This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

An Inversion Formula for Horizontal Conical Radon Transform

Duy N. Nguyen111High School for the Gifted, Ho Chi Minh City, Vietnam. Email: nnduy@ptnk.edu.vn. Β  and Linh V. Nguyen222University of Idaho, 875 Perimeter Dr, Moscow, ID 83844, USA. Email: lnguyen@uidaho.edu.
Abstract

In this paper, we consider the conical Radon transform on all cones with horizontal central axis whose vertices are on a straight line. We derive an explicit inversion formula for such transform. The inversion makes use of the vertical slice transform on a sphere and V-line transform on a plane.

1 Introduction

Let us denote by π’ž\mathscr{C} the set all cones in ℝn\mathbb{R}^{n}. Then, a (weighted) conical Radon transform of a function f∈Cβˆžβ€‹(ℝn)f\in C^{\infty}(\mathbb{R}^{n}) is the function 𝐓​(f):β„³βŠ‚π’žβ†’β„\mathbf{T}(f):\mathcal{M}\subset\mathscr{C}\to\mathbb{R} defined by

𝐓​(f)​(𝐜)=∫𝐜f​(x)​w​(x,𝐜)​𝑑σ​(x),cβˆˆβ„³,\mathbf{T}(f)(\mathbf{c})=\int_{\mathbf{c}}f(x)\,w(x,\mathbf{c})\,d\sigma(x),\quad c\in\mathcal{M},

where w​(x,𝐜)w(x,\mathbf{c}) is a positive smooth weight function. The conical Radon transform has been actively studied the thanks to its applications in Compton camera imaging (see, [6, 21]). In Compton camera imaging, one has to invert a conical Radon transform in order to find the interior image of a biological object from the measurement of Compton scattering.

In the two dimensional space (n=2n=2), the conical Radon transform becomes the V-line transform, which also arises in optical tomography [8]. There exist quite a few inversion formulas for the V-line transform (e.g. [3, 18, 23, 7, 2, 14]). In the three dimensional space (n=3n=3), π’ž\mathscr{C} is a six dimensional manifold and there are many practical choices of β„³\mathcal{M}. Taking advantage of redundancy, i.e. by choosing d​i​m​(β„³)>3dim(\mathcal{M})>3, was the topic of several works (see, e.g., [22, 16]). One, however, may wish to study the case d​i​m​(β„³)=3dim(\mathcal{M})=3 for the mathematical interest and practical setups for Compton camera imaging [5, 19, 1, 11, 17]. Several papers (e.g.,[10, 12, 22]) gave the inversion formula for conical transform in general dimensional space. We mention that using spherical harmonics to compute series solutions is also a popular approach for inversion (see, e.g., [4, 15, 20]).

Refer to caption
Figure 1: Our setups: the conical Radon transform over all cones with horizontal central line and the vertex in z-axis.

In this paper, we aim to reconstruct a function f∈Cβˆžβ€‹(ℝ3)f\in C^{\infty}(\mathbb{R}^{3}) from all cones whose vertices are in a vertical line and central lines are horizontal, see Fig.Β 1. The manifold β„³\mathcal{M} of such cones is of three dimensions. This formulation corresponds to the Compton camera imaging with detectors on a line.

Let us now describe the problem in more detail. We introduce the following notations: b​(z)=(0,0,z)βˆˆβ„3b\left(z\right)=\left(0,0,z\right)\in\mathbb{R}^{3} be a point in the zz-axis, eΟ†:=(cos⁑φ,sin⁑φ,0){{e}_{\varphi}}:=\left(\cos\varphi,\sin\varphi,0\right) is a horizontal unit vector in the x​y​zxyz-space, and

πœβ€‹(z,Ξ²,ψ):={b​(z)+r​ω|rβ‰₯0,Ο‰βˆˆπ•Š2,eΞ²β‹…Ο‰=cos⁑ψ}\mathbf{c}\left(z,\beta,\psi\right):=\left\{b\left(z\right)+r\omega|r\geq 0,\omega\in{{\mathbb{S}}^{2}},{{e}_{\beta}}\cdot\omega=\cos\psi\right\}

is the one-side circular cone, having vertex b​(z)b\left(z\right) and the symmetry axis {b​(z)+rβ‹…eΞ²|r>0}\left\{b(z)+r\cdot{{e}_{\beta}}|r>0\right\}.

We define our (weighted) conical Radon transform of a function f∈C0βˆžβ€‹(ℝ3)f\in C_{0}^{\infty}\left(\mathbb{R}^{3}\right) as follows.

𝐓k​(f)\displaystyle\mathbf{T}_{k}(f) :\displaystyle: ℝ×[0,2​π)Γ—(0,Ο€2)βŸΆβ„,\displaystyle\mathbb{R}\times\left[0,2\pi\right)\times\left(0,\frac{\pi}{2}\right)\longrightarrow\mathbb{R},
(z,Ξ²,ψ)βŸΌβˆ«πœβ€‹(z,Ξ²,ψ)f​(x)​‖xβˆ’b​(z)β€–kβˆ’1​𝑑S​(x),\displaystyle\left(z,\beta,\psi\right)\longmapsto\int\limits_{\mathbf{c}\left(z,\beta,\psi\right)}{f\left(x\right){{\left\|x-b\left(z\right)\right\|}^{k-1}}dS\left(x\right)},

where kβˆˆβ„•k\in\mathbb{N} is fixed. In this paper, we investigate the inversion of 𝐓k\mathbf{T}_{k}.

