This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\stackMath

myn theoremn]

Analysis 101:
Curves and Length

Garth Warner
Department of Mathematics
University of Washington
ABSTRACT

This is a systematic accounting of the classical theorems of Jordan and Tonelli, as well as an introduction to the theory of the Weierstrass integral which in its definitive form is due to Cesari. This is installment II of a four part discussion of certain aspects of Real Analysis: Functions of a Single Variable, Curves and Length, Functions of Several Variables, and Surfaces and Area.

ACKNOWLEDGEMENT

Many thanks to David Clark for his rendering the original transcript into AMS-LaTeX. Both of us also thank Judith Clare for her meticulous proofreading.

CURVES AND LENGTH

§1.  FUNDAMENTALS

§2.  ESTIMATES

§3.  EQUIVALENCES

§4.  FRÉCHET DISTANCE

§5.  THE REPRESENTATION THEOREM

§6.  INDUCED MEASURES

§7.  TWO THEOREMS

§8.  LINE INTEGRALS

§9.  QUASI ADDITIVITY

§10.  LINE INTEGRALS (bis)

§11.  EXAMPLES

REFERENCES

§\boldsymbol{\S}1. FUNDAMENTALS

myn1

NOTATION  Given

x¯=(x1,,xM)M(M=1,2,),\underline{x}=(x_{1},\ldots,x_{M})\in\mathbb{R}^{M}\quad(M=1,2,\ldots),

put

x¯=(x12++xM2)12,\left\lVert\underline{x}\right\rVert=(x_{1}^{2}+\ldots+x_{M}^{2})^{\frac{1}{2}},

hence

|xm|x¯|x1|++|xM|(m=1,,M).\left|x_{m}\right|\ \leq\ \left\lVert\underline{x}\right\rVert\ \leq\ \left|x_{1}\right|+\ldots+\left|x_{M}\right|\quad(m=1,\ldots,M).

myn2

DEFINITION  A function f¯:[a,b]M\underline{f}:[a,b]\rightarrow\mathbb{R}^{M} is said to be a curve CC, denoted Cf¯C\longleftrightarrow\underline{f}, where

f¯(x)=(f1(x),,fM(x))(axb).\underline{f}(x)=(f_{1}(x),\ldots,f_{M}(x))\quad(a\leq x\leq b).

myn3

EXAMPLE  Every function f:[a,b]f:[a,b]\rightarrow\mathbb{R} gives rise to a curve CC in 2\mathbb{R}^{2}, viz. the arrow

x(x,f(x)).x\rightarrow(x,f(x)).

myn4

DEFINITION  The graph of CC, denoted [C][C], is the range of f¯\underline{f}.

myn5

EXAMPLE  Take M=2M=2, let k=1,2,k=1,2,\ldots, and put

fk¯(x)=(sin2(kx),0)(0xπ2).\underline{f_{k}}(x)\ =\ \left(\sin^{2}(kx),0\right)\qquad\left(0\leq x\leq\frac{\pi}{2}\right).

Then the fk¯\underline{f_{k}} all have the same range, i.e.,

[C1]=[C2]= if Ckfk¯[C_{1}]\ =\ [C_{2}]\ =\ \ldots\qquad\text{ if }\quad C_{k}\longleftrightarrow\underline{f_{k}}

but the CkC_{k} are different curves.

myn6

REMARK   If CC is a continuous curve, then its graph [C][C] is closed, bounded, connected, and uniformly locally connected. Owing to a theorem of Hahn and Mazurkiewicz, these properties are characteristic: Any such set is the graph of a continuous curve. So, e.g., a square in 2\mathbb{R}^{2} is the graph of a continuous curve, a cube in 3\mathbb{R}^{3} is the graph of a continuous curve etc.

myn7

DEFINITION   The length of a curve CC, denoted (C)\ell(C), is

Tf¯[a,b]supP𝒫[a,b]i=1nf¯(xi)f¯(xi1),\text{T}_{\underline{f}}[a,b]\ \equiv\ \sup\limits_{P\in\mathcal{P}[a,b]}\ \sum\limits_{i=1}^{n}\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert,

CC being termed rectifiable if (C)<+\ell(C)<+\infty.

[Note: If CC is continuous and rectifiable, then ε>0,δ>0:\forall\ \varepsilon>0,\ \exists\ \delta>0:

P<δab(f¯;P)i=1nf¯(xi)f¯(xi1)>(C)ε.]\left\lVert P\right\rVert<\delta\implies\bigvee\limits_{a}^{b}\ (\underline{f};P)\ \equiv\ \sum\limits_{i=1}^{n}\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert\ >\ \ell(C)-\varepsilon.]

myn8

LEMMA  Given a curve CC,

Tfm[a,b](C)Tf1[a,b]++TfM[a,b](1mM).\text{T}_{f_{m}}[a,b]\ \leq\ \ell(C)\ \leq\ \text{T}_{f_{1}}[a,b]+\ldots+\text{T}_{f_{M}}[a,b]\qquad(1\leq m\leq M).

myn9

SCHOLIUM  CC is rectifiable iff

f1BV[a,b],,fMBV[a,b].f_{1}\in\text{BV}[a,b],\ldots,f_{M}\in\text{BV}[a,b].

myn10

THEOREM  Let

{Cnfn¯:[a,b]MCf¯:[a,b]M\begin{cases}\ C_{n}\longleftrightarrow\underline{f_{n}}:[a,b]\rightarrow\mathbb{R}^{M}\\ \ C\hskip 4.26773pt\longleftrightarrow\underline{f}:[a,b]\rightarrow\mathbb{R}^{M}\\ \end{cases}

and assume that fn¯\underline{f_{n}} converges pointwise to f¯\underline{f} -then

(C)lim infn(Cn).\ell(C)\ \leq\ \liminf\limits_{n\rightarrow\infty}\ \ell(C_{n}).

A continuous curve

Γγ:[a,b]M\Gamma\longleftrightarrow\gamma:[a,b]\rightarrow\mathbb{R}^{M}

is said to be a polygonal line (and γ\gamma quasi linear in [a,b][a,b]) if there exists a P𝒫[a,b]P\in\mathcal{P}[a,b] in each segment of which γ¯\underline{\gamma} is linear or a constant.

myn11

DEFINITION  The elementary length e(Γ)\ell_{e}(\Gamma) of Γ\Gamma is the sum of the lengths of these segments, hence e(Γ)=(Γ)\ell_{e}(\Gamma)=\ell(\Gamma).

myn12

NOTATION  Given a continuous curve CC, denote by Γ(C)\Gamma(C) the set of all sequences

Γnγn¯:[a,b]M\Gamma_{n}\longleftrightarrow\underline{\gamma_{n}}:[a,b]\rightarrow\mathbb{R}^{M}

of polygonal lines such that

γnf¯(n)\gamma_{n}\rightarrow\underline{f}\qquad(n\rightarrow\infty)

uniformly in [a,b][a,b].

Therefore

(C)lim infn(Γn)=lim infne(Γn).\ell(C)\ \leq\ \liminf\limits_{n\rightarrow\infty}\ \ell(\Gamma_{n})\ =\ \liminf\limits_{n\rightarrow\infty}\ \ell_{e}(\Gamma_{n}).

On the other hand, by definition, there is some {Γn}Γ(C)\{\Gamma_{n}\}\in\Gamma(C) such that

e(Γn)(C)(n).\ell_{e}(\Gamma_{n})\rightarrow\ell(C)\qquad(n\rightarrow\infty).

myn13

SCHOLIUM  If CC is a continuous curve, then

(C)=inf{Γn}Γ(C)[lim infne(Γn)].\ell(C)\ =\ \inf\limits_{\{\Gamma_{n}\}\in\Gamma(C)}\ [\liminf\limits_{n\rightarrow\infty}\ell_{e}(\Gamma_{n})].

myn14

REMARK  Let

Cf:[a,b]M.C\longleftrightarrow f:[a,b]\rightarrow\mathbb{R}^{M}.

Assume: CC is continuous and rectifiable -then ff can be decomposed as a sum

f=fAC+fCf=f_{AC}+f_{C}

where fACf_{AC} is absolutely continuous and fCf_{C} is continuous and singular.

Therefore

(C)=TfAC[a,b]+TfC[a,b].\ell(C)\ =\ \text{T}_{f_{AC}}[a,b]+\text{T}_{f_{C}}[a,b].

§\boldsymbol{\S}2. ESTIMATES

myn1

NOTATION  Write

Tf¯[a,b]\text{T}_{\underline{f}}[a,b]

in place of (C)\ell(C).

myn2

DEFINITION  Assume that CC is rectifiable -then the arc length function

s:[a,b]s:[a,b]\rightarrow\mathbb{R}

is defined by the prescription

s(x)=Tf¯[a,x](axb).s(x)=\text{T}_{\underline{f}}[a,x]\qquad(a\leq x\leq b).

Obviously

s(a)= 0,s(b)=(C),s(a)\ =\ 0,\quad s(b)\ =\ \ell(C),

and ss is an increasing function.

myn3

LEMMA  If CC is continuous and rectifiable, then ss is continuous as are the Tfm[a,](m=1,,M)\text{T}_{f_{m}}[a,-]\quad(m=1,\ldots,M).

myn4

LEMMA  If CC is continuous and rectifiable, then ss is absolutely continuous iff all the Tfm[a,](m=1,,M)\text{T}_{f_{m}}[a,-]\quad(m=1,\ldots,M) are absolutely continuous, hence iff all the fm(m=1,,M)f_{m}\quad(m=1,\ldots,M) are absolutely continuous.

If CC is continuous and rectifiable, then the fmBV[a,b]f_{m}\in\text{BV}[a,b], thus the derivatives fmf_{m}^{\prime} exist almost everywhere in [a,b][a,b] and are Lebesgue integrable. On the other hand, ss is an increasing function, thus it too is differentiable almost everywhere in [a,b][a,b] and is Lebesgue integrable.

myn5

SUBLEMMA  The connection between f¯\underline{f}^{\prime} and ss^{\prime} is given by the relation

f¯s\left\lVert\underline{f}^{\prime}\right\rVert\ \leq\ s^{\prime}

almost everywhere in [a,b][a,b].

[For any subinterval [α,β][a,b][\alpha,\beta]\subset[a,b],

f¯(β)f¯(α)s(β)s(α).]\left\lVert\underline{f}(\beta)-\underline{f}(\alpha)\right\rVert\ \leq\ s(\beta)-s(\alpha).]

myn6

LEMMA

(C)=s(b)s(a)absabf¯.\ell(C)\ =\ s(b)-s(a)\ \geq\ \int\limits_{a}^{b}s^{\prime}\ \geq\ \int\limits_{a}^{b}\left\lVert\underline{f}^{\prime}\right\rVert.

I.e.: Under the assumption that CC is continuous and rectifiable,

(C)abf¯.\ell(C)\ \geq\ \int\limits_{a}^{b}\ \left\lVert\underline{f}^{\prime}\right\rVert.

myn7

THEOREM

(C)=abf¯\ell(C)\ =\ \int\limits_{a}^{b}\ \left\lVert\underline{f}^{\prime}\right\rVert

iff all the fmf_{m} (m=1,,M)(m=1,\ldots,M) are absolutely continuous.

