,h)p(Ω)\displaystyle\sum_{\ell=1}^{m_{u}}\big{\|}\Lambda_{\sigma_{u}\sigma_{1}}^{\ell}(s,t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\big{\|}_{\mathscr{L}^{p}(\Omega)}
hj1/2(p(p1)2)1/2=1mu1=1m1xσu(tj1,Xj1i,N,h,μj1X,N,h)σ11(tj1,Xj1i,N,h,μj1X,N,h)p(Ω)\displaystyle\leq h_{j}^{1/2}\Big{(}\frac{p(p-1)}{2}\Big{)}^{1/2}\sum_{\ell=1}^{m_{u}}\sum_{\ell_{1}=1}^{m_{1}}\big{\|}\partial_{x}\sigma_{u}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\sigma_{1}^{\ell_{1}}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\big{\|}_{\mathscr{L}^{p}(\Omega)}
+hj1/2(p(p1)2)1/2=1mu1Nk=1N1=1m1μσu(tj1,Xj1i,N,h,μj1X,N,h,Xj1k,N,h)\displaystyle+h_{j}^{1/2}\Big{(}\frac{p(p-1)}{2}\Big{)}^{1/2}\sum_{\ell=1}^{m_{u}}\frac{1}{N}\sum_{k=1}^{N}\sum_{\ell_{1}=1}^{m_{1}}\big{\|}\partial_{\mu}\sigma_{u}^{\ell}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h},X_{j-1}^{k,N,h})
σ11(tj1,Xj1k,N,h,μj1X,N,h)p(Ω)\displaystyle\qquad\qquad\sigma_{1}^{\ell_{1}}(t_{j-1},X_{j-1}^{k,N,h},\mu_{j-1}^{X,N,h})\big{\|}_{\mathscr{L}^{p}(\Omega)}
2hj1/2(p(p1)2)1/2mum1L¯2{1+2maxi{1,,N}Xj1i,N,hp(Ω)}<,\displaystyle\leq 2h_{j}^{1/2}\Big{(}\frac{p(p-1)}{2}\Big{)}^{1/2}m_{u}m_{1}\bar{L}^{2}\big{\{}1+2\max_{i\in\{1,\ldots,N\}}\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{p}(\Omega)}\big{\}}<\infty, (19)

for all u{0,1}u\in\{0,1\}, s[tj1,tj]s\in[t_{j-1},t_{j}], i{1,,N}i\in\{1,\ldots,N\} and j{1,,nh}j\in\{1,\ldots,n_{h}\}. Similarly,

=1muΛσuσ0(s,tj1,Xj1i,N,h,μj1X,N,h)p(Ω)\displaystyle\sum_{\ell=1}^{m_{u}}\big{\|}\Lambda_{\sigma_{u}\sigma_{0}}^{\ell}(s,t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\big{\|}_{\mathscr{L}^{p}(\Omega)}
2hj1/2(p(p1)2)1/2mum0L¯2{1+2maxi{1,,N}Xj1i,N,hp(Ω)}<,\displaystyle\leq 2h_{j}^{1/2}\Big{(}\frac{p(p-1)}{2}\Big{)}^{1/2}m_{u}m_{0}\bar{L}^{2}\big{\{}1+2\max_{i\in\{1,\ldots,N\}}\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{p}(\Omega)}\big{\}}<\infty, (20)

for all u{0,1}u\in\{0,1\}, s[tj1,tj]s\in[t_{j-1},t_{j}], i{1,,N}i\in\{1,\ldots,N\} and j{1,,nh}j\in\{1,\ldots,n_{h}\}.

Recalling the expressions of σ~1\tilde{\sigma}_{1} and σ~0\tilde{\sigma}_{0} from (10) and then applying Remark 2.1 along with Equations (20) and (19), we have

u=01=1muσ~u(s,tj1,Xj1i,N,h,μj1X,N,h)p(Ω)\displaystyle\sum_{u=0}^{1}\sum_{\ell=1}^{m_{u}}\big{\|}\tilde{\sigma}_{u}^{\ell}(s,t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\big{\|}_{\mathscr{L}^{p}(\Omega)}
u=01=1muσu(tj1,Xj1i,N,h,μj1X,N,h)p(Ω)+u=01=1m1Λσ1σu(s,tj1,Xj1i,N,h,μj1X,N,h)p(Ω)\displaystyle\leq\sum_{u=0}^{1}\sum_{\ell=1}^{m_{u}}\big{\|}\sigma^{\ell}_{u}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\big{\|}_{\mathscr{L}^{p}(\Omega)}+\sum_{u=0}^{1}\sum_{\ell=1}^{m_{1}}\big{\|}\Lambda^{\ell}_{\sigma_{1}\sigma_{u}}(s,t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\big{\|}_{\mathscr{L}^{p}(\Omega)}
+u=01=1m0Λσ0σu(s,tj1,Xj1i,N,h,μj1X,N,h)p(Ω)\displaystyle\hskip 28.45274pt+\sum_{u=0}^{1}\sum_{\ell=1}^{m_{0}}\big{\|}\Lambda^{\ell}_{\sigma_{0}\sigma_{u}}(s,t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\big{\|}_{\mathscr{L}^{p}(\Omega)}
(L¯(m0+m1)+2hj1/2(p(p1)2)1/2(m0+m1)2L¯2){1+2maxi{1,,N}Xj1i,N,hp(Ω)}<,\displaystyle\leq(\bar{L}(m_{0}+m_{1})+2h_{j}^{1/2}\Big{(}\frac{p(p-1)}{2}\Big{)}^{1/2}(m_{0}+m_{1})^{2}\bar{L}^{2})\big{\{}1+2\max_{i\in\{1,\ldots,N\}}\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{p}(\Omega)}\big{\}}<\infty, (21)

for all i{1,,N}i\in\{1,\ldots,N\}, s[tj1,tj]s\in[t_{j-1},t_{j}], i{1,,N}i\in\{1,\ldots,N\} and j{1,,nh}j\in\{1,\ldots,n_{h}\}. Thus, by (13) and Theorem 7.1 in [42],

Xji,N,hp(Ω)\displaystyle\big{\|}X_{j}^{i,N,h}\big{\|}_{\mathscr{L}^{p}(\Omega)}\leq Xj1i,N,hp(Ω)+hjb(tj1+ηjhj,Xj,ηi,N,h,μj,ηX,N,h)p(Ω)\displaystyle\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{p}(\Omega)}+h_{j}\big{\|}b(t_{j-1}+\eta_{j}h_{j},X_{j,\eta}^{i,N,h},\mu_{j,\eta}^{X,N,h})\big{\|}_{\mathscr{L}^{p}(\Omega)}
+hj1/2(p(p1)2)1/2u=01=1mu(tj1tjσ~u(s,tj1,Xj1i,N,h,μj1X,N,h)p(Ω)p𝑑s)1/p,\displaystyle+h_{j}^{1/2}\Big{(}\frac{p(p-1)}{2}\Big{)}^{1/2}\sum_{u=0}^{1}\sum_{\ell=1}^{m_{u}}\Big{(}\int_{t_{j-1}}^{t_{j}}\big{\|}\tilde{\sigma}_{u}^{\ell}(s,t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\big{\|}_{\mathscr{L}^{p}(\Omega)}^{p}ds\Big{)}^{1/p},

for all i{1,,N}i\in\{1,\ldots,N\} and j{1,,nh}j\in\{1,\ldots,n_{h}\}, which on using (4) and (21) completes the proof. ∎

As a consequence of the above lemma, we obtain the following corollary.

Corollary 4.2.

Let Assumptions H–1 with p¯2\bar{p}\geq 2, H–2 and H–3 hold. Then, Xji,N,hp¯(Ω)X_{j}^{i,N,h}\in\mathscr{L}^{\bar{p}}(\Omega) for all i{1,,N}i\in\{1,\ldots,N\} and j{1,,nh}j\in\{1,\ldots,n_{h}\}.

Proof.

First, let us recall the randomised Milstein scheme given in (13). For j=1j=1, the result holds due to Assumption H–1 and Lemma 4.1. Assume now that the result is true for j=kj=k for some k{1,,nh}k\in\{1,\ldots,n_{h}\}, i.e., Xki,N,hp¯(Ω)X_{k}^{i,N,h}\in\mathscr{L}^{\bar{p}}(\Omega) for all i{1,,N}i\in\{1,\ldots,N\}. Then, Lemma 4.1 yields Xk+1i,N,hp¯(Ω)X_{k+1}^{i,N,h}\in\mathscr{L}^{\bar{p}}(\Omega). An inductive argument complete the proof. ∎

The following lemma gives the moment bound of the randomised Milstein scheme (13).

Lemma 4.3.

Let Assumptions H–1 with p¯2\bar{p}\geq 2, H–2 and H–3 hold. Then, for any time grid ϱh\varrho_{h} (11) with hmin(1,T)h\leq\min(1,T),

supi{1,,N}maxj{1,,nh}|Xji,N,h|p¯(Ω)C5(1+supi{1,,N}X0ip¯(Ω)),\displaystyle\sup_{i\in\{1,\ldots,N\}}\big{\|}\max_{j\in\{1,\ldots,n_{h}\}}\big{|}X_{j}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}\leq C_{5}(1+\sup_{i\in\{1,\ldots,N\}}\big{\|}X_{0}^{i}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}),

where

C5:=max{2,2L¯T+4L¯2T+8L¯2T(p(p1)2)1/2+2C0T}e4T(L¯+2L¯2+4L¯2(p¯(p¯1)2)1/2+C02)C_{5}:=\max\{2,2\bar{L}T+4\bar{L}^{2}T+8\bar{L}^{2}T\Big{(}\frac{p(p-1)}{2}\Big{)}^{1/2}+2C_{0}\sqrt{T}\}e^{4T(\bar{L}+2\bar{L}^{2}+4\bar{L}^{2}(\frac{\bar{p}(\bar{p}-1)}{2})^{1/2}+C_{0}^{2})}

with C0:=C¯p¯(p¯(p¯1)2)1/2(L¯(m0+m1)+2hj1/2(p¯(p¯1)2)1/2(m0+m1)2L¯2)C_{0}:=\bar{C}_{\bar{p}}\Big{(}\frac{\bar{p}(\bar{p}-1)}{2}\Big{)}^{1/2}(\bar{L}(m_{0}+m_{1})+2h_{j}^{1/2}\Big{(}\frac{\bar{p}(\bar{p}-1)}{2}\Big{)}^{1/2}(m_{0}+m_{1})^{2}\bar{L}^{2}) and C¯p¯\bar{C}_{\bar{p}} defined in Lemma A.1.

Proof.

Recall (12) and use Minkowski’s inequality, Remark 2.1 and h1h\leq 1 to obtain the following,

\displaystyle\big{\|} Xj,ηi,N,hp¯(Ω)Xj1i,N,hp¯(Ω)+hjηjb(tj1,Xj1i,N,h,μj1X,N,h)p¯(Ω)\displaystyle X_{j,\eta}^{i,N,h}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}\leq\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}+h_{j}\big{\|}\eta_{j}b(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}
+hj1/2(p(p1)2)1/2u=01σu(tj1,Xj1i,N,h,μj1X,N,h)p¯(Ω)\displaystyle+h_{j}^{1/2}\Big{(}\frac{p(p-1)}{2}\Big{)}^{1/2}\sum_{u=0}^{1}\big{\|}\sigma_{u}(t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}
\displaystyle\leq Xj1i,N,hp¯(Ω)\displaystyle\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}
+(L¯+2L¯(p(p1)2)1/2(1+Xj1i,N,hp¯(Ω)+𝒲2(μj1X,N,h,δ0)p¯(Ω))\displaystyle+(\bar{L}+2\bar{L}\Big{(}\frac{p(p-1)}{2}\Big{)}^{1/2}\big{(}1+\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}+\big{\|}\mathcal{W}_{2}(\mu_{j-1}^{X,N,h},\delta_{0})\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}\big{)}
\displaystyle\leq L¯+2L¯(p(p1)2)1/2+(1+2L¯+4L¯(p(p1)2)1/2)maxi{1,,N}Xj1i,N,hp¯(Ω),\displaystyle\bar{L}+2\bar{L}\Big{(}\frac{p(p-1)}{2}\Big{)}^{1/2}+(1+2\bar{L}+4\bar{L}\Big{(}\frac{p(p-1)}{2}\Big{)}^{1/2})\max_{i\in\{1,\ldots,N\}}\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}, (22)

for all i{1,,N}i\in\{1,\ldots,N\}, NN\in\mathbb{N} and j{1,,nh}j\in\{1,\ldots,n_{h}\}. Due to (13) and Minkowski’s inequality, for any k¯{1,,nh}\bar{k}\in\{1,\ldots,n_{h}\} and i{1,,N}i\in\{1,\ldots,N\},

maxn¯{0,,k¯}\displaystyle\big{\|}\max_{\bar{n}\in\{0,\ldots,\bar{k}\}} |Xn¯i,N,h|p¯(Ω)X0ip¯(Ω)\displaystyle\big{|}X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}\leq\big{\|}X_{0}^{i}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}
+maxn¯{1,,k¯}|j=1n¯hjb(tj1+ηjhj,Xj,ηi,N,h,μj,ηX,N,h)|p¯(Ω)\displaystyle+\big{\|}\max_{\bar{n}\in\{1,\ldots,\bar{k}\}}\big{|}\sum_{j=1}^{\bar{n}}h_{j}b(t_{j-1}+\eta_{j}h_{j},X_{j,\eta}^{i,N,h},\mu_{j,\eta}^{X,N,h})\big{|}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}
+maxn¯{1,,k¯}|j=1n¯tj1tjσ~1(s,tj1,Xj1i,N,h,μj1X,N,h)𝑑Wsi|p¯(Ω)\displaystyle+\big{\|}\max_{\bar{n}\in\{1,\ldots,\bar{k}\}}\big{|}\sum_{j=1}^{\bar{n}}\int_{t_{j-1}}^{t_{j}}\tilde{\sigma}_{1}(s,t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})dW^{i}_{s}|\|_{\mathscr{L}^{\bar{p}}(\Omega)}
+maxn¯{1,,k¯}|j=1n¯tj1tjσ~0(s,tj1,Xj1i,N,h,μj1X,N,h)𝑑Ws0|p¯(Ω),\displaystyle+\big{\|}\max_{\bar{n}\in\{1,\ldots,\bar{k}\}}\big{|}\sum_{j=1}^{\bar{n}}\int_{t_{j-1}}^{t_{j}}\tilde{\sigma}_{0}(s,t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})dW_{s}^{0}\big{|}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)},

which on application of Lemma A.1 and Remark 2.1 yields

maxn¯{0,,k¯}\displaystyle\big{\|}\max_{\bar{n}\in\{0,\ldots,\bar{k}\}} |Xn¯i,N,h|p¯(Ω)X0ip¯(Ω)+j=1k¯hjb(tj1+ηjhj,Xj,ηi,N,h,μj,ηX,N,h)p¯(Ω)\displaystyle\big{|}X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}\leq\big{\|}X_{0}^{i}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}+\sum_{j=1}^{\bar{k}}h_{j}\big{\|}b(t_{j-1}+\eta_{j}h_{j},X_{j,\eta}^{i,N,h},\mu_{j,\eta}^{X,N,h})\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}
+C¯p¯(j=1k¯|tj1tjσ~1(s,tj1,Xj1i,N,h,μj1X,N,h)𝑑Wsi|2)1/2p¯(Ω)\displaystyle+\bar{C}_{\bar{p}}\big{\|}\big{(}\sum_{j=1}^{\bar{k}}\big{|}\int_{t_{j-1}}^{t_{j}}\tilde{\sigma}_{1}(s,t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})dW^{i}_{s}\big{|}^{2}\big{)}^{1/2}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}
+C¯p¯(j=1k¯|tj1tjσ~0(s,tj1,Xj1i,N,h,μj1X,N,h)𝑑Ws0|2)1/2p¯(Ω)\displaystyle+\bar{C}_{\bar{p}}\big{\|}\big{(}\sum_{j=1}^{\bar{k}}\big{|}\int_{t_{j-1}}^{t_{j}}\tilde{\sigma}_{0}(s,t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})dW_{s}^{0}\big{|}^{2}\big{)}^{1/2}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}
\displaystyle\leq X0ip¯(Ω)+j=1k¯hjL¯{1+Xj,ηi,N,hp¯(Ω)+𝒲2(μj,ηX,N,h,δ0)p¯(Ω)}\displaystyle\big{\|}X_{0}^{i}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}+\sum_{j=1}^{\bar{k}}h_{j}\bar{L}\big{\{}1+\big{\|}X_{j,\eta}^{i,N,h}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}+\big{\|}\mathcal{W}_{2}(\mu_{j,\eta}^{X,N,h},\delta_{0})\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}\big{\}}
+C¯p¯j=1k¯|tj1tjσ~1(s,tj1,Xj1i,N,h,μj1X,N,h)𝑑Wsi|2p¯/2(Ω)1/2\displaystyle+\bar{C}_{\bar{p}}\big{\|}\sum_{j=1}^{\bar{k}}|\int_{t_{j-1}}^{t_{j}}\tilde{\sigma}_{1}(s,t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})dW^{i}_{s}|^{2}\big{\|}_{\mathscr{L}^{\bar{p}/2}(\Omega)}^{1/2}
+C¯p¯j=1k¯|tj1tjσ~0(s,tj1,Xj1i,N,h,μj1X,N,h)𝑑Ws0|2p¯/2(Ω)1/2\displaystyle+\bar{C}_{\bar{p}}\big{\|}\sum_{j=1}^{\bar{k}}|\int_{t_{j-1}}^{t_{j}}\tilde{\sigma}_{0}(s,t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})dW_{s}^{0}|^{2}\big{\|}_{\mathscr{L}^{\bar{p}/2}(\Omega)}^{1/2}
\displaystyle\leq X0ip¯(Ω)+j=1k¯hjL¯{1+2maxi{1,,N}Xj,ηi,N,hp¯(Ω)}\displaystyle\big{\|}X_{0}^{i}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}+\sum_{j=1}^{\bar{k}}h_{j}\bar{L}\big{\{}1+2\max_{i\in\{1,\ldots,N\}}\big{\|}X_{j,\eta}^{i,N,h}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}\big{\}}
+C¯p¯(j=1k¯tj1tjσ~1(s,tj1,Xj1i,N,h,μj1X,N,h)𝑑Wsip¯(Ω)2)1/2\displaystyle+\bar{C}_{\bar{p}}\Big{(}\sum_{j=1}^{\bar{k}}\big{\|}\int_{t_{j-1}}^{t_{j}}\tilde{\sigma}_{1}(s,t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})dW^{i}_{s}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}^{2}\Big{)}^{1/2}
+C¯p¯(j=1k¯tj1tjσ~0(s,tj1,Xj1i,N,h,μj1X,N,h)𝑑Ws0p¯(Ω)2)1/2,\displaystyle+\bar{C}_{\bar{p}}\Big{(}\sum_{j=1}^{\bar{k}}\big{\|}\int_{t_{j-1}}^{t_{j}}\tilde{\sigma}_{0}(s,t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})dW_{s}^{0}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}^{2}\Big{)}^{1/2},

for any i{1,,N}i\in\{1,\ldots,N\} and k¯{1,,nh}\bar{k}\in\{1,\ldots,n_{h}\}. Furthermore, the application of (22) and Theorem 7.1 in [42] give

\displaystyle\big{\|} maxn¯{0,,k¯}|Xn¯i,N,h|p¯(Ω)X0ip¯(Ω)\displaystyle\max_{\bar{n}\in\{0,\ldots,\bar{k}\}}\big{|}X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}\leq\big{\|}X_{0}^{i}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}
+j=1k¯hjL¯{1+2L¯+4L¯(p¯(p¯1)2)1/2\displaystyle+\sum_{j=1}^{\bar{k}}h_{j}\bar{L}\big{\{}1+2\bar{L}+4\bar{L}\Big{(}\frac{\bar{p}(\bar{p}-1)}{2}\Big{)}^{1/2}
+2(1+2L¯+4L¯(p¯(p¯1)2)1/2)maxi{1,,N}Xj1i,N,hp¯(Ω)}\displaystyle+2(1+2\bar{L}+4\bar{L}\Big{(}\frac{\bar{p}(\bar{p}-1)}{2}\Big{)}^{1/2})\max_{i\in\{1,\ldots,N\}}\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}\big{\}}
+C¯p¯(p¯(p¯1)2)1/2u=01(j=1k¯hj(p¯2)/p¯(tj1tjσ~u(s,tj1,Xj1i,N,h,μj1X,N,h)p¯(Ω)p¯𝑑s)2/p¯)1/2\displaystyle+\bar{C}_{\bar{p}}\Big{(}\frac{\bar{p}(\bar{p}-1)}{2}\Big{)}^{1/2}\sum_{u=0}^{1}\Big{(}\sum_{j=1}^{\bar{k}}h_{j}^{(\bar{p}-2)/\bar{p}}\Big{(}\int_{t_{j-1}}^{t_{j}}\big{\|}\tilde{\sigma}_{u}(s,t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}^{\bar{p}}ds\Big{)}^{2/\bar{p}}\Big{)}^{1/2} (23)

for any k¯{1,,nh}\bar{k}\in\{1,\ldots,n_{h}\} and i{1,,N}i\in\{1,\ldots,N\}.