2 The main results

In order to invert the conical introduced in the previous section, we introduce the weighted X-ray and vertical slice transforms.

Definition 2.1 (The weighted X-Ray transform).

Let kβˆˆβ„•k\in\mathbb{N} and f∈C0βˆžβ€‹(ℝ3)f\in C_{0}^{\infty}\left({\mathbb{R}^{3}}\right). We define the weighted X-Ray transform

Ο‡k​f\displaystyle{{\chi}_{k}}f :\displaystyle: ℝ×(ℝ3\{0})βŸΆβ„,\displaystyle\mathbb{R}\times({{\mathbb{R}}^{3}}\backslash\left\{0\right\})\longrightarrow\mathbb{R},
(z,Ο‰)\displaystyle\left(z,\omega\right) ⟼\displaystyle\longmapsto ∫0∞f​(b​(z)+r​ω)​rk​𝑑r.\displaystyle\int\limits_{0}^{\infty}{f\left(b\left(z\right)+r\omega\right){{r}^{k}}dr}.

The weighted X-ray transform has been used in inverting the conical transform in other setups [17].

Definition 2.2 (The vertical slice transform).

Let g∈C0βˆžβ€‹(π•Š2)g\in C_{0}^{\infty}\left(\mathbb{S}^{2}\right). We define the transform Γ​g:[0,2​π)Γ—β„βŸΆβ„\Gamma g:\left[0,2\pi\right)\times\mathbb{R}\longrightarrow\mathbb{R} by the formula

Γ​g​(Ο†,t)={12​π​1βˆ’t2β€‹βˆ«eΟ†β‹…Ο‰=tg​(Ο‰)​𝑑ω,Β forΒ βˆ’1<t<1,g​(Β±eΟ†),Β for ​t=Β±1,0,Β for ​|t|>1.\displaystyle\Gamma g\left(\varphi,t\right)=\left\{\begin{array}[]{l}\frac{1}{2\pi\sqrt{1-{{t}^{2}}}}\int\limits_{{{e}_{\varphi}}\cdot\omega=t}{g\left(\omega\right)\,d\omega},\mbox{ for }-1<t<1,\\[12.0pt] g\left(\pm e_{\varphi}\right),\mbox{ for }t=\pm 1,\\[6.0pt] 0,\mbox{ for }|t|>1.\end{array}\right.

Vertical slice transform was investigated Gindikin [9]. It has the following inversion formula (see [9, Theorem 2.1]):

Theorem 2.3.

Let Ο‰βˆˆπ•Š2\omega\in\mathbb{S}^{2} and g:C​(π•Š2)βŸΆβ„g:C(\mathbb{S}^{2})\longrightarrow\mathbb{R} is even in the third coordinate. Then

g​(Ο‰)=βˆ’1βˆ’Ο‰12βˆ’Ο‰224β€‹Ο€β€‹βˆ«βˆ’βˆž+∞1tβ€‹βˆ«02β€‹Ο€βˆ‚βˆ‚t​Γ​g​(Ο†,Ο‰1​cos⁑φ+Ο‰2​sin⁑φ+t)​𝑑φ​𝑑t.g\left(\omega\right)=\dfrac{-\sqrt{1-\omega_{1}^{2}-\omega_{2}^{2}}}{4\pi}\int\limits_{-\infty}^{+\infty}\dfrac{1}{t}\int\limits_{0}^{2\pi}\dfrac{\partial}{\partial t}\Gamma g\left(\varphi,\omega_{1}\cos\varphi+\omega_{2}\sin\varphi+t\right)\,d\varphi\,dt. (2)

The following lemma gives us the relationship between the weighted XX-ray, the weighted conical Radon, and the vertical slice transforms:

Lemma 2.4.

For every kβˆˆβ„•k\in\mathbb{N} and f∈C0βˆžβ€‹(ℝ3)f\in C_{0}^{\infty}\left(\mathbb{R}^{3}\right), zβˆˆβ„,β∈[0,2​π),ψ∈(0,Ο€)z\in\mathbb{R},\beta\in\left[0,2\pi\right),\psi\in\left(0,\pi\right) then

Γ​(Ο‡k​f)​(z,Ξ²,cos⁑ψ)=𝐓k​(f)​(z,Ξ²,ψ)2​π​sin2⁑ψ.\Gamma\left(\chi_{k}f\right)\left(z,\beta,\cos\psi\right)=\dfrac{\mathbf{T}_{k}(f)\left(z,\beta,\psi\right)}{2\pi\sin^{2}\psi}. (3)

In the lemma, we have used the notation Γ​(Ο‡k​f)​(z,β‹…)\Gamma(\chi_{k}f)(z,\cdot) for the vertical slice transform of Ο‡k​f​(z,β‹…)\chi_{k}f(z,\cdot). Let us now prove the lemma.

Proof.