This is established in the discussion to follow.

• Suppose that the equality sign obtains, hence

s(b)s(a)=abs.s(b)-s(a)\ =\ \int\limits_{a}^{b}\ s^{\prime}.

But also

s(x)s(a)axs\displaystyle s(x)-s(a)\ \geq\ \int\limits_{a}^{x}\ s^{\prime}
s(b)s(x)xbs.\displaystyle s(b)-s(x)\ \geq\ \int\limits_{x}^{b}s^{\prime}.

If

s(x)s(a)>axs\displaystyle s(x)-s(a)\ >\ \int\limits_{a}^{x}s^{\prime}
s(b)s(x)xbs,\displaystyle s(b)-s(x)\ \geq\ \int\limits_{x}^{b}s^{\prime},

then

s(b)s(a)>abs,s(b)-s(a)\ >\ \int\limits_{a}^{b}s^{\prime},

a contradiction. Therefore

s(x)s(a)=axss(x)-s(a)\ =\ \int\limits_{a}^{x}s^{\prime}

sAC[a,b]\implies\qquad s\in\text{AC}[a,b]

fmAC[a,b](m=1,,M).\implies\qquad f_{m}\in\text{AC}[a,b]\quad(m=1,\ldots,M).

• Consider the other direction, i.e., assume that the fmAC[a,b]f_{m}\in\text{AC}[a,b], the claim being that

(C)=abf.\ell(C)=\int\limits_{a}^{b}\left\lVert f^{\prime}\right\rVert.

Given P𝒫[a,b]P\in\mathcal{P}[a,b], write

i=1nf¯(xi)f¯(xi1)\displaystyle\sum\limits_{i=1}^{n}\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert\ =i=1n[m=1M(fm(xi)fm(xi1))2]12\displaystyle=\ \sum\limits_{i=1}^{n}\ \left[\sum\limits_{m=1}^{M}(f_{m}(x_{i})-f_{m}(x_{i-1}))^{2}\right]^{\frac{1}{2}}
=i=1n[m=1M(xixifm)2]12\displaystyle=\ \sum\limits_{i=1}^{n}\ \left[\sum\limits_{m=1}^{M}\ \bigg{(}\hskip 1.42271pt\int\limits_{x_{i}}^{x_{i}}\ f_{m}^{\prime}\bigg{)}^{2}\right]^{\frac{1}{2}}
i=1nxixi(m=1M(fm)2)1/2\displaystyle\leq\ \sum\limits_{i=1}^{n}\ \int\limits_{x_{i}}^{x_{i}}\ \bigg{(}\hskip 1.42271pt\sum\limits_{m=1}^{M}(f_{m}^{\prime})^{2}\bigg{)}^{1/2}
=abf.\displaystyle=\ \int\limits_{a}^{b}\ \left\lVert f^{\prime}\right\rVert.

Taking the sup of the first term over all PP then gives

(C)abf¯((C))\ell(C)\ \leq\ \int\limits_{a}^{b}\ \left\lVert\underline{f}^{\prime}\right\rVert\quad(\leq\ell(C))

\implies

(C)=abf¯.\ell(C)\ =\ \int\limits_{a}^{b}\ \left\lVert\underline{f}^{\prime}\right\rVert.

myn8

N.B.  Under canonical assumptions,

((𝕏ϕ1)2++(𝕏ϕn)2)12𝕏(ϕ12++ϕn2)12.\bigg{(}\hskip 1.42271pt\bigg{(}\hskip 1.42271pt\int\limits_{\mathbb{X}}\phi_{1}\bigg{)}^{2}+\ldots+\bigg{(}\int\limits_{\mathbb{X}}\ \phi_{n}\bigg{)}^{2}\hskip 1.42271pt\bigg{)}^{\frac{1}{2}}\ \leq\ \int\limits_{\mathbb{X}}\left(\phi_{1}^{2}+\ldots+\phi_{n}^{2}\right)^{\frac{1}{2}}.

myn9

RAPPEL Suppose that fBV[a,b]f\in\text{BV}[a,b] -then for almost all x[a,b]x\in[a,b],

|f(x)|=Tf[a,x].\left|f^{\prime}(x)\right|\ =\ \text{T}_{f^{\prime}}[a,x].

myn10

LEMMA  Suppose that CC is continuous and rectifiable -then

s=f¯s^{\prime}\ =\ \left\lVert\underline{f}^{\prime}\right\rVert

almost everywhere in [a,b][a,b].

PROOF  Since

f¯s,\left\lVert\underline{f}^{\prime}\right\rVert\ \leq\ s^{\prime},

it suffices to show that

sf¯.s^{\prime}\ \leq\ \left\lVert\underline{f}^{\prime}\right\rVert.

Let E0[a,b]E_{0}\subset[a,b] be the set of xx such that f¯\underline{f} and ss are differentiable at xx and s(x)>f¯(x)s^{\prime}(x)>\left\lVert\underline{f}^{\prime}(x)\right\rVert and for k=1,2,k=1,2,\ldots, let EkE_{k} be the set of xE0x\in E_{0} such that

s(t2)s(t1)t2t1f¯(t2)f¯(t1)t2t1+1k\frac{s(t_{2})-s(t_{1})}{t_{2}-t_{1}}\ \geq\ \frac{\left\lVert\underline{f}(t_{2})-\underline{f}(t_{1})\right\rVert}{t_{2}-t_{1}}+\frac{1}{k}

for all intervals [t1,t2][t_{1},t_{2}] such that x[t1,t2]x\in[t_{1},t_{2}] and 0<t2t11k0<t_{2}-t_{1}\leq\displaystyle\frac{1}{k}. So, by construction,

E0=k=1EkE_{0}\ =\ \bigcup\limits_{k=1}^{\infty}E_{k}

and matters reduce to establishing that k,λ(Ek)=0\forall\ k,\lambda(E_{k})=0. To this end, let ε>0\varepsilon>0 and choose P𝒫[a,b]:P\in\mathcal{P}[a,b]:

i=1nf¯(xi)f¯(xi1)>Tf¯[a,b]ε.\sum\limits_{i=1}^{n}\left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert\ >\ \text{T}_{\underline{f}}[a,b]-\varepsilon.

Expanding PP if necessary, it an be assumed without loss of generality that

0<xixi11k(i=1,,n).0\ <\ x_{i}-x_{i-1}\ \leq\ \frac{1}{k}\qquad(i=1,\ldots,n).

For each i, either [xi1,xi]Ek[x_{i-1},x_{i}]\cap E_{k}\neq\emptyset and then

s(xi)s(xi1)f¯(xi)f¯(xi1)+xixi1k,s(x_{i})-s(x_{i-1})\ \geq\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert+\frac{x_{i}-x_{i-1}}{k},

or [xi1,xi]Ek=[x_{i-1},x_{i}]\cap E_{k}=\emptyset and then

s(xi)s(xi1)f¯(xi)f¯(xi1).s(x_{i})-s(x_{i-1})\ \geq\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert.

Consequently

Tf¯[a,b]\displaystyle\text{T}_{\underline{f}}[a,b]\ =s(b)\displaystyle=\ s(b)
=s(xn)\displaystyle=\ s(x_{n})
=i=1n(s(xi)s(xi1))(s(x0)=s(a)=0)\displaystyle=\ \sum\limits_{i=1}^{n}(s(x_{i})-s(x_{i-1}))\qquad(s(x_{0})=s(a)=0)
i=1nf¯(xi)f¯(xi1)+1kλ(Ek)\displaystyle\geq\ \sum\limits_{i=1}^{n}\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert+\frac{1}{k}\lambda^{*}(E_{k})
Tf¯[a,b]ε+1kλ(Ek)\displaystyle\geq\ \text{T}_{\underline{f}}[a,b]-\varepsilon+\frac{1}{k}\lambda^{*}(E_{k})

\implies

λ(Ek)kελ(Ek)= 0(ε0).\lambda^{*}(E_{k})\ \leq\ k\varepsilon\quad\implies\quad\lambda(E_{k})\ =\ 0\quad(\varepsilon\downarrow 0).

myn11

THEOREM  Suppose that CC is continuous and rectifiable. Assume: M>1M>1 -then the MM-dimensional Lebesgue measure of [C][C] is equal to 0.

myn12

NOTATION  Let

Cf¯:[a,b]MC\longleftrightarrow\underline{f}:[a,b]\rightarrow\mathbb{R}^{M}

be a continuous curve. Given x¯[C]\underline{x}\in[C], let N(f¯;x¯)N(\underline{f};\underline{x}) be the number of points x[a,b]x\in[a,b] (finite or infinite) such that f(x)=x¯f(x)=\underline{x} and let N(f¯;)=0N(\underline{f};-)=0 in the complement M[C]\mathbb{R}^{M}-[C] of [C][C].

myn13

THEOREM

(C)=MN(f¯;)dH1.\ell(C)\ =\ \int\limits_{\mathbb{R}^{M}}\ N(\underline{f};-)\ \text{d}H^{1}.

[Note: H1H^{1} is the 11-dimensional Hausdorff outer measure in M\mathbb{R}^{M} and

H1([C])=Mχ[C]dH1MN(f¯;)dH1,H^{1}([C])\ =\ \int\limits_{\mathbb{R}^{M}}\chi_{[C]}\ \text{d}H^{1}\ \leq\ \int\limits_{\mathbb{R}^{M}}N(\underline{f};-)\ \text{d}H^{1},

i.e.,

H1([C])(C)H^{1}([C])\ \leq\ \ell(C)

and it can happen that

H1([C])<(C).]H^{1}([C])\ <\ \ell(C).]

myn14

N.B.  If f¯\underline{f} is one-to-one, then

N(f¯;)=χ[C]N(\underline{f};-)\ =\ \chi_{[C]}

and when this is so,

H1([C])=(C).H^{1}([C])=\ell(C).

§\boldsymbol{\S}3. EQUIVALENCES

In what follows, by interval we shall understand a finite closed interval \subset\mathbb{R}.

[Note: If I,JI,J are intervals and if I={a,b}\partial I=\{a,b\}, J={c,d}\partial J=\{c,d\}, then the agreement is that a homeomorphism ϕ:IJ\phi:I\rightarrow J is sense preserving, i.e., sends aa to cc and bb to dd.]

myn1

DEFINITION  Suppose given intervals II, JJ and curves f¯:IM\underline{f}:I\rightarrow\mathbb{R}^{M}, g¯:JM\underline{g}:J\rightarrow\mathbb{R}^{M} -then f¯\underline{f} and g¯\underline{g} are said to be Lebesgue equivalent if there exists a homeomorphism ϕ:IJ\phi:I\rightarrow J such that f¯=g¯ϕ\underline{f}=\underline{g}\circ\phi.

myn2

LEMMA  If

{f¯:[a,b]Mg¯:[c,d]M\begin{cases}\ \underline{f}:[a,b]\rightarrow\mathbb{R}^{M}\\[4.0pt] \ \underline{g}:[c,d]\rightarrow\mathbb{R}^{M}\end{cases}

are Lebesgue equivalent and if

{Cf¯Dg¯,\begin{cases}\ C\longleftrightarrow\underline{f}\\[4.0pt] \ D\longleftrightarrow\underline{g}\end{cases},

then

(C)=(D).\ell(C)\ =\ \ell(D).