Also, by adapting an argument similar to the one used in (21), we have

u=01σ~u(s,tj1,Xj1i,N,h,μj1X,N,h)p¯(Ω)\displaystyle\sum_{u=0}^{1}\big{\|}\tilde{\sigma}_{u}(s,t_{j-1},X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h})\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}
(L¯(m0+m1)+2hj1/2(p¯(p¯1)2)1/2(m0+m1)2L¯2){1+2maxi{1,,N}Xj1i,N,hp¯(Ω)},\displaystyle\leq(\bar{L}(m_{0}+m_{1})+2h_{j}^{1/2}\Big{(}\frac{\bar{p}(\bar{p}-1)}{2}\Big{)}^{1/2}(m_{0}+m_{1})^{2}\bar{L}^{2})\big{\{}1+2\max_{i\in\{1,\ldots,N\}}\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}\big{\}},

for any s[tj1,tj]s\in[t_{j-1},t_{j}], i{1,,N}i\in\{1,\ldots,N\} and j{1,,nh}j\in\{1,\ldots,n_{h}\}. On substituting the above in Equation (23), one obtains

maxn¯{0,,k¯}\displaystyle\big{\|}\max_{\bar{n}\in\{0,\ldots,\bar{k}\}} |Xn¯i,N,h|p¯(Ω)X0ip¯(Ω)\displaystyle\big{|}X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}\leq\big{\|}X_{0}^{i}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}
+L¯(1+2L¯+4L¯(p¯(p¯1)2)1/2)j=1k¯hj{1+2maxi{1,,N}Xj1i,N,hp¯(Ω)}\displaystyle+\bar{L}(1+2\bar{L}+4\bar{L}\Big{(}\frac{\bar{p}(\bar{p}-1)}{2}\Big{)}^{1/2})\sum_{j=1}^{\bar{k}}h_{j}\big{\{}1+2\max_{i\in\{1,\ldots,N\}}\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}\big{\}}
+C0(j=1k¯hj{1+2maxi{1,,N}Xj1i,N,hp¯(Ω)}2)1/2,\displaystyle+C_{0}\Big{(}\sum_{j=1}^{\bar{k}}h_{j}\big{\{}1+2\max_{i\in\{1,\ldots,N\}}\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}\big{\}}^{2}\Big{)}^{1/2},

where C0:=C¯p¯(p¯(p¯1)2)1/2(L¯(m0+m1)+2hj1/2(p¯(p¯1)2)1/2(m0+m1)2L¯2)C_{0}:=\bar{C}_{\bar{p}}\Big{(}\frac{\bar{p}(\bar{p}-1)}{2}\Big{)}^{1/2}(\bar{L}(m_{0}+m_{1})+2h_{j}^{1/2}\Big{(}\frac{\bar{p}(\bar{p}-1)}{2}\Big{)}^{1/2}(m_{0}+m_{1})^{2}\bar{L}^{2}), which on using Young’s inequality yields

maxi{1,,N}\displaystyle\max_{i\in\{1,\ldots,N\}} maxn¯{0,,k¯}|Xn¯i,N,h|p¯(Ω)maxi{1,,N}X0ip¯(Ω)\displaystyle\big{\|}\max_{\bar{n}\in\{0,\ldots,\bar{k}\}}\big{|}X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}\leq\max_{i\in\{1,\ldots,N\}}\big{\|}X_{0}^{i}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}
+L¯T(1+2L¯+4L¯(p¯(p¯1)2)1/2)+C0T\displaystyle+\bar{L}T(1+2\bar{L}+4\bar{L}\Big{(}\frac{\bar{p}(\bar{p}-1)}{2}\Big{)}^{1/2})+C_{0}\sqrt{T}
+2L¯(1+2L¯+4L¯(p¯(p¯1)2)1/2)j=1k¯hjmaxi{1,,N}Xj1i,N,hp¯(Ω)\displaystyle+2\bar{L}(1+2\bar{L}+4\bar{L}\Big{(}\frac{\bar{p}(\bar{p}-1)}{2}\Big{)}^{1/2})\sum_{j=1}^{\bar{k}}h_{j}\max_{i\in\{1,\ldots,N\}}\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}
+2C0maxi{1,,N}maxn¯{0,,k¯}|Xn¯i,N,h|p¯(Ω)1/2(j=1k¯hjmaxi{1,,N}Xj1i,N,hp¯(Ω))1/2\displaystyle+2C_{0}\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{0,\ldots,\bar{k}\}}|X_{\bar{n}}^{i,N,h}|\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}^{1/2}\Big{(}\sum_{j=1}^{\bar{k}}h_{j}\max_{i\in\{1,\ldots,N\}}\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}\Big{)}^{1/2}
\displaystyle\leq maxi{1,,N}X0ip¯(Ω)+L¯T(1+2L¯+4L¯(p¯(p¯1)2)1/2)+C0T\displaystyle\max_{i\in\{1,\ldots,N\}}\big{\|}X_{0}^{i}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}+\bar{L}T(1+2\bar{L}+4\bar{L}\Big{(}\frac{\bar{p}(\bar{p}-1)}{2}\Big{)}^{1/2})+C_{0}\sqrt{T}
+2L¯(1+2L¯+4L¯(p¯(p¯1)2)1/2)j=1k¯hjmaxi{1,,N}Xj1i,N,hp¯(Ω)\displaystyle+2\bar{L}(1+2\bar{L}+4\bar{L}\Big{(}\frac{\bar{p}(\bar{p}-1)}{2}\Big{)}^{1/2})\sum_{j=1}^{\bar{k}}h_{j}\max_{i\in\{1,\ldots,N\}}\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}
+12maxi{1,,N}maxn¯{0,,k¯}|Xn¯i,N,h|p¯(Ω)+2C02j=1k¯hjmaxi{1,,N}Xj1i,N,hp¯(Ω).\displaystyle+\frac{1}{2}\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{0,\ldots,\bar{k}\}}\big{|}X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}+2C_{0}^{2}\sum_{j=1}^{\bar{k}}h_{j}\max_{i\in\{1,\ldots,N\}}\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}.

Thus, we have

maxi{1,,N}\displaystyle\max_{i\in\{1,\ldots,N\}} maxn¯{0,,k¯}|Xn¯i,N,h|p¯(Ω)2maxi{1,,N}X0ip¯(Ω)\displaystyle\big{\|}\max_{\bar{n}\in\{0,\ldots,\bar{k}\}}\big{|}X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}\leq 2\max_{i\in\{1,\ldots,N\}}\big{\|}X_{0}^{i}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}
+2(L¯T+2L¯2T+4L¯2T(p¯(p¯12)1/2)+C0T)\displaystyle+2\big{(}\bar{L}T+2\bar{L}^{2}T+4\bar{L}^{2}T\Big{(}\frac{\bar{p}(\bar{p}-1}{2}\Big{)}^{1/2})+C_{0}\sqrt{T}\big{)}
+4(L¯+2L¯2++4L¯2(p¯(p¯1)2)1/2+C02)j=1k¯hjmaxi{1,,N}Xj1i,N,hp¯(Ω)<,\displaystyle+4\big{(}\bar{L}+2\bar{L}^{2}++4\bar{L}^{2}\Big{(}\frac{\bar{p}(\bar{p}-1)}{2}\Big{)}^{1/2}+C_{0}^{2}\big{)}\sum_{j=1}^{\bar{k}}h_{j}\max_{i\in\{1,\ldots,N\}}\big{\|}X_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}<\infty,

for any k¯{1,,nh}\bar{k}\in\{1,\ldots,n_{h}\}. The application of the discrete Grönwall inequality (see Lemma A.2) yields

maxi{1,,N}\displaystyle\max_{i\in\{1,\ldots,N\}} maxn¯{0,,nh}|Xn¯i,N,h|p¯(Ω)(2maxi{1,,N}X0ip¯(Ω)+2L¯T+4L¯2T\displaystyle\big{\|}\max_{\bar{n}\in\{0,\ldots,n_{h}\}}\big{|}X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}\leq\big{(}2\max_{i\in\{1,\ldots,N\}}\big{\|}X_{0}^{i}\big{\|}_{\mathscr{L}^{\bar{p}}(\Omega)}+2\bar{L}T+4\bar{L}^{2}T
+8L¯2T(p¯(p¯1)2)1/2+2C0T)e4T(L¯+2L¯2+4L¯2(p¯(p¯1)2)1/2+C02).\displaystyle+8\bar{L}^{2}T\Big{(}\frac{\bar{p}(\bar{p}-1)}{2}\Big{)}^{1/2}+2C_{0}\sqrt{T}\big{)}e^{4T(\bar{L}+2\bar{L}^{2}+4\bar{L}^{2}(\frac{\bar{p}(\bar{p}-1)}{2})^{1/2}+C_{0}^{2})}.

This completes the proof. ∎

5 Proof of Main Result

The proof mechanism we use builds from the notions of “bistability” and “consistency” introduced in [7] (and further explored in [34, 35]). We introduce a notion of bistability and consistency for the numerical scheme (13) of the interacting particle system (2) (and associated with the McKean–Vlasov SDE (2)) by choosing suitable norms and spaces. This choice of Banach spaces and norms is designed to capture the underlying key feature of the systems being analysed, namely, that we deal with interacting particle systems – and to the best of our knowledge, are new.

Throughout this section and in line with the statement of Theorem 3.3, we take q=p¯/2q=\bar{p}/2, where p¯\bar{p} comes from Assumption H–1 and assumed to satisfy p¯4\bar{p}\geq 4. We next introduce the required notation and definitions to prove our main result Theorem 3.3.

5.1 Quantities of Interest, Norms, Banach Spaces and Residuals

For the time grid ϱh\varrho_{h} given in (11), define the Banach spaces (𝒢qh,𝒢qh)(\mathscr{G}^{h}_{q},\|\cdot~{}\|_{\mathscr{G}^{h}_{q}}), (𝒢S,qh,𝒢S,qh)(\mathscr{G}^{h}_{S,q},\|\cdot\|_{\mathscr{G}^{h}_{S,q}}) of stochastic grid processes Yh:={Yji,N,hq(Ω,jh,;d);j{0,1,,nh} and i{1,,N}}Y^{h}:=\big{\{}Y_{j}^{i,N,h}\in\mathscr{L}^{q}(\Omega,\mathscr{F}_{j}^{h},\mathbb{P};\,\mathbb{R}^{d});j\in\{0,1,\ldots,n_{h}\}\mbox{ and }i\in\{1,\ldots,N\}\big{\}} as

Yh𝒢qh:=maxi{1,,N}maxj{0,,nh}|Yji,N,h|q(Ω)<,\displaystyle\|Y^{h}\|_{\mathscr{G}^{h}_{q}}:=\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\>j\in\{0,\ldots,n_{h}\}}|Y_{j}^{i,N,h}|\big{\|}_{\mathscr{L}^{q}(\Omega)}<\infty,

and

Yh𝒢S,qh:=\displaystyle\|Y^{h}\|_{\mathscr{G}^{h}_{S,q}}:= maxi{1,,N}Y0i,N,hq(Ω)+maxi{1,,N}maxj{1,,nh}|k=1jYki,N,h|q(Ω)<,\displaystyle\max_{i\in\{1,\ldots,N\}}\big{\|}Y_{0}^{i,N,h}\big{\|}_{\mathscr{L}^{q}(\Omega)}+\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{j\in\{1,\ldots,n_{h}\}}|\sum_{k=1}^{j}Y_{k}^{i,N,h}|\big{\|}_{\mathscr{L}^{q}(\Omega)}<\infty, (24)

respectively. Also, define

Γjh(Yj1i,N,h,μj1Y,N,h,Yj,ηi,N,h,μj,ηY,N,h,ηj):=hjb(tj1+ηjhj,Yj,ηi,N,h,μj,ηY,N,h)\displaystyle\Gamma^{h}_{j}(Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h},Y_{j,\eta}^{i,N,h},\mu_{j,\eta}^{Y,N,h},\eta_{j}):=h_{j}b(t_{j-1}+\eta_{j}h_{j},Y_{j,\eta}^{i,N,h},\mu_{j,\eta}^{Y,N,h})
+=1m1tj1tjσ~1(s,tj1,Yj1i,N,h,μj1Y,N,h)𝑑Wsi,+=1m0tj1tjσ~0(s,tj1,Yj1i,N,h,μj1Y,N,h)𝑑Ws0,,\displaystyle+\sum_{\ell=1}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h})dW^{i,\ell}_{s}+\sum_{\ell=1}^{m_{0}}\int_{t_{j-1}}^{t_{j}}\tilde{\sigma}_{0}^{\ell}(s,t_{j-1},Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h})dW_{s}^{0,\ell}, (25)

almost surely for any j{1,,nh}j\in\{1,\ldots,n_{h}\} and i{1,,N}i\in\{1,\ldots,N\}, where Yj,ηi,N,hY_{j,\eta}^{i,N,h} is defined using (12), and the empirical measures μj1Y,N,h\mu_{j-1}^{Y,N,h} and μj,ηY,N,h\mu_{j,\eta}^{Y,N,h} are defined using (14).

Define [Yh]𝒢S,qh\mathcal{R}[Y^{h}]\in\mathscr{G}^{h}_{S,q} for q2q\geq 2 as the collection of the pointwise residuals ji,N[Yh]\mathcal{R}^{i,N}_{j}[Y^{h}] (associated to executing the scheme with YhY^{h}) by

0i,N[Yh]\displaystyle\mathcal{R}^{i,N}_{0}[Y^{h}] =Y0i,N,hX0i,N,h,\displaystyle=Y^{i,N,h}_{0}-X_{0}^{i,N,h},
ji,N[Yh]\displaystyle\mathcal{R}^{i,N}_{j}[Y^{h}] =Yji,N,hYj1i,N,hΓjh(Yj1i,N,h,μj1Y,N,h,Yj,ηi,N,h,μj,ηY,N,h,ηj),j{1,,nh}\displaystyle=Y^{i,N,h}_{j}-Y^{i,N,h}_{j-1}-\Gamma^{h}_{j}(Y^{i,N,h}_{j-1},\mu_{j-1}^{Y,N,h},Y_{j,\eta}^{i,N,h},\mu_{j,\eta}^{Y,N,h},\eta_{j}),\,j\in\{1,\ldots,n_{h}\} (26)

almost surely for any i{1,,N}i\in\{1,\ldots,N\}.

Randomised Quadrature Rule for Stochastic Processes.

In this small section we discuss the randomised quadrature rule for stochastic processes developed in [35]. For this, let us recall the sequence of i.i.d. uniform random variables η:={ηj}j\eta:=\{\eta_{j}\}_{j\in\mathbb{N}} and the temporal grid ϱh\varrho_{h} from Section 3.1. Consider a stochastic process V:[0,T]×Ω~dV:[0,T]\times\tilde{\Omega}\mapsto\mathbb{R}^{d} on (Ω~,~,~)(\tilde{\Omega},\tilde{\mathscr{F}},\tilde{\mathbb{P}}) satisfying Vp([0,T]×Ω~)V\in\mathscr{L}^{p}([0,T]\times\tilde{\Omega}) for p2p\geq 2. For each n¯{1,,nh}\bar{n}\in\{1,\ldots,n_{h}\}, 0tn¯V(s)𝑑s\displaystyle\int_{0}^{t_{\bar{n}}}V(s)ds is approximated by the randomised Riemann sum

Θn¯,ηh[V]=j=1n¯hjV(tj1+ηjhj),\displaystyle\Theta_{\bar{n},\eta}^{h}\big{[}V\big{]}=\displaystyle\sum_{j=1}^{\bar{n}}h_{j}V(t_{j-1}+\eta_{j}h_{j}), (27)

which is a random variable on (Ω,,)(\Omega,\mathscr{F},\mathbb{P}) and an unbiased estimator of 0tn¯V(s)𝑑s\displaystyle\int_{0}^{t_{\bar{n}}}V(s)ds, i.e., 𝔼ηΘn¯,ηh[V]=0tn¯V(s)𝑑sp(Ω~)\mathbb{E}^{\eta}\Theta_{\bar{n},\eta}^{h}\big{[}V\big{]}=\displaystyle\int_{0}^{t_{\bar{n}}}V(s)ds\in\mathscr{L}^{p}(\tilde{\Omega}). Moreover, due to Theorem 4.1 in [35], we have

maxn¯{1,,nh}|Θn¯,ηh[V]0tn¯V(s)𝑑s|p(Ω)2C¯pT(p2)/(2p)Vp([0,T]×Ω~)h1/2.\displaystyle\big{\|}\max_{\bar{n}\in\{1,\ldots,n_{h}\}}|\Theta_{\bar{n},\eta}^{h}\big{[}V\big{]}-\int_{0}^{t_{\bar{n}}}V(s)ds|\big{\|}_{\mathscr{L}^{p}(\Omega)}\leq 2{\color[rgb]{0,0,0}\bar{C}_{p}}T^{(p-2)/(2p)}\|V\|_{\mathscr{L}^{p}([0,T]\times\tilde{\Omega})}h^{1/2}.

Additionally, if V𝒞α([0,T],p(Ω~))V\in\mathscr{C}^{\alpha}([0,T],\,\mathscr{L}^{p}(\tilde{\Omega})) for some α(0,1]\alpha\in(0,1], then

maxn¯{1,,nh}|Θn¯,ηh[V]0tn¯V(s)𝑑s|p(Ω)C¯pTV𝒞α([0,T],p(Ω~))hα+1/2\displaystyle\big{\|}\max_{\bar{n}\in\{1,\ldots,n_{h}\}}\big{|}\Theta_{\bar{n},\eta}^{h}[V]-\int_{0}^{t_{\bar{n}}}V(s)ds\big{|}\big{\|}_{\mathscr{L}^{p}(\Omega)}\leq{\color[rgb]{0,0,0}\bar{C}_{p}}\sqrt{T}\|V\|_{\mathscr{C}^{\alpha}([0,T],\,\mathscr{L}^{p}(\tilde{\Omega}))}h^{\alpha+1/2} (28)

where C¯p\bar{C}_{p} is defined in Lemma A.1.

5.2 Bistability of the Scheme

We now specify the notion of a scheme’s bistability and show that the proposed randomised Milstein scheme (13) of the interacting particle system (2) is bistable (see Proposition 5.5 below). For this, recall the scheme from (13) and define Xh:={Xji,N,h:j{0,,nh},i{1,,N}}X^{h}:=\{X_{j}^{i,N,h}:j\in\{0,\ldots,n_{h}\},i\in\{1,\ldots,N\}\}. Clearly, Xh𝒢qhX^{h}\in\mathscr{G}_{q}^{h} due to Lemma 4.3. Also, recall the definition of residuals [Yh]\mathcal{R}[Y^{h}] from (5.1) for some set Yh𝒢qhY^{h}\in\mathscr{G}_{q}^{h}.

Definition 5.1 (Stochastic Bistability).

The randomised Milstein scheme (13) associated to the interacting particle system (2) is called stochastically bistable if there exist constants C6,C7>0C_{6},C_{7}>0, independent of hh and NN\in\mathbb{N}, such that for any arbitrary time grid ϱh\varrho_{h} as given in (11) and for any Yh𝒢qhY^{h}\in\mathscr{G}_{q}^{h}, the following holds,

C6[Yh]𝒢S,qhYhXh𝒢qhC7[Yh]𝒢S,qh,\displaystyle C_{6}\|\mathcal{R}[Y^{h}]\|_{\mathscr{G}_{S,q}^{h}}\leq\|Y^{h}-X^{h}\|_{\mathscr{G}_{q}^{h}}\leq C_{7}\|\mathcal{R}[Y^{h}]\|_{\mathscr{G}_{S,q}^{h}},

for q2q\geq 2.

Let us first establish some useful lemmas.

Lemma 5.2.