We have

𝐓k​(f)​(z,Ξ²,ψ)\displaystyle\mathbf{T}_{k}(f)\left(z,\beta,\psi\right) =βˆ«πœβ€‹(Ο†,z,Ξ²,ψ)f​(x)​‖xβˆ’b​(z)β€–kβˆ’1​𝑑σ​(x)=sinβ‘Οˆβ€‹βˆ«π•Š2∫0∞f​(b​(z)+r​ω)​rk​δ​(eΞ²β‹…Ο‰βˆ’cos⁑ψ)​𝑑r​𝑑σ​(Ο‰)\displaystyle=\int\limits_{\mathbf{c}\left(\varphi,z,\beta,\psi\right)}{f\left(x\right){{\left\|x-b\left(z\right)\right\|}^{k-1}}\,d\sigma\left(x\right)}=\sin\psi\int\limits_{{\mathbb{S}^{2}}}{\int\limits_{0}^{\infty}{f\left(b\left(z\right)+r\omega\right){{r}^{k}}\delta\left({{e}_{\beta}}\cdot\omega-\cos\psi\right)\,dr\,d\sigma\left(\omega\right)}}
=sinβ‘Οˆβ€‹βˆ«π•Š2Ο‡k​f​(z,Ο‰)​δ​(eΞ²β‹…Ο‰βˆ’cos⁑ψ)​𝑑S​(Ο‰)=2​π​sin2⁑(ψ)​Γ​(Ο‡k​f)​(z,Ξ²,cos⁑ψ).\displaystyle=\sin\psi\int\limits_{{{\mathbb{S}}^{2}}}{{{\chi}_{k}}f\left(z,\omega\right)\delta\left({{e}_{\beta}}\cdot\omega-\cos\psi\right)dS\left(\omega\right)}=2\pi{{\sin}^{2}}\left(\psi\right)\Gamma\left(\chi_{k}f\right)\left(z,\beta,\cos\psi\right).

This finishes the proof. ∎

For any Ο‰=(Ο‰1,Ο‰2,Ο‰3)βˆˆβ„3\omega=\left(\omega_{1},\omega_{2},\omega_{3}\right)\in\mathbb{R}^{3}, we define the even and odd parts of the function Ο‡k​f\chi_{k}f as follows:

(Ο‡k​f)e​(z,Ο‰)\displaystyle(\chi_{k}f)_{e}\left(z,\omega\right) =\displaystyle= Ο‡k​f​(z,Ο‰1,Ο‰2,Ο‰3)+Ο‡k​f​(z,Ο‰1,Ο‰2,βˆ’Ο‰3)2,\displaystyle\dfrac{\chi_{k}f\left(z,\omega_{1},\omega_{2},\omega_{3}\right)+\chi_{k}f\left(z,\omega_{1},\omega_{2},-\omega_{3}\right)}{2},
(Ο‡k​f)o​(z,Ο‰)\displaystyle(\chi_{k}f)_{o}\left(z,\omega\right) =\displaystyle= Ο‡k​f​(z,Ο‰1,Ο‰2,Ο‰3)βˆ’Ο‡k​f​(z,Ο‰1,Ο‰2,βˆ’Ο‰3)2.\displaystyle\dfrac{\chi_{k}f\left(z,\omega_{1},\omega_{2},\omega_{3}\right)-\chi_{k}f\left(z,\omega_{1},\omega_{2},-\omega_{3}\right)}{2}.

Notice that Ο‡k​f​(z,Ο‰)=(Ο‡k​f)e​(z,Ο‰)+(Ο‡k​f)o​(z,Ο‰)\chi_{k}f\left(z,\omega\right)=(\chi_{k}f)_{e}\left(z,\omega\right)+(\chi_{k}f)_{o}\left(z,\omega\right). Since all the circles appearing in the vertical slice transform are symmetric with respect to the x​yxy-plane and (Ο‡k​f)o(\chi_{k}f)_{o} is an odd function in the third coordinate, Γ​(Ο‡k​fo)≑0\Gamma(\chi_{k}f_{o})\equiv 0. Therefore, from LemmaΒ 2.4, we obtain

Γ​(Ο‡k​f)e​(z,Ξ²,cos⁑ψ)=Γ​(Ο‡k​f)​(z,Ξ²,cos⁑ψ)=𝐓k​(f)​(z,Ξ²,ψ)2​π​sin2⁑ψ.\Gamma(\chi_{k}f)_{e}\left(z,\beta,\cos\psi\right)=\Gamma(\chi_{k}f)\left(z,\beta,\cos\psi\right)=\dfrac{\mathbf{T}_{k}(f)\left(z,\beta,\psi\right)}{2\pi\,{{\sin}^{2}}\psi}. (4)

Let a​(Ο†,Ξ·):=(cos⁑φ​sin⁑η,sin⁑φ​sin⁑η,cos⁑η)βˆˆπ•Š2a\left(\varphi,\eta\right):=\left(\cos\varphi\sin\eta,\sin\varphi\sin\eta,\cos\eta\right)\in{{\mathbb{S}}^{2}} be the unit vector in ℝ3\mathbb{R}^{3} determined by the horizontal angle Ο†\varphi and vertical angle Ξ·\eta. We denote (Ο‡k​f)e​(z,Ο†,Ξ·)=(Ο‡k​f)e​(z,a​(Ο†,Ξ·))(\chi_{k}f)_{e}\left(z,\varphi,\eta\right)=(\chi_{k}f)_{e}\left(z,a\left(\varphi,\eta\right)\right), then:

Lemma 2.5.

