This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

An improved light-cone harmonic oscillator model for the pionic leading-twist distribution amplitude

Tao Zhong zhongtao1219@sina.com Department of Physics, Guizhou Minzu University, Guiyang 550025, P.R. China    Zhi-Hao Zhu College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, P.R. China    Hai-Bing Fu111Corresponding author fuhb@cqu.edu.cn Department of Physics, Guizhou Minzu University, Guiyang 550025, P.R. China Department of Physics, Chongqing University, Chongqing 401331, P.R. China    Xing-Gang Wu wuxg@cqu.edu.cn Department of Physics, Chongqing University, Chongqing 401331, P.R. China Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing 401331, P.R. China    Tao Huang huangtao@ihep.ac.cn Institute of High Energy Physics and Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049, P.R. China
Abstract

In this paper, we study the pion leading-twist distribution amplitude ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu) by improving the traditional light-cone harmonic oscillator model within the reconstruction of the function φ2;π(x)\varphi_{2;\pi}(x). In order to constraining the model parameters, we calculate its moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} in the framework of QCD background field theory sum rule (BFTSR) up to 10th10^{\rm th} order. Considering the fact that the sum rule of the 0th0^{\rm th} moment ξ02;π|μ\langle\xi^{0}\rangle_{2;\pi}|_{\mu} cannot be normalized, we suggest a more reasonable sum rule formula for ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu}. Then, we obtain the values of ξn2;π|μ0\langle\xi^{n}\rangle_{2;\pi}|_{\mu_{0}} with n=(2,4,6,8,10)n=(2,4,6,8,10) at the initial scale μ0=1GeV\mu_{0}=1~{}{\rm GeV}. The first two moments are: ξ22;π|μ0=0.271±0.013\langle\xi^{2}\rangle_{2;\pi}|_{\mu_{0}}=0.271\pm 0.013, ξ42;π|μ0=0.138±0.010\langle\xi^{4}\rangle_{2;\pi}|_{\mu_{0}}=0.138\pm 0.010; and the corresponding Gegenbauer moments are a22;π(μ0)=0.206±0.038a^{2;\pi}_{2}(\mu_{0})=0.206\pm 0.038, a42;π(μ0)=0.047±0.011a^{2;\pi}_{4}(\mu_{0})=0.047\pm 0.011, respectively. After fitting the moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu}, we obtained the appropriate model parameters by using the least square method. The resultant behavior for twist-2 pion DA is more closely to the AdS/QCD and lattice result, but is narrower than that by Dyson-Schwinger equation. Furthermore, we calculate the pion-photon transition form factors (TFF) and BπB\to\pi TFF within light-cone sum rule approach, which are conform with experimental and theoretical results.

pacs:
12.38.-t, 12.38.Bx, 14.40.Aq

I introduction

Light meson light-cone distribution amplitudes (DAs) are universal nonperturbative objects, which describe the momentum fraction distributions of partons in a meson for a particular Fock state. Those DAs enter exclusive processes based on the factorization theorems in the perturbative QCD theory (pQCD), and therefore they are key parameters in the QCD predictions for corresponding processes. In the standard treatment of exclusive processes in QCD proposed by Brodsky and Lepage BL , cross sections are arranged according to different twist structures of meson DAs. In which the leading-twist DA contribution usually dominates due to the contributions from the higher twists are high power suppressed at short distance. Thereafter, the study of pionic leading-twist DA, which describes the momentum distribution of the valence quarks in pion, has attracted much attention in the literature.

So far, a large number of studies on the pionic leading-twist DA rely on its Gegenbauer expansion series Lepage:1979zb ; Efremov:1979qk , the nonperturbative expansion coefficients, denoted an2;π(μ)a_{n}^{2;\pi}(\mu), are called Gegenbauer moments which encode the long-distance dynamics at low energy scale (1GeV\sim 1{\rm GeV}), and only the even Gegenbauer moments are nonzero due to the isospin symmetry. In many applications of pion leading-twist DA involving a high normalization scale, the higher Gegenbauer moment contributions are suppressed due to the anomalous dimension of an2;π(μ)a_{n}^{2;\pi}(\mu) grows with nn, and only the lowest Gegenbauer moments are retained. Therefore, people usually adopt the truncated form involving only the first few terms in the Gegenbauer expansion series to be an approximate form of ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu). Those Gegenbauer moments can be calculated directly via some non-perturbative methods such as QCD sum rules Chernyak:1981zz ; Chernyak:1983ej ; Chernyak:1984bm ; Huang:1984nc ; Xiang:1984hw ; Huang:1986wm or lattice gauge theory Gottlieb:1985bn ; Gottlieb:1986ie ; Martinelli:1988xs ; Daniel:1990ah and so on. Using QCD sum rules to calculate an2;π(μ)a_{n}^{2;\pi}(\mu) is realized by calculating ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu}. Recently, we realized that these calculations need to be improved. By QCD sum rules method, the analytic formula is for ξn2;π|μ×ξ02;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu}\times\langle\xi^{0}\rangle_{2;\pi}|_{\mu}, but which is usual seen as the sum rules of ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} due to normalization of ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu). In fact, due to the incompleteness of our sum rules calculation, the deviation of ξ02;π|μ\langle\xi^{0}\rangle_{2;\pi}|_{\mu} from normalization must be considered. This motivates us to recalculate the moments of pionic leading-twist DA with QCD sum rules.

On the other hand, the truncated form mentioned above does not seem to be enough to describe the behavior of DA under the low energy scale. A natural idea is to consider the contributions of higher-order Gegenbauer polynomials, which requires the calculation of higher-order Gegenbauer moments. But there is a very serious difficulty in doing so, that is, it is difficult to get reliable higher an2;π(μ)a_{n}^{2;\pi}(\mu). Through the mathematical relationship between an2;π(μ)a_{n}^{2;\pi}(\mu) and ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu}, we can find that with the increase of order nn, the reliability of an2;π(μ)a_{n}^{2;\pi}(\mu) decreases sharply, which makes our calculation of higher an2;π(μ)a_{n}^{2;\pi}(\mu) meaningless. So people try to study the behavior of ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu) through other ways. In Ref. Chang:2013pq , in the framework of Dyson-Schwinger equations the authors obtain the pionic leading-twist DA (DS model) that are concave and significantly broader than the asymptotic DA. Making use of the approximate bound state solution of a hadron in terms of the quark model as the starting point, Brodsky-Huang-Lepage (BHL) suggest the light-cone harmonic oscillator model (LCHO model) which is obtained by connecting the equal-time wavefunction (WF) in the rest frame and the WF in the infinite momentum frame BHL . Meanwhile, the holographic Schrödinger equation for meson maps onto the fifth dimension of anti-de Sitter with QCD potential (AdS/QCD) Ahmady:2017jgq .

In this paper, we will study the pionic leading-twist DA ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu) based on the improved LCHO model. The determination of model parameters depends on the moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} rather than the Gegenbauer moments an2;π(μ)a_{n}^{2;\pi}(\mu), and we will adopt a new method, that is, the least square method fitting, to determine the model parameters directly. Especially, to get more accurate values of the moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu}, we will recalculate those moments with the QCD sum rules in the framework of the background field theory (BFTSR) and adopt a more reasonable and accurate sum rules formula for ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu}.

The remaining parts of this paper are organized as follows. In Sec. II.1, we recalculate the pionic leading-twist DA moments by BFTSR. In Sec. II.2, we give a brief overview of the LCHO model, put forward the improved new model, and introduce the method of least squares fitting moment to get model parameters. Numerical results are given in Sec. III. Section IV is reserved for a summary.

II Theoretical framework

II.1 The BFTSR for the moments of ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu)

To derive the sum rules for the pionic leading-twist DA moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu}, we adopt the following correlation function,

Π2;π(n,0)(z,q)\displaystyle\Pi^{(n,0)}_{2;\pi}(z,q) =\displaystyle= id4xeiqx0|T{Jn(x)J0(0)}|0\displaystyle i\int d^{4}xe^{iq\cdot x}\langle 0|T\{J_{n}(x)J^{\dagger}_{0}(0)\}|0\rangle (1)
=\displaystyle= (zq)n+2I2;π(n,0)(q2),\displaystyle(z\cdot q)^{n+2}I^{(n,0)}_{2;\pi}(q^{2}),

where z2=0z^{2}=0, n=(0,2,4,)n=(0,2,4,\cdots) since the odd moments vanish due to the isospin symmetry, and the currents

Jn(x)\displaystyle J_{n}(x) =\displaystyle= d¯(x)z/γ5(izD)nu(x),\displaystyle\bar{d}(x){z\!\!\!/}\gamma_{5}(iz\cdot\tensor{D})^{n}u(x), (2)
J0(0)\displaystyle J^{\dagger}_{0}(0) =\displaystyle= u¯(0)z/γ5d(0).\displaystyle\bar{u}(0){z\!\!\!/}\gamma_{5}d(0). (3)

In physical region, the correlation function (1) can be calculated by inserting a complete set of intermediate hadronic states. Combining the definition

0|d¯(0)z/γ5(izD)nu(0)|π(q)=i(zq)n+1fπξn2;π|μ,\displaystyle\langle 0|\bar{d}(0){z\!\!\!/}\gamma_{5}(iz\cdot\tensor{D})^{n}u(0)|\pi(q)\rangle=i(z\cdot q)^{n+1}f_{\pi}\langle\xi^{n}\rangle_{2;\pi}|_{\mu}, (4)

and the quark-hadron duality, the hadron expression of (1) can be obtained as

ImI2;π;had(n,0)(q2)\displaystyle\textrm{Im}I^{(n,0)}_{{2;\pi};{\rm had}}(q^{2}) =\displaystyle= πδ(q2mπ2)fπ2ξn2;π|μ\displaystyle\pi\delta(q^{2}-m_{\pi}^{2})f_{\pi}^{2}\langle\xi^{n}\rangle_{2;\pi}|_{\mu} (5)
+\displaystyle+ π34π2(n+1)(n+3)θ(q2sπ),\displaystyle\pi\frac{3}{4\pi^{2}(n+1)(n+3)}\theta(q^{2}-s_{\pi}),

where mπm_{\pi} is the pion mass, fπf_{\pi} is the decay constant, sπs_{\pi} stands for the continuum threshold. In Eq. (4), the moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} are defined with the pionic leading-twist DA ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu) as following:

ξn2;π|μ=01𝑑x(2x1)nϕ2;π(x,μ).\displaystyle\langle\xi^{n}\rangle_{2;\pi}|_{\mu}=\int^{1}_{0}dx(2x-1)^{n}\phi_{2;\pi}(x,\mu). (6)

In the deep Euclidean region, we apply the operator product expansion (OPE) for the correlation function Eq. (1). The corresponding calculation is performed in the framework of BFTSR. For the basic assumption of BFTSR, the corresponding Feynman rules, and the OPE calculation technology, one can find in Refs. Zhong:2014jla ; Huang:1989gv for detailed discussion.