Let Assumptions H–2 and H–3 hold. Then, for any q2q\geq 2 and Yh,Zh𝒢qhY^{h},Z^{h}\in\mathscr{G}_{q}^{h},

maxn¯{1,,k¯}\displaystyle\big{\|}\max_{\bar{n}\in\{1,\ldots,\bar{k}\}} |j=1n¯hj[b(tj1+ηjhj,Yj,ηi,N,h,μj,ηY,N,h)b(tj1+ηjhj,Zj,ηi,N,h,μj,ηZ,N,h)]|q(Ω)\displaystyle\big{|}\sum_{j=1}^{\bar{n}}h_{j}\big{[}b(t_{j-1}+\eta_{j}h_{j},Y_{j,\eta}^{i,N,h},\mu_{j,\eta}^{Y,N,h})-b(t_{j-1}+\eta_{j}h_{j},Z_{j,\eta}^{i,N,h},\mu_{j,\eta}^{Z,N,h})\big{]}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}
C8j=1k¯hjmaxi{1,,N}maxn¯{0,,j1}|Yn¯i,N,hZn¯i,N,h|q(Ω),\displaystyle\leq C_{8}\sum_{j=1}^{\bar{k}}h_{j}\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{0,\ldots,j-1\}}\big{|}Y^{i,N,h}_{\bar{n}}-Z^{i,N,h}_{\bar{n}}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)},

for any k¯{1,,nh}\bar{k}\in\{1,\ldots,n_{h}\} and i{1,,N}i\in\{1,\ldots,N\} where C8:=2L+4L2T+8L2Tq(q1)/2C_{8}:=2L+4L^{2}T+8L^{2}\sqrt{Tq(q-1)/2}.

Proof.

Notice that all the terms in the statement of this lemma are well-defined due to Remark 2.1. By using (12) with Yh,Zh𝒢qhY^{h},Z^{h}\in\mathscr{G}_{q}^{h} along with Minkowski’s inequality and Assumption H–2, we have

Yj,ηi,N,hZj,ηi,N,hq(Ω)Yj1i,N,hZj1i,N,hq(Ω)\displaystyle\big{\|}Y_{j,\eta}^{i,N,h}-Z_{j,\eta}^{i,N,h}\big{\|}_{\mathscr{L}^{q}(\Omega)}\leq\big{\|}Y_{j-1}^{i,N,h}-Z_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{q}(\Omega)}
+hjηj(b(tj1,Yj1i,N,h,μj1Y,N,h)b(tj1,Zj1i,N,h,μj1Z,N,h))q(Ω)\displaystyle+h_{j}\big{\|}\eta_{j}(b(t_{j-1},Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h})-b(t_{j-1},Z_{j-1}^{i,N,h},\mu_{j-1}^{Z,N,h}))\big{\|}_{\mathscr{L}^{q}(\Omega)}
+hj(q(q1)2)1/2u=01ηj(σu(tj1,Yj1i,N,h,μj1Y,N,h)\displaystyle+\sqrt{h_{j}}\Big{(}\frac{q(q-1)}{2}\Big{)}^{1/2}\sum_{u=0}^{1}\big{\|}\sqrt{\eta_{j}}(\sigma_{u}(t_{j-1},Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h})
σu(tj1,Zj1i,N,h,μj1Z,N,h))q(Ω)\displaystyle\hskip 170.71652pt-\sigma_{u}(t_{j-1},Z_{j-1}^{i,N,h},\mu_{j-1}^{Z,N,h}))\big{\|}_{\mathscr{L}^{q}(\Omega)}
\displaystyle\leq Yj1i,N,hZj1i,N,hq(Ω)+(LT+2LT(q(q1)2)1/2)\displaystyle\big{\|}Y_{j-1}^{i,N,h}-Z_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{q}(\Omega)}+\Big{(}LT+2L\sqrt{T}\Big{(}\frac{q(q-1)}{2}\Big{)}^{1/2}\Big{)}
×{Yj1i,N,hZj1i,N,hq(Ω)+𝒲2(μj1Y,N,h,μj1Z,N,h)q(Ω)}\displaystyle\qquad\times\big{\{}\big{\|}Y_{j-1}^{i,N,h}-Z_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{q}(\Omega)}+\big{\|}\mathcal{W}_{2}(\mu_{j-1}^{Y,N,h},\mu_{j-1}^{Z,N,h})\big{\|}_{\mathscr{L}^{q}(\Omega)}\big{\}}
(1+2LT+4LT(q(q1)2)1/2)maxi{1,,N}maxn¯{0,,j1}|Yn¯i,N,hZn¯i,N,h|q(Ω),\displaystyle\leq\Big{(}1+2LT+4L\sqrt{T}\Big{(}\frac{q(q-1)}{2}\Big{)}^{1/2}\Big{)}\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{0,\ldots,j-1\}}\big{|}Y_{\bar{n}}^{i,N,h}-Z_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}, (29)

where the last inequality is obtained by using

𝒲2(μj1Y,N,h,μj1Z,N,h)(1Ni=1N|Yj1i,N,hZj1i,N,h|2)1/2,\displaystyle\mathcal{W}_{2}(\mu_{j-1}^{Y,N,h},\mu_{j-1}^{Z,N,h})\leq\Big{(}\frac{1}{N}\sum_{i=1}^{N}\big{|}Y_{j-1}^{i,N,h}-Z_{j-1}^{i,N,h}\big{|}^{2}\Big{)}^{1/2},

for all i{1,,N}i\in\{1,\ldots,N\}, NN\in\mathbb{N} and j{1,,nh}j\in\{1,\ldots,n_{h}\}.

Now, the application Assumption H–2 yields

maxn¯{1,,k¯}|j=1n¯\displaystyle\big{\|}\max_{\bar{n}\in\{1,\ldots,\bar{k}\}}\big{|}\sum_{j=1}^{\bar{n}} hj[b(tj1+ηjhj,Yj,ηi,N,h,μj,ηY,N,h)b(tj1+ηjhj,Zj,ηi,N,h,μj,ηZ,N,h)]|q(Ω)\displaystyle h_{j}\big{[}b(t_{j-1}+\eta_{j}h_{j},Y_{j,\eta}^{i,N,h},\mu_{j,\eta}^{Y,N,h})-b(t_{j-1}+\eta_{j}h_{j},Z_{j,\eta}^{i,N,h},\mu_{j,\eta}^{Z,N,h})\big{]}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}
Lj=1k¯hj{Yj,ηi,N,hZj,ηi,N,hq(Ω)+𝒲2(μj,ηY,N,h,μj,ηZ,N,h)q(Ω)}\displaystyle\leq L\sum_{j=1}^{\bar{k}}h_{j}\big{\{}\big{\|}Y_{j,\eta}^{i,N,h}-Z_{j,\eta}^{i,N,h}\big{\|}_{\mathscr{L}^{q}(\Omega)}+\big{\|}\mathcal{W}_{2}(\mu_{j,\eta}^{Y,N,h},\mu_{j,\eta}^{Z,N,h})\big{\|}_{\mathscr{L}^{q}(\Omega)}\big{\}}
2Lj=1k¯hjmaxi{1,,N}Yj,ηi,N,hZj,ηi,N,hq(Ω),\displaystyle\leq 2L\sum_{j=1}^{\bar{k}}h_{j}\max_{i\in\{1,\ldots,N\}}\big{\|}Y_{j,\eta}^{i,N,h}-Z_{j,\eta}^{i,N,h}\big{\|}_{\mathscr{L}^{q}(\Omega)},

and then one uses (29) to complete the proof. ∎

Lemma 5.3.

Let Assumptions H–2, H–3, H–5 hold. Then, for any q2q\geq 2 and Yh,Zh𝒢qhY^{h},Z^{h}\in\mathscr{G}_{q}^{h},

maxn¯{1,,k¯}|j=1n¯=1m1tj1tj[σ~1(s,tj1,Yj1i,N,h,μj1Y,N,h)\displaystyle\big{\|}\max_{\bar{n}\in\{1,\ldots,\bar{k}\}}\big{|}\sum_{j=1}^{\bar{n}}\sum_{\ell=1}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\big{[}\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h})
σ~1(s,tj1,Zj1i,N,h,μj1Z,N,h)]dWsi,|q(Ω)\displaystyle\qquad\qquad\qquad\qquad-\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},Z_{j-1}^{i,N,h},\mu_{j-1}^{Z,N,h})\big{]}dW_{s}^{i,\ell}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}
+\displaystyle+ maxn¯{1,,k¯}|j=1n¯=1m0tj1tj[σ~0(s,tj1,Yj1i,N,h,μj1Y,N,h)\displaystyle\big{\|}\max_{\bar{n}\in\{1,\ldots,\bar{k}\}}\big{|}\sum_{j=1}^{\bar{n}}\sum_{\ell=1}^{m_{0}}\int_{t_{j-1}}^{t_{j}}\big{[}\tilde{\sigma}_{0}^{\ell}(s,t_{j-1},Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h})
σ~0(s,tj1,Zj1i,N,h,μj1Z,N,h)]dWs0,|q(Ω)\displaystyle\qquad\qquad\qquad\qquad-\tilde{\sigma}_{0}^{\ell}(s,t_{j-1},Z_{j-1}^{i,N,h},\mu_{j-1}^{Z,N,h})\big{]}dW_{s}^{0,\ell}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}
C9(j=1k¯hjmaxi{1,,N}maxn¯{0,,j1}|Yn¯i,N,hZn¯i,N,h|q(Ω)2)1/2,\displaystyle\qquad\leq C_{9}\Big{(}\sum_{j=1}^{\bar{k}}h_{j}\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{0,\ldots,j-1\}}\big{|}Y^{i,N,h}_{\bar{n}}-Z^{i,N,h}_{\bar{n}}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}^{2}\Big{)}^{1/2},

for all i{1,,N}i\in\{1,\ldots,N\} and k¯{1,,nh}\bar{k}\in\{1,\ldots,n_{h}\}, where C9:=(m0+m1)C¯qq(q1)/2(2L+5(m0+m1)LTq(q1)/2)C_{9}:=(m_{0}+m_{1})\bar{C}_{q}\sqrt{q(q-1)/2}\big{(}2L+5(m_{0}+m_{1})L\sqrt{Tq(q-1)/2}\big{)} and C¯q\bar{C}_{q} is given in Lemma A.1.

Proof.

Notice that

{j=1n¯=1m1tj1tj[σ~1(s,tj1,Yj1i,N,h,μj1Y,N,h)σ~1(s,tj1,Zj1i,N,h,μj1Z,N,h)]𝑑Wsi,}n¯,\displaystyle\Big{\{}\sum_{j=1}^{\bar{n}}\sum_{\ell=1}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\big{[}\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h})-\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},Z_{j-1}^{i,N,h},\mu_{j-1}^{Z,N,h})\big{]}dW_{s}^{i,\ell}\Big{\}}_{\bar{n}},

with n¯{0,,nh}{\bar{n}\in\{0,\ldots,n_{h}\}} is an {n¯h}n¯{0,,nh}\{\mathscr{F}_{\bar{n}}^{h}\}_{\bar{n}\in\{0,\ldots,n_{h}\}}-adapted standard martingale. Thus, on using Lemma A.1 and Minkowski’s inequality, one obtains, for all i{1,,N}i\in\{1,\ldots,N\} and k¯{1,,nh}\bar{k}\in\{1,\ldots,n_{h}\},

\displaystyle\big{\|} maxn¯{1,,k¯}|j=1n¯=1m1tj1tj[σ~1(s,tj1,Yj1i,N,h,μj1Y,N,h)\displaystyle\max_{\bar{n}\in\{1,\ldots,\bar{k}\}}\big{|}\sum_{j=1}^{\bar{n}}\sum_{\ell=1}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\big{[}\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h})
σ~1(s,tj1,Zj1i,N,h,μj1Z,N,h)]dWsi,|q(Ω)\displaystyle\hskip 142.26378pt-\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},Z_{j-1}^{i,N,h},\mu_{j-1}^{Z,N,h})\big{]}dW_{s}^{i,\ell}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}
C¯qj=1k¯|=1m1tj1tj[σ~1(s,tj1,Yj1i,N,h,μj1Y,N,h)\displaystyle\leq\bar{C}_{q}\big{\|}\sum_{j=1}^{\bar{k}}\big{|}\sum_{\ell=1}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\big{[}\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h})
σ~1(s,tj1,Zj1i,N,h,μj1Z,N,h)]dWsi,|2q/2(Ω)1/2\displaystyle\hskip 142.26378pt-\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},Z_{j-1}^{i,N,h},\mu_{j-1}^{Z,N,h})\big{]}dW_{s}^{i,\ell}\big{|}^{2}\big{\|}_{\mathscr{L}^{q/2}(\Omega)}^{1/2}
C¯q(j=1k¯=1m1tj1tjσ~1(s,tj1,Yj1i,N,h,μj1Y,N,h)\displaystyle\leq\bar{C}_{q}\Big{(}\sum_{j=1}^{\bar{k}}\big{\|}\sum_{\ell=1}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h})
σ~1(s,tj1,Zj1i,N,h,μj1Z,N,h)dWsi,q(Ω)2)1/2\displaystyle\hskip 142.26378pt-\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},Z_{j-1}^{i,N,h},\mu_{j-1}^{Z,N,h})dW_{s}^{i,\ell}\big{\|}^{2}_{\mathscr{L}^{q}(\Omega)}\Big{)}^{1/2}
m1C¯q(q(q1)2)1/2(j=1k¯hj(q2)/q=1m1[tj1tjσ~1(s,tj1,Yj1i,N,h,μj1Y,N,h)\displaystyle\leq\sqrt{m}_{1}\bar{C}_{q}\Big{(}\frac{q(q-1)}{2}\Big{)}^{1/2}\Big{(}\sum_{j=1}^{\bar{k}}h_{j}^{(q-2)/q}\sum_{\ell=1}^{m_{1}}\big{[}\int_{t_{j-1}}^{t_{j}}\big{\|}\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h})
σ~1(s,tj1,Zj1i,N,h,μj1Z,N,h)q(Ω)qds]2/q)1/2,\displaystyle\hskip 142.26378pt-\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},Z_{j-1}^{i,N,h},\mu_{j-1}^{Z,N,h})\big{\|}^{q}_{\mathscr{L}^{q}(\Omega)}ds\big{]}^{2/q}\Big{)}^{1/2}, (30)

where the last inequality is obtained due to Theorem 7.1 in [42].

Now, recall (8), (9) and (10) and use Assumption H–2 to get the following,

σ~1(s\displaystyle\big{\|}\tilde{\sigma}_{1}^{\ell}(s ,tj1,Yj1i,N,h,μj1Y,N,h)σ~1(s,tj1,Zj1i,N,h,μj1Z,N,h)q(Ω)\displaystyle,t_{j-1},Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h})-\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},Z_{j-1}^{i,N,h},\mu_{j-1}^{Z,N,h})\|_{\mathscr{L}^{q}(\Omega)}
\displaystyle\leq σ1(tj1,Yj1i,N,h,μj1Y,N,h)σ1(tj1,Zj1i,N,h,μj1Z,N,h)q(Ω)\displaystyle\|\sigma_{1}^{\ell}(t_{j-1},Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h})-\sigma_{1}^{\ell}(t_{j-1},Z_{j-1}^{i,N,h},\mu_{j-1}^{Z,N,h})\|_{\mathscr{L}^{q}(\Omega)}
+u=01Λσ1σu(s,tj1,Yj1i,N,h,μj1Y,N,h)Λσ1σu(s,tj1,Zj1i,N,h,μj1Z,N,h)q(Ω)\displaystyle+\sum_{u=0}^{1}\big{\|}\Lambda_{\sigma_{1}\sigma_{u}}^{\ell}(s,t_{j-1},Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h})-\Lambda_{\sigma_{1}\sigma_{u}}^{\ell}(s,t_{j-1},Z_{j-1}^{i,N,h},\mu_{j-1}^{Z,N,h})\big{\|}_{\mathscr{L}^{q}(\Omega)}
\displaystyle\leq L{Yj1i,N,hZj1i,N,hq(Ω)+𝒲2(μj1Y,N,h,μj1Z,N,h)q(Ω)}\displaystyle L\big{\{}\big{\|}Y_{j-1}^{i,N,h}-Z_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{q}(\Omega)}+\big{\|}\mathcal{W}_{2}(\mu_{j-1}^{Y,N,h},\mu_{j-1}^{Z,N,h})\big{\|}_{\mathscr{L}^{q}(\Omega)}\big{\}}
+hj1/2(q(q1)2)1/2u=011=1muxσ1(tj1,Yj1i,N,h,μj1Y,N,h)σu1(tj1,Yj1i,N,h,μj1Y,N,h)\displaystyle+h_{j}^{1/2}\Big{(}\frac{q(q-1)}{2}\Big{)}^{1/2}\sum_{u=0}^{1}\sum_{\ell_{1}=1}^{m_{u}}\big{\|}\partial_{x}\sigma_{1}^{\ell}(t_{j-1},Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h})\sigma_{u}^{\ell_{1}}(t_{j-1},Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h})
xσ1(tj1,Zj1i,N,h,μj1Z,N,h)σu1(tj1,Zj1i,N,h,μj1Z,N,h)q(Ω)\displaystyle-\partial_{x}\sigma_{1}^{\ell}(t_{j-1},Z_{j-1}^{i,N,h},\mu_{j-1}^{Z,N,h})\sigma_{u}^{\ell_{1}}(t_{j-1},Z_{j-1}^{i,N,h},\mu_{j-1}^{Z,N,h})\big{\|}_{\mathscr{L}^{q}(\Omega)}
+hj1/2(q(q1)2)1/21Nu=011=1muk=1Nμσ1(tj1,Yj1i,N,h,μj1Y,N,h,Yj1k,N,h)\displaystyle+h_{j}^{1/2}\Big{(}\frac{q(q-1)}{2}\Big{)}^{1/2}\frac{1}{N}\sum_{u=0}^{1}\sum_{\ell_{1}=1}^{m_{u}}\sum_{k=1}^{N}\big{\|}\partial_{\mu}\sigma_{1}^{\ell}(t_{j-1},Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h},Y_{j-1}^{k,N,h})
×σu1(tj1,Yj1k,N,h,μj1Y,N,h)μσ1(tj1,Zj1i,N,h,μj1Z,N,h,Zj1k,N,h)\displaystyle\times\sigma_{u}^{\ell_{1}}(t_{j-1},Y_{j-1}^{k,N,h},\mu_{j-1}^{Y,N,h})-\partial_{\mu}\sigma_{1}^{\ell}(t_{j-1},Z_{j-1}^{i,N,h},\mu_{j-1}^{Z,N,h},Z_{j-1}^{k,N,h})
×σu1(tj1,Zj1k,N,h,μj1Z,N,h)q(Ω),\displaystyle\times\sigma_{u}^{\ell_{1}}(t_{j-1},Z_{j-1}^{k,N,h},\mu_{j-1}^{Z,N,h})\big{\|}_{\mathscr{L}^{q}(\Omega)},

which due to Assumption H–5 yields

σ~1(s\displaystyle\big{\|}\tilde{\sigma}_{1}^{\ell}(s ,tj1,Yj1i,N,h,μj1Y,N,h)σ~1(s,tj1,Zj1i,N,h,μj1Z,N,h)q(Ω)\displaystyle,t_{j-1},Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h})-\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},Z_{j-1}^{i,N,h},\mu_{j-1}^{Z,N,h})\|_{\mathscr{L}^{q}(\Omega)}
\displaystyle\leq (L+2(m0+m1)L(Tq(q1)2)1/2)\displaystyle\Big{(}L+2(m_{0}+m_{1})L\Big{(}\frac{Tq(q-1)}{2}\Big{)}^{1/2}\Big{)}
×{Yj1i,N,hZj1i,N,hq(Ω)+W2(μj1Y,N,h,μj1Z,N,h)q(Ω)}\displaystyle\times\big{\{}\big{\|}Y_{j-1}^{i,N,h}-Z_{j-1}^{i,N,h}\big{\|}_{\mathscr{L}^{q}(\Omega)}+\big{\|}W_{2}(\mu_{j-1}^{Y,N,h},\mu_{j-1}^{Z,N,h})\big{\|}_{\mathscr{L}^{q}(\Omega)}\big{\}}
+(m0+m1)L(Tq(q1)2)1/21Nk=1NYj1k,N,hZj1k,N,hq(Ω)\displaystyle+(m_{0}+m_{1})L\Big{(}\frac{Tq(q-1)}{2}\Big{)}^{1/2}\frac{1}{N}\sum_{k=1}^{N}\big{\|}Y_{j-1}^{k,N,h}-Z_{j-1}^{k,N,h}\big{\|}_{\mathscr{L}^{q}(\Omega)}
\displaystyle\leq (2L+5(m0+m1)L(Tq(q1)2)1/2)maxi{1,,N}maxn¯{0,,j1}|Yn¯i,N,hZn¯i,N,h|q(Ω),\displaystyle\Big{(}2L+5(m_{0}+m_{1})L\Big{(}\frac{Tq(q-1)}{2}\Big{)}^{1/2}\Big{)}\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{0,\ldots,j-1\}}\big{|}Y_{\bar{n}}^{i,N,h}-Z_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)},

for any s[tj1,tj]s\in[t_{j-1},t_{j}], j{1,,nh}j\in\{1,\ldots,n_{h}\} and i{1,,N}i\in\{1,\ldots,N\}. The proof of the first part of the lemma is completed by substituting the above in (5.2). A bound for the terms involving σ~0\tilde{\sigma}_{0} follows by similar arguments. ∎

As a consequence of Lemmas 5.2 and 5.3, we obtain the following corollary.