PROOF  The homeomorphism ϕ:[a,b][c,d]\phi:[a,b]\rightarrow[c,d] induces a bijection

{𝒫[a,b]𝒫[c,d]PQ.\begin{cases}\ \mathcal{P}[a,b]&\rightarrow\mathcal{P}[c,d]\\ \ \ P&\rightarrow Q\end{cases}.

Therefore

(C)\displaystyle\ell(C) =supP𝒫[a,b]i=1nf¯(xi)f¯(xi1)\displaystyle=\sup\limits_{P\in\mathcal{P}[a,b]}\ \sum\limits_{i=1}^{n}\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert
=supP𝒫[a,b]i=1ng¯(ϕ(xi))g¯(ϕ(xi1))\displaystyle=\sup\limits_{P\in\mathcal{P}[a,b]}\ \sum\limits_{i=1}^{n}\ \left\lVert\underline{g}(\phi(x_{i}))-\underline{g}(\phi(x_{i-1}))\right\rVert
=supQ𝒫[c,d]i=1ng¯(yi)g¯(yi1)\displaystyle=\sup\limits_{Q\in\mathcal{P}[c,d]}\ \sum\limits_{i=1}^{n}\ \left\lVert\underline{g}(y_{i})-\underline{g}(y_{i-1})\right\rVert
=(D).\displaystyle=\ell(D).

myn3

DEFINITION  Suppose given intervals II, JJ and curves f¯:IM\underline{f}:I\rightarrow\mathbb{R}^{M}, g¯:JM\underline{g}:J\rightarrow\mathbb{R}^{M} -then f¯\underline{f} and g¯\underline{g} are said to be Fréchet equivalent if for every ε>0\varepsilon>0 there exists a homeomorphism ϕ:IJ\phi:I\rightarrow J such that

f¯(x)g¯(ϕ(x))<ε(xI).\left\lVert\underline{f}(x)-\underline{g}(\phi(x))\right\rVert\ <\ \varepsilon\qquad(x\in I).

myn4

REMARK  It is clear that two Lebesgue equivalent curves are Fréchet equivalent but two Fréchet equivalent curves need not be Lebesgue equivalent.

myn5

LEMMA  If

{f¯:[a,b]Mg¯:[c,d]M\begin{cases}\ \underline{f}:[a,b]\rightarrow\mathbb{R}^{M}\\[4.0pt] \ \underline{g}:[c,d]\rightarrow\mathbb{R}^{M}\end{cases}

are Fréchet equivalent and if

{Cf¯Dg¯,\begin{cases}\ C\longleftrightarrow\underline{f}\\[4.0pt] \ D\longleftrightarrow\underline{g}\end{cases},

then

(C)=(D).\ell(C)\ =\ \ell(D).

PROOF  For each n=1,2,n=1,2,\ldots, there is a homeomorphism ϕn[a,b][c,d]\phi_{n}[a,b]\rightarrow[c,d] such that x[a,b]\forall\ x\in[a,b],

f¯(x)g¯(ϕn(x))<1n.\left\lVert\underline{f}(x)-\underline{g}(\phi_{n}(x))\right\rVert\ <\ \frac{1}{n}.

Put f¯n=g¯ϕn\underline{f}_{\hskip 1.42271ptn}=\underline{g}\circ\phi_{n}, hence f¯n\underline{f}_{\hskip 1.42271ptn} is Lebesgue equivalent to g¯\underline{g} (viz. g¯ϕn=g¯ϕn\underline{g}\circ\phi_{n}=\underline{g}\circ\phi_{n}\ldots ), thus if

Cnf¯n,Dg¯,C_{n}\longleftrightarrow\underline{f}_{\hskip 1.42271ptn},\quad D\longleftrightarrow\underline{g},

then from the above

(Cn)=(D).\ell(C_{n})\ =\ \ell(D).

But x[a,b]\forall\ x\in[a,b],

f¯(x)f¯n(x)<1n,\left\lVert\underline{f}(x)-\underline{f}_{\hskip 1.42271ptn}(x)\right\rVert\ <\ \frac{1}{n},

i.e., f¯nf¯\underline{f}_{\hskip 1.42271ptn}\rightarrow\underline{f} pointwise, so

(C)\displaystyle\ell(C)\ lim infn(Cn)\displaystyle\leq\ \liminf\limits_{n\rightarrow\infty}\ \ell(C_{n})
lim infn(D)\displaystyle\leq\ \liminf\limits_{n\rightarrow\infty}\ \ell(D)
(D).\displaystyle\leq\ \ell(D).

Analogously

(D)(C).\ell(D)\ \leq\ \ell(C).

Therefore

(C)=(D).\ell(C)\ =\ \ell(D).

§\boldsymbol{\S}4. FRÉCHET DISTANCE

Let

{Cf¯:[a,b]MDg¯:[c,d]M\begin{cases}\ C\longleftrightarrow\underline{f}:[a,b]\rightarrow\mathbb{R}^{M}\\[8.0pt] \ D\longleftrightarrow\underline{g}:[c,d]\rightarrow\mathbb{R}^{M}\end{cases}

be two continuous curves.

myn1

NOTATION   \mathcal{H} is the set of all homeomorphisms

ϕ:[a,b][c,d](ϕ(a)=c,ϕ(b)=d).\phi:[a,b]\rightarrow[c,d]\qquad(\phi(a)=c,\ \phi(b)=d).

Given ϕ\phi\in\mathcal{H} , the expression

f¯(x)g¯(ϕ(x))(axb)\left\lVert\underline{f}(x)-\underline{g}(\phi(x))\right\rVert\qquad(a\leq x\leq b)

has an absolute maximum M(f¯,g¯;ϕ)M(\underline{f},\underline{g};\phi).

myn2

DEFINITION  The Fréchet distance between CC and DD, denoted C,D\left\lVert C,D\right\rVert, is

infϕM(f¯,g¯);ϕ).\inf\limits_{\phi\in\mathcal{H}}M(\underline{f},\underline{g});\phi).

[Note:  In other words, C,D\left\lVert C,D\right\rVert is the infimum of all numbers ε0\varepsilon\geq 0 with the property that there exists a homeomorphism ϕ\phi\in\mathcal{H} such that

f¯(x)g¯(ϕ(x))ε\left\lVert\underline{f}(x)-\underline{g}(\phi(x))\right\rVert\ \leq\ \varepsilon

for all x[a,b].]x\in[a,b].]

myn3

N.B.  If C,D<ε\left\lVert C,D\right\rVert<\varepsilon, then there exists a ϕ\phi\in\mathcal{H} such that

M(f¯,g¯;ϕ)<ε.M(\underline{f},\underline{g};\phi)\ <\ \varepsilon.

myn4

LEMMA  Let CC, DD, C0C_{0} be continuous curves -then

(i)  C,D 0;\left\lVert C,D\right\rVert\ \geq\ 0;

(ii)  C,D=D,C;\left\lVert C,D\right\rVert\ =\ \left\lVert D,C\right\rVert;

(iii)  C,DC,C0+C0,D;\left\lVert C,D\right\rVert\ \leq\ \left\lVert C,C_{0}\right\rVert+\left\lVert C_{0},D\right\rVert;

(iv)  C,D= 0iff C and D are Fréchet equivalent.\left\lVert C,D\right\rVert\ =\ 0\ \text{iff $C$ and $D$ are Fr\'{e}chet equivalent.}

Therefore Fréchet distance is a premetric on the set of continuous curves with values in M\mathbb{R}^{M}.

myn5

THEOREM  Let

{Cnfn¯:[an,bn]M(n=1,2,)Cf¯:[a,b]M\begin{cases}\ C_{n}\longleftrightarrow\underline{f_{n}}:[a_{n},b_{n}]\rightarrow\mathbb{R}^{M}\qquad(n=1,2,\ldots)\\[11.0pt] \ C\longleftrightarrow\underline{f}:[a,b]\rightarrow\mathbb{R}^{M}\end{cases}

be continuous curves. Assume:

Cn,C0(n).\left\lVert C_{n},C\right\rVert\rightarrow 0\qquad(n\rightarrow\infty).

Then

(C)lim infn(Cn).\qquad\ell(C)\ \leq\ \liminf\limits_{n\rightarrow\infty}\ \ell(C_{n}).

PROOF  For every nn, there is a homeomorphism

ϕn:[a,b][an,bn](ϕn(a)=an,ϕn(b)=bn)\phi_{n}:[a,b]\rightarrow[a_{n},b_{n}]\qquad(\phi_{n}(a)=a_{n},\ \phi_{n}(b)=b_{n})

such that for all x[a,b]x\in[a,b],

f¯(x)fn¯(ϕn(x))<C,Cn+1n.\left\lVert\underline{f}(x)-\underline{f_{n}}(\phi_{n}(x))\right\rVert\ <\ \left\lVert C,C_{n}\right\rVert+\frac{1}{n}.

Let

Dnfn¯ϕn:[a,b]M.D_{n}\longleftrightarrow\underline{f_{n}}\circ\phi_{n}:[a,b]\rightarrow\mathbb{R}^{M}.

Then pointwise

fn¯ϕnf¯\underline{f_{n}}\circ\phi_{n}\rightarrow\underline{f}

\implies

(C)lim infn(Dn).\ell(C)\ \leq\ \liminf\limits_{n\rightarrow\infty}\ell(D_{n}).

But  (Dn)=(Cn)\ell(D_{n})=\ell(C_{n}), hence

(C)lim infn(Cn).\ell(C)\ \leq\ \liminf\limits_{n\rightarrow\infty}\ell(C_{n}).

In the set of continuous curves, introduce an equivalence relation by stipulating that CC and DD are equivalent provided CC and DD are Fréchet equivalent. The resulting set F\mathcal{E}_{F} of equivalence classes is then a metric space: If

{{C}F{D}F,\begin{cases}\ \{C\}\in\mathcal{E}_{F}\\[8.0pt] \ \{D\}\in\mathcal{E}_{F}\end{cases},

then

{C},{D}=C,D.\left\lVert\{C\},\{D\}\right\rVert\ =\ \left\lVert C,D\right\rVert.

myn6

N.B.  If CC, CC^{\prime} are Fréchet equivalent and if DD, DD^{\prime} are Fréchet equivalent, then

C,D\displaystyle\left\lVert C,D\right\rVert\ C,C+C,D\displaystyle\leq\ \left\lVert C,C^{\prime}\right\rVert+\left\lVert C^{\prime},D\right\rVert
C,D\displaystyle\leq\ \left\lVert C^{\prime},D\right\rVert
C,D+D,D\displaystyle\leq\ \left\lVert C^{\prime},D^{\prime}\right\rVert+\left\lVert D^{\prime},D\right\rVert
=C,D\displaystyle=\ \left\lVert C^{\prime},D^{\prime}\right\rVert

and in reverse

C,DC,D.\left\lVert C^{\prime},D^{\prime}\right\rVert\ \leq\ \left\lVert C,D\right\rVert.