The hadron expression of correlation function (1) in the physical region and its OPE in deep Euclidean region can be matched with the dispersion relation. After applying the Borel transformation for both sides, the sum rules for the moments of the pionic leading-twist DA ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu) can be obtained as:

ξn2;π|μξ02;π|μfπ2M2emπ2/M2=34π21(n+1)(n+3)(1esπ/M2)+(md+mu)q¯q(M2)2+αsG2(M2)21+nθ(n2)12π(n+1)\displaystyle\frac{\langle\xi^{n}\rangle_{2;\pi}|_{\mu}\langle\xi^{0}\rangle_{2;\pi}|_{\mu}f_{\pi}^{2}}{M^{2}e^{m_{\pi}^{2}/M^{2}}}=\frac{3}{4\pi^{2}}\frac{1}{(n+1)(n+3)}\Big{(}1-e^{-s_{\pi}/M^{2}}\Big{)}+\frac{(m_{d}+m_{u})\langle\bar{q}q\rangle}{(M^{2})^{2}}~{}+~{}\frac{\langle\alpha_{s}G^{2}\rangle}{(M^{2})^{2}}~{}\frac{1+n\theta(n-2)}{12\pi(n+1)}
(md+mu)gsq¯σTGq(M2)38n+118+gsq¯q2(M2)34(2n+1)81gs3fG3(M2)3nθ(n2)48π2+gs2q¯q2(M2)32+κ2486π2\displaystyle\qquad\qquad~{}-\frac{(m_{d}+m_{u})\langle g_{s}\bar{q}\sigma TGq\rangle}{(M^{2})^{3}}\frac{8n+1}{18}+\frac{\langle g_{s}\bar{q}q\rangle^{2}}{(M^{2})^{3}}\frac{4(2n+1)}{81}-\frac{\langle g_{s}^{3}fG^{3}\rangle}{(M^{2})^{3}}\frac{n\theta(n-2)}{48\pi^{2}}+\frac{\langle g_{s}^{2}\bar{q}q\rangle^{2}}{(M^{2})^{3}}\frac{2+\kappa^{2}}{486\pi^{2}}
×{2(51n+25)(lnM2μ2)+3(17n+35)+θ(n2)[2n(lnM2μ2)+49n2+100n+56n\displaystyle\qquad\qquad~{}\times\Big{\{}\!-2(51n+25)\Big{(}\!-\ln\frac{M^{2}}{\mu^{2}}\Big{)}+3(17n+35)+\theta(n-2)\Big{[}2n\Big{(}\!-\ln\frac{M^{2}}{\mu^{2}}\Big{)}+\frac{49n^{2}+100n+56}{n}
25(2n+1)[ψ(n+12)ψ(n2)+ln4]]}.\displaystyle\qquad\qquad~{}-25(2n+1)\Big{[}\psi\Big{(}\frac{n+1}{2}\Big{)}-\psi\Big{(}\frac{n}{2}\Big{)}+\ln 4\Big{]}\Big{]}\Big{\}}. (7)

Where MM is the Borel parameter, and for those vacuum condensates, we have taken:

q¯q\displaystyle\langle\bar{q}q\rangle =\displaystyle= d¯d=u¯u,\displaystyle\langle\bar{d}d\rangle=\langle\bar{u}u\rangle,
gsq¯σTGq\displaystyle\langle g_{s}\bar{q}\sigma TGq\rangle =\displaystyle= gsd¯σTGd=gsu¯σTGu,\displaystyle\langle g_{s}\bar{d}\sigma TGd\rangle=\langle g_{s}\bar{u}\sigma TGu\rangle,
gsq¯q2\displaystyle\langle g_{s}\bar{q}q\rangle^{2} =\displaystyle= gsd¯d2=gsu¯u2,\displaystyle\langle g_{s}\bar{d}d\rangle^{2}=\langle g_{s}\bar{u}u\rangle^{2},
gs2q¯q2\displaystyle\langle g_{s}^{2}\bar{q}q\rangle^{2} =\displaystyle= gs2d¯d2=gs2u¯u2,\displaystyle\langle g_{s}^{2}\bar{d}d\rangle^{2}=\langle g_{s}^{2}\bar{u}u\rangle^{2},

and with s¯s/q¯q=κ\langle\bar{s}s\rangle/\langle\bar{q}q\rangle=\kappa,

gs2gsψ¯ψ2=(2+κ2)gs2q¯q2,(ψ=u,d,s).\displaystyle g_{s}^{2}\sum\langle g_{s}\bar{\psi}\psi\rangle^{2}=(2+\kappa^{2})\langle g_{s}^{2}\bar{q}q\rangle^{2},~{}(\psi=u,d,s).

In the OPE calculation for the correlation function (1), we have corrected the mistake of a vacuum matrix element, 0|GμνAGρσ;λτB|0\langle 0|G^{A}_{\mu\nu}G^{B}_{\rho\sigma;\lambda\tau}|0\rangle, used in the previous work Zhong:2014jla . That is

0|GμνAGρσ;λτB|0\displaystyle\langle 0|G_{\mu\nu}^{A}G_{\rho\sigma;\lambda\tau}^{B}|0\rangle =δAB{(11296gsψ¯ψ21384gsfG3)[2gλτ(gμσgνρgμρgνσ)+gρτ(gμσgνλgμλgνσ)\displaystyle={\delta^{AB}}\Big{\{}\Big{(}-\frac{1}{1296}\sum{{\langle{g_{s}}\bar{\psi}\psi\rangle}^{2}}-\frac{1}{384}\langle g_{s}fG^{3}\rangle\Big{)}\big{[}2{g_{\lambda\tau}}({g_{\mu\sigma}}{g_{\nu\rho}}-{g_{\mu\rho}}{g_{\nu\sigma}})+{g_{\rho\tau}}({g_{\mu\sigma}}{g_{\nu\lambda}}-{g_{\mu\lambda}}{g_{\nu\sigma}})
+gστ(gμλgνρgμρgνλ)]+(11296gsψ¯ψ2+1384gsfG3)[gμτ(gρνgσλgρλgνσ)+gντ\displaystyle+{g_{\sigma\tau}}({g_{\mu\lambda}}{g_{\nu\rho}}-{g_{\mu\rho}}{g_{\nu\lambda}})\big{]}+\Big{(}-\frac{1}{1296}\sum{{{\langle{g_{s}}\bar{\psi}\psi\rangle}^{2}}}+\frac{1}{384}\langle g_{s}fG^{3}\rangle\Big{)}\big{[}{g_{\mu\tau}}({g_{\rho\nu}}{g_{\sigma\lambda}}-{g_{\rho\lambda}}{g_{\nu\sigma}})+{g_{\nu\tau}}
×(gρλgσμgρμgσλ)]}\displaystyle\times({g_{\rho\lambda}}{g_{\sigma\mu}}-{g_{\rho\mu}}{g_{\sigma\lambda}})\big{]}\Big{\}} (8)

It needs to be noted that, by taking n=0n=0 in Eq. (6) and considering the normalization of the pionic leading-twist DA ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu), one can obtain the 0th0^{\rm th} moment

ξ02;π|μ=1.\displaystyle\langle\xi^{0}\rangle_{2;\pi}|_{\mu}=1. (9)

Therefore, in many QCD sum rules calculation people usually substitute Eq. (9) as input directly into sum rules (7), and take Eq. (7) as the sum rules of the moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu}. This will bring extra deviation to the predicted values of ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu}, the reason is that the 0th0^{\rm th} moment ξ02;π|μ\langle\xi^{0}\rangle_{2;\pi}|_{\mu} in the l.h.s. of Eq. (7) is not strict that in Eq. (9). By taking n=0n=0 in Eq. (7), one can obtain the sum rule of ξ02;π|μ\langle\xi^{0}\rangle_{2;\pi}|_{\mu},

ξ02;π2|μfπ2M2emπ2/M2=14π2(1+αsπ)(1esπ/M2)+(md\displaystyle\frac{\langle\xi^{0}\rangle_{2;\pi}^{2}|_{\mu}f_{\pi}^{2}}{M^{2}e^{m_{\pi}^{2}/M^{2}}}=\frac{1}{4\pi^{2}}\Big{(}1+\frac{\alpha_{s}}{\pi}\Big{)}\Big{(}1-e^{-s_{\pi}/M^{2}}\Big{)}+(m_{d}
+mu)q¯q(M2)2+αsG2(M2)2112π118(md+mu)\displaystyle\qquad+m_{u})~{}\frac{\langle\bar{q}q\rangle}{(M^{2})^{2}}+\frac{\langle\alpha_{s}G^{2}\rangle}{(M^{2})^{2}}\frac{1}{12\pi}-\frac{1}{18}(m_{d}+m_{u})
×gsq¯σTGq(M2)3+481gsq¯q2(M2)3+gs2q¯q2(M2)32+κ2486π2\displaystyle\qquad\times\frac{\langle g_{s}\bar{q}\sigma TGq\rangle}{(M^{2})^{3}}+\frac{4}{81}\frac{\langle g_{s}\bar{q}q\rangle^{2}}{(M^{2})^{3}}+\frac{\langle g_{s}^{2}\bar{q}q\rangle^{2}}{(M^{2})^{3}}\frac{2+\kappa^{2}}{486\pi^{2}}
×[50(lnM2μ2)+105].\displaystyle\qquad\times\Big{[}\!-50\Big{(}\!-\ln\frac{M^{2}}{\mu^{2}}\Big{)}+105\Big{]}. (10)

Obviously, ξ02;π|μ\langle\xi^{0}\rangle_{2;\pi}|_{\mu} in the l.h.s. of sum rule (7) can not be normalized in the whole Borel parameter regions. The reason is that our calculation is not complete. The high-order corrections and high-dimensional corrections have not been calculated, and which are also impossible to calculate completely. In fact, the authors of Ref. Xiang:1984hw discovered this more than 3030 years ago. They obtain ξ02;π|μ0.83\langle\xi^{0}\rangle_{2;\pi}|_{\mu}\simeq 0.83, and take fπξ02;π|μf_{\pi}\langle\xi^{0}\rangle_{2;\pi}|_{\mu} as normalization factor to calculate the values of ξ22;π|μ\langle\xi^{2}\rangle_{2;\pi}|_{\mu} and ξ42;π|μ\langle\xi^{4}\rangle_{2;\pi}|_{\mu}. In this paper, we argue that we need to further consider the impact of the sum rule of ξ02;π|μ\langle\xi^{0}\rangle_{2;\pi}|_{\mu}, Eq. (10), in the full Borel parameter regions when using sum rule (7) to calculate ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu}. Therefore, in order to obtain more accurate moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu}, we suggest the following form:

ξn2;π|μ=(ξn2;π|μξ02;π|μ)|FromEq.(7)ξ02;π2|μ|FromEq.(10).\displaystyle\langle\xi^{n}\rangle_{2;\pi}|_{\mu}=\frac{(\langle\xi^{n}\rangle_{2;\pi}|_{\mu}\langle\xi^{0}\rangle_{2;\pi}|_{\mu})|_{\rm From\ Eq.~{}(7)}}{\sqrt{\langle\xi^{0}\rangle_{2;\pi}^{2}|_{\mu}}|_{\rm From\ Eq.~{}(10)}}. (11)

Meanwhile, another advantage of Eq. (11) is that it can also eliminate some systematic errors caused by the continuum state, the absence of high dimensional condensates, the selection and determination of various input parameters.