Corollary 5.4.

If Assumptions H–2, H–3 and H–5 are satisfied. Then, for any q2q\geq 2 and Yh,Zh𝒢qhY^{h},Z^{h}\in\mathscr{G}_{q}^{h},

maxn¯{1,,k¯}|j=1n¯[Γjh(Yj1i,N,h,μj1Y,N,h,Yj,ηi,N,h,μj,ηY,N,h,ηj)\displaystyle\big{\|}\max_{\bar{n}\in\{1,\ldots,\bar{k}\}}\big{|}\sum_{j=1}^{\bar{n}}\big{[}\Gamma^{h}_{j}(Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h},Y_{j,\eta}^{i,N,h},\mu_{j,\eta}^{Y,N,h},\eta_{j})
Γjh(Zj1i,N,h,μj1Z,N,h,Zj,ηi,N,h,μj,ηZ,N,h,ηj)]|q(Ω)\displaystyle\hskip 142.26378pt-\Gamma^{h}_{j}(Z_{j-1}^{i,N,h},\mu_{j-1}^{Z,N,h},Z_{j,\eta}^{i,N,h},\mu_{j,\eta}^{Z,N,h},\eta_{j})\big{]}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}
\displaystyle\leq C8j=1k¯hjmaxi{1,,N}maxn¯{0,,j1}|Yn¯i,N,hZn¯i,N,h|q(Ω)\displaystyle C_{8}\sum_{j=1}^{\bar{k}}h_{j}\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{0,\ldots,j-1\}}\big{|}Y^{i,N,h}_{\bar{n}}-Z^{i,N,h}_{\bar{n}}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}
+C9(j=1k¯hjmaxi{1,,N}maxn¯{0,,j1}|Yn¯i,N,hZn¯i,N,h|q(Ω)2)1/2\displaystyle+C_{9}\Big{(}\sum_{j=1}^{\bar{k}}h_{j}\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{0,\ldots,j-1\}}\big{|}Y^{i,N,h}_{\bar{n}}-Z^{i,N,h}_{\bar{n}}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}^{2}\Big{)}^{1/2}
\displaystyle\leq (C8T+C9T)YhZh𝒢qh,\displaystyle(C_{8}T+C_{9}\sqrt{T})\big{\|}Y^{h}-Z^{h}\big{\|}_{\mathscr{G}_{q}^{h}},

for all k¯{1,,nh}\bar{k}\in\{1,\ldots,n_{h}\} and i{1,,N}i\in\{1,\ldots,N\}, where the constants C8C_{8} and C9C_{9} appear in Lemmas 5.2 and 5.3, respectively.

Proof.

Recall Γjh\Gamma^{h}_{j} from (5.1) and write

Γjh(Yj1i,N,h,\displaystyle\Gamma^{h}_{j}(Y_{j-1}^{i,N,h}, μj1Y,N,h,Yj,ηi,N,h,μj,ηY,N,h,ηj)Γhj(Zj1i,N,h,μj1Z,N,h,Zj,ηi,N,h,μj,ηZ,N,h,ηj)\displaystyle\mu_{j-1}^{Y,N,h},Y_{j,\eta}^{i,N,h},\mu_{j,\eta}^{Y,N,h},\eta_{j})-\Gamma^{h}_{j}(Z_{j-1}^{i,N,h},\mu_{j-1}^{Z,N,h},Z_{j,\eta}^{i,N,h},\mu_{j,\eta}^{Z,N,h},\eta_{j})
=hj[b(tj1+ηjhj,Yj,ηi,N,h,μj,ηY,N,h)b(tj1+ηjhj,Zj,ηi,N,h,μj,ηZ,N,h)]\displaystyle=h_{j}\big{[}b(t_{j-1}+\eta_{j}h_{j},Y_{j,\eta}^{i,N,h},\mu_{j,\eta}^{Y,N,h})-b(t_{j-1}+\eta_{j}h_{j},Z_{j,\eta}^{i,N,h},\mu_{j,\eta}^{Z,N,h})\big{]}
+=1m1tj1tj[σ~1(s,tj1,Yj1i,N,h,μj1Y,N,h)σ~1(s,tj1,Zj1i,N,h,μj1Z,N,h)]𝑑Wsi,\displaystyle\quad+\sum_{\ell=1}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\big{[}\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h})-\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},Z_{j-1}^{i,N,h},\mu_{j-1}^{Z,N,h})\big{]}dW^{i,\ell}_{s}
+=1m0tj1tj[σ~0(s,tj1,Yj1i,N,h,μj1Y,N,h)σ~0(s,tj1,Zj1i,N,h,μj1Z,N,h)]𝑑Ws0,.\displaystyle\quad+\sum_{\ell=1}^{m_{0}}\int_{t_{j-1}}^{t_{j}}\big{[}\tilde{\sigma}_{0}^{\ell}(s,t_{j-1},Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h})-\tilde{\sigma}_{0}^{\ell}(s,t_{j-1},Z_{j-1}^{i,N,h},\mu_{j-1}^{Z,N,h})\big{]}dW_{s}^{0,\ell}.

Then, on using Lemmas 5.2 and 5.3, we get the required result. ∎

We now prove the bistability of the scheme (13) in the following proposition.

Proposition 5.5.

Let Assumptions H–1 with p¯4\bar{p}\geq 4 and set q=p¯/22q=\bar{p}/2\geq 2, H–2, H–3 and H–5 hold. Then, for any Yh,Xh𝒢qhY^{h},X^{h}\in\mathscr{G}_{q}^{h}, we have

C6[Yh]𝒢S,qhYhXh𝒢qhC7[Yh]𝒢S,qh,\displaystyle C_{6}\|\mathcal{R}[Y^{h}]\|_{\mathscr{G}_{S,q}^{h}}\leq\|Y^{h}-X^{h}\|_{\mathscr{G}_{q}^{h}}\leq C_{7}\|\mathcal{R}[Y^{h}]\|_{\mathscr{G}_{S,q}^{h}},

in other words, the randomised Milstein scheme given in (13) is stochastically bistable in the sense of Definition 5.1 with C6:=13+C8T+C9TC_{6}:=\frac{1}{3+C_{8}T+C_{9}\sqrt{T}} and C7:=2e(2C8+C92)TC_{7}:=2e^{(2C_{8}+C_{9}^{2})T}, where the constants C8C_{8} and C9C_{9} appear in Lemmas 5.2 and 5.3, respectively.

Proof.

Recall Equations (13), (5.1) and (5.1) to write

Xn¯i,N,h\displaystyle X_{\bar{n}}^{i,N,h} X0i,N,hj=1n¯Γjh(Xj1i,N,h,μj1X,N,h,Xj,ηi,N,h,μj,ηX,N,h,ηj)=0,\displaystyle-X_{0}^{i,N,h}-\sum_{j=1}^{\bar{n}}\Gamma^{h}_{j}(X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h},X_{j,\eta}^{i,N,h},\mu_{j,\eta}^{X,N,h},\eta_{j})=0,
j=1n¯ji,N[Yh]\displaystyle\sum_{j=1}^{\bar{n}}\mathcal{R}_{j}^{i,N}[Y^{h}] =Yn¯i,N,hY0i,N,hj=1n¯Γjh(Yj1i,N,h,μj1Y,N,h,Yj,ηi,N,h,μj,ηY,N,h,ηj)\displaystyle=Y_{\bar{n}}^{i,N,h}-Y_{0}^{i,N,h}-\sum_{j=1}^{\bar{n}}\Gamma^{h}_{j}(Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h},Y_{j,\eta}^{i,N,h},\mu_{j,\eta}^{Y,N,h},\eta_{j})
=(Yn¯i,N,hXn¯i,N,h)(Y0i,N,hX0i,N,h)\displaystyle=\big{(}Y_{\bar{n}}^{i,N,h}-X_{\bar{n}}^{i,N,h}\big{)}-\big{(}Y_{0}^{i,N,h}-X_{0}^{i,N,h}\big{)}
j=1n¯(Γjh(Yj1i,N,h,μj1Y,N,h,\displaystyle-\sum_{j=1}^{\bar{n}}\big{(}\Gamma^{h}_{j}(Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h}, Yj,ηi,N,h,μj,ηY,N,h,ηj)Γjh(Xj1i,N,h,μj1X,N,h,Xj,ηi,N,h,μj,ηX,N,h,ηj)),\displaystyle Y_{j,\eta}^{i,N,h},\mu_{j,\eta}^{Y,N,h},\eta_{j})-\Gamma^{h}_{j}(X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h},X_{j,\eta}^{i,N,h},\mu_{j,\eta}^{X,N,h},\eta_{j})\big{)}, (31)

for any n¯{1,,nh}\bar{n}\in\{1,\ldots,n_{h}\}, i{1,,N}i\in\{1,\ldots,N\} and then use the Spijker norm (24) to get the following,

[Y\displaystyle\big{\|}\mathcal{R}[Y ]h𝒢S,qh=maxi{1,N}|0i,N[Yh]|q(Ω)+maxi{1,,N}maxn¯{1,,nh}|j=1n¯ji,N[Yh]|q(Ω){}^{h}]\big{\|}_{\mathscr{G}_{S,q}^{h}}=\max_{i\in\{1\ldots,N\}}\big{\|}\big{|}\mathcal{R}_{0}^{i,N}[Y^{h}]\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}+\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{1,\ldots,n_{h}\}}\big{|}\sum_{j=1}^{\bar{n}}\mathcal{R}_{j}^{i,N}[Y^{h}]\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}
\displaystyle\leq 2maxi{1,,N}Y0i,N,hX0i,N,hq(Ω)+maxi{1,,N}maxn¯{1,,nh}|Yn¯i,N,hXn¯i,N,h|q(Ω)\displaystyle 2\max_{i\in\{1,\ldots,N\}}\big{\|}Y_{0}^{i,N,h}-X_{0}^{i,N,h}\big{\|}_{\mathscr{L}^{q}(\Omega)}+\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{1,\ldots,n_{h}\}}\big{|}Y_{\bar{n}}^{i,N,h}-X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}
+maxi{1,,N}maxn¯{1,,nh}|j=1n¯(Γjh(Yj1i,N,h,μj1Y,N,h,Yj,ηi,N,h,μj,ηY,N,h,ηj)\displaystyle+\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{1,\ldots,n_{h}\}}\big{|}\sum_{j=1}^{\bar{n}}\big{(}\Gamma^{h}_{j}(Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h},Y_{j,\eta}^{i,N,h},\mu_{j,\eta}^{Y,N,h},\eta_{j})
Γjh(Xj1i,N,h,μj1X,N,h,Xj,ηi,N,h,μj,ηX,N,h,ηj))|q(Ω),\displaystyle\qquad-\Gamma^{h}_{j}(X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h},X_{j,\eta}^{i,N,h},\mu_{j,\eta}^{X,N,h},\eta_{j})\big{)}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)},

which on using Corollary 5.4 yields

[Yh]𝒢S,qh(3+C8T+C9T)YhXh𝒢qh.\displaystyle\big{\|}\mathcal{R}[Y^{h}]\big{\|}_{\mathscr{G}_{S,q}^{h}}\leq(3+C_{8}T+C_{9}\sqrt{T})\|Y^{h}-X^{h}\|_{\mathscr{G}_{q}^{h}}. (32)

Further, by rearranging the terms of (31) and using Minkowski’s inequality, one obtains

maxi{1,,N}\displaystyle\max_{i\in\{1,\ldots,N\}} maxn¯{0,,k¯}|Yn¯i,N,hXn¯i,N,h|q(Ω)\displaystyle\big{\|}\max_{\bar{n}\in\{0,\ldots,\bar{k}\}}\big{|}Y_{\bar{n}}^{i,N,h}-X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}
\displaystyle\leq maxi{1,,N}maxn¯{1,,k¯}|j=1n¯(Γjh(Yj1i,N,h,μj1Y,N,h,Yj,ηi,N,h,μj,ηY,N,h,ηj)\displaystyle\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{1,\ldots,\bar{k}\}}\big{|}\sum_{j=1}^{\bar{n}}\big{(}\Gamma^{h}_{j}(Y_{j-1}^{i,N,h},\mu_{j-1}^{Y,N,h},Y_{j,\eta}^{i,N,h},\mu_{j,\eta}^{Y,N,h},\eta_{j})
Γjh(Xj1i,N,h,μj1X,N,h,Xj,ηi,N,h,μj,ηX,N,h,ηj))|q(Ω)\displaystyle\qquad-\Gamma^{h}_{j}(X_{j-1}^{i,N,h},\mu_{j-1}^{X,N,h},X_{j,\eta}^{i,N,h},\mu_{j,\eta}^{X,N,h},\eta_{j})\big{)}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}
+maxi{1,,N}|0i,N[Yh]|q(Ω)+maxi{1,,N}maxn¯{1,,k¯}|j=1n¯ji,N[Yh]|q(Ω),\displaystyle+\max_{i\in\{1,\ldots,N\}}\big{\|}|\mathcal{R}_{0}^{i,N}[Y^{h}]|\big{\|}_{\mathscr{L}^{q}(\Omega)}+\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{1,\ldots,\bar{k}\}}\big{|}\sum_{j=1}^{\bar{n}}\mathcal{R}_{j}^{i,N}[Y^{h}]\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)},

and then application of Corollary 5.4 gives the following,

maxi{1,,N}\displaystyle\max_{i\in\{1,\ldots,N\}} maxn¯{0,,k¯}|Yn¯i,N,hXn¯i,N,h|q(Ω)\displaystyle\big{\|}\max_{\bar{n}\in\{0,\ldots,\bar{k}\}}\big{|}Y_{\bar{n}}^{i,N,h}-X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}
\displaystyle\leq C8j=1k¯hjmaxi{1,,N}maxn¯{0,,j1}|Yn¯i,N,hXn¯i,N,h|q(Ω)\displaystyle C_{8}\sum_{j=1}^{\bar{k}}h_{j}\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{0,\ldots,j-1\}}\big{|}Y_{\bar{n}}^{i,N,h}-X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}
+C9(j=1k¯hjmaxi{1,,N}maxn¯{0,,j1}|Yn¯i,N,hXn¯i,N,h|q(Ω)2)1/2+[Yh]𝒢S,qh\displaystyle+C_{9}\Big{(}\sum_{j=1}^{\bar{k}}h_{j}\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{0,\ldots,j-1\}}\big{|}Y_{\bar{n}}^{i,N,h}-X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}^{2}\Big{)}^{1/2}+\big{\|}\mathcal{R}[Y^{h}]\big{\|}_{\mathscr{G}_{S,q}^{h}}
\displaystyle\leq C8j=1k¯hjmaxi{1,,N}maxn¯{0,,j1}|Yn¯i,N,hXn¯i,N,h|q(Ω)\displaystyle C_{8}\sum_{j=1}^{\bar{k}}h_{j}\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{0,\ldots,j-1\}}\big{|}Y_{\bar{n}}^{i,N,h}-X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}
+maxi{1,,N}maxn¯{0,,k¯}|Yn¯i,N,hXn¯i,N,h|q(Ω)1/2\displaystyle+\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{0,\ldots,\bar{k}\}}\big{|}Y_{\bar{n}}^{i,N,h}-X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}^{1/2}
×C9(j=1k¯hjmaxi{1,,N}maxn¯{0,,j1}|Yn¯i,N,hXn¯i,N,h|q(Ω))1/2+[Yh]𝒢S,qh,\displaystyle\qquad\times C_{9}\Big{(}\sum_{j=1}^{\bar{k}}h_{j}\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{0,\ldots,j-1\}}\big{|}Y_{\bar{n}}^{i,N,h}-X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}\Big{)}^{1/2}+\big{\|}\mathcal{R}[Y^{h}]\big{\|}_{\mathscr{G}_{S,q}^{h}},

which due to Young’s inequality yields

maxi{1,,N}\displaystyle\max_{i\in\{1,\ldots,N\}} maxn¯{0,,k¯}|Yn¯i,N,hXn¯i,N,h|q(Ω)12maxi{1,,N}maxn¯{0,,k¯}|Yn¯i,N,hXn¯i,N,h|q(Ω)\displaystyle\big{\|}\max_{\bar{n}\in\{0,\ldots,\bar{k}\}}\big{|}Y_{\bar{n}}^{i,N,h}-X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}\leq\frac{1}{2}\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{0,\ldots,\bar{k}\}}\big{|}Y_{\bar{n}}^{i,N,h}-X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}
+(C8+C922)j=1k¯hjmaxi{1,,N}maxn¯{0,,j1}|Yn¯i,N,hXn¯i,N,h|q(Ω)+[Yh]𝒢S,qh.\displaystyle+\big{(}C_{8}+\frac{C_{9}^{2}}{2}\big{)}\sum_{j=1}^{\bar{k}}h_{j}\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{0,\ldots,j-1\}}\big{|}Y_{\bar{n}}^{i,N,h}-X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}+\big{\|}\mathcal{R}[Y^{h}]\big{\|}_{\mathscr{G}_{S,q}^{h}}.

This further implies

maxi{1,,N}\displaystyle\max_{i\in\{1,\ldots,N\}} maxn¯{0,,k¯}|Yn¯i,N,hXn¯i,N,h|q(Ω)2[Yh]𝒢S,qh\displaystyle\big{\|}\max_{\bar{n}\in\{0,\ldots,\bar{k}\}}\big{|}Y_{\bar{n}}^{i,N,h}-X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}\leq 2\big{\|}\mathcal{R}[Y^{h}]\big{\|}_{\mathscr{G}_{S,q}^{h}}
+(2C8+C92)j=1k¯hjmaxi{1,,N}maxn¯{0,,j1}|Yn¯i,N,hXn¯i,N,h|q(Ω).\displaystyle+(2C_{8}+C_{9}^{2})\sum_{j=1}^{\bar{k}}h_{j}\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{\bar{n}\in\{0,\ldots,j-1\}}\big{|}Y_{\bar{n}}^{i,N,h}-X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}.

Due to Lemma A.2, we get

maxi{1,,N}\displaystyle\max_{i\in\{1,\ldots,N\}} maxn¯{0,,k¯}|Yn¯i,N,hXn¯i,N,h|q(Ω)2e(2C8+C92)T[Yh]𝒢S,qh,\displaystyle\big{\|}\max_{\bar{n}\in\{0,\ldots,\bar{k}\}}\big{|}Y_{\bar{n}}^{i,N,h}-X_{\bar{n}}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}\leq 2e^{(2C_{8}+C_{9}^{2})T}\big{\|}\mathcal{R}[Y^{h}]\big{\|}_{\mathscr{G}_{S,q}^{h}},

for any k¯{0,,nh}\bar{k}\in\{0,\ldots,n_{h}\}, which further implies

YhXh𝒢qh2e(2C8+C92)T[Yh]𝒢S,qh,\displaystyle\|Y^{h}-X^{h}\|_{\mathscr{G}_{q}^{h}}\leq 2e^{(2C_{8}+C_{9}^{2})T}\big{\|}\mathcal{R}[Y^{h}]\big{\|}_{\mathscr{G}_{S,q}^{h}},

and the proof is completed by combining the above with (32). ∎

5.3 Consistency of the Scheme

Recall the temporal grid ϱh\varrho_{h} from (11) and set the values of the interacting particle system (2) over the grid points of ϱh\varrho_{h} as the set Xϱh:={Xji,N}j{0,,nh}X^{\varrho_{h}}:=\{X^{i,N}_{j}\}_{j\in\{0,\ldots,n_{h}\}} where Xji,N=Xtji,NX_{j}^{i,N}=X_{t_{j}}^{i,N} for any j{0,,nh}j\in\{0,\ldots,n_{h}\} and i{1,,N}i\in\{1,\ldots,N\}. Notice that XϱhX^{\varrho_{h}} is different from XhX^{h}, where the later stands for the randomised Milstein scheme (13). Further, [Xϱh]\mathcal{R}[X^{\varrho_{h}}] is defined using XϱhX^{\varrho_{h}} in (5.1). Next, we introduce the notion of a scheme’s consistency and establish that the randomised Milstein scheme (13) is consistent (see below Proposition 5.9).

Definition 5.6 (Consistency).

The randomised Milstein scheme (13) for the interacting particle system (2) is called consistent of order γ>0\gamma>0 if there exists a constant C10>0C_{10}>0, independent of hh and NN\in\mathbb{N}, such that

[Xϱh]𝒢S,qhC10hγ,\displaystyle\|\mathcal{R}[X^{\varrho_{h}}]\|_{\mathscr{G}_{S,q}^{h}}\leq C_{10}h^{\gamma},

for q2q\geq 2.