For kβˆˆβ„•k\in\mathbb{N}, f∈C0βˆžβ€‹(ℝ3)f\in C_{0}^{\infty}\left(\mathbb{R}^{3}\right), zβˆˆβ„z\in\mathbb{R}, Ο†βˆˆ[0,2​π]\varphi\in\left[0,2\pi\right], η∈(0,Ο€)\eta\in\left(0,\pi\right),

(Ο‡0​f)e\displaystyle(\chi_{0}f)_{e} (z,Ο†,Ξ·)=18​π2​(kβˆ’1)!β€‹βˆ«Ξ·Ο€sinkβˆ’1⁑(Ξ³βˆ’Ξ·)sink⁑η​|cos⁑γ|\displaystyle\left(z,\varphi,\eta\right)=\dfrac{1}{8\pi^{2}(k-1)!}\int\limits_{\eta}^{\pi}\dfrac{\sin^{k-1}\left(\gamma-\eta\right)}{\sin^{k}\eta}\left|\cos\gamma\right|
Γ—{∫02​π[∫0Ο€1cosβ‘Οˆβˆ’sin⁑γ​cos⁑(Ξ²βˆ’Ο†)β€‹βˆ‚zk(βˆ‚βˆ‚Οˆβ€‹(𝐓k​f​(z,Ξ²,ψ)sin2⁑ψ))​dβ€‹Οˆ]​𝑑β}​d​γ.\displaystyle\times\left\{\int\limits_{0}^{2\pi}\left[\int\limits_{0}^{\pi}\dfrac{1}{\cos\psi-\sin\gamma\cos\left(\beta-\varphi\right)}\partial_{z}^{k}\left(\dfrac{\partial}{\partial\psi}\left(\dfrac{\mathbf{T}_{k}f\left(z,\beta,\psi\right)}{\sin^{2}\psi}\right)\right)d\psi\right]d\beta\right\}d\gamma. (5)
Proof.

Since (Ο‡k​f)e(\chi_{k}f)_{e} is even in the third coordinate, applying LemmaΒ 2.4 and Theorem 2.3, we obtain

(Ο‡k​f)e​(z,Ο‰)\displaystyle(\chi_{k}f)_{e}\left(z,\omega\right) =βˆ’1βˆ’Ο‰12βˆ’Ο‰224β€‹Ο€β€‹βˆ«βˆ’βˆž+∞1qβ€‹βˆ«02β€‹Ο€βˆ‚βˆ‚q​Γ​(Ο‡k​fe)​(z,Ξ²,Ο‰1​cos⁑β+Ο‰2​sin⁑β+q)​𝑑β​𝑑q.\displaystyle=\dfrac{-\sqrt{1-\omega_{1}^{2}-\omega_{2}^{2}}}{4\pi}\int\limits_{-\infty}^{+\infty}\dfrac{1}{q}\int\limits_{0}^{2\pi}\dfrac{\partial}{\partial q}\Gamma\left(\chi_{k}f_{e}\right)\left(z,\beta,\omega_{1}\cos\beta+\omega_{2}\sin\beta+q\right)d\beta dq.

For any Ο‰βˆˆπ•Š2\omega\in{\mathbb{S}}^{2}, we can write Ο‰=a​(Ο†,Ξ·)=(sin⁑η​cos⁑φ,sin⁑η​sin⁑φ,cos⁑η)\omega=a(\varphi,\eta)=\left(\sin\eta\cos\varphi,\sin\eta\sin\varphi,\cos\eta\right). Therefore,

(Ο‡k​f)e​(z,Ο‰)\displaystyle(\chi_{k}f)_{e}\left(z,\omega\right) =βˆ’1βˆ’sin2⁑η4β€‹Ο€β€‹βˆ«02β€‹Ο€βˆ«βˆ’βˆž+∞1qβ€‹βˆ‚βˆ‚q​Γ​(Ο‡k​fe)​(z,Ξ²,sin⁑η​cos⁑(Ξ²βˆ’Ο†)+q)​𝑑q​𝑑β.\displaystyle=\dfrac{-\sqrt{1-\sin^{2}\eta}}{4\pi}\int\limits_{0}^{2\pi}\int\limits_{-\infty}^{+\infty}\dfrac{1}{q}\dfrac{\partial}{\partial q}\Gamma\left(\chi_{k}f_{e}\right)\left(z,\beta,\sin\eta\cos\left(\beta-\varphi\right)+q\right)dqd\beta.

Since Ξ“(Ο‡kf)e(.,t)=0\Gamma(\chi_{k}f)_{e}\left(.,t\right)=0 when |t|>1|t|>1, we only need to consider when the third variable in the integrand is in the interval [βˆ’1,1][-1,1]. We, hence, can define cos⁑ψ=sin⁑η​cos⁑(Ξ²βˆ’Ο†)+q\cos\psi=\sin\eta\cos\left(\beta-\varphi\right)+q for some ψ∈[0,Ο€]\psi\in[0,\pi]. We arrive at

(Ο‡k​f)e​(z,Ο†,Ξ·)\displaystyle(\chi_{k}f)_{e}\left(z,\varphi,\eta\right) =|cos⁑η|4β€‹Ο€β€‹βˆ«02β€‹Ο€βˆ«0Ο€1cosβ‘Οˆβˆ’sin⁑η​cos⁑(Ξ²βˆ’Ο†)β€‹βˆ‚βˆ‚Οˆβ€‹Ξ“β€‹(Ο‡k​fe)​(z,Ξ²,cos⁑ψ)β€‹π‘‘Οˆβ€‹π‘‘Ξ².\displaystyle=\dfrac{\left|\cos\eta\right|}{4\pi}\int\limits_{0}^{2\pi}\int\limits_{0}^{\pi}\dfrac{1}{\cos\psi-\sin\eta\cos\left(\beta-\varphi\right)}\dfrac{\partial}{\partial\psi}\Gamma\left(\chi_{k}f_{e}\right)\left(z,\beta,\cos\psi\right)d\psi d\beta.