It should be mentioned that Eq. (10) is usually used to predict the pion decay constant fπf_{\pi} on the premise that ξ02;π|μ1\langle\xi^{0}\rangle_{2;\pi}|_{\mu}\equiv 1. After the previous discussion, we think that the sum rule of ξ02;π|μ\langle\xi^{0}\rangle_{2;\pi}|_{\mu} varies with Borel parameter M2M^{2}, especially when the fπf_{\pi} has a definite experimental value. In order to ensure QCD sum rule’s prediction ability on other meson decay constant, we need to assume that ξ02;π|μ\langle\xi^{0}\rangle_{2;\pi}|_{\mu} can be normalized in a appropriate Borel window.

II.2 The improved LCHO model for ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu)

Table 1: The expressions of the spin-space wave function χ2;πλ1λ2(x,k)\chi_{2;\pi}^{\lambda_{1}\lambda_{2}}(x,\textbf{k}_{\perp}) with different λ1λ2\lambda_{1}\lambda_{2}.
   λ1λ2\lambda_{1}\lambda_{2}    \downarrow\downarrow    \uparrow\uparrow    \uparrow\downarrow    \downarrow\uparrow
   χ2;πλ1λ2(x,k)\chi_{2;\pi}^{\lambda_{1}\lambda_{2}}(x,\textbf{k}_{\perp})    kx+iky2(mq2+k2)-\dfrac{k_{x}+ik_{y}}{\sqrt{2(m_{q}^{2}+\textbf{k}_{\perp}^{2})}}    kxiky2(mq2+k2)-\dfrac{k_{x}-ik_{y}}{\sqrt{2(m_{q}^{2}+\textbf{k}_{\perp}^{2})}}    mq2(mq2+k2)\dfrac{m_{q}}{\sqrt{2(m_{q}^{2}+\textbf{k}_{\perp}^{2})}}    mq2(mq2+k2)-\dfrac{m_{q}}{\sqrt{2(m_{q}^{2}+\textbf{k}_{\perp}^{2})}}

Based on the BHL-description BHL , the LCHO model of the pion leading-twist WF has raised in Refs. Wu:2010zc ; Wu:2011gf , and its form is:

Ψ2;π(x,k)=λ1λ2χ2;πλ1λ2(x,k)Ψ2;πR(x,k),\displaystyle\Psi_{2;\pi}(x,\textbf{k}_{\bot})=\sum_{\lambda_{1}\lambda_{2}}\chi_{2;\pi}^{\lambda_{1}\lambda_{2}}(x,\textbf{k}_{\bot})\Psi^{R}_{2;\pi}(x,\textbf{k}_{\bot}), (12)

where k\textbf{k}_{\bot} is the pionic transverse momentum, λ1\lambda_{1} and λ2\lambda_{2} are the helicities of the two constituent quark. χ2;πλ1λ2(x,k)\chi_{2;\pi}^{\lambda_{1}\lambda_{2}}(x,\textbf{k}_{\bot}) stands for the spin-space WF that comes from the Wigner-Melosh rotation, whose explicit form for different λ1λ2\lambda_{1}\lambda_{2} are exhibited in Table 1, which can also been seen in Refs. Huang:1994dy ; Cao:1997hw ; Huang:2004su ; Wu:2005kq .

Ψ2;πR(x,k)=A2;πφ2;π(x)exp[k2+mq28β2;π2xx¯],\displaystyle\Psi^{R}_{2;\pi}(x,\textbf{k}_{\bot})=A_{2;\pi}\varphi_{2;\pi}(x)\exp\left[-\frac{\textbf{k}^{2}_{\bot}+m_{q}^{2}}{8\beta_{2;\pi}^{2}x\bar{x}}\right], (13)

indicates spatial WF, where x¯=1x\bar{x}=1-x, A2;πA_{2;\pi} is the normalization constant, the k\textbf{k}_{\bot}-dependence part of the spatial WF Ψ2;πR(x,k)\Psi^{R}_{2;\pi}(x,\textbf{k}_{\bot}) comes from the approximate bound-state solution in the quark model for pion WF_restframe and determine the WF’s transverse distribution via the harmonious parameter β2;π\beta_{2;\pi}, the xx-dependence part φ2;π(x)\varphi_{2;\pi}(x) dominates the WF’s longitudinal distribution. In principle, the spatial WF Ψ2;πR(x,k)\Psi^{R}_{2;\pi}(x,\textbf{k}_{\bot}) should include a Jacobi factor. Numerical calculation in Sec. IIIC will show that the Jacobi factor has a little effect on the behavior of the the pionic leading-twist DA. In Table 1 and Eq. (13), mqm_{q} stands for the mass of the constitute quark uu and dd in pion. In our previous work Zhong:2015nxa , the experimental data of the pion-photon transition form factor reported by the CELLO, CLEO, BABAR and BELLE collaborators based on the LCHO model with the longitudinal distribution function φ2;πI(x)\varphi^{\rm I}_{2;\pi}(x) (see Eq. (18)) have been fit by adopt the least square method. Where we take the constituent quark mass mqm_{q} and the model parameter BB as the fitting parameters, and obtain mq=(216,246,347,222)MeVm_{q}=(216,246,347,222)~{}{\rm MeV} for CELLO, CLEO, BABAR and BELLE data, respectively. The corresponding goodness-of-fit are Pχmin2/nd=(0.187/3,0.986/13,0.416/15,0.958/13)P_{\chi^{2}_{\rm min}}/n_{d}=(0.187/3,0.986/13,0.416/15,0.958/13). Then we take mq=200MeVm_{q}=200~{}{\rm MeV} in this paper. Otherwise, mqm_{q} is taken to be 250MeV250\rm MeV in the invariant meson mass scheme Terentev:1976jk ; Jaus:1989au ; Jaus:1991cy ; Chung:1988mu ; Choi:1997qh ; Schlumpf:1994bc ; Cardarelli:1994yq and 330MeV330\rm MeV in the spin-averaged meson mass scheme Dziembowski:1986dr ; Dziembowski:1987zp ; Ji:1990rd ; Ji:1992yf ; Choi:1996mq . Therefore, we will discuss the impact of different values of mqm_{q} on the behavior of our pionic leading-twist DA in detail by taking mq=200350MeVm_{q}=200\sim 350~{}{\rm MeV}.

Using the relationship between the pionic leading-twist DA and WF,

ϕ2;π(x,μ)=26fπ|𝐤|2μ2d2𝐤16π3Ψ2;π(x,𝐤),\displaystyle\phi_{2;\pi}(x,\mu)=\frac{2\sqrt{6}}{f_{\pi}}\int_{|\mathbf{k}_{\bot}|^{2}\leq\mu^{2}}\frac{d^{2}\mathbf{k}_{\bot}}{16\pi^{3}}\Psi_{2;\pi}(x,\mathbf{k}_{\bot}), (14)

the leading-twist DA for pion, ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu), can be obtained. That is, after integrating over the transverse momentum 𝐤\mathbf{k}_{\bot} in Eq. (14), we have

ϕ2;π(x,μ)=3A2;πmqβ2;π2π3/2fπxx¯φ2;π(x)\displaystyle\phi_{2;\pi}(x,\mu)=\frac{\sqrt{3}A_{2;\pi}m_{q}\beta_{2;\pi}}{2\pi^{3/2}f_{\pi}}\sqrt{x\bar{x}}\varphi_{2;\pi}(x)
×{Erf[mq2+μ28β2;π2xx¯]Erf[mq28β2;π2xx¯]},\displaystyle\qquad\times\left\{\textrm{Erf}\left[\sqrt{\frac{m_{q}^{2}+\mu^{2}}{8\beta_{2;\pi}^{2}x\bar{x}}}\right]-\textrm{Erf}\left[\sqrt{\frac{m_{q}^{2}}{8\beta_{2;\pi}^{2}x\bar{x}}}\right]\right\},
(15)

where Erf(x)=20xet2𝑑x/π{\rm Erf}(x)=2\int^{x}_{0}e^{-t^{2}}dx/{\sqrt{\pi}} is the error function. The error function part in Eq. (15) comes from the k\textbf{k}_{\bot}-dependence part of the WF Ψ2;π(x,k)\Psi_{2;\pi}(x,\textbf{k}_{\bot}) and gives a good endpoint behavior for ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu), and φ2;π(x)\varphi_{2;\pi}(x) dominates the broadness of ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu). Obviously, the specific form of ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu) is determined by the parameters A2;πA_{2;\pi}, β2;π\beta_{2;\pi} and the function φ2;π(x)\varphi_{2;\pi}(x). There are two important constraints BHL which can be used to constrain the parameters A2;πA_{2;\pi} and β2;π\beta_{2;\pi}, that is,

  • (1)

    the WF normalization condition provided from the process πμν\pi\to\mu\nu,

    01𝑑xd2k16π3Ψ(x,k)=fπ26;\displaystyle\int^{1}_{0}dx\int\frac{d^{2}\textbf{k}_{\bot}}{16\pi^{3}}\Psi(x,\textbf{k}_{\bot})=\frac{f_{\pi}}{2\sqrt{6}}; (16)
  • (2)

    the sum rule derived from π0γγ\pi^{0}\to\gamma\gamma decay amplitude,

    01𝑑xΨ(x,k=0)=6fπ.\displaystyle\int^{1}_{0}dx\Psi(x,\textbf{k}_{\bot}=\textbf{0})=\frac{\sqrt{6}}{f_{\pi}}. (17)

Then the pionic leading-twist DA ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu) only depends on the mathematical form of φ2;π(x)\varphi_{2;\pi}(x). By solving the renormalization group equation of the pionic leading-twist DA, ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu) can be written as the expansion form of the Gegenbauer series Lepage:1979zb ; Efremov:1979qk . Based on this, in our previous paper, φ2;π(x)\varphi_{2;\pi}(x) is taken to be the linear superposition of the first several Gegenbauer polynomials. For example, in Refs. Wu:2012kw ; Huang:2013gra ; Huang:2013yya ; Zhong:2015nxa , we take