In the context of the measure dependent drift coefficient, we obtain the following randomised quadrature rule.

Corollary 5.7.

Let Assumptions H–1 with p¯4\bar{p}\geq 4 and set q=p¯/22q=\bar{p}/2\geq 2, H–2, H– 3 hold. Then, for all i{1,,N}i\in\{1,\ldots,N\}, the operator Θn¯,ηh[]\Theta_{\bar{n},\eta}^{h}[\cdot] defined in (27) and applied to bb satisfies

maxn¯{1,,nh}|Θn¯,ηh[b]0tn¯b(s,Xsi,N,μsX,N)𝑑s|q(Ω)C11h,\displaystyle\big{\|}\max_{\bar{n}\in\{1,\ldots,n_{h}\}}\big{|}\Theta_{\bar{n},\eta}^{h}[b]-\int_{0}^{t_{\bar{n}}}b(s,X_{s}^{i,N},\mu_{s}^{X,N})ds\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}\leq C_{11}h,

where C11:=TC¯q(2L¯+4L¯C11/p¯+2L¯C21/p¯)(1+maxi{1,,N}X0ip¯(Ω~)p¯)1/p¯C_{11}:=\sqrt{T}{\color[rgb]{0,0,0}\bar{C}_{q}}\big{(}2\bar{L}+4\bar{L}C_{1}^{1/\bar{p}}+2{\color[rgb]{0,0,0}\bar{L}}C_{2}^{1/\bar{p}}\big{)}\big{(}1+\max_{i\in\{1,\ldots,N\}}\|X_{0}^{i}\|^{\bar{p}}_{{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}}\big{)}^{1/\bar{p}} and the positive constants C1C_{1}, C2C_{2}, C¯q\bar{C}_{q} appear in Proposition 2.2, Lemma 2.4 and Lemma A.1, respectively.

Proof.

We take V(s)=b(s,Xsi,N,μsX,N)V(s)=b\big{(}s,X_{s}^{i,N},\mu_{s}^{X,N}\big{)} for any s[0,T]s\in[0,T] and i{1,,N}i\in\{1,\ldots,N\}, which is defined on (Ω~,~,~)(\tilde{\Omega},\tilde{\mathscr{F}},\tilde{\mathbb{P}}). Notice that Remarks 2.1 and 2.3 along with Hölder’s inequality (as q=p¯/2q=\bar{p}/2) imply

Vq([0,T]×Ω~)\displaystyle\|V\|_{\mathscr{L}^{q}([0,T]\times\tilde{\Omega})} =(0Tb(s,Xsi,N,μsX,N)q(Ω~)q𝑑s)1/q\displaystyle=\Big{(}\int_{0}^{T}\|b\big{(}s,X_{s}^{i,N},\mu_{s}^{X,N}\big{)}\|_{\mathscr{L}^{q}(\tilde{\Omega})}^{q}ds\Big{)}^{1/q}
L¯(0T(1+Xsi,Nq(Ω~)+𝒲2(μsX,N,δ0)q(Ω~))q𝑑s)1/q\displaystyle\leq\bar{L}\Big{(}\int_{0}^{T}\big{(}1+\|X_{s}^{i,N}\|_{\mathscr{L}^{q}(\tilde{\Omega})}+\|\mathcal{W}_{2}(\mu_{s}^{X,N},\delta_{0})\|_{\mathscr{L}^{q}(\tilde{\Omega})}\big{)}^{q}ds\Big{)}^{1/q}
L¯(0T(1+2maxi{1,,N}Xsi,Nq(Ω~))q𝑑s)1/q\displaystyle\leq\bar{L}\Big{(}\int_{0}^{T}(1+2\max_{i\in\{1,\ldots,N\}}\|X_{s}^{i,N}\|_{\mathscr{L}^{q}(\tilde{\Omega})})^{q}ds\Big{)}^{1/q}
L¯(0T(1+2maxi{1,,N}Xsi,Np¯(Ω~))q𝑑s)1/q\displaystyle\leq\bar{L}\Big{(}\int_{0}^{T}(1+2\max_{i\in\{1,\ldots,N\}}\|X_{s}^{i,N}\|_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})})^{q}ds\Big{)}^{1/q}
L¯(0T(1+2C11/p¯(1+maxi{1,,N}X0ip¯(Ω~)p¯)1/p¯)q𝑑s)1/q\displaystyle\leq\bar{L}\Big{(}\int_{0}^{T}(1+2C_{1}^{1/\bar{p}}(1+\max_{i\in\{1,\ldots,N\}}\|X_{0}^{i}\|^{\bar{p}}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})})^{1/\bar{p}})^{q}ds\Big{)}^{1/q}
L¯(T)1/q(1+2C11/p¯(1+maxi{1,,N}X0ip¯(Ω~)p¯)1/p¯)<.\displaystyle\leq\bar{L}(T)^{1/q}(1+2C_{1}^{1/\bar{p}}(1+\max_{i\in\{1,\ldots,N\}}\|X_{0}^{i}\|^{\bar{p}}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})})^{1/\bar{p}})<\infty.

Also, due to Assumptions H–2, H–3 and Lemma 2.4, for t,t[0,T]t,t^{\prime}\in[0,T],

V(t)V(t)q(Ω~)=b(t,Xti,N,μtX,N)b(t,Xti,N,μtX,N)q(Ω~)L{Xti,NXti,Nq(Ω~)\displaystyle\big{\|}V(t)-V(t^{\prime})\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}=\big{\|}b(t,X_{t}^{i,N},\mu_{t}^{X,N})-b(t^{\prime},X_{t^{\prime}}^{i,N},\mu_{t^{\prime}}^{X,N})\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}\leq L\big{\{}\big{\|}X_{t}^{i,N}-X_{t^{\prime}}^{i,N}\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}
+𝒲2(μtX,N,μtX,N)q(Ω~)+|tt|1/2(1+Xti,Nq(Ω~)+𝒲2(μtX,N,δ0)q(Ω~))}\displaystyle\quad+\big{\|}\mathcal{W}_{2}(\mu_{t}^{X,N},\mu_{t^{\prime}}^{X,N})\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}+|t-t^{\prime}|^{1/2}\big{(}1+\big{\|}X^{i,N}_{t}\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}+\big{\|}\mathcal{W}_{2}(\mu_{t}^{X,N},\delta_{0})\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}\big{)}\}
2Lmaxi{1,,N}Xti,NXti,Nq(Ω~)+|tt|1/2L{1+2C11/p¯(1+maxi{1,,N}X0ip¯(Ω~)p¯)1/p¯}\displaystyle\leq 2L\max_{i\in\{1,\ldots,N\}}\big{\|}X_{t}^{i,N}-X_{t^{\prime}}^{i,N}\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}+|t-t^{\prime}|^{1/2}L\{1+2C_{1}^{1/\bar{p}}(1+\max_{i\in\{1,\ldots,N\}}\|X_{0}^{i}\|^{\bar{p}}_{{}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}})^{1/\bar{p}}\}
{2L(C11/p¯+C21/p¯)(1+maxi{1,,N}X0ip¯(Ω~)p¯)1/p¯+L}|tt|1/2,\displaystyle\leq\{2L(C_{1}^{1/\bar{p}}+C_{2}^{1/\bar{p}})(1+\max_{i\in\{1,\ldots,N\}}\|X_{0}^{i}\|^{\bar{p}}_{{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}})^{1/\bar{p}}+L\}|t-t^{\prime}|^{1/2}, (33)

for all i{1,,N}i\in\{1,\ldots,N\}. Due to (3), V𝒞1/2([0,T],q(Ω~))2L¯+L¯(4C11/p¯+2C21/p¯)(1+maxi{1,,N}X0ip¯(Ω~)p¯)1/p¯\|V\|_{\mathscr{C}^{1/2}([0,T],\,\mathscr{L}^{q}(\tilde{\Omega}))}\leq 2\bar{L}+\bar{L}(4C_{1}^{1/\bar{p}}+2C_{2}^{1/\bar{p}}\big{)}\big{(}1+\max_{i\in\{1,\ldots,N\}}\|X_{0}^{i}\|^{\bar{p}}_{{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}}\big{)}^{1/\bar{p}}, as LL¯L\leq\bar{L}. Then, (28) completes the proof. ∎

Lemma 5.8.

Let Assumptions H–1 with p¯4\bar{p}\geq 4 and set q=p¯/22q=\bar{p}/2\geq 2, H–2 to H–4 hold. Let hmin(1,T)h\leq\min(1,T). Then,

maxn¯{1,,nh}|j=1n¯=1m1tj1tj[σ1(s,Xsi,N,μsX,N)σ~1(s,tj1,Xj1i,N,μj1X,N)]𝑑Wsi,q(Ω~)\displaystyle\big{\|}\max_{\bar{n}\in\{1,\ldots,n_{h}\}}\big{|}\sum_{j=1}^{\bar{n}}\sum_{\ell=1}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\big{[}\sigma_{1}^{\ell}(s,X_{s}^{i,N},\mu_{s}^{X,N})-\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})\big{]}dW^{i,\ell}_{s}\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}
+maxn¯{1,,nh}|j=1n¯=1m0tj1tj[σ0(s,Xsi,N,μsX,N)σ~0(s,tj1,Xj1i,N,μj1X,N)]𝑑Ws0,|q(Ω~)\displaystyle+\big{\|}\max_{\bar{n}\in\{1,\ldots,n_{h}\}}\big{|}\sum_{j=1}^{\bar{n}}\sum_{\ell=1}^{m_{0}}\int_{t_{j-1}}^{t_{j}}\big{[}\sigma_{0}^{\ell}(s,X_{s}^{i,N},\mu_{s}^{X,N})-\tilde{\sigma}_{0}^{\ell}(s,t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})\big{]}dW^{0,\ell}_{s}\big{|}\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}
C12h,\displaystyle\hskip 113.81102pt\leq C_{12}h,

for all i{1,,N}i\in\{1,\ldots,N\}, where

C12\displaystyle C_{12} :=(m0+m1)C¯qTq(q1)/2{L+2L¯2+4L2q(q1)/2+(2(L+2L¯2)C11/p¯\displaystyle:=(m_{0}+m_{1})\bar{C}_{q}\sqrt{{Tq(q-1)}/{2}}\Big{\{}L+2\bar{L}^{2}+4L^{2}\sqrt{{q(q-1)}/{2}}+\Big{(}2(L+2\bar{L}^{2})C_{1}^{1/\bar{p}}
+8L2q(q1)2(C11/p¯+C21/p¯)+4LC22/p¯)(1+maxi{1,,N}X0ip¯(Ω~)p¯)2/p¯}\displaystyle\qquad+8L^{2}\sqrt{{q(q-1)}{2}}\big{(}C_{1}^{1/\bar{p}}+C_{2}^{1/\bar{p}}\big{)}+4LC_{2}^{2/\bar{p}}\Big{)}\big{(}1+\max_{i\in\{1,\ldots,N\}}\|X_{0}^{i}\|_{{}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}}^{\bar{p}}\big{)}^{2/\bar{p}}\Big{\}}

and the positive constants C1C_{1}, C2C_{2} and C¯q\bar{C}_{q} appear in Proposition 2.2, Lemma 2.4 and Lemma A.1, respectively.

Proof.

For notational simplicity, define

ζ(s):=σ1(s,Xsi,N,μsX,N)σ~1(s,tj1,Xj1i,N,μj1X,N)\zeta^{\ell}(s):=\sigma_{1}^{\ell}(s,X_{s}^{i,N},\mu_{s}^{X,N})-\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})

for all {1,,m1}\ell\in\{1,\ldots,m_{1}\}, i{1,,N}i\in\{1,\ldots,N\}, j{1,,nh}j\in\{1,\ldots,n_{h}\} and s[tj1,tj]s\in[t_{j-1},t_{j}]. Notice that

{j=1n¯=1m1tj1tjζ(s)𝑑Wsi,}n¯{0,,nh}\Big{\{}\displaystyle\sum_{j=1}^{\bar{n}}\sum_{\ell=1}^{m_{1}}\int_{t_{j}-1}^{t_{j}}\zeta^{\ell}(s)dW^{i,\ell}_{s}\Big{\}}_{\bar{n}\in\{0,\ldots,n_{h}\}}

is an {~tn¯}n¯{0,,nh}\{\tilde{\mathscr{F}}_{t_{\bar{n}}}\}_{\bar{n}\in\{0,\ldots,n_{h}\}}-adapted standard martingale. Thus, by using Lemma A.1 and Theorem 7.1 in [42], we get

\displaystyle\big{\|} maxn¯{0,,nh}|j=1n¯=1m1tj1tjζ(s)𝑑Wsi,|q(Ω~)C¯q(j=1nh|=1m1tj1tjζ(s)𝑑Wsi,|2)1/2q(Ω~)\displaystyle\max_{\bar{n}\in\{0,\ldots,n_{h}\}}\big{|}\sum_{j=1}^{\bar{n}}\sum_{\ell=1}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\zeta^{\ell}(s)dW^{i,\ell}_{s}\big{|}\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}\leq\bar{C}_{q}\big{\|}\big{(}\sum_{j=1}^{n_{h}}\big{|}\sum_{\ell=1}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\zeta^{\ell}(s)dW^{i,\ell}_{s}\big{|}^{2}\big{)}^{1/2}\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}
=C¯qj=1nh|=1m1tj1tjζ(s)𝑑Wsi,|2q/2(Ω~)1/2m1C¯q(j=1nh=1m1tj1tjζ(s)𝑑Wsi,q(Ω~)2)1/2\displaystyle=\bar{C}_{q}\big{\|}\sum_{j=1}^{n_{h}}\big{|}\sum_{\ell=1}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\zeta^{\ell}(s)dW^{i,\ell}_{s}\big{|}^{2}\big{\|}_{\mathscr{L}^{q/2}(\tilde{\Omega})}^{1/2}\leq\sqrt{m}_{1}\bar{C}_{q}\Big{(}\sum_{j=1}^{n_{h}}\sum_{\ell=1}^{m_{1}}\big{\|}\int_{t_{j-1}}^{t_{j}}\zeta^{\ell}(s)dW^{i,\ell}_{s}\big{\|}^{2}_{\mathscr{L}^{q}(\tilde{\Omega})}\Big{)}^{1/2}
m1C¯q(q(q1)2)1/2(j=1nh=1m1hj(q2)/q(tj1tjζ(s)q(Ω~)q𝑑s)2/q)1/2,\displaystyle\leq\sqrt{m}_{1}\bar{C}_{q}\Big{(}\frac{q(q-1)}{2}\Big{)}^{1/2}\Big{(}\sum_{j=1}^{n_{h}}\sum_{\ell=1}^{m_{1}}h_{j}^{(q-2)/{q}}\big{(}\int_{t_{j-1}}^{t_{j}}\big{\|}\zeta^{\ell}(s)\big{\|}^{q}_{\mathscr{L}^{q}(\tilde{\Omega})}ds\big{)}^{2/q}\Big{)}^{1/2}, (34)

for all i{1,,N}i\in\{1,\ldots,N\}. Now, recall σ~1\tilde{\sigma}_{1}^{\ell} from (10) to write the following for any s[tj1,tj]s\in[t_{j-1},t_{j}],

ζ(s)=\displaystyle\zeta^{\ell}(s)= [σ1(s,Xsi,N,μsX,N)σ1(tj1,Xsi,N,μsX,N)]+[σ1(tj1,Xsi,N,μsX,N)\displaystyle\big{[}\sigma_{1}^{\ell}(s,X_{s}^{i,N},\mu_{s}^{X,N})-\sigma_{1}^{\ell}(t_{j-1},X_{s}^{i,N},\mu_{s}^{X,N})\big{]}+\big{[}\sigma_{1}^{\ell}(t_{j-1},X_{s}^{i,N},\mu_{s}^{X,N})
σ1(tj1,Xj1i,N,μj1X,N)xσ1(tj1,Xj1i,N,μj1X,N)(Xsi,NXj1i,N)\displaystyle-\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})-\partial_{x}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})(X_{s}^{i,N}-X_{j-1}^{i,N})
1Nk=1Nμσ1(tj1,Xj1i,N,μj1X,N,Xj1k,N)(Xsk,NXj1k,N)]+[xσ1(tj1,Xj1i,N,μj1X,N)\displaystyle-\frac{1}{N}\sum_{k=1}^{N}\partial_{\mu}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N},X_{j-1}^{k,N})(X_{s}^{k,N}-X_{j-1}^{k,N})\big{]}+\big{[}\partial_{x}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})
×(Xsi,NXj1i,N)+1Nk=1Nμσ1(tj1,Xj1i,N,μj1X,N,Xj1k,N)(Xsk,NXj1k,N)\displaystyle\times(X_{s}^{i,N}-X_{j-1}^{i,N})+\frac{1}{N}\sum_{k=1}^{N}\partial_{\mu}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N},X_{j-1}^{k,N})(X_{s}^{k,N}-X_{j-1}^{k,N})
Λσ1σ1(s,tj1,Xj1i,N,μj1X,N)Λσ1σ0(s,tj1,Xj1i,N,μj1X,N)],\displaystyle\hskip 28.45274pt-\Lambda_{\sigma_{1}\sigma_{1}}^{\ell}(s,t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})-\Lambda_{\sigma_{1}\sigma_{0}}^{\ell}(s,t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})\big{]},

which on the application of Assumption H–3, Lemma A.3 along with (2) and the values of Λσ1σ1\Lambda_{\sigma_{1}\sigma_{1}}^{\ell}, Λσ1σ0\Lambda_{\sigma_{1}\sigma_{0}}^{\ell} from (8), (9) yields

ζ\displaystyle\zeta^{\ell} (s)L(1+|Xsi,N|+𝒲2(μsX,N,δ0))|stj1|+3L2|Xsi,NXj1i,N|2\displaystyle(s)\leq L(1+|X_{s}^{i,N}|+\mathcal{W}_{2}(\mu_{s}^{X,N},\delta_{0}))|s-t_{j-1}|+\frac{3L}{2}|X_{s}^{i,N}-X_{j-1}^{i,N}|^{2}
+5L21Nk=1N|Xsk,NXj1k,N|2+tj1sxσ1(tj1,Xj1i,N,μj1X,N)b(r,Xri,N,μrX,N)dr\displaystyle+\frac{5L}{2}\frac{1}{N}\sum_{k=1}^{N}|X_{s}^{k,N}-X_{j-1}^{k,N}|^{2}+\int_{t_{j-1}}^{s}\partial_{x}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})b(r,X_{r}^{i,N},\mu_{r}^{X,N})dr
+tj1sxσ1(tj1,Xj1i,N,μj1X,N)(σ1(r,Xri,N,μrX,N)σ1(tj1,Xj1i,N,μj1X,N))dWri\displaystyle+\int_{t_{j-1}}^{s}\partial_{x}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})(\sigma_{1}(r,X_{r}^{i,N},\mu_{r}^{X,N})-\sigma_{1}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N}))dW^{i}_{r}
+tj1sxσ1(tj1,Xj1i,N,μj1X,N)(σ0(r,Xri,N,μrX,N)σ0(tj1,Xj1i,N,μj1X,N))dWr0\displaystyle+\int_{t_{j-1}}^{s}\partial_{x}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})(\sigma_{0}(r,X_{r}^{i,N},\mu_{r}^{X,N})-\sigma_{0}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N}))dW^{0}_{r}
+1Nk=1Ntj1sμσ1(tj1,Xj1i,N,μj1X,N,Xj1k,N)b(r,Xrk,N,μrX,N)dr\displaystyle+\frac{1}{N}\sum_{k=1}^{N}\int_{t_{j-1}}^{s}\partial_{\mu}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N},X_{j-1}^{k,N})b(r,X_{r}^{k,N},\mu_{r}^{X,N})dr
+1Nk=1Ntj1sμσ1(tj1,Xj1i,N,μj1X,N,Xj1k,N)\displaystyle+\frac{1}{N}\sum_{k=1}^{N}\int_{t_{j-1}}^{s}\partial_{\mu}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N},X_{j-1}^{k,N})
×(σ1(r,Xrk,N,μrX,N)σ1(tj1,Xj1k,N,μj1X,N))dWrk\displaystyle\hskip 85.35826pt\times(\sigma_{1}(r,X_{r}^{k,N},\mu_{r}^{X,N})-\sigma_{1}(t_{j-1},X_{j-1}^{k,N},\mu_{j-1}^{X,N}))dW^{k}_{r}
+1Nk=1Ntj1sμσ1(tj1,Xj1i,N,μj1X,N,Xj1k,N)\displaystyle+\frac{1}{N}\sum_{k=1}^{N}\int_{t_{j-1}}^{s}\partial_{\mu}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N},X_{j-1}^{k,N})
×(σ0(r,Xrk,N,μrX,N)σ0(tj1,Xj1k,N,μj1X,N))dWr0,\displaystyle\hskip 85.35826pt\times(\sigma_{0}(r,X_{r}^{k,N},\mu_{r}^{X,N})-\sigma_{0}(t_{j-1},X_{j-1}^{k,N},\mu_{j-1}^{X,N}))dW^{0}_{r},

for all i{1,,N}i\in\{1,\ldots,N\}, j{1,,nh}j\in\{1,\ldots,n_{h}\} and {1,,m1}\ell\in\{1,\ldots,m_{1}\}. This further implies, due to Remarks 2.1 and 3.2,