Using (4), we deduce

(Ο‡k​f)e​(z,Ο†,Ξ·)\displaystyle(\chi_{k}f)_{e}\left(z,\varphi,\eta\right) =|cos⁑η|4β€‹Ο€β€‹βˆ«02β€‹Ο€βˆ«0Ο€1cosβ‘Οˆβˆ’sin⁑η​cos⁑(Ξ²βˆ’Ο†)β€‹βˆ‚βˆ‚Οˆβ€‹(𝐓k​(f)​(z,Ξ²,ψ)2​π​sin2⁑ψ)β€‹π‘‘Οˆβ€‹π‘‘Ξ².\displaystyle=\dfrac{\left|\cos\eta\right|}{4\pi}\int\limits_{0}^{2\pi}\int\limits_{0}^{\pi}\dfrac{1}{\cos\psi-\sin\eta\cos\left(\beta-\varphi\right)}\dfrac{\partial}{\partial\psi}\left(\dfrac{\mathbf{T}_{k}(f)\left(z,\beta,\psi\right)}{2\pi\sin^{2}\psi}\right)d\psi d\beta.

On the other hand (see, e.g., [17]),

(Ο‡0​f)e​(z,Ο‰1,Ο‰2,Ο‰3)\displaystyle(\chi_{0}f)_{e}\left(z,\omega_{1},\omega_{2},\omega_{3}\right) =1(kβˆ’1)!β€‹βˆ«βˆ’βˆžΟ‰3(Ο‰3βˆ’s)kβˆ’1β€‹βˆ‚zk(Ο‡k​fe)​(z,Ο‰1,Ο‰2,s)​d​s\displaystyle=\dfrac{1}{(k-1)!}\int\limits_{-\infty}^{\omega_{3}}\left(\omega_{3}-s\right)^{k-1}\partial_{z}^{k}\left(\chi_{k}f_{e}\right)\left(z,\omega_{1},\omega_{2},s\right)ds
=1(kβˆ’1)!β€‹βˆ«βˆ’βˆžΟ‰3(Ο‰3βˆ’s)kβˆ’1β€‹βˆ‚zk(Ο‡k​fe)​(z,(Ο‰1,Ο‰2,sh))​hβˆ’(k+1)​d​s,\displaystyle=\dfrac{1}{(k-1)!}\int\limits_{-\infty}^{\omega_{3}}\left(\omega_{3}-s\right)^{k-1}\partial_{z}^{k}\left(\chi_{k}f_{e}\right)\left(z,\left(\dfrac{\omega_{1},\omega_{2},s}{h}\right)\right)h^{-(k+1)}ds,

for any h>0h>0.

Let us change the variable sβ†’Ξ³s\to\gamma by the formula s=cot⁑γ​sin⁑η,γ∈(0,Ο€)s=\cot\gamma\sin\eta,\,\gamma\in\left(0,\pi\right). Then, d​s=βˆ’sin⁑ηsin2⁑γ​d​γds=\dfrac{-\sin\eta}{\sin^{2}\gamma}d\gamma. Choosing h=sin⁑ηsin⁑γh=\dfrac{\sin\eta}{\sin\gamma},