φ2;πI(x)=1+B×C23/2(2x1),\displaystyle\varphi^{\rm I}_{2;\pi}(x)=1+B\times C^{3/2}_{2}(2x-1), (18)

and

φ2;πII(x)\displaystyle\varphi^{\rm II}_{2;\pi}(x) =\displaystyle= 1+B2×C23/2(2x1)\displaystyle 1+B_{2}\times C^{3/2}_{2}(2x-1) (19)
+\displaystyle+ B4×C43/2(2x1)\displaystyle B_{4}\times C^{3/2}_{4}(2x-1)

is adopted in Ref. Zhong:2014jla . For the former, when the value of parameter BB changes from 0.00.0 to 0.60.6, the pionic leading-twist DA model, i.e. Eq. (15) can mimic the DA behavior from asymptotic-like to CZ-like. And for the latter, we further consider the correction of 4th4^{\rm th} order Gegenbauer polynomial. The mathematical form of φ2;π(x)\varphi_{2;\pi}(x) can usually be determined in two ways. The first one is to extract φ2;π(x)\varphi_{2;\pi}(x) from the experimental data of the exclusive processes involving pion Wu:2012kw ; Huang:2013gra ; Huang:2013yya ; Zhong:2015nxa , such as semi-leptonic decays BπνB\to\pi\ell\nu_{\ell} and DπνD\to\pi\ell\nu_{\ell}, the pion-photon transition form factor Fπγ(Q2)F_{\pi\gamma}(Q^{2}), and the exclusive process B0π0π0B^{0}\to\pi^{0}\pi^{0}, etc.; the second one is to determine from the moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} or the Gegenbauer moments an2;π(μ)a^{2;\pi}_{n}(\mu) of ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu). In Ref. Zhong:2014jla , we have adopted the second method to determine the mathematical form of φ2;π(x)\varphi_{2;\pi}(x) and further the behavior of ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu).

In this paper, we will still make use of the second method mentioned above to determine the behavior of ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu), but we will improve it. The accuracy of the behavior of ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu) obtained by this method is restricted by two aspects: the rationality of the constructed mathematical form of φ2;π(x)\varphi_{2;\pi}(x) and the accuracy of moments. In order to get better mathematical form of φ2;π(x)\varphi_{2;\pi}(x), a natural idea is to add higher order Gegenbauer polynomial correction in φ2;πII(x)\varphi^{\rm II}_{2;\pi}(x), as we have done for the D,ηc,Bc,ηbD,\eta_{c},B_{c},\eta_{b} twist-2, 3 DAs in Refs. Zhong:2014fma ; Zhong:2016kuv ; Zhang:2017rwz ; Zhong:2018exo . However, such improvement obviously destroys the beauty and conciseness of the model. Otherwise, we find that the parameters B2,B4B_{2},\ B_{4} are close to the Gegenbauer moments a22;π(μ),a42;π(μ)a_{2}^{2;\pi}(\mu),\ a_{4}^{2;\pi}(\mu) respectively. From the relationship between ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} and an2;π(μ)a_{n}^{2;\pi}(\mu), it can be seen that the reliability of an2;π(μ)a_{n}^{2;\pi}(\mu) calculated by QCD sum rules decreases sharply with the increase of order-nn. In view of this, in this paper we will improve the mathematical form of φ2;π(x)\varphi_{2;\pi}(x) by other way, as well as propose a new determination method of model parameters.

We notice that although it is difficult to improve pionic leading-twist DA by introducing higher Gegenbauer polynomial correction, our goal is still to make it more reasonable and accurate by adjusting the behavior of ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu). We find that the factor xx¯\sqrt{x\bar{x}} in Eq. (15) can regulate DA’s behavior to some extent. Inspired by this, we introduce a factor [xx¯]α2;π\left[x\bar{x}\right]^{\alpha_{2;\pi}} into WF’s longitudinal distribution function φ2;π(x)\varphi_{2;\pi}(x), i.e.,

φ2;πIII(x)=[xx¯]α2;π.\displaystyle\varphi^{\rm III}_{2;\pi}(x)=\left[x\bar{x}\right]^{\alpha_{2;\pi}}. (20)

In order to further apply our LCHO model to other meson DA, and combine the form of φ2;πI(x)\varphi^{\rm I}_{2;\pi}(x), we propose a more complex form,

φ2;πIV(x)=[xx¯]α2;π[1+a^22;πC23/2(2x1)],\displaystyle\varphi^{\rm IV}_{2;\pi}(x)=\left[x\bar{x}\right]^{\alpha_{2;\pi}}\left[1+\hat{a}^{2;\pi}_{2}C_{2}^{3/2}(2x-1)\right], (21)

the parameters α2;π\alpha_{2;\pi} and a^22;π\hat{a}^{2;\pi}_{2} will be determined by fitting the moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} directly through the method of least squares, and the values of moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} come from Eq. (11) calculated under BFTSR in Sec. II.1. In order to distinguish our LCHO model with φ2;πIII(x)\varphi^{\rm III}_{2;\pi}(x) and φ2;πIV(x)\varphi^{\rm IV}_{2;\pi}(x), and facilitate the discussion later, we will record the former as LCHO model-III and the latter as LCHO model-IV.

Considering a set of NN independent measurements yiy_{i} with the known variance σi\sigma_{i} and the mean μ(xi;θ)\mu(x_{i};\mathbf{\theta}) at known points xix_{i}. The objective of the least squares method is to obtain the best value of fitting parameters θ\mathbf{\theta} by minimizing the likelihood function PDGnew

χ2(θ)=i=1N(yiμ(xi,θ))2σi2.\displaystyle\chi^{2}(\mathbf{\theta})=\sum^{N}_{i=1}\frac{(y_{i}-\mu(x_{i},\mathbf{\theta}))^{2}}{\sigma_{i}^{2}}. (22)

As for the present case, the function μ(xi;θ)\mu(x_{i};\mathbf{\theta}) indicates the pionic leading-twist DA moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} defined by combining Eqs. (6), (15), (20) and θ=(α2;π,a^22;π)\mathbf{\theta}=(\alpha_{2;\pi},\hat{a}^{2;\pi}_{2}); The theoretical values of ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} calculated by QCD sum rules in next section are assumed to be the value of yiy_{i} and its variance σi\sigma_{i}. The probability density function of χ2\chi^{2} can be obtained,

f(y;nd)=1Γ(nd2)2nd/2ynd21ey2,\displaystyle f(y;n_{d})=\frac{1}{\Gamma\left(\dfrac{n_{d}}{2}\right)2^{n_{d}/2}}y^{\frac{n_{d}}{2}-1}e^{-\frac{y}{2}}, (23)

ndn_{d} is the number of degree-of-freedom. Then one can further calculate the following probability,

Pχ2=χ2f(y;nd)𝑑y.\displaystyle P_{\chi^{2}}=\int^{\infty}_{\chi^{2}}f(y;n_{d})dy. (24)

The magnitude of the probability Pχ2P_{\chi^{2}} (Pχ2[0,1]P_{\chi^{2}}\in[0,1]) can be used to judge the goodness-of-fit, when its value is closer to 11, a better fit is assumed to be achieved.

III numerical analysis

III.1 Basic input parameters

To do the numerical calculation, we adopt the latest data from Particle Data Group (PDG) PDGnew : mπ=139.57039±0.00017MeVm_{\pi}=139.57039\pm 0.00017~{}\textrm{MeV} and fπ=130.2±1.2MeVf_{\pi}=130.2\pm 1.2~{}\textrm{MeV}. The current-quark-mass for the u,du,d-quark are adopted as mu=2.160.26+0.49MeVm_{u}=2.16^{+0.49}_{-0.26}~{}\textrm{MeV} and md=4.670.17+0.48MeVm_{d}=4.67^{+0.48}_{-0.17}~{}\textrm{MeV} at scale μ=2GeV\mu=2~{}\rm GeV. Based on these latest values, we can update the vacuum condensates.

  • For the double-quark condensate, we adopt Gell-Mann-Oakes-Renner relation:

    muu¯u+mdd¯dfπ2mπ22\displaystyle m_{u}\langle\bar{u}u\rangle+m_{d}\langle\bar{d}d\rangle\simeq-\frac{f_{\pi}^{2}m_{\pi}^{2}}{2}
    =(1.651±0.003)×104GeV4.\displaystyle\qquad=-(1.651\pm 0.003)\times 10^{-4}~{}\textrm{GeV}^{4}. (25)

    Combining with the u,du,d quark masses, we have:

    q¯q\displaystyle\langle\bar{q}q\rangle =\displaystyle= (2.4170.114+0.227)×102GeV3\displaystyle\left(-2.417_{-0.114}^{+0.227}\right)\times 10^{-2}~{}{\rm GeV}^{3} (26)
    =\displaystyle= (289.144.47+9.34)3MeV3,\displaystyle\left(-289.14_{-4.47}^{+9.34}\right)^{3}~{}{\rm MeV}^{3},

    at scale μ=2GeV\mu=2~{}\rm GeV.

  • By combining Eqs. (25), (26) and the relation gsq¯σTGq=m02q¯q\langle g_{s}\bar{q}\sigma TGq\rangle=m_{0}^{2}\langle\bar{q}q\rangle with m02=0.80±0.02GeV2m_{0}^{2}=0.80\pm 0.02~{}\textrm{GeV}^{2} Narison:2014ska , the quark-gluon mixed condensate would be

    mugsu¯σTGu+mdgsd¯σTGd\displaystyle m_{u}\langle g_{s}\bar{u}\sigma TGu\rangle+m_{d}\langle g_{s}\bar{d}\sigma TGd\rangle
    =(1.321±0.033)×104GeV6,\displaystyle\quad\quad\quad=-(1.321\pm 0.033)\times 10^{-4}~{}{\rm GeV}^{6}, (27)
    gsq¯σTGq\displaystyle\langle g_{s}\bar{q}\sigma TGq\rangle =\displaystyle= (1.9340.103+0.188)×102GeV5.\displaystyle\left(-1.934^{+0.188}_{-0.103}\right)\times 10^{-2}~{}{\rm GeV}^{5}. (28)
  • By adopting the data in Ref. Narison:2014ska ,

    ραsq¯q2=(5.8±1.8)×104GeV6,\displaystyle\rho\alpha_{s}\langle\bar{q}q\rangle^{2}=\left(5.8\pm 1.8\right)\times 10^{-4}~{}{\rm GeV}^{6}, (29)

    with ρ34\rho\simeq 3-4, and combining the value of the double-quark condensate in Eq. (26), the four-quark condensates can be obtained as:

    gsq¯q2=(2.0820.697+0.734)×103GeV6,\displaystyle\langle g_{s}\bar{q}q\rangle^{2}=(2.082^{+0.734}_{-0.697})\times 10^{-3}~{}\textrm{GeV}^{6}, (30)

    and

    gs2q¯q2=(7.4202.483+2.614)×103GeV6,\displaystyle\langle g_{s}^{2}\bar{q}q\rangle^{2}=(7.420^{+2.614}_{-2.483})\times 10^{-3}~{}\textrm{GeV}^{6}, (31)
  • From Ref. Colangelo:2000dp , we have