\displaystyle\| ζ(s)q(Ω~)L(1+2maxi{1,,N}Xsi,Nq(Ω~))hj+4Lmaxi{1,,N}Xsi,NXj1i,N2q(Ω~)2\displaystyle\zeta^{\ell}(s)\|_{\mathscr{L}^{q}(\tilde{\Omega})}\leq L(1+2\max_{i\in\{1,\ldots,N\}}\|X_{s}^{i,N}\|_{\mathscr{L}^{q}(\tilde{\Omega})})h_{j}+4L\max_{i\in\{1,\ldots,N\}}\|X_{s}^{i,N}-X_{j-1}^{i,N}\|_{\mathscr{L}^{2q}(\tilde{\Omega})}^{2}
+hj(q1)/q2L¯2(tj1s(1+2maxi{1,,N}Xri,Nq(Ω~))q𝑑r)1/q\displaystyle+h_{j}^{(q-1)/{q}}2\bar{L}^{2}\big{(}\int_{t_{j-1}}^{s}(1+2\max_{i\in\{1,\ldots,N\}}\|X_{r}^{i,N}\|_{\mathscr{L}^{q}(\tilde{\Omega})})^{q}dr\big{)}^{1/q}
+tj1sxσ1(tj1,Xj1i,N,μj1X,N)(σ1(r,Xri,N,μrX,N)σ1(tj1,Xj1i,N,μj1X,N))dWriq(Ω~)\displaystyle+\big{\|}\int_{t_{j-1}}^{s}\partial_{x}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})(\sigma_{1}(r,X_{r}^{i,N},\mu_{r}^{X,N})-\sigma_{1}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N}))dW^{i}_{r}\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}
+tj1sxσ1(tj1,Xj1i,N,μj1X,N)(σ0(r,Xri,N,μrX,N)σ0(tj1,Xj1i,N,μj1X,N))dWr0q(Ω~)\displaystyle+\big{\|}\int_{t_{j-1}}^{s}\partial_{x}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})(\sigma_{0}(r,X_{r}^{i,N},\mu_{r}^{X,N})-\sigma_{0}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N}))dW^{0}_{r}\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}
+1Nk=1Ntj1sμσ1(tj1,Xj1i,N,μj1X,N,Xj1k,N)\displaystyle+\big{\|}\frac{1}{N}\sum_{k=1}^{N}\int_{t_{j-1}}^{s}\partial_{\mu}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N},X_{j-1}^{k,N})
×(σ1(r,Xrk,N,μrX,N)σ1(tj1,Xj1k,N,μj1X,N))dWrkq(Ω~)\displaystyle\hskip 85.35826pt\times(\sigma_{1}(r,X_{r}^{k,N},\mu_{r}^{X,N})-\sigma_{1}(t_{j-1},X_{j-1}^{k,N},\mu_{j-1}^{X,N}))dW^{k}_{r}\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}
+1Nk=1Ntj1sμσ1(tj1,Xj1i,N,μj1X,N,Xj1k,N)\displaystyle+\big{\|}\frac{1}{N}\sum_{k=1}^{N}\int_{t_{j-1}}^{s}\partial_{\mu}\sigma_{1}^{\ell}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N},X_{j-1}^{k,N})
×(σ0(r,Xrk,N,μrX,N)σ0(tj1,Xj1k,N,μj1X,N))dWr0q(Ω~).\displaystyle\hskip 85.35826pt\times(\sigma_{0}(r,X_{r}^{k,N},\mu_{r}^{X,N})-\sigma_{0}(t_{j-1},X_{j-1}^{k,N},\mu_{j-1}^{X,N}))dW^{0}_{r}\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}.

Moreover, the application of Hölder’s inequality (as q=p¯/2)q=\bar{p}/2), Remarks 2.3 and 3.2, Lemma 2.4 and Theorem 7.1 in [42] yield

\displaystyle\| ζ(s)q(Ω~){(L+2L¯2)(1+2C11/p¯(1+maxi{1,,N}X0i,Np¯(Ω~)p¯)1/p¯)\displaystyle\zeta^{\ell}(s)\|_{\mathscr{L}^{q}(\tilde{\Omega})}\leq\big{\{}(L+2\bar{L}^{2})\big{(}1+2C_{1}^{1/\bar{p}}(1+\max_{i\in\{1,\ldots,N\}}\|X_{0}^{i,N}\|_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}})^{1/\bar{p}}\big{)}
+4LC22/p¯(1+maxi{1,,N}X0i,Np¯(Ω~)p¯)2/p¯}hj\displaystyle+4LC_{2}^{2/\bar{p}}\big{(}1+\max_{i\in\{1,\ldots,N\}}\|X_{0}^{i,N}\|_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}\big{)}^{2/\bar{p}}\big{\}}h_{j}
+(q(q1)2)1/2Lhj(q2)/2qu=01(tj1sσu(r,Xri,N,μrX,N)σu(tj1,Xj1i,N,μj1X,N)q(Ω~)q𝑑r)1/q\displaystyle+\Big{(}\frac{q(q-1)}{2}\Big{)}^{1/2}Lh_{j}^{(q-2)/{2q}}\sum_{u=0}^{1}\big{(}\int_{t_{j-1}}^{s}\big{\|}\sigma_{u}(r,X_{r}^{i,N},\mu_{r}^{X,N})-\sigma_{u}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}^{q}dr\big{)}^{1/{q}}
+(q(q1)2)1/2Lhj(q2)/2qu=011Nk=1N(tj1sσu(r,Xrk,N,μrX,N)σu(tj1,Xj1k,N,μj1X,N)q(Ω~)q𝑑r)1/q,\displaystyle+\Big{(}\frac{q(q-1)}{2}\Big{)}^{1/2}Lh_{j}^{(q-2)/{2q}}\sum_{u=0}^{1}\frac{1}{N}\sum_{k=1}^{N}\big{(}\int_{t_{j-1}}^{s}\big{\|}\sigma_{u}(r,X_{r}^{k,N},\mu_{r}^{X,N})-\sigma_{u}(t_{j-1},X_{j-1}^{k,N},\mu_{j-1}^{X,N})\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}^{q}dr\big{)}^{1/{q}}, (35)

for any s[tj1,tj]s\in[t_{j-1},t_{j}], i{1,,N}i\in\{1,\ldots,N\}, j{1,,nh}j\in\{1,\ldots,n_{h}\} and l{1,,m1}l\in\{1,\ldots,m_{1}\}. Further, by using Assumptions H–2 and H–3, Remark 2.3, Hölder’s inequality, Lemma 2.4 and h1h\leq 1, one obtains

σu(r,Xri,N,μrX,N)σu(tj1,Xj1i,N,μj1X,N)q(Ω~)qL{Xri,NXj1i,Nq(Ω~)\displaystyle\big{\|}\sigma_{u}(r,X_{r}^{i,N},\mu_{r}^{X,N})-\sigma_{u}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}^{q}\leq L\big{\{}\big{\|}X_{r}^{i,N}-X_{j-1}^{i,N}\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}
+𝒲2(μrX,N,μj1X,N)q(Ω~)+|rtj1|(1+Xj1i,Nq(Ω~)+𝒲2(μj1X,N,δ0)q(Ω~))}\displaystyle\quad+\big{\|}\mathcal{W}_{2}(\mu_{r}^{X,N},\mu_{j-1}^{X,N})\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}+|r-t_{j-1}|\big{(}1+\big{\|}X^{i,N}_{j-1}\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}+\big{\|}\mathcal{W}_{2}(\mu_{j-1}^{X,N},\delta_{0})\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}\big{)}\}
2Lmaxi{1,,N}Xri,NXj1i,Nq(Ω~)+|rtj1|L{1+2C11/p¯(1+maxi{1,,N}X0ip¯(Ω~)p¯)1/p¯}\displaystyle\leq 2L\max_{i\in\{1,\ldots,N\}}\big{\|}X_{r}^{i,N}-X_{j-1}^{i,N}\big{\|}_{\mathscr{L}^{q}(\tilde{\Omega})}+|r-t_{j-1}|L\{1+2C_{1}^{1/\bar{p}}(1+\max_{i\in\{1,\ldots,N\}}\|X_{0}^{i}\|_{{}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}}^{\bar{p}})^{1/\bar{p}}\}
{2L(C11/p¯+C21/p¯)(1+maxi{1,,N}X0ip¯(Ω~)p¯)1/p¯+L}hj1/2,\displaystyle\leq\{2L(C_{1}^{1/\bar{p}}+C_{2}^{1/\bar{p}})(1+\max_{i\in\{1,\ldots,N\}}\|X_{0}^{i}\|_{{}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}}^{\bar{p}})^{1/\bar{p}}+L\}h_{j}^{1/2}, (36)

for all i{1,,N}i\in\{1,\ldots,N\}, j{1,,nh}j\in\{1,\ldots,n_{h}\}, u{0,1}u\in\{0,1\} and r[tj1,tj]r\in[t_{j-1},t_{j}]. On substituting (36) in (35), one obtains

ζ(s)q(Ω~){L+2L¯2+4L2(q(q1)2)1/2+(2(L+2L¯2)C11/p¯+8L2(C11/p¯+C21/p¯)\displaystyle\|\zeta^{\ell}(s)\|_{\mathscr{L}^{q}(\tilde{\Omega})}\leq\Big{\{}L+2\bar{L}^{2}+4L^{2}\Big{(}\frac{q(q-1)}{2}\Big{)}^{1/2}+\Big{(}2(L+2\bar{L}^{2})C_{1}^{1/\bar{p}}+8L^{2}\big{(}C_{1}^{1/\bar{p}}+C_{2}^{1/\bar{p}}\big{)}
×(q(q1)2)1/2+4LC22/p¯)(1+maxi{1,,N}X0ip¯(Ω~)p¯)2/p¯}hj,\displaystyle\times\Big{(}\frac{q(q-1)}{2}\Big{)}^{1/2}+4LC_{2}^{2/\bar{p}}\Big{)}\big{(}1+\max_{i\in\{1,\ldots,N\}}\|X_{0}^{i}\|_{{}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}}^{\bar{p}}\big{)}^{2/\bar{p}}\Big{\}}h_{j},

which, substituting in (34), gives the first estimate. The second estimate can be proved by similar arguments. ∎

Proposition 5.9.

Let Assumptions H–1 with p¯4\bar{p}\geq 4 and set q=p¯/22q=\bar{p}/2\geq 2, H–2 to H–4 hold. Then, the drift-randomised Milstein scheme (13) is consistent of order 1, i.e.,

[Xϱh]𝒢S,qhC10h,\displaystyle\big{\|}\mathcal{R}[X^{\varrho_{h}}]\big{\|}_{\mathscr{G}_{S,q}^{h}}\leq C_{10}h,

where

C10:=2L(1+2q(q1)/2){L+\displaystyle C_{10}:=2L\big{(}1+2\sqrt{{q(q-1)}/{2}}\big{)}\big{\{}L+ 2L(C11/p¯+C21/p¯)\displaystyle 2L(C_{1}^{1/\bar{p}}+C_{2}^{1/\bar{p}})
×(1+maxi{1,,N}X0ip¯(Ω~)p¯)1/p¯}+C11+C12\displaystyle\times\big{(}1+\max_{i\in\{1,\ldots,N\}}\|X_{0}^{i}\|^{\bar{p}}_{{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}}\big{)}^{1/\bar{p}}\big{\}}+C_{11}+C_{12}

and the positive constants C1C_{1}, C2C_{2}, C11C_{11} and C12C_{12} appear in Proposition 2.2, Lemma 2.4, Corollary 5.7 and Lemma 5.8, respectively.

Proof.

Let us recall the residual ji,N[Xϱh]\mathcal{R}_{j}^{i,N}[X^{\varrho_{h}}] from (5.1), the interacting particle system from (2) and Γjh\Gamma^{h}_{j} from (5.1) to write 0i,N[Xϱh]=0\mathcal{R}_{0}^{i,N}[X^{\varrho_{h}}]=0 and

ji,N[Xϱh]\displaystyle\mathcal{R}_{j}^{i,N}[X^{\varrho_{h}}] =Xji,NXj1i,NΓjh(Xj1i,N,μj1X,N,Xj,ηi,N,μj,ηX,N,ηj)\displaystyle=X_{j}^{i,N}-X_{j-1}^{i,N}-\Gamma^{h}_{j}(X_{j-1}^{i,N},\mu_{j-1}^{X,N},X_{j,\eta}^{i,N},\mu_{j,\eta}^{X,N},\eta_{j})
=\displaystyle= tj1tj[b(s,Xsi,N,μsX,N)b(tj1+ηjhj,Xj,ηi,N,μj,ηX,N)]𝑑s\displaystyle\int_{t_{j-1}}^{t_{j}}\big{[}b(s,X_{s}^{i,N},\mu_{s}^{X,N})-b(t_{j-1}+\eta_{j}h_{j},X_{j,\eta}^{i,N},\mu_{j,\eta}^{X,N})\big{]}ds
+=1m1tj1tj[σ1(s,Xsi,N,μsX,N)σ~1(s,tj1,Xj1i,N,μj1X,N)]𝑑Wsi,\displaystyle+\sum_{\ell=1}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\big{[}\sigma_{1}^{\ell}(s,X_{s}^{i,N},\mu_{s}^{X,N})-\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})\big{]}dW^{i,\ell}_{s}
+=1m0tj1tj[σ0(s,Xsi,N,μsX,N)σ~0(s,tj1,Xj1i,N,μj1X,N)]𝑑Ws0,,\displaystyle+\sum_{\ell=1}^{m_{0}}\int_{t_{j-1}}^{t_{j}}\big{[}\sigma_{0}^{\ell}(s,X_{s}^{i,N},\mu_{s}^{X,N})-\tilde{\sigma}_{0}^{\ell}(s,t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})\big{]}dW_{s}^{0,\ell}, (37)

for all i{1,,N}i\in\{1,\ldots,N\} and j{1,,nh}j\in\{1,\ldots,n_{h}\}. For any n¯{1,,nh}\bar{n}\in\{1,\ldots,n_{h}\}, from (27),

Θn¯,ηh[b]=j=1n¯hjb(tj1+ηjhj,Xtj1+ηjhji,N,μtj1+ηjhjX,N),\Theta_{\bar{n},\eta}^{h}\big{[}b\big{]}=\displaystyle\sum_{j=1}^{\bar{n}}h_{j}b(t_{j-1}+\eta_{j}h_{j},X^{i,N}_{t_{j-1}+\eta_{j}h_{j}},\mu_{t_{j-1}+\eta_{j}h_{j}}^{X,N}),

which along with Assumption H–2 yields

j=1n¯\displaystyle\sum_{j=1}^{\bar{n}} tj1tj[b(s,Xsi,N,μsX,N)b(tj1+ηjhj,Xj,ηi,N,μj,ηX,N)]𝑑s\displaystyle\int_{t_{j-1}}^{t_{j}}\big{[}b(s,X_{s}^{i,N},\mu_{s}^{X,N})-b(t_{j-1}+\eta_{j}h_{j},X_{j,\eta}^{i,N},\mu_{j,\eta}^{X,N})\big{]}ds
=\displaystyle= j=1n¯tj1tj[b(s,Xsi,N,μsX,N)b(tj1+ηjhj,Xtj1+ηjhji,N,μtj1+ηjhjX,N)]𝑑s\displaystyle\sum_{j=1}^{\bar{n}}\int_{t_{j-1}}^{t_{j}}\big{[}b(s,X_{s}^{i,N},\mu_{s}^{X,N})-b(t_{j-1}+\eta_{j}h_{j},X^{i,N}_{t_{j-1}+\eta_{j}h_{j}},\mu_{t_{j-1}+\eta_{j}h_{j}}^{X,N})\big{]}ds
+j=1n¯tj1tj[b(tj1+ηjhj,Xtj1+ηjhji,N,μtj1+ηjhjX,N)b(tj1+ηjhj,Xj,ηi,N,μj,ηX,N)]𝑑s\displaystyle+\sum_{j=1}^{\bar{n}}\int_{t_{j-1}}^{t_{j}}\big{[}b(t_{j-1}+\eta_{j}h_{j},X^{i,N}_{t_{j-1}+\eta_{j}h_{j}},\mu_{t_{j-1}+\eta_{j}h_{j}}^{X,N})-b(t_{j-1}+\eta_{j}h_{j},X_{j,\eta}^{i,N},\mu_{j,\eta}^{X,N})\big{]}ds
\displaystyle\leq 0tn¯b(s,Xsi,N,μsX,N)𝑑sΘn¯,ηh[b]\displaystyle\int_{0}^{t_{\bar{n}}}b(s,X_{s}^{i,N},\mu_{s}^{X,N})ds-\Theta_{\bar{n},\eta}^{h}\big{[}b\big{]}
+Lj=1n¯hj[|Xtj1+ηjhji,NXj,ηi,N|+|𝒲2(μtj1+ηjhjX,N,μj,ηX,N)|],\displaystyle+L\sum_{j=1}^{\bar{n}}h_{j}\big{[}\big{|}X^{i,N}_{t_{j-1}+\eta_{j}h_{j}}-X_{j,\eta}^{i,N}\big{|}+\big{|}\mathcal{W}_{2}(\mu_{t_{j-1}+\eta_{j}h_{j}}^{X,N},\mu_{j,\eta}^{X,N})\big{|}\big{]},

and thus from (37) one obtains

\displaystyle\big{\|} maxn¯{1,,nh}|j=1n¯ji,N[Xϱh]|q(Ω)maxn¯{1,,nh}|Θn¯,ηh[b]0tn¯b(s,Xsi,N,μsX,N)𝑑s|q(Ω)\displaystyle\max_{\bar{n}\in\{1,\ldots,n_{h}\}}\big{|}\sum_{j=1}^{\bar{n}}\mathcal{R}^{i,N}_{j}[X^{\varrho_{h}}]\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}\leq\big{\|}\max_{\bar{n}\in\{1,\ldots,n_{h}\}}\big{|}\Theta^{h}_{\bar{n},\eta}[b]-\int_{0}^{t_{\bar{n}}}b(s,X_{s}^{i,N},\mu_{s}^{X,N})ds\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}
+Lj=1nhhj[Xtj1+ηjhji,NXj,ηi,Nq(Ω)+𝒲2(μtj1+ηjhjX,N,μj,ηX,N)q(Ω)]\displaystyle+L\sum_{j=1}^{n_{h}}h_{j}\big{[}\big{\|}X^{i,N}_{t_{j-1}+\eta_{j}h_{j}}-X_{j,\eta}^{i,N}\big{\|}_{\mathscr{L}^{q}(\Omega)}+\big{\|}\mathcal{W}_{2}(\mu_{t_{j-1}+\eta_{j}h_{j}}^{X,N},\mu_{j,\eta}^{X,N})\big{\|}_{\mathscr{L}^{q}(\Omega)}\big{]}
+maxn¯{1,,nh}|j=1n¯=1m1tj1tj[σ1(s,Xsi,N,μsX,N)σ~1(s,tj1,Xj1i,N,μj1X,N)]𝑑Wsi,|q(Ω)\displaystyle+\big{\|}\max_{\bar{n}\in\{1,\ldots,n_{h}\}}\big{|}\sum_{j=1}^{\bar{n}}\sum_{\ell=1}^{m_{1}}\int_{t_{j-1}}^{t_{j}}\big{[}\sigma_{1}^{\ell}(s,X_{s}^{i,N},\mu_{s}^{X,N})-\tilde{\sigma}_{1}^{\ell}(s,t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})\big{]}dW^{i,\ell}_{s}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}
+maxn¯{1,,nh}|j=1n¯=1m0tj1tj[σ0(s,Xsi,N,μsX,N)σ~0(s,tj1,Xj1i,N,μj1X,N)]𝑑Ws0,|q(Ω),\displaystyle+\big{\|}\max_{\bar{n}\in\{1,\ldots,n_{h}\}}\big{|}\sum_{j=1}^{\bar{n}}\sum_{\ell=1}^{m_{0}}\int_{t_{j-1}}^{t_{j}}\big{[}\sigma_{0}^{\ell}(s,X_{s}^{i,N},\mu_{s}^{X,N})-\tilde{\sigma}_{0}^{\ell}(s,t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})\big{]}dW_{s}^{0,\ell}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}, (38)