So

C,D=C,D.\left\lVert C,D\right\rVert\ =\ \left\lVert C^{\prime},D^{\prime}\right\rVert.

§\boldsymbol{\S}5. THE REPRESENTATION THEOREM

Assume:

Cf¯:[a,b]MC\longleftrightarrow\underline{f}:[a,b]\rightarrow\mathbb{R}^{M}

is a curve which is continuous and rectifiable.

myn1

THEOREM  There exists a continuous curve

Dg¯:[c,d]MD\longleftrightarrow\underline{g}:[c,d]\rightarrow\mathbb{R}^{M}

with the property that

(D)=(C)(<+)\ell(D)\ =\ \ell(C)\qquad(<+\infty)

and

(D)=cdg,\ell(D)\ =\ \int\limits_{c}^{d}\ \left\lVert g^{\prime}\right\rVert,

where g1,,gMg_{1},\ldots,g_{M} are absolutely continuous and in addition f¯\underline{f} and g¯\underline{g} are Fréchet equivalent.

Take (C)>0\ell(C)>0 and define g¯\underline{g} via the following procedure. In the first place, the domain [c,d][c,d] of g¯\underline{g} is going to be the interval [0,(C)][0,\ell(C)]. This said, note that s(x)s(x) is contant in an interval [α,β][\alpha,\beta] iff f¯(x)\underline{f}(x) is constant there as well. Next, for each point s0s_{0} (0s0(C))(0\leq s_{0}\leq\ell(C)) there is a maximal interval αxβ(aαβb)\alpha\leq x\leq\beta\quad(a\leq\alpha\leq\beta\leq b) with s(x)=s0s(x)=s_{0}.  Definition:  g¯(s0)=f¯(x)(αxβ)\underline{g}(s_{0})=\underline{f}(x)\quad(\alpha\leq x\leq\beta).

myn2

LEMMA

{g¯(s0)=g¯(s0)(0<s0(C))g¯(s0+)=g¯(s0)(0s0<(C)).\begin{cases}\ \underline{g}(s_{0^{-}})=\underline{g}(s_{0})\qquad(0<s_{0}\leq\ell(C))\\[4.0pt] \ \underline{g}(s_{0^{+}})=\underline{g}(s_{0})\qquad(0\leq s_{0}<\ell(C))\end{cases}.

Therefore

g¯:[c,d]M\underline{g}:[c,d]\rightarrow\mathbb{R}^{M}

is a continuous curve.

myn3

SUBLEMMA  Suppose that ϕn:[A,B][C,D]\phi_{n}:[A,B]\rightarrow[C,D] (n=1,2,)(n=1,2,\ldots) converges uniformly to ϕ:[A,B][C,D]\phi:[A,B]\rightarrow[C,D]. Let Φ:[C,D]M\Phi:[C,D]\rightarrow\mathbb{R}^{M} be a continuous function -then Φϕn\Phi\circ\phi_{n} converges uniformly to Φϕ\Phi\circ\phi.

PROOF  Since Φ\Phi is uniformly continuous, given ε>0\varepsilon>0, δ>0\exists\ \delta>0 such that

|uv|<δΦ(u)Φ(v)<ε(u,v[C,D]).\left|u-v\right|\ <\ \delta\ \implies\ \left\lVert\Phi(u)-\Phi(v)\right\rVert\ <\ \varepsilon\qquad(u,v\in[C,D]).

Choose N:

nN|ϕn(x)ϕ(x)|<δ(x[A,B]).n\ \geq\ N\ \implies\ \left|\phi_{n}(x)-\phi(x)\right|\ <\ \delta\qquad(x\in[A,B]).

Then

Φ(ϕn(x))Φ(ϕ(x))<ε.\left\lVert\Phi(\phi_{n}(x))-\Phi(\phi(x))\right\rVert\ <\ \varepsilon.

myn4

LEMMA  f¯\underline{f} and g¯\underline{g} are Fréchet equivalent.

PROOF  Approximate ss by quasilinear, strictly increasing functions sn(x)s_{n}(x) (axb)(a\leq x\leq b) with sn(a)=0s_{n}(a)=0, sn(b)=(C)s_{n}(b)=\ell(C) and

|sn(x)s(x)|<1n(n=1,2,).\left|s_{n}(x)-s(x)\right|\ <\ \frac{1}{n}\qquad(n=1,2,\ldots).

Then

sn:[a,b][0,(C)]s_{n}:[a,b]\rightarrow[0,\ell(C)]

converges uniformly to

s:[a,b][0,(C)]s:[a,b]\rightarrow[0,\ell(C)]

and

g¯:[0,(C)]M\underline{g}:[0,\ell(C)]\rightarrow\mathbb{R}^{M}

is continuous, so

g¯sng¯s\underline{g}\circ s_{n}\rightarrow\underline{g}\circ s

uniformly in [a,b][a,b], thus ε>0\forall\ \varepsilon>0, N:nN\exists\ N:n\geq N

g¯(sn(x))g¯(s(x))<ε(axb)\implies\quad\left\lVert\underline{g}(s_{n}(x))-\underline{g}(s(x))\right\rVert\ <\ \varepsilon\qquad(a\leq x\leq b)

or still,

f¯(x)g¯(sn(x))<ε(axb).\left\lVert\underline{f}(x)-\underline{g}(s_{n}(x))\right\rVert\ <\ \varepsilon\qquad(a\leq x\leq b).

Since the sns_{n} are homeomorphisms, it follows that f¯\underline{f} and g¯\underline{g} are Fréchet equivalent.

myn5

LEMMA

0u<v(C)0\leq u\ <\ v\ \leq\ \ell(C)

\implies

g¯(v)g¯(u)=vu\left\lVert\underline{g}(v)-\underline{g}(u)\right\rVert\ =\ v-u

\implies

|gm(v)gm(u)|vu(1mM).\left|g_{m}(v)-g_{m}(u)\right|\ \leq\ v-u\qquad(1\leq m\leq M).

Consequently g1,,gMg_{1},\ldots,g_{M} are absolutely continuous (in fact, Lipschitz).

myn6

LEMMA

(C)=(D)=0(D)g¯,\ell(C)\ =\ \ell(D)\ =\ \int\limits_{0}^{\ell(D)}\ \left\lVert\underline{g}^{\prime}\right\rVert,

where g¯1\left\lVert\underline{g}^{\prime}\right\rVert\leq 1.

So

0\displaystyle 0\ =(D)0(D)g¯\displaystyle=\ \ell(D)-\int\limits_{0}^{\ell(D)}\ \left\lVert\underline{g}^{\prime}\right\rVert
=0(D) 10(D)g¯\displaystyle=\ \int\limits_{0}^{\ell(D)}\ 1-\int\limits_{0}^{\ell(D)}\ \left\lVert\underline{g}^{\prime}\right\rVert
=0(D)(1g¯)\displaystyle=\ \int\limits_{0}^{\ell(D)}\ (1-\left\lVert\underline{g}^{\prime}\right\rVert)

implying thereby that g¯=1\left\lVert\underline{g}^{\prime}\right\rVert=1 almost everywhere.

§\boldsymbol{\S}6. INDUCED MEASURES

myn1

NOTATION  BO[a,b]\text{BO}[a,b] is the set of Borel subsets of [a,b][a,b].

Let

Cf¯:[a,b]MC\longleftrightarrow\underline{f}:[a,b]\rightarrow\mathbb{R}^{M}

be a curve, continuous and rectifiable.

myn2

LEMMA  The interval function defined by the rule

[c,d]s(d)s(c)([c,d][a,b])[c,d]\rightarrow s(d)-s(c)\qquad([c,d]\subset[a,b])

can be extended to a measure μC\mu_{C} on BO[a,b]\text{BO}[a,b].

myn3

LEMMA  For m=1,,Mm=1,\ldots,M, the interval function defined by the rule

[c,d]Tfm[c,d]([c,d][a,b])[c,d]\rightarrow T_{f_{m}}[c,d]\qquad([c,d]\subset[a,b])

can be extended to a measure μm\mu_{m} on BO[a,b]\text{BO}[a,b].

myn4

FACT  Given SBO[a,b]S\in\text{BO}[a,b],

μm(S)μC(S)μ1(S)++μM(S).\mu_{m}(S)\leq\mu_{C}(S)\leq\mu_{1}(S)+\ldots+\mu_{M}(S).

myn5

LEMMA  For m=1,,Mm=1,\ldots,M, the interval functions defined by the rule

{[c,d]Tfm+[c,d][c,d]Tfm[c,d]([c,d][a,b])\begin{cases}\ [c,d]\rightarrow T_{f_{m}}^{+}[c,d]\\[8.0pt] \ [c,d]\rightarrow T_{f_{m}}^{-}[c,d]\end{cases}\qquad([c,d]\subset[a,b])

can be extended to measures  {μm+μm\begin{cases}\ \mu_{m}^{+}\\[4.0pt] \ \mu_{m}^{-}\end{cases} on BO[a,b]\text{BO}[a,b].

myn6

NOTATION  Put

νm=μm+μm(m=1,,M).\nu_{m}\ =\ \mu_{m}^{+}-\mu_{m}^{-}\qquad(m=1,\ldots,M).

[Thus νm\nu_{m} is a countably additive, totally finite set function on BO[a,b].]\text{BO}[a,b].]

myn7

RECOVERY PRINCIPLE  For any SBO[a,b]S\in\text{BO}[a,b],

μC(S)=sup{P}EP{m=1Mνm(E)2}12,\mu_{C}(S)\ =\ \sup\limits_{\{P\}}\ \sum\limits_{E\in P}\ \bigg{\{}\sum\limits_{m=1}^{M}\ \nu_{m}(E)^{2}\bigg{\}}^{\frac{1}{2}},

where the supremum is taken over all partitions PP of SS into disjoint Borel measurable sets EE.

myn8

FACT  The set functions μm,μm+,μm,νm\mu_{m},\ \mu_{m}^{+},\ \mu_{m}^{-},\ \nu_{m} are absolutely continuous w.r.t. μC\mu_{C}.

myn9

NOTATION  The corresponding Radon-Nikodym derivatives are denoted by

βm=dμmdμC,{βm+=dμm+dμCβm=dμmdμC,θm=dνmdμC.\beta_{m}=\frac{\text{d}\mu_{m}}{\text{d}\mu_{C}},\quad\begin{cases}\ \displaystyle\beta^{+}_{m}=\frac{\text{d}\mu_{m}^{+}}{\text{d}\mu_{C}}\\[15.0pt] \ \displaystyle\beta^{-}_{m}=\frac{\text{d}\mu_{m}^{-}}{\text{d}\mu_{C}}\end{cases},\ \displaystyle\theta_{m}=\frac{\text{d}\nu_{m}}{\text{d}\mu_{C}}.

myn10

CONVENTION  The term almost everywhere (or measure 0) will refer to the measure space

([a,b],BO[a,b],μC).([a,b],\text{BO}[a,b],\mu_{C}).

myn11

FACT

{βm=βm++βmθm=βm+βm(m=1,,M)\begin{cases}\ \beta_{m}=\beta_{m}^{+}+\beta_{m}^{-}\\[8.0pt] \ \theta_{m}=\beta_{m}^{+}-\beta_{m}^{-}\end{cases}\qquad(m=1,\ldots,M)

almost everywhere.

myn12

NOTATION  Let

θ¯=(θ1,,θM).\underline{\theta}=(\theta_{1},\ldots,\theta_{M}).