(Ο‡0​f)e​(z,Ο†,Ξ·)=\displaystyle(\chi_{0}f)_{e}\left(z,\varphi,\eta\right)= 1(kβˆ’1)!β€‹βˆ«Ξ·Ο€(cosβ‘Ξ·βˆ’sin⁑η​cot⁑γ)kβˆ’1β€‹βˆ‚zk(Ο‡k​fe)​(z,(sin⁑γ​θ​(Ο†),cos⁑γ))​(sin⁑γsin⁑η)k+1​sin⁑ηsin2⁑γ​d​γ\displaystyle\dfrac{1}{(k-1)!}\int\limits_{\eta}^{\pi}\left(\cos\eta-\sin\eta\cot\gamma\right)^{k-1}\partial_{z}^{k}\left(\chi_{k}f_{e}\right)\left(z,\left(\sin\gamma\theta\left(\varphi\right),\cos\gamma\right)\right)\left(\dfrac{\sin\gamma}{\sin\eta}\right)^{k+1}\dfrac{\sin\eta}{\sin^{2}\gamma}d\gamma
=\displaystyle= 1(kβˆ’1)!β€‹βˆ«Ξ·Ο€sinkβˆ’1⁑(Ξ³βˆ’Ξ·)sinkβ‘Ξ·β€‹βˆ‚zk(Ο‡k​fe)​(z,(sin⁑γ​θ​(Ο†),cos⁑γ))​d​γ\displaystyle\dfrac{1}{(k-1)!}\int\limits_{\eta}^{\pi}\dfrac{\sin^{k-1}\left(\gamma-\eta\right)}{\sin^{k}\eta}\partial_{z}^{k}\left(\chi_{k}f_{e}\right)\left(z,\left(\sin\gamma\theta\left(\varphi\right),\cos\gamma\right)\right)d\gamma
=\displaystyle= 1(kβˆ’1)!β€‹βˆ«Ξ·Ο€sinkβˆ’1⁑(Ξ³βˆ’Ξ·)sink⁑η\displaystyle\dfrac{1}{(k-1)!}\int\limits_{\eta}^{\pi}\dfrac{\sin^{k-1}\left(\gamma-\eta\right)}{\sin^{k}\eta}
Γ—βˆ‚zk{|cos⁑γ|4β€‹Ο€βˆ«02β€‹Ο€βˆ«0Ο€1cosβ‘Οˆβˆ’sin⁑γ​cos⁑(Ξ²βˆ’Ο†)βˆ‚βˆ‚Οˆ(𝐓k​(f)​(z,Ξ²,ψ)2​π​sin2⁑ψ)dψdΞ²}dΞ³\displaystyle\times\partial_{z}^{k}\left\{\dfrac{\left|\cos\gamma\right|}{4\pi}\int\limits_{0}^{2\pi}\int\limits_{0}^{\pi}\dfrac{1}{\cos\psi-\sin\gamma\cos\left(\beta-\varphi\right)}\dfrac{\partial}{\partial\psi}\left(\dfrac{\mathbf{T}_{k}(f)\left(z,\beta,\psi\right)}{2\pi\sin^{2}\psi}\right)d\psi d\beta\right\}d\gamma
=\displaystyle= 18​π2​(kβˆ’1)!β€‹βˆ«Ξ·Ο€sinkβˆ’1⁑(Ξ³βˆ’Ξ·)sink⁑η​|cos⁑γ|\displaystyle\dfrac{1}{8\pi^{2}(k-1)!}\int\limits_{\eta}^{\pi}\dfrac{\sin^{k-1}\left(\gamma-\eta\right)}{\sin^{k}\eta}\left|\cos\gamma\right|
Γ—{∫02​π[∫0Ο€1cosβ‘Οˆβˆ’sin⁑γ​cos⁑(Ξ²βˆ’Ο†)β€‹βˆ‚zk(βˆ‚βˆ‚Οˆβ€‹(𝐓k​(f)​(z,Ξ²,ψ)sin2⁑ψ))​dβ€‹Οˆ]​𝑑β}​d​γ\displaystyle\times\left\{\int\limits_{0}^{2\pi}\left[\int\limits_{0}^{\pi}\dfrac{1}{\cos\psi-\sin\gamma\cos\left(\beta-\varphi\right)}\partial_{z}^{k}\left(\dfrac{\partial}{\partial\psi}\left(\dfrac{\mathbf{T}_{k}(f)\left(z,\beta,\psi\right)}{\sin^{2}\psi}\right)\right)d\psi\right]d\beta\right\}d\gamma

This finishes our proof. ∎

Let us note 2​(X0​f)e​(z,Ο†,Ξ·)2(X_{0}f)_{e}(z,\varphi,\eta) is the integral of ff along a V-line whose vertex is b​(z)b(z), each branch makes an angle Ξ·\eta to the horizontal plane and is the reflection of the other via the horizontal plane. We are now ready to compute the function ff in ℝ3\mathbb{R}^{3} from its conical transform in DefinitionΒ 2.1. To this end, we will decompose ℝ3\mathbb{R}^{3} into the union of half-planes ℍeβ†’\mathbb{H}_{\vec{e}}, where eβ†’\vec{e} is a horizontal unit vector. Here, ℍeβ†’\mathbb{H}_{\vec{e}} is the vertical half plane passing through the zz-axis and containing the unit vector eβ†’\vec{e}. We only need to compute ff on each such half-plane. On each such half-plane we are given the V-line transform of the function ff, which integrates ff over all V-lines with horizontal central axis whose vertices are on the boundary of ℍeβ†’\mathbb{H}_{\vec{e}}. The inversion such transform can be reduced to that of the X-ray transform (see [3]). The idea will be used in our proof below for TheoremΒ 2.6 below.

Theorem 2.6 (Inversion Formula of Conical Radon Transform).

For each xβˆˆβ„3x\in\mathbb{R}^{3}, we write x=(r​eΟ†,x3)x=\left(re_{\varphi},x_{3}\right) where rβ‰₯0r\geq 0 and Ο†βˆˆ[0,2​π)\varphi\in\left[0,2\pi\right). Then,

f​(x)\displaystyle f\left(x\right) =18​π4​(kβˆ’1)!β€‹βˆ«0Ο€βˆ«β„1r​cos⁑η+x3​sinβ‘Ξ·βˆ’p\displaystyle=\dfrac{1}{8\pi^{4}(k-1)!}\int\limits_{0}^{\pi}\int_{\mathbb{R}}\dfrac{1}{r\cos\eta+x_{3}\sin\eta-p}
Γ—{βˆ«Ξ·Ο€sinkβˆ’1⁑(Ξ³βˆ’Ξ·)|cos⁑γ|∫02​π[∫0Ο€βˆ‚pk+1[βˆ‚Οˆ(𝐓k​(f)​(p/sin⁑η,Ξ²,ψ)sin2⁑ψ)]cosβ‘Οˆβˆ’sin⁑γ​cos⁑(Ξ²βˆ’Ο†)β€‹π‘‘Οˆ]​𝑑β}​d​γ​d​p​d​η.\displaystyle\times\left\{\int\limits_{\eta}^{\pi}\sin^{k-1}\left(\gamma-\eta\right)|\cos\gamma|\int\limits_{0}^{2\pi}\left[\int\limits_{0}^{\pi}\dfrac{\partial_{p}^{k+1}\left[\partial_{\psi}\left(\dfrac{\mathbf{T}_{k}(f)\left(p/\sin\eta,\beta,\psi\right)}{\sin^{2}\psi}\right)\right]}{\cos\psi-\sin\gamma\cos\left(\beta-\varphi\right)}d\psi\right]d\beta\right\}\,d\gamma\,dp\,d\eta.
Proof.