for all i{1,,N}i\in\{1,\ldots,N\}. Furthermore, Theorem 7.1 in [42] yields

Xtj1+ηjhji,NXj,ηi,Nq(Ω)hj(q1)/q(tj1tjb(s,Xsi,N,μsX,N)b(tj1,Xj1i,N,μj1X,N)q(Ω)q𝑑s)1/q\displaystyle\big{\|}X^{i,N}_{t_{j-1}+\eta_{j}h_{j}}-X_{j,\eta}^{i,N}\big{\|}_{\mathscr{L}^{q}(\Omega)}\leq h_{j}^{(q-1)/q}\Big{(}\int_{t_{j-1}}^{t_{j}}\big{\|}b(s,X_{s}^{i,N},\mu_{s}^{X,N})-b(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})\big{\|}_{\mathscr{L}^{q}(\Omega)}^{q}ds\Big{)}^{1/q}
+(q(q1)2)1/2hj(q2)/2qu=01(tj1tjσu(s,Xsi,N,μsX,N)σu(tj1,Xj1i,N,μj1X,N)q(Ω)q𝑑s)1/q,\displaystyle\quad+\Big{(}\frac{q(q-1)}{2}\Big{)}^{1/2}h_{j}^{(q-2)/2q}\sum_{u=0}^{1}\Big{(}\int_{t_{j-1}}^{t_{j}}\big{\|}\sigma_{u}(s,X_{s}^{i,N},\mu_{s}^{X,N})-\sigma_{u}(t_{j-1},X_{j-1}^{i,N},\mu_{j-1}^{X,N})\big{\|}_{\mathscr{L}^{q}(\Omega)}^{q}ds\Big{)}^{1/q},

which on using Equations (33) and (36),

Xtj1+ηjhji,NXj,ηi,Nq(Ω)\displaystyle\big{\|}X^{i,N}_{t_{j-1}+\eta_{j}h_{j}}-X_{j,\eta}^{i,N}\big{\|}_{\mathscr{L}^{q}(\Omega)}\leq (1+2(q(q1)2)1/2){L+2L(C11/p¯+C21/p¯)\displaystyle\Big{(}1+2\Big{(}\frac{q(q-1)}{2}\Big{)}^{1/2}\Big{)}\Big{\{}L+2L(C_{1}^{1/\bar{p}}+C_{2}^{1/\bar{p}})
×(1+maxi{1,,N}X0ip¯(Ω~)p¯)1/p¯}hj,\displaystyle\times\big{(}1+\max_{i\in\{1,\ldots,N\}}\|X_{0}^{i}\|^{\bar{p}}_{{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}}\big{)}^{1/\bar{p}}\Big{\}}h_{j}, (39)

for all i{1,,N}i\in\{1,\ldots,N\} and j{1,,nh}j\in\{1,\ldots,n_{h}\}. Also,

𝒲2(μtj1+ηjhjX,N,μj,ηX,N)q(Ω)maxi{1,,N}Xtj1+ηjhji,NXj,ηi,Nq(Ω),\displaystyle\big{\|}\mathcal{W}_{2}(\mu_{t_{j-1}+\eta_{j}h_{j}}^{X,N},\mu_{j,\eta}^{X,N})\big{\|}_{\mathscr{L}^{q}(\Omega)}\leq\max_{i\in\{1,\ldots,N\}}\big{\|}X^{i,N}_{t_{j-1}+\eta_{j}h_{j}}-X_{j,\eta}^{i,N}\big{\|}_{\mathscr{L}^{q}(\Omega)}, (40)

for all j{1,,nh}j\in\{1,\ldots,n_{h}\}. The proof is completed by substituting (5.3) and (40) in (5.3) and using Corollary 5.7 and Lemma 5.8. ∎

5.4 Rate of Convergence of the Scheme

After proving bistability and consistency of the scheme (13), the main result, Theorem 3.3, follows immediately.

Proof of Theorem 3.3.

Set YhY^{h} in Proposition 5.5 as Yh=Xϱh={Xji,N}j{0,,nh}𝒢qhY^{h}=X^{\varrho_{h}}=\{X^{i,N}_{j}\}_{j\in\{0,\ldots,n_{h}\}}\in{\mathscr{G}_{q}^{h}} (as introduced in Section 5.3) to obtain,

XϱhXh𝒢qh\displaystyle\|X^{\varrho_{h}}-X^{h}\|_{\mathscr{G}_{q}^{h}} =maxi{1,,N}maxj{0,1,,nh}|Xji,NXji,N,h|q(Ω)C7[Xϱh]𝒢S,qh,\displaystyle=\max_{i\in\{1,\ldots,N\}}\big{\|}\max_{j\in\{0,1,\ldots,n_{h}\}}\big{|}X_{j}^{i,N}-X_{j}^{i,N,h}\big{|}\big{\|}_{\mathscr{L}^{q}(\Omega)}\leq C_{7}\big{\|}\mathcal{R}[X^{\varrho_{h}}]\big{\|}_{\mathscr{G}_{S,q}^{h}},

which on using Proposition 5.9 completes the proof. ∎

Appendix A Auxiliary results

The following lemma is the discrete Burkholder–Davis–Gundy inequality, see [11].

Lemma A.1 (Discrete Burkholder–Davis–Gundy Inequality).

Let {Mn}n¯\{M_{n}\}_{n\in\bar{\mathbb{N}}} be a discrete-time martingale on a probability space (Ω,,)(\Omega,\mathscr{F},\mathbb{P}) with respect to the filtration {n}n¯\{\mathscr{F}_{n}\}_{n\in\bar{\mathbb{N}}}. Then, there exist constants C¯p,C¯p>0\underline{C}_{p},\bar{C}_{p}>0 such that,

C¯p[M]n1/2p(Ω)maxj{0,1,,n}|Mj|p(Ω)C¯p[M]n1/2p(Ω),\displaystyle\underline{C}_{p}\|[M]_{n}^{1/2}\|_{\mathscr{L}^{p}(\Omega)}\leq\|\max_{j\in\{0,1,\cdots,n\}}|M_{j}|\|_{\mathscr{L}^{p}(\Omega)}\leq\bar{C}_{p}\|[M]_{n}^{1/2}\|_{\mathscr{L}^{p}(\Omega)},

for any p1p\geq 1 where {[M]n}n¯\{[M]_{n}\}_{n\in\bar{\mathbb{N}}} is the quadratic variation process of {Mn}n¯\{M_{n}\}_{n\in\bar{\mathbb{N}}}.

The discrete version of the Grönwall’s inequality is given below, see Proposition 4.1 in  [26].

Lemma A.2 (Discrete Grönwall’s Inequality).

Let {yn}n\{y_{n}\}_{n\in\mathbb{N}} and {zn}n\{z_{n}\}_{n\in\mathbb{N}} be sequences of non-negative real numbers satisfying yna+j=1n1zjyjy_{n}\leq a+\displaystyle\sum_{j=1}^{n-1}z_{j}y_{j} for all nn\in\mathbb{N} where a>0a>0 is a constant. Then, ynaexp(j=1n1zj)y_{n}\leq a\exp\big{(}\displaystyle\sum_{j=1}^{n-1}z_{j}\big{)} for all nn\in\mathbb{N}.

A.1 Proof of Proposition 2.2

Let t[0,T]t^{\prime}\in[0,T]. Using (2) and Hölder’s inequality, we get

supt[0,t]|Xt|p¯\displaystyle\sup_{t\in[0,t^{\prime}]}|X_{t}|^{\bar{p}} 4p¯1{|X0|p¯+Tp¯10t|b(s,Xs,1(Xs))|p¯ds\displaystyle\leq 4^{\bar{p}-1}\Big{\{}|X_{0}|^{\bar{p}}+T^{\bar{p}-1}\int_{0}^{t^{\prime}}|b(s,X_{s},\mathcal{L}^{1}(X_{s}))|^{\bar{p}}ds
+supt[0,t]|0tσ1(s,Xs,1(Xs))dWs|p¯+supt[0,t]|0tσ0(s,Xs,1(Xs))dWs0|p¯},\displaystyle+\sup_{t\in[0,t^{\prime}]}\big{|}\int_{0}^{t}\sigma_{1}(s,X_{s},\mathcal{L}^{1}(X_{s}))dW_{s}\big{|}^{\bar{p}}+\sup_{t\in[0,t^{\prime}]}\big{|}\int_{0}^{t}\sigma_{0}(s,X_{s},\mathcal{L}^{1}(X_{s}))dW_{s}^{0}\big{|}^{\bar{p}}\Big{\}},

which on using Burkholder–Gundy–Davis inequality (Theorem 7.2 in [42]) and Remark 2.1 yields

supt[0,t]|Xt|p¯(Ω~)p¯4p¯1{X0p¯(Ω~)p¯+Tp¯10tb(s,Xs,1(Xs))p¯(Ω~)p¯ds\displaystyle\big{\|}\sup_{t\in[0,t^{\prime}]}|X_{t}|\big{\|}^{\bar{p}}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}\leq 4^{\bar{p}-1}\Big{\{}\big{\|}X_{0}\big{\|}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}+T^{\bar{p}-1}\int_{0}^{t^{\prime}}\big{\|}b(s,X_{s},\mathcal{L}^{1}(X_{s}))\big{\|}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}ds
+(p¯32(p¯1))p¯/2T(p¯2)/2u=010tσu(s,Xs,1(Xs))p¯(Ω~)p¯ds}\displaystyle\quad+\Big{(}\frac{\bar{p}^{3}}{2(\bar{p}-1)}\Big{)}^{\bar{p}/2}T^{(\bar{p}-2)/2}\sum_{u=0}^{1}\int_{0}^{t^{\prime}}\big{\|}\sigma_{u}(s,X_{s},\mathcal{L}^{1}(X_{s}))\big{\|}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}ds\Big{\}}
4p¯1X0p¯(Ω~)p¯+4p¯13p¯1L¯p¯(T ̉p¯1+2(p¯32(p¯1))p¯/2T(p¯2)/2)\displaystyle\leq 4^{\bar{p}-1}\big{\|}X_{0}\big{\|}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}+4^{\bar{p}-1}3^{\bar{p}-1}\bar{L}^{\bar{p}}\Big{(}T^{%̄ ̉\bar{p}-1}+2\Big{(}\frac{\bar{p}^{3}}{2(\bar{p}-1)}\Big{)}^{\bar{p}/2}T^{(\bar{p}-2)/2}\Big{)}
×0t{1+Xsp¯(Ω~)p¯+𝒲2(1(Xs),δ0)p¯(Ω~)p¯}ds\displaystyle\qquad\times\int_{0}^{t^{\prime}}\big{\{}1+\big{\|}X_{s}\big{\|}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}+\big{\|}\mathcal{W}_{2}(\mathcal{L}^{1}(X_{s}),\delta_{0})\big{\|}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}\big{\}}ds
4p¯1X0p¯(Ω~)p¯+12p¯1L¯p¯(Tp¯+2(p¯32(p¯1))p¯/2Tp¯/2)\displaystyle\leq 4^{\bar{p}-1}\big{\|}X_{0}\big{\|}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}+12^{\bar{p}-1}\bar{L}^{\bar{p}}\Big{(}T^{\bar{p}}+2\Big{(}\frac{\bar{p}^{3}}{2(\bar{p}-1)}\Big{)}^{\bar{p}/2}T^{\bar{p}/2}\Big{)}
+12p¯1L¯p¯(T ̉p¯1+2(p¯32(p¯1))p¯/2T(p¯2)/2)20tsupr[0,s]|Xr|p¯(Ω~)p¯𝑑s\displaystyle\qquad+12^{\bar{p}-1}\bar{L}^{\bar{p}}\Big{(}T^{%̄ ̉\bar{p}-1}+2\Big{(}\frac{\bar{p}^{3}}{2(\bar{p}-1)}\Big{)}^{\bar{p}/2}T^{(\bar{p}-2)/2}\Big{)}2\int_{0}^{t^{\prime}}\big{\|}\sup_{r\in[0,s]}|X_{r}|\big{\|}^{\bar{p}}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}ds

for all t[0,T]t^{\prime}\in[0,T]. Then, Grönwall’s inequality gives

supt[0,T]|Xt|p¯(Ω~)p¯\displaystyle\big{\|}\sup_{t\in[0,T]}|X_{t}|\big{\|}^{\bar{p}}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}\leq (4p¯1X0p¯(Ω~)p¯+12p¯1L¯p¯(Tp¯+2(p¯32(p¯1))p¯/2Tp¯/2))\displaystyle\Big{(}4^{\bar{p}-1}\big{\|}X_{0}\big{\|}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}+12^{\bar{p}-1}\bar{L}^{\bar{p}}\Big{(}T^{\bar{p}}%̄+2\Big{(}\frac{\bar{p}^{3}}{2(\bar{p}-1)}\Big{)}^{\bar{p}/2}T^{\bar{p}/2}\Big{)}\Big{)}
×exp(12p¯1L¯p¯(T%̄̉p¯+2(p¯32(p¯1))p¯/2Tp¯/2)2),\displaystyle\times\exp\Big{(}12^{\bar{p}-1}\bar{L}^{\bar{p}}\Big{(}T^{%̄̉\bar{p}}+2\Big{(}\frac{\bar{p}^{3}}{2(\bar{p}-1)}\Big{)}^{\bar{p}/2}T^{\bar{p}/2}\Big{)}2\Big{)},

which completes the proof. \square

A.2 Proof of Lemma 2.4

Recall Equation (2) and use Theorem 7.1 in [42] along with Remark 2.1 to get the following,

Xti,NXti,Np¯(Ω~)p¯3p¯1(tt)p¯1ttb(s,Xsi,N,μsX,N)p¯(Ω~)p¯𝑑s\displaystyle\big{\|}X_{t}^{i,N}-X_{t^{\prime}}^{i,N}\big{\|}^{\bar{p}}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}\leq 3^{\bar{p}-1}(t-t^{\prime})^{\bar{p}-1}\int_{t^{\prime}}^{t}\big{\|}b(s,X_{s}^{i,N},\mu_{s}^{X,N})\big{\|}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}ds
+3p¯1(p¯(p¯1)2)p¯/2(tt)(p¯2)/2u=01ttσu(s,Xsi,N,μsX,N)p¯(Ω~)p¯𝑑s\displaystyle+3^{\bar{p}-1}\Big{(}\frac{\bar{p}(\bar{p}-1)}{2}\Big{)}^{\bar{p}/2}(t-t^{\prime})^{(\bar{p}-2)/2}\sum_{u=0}^{1}\int_{t^{\prime}}^{t}\big{\|}\sigma_{u}(s,X_{s}^{i,N},\mu_{s}^{X,N})\big{\|}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}ds
\displaystyle\leq 9p¯1Lp¯((tt)p¯1+2(p¯(p¯1)2)p¯/2(tt)(p¯2)/2)\displaystyle 9^{\bar{p}-1}L^{\bar{p}}\Big{(}(t-t^{\prime})^{\bar{p}-1}+2\Big{(}\frac{\bar{p}(\bar{p}-1)}{2}\Big{)}^{\bar{p}/2}(t-t^{\prime})^{(\bar{p}-2)/2}\Big{)}
×tt(1+Xsi,Np¯(Ω~)p¯+𝒲2(μsX,N,δ0)p¯(Ω~)p¯)ds,\displaystyle\qquad\times\int_{t^{\prime}}^{t}\big{(}1+\big{\|}X_{s}^{i,N}\big{\|}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}+\big{\|}\mathcal{W}_{2}(\mu_{s}^{X,N},\delta_{0})\big{\|}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}\big{)}ds,

for all t>t[0,T]t>t^{\prime}\in[0,T] and i{1,,N}i\in\{1,\ldots,N\}, which due to Remark 2.3 yields,

\displaystyle\big{\|} Xti,NXti,Np¯(Ω~)p¯9p¯1Lp¯((tt)p¯1+2(p¯(p¯1)2)p¯/2(tt)(p¯2)/2)\displaystyle X_{t}^{i,N}-X_{t^{\prime}}^{i,N}\big{\|}^{\bar{p}}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}\leq 9^{\bar{p}-1}L^{\bar{p}}\Big{(}(t-t^{\prime})^{\bar{p}-1}+2\Big{(}\frac{\bar{p}(\bar{p}-1)}{2}\Big{)}^{\bar{p}/2}(t-t^{\prime})^{(\bar{p}-2)/2}\Big{)}
×tt{1+2maxi{1,,N}Xsi,Np¯(Ω~)p¯}ds\displaystyle\times\int_{t^{\prime}}^{t}\big{\{}1+2\max_{i\in\{1,\ldots,N\}}\big{\|}X_{s}^{i,N}\big{\|}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}\big{\}}ds
\displaystyle\leq 9p¯1Lp¯((tt)p¯/2+2(p¯(p¯1)2)p¯/2)(tt)p¯/2(1+2C1(1+maxi{1,,N}X0i,Np¯(Ω~)p¯))\displaystyle 9^{\bar{p}-1}L^{\bar{p}}\Big{(}(t-t^{\prime})^{\bar{p}/2}+2\Big{(}\frac{\bar{p}(\bar{p}-1)}{2}\Big{)}^{\bar{p}/2}\Big{)}(t-t^{\prime})^{\bar{p}/2}\Big{(}1+2C_{1}\Big{(}1+\max_{i\in\{1,\ldots,N\}}\big{\|}X_{0}^{i,N}\big{\|}_{\mathscr{L}^{\bar{p}}(\tilde{\Omega})}^{\bar{p}}\Big{)}\Big{)}

and thus the proof is completed. \square

A.3 Proof of Proposition 2.5

By using (2) and (2) along with Hölder’s inequality, one obtains

supt[0,T]\displaystyle\sup_{t\in[0,T]} |XtiXti,N|23{T0T|b(s,Xsi,1(Xs1))b(s,Xsi,N,μsX,N)|2ds\displaystyle|X_{t}^{i}-X_{t}^{i,N}|^{2}\leq 3\Big{\{}T\int_{0}^{T}|b(s,X_{s}^{i},\mathcal{L}^{1}(X_{s}^{1}))-b(s,X_{s}^{i,N},\mu_{s}^{X,N})|^{2}ds
+supt[0,T]|0t(σ1(s,Xsi,1(Xs1))σ1(s,Xsi,N,μsX,N))𝑑Ws|2\displaystyle+\sup_{t\in[0,T]}\big{|}\int_{0}^{t}\big{(}\sigma_{1}(s,X_{s}^{i},\mathcal{L}^{1}(X_{s}^{1}))-\sigma_{1}(s,X_{s}^{i,N},\mu_{s}^{X,N})\big{)}dW_{s}\big{|}^{2}
+supt[0,T]|0t(σ0(s,Xsi,1(Xs))σ0(s,Xsi,N,μsX,N))dWs0|2},\displaystyle+\sup_{t\in[0,T]}\big{|}\int_{0}^{t}\big{(}\sigma_{0}(s,X_{s}^{i},\mathcal{L}^{1}(X_{s}))-\sigma_{0}(s,X_{s}^{i,N},\mu_{s}^{X,N})\big{)}dW_{s}^{0}\big{|}^{2}\Big{\}},

which on using the martingale inequality (Theorem 7.2 in [42]) and Assumption H–2 yields