[Note: By definition,

θ¯(x)=(θ1(x)2++θM(x)2)12.]\left\lVert\underline{\theta}(x)\right\rVert=(\theta_{1}(x)^{2}+\cdots+\theta_{M}(x)^{2})^{\frac{1}{2}}.]

myn13

NOTATION  Given a linear orthogonal transformation λ:MM\lambda:\mathbb{R}^{M}\rightarrow\mathbb{R}^{M}, let C¯=λC\overline{C}=\lambda\hskip 0.85355ptC.

myn14

N.B.

μC¯=μC.\mu_{\overline{C}}=\mu_{C}.

myn15

LEMMA

(ν¯1,,ν¯M)=λ(ν1,,νM).(\overline{\nu}_{1},\ldots,\overline{\nu}_{M})=\lambda(\nu_{1},\ldots,\nu_{M}).

myn16

APPLICATION

(θ¯1,,θ¯M)=λ(θ1,,θM)(\overline{\theta}_{1},\ldots,\overline{\theta}_{M})=\lambda(\theta_{1},\ldots,\theta_{M})

almost everywhere.

[Differentiate the preceding relation w.r.t. μC¯=μC.]\mu_{\overline{C}}=\mu_{C}.]

myn17

LEMMA

|θm| 1(m=1,,M)\left|\theta_{m}\right|\ \leq\ 1\qquad(m=1,\ldots,M)

almost everywhere, so

θ¯M12\left\lVert\underline{\theta}\right\rVert\ \leq\ M^{\frac{1}{2}}

almost everywhere.

myn18

THEOREM

θ¯= 1\left\lVert\underline{\theta}\right\rVert\ =\ 1

almost everywhere.

PROOF  Let 0<δ<10<\delta<1 and let

S={x:θ¯(x)<1δ}.S\ =\ \{x:\left\lVert\underline{\theta}(x)\right\rVert<1-\delta\}.

Then

μC(S)=sup{P}EP{m=1Mνm(E)2}12.\mu_{C}(S)\ =\ \sup\limits_{\{P\}}\ \sum\limits_{E\in P}\ \bigg{\{}\sum\limits_{m=1}^{M}\ \nu_{m}(E)^{2}\bigg{\}}^{\frac{1}{2}}.

But

νm(E)\displaystyle\nu_{m}(E)\ =EdνmdμCdμC\displaystyle=\ \int\limits_{E}\ \frac{\text{d}\nu_{m}}{\text{d}\mu_{C}}\ \text{d}\mu_{C}
=EθmdμC.\displaystyle=\ \int\limits_{E}\ \theta_{m}\ \text{d}\mu_{C}.

Therefore

{m=1Mνm(E)2}12\displaystyle\bigg{\{}\sum\limits_{m=1}^{M}\ \nu_{m}(E)^{2}\bigg{\}}^{\frac{1}{2}}\ ={m=1M(EθmdμC)2}12\displaystyle=\ \bigg{\{}\sum\limits_{m=1}^{M}\ \bigg{(}\int\limits_{E}\ \theta_{m}\ \text{d}\mu_{C}\bigg{)}^{2}\bigg{\}}^{\frac{1}{2}}
E{m=1Mθm2}12dμC\displaystyle\leq\ \int\limits_{E}\ \bigg{\{}\sum\limits_{m=1}^{M}\ \theta_{m}^{2}\bigg{\}}^{\frac{1}{2}}\ \text{d}\mu_{C}
=Eθ¯(x)dμC\displaystyle=\ \int\limits_{E}\left\lVert\underline{\theta}(x)\right\rVert\ \text{d}\mu_{C}
(1δ)EdμC\displaystyle\leq\ (1-\delta)\int\limits_{E}\ \text{d}\mu_{C}
=(1δ)μC(E).\displaystyle=\ (1-\delta)\hskip 0.85355pt\mu_{C}(E).

Since

S=E,S=\coprod E,

it follows that

EP{m=1Mνm(E)2}12(1δ)μC(S).\sum\limits_{E\in P}\ \bigg{\{}\sum\limits_{m=1}^{M}\ \nu_{m}(E)^{2}\bigg{\}}^{\frac{1}{2}}\ \leq\ (1-\delta)\hskip 1.42271pt\mu_{C}(S).

Taking the supremum over the PP then implies that

μC(S)(1δ)μC(S),\mu_{C}(S)\ \leq\ (1-\delta)\hskip 1.42271pt\mu_{C}(S),

thus μC(S)=0\mu_{C}(S)=0 and θ¯(x)1\left\lVert\underline{\theta}(x)\right\rVert\geq 1 almost everywhere (let δ=12,13,\displaystyle\delta=\frac{1}{2},\frac{1}{3},\ldots). To derive a contradiction, take M2M\geq 2 and suppose that θ¯(x)1+δ>1\left\lVert\underline{\theta}(x)\right\rVert\geq 1+\delta>1 on some set TT such that μC(T)>0\mu_{C}(T)>0 -then for some vector

ξ¯=(ξ1,,ξM)M(ξ¯=1),\underline{\xi}\ =\ (\xi_{1},\ldots,\xi_{M})\in\mathbb{R}^{M}\qquad\left(\left\lVert\underline{\xi}\right\rVert=1\right),

the set

T(ξ¯)={xT:||θ¯(x)θ¯(x)ξ¯||<δM2T(\underline{\xi})\ =\ \{x\in T:\bigg{|}\bigg{|}\frac{\underline{\theta}(x)}{\left\lVert\underline{\theta}(x)\right\rVert}-\underline{\xi}\bigg{|}\bigg{|}<\frac{\delta}{M^{2}}

has measure μC(T(ξ¯))>0\mu_{C}(T(\underline{\xi}))>0 ((see below)). Let

λj¯=(λj1,,λjM)(j=2,,M)\underline{\lambda_{j}}\ =\ (\lambda_{j_{1}},\ldots,\lambda_{j_{M}})\qquad(j=2,\ldots,M)

be unit vectors such that

λ=[ξ1,,ξMλ21,,λ2MλM1,,λMM]\lambda=\begin{bmatrix}\xi_{1},&\ldots,&\xi_{M}\\ \lambda_{21},&\ldots,&\lambda_{2M}\\ \vdots&\vdots&\vdots\\ \lambda_{M1},&\ldots,&\lambda_{MM}\\ \end{bmatrix}

is an orthogonal matrix. Viewing λ\lambda as a linear orthogonal transformation, form as above C¯=λC\overline{C}=\lambda C, hence

(θ¯1,,θ¯M)=λ(θ1,,θM).(\overline{\theta}_{1},\ldots,\overline{\theta}_{M})=\lambda(\theta_{1},\ldots,\theta_{M}).

On T(ξ¯)T(\underline{\xi}),

|θ¯j|\displaystyle\left|\overline{\theta}_{j}\right|\ =|λj1θ1++λjMθM|\displaystyle=\ \left|\lambda_{j_{1}}\theta_{1}+\cdots+\lambda_{j_{M}}\theta_{M}\right|
θ¯δM2\displaystyle\leq\ \left\lVert\underline{\theta}\right\rVert\frac{\delta}{M^{2}}
M12δM2\displaystyle\leq\ M^{\frac{1}{2}}\frac{\delta}{M^{2}}
MδM2\displaystyle\leq\ M\frac{\delta}{M^{2}}
=δM,\displaystyle=\ \frac{\delta}{M},

while

θ¯¯|θ¯1|++|θ¯M|\left\lVert\overline{\underline{\theta}}\right\rVert\ \leq\ \left|\overline{\theta}_{1}\right|+\ldots+\left|\overline{\theta}_{M}\right|

\implies

|θ¯1|\displaystyle\left|\overline{\theta}_{1}\right|\ θ¯¯|θ¯2||θ¯M|\displaystyle\geq\left\lVert\overline{\underline{\theta}}\right\rVert-\left|\overline{\theta}_{2}\right|-\cdots-\left|\overline{\theta}_{M}\right|
(1+δ)(M1)δM\displaystyle\geq\ (1+\delta)-(M-1)\frac{\delta}{M}
= 1+δM.\displaystyle=\ 1+\frac{\delta}{M}.

However

|θ¯1| 1,\left|\overline{\theta}_{1}\right|\ \leq\ 1,

so we have a contradiction.

myn19

N.B.  Let {ξn¯:n}\{\underline{\xi_{n}}:n\in\mathbb{N}\} be a dense subset of the unit sphere in U(M)\text{U}(M) in M\mathbb{R}^{M} ((thus n\forall\ n, ξn¯=1)\left\lVert\underline{\xi_{n}}\right\rVert=1). Given a point xTx\in T, pass to

θ¯(x)θ¯(x)U(M).\frac{\underline{\theta}(x)}{\left\lVert\underline{\theta}(x)\right\rVert}\in\text{U}(M).

Then there exists a ξnx¯:\underline{\xi_{n_{x}}}:

θ¯(x)θ¯(x)ξnx¯<δM2,\left\lVert\frac{\underline{\theta}(x)}{\left\lVert\underline{\theta}(x)\right\rVert}-\underline{\xi_{n_{x}}}\right\rVert\ <\ \frac{\delta}{M^{2}},

a point in the δM2\displaystyle\frac{\delta}{M^{2}} - neighborhood of

θ¯(x)θ¯(x)\frac{\underline{\theta}(x)}{\left\lVert\underline{\theta}(x)\right\rVert}

in U(M)\text{U}(M). Therefore

T=n=1T(ξn¯)T\ =\ \bigcup\limits_{n=1}^{\infty}\ T(\underline{\xi_{n}})

\implies

0<μC(T)n=1μC(T(ξn¯))0\ <\ \mu_{C}(T)\ \leq\ \sum\limits_{n=1}^{\infty}\ \mu_{C}(T(\underline{\xi_{n}}))

\implies n:\exists\ n:

μC(T(ξn¯))> 0.\mu_{C}(T(\underline{\xi_{n}}))\ >\ 0.

§\boldsymbol{\S}7. TWO THEOREMS

Let

Cf¯:[a,b]MC\longleftrightarrow\underline{f}:[a,b]\rightarrow\mathbb{R}^{M}

be a curve, continuous and rectifiable.