Let ℍ\mathbb{H} be the vertical half-plane passing through the z-axis and the unit vector eβ†’=eΟ†\vec{e}=e_{\varphi}. For any xβˆˆβ„x\in\mathbb{H} then x=(r​θ​(Ο†),x3)x=\left(r\theta\left(\varphi\right),x_{3}\right). We define fβˆ—β€‹(r,x3)=f​(r​θ​(Ο†),x3),Β for ​rβ‰₯0f^{*}\left(r,x_{3}\right)=f\left(r\theta\left(\varphi\right),x_{3}\right),\mbox{ for }r\geq 0. We then extend fβˆ—f^{*} to the whole space (r,x3)βˆˆβ„2(r,x_{3})\in\mathbb{R}^{2} by the even reflection. Then, for any η∈(0,Ο€),pβˆˆβ„\eta\in(0,\pi),p\in\mathbb{R}, we have

(Ο‡0​f)e​(z,Ο†,Ξ·)=12β€‹βˆ«βˆ’βˆž+∞fβˆ—β€‹(r​sin⁑η,zβˆ’r​cos⁑η)​𝑑r=12​𝐑​(fβˆ—)​(Ξ·,z​sin⁑η).\displaystyle(\chi_{0}f)_{e}\left(z,\varphi,\eta\right)=\dfrac{1}{2}\int\limits_{-\infty}^{+\infty}f^{*}\left(r\sin\eta,z-r\cos\eta\right)dr=\dfrac{1}{2}\mathbf{R}(f^{*})\left(\eta,z\sin\eta\right).

Here, 𝐑\mathbf{R} denote the standard Radon transform in two dimensional space. Choosing z=psin⁑ηz=\dfrac{p}{\sin\eta}, then

𝐑​(fβˆ—)​(Ξ·,p)=2​(Ο‡0​f)e​(psin⁑η,Ο†,Ξ·),Β for ​0<Ξ·<Ο€.\mathbf{R}(f^{*})\left(\eta,p\right)=2(\chi_{0}f)_{e}\left(\dfrac{p}{\sin\eta},\varphi,\eta\right),\mbox{ for }0<\eta<\pi.

Since f∈C0βˆžβ€‹(ℝ3)f\in C_{0}^{\infty}\left(\mathbb{R}^{3}\right), the value of 𝐑​(fβˆ—)\mathbf{R}(f^{*}) at Ξ·=0,Ο€\eta=0,\pi can be computed by the continuous extension. Now, using the inversion of the Radon transform (see [13]) and Lemma 2.5, we conclude

fβˆ—β€‹(r,x3)\displaystyle f^{*}\left(r,x_{3}\right) =12​π2β€‹βˆ«0Ο€βˆ«β„βˆ‚p𝐑​fβˆ—β€‹(Ξ·,p)r​cos⁑η+x3​sinβ‘Ξ·βˆ’p​𝑑p​𝑑η=1Ο€2β€‹βˆ«0Ο€βˆ«β„βˆ‚p(Ο‡0​fe)​(psin⁑η,Ο†,Ξ·)r​cos⁑η+x3​sinβ‘Ξ·βˆ’p​𝑑p​𝑑η\displaystyle=\dfrac{1}{2\pi^{2}}\int\limits_{0}^{\pi}\int_{\mathbb{R}}\dfrac{\partial_{p}\mathbf{R}f^{*}\left(\eta,p\right)}{r\cos\eta+x_{3}\sin\eta-p}dpd\eta=\dfrac{1}{\pi^{2}}\int\limits_{0}^{\pi}\int_{\mathbb{R}}\dfrac{\partial_{p}\left(\chi_{0}f_{e}\right)\left(\dfrac{p}{\sin\eta},\varphi,\eta\right)}{r\cos\eta+x_{3}\sin\eta-p}dpd\eta
=18​π4​(kβˆ’1)!β€‹βˆ«0Ο€βˆ«β„1r​cos⁑η+x3​sinβ‘Ξ·βˆ’p\displaystyle=\dfrac{1}{8\pi^{4}(k-1)!}\int\limits_{0}^{\pi}\int_{\mathbb{R}}\dfrac{1}{r\cos\eta+x_{3}\sin\eta-p}
Γ—{βˆ«Ξ·Ο€sinkβˆ’1⁑(Ξ³βˆ’Ξ·)|cos⁑γ|∫02​π[∫0Ο€βˆ‚pk+1[βˆ‚Οˆ(𝐓k​(f)​(p/sin⁑η,Ξ²,ψ)sin2⁑ψ)]cosβ‘Οˆβˆ’sin⁑γ​cos⁑(Ξ²βˆ’Ο†)β€‹π‘‘Οˆ]​𝑑β}​d​γ​d​p​d​η.\displaystyle\times\left\{\int\limits_{\eta}^{\pi}\sin^{k-1}\left(\gamma-\eta\right)|\cos\gamma|\int\limits_{0}^{2\pi}\left[\int\limits_{0}^{\pi}\dfrac{\partial_{p}^{k+1}\left[\partial_{\psi}\left(\dfrac{\mathbf{T}_{k}(f)\left(p/\sin\eta,\beta,\psi\right)}{\sin^{2}\psi}\right)\right]}{\cos\psi-\sin\gamma\cos\left(\beta-\varphi\right)}d\psi\right]d\beta\right\}d\gamma dpd\eta.