    αsG2=0.038±0.011GeV4,\langle\alpha_{s}G^{2}\rangle=0.038\pm 0.011~{}\textrm{GeV}^{4}, (32)

    and

    gs3fG30.045GeV6.\displaystyle\langle g_{s}^{3}fG^{3}\rangle\simeq 0.045~{}\textrm{GeV}^{6}. (33)
  • For the ratio κ=s¯s/q¯q\kappa=\langle\bar{s}s\rangle/\langle\bar{q}q\rangle, Ref. Narison:2014wqa gives:

    κ=0.74±0.03,\displaystyle\kappa=0.74\pm 0.03, (34)

III.2 The renormalization group equation for the input parameters and the moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu}

In numerical calculation for the moments’ BFTSR (11), we take the scale μ=M\mu=M as usual. From αs(Mz)=0.1179±0.0010\alpha_{s}(M_{z})=0.1179\pm 0.0010 with MZ=91.1876±0.0021GeVM_{Z}=91.1876\pm 0.0021~{}{\rm GeV}, and combining m¯c(m¯c)=1.27±0.02GeV\bar{m}_{c}(\bar{m}_{c})=1.27\pm 0.02~{}{\rm GeV} and m¯b(m¯b)=4.180.02+0.03GeV\bar{m}_{b}(\bar{m}_{b})=4.18^{+0.03}_{-0.02}~{}{\rm GeV} PDGnew , under the 3-loop approximate solution we predict ΛQCD(nf)324,286,207MeV\Lambda_{\rm QCD}^{(n_{f})}\simeq 324,286,207~{}{\rm MeV} for the number of quark flavors nf=3,4,5n_{f}=3,4,5, respectively.

The renormalization group equations (RGE) of the quark mass and vacuum condensates are given as Yang:1993bp ; Hwang:1994vp ; Lu:2006fr :

mq|μ\displaystyle m_{q}|_{\mu} =\displaystyle= mq|μ0[αs(μ0)αs(μ)]4/β0,\displaystyle m_{q}|_{\mu_{0}}\left[\frac{\alpha_{s}(\mu_{0})}{\alpha_{s}(\mu)}\right]^{-4/\beta_{0}},
q¯q|μ\displaystyle\langle\bar{q}q\rangle|_{\mu} =\displaystyle= q¯q|μ0[αs(μ0)αs(μ)]4/β0,\displaystyle\langle\bar{q}q\rangle|_{\mu_{0}}\left[\frac{\alpha_{s}(\mu_{0})}{\alpha_{s}(\mu)}\right]^{4/\beta_{0}},
gsq¯σTGq|μ\displaystyle\langle g_{s}\bar{q}\sigma TGq\rangle|_{\mu} =\displaystyle= gsq¯σTGq|μ0[αs(μ0)αs(μ)]2/(3β0),\displaystyle\langle g_{s}\bar{q}\sigma TGq\rangle|_{\mu_{0}}\left[\frac{\alpha_{s}(\mu_{0})}{\alpha_{s}(\mu)}\right]^{-2/(3\beta_{0})},
αsG2|μ\displaystyle\langle\alpha_{s}G^{2}\rangle|_{\mu} =\displaystyle= αsG2|μ0,\displaystyle\langle\alpha_{s}G^{2}\rangle|_{\mu_{0}},
gs3fG3|μ\displaystyle\langle g_{s}^{3}fG^{3}\rangle|_{\mu} =\displaystyle= gs3fG3|μ0,\displaystyle\langle g_{s}^{3}fG^{3}\rangle|_{\mu_{0}}, (35)

with β0=(332nf)/3\beta_{0}=(33-2n_{f})/3. Obviously, the double-gluon condensate and the triple-gluon condensate are energy scale independent. From Eq. (8), one can find that gs2q¯q2\langle g_{s}^{2}\bar{q}q\rangle^{2} and gs3fG3\langle g_{s}^{3}fG^{3}\rangle have the same RGE. In other words, gs2q¯q2\langle g_{s}^{2}\bar{q}q\rangle^{2} is also energy scale independent, e.g.,

gs2q¯q2|μ=gs2q¯q2|μ0.\displaystyle\langle g_{s}^{2}\bar{q}q\rangle^{2}|_{\mu}=\langle g_{s}^{2}\bar{q}q\rangle^{2}|_{\mu_{0}}. (36)

Combining with the RGE of the double-quark condensate and Eq. (36), one can find that the gsq¯q2\langle g_{s}\bar{q}q\rangle^{2} and q¯q\langle\bar{q}q\rangle have the same energy scale evolution equation, e.g.,

gsq¯q2|μ\displaystyle\langle g_{s}\bar{q}q\rangle^{2}|_{\mu} =\displaystyle= gsq¯q2|μ0[αs(μ0)αs(μ)]4/β0.\displaystyle\langle g_{s}\bar{q}q\rangle^{2}|_{\mu_{0}}\left[\frac{\alpha_{s}(\mu_{0})}{\alpha_{s}(\mu)}\right]^{4/\beta_{0}}. (37)

It should be noted that, according to the basic assumption of BFTSR, gsg_{s} in all the above vacuum condensates is the “coupling constant” between the background fields, which is different from the one in pQCD, and should be absorbed into vacuum condensates as part of these non-perturbative parameters.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: The continuum state and dimension-six contribute to the pionic leading-twist DA moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} versus the Borel parameter M2M^{2} within BFTSR approach. The shaded band indicate the Borel Window for ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} for n=(2,4,6,8,10)n=(2,4,6,8,10) respectively.

The RGE of the Gegenbauer moments of the pion leading-twist distribution amplitude is:

an2;π(μ)\displaystyle a_{n}^{2;\pi}(\mu) =\displaystyle= an2;π(μ0)En(μ,μ0),\displaystyle a_{n}^{2;\pi}(\mu_{0})E_{n}(\mu,\mu_{0}), (38)

with

En(μ,μ0)\displaystyle E_{n}(\mu,\mu_{0}) =\displaystyle= [αs(μ)αs(μ0)]γn(0)/(2β0).\displaystyle\left[\frac{\alpha_{s}(\mu)}{\alpha_{s}(\mu_{0})}\right]^{\gamma_{n}^{(0)}/(2\beta_{0})}.

The LO anomalous dimension

γn(0)=8CF[ψ(n+2)+γE3412(n+1)(n+2)],\displaystyle\gamma_{n}^{(0)}=8C_{F}\left[\psi(n+2)+\gamma_{E}-\frac{3}{4}-\frac{1}{2(n+1)(n+2)}\right],

with CF=4/3C_{F}=4/3. Based on Eq. (38), the RGE of the moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} can be obtained.

With the BFTSR of the moments of the pionic leading-twist distribution amplitude ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu) shown in Eqs. (7), (10) and (11), the values of ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} can be calculated. By requiring that there is reasonable Borel window to normalize ξ02;π|μ\langle\xi^{0}\rangle_{2;\pi}|_{\mu} with Eq. (10), one can get the continuum threshold parameter as about sπ1.05GeV2s_{\pi}\simeq 1.05{\rm GeV}^{2}. In addition to the traditional method to determine the contribution of the continuum state, the continuum method can limiting or overcoming model-dependence and drawing clean lines in connecting the data with QCD itself Qin:2020rad . To obtain the allowable Borel window for the sum rules of ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu}, we require that the continuum state’s contribution and the dimension-six condensate’s contribution to be as small as possible, and the values for ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} are stable in the Borel window. Based on the criteria, the Dimension-six contribution for ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} are prescribe a limit to less than 5%5\% for all the nnth-order. And the continuum contribution for ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} are restrict to (30,35,40,40,40)%(30,35,40,40,40)\% for n=(2,4,6,8,10)n=(2,4,6,8,10) respectively.

To have a deeper insight into the continuum state and dimension-six contribute to the pionic leading-twist DA moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} versus the Borel parameter M2M^{2} within BFTSR approach, we present the curves in Fig. 1. The shaded band indicate the Borel Window for ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} for n=(2,4,6,8,10)n=(2,4,6,8,10) respectively. The figure indicates that,

  • The dimension-six contributions are constraint in the region <5%<5\% guaranteed good convergence for the BFTSR results. And the continuum contributions no more than 40%40\% have agreement with the traditional sum rule strictly.

  • Borel parameters associate with the region of Borel Window become larger with the increase of index nn.

Table 2: The determined Borel windows and the corresponding pionic leading-twist DA moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} with n=(2,4,6,8,10)n=(2,4,6,8,10). Where all input parameters are set to be their central values.
nn                     M2M^{2} ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu}
22  [1.477,1.961][1.477,1.961]  [0.268,0.257][0.268,0.257]
44  [2.257,2.817][2.257,2.817]  [0.132,0.124][0.132,0.124]
66  [3.029,3.878][3.029,3.878]  [0.081,0.074][0.081,0.074]
88  [3.803,4.568][3.803,4.568]  [0.057,0.052][0.057,0.052]
1010  [4.579,5.307][4.579,5.307]  [0.042,0.039][0.042,0.039]
Refer to caption
Figure 2: The pionic leading-twist DA moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} with n=(2,4,6,8,10)n=(2,4,6,8,10) versus the Borel parameter M2M^{2}, where all input parameters are set to be their central values. In which, the shaded band indicate the Borel Windows for n=(2,4,6,8,10)n=(2,4,6,8,10), respectively.
Table 3: Our predictions for the first five nonvanishing moments and inverse moment of the pion DA, compared to other theoretical predictions. Meanwhile, the values obtained by the formula combining Eq. (7) and Eq. (9) is also shown.
   μ[GeV]\mu{\rm[GeV]}    ξ22;π|μ\langle\xi^{2}\rangle_{2;\pi}|_{\mu}    ξ42;π|μ\langle\xi^{4}\rangle_{2;\pi}|_{\mu}    ξ62;π|μ\langle\xi^{6}\rangle_{2;\pi}|_{\mu}    ξ82;π|μ\langle\xi^{8}\rangle_{2;\pi}|_{\mu}    ξ102;π|μ\langle\xi^{10}\rangle_{2;\pi}|_{\mu}    x1|μ\langle x^{-1}\rangle|_{\mu}
BFTSR (This Work) 1 0.271(13) 0.138(10) 0.087(6) 0.064(7) 0.050(6) 3.95
BFTSR (This Work) 2 0.254(10) 0.125(7) 0.077(6) 0.054(5) 0.041(4) 3.33
Asymptotic \infty 0.200 0.086 0.048 0.030 0.021 3.00
LF Holographic (B=0B=0Ahmady:2018muv 1,2 0.180, 0.185 0.067, 0.071 - - - 2.81,2.85
LF Holographic (B1B\gg 1Ahmady:2018muv 1,2 0.200, 0.200 0.085, 0.085 - - - 2.93,2.95
LF Holographic Brodsky:2007hb 1\sim 1 0.237 0.114 - - - 4.0
Playkurtic Stefanis:2014nla 2 0.2200.006+0.0090.220^{+0.009}_{-0.006} 0.0980.005+0.0080.098^{+0.008}_{-0.005} - - - 3.130.10+0.143.13^{+0.14}_{-0.10}
LF Quark Model Choi:2007yu 1\sim 1 0.24(22) 0.11(9) - - - -
Sum Rules Ball:2004ye 1 0.24 0.11 - - - -
Renormalon model Agaev:2005rc 1 0.28 0.13 - - - -
Instanton vacuum Petrov:1998kg ; Nam:2006au 1 0.22, 0.21 0.10,0.09 - - - -
NLC Sum Rules Bakulev:2001pa 2 0.2480.015+0.0160.248^{+0.016}_{-0.015} 0.1080.03+0.050.108^{+0.05}_{-0.03} - - - 3.16(9)
Sum Rules Chernyak:1983ej 2 0.343 0.181 - - - 4.25
Dyson-Schwinger [RL,DB] Chang:2013pq 2 0.280, 0.251 0.151, 0.128 - - - 5.5,4.6
Lattice Arthur:2010xf 2 0.28(1)(2) - - - - -
LatticeBraun:2015axa 2 0.2361(41)(39) - - - - -
Lattice Braun:2006dg 2 0.27(4) - - - - -
Lattice Bali:2017ude 2 0.2077(43) - - - - -
Lattice Bali:2019dqc 2 0.234(6)(6) - - - - -
Lattice Zhang:2020gaj 2 0.244(30) - - - - -
Eq. (7)+Eq. (9) 1 0.303(19) 0.179(21) 0.128(16) 0.098(14) 0.082(20) -