Let P𝒫[a,b]P\in\mathcal{P}[a,b], say

P:a=x0<x1<<xn=b.P:a=x_{0}<x_{1}<\cdots<x_{n}=b.

myn1

DEFINITION  Let i=1,,ni=1,\ldots,n and for m=1,,Mm=1,\ldots,M let

ηm(x;P)=fm(xi)fm(xi1)μC([xi1,xi]),\eta_{m}(x;P)\ =\ \frac{f_{m}(x_{i})-f_{m}(x_{i-1})}{\mu_{C}([x_{i-1},x_{i}])},

where xi1<x<xix_{i-1}<x<x_{i} if μC([xi1,xi])0\mu_{C}([x_{i-1},x_{i}])\neq 0 and let

ηm(x;P)=0,\eta_{m}(x;P)=0,

where xi1<x<xix_{i-1}<x<x_{i} if μC([xi1,xi])=0\mu_{C}([x_{i-1},x_{i}])=0.

myn2

NOTATION

η¯(x;P)=(η1(x;P),,ηM(x;P)).\underline{\eta}(x;P)\ =\ (\eta_{1}(x;P),\ldots,\eta_{M}(x;P)).

myn3

THEOREM

abθ¯(x)η¯(x;P)2dμC 2[(C)i=1nf¯(xi)f¯(xi1)].\int\limits_{a}^{b}\ \left\lVert\underline{\theta}(x)-\underline{\eta}(x;P)\right\rVert^{2}\ \text{d}\mu_{C}\ \leq\ 2\hskip 1.42271pt\bigg{[}\ell(C)\hskip 1.42271pt-\hskip 1.42271pt\sum\limits_{i=1}^{n}\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert\bigg{]}.

Proof: Given P𝒫[a,b]P\in\mathcal{P}[a,b], let \sum^{\prime} denote a sum over intervals [xi1,xi][x_{i-1},x_{i}], where

η¯(x;P)20\left\lVert\underline{\eta}(x;P)\right\rVert^{2}\neq 0 and let ′′\sum^{\prime\prime} denote a sum over what remains. Now compute:

ab||θ¯(x)\displaystyle\int\limits_{a}^{b}\ \big{|}\big{|}\underline{\theta}(x) η¯(x;P)||2dμC\displaystyle-\underline{\eta}(x;P)\big{|}\big{|}^{2}\ \text{d}\mu_{C}\
=xi1xiθ¯(x)η¯(x;P)2dμC+′′xi1xiθ¯(x)2dμC\displaystyle=\ {\sum}^{\prime}\ \int\limits_{x_{i-1}}^{x_{i}}\ \left\lVert\underline{\theta}(x)-\underline{\eta}(x;P)\right\rVert^{2}\ \text{d}\mu_{C}\ +\ {\sum}^{\prime\prime}\ \int\limits_{x_{i-1}}^{x_{i}}\ \left\lVert\underline{\theta}(x)\right\rVert^{2}\ \text{d}\mu_{C}
=xi1xi[θ¯(x)2+η¯(x;P)22θ¯(x)η¯(x;P)]dμC\displaystyle=\ {\sum}^{\prime}\ \int\limits_{x_{i-1}}^{x_{i}}\ [\left\lVert\underline{\theta}(x)\right\rVert^{2}+\left\lVert\underline{\eta}(x;P)\right\rVert^{2}-2\hskip 0.85355pt\underline{\theta}(x)\cdot\underline{\eta}(x;P)]\ \text{d}\mu_{C}
+′′xi1xiθ¯(x)2dμC\displaystyle\hskip 85.35826pt\ +\ {\sum}^{\prime\prime}\int\limits_{x_{i-1}}^{x_{i}}\left\lVert\underline{\theta}(x)\right\rVert^{2}\ \text{d}\mu_{C}
=xi1xi[1+η¯(x;P)22θ¯(x)η¯(x;P)]dμC+′′xi1xi1dμC\displaystyle=\ {\sum}^{\prime}\ \int\limits_{x_{i-1}}^{x_{i}}\ [1+\left\lVert\underline{\eta}(x;P)\right\rVert^{2}-2\hskip 0.85355pt\underline{\theta}(x)\cdot\underline{\eta}(x;P)]\ \text{d}\mu_{C}\ +\ {\sum}^{\prime\prime}\ \int\limits_{x_{i-1}}^{x_{i}}1\ \text{d}\mu_{C}
=[μC([xi1,xi])+[f¯(xi)f¯(xi1)μC([xi1,xi])]2μC([xi1,xi])\displaystyle=\ {\sum}^{\prime}\ [\mu_{C}([x_{i-1},x_{i}])\ +\ \left[\frac{\left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert}{\mu_{C}([x_{i-1},x_{i}])}\right]^{2}\ \mu_{C}([x_{i-1},x_{i}])
2f¯(xi)f¯(xi1)2μC([xi1,xi])+′′μC([xi1,xi])\displaystyle\hskip 85.35826pt-2\hskip 0.85355pt\frac{\left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert^{2}}{\mu_{C}([x_{i-1},x_{i}])}\ +\ {\sum}^{\prime\prime}\ \mu_{C}([x_{i-1},x_{i}])
(C)f¯(xi)f¯(xi1)2μC([xi1,xi])\displaystyle\leq\ \ell(C)\ -\ {\sum}^{\prime}\ \frac{\left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert^{2}}{\mu_{C}([x_{i-1},x_{i}])}
(C)f¯(xi)f¯(xi1)\displaystyle\leq\ \ell(C)\ -\ {\sum}^{\prime}\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert
+f¯(xi)f¯(xi1)(1f¯(xi)f¯(xi1)μC([xi1,xi]))\displaystyle\hskip 85.35826pt\ +\ {\sum}^{\prime}\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert\left(1-\frac{\left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert}{\mu_{C}([x_{i-1},x_{i}])}\right)
(C)f¯(xi)f¯(xi1)\displaystyle\leq\ \ell(C)\ -\ {\sum}^{\prime}\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert
+μC([xi1,xi])(1f¯(xi)f¯(xi1)μC([xi1,xi]))\displaystyle\qquad\qquad\qquad\qquad+{\sum}^{\prime}\mu_{C}([x_{i-1},x_{i}])\left(1-\frac{\left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert}{\mu_{C}([x_{i-1},x_{i}])}\right)
(C)f¯(xi)f¯(xi1)\displaystyle\leq\ \ell(C)-{\sum}^{\prime}\left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert
+(μC([xi1,xi])f¯(xi)f¯(xi1))\displaystyle\hskip 85.35826pt\ +\ {\sum}^{\prime}\left(\mu_{C}([x_{i-1},x_{i}])-\left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert\right)
(C)f¯(xi)f¯(xi1)\displaystyle\leq\ \ell(C)-{\sum}^{\prime}\left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert
+μC([xi1,xi])f¯(xi)f¯(xi1)\displaystyle\hskip 85.35826pt\ +\ {\sum}^{\prime}\ \mu_{C}([x_{i-1},x_{i}])\ -\ {\sum}^{\prime}\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert
=(C)+μC([xi1,xi])2f¯(xi)f¯(xi1)\displaystyle=\ \ell(C)\ +\ {\sum}^{\prime}\ \mu_{C}([x_{i-1},x_{i}])-2\hskip 1.42271pt{\sum}^{\prime}\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert
=(C)+(C)2f¯(xi)f¯(xi1)\displaystyle=\ \ell(C)\ +\ \ell(C)-2\hskip 1.42271pt{\sum}^{\prime}\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert
= 2[(C)f¯(xi)f¯(xi1)]\displaystyle=\ 2\hskip 1.42271pt\left[\ell(C)\hskip 1.42271pt-\hskip 1.42271pt{\sum}^{\prime}\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert\right]
= 2[(C)i=1nf¯(xi)f¯(xi1)].\displaystyle=\ 2\hskip 1.42271pt\bigg{[}\ell(C)-\ \sum\limits_{i=1}^{n}\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert\bigg{]}.

myn4

N.B.  By definition, μC([xi1,xi])\mu_{C}([x_{i-1},x_{i}]) is the length of the restriction of CC to [xi1,xi][x_{i-1},x_{i}], i.e.,

μC([xi1,xi])=s(xi)s(xi1).\mu_{C}([x_{i-1},x_{i}])\ =\ s(x_{i})-s(x_{i-1}).

Moreover

f¯(xi)f¯(xi1)s(xi)s(xi1).\left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert\ \leq\ s(x_{i})-s(x_{i-1}).

So, if μC([xi1,xi])=0\mu_{C}([x_{i-1},x_{i}])=0, then

f¯(xi)f¯(xi1)= 0f¯(xi)=f¯(xi1)\left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert\ =\ 0\quad\implies\quad\underline{f}(x_{i})=\underline{f}(x_{i-1})

\implies

f¯(xi)f¯(xi1)\displaystyle{\sum}^{\prime}\left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert\ =f¯(xi)f¯(xi1)+′′f¯(xi)f¯(xi1)\displaystyle=\ {\sum}^{\prime}\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert+{\sum}^{\prime\prime}\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert
=i=1nf¯(xi)f¯(xi1).\displaystyle=\ \sum\limits_{i=1}^{n}\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert.

Abbreviate

L2([a,b],BO([a,b]),μC)\text{L}^{2}([a,b],\text{BO}([a,b]),\mu_{C})

to

L2(μC).\text{L}^{2}(\mu_{C}).

myn5

APPLICATION  In L2(μC)\text{L}^{2}(\mu_{C}),

limP0η¯(;P)=θ¯.\lim\limits_{\left\lVert P\right\rVert\rightarrow 0}\ \underline{\eta}(-;P)=\underline{\theta}.

myn6

SETUP  

• C0f0¯:[a,b]MC_{0}\longleftrightarrow\underline{f_{0}}:[a,b]\rightarrow\mathbb{R}^{M}

is a curve, continuous and rectifiable.

• Ckfk¯:[a,b]M(k=1,2,)C_{k}\longleftrightarrow\underline{f_{k}}:[a,b]\rightarrow\mathbb{R}^{M}\qquad(k=1,2,\ldots)

is a sequence of curves, continuous and rectifiable.

Assumption: fk¯\underline{f_{k}} converges uniformly to f0¯\underline{f_{0}} in [a,b][a,b] and

limk(Ck)=(C0).\lim\limits_{k\rightarrow\infty}\ \ell(C_{k})\ =\ \ell(C_{0}).

myn7

THEOREM

limQ0ab(fk¯;Q)=(Ck)(Q𝒫[a,b])\lim\limits_{\left\lVert Q\right\rVert\rightarrow 0}\ \bigvee\limits_{a}^{b}\ (\underline{f_{k}};Q)\ =\ \ell(C_{k})\qquad(Q\in\mathcal{P}[a,b])

uniformly in kk, i.e., ε>0,δ>0\forall\ \varepsilon>0,\ \exists\ \delta>0 such that

Q<δ|ab(fk¯;Q)(Ck)|<ε\left\lVert Q\right\rVert\ <\ \delta\implies\bigg{|}\bigvee\limits_{a}^{b}\ (\underline{f_{k}};Q)-\ell(C_{k})\bigg{|}\ <\ \varepsilon

for all k=1,2,k=1,2,\ldots, or still,

Q<δ(Ck)ab(fk¯;Q)<ε\left\lVert Q\right\rVert\ <\ \delta\implies\ell(C_{k})-\bigvee\limits_{a}^{b}\ (\underline{f_{k}};Q)\ <\ \varepsilon

for all k=1,2,.k=1,2,\ldots\hskip 1.42271pt.