This finishes our proof. ∎

Acknowlegement

Linh Nguyen’s research is partially supported by the NSF grants, DMS 1212125 and DMS 1616904.

References

  • [1] Moritz Allmaras, DavidΒ P Darrow, Yulia Hristova, Guido Kanschat, and Peter Kuchment. Detecting small low emission radiating sources. arXiv preprint arXiv:1012.3373, 2010.
  • [2] Gaik Ambartsoumian. Inversion of the v-line radon transform in a disc and its applications in imaging. Computers & Mathematics with Applications, 64(3):260–265, 2012.
  • [3] Roman Basko, GengshengΒ L Zeng, and GrantΒ T Gullberg. Analytical reconstruction formula for one-dimensional compton camera. IEEE Transactions on Nuclear Science, 44(3):1342–1346, 1997.
  • [4] Roman Basko, GengshengΒ L Zeng, and GrantΒ T Gullberg. Application of spherical harmonics to image reconstruction for the compton camera. Physics in Medicine & Biology, 43(4):887, 1998.
  • [5] MichaelΒ J Cree and PhilipΒ J Bones. Towards direct reconstruction from a gamma camera based on compton scattering. IEEE transactions on medical imaging, 13(2):398–407, 1994.
  • [6] DBΒ Everett, JSΒ Fleming, RWΒ Todd, and JMΒ Nightingale. Gamma-radiation imaging system based on the compton effect. In Proceedings of the Institution of Electrical Engineers, volume 124, pages 995–1000. IET, 1977.
  • [7] Lucia Florescu, VadimΒ A Markel, and JohnΒ C Schotland. Inversion formulas for the broken-ray radon transform. Inverse Problems, 27(2):025002, 2011.
  • [8] Lucia Florescu, JohnΒ C Schotland, and VadimΒ A Markel. Single-scattering optical tomography. Physical Review E, 79(3):036607, 2009.
  • [9] SΒ Gindikin, JΒ Reeds, and LΒ Shepp. Spherical tomography and spherical integral geometry. Tomography, Impedance Imaging, and Integral Geometry (South Hadley, MA, 1993), Lectures in Appl. Math, 30:83–92, 1994.
  • [10] Rim Gouia-Zarrad. Analytical reconstruction formula for n-dimensional conical radon transform. Computers & Mathematics with Applications, 68(9):1016–1023, 2014.
  • [11] Rim Gouia-Zarrad and Gaik Ambartsoumian. Exact inversion of the conical radon transform with a fixed opening angle. Inverse Problems, 30(4):045007, 2014.
  • [12] Markus Haltmeier. Exact reconstruction formulas for a radon transform over cones. Inverse Problems, 30(3):035001, 2014.
  • [13] Sigurdur Helgason and SΒ Helgason. The radon transform, volumeΒ 2. Springer, 1999.
  • [14] Yulia Hristova. Inversion of a v-line transform arising in emission tomography. Journal of Coupled Systems and Multiscale Dynamics, 3(3):272–277, 2015.
  • [15] Chang-Yeol Jung and Sunghwan Moon. Inversion formulas for cone transforms arising in application of compton cameras. Inverse Problems, 31(1):015006, 2015.
  • [16] Peter Kuchment and Fatma Terzioglu. Three-dimensional image reconstruction from compton camera data. SIAM Journal on Imaging Sciences, 9(4):1708–1725, 2016.
  • [17] Sunghwan Moon and Markus Haltmeier. Analytic inversion of a conical radon transform arising in application of compton cameras on the cylinder. SIAM Journal on imaging sciences, 10(2):535–557, 2017.
  • [18] Marcela Morvidone, MaΓ―Β Khuong Nguyen, TuongΒ T Truong, and Habib Zaidi. On the v-line radon transform and its imaging applications. Journal of Biomedical Imaging, 2010:11, 2010.
  • [19] MaiΒ K Nguyen, TuongΒ T Truong, and Pierre Grangeat. Radon transforms on a class of cones with fixed axis direction. Journal of Physics A: Mathematical and General, 38(37):8003, 2005.
  • [20] Daniela Schiefeneder and Markus Haltmeier. The radon transform over cones with vertices on the sphere and orthogonal axes. SIAM Journal on Applied Mathematics, 77(4):1335–1351, 2017.
  • [21] Manbir Singh. An electronically collimated gamma camera for single photon emission computed tomography. part i: Theoretical considerations and design criteria. Medical Physics, 10(4):421–427, 1983.
  • [22] Fatma Terzioglu. Some inversion formulas for the cone transform. Inverse Problems, 31(11):115010, 2015.
  • [23] TuongΒ T Truong and MaiΒ K Nguyen. On new v-line radon transforms in ℝ2\mathbb{R}^{2} and their inversion. Journal of Physics A: Mathematical and Theoretical, 44(7):075206, 2011.