To study the influence of the Borel parameters to the pionic DA moments in the Borel window, we listed the results ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} changed with Borel windows in Table 2. In which the ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} changed less than 10%10\% with the Borel windows, i.e. 4.1%,6.1%,8.6%,8.8%,7.1%4.1\%,~{}6.1\%,~{}8.6\%,~{}8.8\%,~{}7.1\% for n=(2,4,6,8,10)n=(2,4,6,8,10) respectively. Thus, the Borel windows for ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} are stable to the BFTSR. Furthermore, the five curves of pionic leading-twist DA moments, i.e. ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} for n=(2,4,6,8,10)n=(2,4,6,8,10) versus the Borel parameter M2M^{2} are shown in Fig. 2. The figure indicate that:

  • The curves for ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} changed sharply in the small Borel area especially for the M21GeV2M^{2}\rightsquigarrow 1~{}{\rm GeV^{2}}.

  • The values of ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} became small with the increasement for order nn.

  • The stable Borel parameter M2M^{2} for ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} become larger with the increase of nn.

After taking all uncertainty sources into consideration, and adopting the RGE of moments mentioned in the above subsection, the first five nonvanishing values of ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu}, i.e. n=(2,4,6,8,10)n=(2,4,6,8,10) within uncertainties coming from every input parameters are shown in Table 3. In which, the factorization scale are taken both the initial scale μ0\mu_{0} and typical scale μ=2GeV\mu=2~{}{\rm GeV}. As a deeper comparison, we also listed the Light-front Holographic with B=0B=0 and B1B\gg 1 Brodsky:2007hb ; Ahmady:2018muv , Playkurtic Stefanis:2014nla , LF Quark Model Choi:2007yu , QCD Sum Rules Ball:2004ye ; Chernyak:1983ej , Renormalon model Agaev:2005rc , Instanton vacuum Petrov:1998kg ; Nam:2006au , Non-Local Condensate (NLC) Sum Rules Bakulev:2001pa , Dyson-Schwinger [RL,DB] Chang:2013pq , Lattice Arthur:2010xf ; Braun:2015axa ; Braun:2006dg ; Bali:2017ude ; Bali:2019dqc ; Zhang:2020gaj . At the same time, we also provide the inverse moment x1|μ=01𝑑xx1ϕ2;π(x,μ)\langle x^{-1}\rangle|_{\mu}=\int_{0}^{1}dxx^{-1}\phi_{2;\pi}(x,\mu) in Table 3. In addition, in order to show the advantages of new sum rules formula (11), the values of ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} obtained by the formula combining Eq. (7) and Eq. (9) commonly used in literature is also listed in this table. From the table, we can get the conclusions,

Table 4: Comparison of the second and fourth Gegenbauer moments of the pion leading-twist DA with different methods.
Method           μ(GeV)\mu({\rm GeV})              a22;πa_{2}^{2;\pi}              a42;πa_{4}^{2;\pi}
BFTSR (This work) 1 0.206±0.0380.206\pm 0.038 0.047±0.0110.047\pm 0.011
BFTSR (This work) 2 0.157±0.0290.157\pm 0.029 0.032±0.0070.032\pm 0.007
Lattice Arthur:2010xf 2 0.233±0.0650.233\pm 0.065
Lattice Braun:2015axa 2 0.136±0.0210.136\pm 0.021
Lattice Bali:2019dqc 1 0.135±0.0320.135\pm 0.032
Lattice Bali:2019dqc 2 0.101±0.0230.101\pm 0.023
Sum rules Mikhailov:2016klg ; Stefanis:2020rnd 1 0.2030.057+0.0690.203^{+0.069}_{-0.057} 0.1430.087+0.094-0.143^{+0.094}_{-0.087}
Sum rules Mikhailov:2016klg ; Stefanis:2020rnd 2 0.1490.043+0.0520.149^{+0.052}_{-0.043} 0.0960.058+0.063-0.096^{+0.063}_{-0.058}
LCSR fitting Khodjamirian:2011ub 1 0.17±0.080.17\pm 0.08 0.06±0.100.06\pm 0.10
LCSR fitting Agaev:2010aq 2 0.0960.096
LCSR fitting Agaev:2012tm 2 0.0670.067
LCSR fitting Bruschini:2020voj 1 0.220.330.22-0.33 0.120.250.12-0.25
Dyson-Schwinger (RL) Chang:2013pq 2 0.233 0.1150.115
Dyson-Schwinger (DB) Chang:2013pq 2 0.1490.149 0.0800.080
Refer to caption
Refer to caption
Refer to caption
Figure 3: The pionic leading-twist DA curves in this work. For the panel-(a) and panel-(b), we present DS model Chang:2013pq , QCD/AdS model Ahmady:2018muv , the DAs by LFCQMdeMelo:2015yxk and LQCD Bali:2019dqc ; Zhang:2020gaj as a comparison. For the panel-(c), our LCHO model-IV at several typical energy scales e.g., μ=1,2,3,10,100GeV\mu=1,2,3,10,100~{}{\rm GeV} are given respectively.
  • Up to 10th-order accuracy, we provide a complete series results for ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} within uncertainties.

  • For the n=(2,4)n=(2,4) cases, our results have a good agreement with the DS model and Lattice results.

  • The inverse moment at μ=2GeV\mu=2~{}{\rm GeV} of our prediction is closely to the Playkurtic and NLC Sum Rules results.

  • Comparing the values in the first and last row, one can find that the differences between corresponding moments are about 12%12\%, 30%30\%, 47%47\%, 53%53\% and 64%64\% for n=2,4,6,8,10n=2,4,6,8,10, respectively. These ratios can be regarded as the accuracy improved by adopting new sum rules formula (11). At the same time, one can find that those differences increased with the increase of the order-nn. The reason is that the Borel window moves to the right with the increase of order-nn (see Table 2), and the deviation of the sum rule of 0th0^{\rm th} moment, Eq. (10), from normalization, increases with the increase of Borel parameter. The errors in the first row are significantly less than that in the last row. The reason is that the sum rules (11) can eliminate some systematic errors caused by the selection and determination of various input parameters. To calculate ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} by combining Eq. (7) and Eq. (9), we have required that the continuum state contributions are less than 45%45\%, 50%50\%, 50%50\%, 55%55\%, 55%55\%; and the dimension-six contributions are not more than 10%10\%, 15%15\%, 15%15\%, 15%15\%, 15%15\%, for the order-n=2,4,6,8,10n=2,4,6,8,10, respectively. Comparing the criterions adopted for sum rules (11) mentioned above, which are obviously much larger. This means that the sum rules (11) does eliminate some systematic errors caused by the continuum state and the absence of high dimensional condensates.

Moreover, considering the low reliability of high order Gegenbauer moments, we only give the values of the second and forth Gegenbauer moments in this paper, which are shown in Table 4.As a comparision, the values by QCD sum rules Mikhailov:2016klg ; Stefanis:2020rnd , Lattice Arthur:2010xf ; Braun:2015axa ; Bali:2019dqc , LCSR fitting Khodjamirian:2011ub ; Agaev:2010aq ; Agaev:2012tm ; Bruschini:2020voj and Dyson-Schwinger [RL,DB] Chang:2013pq are also present. In which, our predictions have agreement with the QCD sum rules, LCSR fitting and the Dyson-Schwinger equations predictions within errors.

III.3 The model parameters of the pionic leading-twist DA and applications

Combining the the normalization condition (16) and the sum rule (17) derived from π0γγ\pi^{0}\to\gamma\gamma decay amplitude, making use of the least square method mentioned in Sec.II to fit the values of moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} shown in Table 3, the parameters of our LCHO model-III can be obtained:

A2;π\displaystyle A_{2;\pi} =\displaystyle= 14.7999GeV1,\displaystyle 14.7999{\rm GeV}^{-1},
α2;π\displaystyle\alpha_{2;\pi} =\displaystyle= 0.158,\displaystyle-0.158,
β2;π\displaystyle\beta_{2;\pi} =\displaystyle= 0.920029GeV,\displaystyle 0.920029{\rm GeV}, (39)

with χmin2/nd=0.437236/4\chi^{2}_{\rm min}/n_{d}=0.437236/4, Pχmin2=0.979316P_{\chi^{2}_{\rm min}}=0.979316. The parameters of our LCHO model-IV are:

A2;π\displaystyle A_{2;\pi} =\displaystyle= 5.95481GeV1,\displaystyle 5.95481{\rm GeV}^{-1},
α2;π\displaystyle\alpha_{2;\pi} =\displaystyle= 0.717,\displaystyle-0.717,
a^22;π\displaystyle\hat{a}^{2;\pi}_{2} =\displaystyle= 0.125,\displaystyle-0.125,
β2;π\displaystyle\beta_{2;\pi} =\displaystyle= 0.937482GeV,\displaystyle 0.937482{\rm GeV}, (40)

with χmin2/nd=0.119251/3\chi^{2}_{\rm min}/n_{d}=0.119251/3, Pχmin2=0.989431P_{\chi^{2}_{\rm min}}=0.989431.