The proof will emerge in the lines to follow. Start the process by choosing δ0>0\delta_{0}>0 such that

(C0)ab(f0¯;P0)<ε4\ell(C_{0})-\bigvee\limits_{a}^{b}\ (\underline{f_{0}};P_{0})\ <\ \frac{\varepsilon}{4}

provided P0<δ0\left\lVert P_{0}\right\rVert<\delta_{0}. Consider a P𝒫[a,b]:P\in\mathcal{P}[a,b]:

a=x0<x1<<xn=ba=x_{0}<x_{1}<\cdots<x_{n}=b

with P<δ0\left\lVert P\right\rVert<\delta_{0}. Choose ρ>0\rho>0 such that

fk¯(c)fk¯(d)<ε4n([c,d][a,b])\left\lVert\underline{f_{k}}(c)-\underline{f_{k}}(d)\right\rVert\ <\ \frac{\varepsilon}{4n}\qquad([c,d]\subset[a,b])

for all k=0,1,2,k=0,1,2,\ldots, so long as |cd|<ρ\left|c-d\right|<\rho (equicontinuity). Take a partition Q𝒫[a,b]:Q\in\mathcal{P}[a,b]:

a=y0<y1<<ym=ba=y_{0}<y_{1}<\cdots<y_{m}=b

subject to

Q<γmini=1,,n{ρ,xixi12}(Q<δ0).\left\lVert Q\right\rVert\ <\ \gamma\equiv\min\limits_{i=1,\ldots,n}\ \bigg{\{}\rho,\frac{x_{i}-x_{i-1}}{2}\bigg{\}}\qquad(\implies\left\lVert Q\right\rVert\ <\ \delta_{0}).

Put

σk=supaxbfk¯(x)f0¯(x)\sigma_{k}\ =\ \sup\limits_{a\leq x\leq b}\ \left\lVert\underline{f_{k}}(x)-\underline{f_{0}}(x)\right\rVert

and let k0k_{0} be such that

k>k0σk<ε4nand|(Ck)(C0)|<ε4.k>k_{0}\quad\implies\quad\sigma_{k}<\frac{\varepsilon}{4n}\quad\text{and}\quad\left|\ell(C_{k})-\ell(C_{0})\right|<\frac{\varepsilon}{4}.

The preparations complete, to minimize technicalities we shall suppose that each Ij=[yj1,yj]I_{j}=[y_{j-1},y_{j}] is contained in just one Ii=[xi1,xi]I_{i}=[x_{i-1},x_{i}] and write (i){\sum}^{(i)} for a sum over all such IjI_{j} -then

ab(fk¯;Q)\displaystyle\bigvee\limits_{a}^{b}\ (\underline{f_{k}};Q)\ =j=1mv(fk¯;Ij)\displaystyle=\ \sum\limits_{j=1}^{m}\ v(\underline{f_{k}};I_{j})
=j=1mfk¯(yj)fk¯(yj1)\displaystyle=\ \sum\limits_{j=1}^{m}\ \left\lVert\underline{f_{k}}(y_{j})-\underline{f_{k}}(y_{j-1})\right\rVert
=i=1n(i)fk¯(yj)fk¯(yj1)\displaystyle=\ \sum\limits_{i=1}^{n}\ {\sum}^{(i)}\left\lVert\underline{f_{k}}(y_{j})-\underline{f_{k}}(y_{j-1})\right\rVert
i=1nfk¯(xi)fk¯(xi1).\displaystyle\geq\ \sum\limits_{i=1}^{n}\ \left\lVert\underline{f_{k}}(x_{i})-\underline{f_{k}}(x_{i-1})\right\rVert.
myn8

SUBLEMMA  Let A¯,B¯,C¯,D¯M\underline{A},\ \underline{B},\ \underline{C},\ \underline{D}\in\mathbb{R}^{M} -then

C¯D¯>A¯B¯A¯C¯B¯D¯.\left\lVert\underline{C}-\underline{D}\right\rVert>\left\lVert\underline{A}-\underline{B}\right\rVert-\left\lVert\underline{A}-\underline{C}\right\rVert-\left\lVert\underline{B}-\underline{D}\right\rVert.

[In fact,

A¯B¯\displaystyle\left\lVert\underline{A}-\underline{B}\right\rVert\ =A¯C¯+C¯D¯+D¯B¯\displaystyle=\ \left\lVert\underline{A}-\underline{C}+\underline{C}-\underline{D}+\underline{D}-\underline{B}\right\rVert
A¯C¯+C¯D¯+B¯D¯].\displaystyle\leq\ \left\lVert\underline{A}-\underline{C}\right\rVert+\left\lVert\underline{C}-\underline{D}\right\rVert+\left\lVert\underline{B}-\underline{D}\right\rVert\hskip 1.42271pt].

Take

{C¯=fk¯(xi)D¯=fk¯(xi1){A¯=f0¯(xi)B¯=f0¯(xi1).\begin{cases}\ \underline{C}=\underline{f_{k}}(x_{i})\\[4.0pt] \ \underline{D}=\underline{f_{k}}(x_{i-1})\end{cases}\qquad\begin{cases}\ \underline{A}=\underline{f_{0}}(x_{i})\\[4.0pt] \ \underline{B}=\underline{f_{0}}(x_{i-1})\end{cases}.

Then

fk¯(xi)fk¯(xi1)\displaystyle\left\lVert\underline{f_{k}}(x_{i})-\underline{f_{k}}(x_{i-1})\right\rVert
f0¯(xi)f0¯(xi1)f0¯(xi)fk¯(xi)f0¯(xi1)fk¯(xi1),\displaystyle\hskip 28.45274pt\geq\ \left\lVert\underline{f_{0}}(x_{i})\ -\ \underline{f_{0}}(x_{i-1})\right\rVert\ -\ \left\lVert\underline{f_{0}}(x_{i})-\underline{f_{k}}(x_{i})\right\rVert\ -\ \left\lVert\underline{f_{0}}(x_{i-1})-\underline{f_{k}}(x_{i-1})\right\rVert,

thus

i=1nfk¯(xi)fk¯(xi1)\displaystyle\sum\limits_{i=1}^{n}\ \left\lVert\underline{f_{k}}(x_{i})-\underline{f_{k}}(x_{i-1})\right\rVert\ (C0)ε4nσknσk\displaystyle\geq\ \ell(C_{0})-\frac{\varepsilon}{4}-n\sigma_{k}-n\sigma_{k}
(C0)ε4ε4ε4\displaystyle\geq\ \ell(C_{0})-\frac{\varepsilon}{4}-\frac{\varepsilon}{4}-\frac{\varepsilon}{4}
=(C0)3ε4.\displaystyle=\ \ell(C_{0})-\frac{3\varepsilon}{4}.

But

k>k0\displaystyle k>k_{0} |(Ck(C0|<ε4\displaystyle\implies\left|\ell(C_{k}-\ell(C_{0}\right|\ <\ \frac{\varepsilon}{4}
(Ck)ε4<(C0).\displaystyle\implies\ell(C_{k})-\frac{\varepsilon}{4}\ <\ \ell(C_{0}).

Therefore

(C0)3ε4\displaystyle\ell(C_{0})-\frac{3\varepsilon}{4}\ >(Ck)ε43ε4\displaystyle>\ \ell(C_{k})\hskip 1.42271pt-\hskip 1.42271pt\frac{\varepsilon}{4}\hskip 1.42271pt-\hskip 1.42271pt\frac{3\varepsilon}{4}
=(Ck)ε.\displaystyle=\ \ell(C_{k})\hskip 1.42271pt-\hskip 1.42271pt\varepsilon.

Thus: k>k0\forall\ k>k_{0},

(Ck)ab(fk¯;Q)<ε(Q<γ).\ell(C_{k})-\bigvee\limits_{a}^{b}\ (\underline{f_{k}};Q)\ <\ \varepsilon\qquad(\left\lVert Q\right\rVert<\gamma).

Finally, for kk0k\leq k_{0}, let γk\gamma_{k} be chosen so as to ensure that

(Ck)ab(fk¯;Q)<ε\ell(C_{k})\hskip 1.42271pt-\hskip 1.42271pt\bigvee\limits_{a}^{b}\ (\underline{f_{k}};Q)\ <\ \varepsilon

for all partitions QQ with Q<γk\left\lVert Q\right\rVert<\gamma_{k}. Put now

δ=min1,,k0{γ1,γk0,γ}.\delta=\min\limits_{1,\ldots,k_{0}}\{\gamma_{1},\ldots\gamma_{k_{0}},\gamma\}.

Then

Q<δ(Ck)ab(fk¯;Q)<ε\left\lVert Q\right\rVert\ <\ \delta\quad\implies\quad\ell(C_{k})-\bigvee\limits_{a}^{b}\ (\underline{f_{k}};Q)\ <\ \varepsilon

for all k=1,2,k=1,2,\ldots .

Changing the notation (replace QQ by PP), ε>0\forall\ \varepsilon>0, δ>0\exists\ \delta>0 such that

P<δ(Ck)ab(fk¯;P)<ε\left\lVert P\right\rVert\ <\ \delta\quad\implies\quad\ell(C_{k})-\bigvee\limits_{a}^{b}\ (\underline{f_{k}};P)\ <\ \varepsilon

for all k=1,2,k=1,2,\ldots . Consequently

abθk¯(x)ηk¯(x;P)2dμCk\displaystyle\int\limits_{a}^{b}\ \left\lVert\underline{\theta_{k}}(x)-\underline{\eta_{k}}(x;P)\right\rVert^{2}\ \text{d}\mu_{C_{k}}\ 2[(Ck)i=1nfk¯(xi)fk¯(xi1)]\displaystyle\leq\ 2\hskip 1.42271pt\bigg{[}\ell(C_{k})\hskip 1.42271pt-\hskip 1.42271pt\sum\limits_{i=1}^{n}\ \left\lVert\underline{f_{k}}(x_{i})-\underline{f_{k}}(x_{i-1})\right\rVert\bigg{]}
= 2[(Ck)ab(fk¯;P)]\displaystyle=\ 2\hskip 1.42271pt\bigg{[}\ell(C_{k})\hskip 1.42271pt-\hskip 1.42271pt\bigvee\limits_{a}^{b}\ (\underline{f_{k}};P)\bigg{]}
< 2ε.\displaystyle<\ 2\hskip 1.42271pt\varepsilon.

§\boldsymbol{\S}8. LINE INTEGRALS

Let

Cf¯:[a,b]MC\longleftrightarrow\underline{f}:[a,b]\rightarrow\mathbb{R}^{M}

be a curve, continuous and rectifiable.