\displaystyle\big{\|} supt[0,t]|XtiXti,N|2(Ω~)23T0tb(s,Xsi,1(Xs1))b(s,Xsi,N,μsX,N)2(Ω~)2𝑑s\displaystyle\sup_{t\in[0,t^{\prime}]}|X_{t}^{i}-X_{t}^{i,N}|\big{\|}_{\mathscr{L}^{2}(\tilde{\Omega})}^{2}\leq 3T\int_{0}^{t^{\prime}}\big{\|}b(s,X_{s}^{i},\mathcal{L}^{1}(X_{s}^{1}))-b(s,X_{s}^{i,N},\mu_{s}^{X,N})\big{\|}_{\mathscr{L}^{2}(\tilde{\Omega})}^{2}ds
+12u=010tσu(s,Xsi,1(Xs1))σu(s,Xsi,N,μsX,N)2(Ω~)2𝑑s\displaystyle\quad+12\sum_{u=0}^{1}\int_{0}^{t^{\prime}}\big{\|}\sigma_{u}(s,X_{s}^{i},\mathcal{L}^{1}(X_{s}^{1}))-\sigma_{u}(s,X_{s}^{i,N},\mu_{s}^{X,N})\big{\|}_{\mathscr{L}^{2}(\tilde{\Omega})}^{2}ds
2(3T+24)L20t{XsiXsi,N2(Ω~)2+𝒲2(1(Xs1),μsX,N2(Ω~)2}ds\displaystyle\leq 2(3T+24)L^{2}\int_{0}^{t^{\prime}}\big{\{}\big{\|}X_{s}^{i}-X_{s}^{i,N}\big{\|}_{\mathscr{L}^{2}(\tilde{\Omega})}^{2}+\big{\|}\mathcal{W}_{2}(\mathcal{L}^{1}(X_{s}^{1}),\mu_{s}^{X,N}\big{\|}_{\mathscr{L}^{2}(\tilde{\Omega})}^{2}\big{\}}ds
2(3T+24)L20t{XsiXsi,N2(Ω~)2+2𝒲2(1(Xs1),μsX2(Ω~)2+2𝒲2(μsX,μsX,N2(Ω~)2}ds\displaystyle\leq 2(3T+24)L^{2}\int_{0}^{t^{\prime}}\big{\{}\big{\|}X_{s}^{i}-X_{s}^{i,N}\big{\|}_{\mathscr{L}^{2}(\tilde{\Omega})}^{2}+2\big{\|}\mathcal{W}_{2}(\mathcal{L}^{1}(X_{s}^{1}),\mu_{s}^{X}\big{\|}_{\mathscr{L}^{2}(\tilde{\Omega})}^{2}+2\big{\|}\mathcal{W}_{2}(\mathcal{\mu}_{s}^{X},\mu_{s}^{X,N}\big{\|}_{\mathscr{L}^{2}(\tilde{\Omega})}^{2}\big{\}}ds
2(3T+24)L20t{3maxi{1,,N}XsiXsi,N2(Ω~)2+2𝒲2(1(Xs1),μsX2(Ω~)2}ds\displaystyle\leq 2(3T+24)L^{2}\int_{0}^{t^{\prime}}\big{\{}3\max_{i\in\{1,\ldots,N\}}\big{\|}X_{s}^{i}-X_{s}^{i,N}\big{\|}_{\mathscr{L}^{2}(\tilde{\Omega})}^{2}+2\big{\|}\mathcal{W}_{2}(\mathcal{L}^{1}(X_{s}^{1}),\mu_{s}^{X}\big{\|}_{\mathscr{L}^{2}(\tilde{\Omega})}^{2}\big{\}}ds

for any t[0,T]t^{\prime}\in[0,T] and NN\in\mathbb{N}. An application of Grönwall’s inequality yields

maxi{1,,N}supt[0,T]|XtiXti,N|2(Ω~)24(3T+24)L2e6(3T+24)TL20T𝒲2(1(Xs1),μsX2(Ω~)2ds,\displaystyle\max_{i\in\{1,\ldots,N\}}\big{\|}\sup_{t\in[0,T]}|X_{t}^{i}-X_{t}^{i,N}|\big{\|}_{\mathscr{L}^{2}(\tilde{\Omega})}^{2}\leq 4(3T+24)L^{2}e^{6(3T+24)TL^{2}}\int_{0}^{T}\big{\|}\mathcal{W}_{2}(\mathcal{L}^{1}(X_{s}^{1}),\mu_{s}^{X}\big{\|}_{\mathscr{L}^{2}(\tilde{\Omega})}^{2}ds,

for any NN\in\mathbb{N}. The proof is completed by using (7). \square

A.4 Lions Derivative and Particle Projection Function Inequalities

Given a function f:𝒫2(d)f:\mathscr{P}_{2}(\mathbb{R}^{d})\to\mathbb{R} and ν0𝒫2(d)\nu_{0}\in\mathscr{P}_{2}(\mathbb{R}^{d}), we say that ff is Lions differentiable at ν0\nu_{0} if we can find an atomless, Polish probability space (Ω~,~,P~)(\tilde{\Omega},\tilde{\mathcal{F}},\tilde{P}) and a random variable Y02(Ω~)Y_{0}\in\mathscr{L}^{2}(\tilde{\Omega}) with law 1(Y0):=P~Y01=ν0\mathcal{L}^{1}({Y_{0}}):=\tilde{P}\circ Y_{0}^{-1}=\nu_{0} such that the “lift” function F:2(Ω~)F:\mathscr{L}^{2}(\tilde{\Omega})\to\mathbb{R} defined by F(Z):=f(1(Z))F(Z):=f(\mathcal{L}^{1}(Z)) has Fréchet derivative F[Y0]F^{\prime}[Y_{0}] at Y02(Ω~)Y_{0}\in\mathscr{L}^{2}(\tilde{\Omega}). By Riesz representation theorem, we can find DF(Y0)2(Ω~)DF(Y_{0})\in\mathscr{L}^{2}(\tilde{\Omega}) such that F[Y0](Z)=E~DF[Y0],ZF^{\prime}[Y_{0}](Z)=\tilde{E}\langle DF[Y_{0}],Z\rangle for all Z2(Ω~;d)Z\in\mathscr{L}^{2}(\tilde{\Omega};\mathbb{R}^{d}). Further, Theorem 6.5 (structure of the gradient) in [12] guarantees the existence of a function μf(ν0):dd\partial_{\mu}f(\nu_{0}):\mathbb{R}^{d}\to\mathbb{R}^{d}, independent of the choice of the probability space (Ω~,~,P~)(\tilde{\Omega},\tilde{\mathcal{F}},\tilde{P}) and the random variable Y0Y_{0}, satisfying d|μf(ν0)(x)|2ν0(dx)<\displaystyle\int_{\mathbb{R}^{d}}|\partial_{\mu}f(\nu_{0})(x)|^{2}\nu_{0}(dx)<\infty such that DF(Y0)=μf(ν0)(Y0)DF(Y_{0})=\partial_{\mu}f(\nu_{0})(Y_{0}). Then, we call μf(ν0)\partial_{\mu}f(\nu_{0}) as Lions’ derivative of ff at ν0=1(Y0)\nu_{0}=\mathcal{L}^{1}({Y_{0}}).

By using similar arguments used in Lemma 4.2 in [36], one can prove the following lemma.

Lemma A.3.

Let gg be a real valued function defined on [0,T]×d×𝒫2(d)[0,T]\times\mathbb{R}^{d}\times\mathscr{P}_{2}(\mathbb{R}^{d}) such that derivative with respect to the state variable xg(,,)\partial_{x}g(\cdot,\cdot,\cdot) and with respect to the measure variable μg(,,,)\partial_{\mu}g(\cdot,\cdot,\cdot,\cdot) satisfy Lipschitz condition uniformly in time, i.e., there exists a constant L>0L>0 such that,

|xg(t,x,μ)xg(t,x¯,μ¯)|\displaystyle|\partial_{x}g(t,x,\mu)-\partial_{x}g(t,\bar{x},\bar{\mu})| L{|xx¯|+𝒲2(μ,μ¯)},\displaystyle\leq L\{|x-\bar{x}|+\mathcal{W}_{2}(\mu,\bar{\mu})\},
|μg(t,x,μ,y)μg(t,x¯,μ¯,y¯)|\displaystyle|\partial_{\mu}g(t,x,\mu,y)-\partial_{\mu}g(t,\bar{x},\bar{\mu},\bar{y})| L{|xx¯|+𝒲2(μ,μ¯)+|yy¯|},\displaystyle\leq L\{|x-\bar{x}|+\mathcal{W}_{2}(\mu,\bar{\mu})+|y-\bar{y}|\},

for all t[0,T]t\in[0,T], x,x¯,y,y¯dx,\bar{x},y,\bar{y}\in\mathbb{R}^{d} and μ,μ¯𝒫2(d)\mu,\bar{\mu}\in\mathscr{P}_{2}(\mathbb{R}^{d}). Then, for all t[0,T]t\in[0,T], xix^{i}, x¯id\bar{x}^{i}\in\mathbb{R}^{d} and i{1,,N}i\in\{1,\ldots,N\}, the following holds,

|g(t,xi,1Nk=1Nδxk)g(t,x¯i,1Nk=1Nδx¯k)xg(t,x¯i,1Nk=1Nδx¯k)(xix¯i)\displaystyle\big{|}g\big{(}t,x^{i},\frac{1}{N}\sum_{k=1}^{N}\delta_{x^{k}}\big{)}-g\big{(}t,\bar{x}^{i},\frac{1}{N}\sum_{k=1}^{N}\delta_{\bar{x}^{k}}\big{)}-\partial_{x}g\big{(}t,\bar{x}^{i},\frac{1}{N}\sum_{k=1}^{N}\delta_{\bar{x}^{k}}\big{)}(x^{i}-\bar{x}^{i})
1Nk=1Nμg(t,x¯i,1Nk=1Nδx¯k,x¯k)(xkx¯k)|3L2|xix¯i|2+5L21Nk=1N|xkx¯k|2.\displaystyle-\frac{1}{N}\sum_{k=1}^{N}\partial_{\mu}g\big{(}t,\bar{x}^{i},\frac{1}{N}\sum_{k=1}^{N}\delta_{\bar{x}^{k}},\bar{x}^{k}\big{)}(x^{k}-\bar{x}^{k})\big{|}\leq\frac{3L}{2}|x^{i}-\bar{x}^{i}|^{2}+\frac{5L}{2}\frac{1}{N}\sum_{k=1}^{N}|x^{k}-\bar{x}^{k}|^{2}.
{acks}

[Acknowledgments] The authors would like to thank the anonymous referees whose comments improved the quality of this paper.

{funding}

G. dos Reis acknowledges support from the Fundação para a Cie^\hat{e}ncia e a Tecnologia (Portuguese Foundation for Science and Technology) through the project UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications).

References

  • [1] Adams, D., Dos Reis, G., Ravaille, R., Salkeld, W. and Tugaut, J. (2022). Large Deviations and Exit-times for reflected McKean–Vlasov equations with self-stabilising terms and superlinear drifts. Stochastic Process. Appl. 146 264–310.
  • [2] Baladron, J., Fasoli, D., Faugeras, O. and Touboul, J. (2012). Mean-field description and propagation of chaos in networks of Hodgkin–Huxley and FitzHugh–Nagumo neurons. J. Math. Neurosci. 2(10)
  • [3] Bao, J., and Huang, X. (2022). Approximations of McKean–Vlasov stochastic differential equations with irregular coefficients. J. Theoret. Probab. 35 1187–1215.
  • [4] Bao, J., Reisinger, C., Ren, P., and Stockinger, W. (2021). First order convergence of Milstein schemes for McKean–Vlasov equations and interacting particle systems. Proc. R. Soc. A. 477(2245).
  • [5] Bao, J., Reisinger, C., Ren, P., and Stockinger, W. (2021). Milstein schemes and antithetic multi-level Monte Carlo sampling for delay McKean–Vlasov equations and interacting particle systems. arXiv preprint arXiv:2005.01165.
  • [6] Bauer, M., Meyer–Brandis, T. and Proske, F. (2018). Strong solutions of mean-field stochastic differential equations with irregular drift. Electron. J. Probab. 23(132) 1–35.
  • [7] Beyn, W.-J. and Kruse, R. (2010). Two-sided error estimates for the stochastic theta method. Discrete Contin. Dyn. Syst. Ser. B 14 389–407.
  • [8] Bolley, F., Cañizo, J.A. and Carrillo, J.A. (2011). Stochastic mean-field limit: non-Lipschitz forces and swarming. Math. Models Methods Appl. Sci. 21(11), 2179–2210.
  • [9] Bossy, M., Faugeras, O. and Talay, D. (2015). Clarification and complement to “mean-field description and propagation of chaos in networks of Hodgkin–Huxley and FitzHugh–Nagumo neurons”. J. Math. Neurosci. 5(19).
  • [10] Bossy, M. and Talay, D. (1997). A stochastic particle method for the McKean–Vlasov and the Burgers equation. Math. Comput. 66(217) 157–192.
  • [11] Burkholder, D. L. (1966). Martingale transforms. Ann. Math. Statist. 37 1494–1504.
  • [12] Cardaliaguet, P. (2013). Notes on Mean-field games, notes from P. L. Lions lectures at Collège de France, https://www.ceremade.dauphine.fr/cardalia/MFG100629.pdf.
  • [13] Carmona, R. and Delarue, F. (2018). Probabilistic theory of mean Field games with applications I: Mean Field FBSDEs, Control, and Games, Springer International Publishing, Switzerland.
  • [14] Carmona, R. and Delarue, F. (2018). Probabilistic theory of mean field games with applications II: Mean Field games with common noise and master equations, Control, and Games, Springer International Publishing, Switzerland.
  • [15] Carrillo, J. A., Choi, Y. P. and Tse, O. (2019). Convergence to equilibrium in Wasserstein distance for damped Euler equations with interaction forces. Comm. Math. Phys. 365(1) 329–361.
  • [16] Carrillo, J. A., Fornasier, M., Toscani, G. and Vecil, F. (2010). Particle, kinetic, and hydrodynamic models of swarming, In Mathematical modeling of collective behavior in socio-economic and life sciences, (pp. 297–336). Birkhäuser Boston.
  • [17] Chaudru de Raynal, P.-E. (2020). Strong well-posedness of McKean–Vlasov stochastic differential equation with Hölder drift. Stochastic Process. Appl. 130(1) 79–107.
  • [18] Chen, X. and dos Reis, G. (2022). A flexible split-step scheme for solving McKean–Vlasov stochastic differential equations, Appl. Math. Comput. 427, 127180.
  • [19] Chen, X. and dos Reis, G. (2023). Euler simulation of interacting particle systems and McKean–Vlasov SDEs with fully super-linear growth drifts in space and interaction, IMA Journal of Numerical Analysis, drad022, https://doi.org/10.1093/imanum/drad022
  • [20] Chen, X., dos Reis, G., and Stockinger, W. (2023). Wellposedness, exponential ergodicity and numerical approximation of fully super-linear McKean–Vlasov SDEs and associated particle systems. arXiv preprint arXiv:2302.05133.
  • [21] Coghi, M. and Nilssen, T. (2021). Rough nonlocal diffusions. Stochastic Process. Appl. 141 1–56.
  • [22] Coghi, M. and Gess, B. (2019). Stochastic nonlinear Fokker–Planck equations. Nonlinear Anal. 187 259–278.
  • [23] Delarue, F., Lacker, D. and Ramanan, K. (2019). From the master equation to mean field game limit theory: a central limit theorem. Electron. J. Probab. 24, 1-54.
  • [24] Dos Reis, G., Engelhardt, S. and Smith G. (2022). Simulation of McKean–Vlasov SDEs with super-linear growth. IMA J. Numer. Anal. 42(1) 874–922.
  • [25] Dreyer, W., Gaberšček, M., Guhlke, C., Huth, R. and Jamnik, J. (2011). Phase transition in a rechargeable lithium battery. Eur. J. Appl. Math. 22(3) 267–290.
  • [26] Emmrich, E. (1999). Discrete versions of Grönwall’s lemma and their application to the numerical analysis of parabolic problems. TU Berlin, FB Mathematik, Preprint.
  • [27] Goddard, B. D., Pavliotis, G. A. and Kalliadasis, S. (2012). The overdamped limit of dynamic density functional theory: rigorous results. Multiscale Modeling & Simulation 10(2) 633-663.
  • [28] Guhlke, C., Gajewski, P., Maurelli, M., Friz, P.K. and Dreyer, W. (2018). Stochastic many-particle model for LFP electrodes. Contin. Mech. Thermodyn. 30(3) 593–628.
  • [29] Gyöngy, I. and Krylov, N. V. (2007). On stochastic equations with respect to semimartingales I. Stochastics 4(1) 1–21.
  • [30] Harang, F. and Mayorcas, A. (2023). Pathwise regularisation of singular interacting particle systems and their mean field limits. Stochastic Process. Appl. 159 499–540.
  • [31] Holm, D. D. and Putkaradze, V. (2006). Formation of clumps and patches in self-aggregation of finite-size particles. Physica D: Nonlinear Phenomena, 220(2), 183–196.
  • [32] Jin, S., Li, L. and Liu, J. G. (2020). Random batch methods (RBM) for interacting particle systems. J. Comput. Phys., 400, 108877.
  • [33] Kolokolnikov, T., Carrillo, J. A., Bertozzi, A., Fetecau, R. and Lewis, M. (2013). Emergent behaviour in multi-particle systems with non-local interactions. Phys. D (260) 1–4.
  • [34] Kruse, R. (2012). Characterization of bistability for stochastic multistep methods. BIT 52 109–140.
  • [35] Kruse, R. and Wu, Y. (2019). A randomised Milstein method for stochastic differential equations with non-differentiable drift coefficients. Discrete Contin. Dyn. Syst. Ser. B 24(8) 3475–3502.
  • [36] Kumar, C. and Neelima (2021). On Explicit Milstein-type Scheme for McKean–Vlasov stochastic differential equations with superlinear drift coefficient. Electron. J. Probab. 26(111) 1–32.
  • [37] Kumar, C., Neelima, Reisinger, C. and Stockinger, W. (2022). Well-posedness and tamed schemes for McKean–Vlasov equations with common noise. Ann. Appl. Probab. 32(5) 3283–3330.
  • [38] Kurtz, T. G. and Xiong, J. (1999). Particle representations for a class of nonlinear SPDEs. Stochastic Process. Appl. 83(1) 103–126.
  • [39] Lacker, D. (2023). Hierarchies, entropy, and quantitative propagation of chaos for mean field diffusions. Probability and Mathematical Physics, 4(2), 377-432.
  • [40] Lacker, D. and Le Flem, L. (2023). Sharp uniform-in-time propagation of chaos. Probability Theory and Related Fields, 1-38
  • [41] Li, Y., Mao, X., Song, Q., W, F., and Yin, G. (2023). Strong convergence of Euler–Maruyama schemes for McKean–Vlasov stochastic differential equations under local Lipschitz conditions of state variables. IMA J. Numer. Anal. 43(2) 1001–1035.
  • [42] Mao, X. (2008). Stochastic differential equations and applications, 2nd edition, Horwood Publishing Limited, Chichester.
  • [43] McKean Jr., H.P. (1966). A class of Markov processes associated with nonlinear parabolic equations. Proc. Nat. Acad. Sci. U.S.A. 56 1907–1911.
  • [44] Mehri, S., Scheutzow, M., Stannat, W. and Zangeneh, B. Z. (2020). Propagation of chaos for stochastic spatially structured neuronal networks with delay driven by jump diffusions. Ann. Appl. Probab. 30(1) 175–207.
  • [45] Mishura, Y. S. and Veretennikov, A. Y. (2020). Existence and uniqueness theorems for solutions of McKean–Vlasov stochastic equations. Theor. Probab. Math. Statist. 103 59–101.
  • [46] Morkisz, P. M., and Przybyłowicz, P. (2021). Randomized derivative-free Milstein algorithm for efficient approximation of solutions of SDEs under noisy information. Journal of Computational and Applied Mathematics, 383, 113112.
  • [47] Possamaï, D., and Tangpi, L. (2021). Non-asymptotic convergence rates for mean-field games: weak formulation and McKean–Vlasov BSDEs. arXiv preprint arXiv:2105.00484.
  • [48] Przybyłowicz, P., Schwarz, V. and Szölgyenyi, M. (2022). Randomized Milstein algorithm for approximation of solutions of jump-diffusion SDEs. arXiv preprint arXiv:2212.00411.
  • [49] Reisinger, C. and Wolfgang, S. (2022). An adaptive Euler–Maruyama scheme for McKean–Vlasov SDEs with super-linear growth and application to the mean-field FitzHugh–Nagumo model. J. Comput. Appl. Math. 400 113725
  • [50] Reisinger, C., Stockinger, W. and and Zhang, Y. (2021) A fast iterative PDE-based algorithm for feedback controls of nonsmooth mean-field control problems. arXiv preprint arXiv:2108.06740.
  • [51] Reisinger, C., Stockinger, W. and and Zhang, Y. (2022) Linear convergence of a policy gradient method for finite horizon continuous time stochastic control problems. arXiv preprint 2203.11758.
  • [52] Salkeld, W., dos Reis, G. and Tugaut, J. (2019). Freidlin-Wentzell LDPs in path space for McKean–Vlasov equations and the Functional Iterated Logarithm Law. Ann. Appl. Probab. 29(3) 1487–1540.
  • [53] Sznitman, A.-S. (1991). Topics in propagation of chaos. Springer, Berlin, Heidelberg.
  • [54] Wiktorsson, M. (2001). Joint characteristic function and simultaneous simulation of iterated Itô’s integrals for multiple Brownian motions. Ann. Appl. Probab. 11 470–487.

Authors’ Addresses

Sani Biswas, Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, 247 667, India.
sbiswas2@ma.iitr.ac.in

Chaman Kumar, Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, 247 667, India.
chaman.kumar@ma.iitr.ac.in

Neelima, Department of Mathematics, Ramjas College, University of Delhi, Delhi, 110 007, India.
neelima_maths@ramjas.du.ac.in

Gonçalo dos Reis, School of Mathematics, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom, and Centro de Matemática e Aplicaç ões (CMA), FCT, UNL, Portugal.
G.dosReis@ed.ac.uk

Christoph Reisinger, Mathematical Institute, University of Oxford. Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG, UK.
christoph.reisinger@maths.ox.ac.uk