The curves of our prediction is shown in Figure 3. For comparison, DS model Chang:2013pq , QCD/AdS model with B=1B=1 Ahmady:2018muv , the DAs by the light-front constituent quark model (LFCQM)deMelo:2015yxk and LQCD Bali:2019dqc ; Zhang:2020gaj are also shown in Figure 3.

  • From the panel-(a) in Figure 3, one can find that our LCHO model-III is near flat in region x[0.2,0.8]x\in[0.2,0.8], and is a little wider than LCHO model-IV, both of them very close to the AdS/QCD model. With the model parameters of LCHO model-IV in Eq. (40), one can calculate the moments of DA, i.e. ξn2;πIV|μ0=(0.269,0.140,0.089,0.063,0.048)\langle\xi^{n}\rangle_{2;\pi}^{\rm IV}|_{\mu_{0}}=(0.269,0.140,0.089,0.063,0.048) for n=(2,4,6,8,10)n=(2,4,6,8,10), respectively. Those values are also very closely to the references results in Table 3.

  • By substituting our LCHO model-III with parameters in Eqs. (39) into Eq. (6), we can get ξn2;πIII|μ0=(0.275,0.142,0.089,0.062,0.046)\langle\xi^{n}\rangle_{2;\pi}^{\rm III}|_{\mu_{0}}=(0.275,0.142,0.089,0.062,0.046) for n=(2,4,6,8,10)n=(2,4,6,8,10), respectively. Compared our LCHO model-III with LCHO model-IV, the later is better, which will be used in the following discussion and calculation, and omitted the mark “IV”.

  • From the panel-(b) in Figure 3, one can find that, our LCHO model is narrower than DS model, wider than that by LFCQM, and closer to the LQCD result in Ref. Bali:2019dqc .

The pionic twist-2 DA behavior of our model at any other scale can be related to that of in initial scale by using the energy evolution equation Huang:2013yya , which are shown in the panel-(c) of Figure 3. One can find that,

  • Our LCHO model at μ0\mu_{0} is significantly broader than the asymptotic form.

  • With the increase of scale μ\mu, our pionic leading-twist DA model curve becomes narrower and closer to the asymptotic form. Especially, when the scale μ\mu is lower than 2GeV2~{}{\rm GeV}, our pionic leading-twist DA behavior is more sensitive to μ\mu, while when μ>2GeV\mu>2~{}{\rm GeV}, which is close to the asymptotic behavior and insensitive to the scale μ\mu.

  • In order to have a clear look at the changes of LCDA with factorization scale, one can set x=0.5x=0.5 and numerical results are ϕ2;πIV(x=0.5,μ)=(1.186,1.414,1.475,1.490,1.498)\phi_{2;\pi}^{\rm IV}(x=0.5,\mu)=(1.186,1.414,1.475,1.490,1.498) for μ=(1,2,3,10,100)GeV\mu=(1,2,3,10,100)~{}{\rm GeV} respectively.

Table 5: The model parameters of our LCHO model with φ2;πIV(x)\varphi_{2;\pi}^{\rm IV}(x) and the corresponding goodness-of-fit for several typical constituent quark mass mqm_{q}.
   mq(MeV)m_{q}({\rm MeV})    A2;π(GeV1)A_{2;\pi}(\rm GeV^{-1})    α2;π\alpha_{2;\pi}    B22;πB_{2}^{2;\pi}    β2;π(GeV)\beta_{2;\pi}({\rm GeV})    Pχmin2P_{\chi^{2}_{\rm min}}
   350350    2.247322.24732    1.382-1.382    0.115-0.115    0.6083170.608317    0.7979000.797900
   340340    2.409342.40934    1.330-1.330    0.115-0.115    0.6172490.617249    0.8243390.824339
   330330    2.551142.55114    1.286-1.286    0.116-0.116    0.6271460.627146    0.8488220.848822
   320320    2.705342.70534    1.242-1.242    0.117-0.117    0.6378090.637809    0.8711900.871190
   310310    2.926762.92676    1.186-1.186    0.116-0.116    0.6495530.649553    0.8914100.891410
   300300    3.105533.10553    1.143-1.143    0.117-0.117    0.6623780.662378    0.9094150.909415
   290290    3.323263.32326    1.095-1.095    0.117-0.117    0.6767660.676766    0.9252500.925250
   280280    3.528393.52839    1.053-1.053    0.118-0.118    0.6925430.692543    0.9389620.938962
   270270    3.821773.82177    0.999-0.999    0.117-0.117    0.7103130.710313    0.9506200.950620
   260260    4.145544.14554    0.945-0.945    0.116-0.116    0.7301850.730185    0.9603380.960338
   250250    4.451164.45116    0.898-0.898    0.116-0.116    0.7528790.752879    0.9683890.968389
   240240    4.796034.79603    0.850-0.850    0.116-0.116    0.7785650.778565    0.9748500.974850
   230230    5.212205.21220    0.797-0.797    0.115-0.115    0.8086900.808690    0.9799730.979973
   220220    5.630275.63027    0.749-0.749    0.115-0.115    0.8437510.843751    0.9839610.983961
   210210    5.851075.85107    0.726-0.726    0.119-0.119    0.8859350.885935    0.9871680.987168
   200200    5.954815.95481    0.717-0.717    0.125-0.125    0.9374820.937482    0.9894310.989431

As a further step, the sensitivity/goodness-of-fit for the behavior of our LCHO model φ2;πIV(x)\varphi_{2;\pi}^{\rm IV}(x) with the constituent quark mass, i.e. mq=(350,340,,200)GeVm_{q}=(350,340,\cdots,200){\rm GeV} are also been analyzed exhibited in Table 5, which indicate the value of goodness-of-fit increasing with the decrease of constituent quark mass. The Pχmin2P_{\chi^{2}_{\rm min}} will less than 0.9 when mq>300MeVm_{q}>300~{}{\rm MeV}. In order to more intuitively understand the impact of mqm_{q} on our ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu), the curves of our LCHO model for the pionic leading-twist DA ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu) at μ=1GeV\mu=1{\rm GeV} with the constituent quark mass mq=(200,250,300,350)MeVm_{q}=(200,250,300,350)~{}{\rm MeV} are shown in Figure 4. One can find that, with the increase of mqm_{q}, our model tends to the flat-like form.

Refer to caption
Figure 4: The curves of our LCHO model for the pionic leading-twist DA ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu) at μ=1GeV\mu=1{\rm GeV} with the constituent quark mass mq=200,250,300,350MeVm_{q}=200,250,300,350~{}{\rm MeV}, respectively.

Within the resultant LCHO model of our predictions, there also exist Jacobi factor kn/x\sqrt{{\partial k_{n}}/{\partial x}} contribute to the wave functions Choi:1997iq , which can be read off,

knx=M04xx¯[1(mq2mq¯2M02)2],\displaystyle\frac{\partial k_{n}}{\partial x}=\frac{M_{0}}{4x\bar{x}}\bigg{[}1-\bigg{(}\frac{m_{q}^{2}-m_{\bar{q}}^{2}}{M_{0}^{2}}\bigg{)}^{2}\bigg{]}, (41)

with M02=(k2+mq2)/x+(k2+mq¯2)/x¯M_{0}^{2}=(\textbf{k}_{\perp}^{2}+m_{q}^{2})/x+(\textbf{k}^{2}_{\perp}+m_{\bar{q}}^{2})/\bar{x}. Due to the invariant meson mass scheme Terentev:1976jk ; Jaus:1989au ; Jaus:1991cy ; Chung:1988mu ; Choi:1997qh ; Schlumpf:1994bc ; Cardarelli:1994yq , and one can take mq=mq¯m_{q}=m_{\bar{q}} for pion cases, then the spatial wave function would be

Ψ2;πR(x,k)=A2;πφ2;π(x)k2+mq24(xx¯)3/2exp[k2+mq28β2;π2xx¯],\displaystyle\Psi_{2;\pi}^{R}(x,\textbf{k}_{\perp})=A_{2;\pi}\varphi_{2;\pi}(x)\frac{\sqrt{\textbf{k}_{\perp}^{2}+m_{q}^{2}}}{4(x\bar{x})^{3/2}}\exp\left[-\frac{\textbf{k}_{\perp}^{2}+m_{q}^{2}}{8\beta_{2;\pi}^{2}x\bar{x}}\right],

Finally, we can get the expression of pionic twist-2 LCDA

ϕ2;π(x,μ)\displaystyle\phi_{2;\pi}(x,\mu) =3/2A2;πmqβ2;π2φ2;π(x)2π2fπxx¯exp[mq28β2;π2xx¯]\displaystyle=\frac{\sqrt{3/2}A_{2;\pi}m_{q}\beta_{2;\pi}^{2}\varphi_{2;\pi}(x)}{2\pi^{2}f_{\pi}\sqrt{x\bar{x}}}\exp\left[-\frac{m_{q}^{2}}{8\beta_{2;\pi}^{2}x\bar{x}}\right]
×{1exp[μ28β2;π2xx¯]}\displaystyle\times\left\{1-\exp\left[-\frac{\mu^{2}}{8\beta_{2;\pi}^{2}x\bar{x}}\right]\right\} (43)
Refer to caption
Refer to caption
Refer to caption
Figure 5: Comparison of two pionic leading-twist DA LCHO models with and without the Jacobi factor. Three plans are correspond to the constituent quark mass mq=200,250,300MeVm_{q}=200,250,300~{}{\rm MeV} respectively.

Then we can fit the values of the moments ξn2;π\langle\xi^{n}\rangle_{2;\pi} from the sum rules Eq. (11), by using the least square method with the above model. Comparing the behavior of the two pionic leading-twist DA LCHO model with the Jacobi factor and without the Jacobi factor, the difference between the two is not obvious, which are also shown in Figure 5.

As significant applications, we recalculate the pion-photon TFF Fπγ(Q2)F_{\pi\gamma}(Q^{2}) and the BπB\to\pi TFF f+Bπ(q2)f^{B\to\pi}_{+}(q^{2}) with our pionic leading-twist DA model. The pion-photon TFF Fπγ(Q2)F_{\pi\gamma}(Q^{2}) can be calculated with LCSR Mikhailov:2016klg ; Stefanis:2020rnd ; Mikhailov:2021znq and pQCD method Wu:2010zc ; Huang:2006wt . With pQCD method, Fπγ(Q2)F_{\pi\gamma}(Q^{2}) can be expressed as the sum of the valence quark part contribution Fπγ(V)(Q2)F^{(\rm V)}_{\pi\gamma}(Q^{2}) and the non-valence quark part contribution Fπγ(NV)(Q2)F^{({\rm NV})}_{\pi\gamma}(Q^{2}),

Fπγ(Q2)=Fπγ(V)(Q2)+Fπγ(NV)(Q2),\displaystyle F_{\pi\gamma}(Q^{2})=F^{(\rm V)}_{\pi\gamma}(Q^{2})+F^{(\rm NV)}_{\pi\gamma}(Q^{2}), (44)

where the corresponding analytical formula of Fπγ(V)(Q2)F^{(\rm V)}_{\pi\gamma}(Q^{2}) and Fπγ(NV)(Q2)F^{({\rm NV})}_{\pi\gamma}(Q^{2}) can be found in Refs. Wu:2010zc ; Huang:2006wt . Figure 6 show the curve of Q2Fπγ(Q2)Q^{2}F_{\pi\gamma}(Q^{2}) versus Q2Q^{2} by our pionic leading-twist DA model and the experimental data reported by CELLOBehrend:1990sr , CLEO CLEO ; Gronberg:1997fj , BaBar Aubert:2009mc and Belle Uehara:2012ag collaborations, and one can find that our prediction is consistent with the BELLE data in large Q2Q^{2} region.

Refer to caption
Figure 6: The pion-photon TFF Q2Fπγ(V)(Q2)Q^{2}F^{(V)}_{\pi\gamma}(Q^{2}) with our model. For comparison, the experimental data reported by CELLO Behrend:1990sr , CLEO CLEO ; Gronberg:1997fj , BaBar Aubert:2009mc and Belle Uehara:2012ag collaborations are shown.

Furthermore, as another important application for the pion twist-2 LCDA, the TFF for the BπB\to\pi decay processes should be analysis. We start with the following correlation function

Πμ(p,q)=id4xeiqxπ+(p)|T{jVμ(x),jB(0)}|0\displaystyle\Pi_{\mu}(p,q)=i\int d^{4}xe^{iq\cdot x}\langle\pi^{+}(p)|T\{j_{V}^{\mu}(x),j_{B}^{\dagger}(0)\}|0\rangle (45)

with jVμ(x)=u¯(x)γμ(1+γ5)b(x)j_{V}^{\mu}(x)=\bar{u}(x)\gamma_{\mu}(1+\gamma_{5})b(x). For the current of BB-meson jB(0)j_{B}^{\dagger}(0), we choice the right-handed current jB(0)=mbb(0)i(1+γ5)d(0)j_{B}^{\dagger}(0)=m_{b}b(0)i(1+\gamma_{5})d(0) which can highlight the twist-2, 4 DAs contributions, and the twist-3 DAs contributions vanished. By following the standard procedures of light-cone sum rule approach Huang:2001xb ; Duplancic:2008ix , we can get the BπB\to\pi TFF f+Bπ(q2)f_{+}^{B\to\pi}(q^{2}), reads

f+Bπ(q2)\displaystyle f_{+}^{B\to\pi}(q^{2}) =\displaystyle= emB2/M2mB2fB[F0(q2,M2,s0B)\displaystyle\frac{e^{m_{B}^{2}/M^{2}}}{m_{B}^{2}f_{B}}\left[F_{0}(q^{2},M^{2},s_{0}^{B})\right. (46)
+\displaystyle+ αsCF4πF1(q2,M2,s0B)],\displaystyle\left.\frac{\alpha_{s}C_{F}}{4\pi}F_{1}(q^{2},M^{2},s_{0}^{B})\right],

where CF=4/3C_{F}=4/3, mBm_{B} and fBf_{B} are the BB-meson mass and decay constant respectively, s0Bs_{0}^{B} is the continuum threshold. The LO contribution of the LCSR (46) is expressed as

F0(q2,M2,s0B)\displaystyle F_{0}(q^{2},M^{2},s_{0}^{B})
=mb2fπu01duemb2q2u¯uM2{ϕ2;π(u)u+1mb2q2\displaystyle\qquad=m_{b}^{2}f_{\pi}\int^{1}_{u_{0}}due^{-\frac{m_{b}^{2}-q^{2}\bar{u}}{uM^{2}}}\left\{\frac{\phi_{2;\pi}(u)}{u}+\frac{1}{m_{b}^{2}-q^{2}}\right.
×[mb2u4(mb2q2)d2ϕ4π(u)du2+uψ4π(u)\displaystyle\qquad\times\left[-\frac{m_{b}^{2}u}{4(m_{b}^{2}-q^{2})}\frac{d^{2}\phi_{4\pi}(u)}{du^{2}}+u\psi_{4\pi}(u)\right.
+0udvψ4π(v)I4π(u)]},\displaystyle\qquad+\left.\left.\int^{u}_{0}dv\psi_{4\pi}(v)-I_{4\pi}(u)\right]\right\}, (47)

and the NLO term of f+Bπ(q2)f^{B\to\pi}_{+}(q^{2}) is

F1(q2,M2,s0B)\displaystyle F_{1}(q^{2},M^{2},s_{0}^{B})
=fππmb2s0B𝑑ses/M201𝑑uImsT1(q2,s,u)ϕ2;π(u).\displaystyle\qquad=\frac{f_{\pi}}{\pi}\int^{s_{0}^{B}}_{m_{b}^{2}}dse^{-s/M^{2}}\int^{1}_{0}du{\rm Im}_{s}T_{1}(q^{2},s,u)\phi_{2;\pi}(u). (48)

Where mbm_{b} is the bb-quark mass, u¯=1u\bar{u}=1-u, u0=(mb2q2)/(s0Bq2)u_{0}=(m_{b}^{2}-q^{2})/(s_{0}^{B}-q^{2}), ϕ4π(u)\phi_{4\pi}(u) and ψ4π(u)\psi_{4\pi}(u) are the pionic twist-4 DAs, and I4π(u)I_{4\pi}(u) is the combination function of four pionic twist-4 DAs Ψ4π(u)\Psi_{4\pi}(u), Φ4π(u)\Phi_{4\pi}(u), Ψ~4π(u)\widetilde{\Psi}_{4\pi}(u) and Φ~4π(u)\widetilde{\Phi}_{4\pi}(u). For the expressions of those pionic twist-4 DAs, I4π(u)I_{4\pi}(u), and the imaginary part of the amplitude T1T_{1}, one can find in Ref. Duplancic:2008ix . By taking μ=3GeV\mu=3{\rm GeV}, M2=18±1GeV2M^{2}=18\pm 1{\rm GeV}^{2}, s0B=35.75±0.25GeV2s_{0}^{B}=35.75\pm 0.25{\rm GeV}^{2}, mB=5.279GeVm_{B}=5.279{\rm GeV}, fB=2145+7MeVf_{B}=214_{-5}^{+7}{\rm MeV} Duplancic:2008ix , we can obtain

f+Bπ(0)=0.2950.013+0.018.\displaystyle f_{+}^{B\to\pi}(0)=0.295^{+0.018}_{-0.013}. (49)

This value is consistent with other theoretical group Refs. Duplancic:2008ix ; Li:2012gr ; Imsong:2014oqa ; Khodjamirian:2017fxg by the conventional current correlation. The difference between the central value in Eq. (49) and the one in Ref. Duplancic:2008ix is mainly due to the difference in the selected correlation function. Comparing Eqs. (46) - (48) above with Eqs. (4.4), (4.5), (4.7) in Ref. Duplancic:2008ix , one can find that the contributions from pionic twist-3 DAs disappeared, while the contributions of pionic twist-2,4 DAs doubled. Then the difference between the twist-2 DA’s contribution and twist-3 DAs’ contributions in the LCSR with the conventional current correlation can be used as the system error caused by adopted the chiral current correlation function.

IV summary

In this paper, we have improved the traditional LCHO model of pionic leading-twist DA ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu) by introducing a new WF’s longitudinal DA, i.e., φ2;πIV\varphi_{2;\pi}^{\rm IV} in Eq. (21). At the same time, we have improved the method of determining the model parameters. More explicitly, the least square method is adopted to fit the moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} directly to determine the model parameters. This makes it necessary and meaningful to calculate higher-order moments. And we can obtain a stronger constraint on the DA behavior by including more moments.

We have adopted the QCD sum rules based on the BFT to calculate the moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu}, and the values of first five moments are ξ22;π|μ0=0.271±0.013\langle\xi^{2}\rangle_{2;\pi}|_{\mu_{0}}=0.271\pm 0.013, ξ42;π|μ0=0.138±0.010\langle\xi^{4}\rangle_{2;\pi}|_{\mu_{0}}=0.138\pm 0.010, ξ62;π|μ0=0.087±0.008\langle\xi^{6}\rangle_{2;\pi}|_{\mu_{0}}=0.087\pm 0.008, ξ82;π|μ0=0.064±0.007\langle\xi^{8}\rangle_{2;\pi}|_{\mu_{0}}=0.064\pm 0.007, ξ102;π|μ0=0.050±0.006\langle\xi^{10}\rangle_{2;\pi}|_{\mu_{0}}=0.050\pm 0.006, respectively. Based on those values, we obtain the behavior of ϕ2;π(x,μ)\phi_{2;\pi}(x,\mu), that is, Eqs. (15), (21) and (40).

Compared with our previous work, in addition to the improvement of the LCHO model, there are three improvements: i) The moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu}, rather than the Gegenbauer moments an2;π(μ)a^{2;\pi}_{n}(\mu), are used as constraint conditions to determine the model parameters; ii) The least square method is used to fit the moments ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} to get the appropriate model parameters; iii) We take Eq. (11) rather than Eq. (7) as the sum rules of ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu}, which can avoid the error caused by non normalized 0th0^{\rm th} moment ξ02;π|μ\langle\xi^{0}\rangle_{2;\pi}|_{\mu} on the left side of Eq. (7), and make the accuracy of the resulted values of ξn2;π|μ\langle\xi^{n}\rangle_{2;\pi}|_{\mu} to be increased by more than 10%10\%. Those improvements can be widely used to QCD sum rules studies of other meson DA to obtain more accurate DA’s behavior.

As an application, we have taken our model to calculate the pion-photon TFF Fπγ(Q2)F_{\pi\gamma}(Q^{2}) which are shown in Figure 6. Our results agree with the Belle predictions at large Q2Q^{2}-region. Meanwhile, the BπB\to\pi TFF f+Bπ(q2)f^{B\to\pi}_{+}(q^{2}) has been calculated up to NLO accuracy, which agrees with other theoretical predictions.

V Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant No.11765007, No.11875122, No.11625520, No.11947406 and No.12047564, the Project of Guizhou Provincial Department of Science and Technology under Grant No.KY[2019]1171, and No.ZK[2021]024, the Project of Guizhou Provincial Department of Education under Grant No.KY[2021]030, the Chongqing Graduate Research and Innovation Foundation under Grant No.ydstd1912, the Fundamental Research Funds for the Central Universities under Grant No.2020CQJQY-Z003, the Project of Guizhou Minzu University under Grant No. GZMU[2019]YB19.

References