Suppose that

F:[C]×M,F:[C]\times\mathbb{R}^{M}\rightarrow\mathbb{R},

say

F(x¯,t¯)(x¯[C],t¯M).F(\underline{x},\underline{t})\quad(\underline{x}\in[C],\underline{t}\in\mathbb{R}^{M}).

myn1

DEFINITION  FF is a parametric integrand if FF is continuous in (x¯,t¯)(\underline{x},\underline{t}) and K0\forall\ K\geq 0,

F(x¯,Kt¯)=KF(x¯,t¯).F(\underline{x},K\underline{t})\ =\ KF(\underline{x},\underline{t}).

myn2

EXAMPLE  Let

F(x¯,t¯)=(t12++tM2)12.F(\underline{x},\underline{t})\ =\ (t_{1}^{2}+\ldots+t_{M}^{2})^{\frac{1}{2}}.

myn3

EXAMPLE  (M=2)(M=2) Let

F(x1,x2,t1,t2)=x1t2x2t1.F(x_{1},x_{2},t_{1},t_{2})\ =\ x_{1}t_{2}-x_{2}t_{1}.

myn4

N.B.  If FF is a parametric integrand, then x¯\forall\ \underline{x},

F(x¯,0)= 0.F(\underline{x},0)\ =\ 0.

myn5

RAPPEL

θ¯=1\left\lVert\underline{\theta}\right\rVert=1

almost everywhere.

myn6

LEMMA  Suppose that FF is a parametric integrand -then the integral

I(C)abF(f¯(x),θ¯(x))dμCI(C)\ \equiv\ \int\limits_{a}^{b}F(\underline{f}(x),\hskip 0.85355pt\underline{\theta}(x))\ \text{d}\mu_{C}

exists.

PROOF   [C]×U(M)[C]\times U(M) is a compact set on which FF is bounded. Since

(f¯(x),θ¯(x))[C]×U(M)(\underline{f}(x),\hskip 0.85355pt\underline{\theta}(x))\in[C]\times U(M)

almost everywhere, the function

F(f¯(x),θ¯(x))F(\underline{f}(x),\hskip 0.85355pt\underline{\theta}(x))

is Borel measurable and essentially bounded w.r.t the measure μC\mu_{C}. Therefore

I(C)abF(f¯(x),θ¯(x))dμCI(C)\equiv\int\limits_{a}^{b}F(\underline{f}(x),\hskip 0.85355pt\underline{\theta}(x))\ \text{d}\mu_{C}

exists.

[Note:  The requirement ``homogeneous of degree 1'' in tt plays no role in the course of establishing the existence of I(C)I(C). It will, however, be decisive in the considerations to follow.]

Let P𝒫[a,b]P\in\mathcal{P}[a,b] and let ξi\xi_{i} be a point in [xi1,xi][x_{i-1},x_{i}] (i=1,,n)(i=1,\ldots,n).

myn7

THEOREM  If FF is a parametric integrand, then

limP0i=1nF(f¯(ξi),f¯(xi)f¯(xi1))\lim\limits_{\left\lVert P\right\rVert\rightarrow 0}\ \sum\limits_{i=1}^{n}\ F(\underline{f}(\xi_{i}),\underline{f}(x_{i})-\underline{f}(x_{i-1}))

exists and equals I(C)I(C), denote it by the symbol

CF,\int\limits_{C}F,

and call it the line integral of FF along CC.

PROOF  Fix ε>0\varepsilon>0 and let B(M)\text{B}(M) be the unit ball in M\mathbb{R}^{M}. Put

MF=sup[C]×B(M)|F|.M_{F}=\sup\limits_{[C]\times\text{B}(M)}\left|F\right|.

Choose γ>0:\gamma>0:

{x1¯x2¯<γ(x1¯,x2¯[C])t1¯t2¯<γ(t1¯,t2¯B(M))\begin{cases}\ \left\lVert\underline{x_{1}}-\underline{x_{2}}\right\rVert<\gamma\qquad&(\underline{x_{1}},\underline{x_{2}}\in[C])\\[8.0pt] \ \left\lVert\underline{t_{1}}-\underline{t_{2}}\right\rVert<\gamma\qquad&(\underline{t_{1}},\underline{t_{2}}\in\text{B}(M))\end{cases}

\implies

|F(x1¯,t1¯)F(x2¯,t2¯)|<ε3(C).\left|F(\underline{x_{1}},\underline{t_{1}})-F(\underline{x_{2}},\underline{t_{2}})\right|\ <\ \frac{\varepsilon}{3\ell(C)}.

Introduce η¯(x;P)\underline{\eta}(x;P) and set

g(x;P)=F(f¯(ξi),η¯(x;P))g(x;P)=F(\underline{f}(\xi_{i}),\underline{\eta}(x;P))

if xi1<x<xix_{i-1}<x<x_{i} -then

abg(x;P)dμC\displaystyle\int\limits_{a}^{b}g(x;P)\ \text{d}\mu_{C}\ =i=1nF(f¯(ξi),f¯(xi)f¯(xi1)μC([xi1,xi]))μC([xi1,xi])\displaystyle=\ \sum\limits_{i=1}^{n}\ F\left(\underline{f}(\xi_{i}),\frac{\underline{f}(x_{i})-\underline{f}(x_{i-1})}{\mu_{C}([x_{i-1},x_{i}])}\right)\mu_{C}([x_{i-1},x_{i}])
=i=1nF(f¯(ξi),f¯(xi)f¯(xi1))\displaystyle=\ \sum\limits_{i=1}^{n}\ F(\underline{f}(\xi_{i}),\underline{f}(x_{i})-\underline{f}(x_{i-1}))

modulo the usual convention if μC([xi1,xi])=0\mu_{C}([x_{i-1},x_{i}])=0. Recall now that in L2(μC)\text{L}^{2}(\mu_{C}),

limP0η¯(;P)=θ¯,\lim\limits_{\left\lVert P\right\rVert\rightarrow 0}\underline{\eta}(-;P)=\underline{\theta},

hence η¯(;P)\underline{\eta}(-;P) converges in measure to θ¯\underline{\theta}, so there is a ρ>0\rho>0 such that for all PP with P<ρ\left\lVert P\right\rVert<\rho,

θ¯(x)η¯(x;P)<γ\left\lVert\underline{\theta}(x)-\underline{\eta}(x;P)\right\rVert<\gamma

except on a set SPS_{P} of measure

μC(SP)<ε3MF.\mu_{C}(S_{P})\ <\ \frac{\varepsilon}{3M_{F}}.

Define σ:\sigma:

|t1t2|<σf(t1)f(t2)<γ.\left|t_{1}-t_{2}\right|<\sigma\quad\implies\quad\left\lVert f(t_{1})-f(t_{2})\right\rVert<\gamma.

Let δ=min(σ,ρ)\delta=\min(\sigma,\rho) and let PP be any partition with P<δ\left\lVert P\right\rVert<\delta -then

I(C)i=1nF(f¯(ξi),\displaystyle I(C)-\sum\limits_{i=1}^{n}\ F(\underline{f}(\xi_{i}), f¯(xi)f¯(xi1))\displaystyle\underline{f}(x_{i})-\underline{f}(x_{i-1}))\
=abF(f¯(x),θ¯(x))dμCabg(x;P)dμC\displaystyle=\ \int\limits_{a}^{b}\ F(\underline{f}(x),\underline{\theta}(x))\ \text{d}\mu_{C}-\int\limits_{a}^{b}\ g(x;P)\ \text{d}\mu_{C}
=ab[F(f¯(x),θ¯(x))g(x;P)]dμC.\displaystyle=\ \int\limits_{a}^{b}\ [F(\underline{f}(x),\underline{\theta}(x))-g(x;P)]\ \text{d}\mu_{C}.

By definition, δρ\delta\leq\rho, hence

θ¯(x)η¯(x;P)<γ\left\lVert\underline{\theta}(x)-\underline{\eta}(x;P)\right\rVert\ <\ \gamma

except in SPS_{P}, and

f¯(x)f¯(ξi)<γ\left\lVert\underline{f}(x)-\underline{f}(\xi_{i})\right\rVert\ <\ \gamma

since

|xξi|<γ(xi1xxi).\left|x-\xi_{i}\right|<\gamma\quad(x_{i-1}\leq x\leq x_{i}).

To complete the argument, take absolute values:

|I(C)i=1nF(f¯(ξi),\displaystyle\bigg{|}I(C)\hskip 1.42271pt-\hskip 1.42271pt\sum\limits_{i=1}^{n}\ F(\underline{f}(\xi_{i}), f¯(xi)f¯(xi1))|\displaystyle\hskip 1.42271pt\underline{f}(x_{i})-\underline{f}(x_{i-1}))\bigg{|}
ab|F(f¯(x),θ¯(x))g(x;P)|dμC\displaystyle\leq\ \int\limits_{a}^{b}\ \left|F(\underline{f}(x),\underline{\theta}(x))-g(x;P)\right|\ \text{d}\mu_{C}
=[a,b]SP||dμC+SP||dμC.\displaystyle=\ \int\limits_{[a,b]-S_{P}}\ \left|\ldots\right|\ \text{d}\mu_{C}+\int\limits_{S_{P}}\ \left|\ldots\right|\ \text{d}\mu_{C}.

• On [a,b][a,b] - SPS_{P} at an index ii,

|F(f¯(x),θ¯(x))g(x;P)|\displaystyle\left|F(\underline{f}(x),\underline{\theta}(x))-g(x;P)\right|\ =|F(f¯(x),θ¯(x))F(f¯(ξi),η¯(x;P))|\displaystyle=\ \left|F(\underline{f}(x),\hskip 0.85355pt\underline{\theta}(x))-F(\underline{f}(\xi_{i}),\hskip 0.85355pt\underline{\eta}(x;P))\right|
ε3(C).\displaystyle\leq\ \frac{\varepsilon}{3\hskip 0.85355pt\ell(C)}.

Here, of course, up to a set of measure 0,

θ¯(x)B(M) and η(x;P)B(M).\underline{\theta}(x)\in\text{B}(M)\text{ and }\eta(x;P)\in\text{B}(M).

Therefore

[a,b]SP||dμC\displaystyle\int\limits_{[a,b]-S_{P}}\ \left|\ldots\right|\ \text{d}\mu_{C}\ ε3(C)\displaystyle\leq\ \frac{\varepsilon}{3\hskip 0.85355pt\ell(C)}
=ε3.\displaystyle=\ \frac{\varepsilon}{3}.

• On SPS_{P},

{|F(f¯(x),θ¯(x))|MF|F(f¯(ξi),η¯(x;P))|MF.\begin{cases}\ \left|F(\underline{f}(x),\underline{\theta}(x))\right|\hskip 1.42271pt\leq\hskip 1.42271ptM_{F}\\[8.0pt] \ \left|F(\underline{f}(\xi_{i}),\underline{\eta}(x;P))\right|\hskip 1.42271pt\leq\hskip 1.42271ptM_{F}\end{cases}.\\

Therefore

SP||dμC\displaystyle\int\limits_{S_{P}}\ \left|\ldots\right|\ \text{d}\mu_{C}\ 2MFSP 1dμC\displaystyle\leq\ 2M_{F}\int\limits_{S_{P}}\ 1\ \text{d}\mu_{C}
= 2MFμC(SP)\displaystyle=\ 2\hskip 1.42271ptM_{F}\hskip 1.42271pt\mu_{C}(S_{P})
< 2MFε3MF\displaystyle<\ 2\hskip 1.42271ptM_{F}\hskip 1.42271pt\frac{\varepsilon}{3M_{F}}
=2ε3.\displaystyle=\ \frac{2\varepsilon}{3}.

So in conclusion,

[a,b]SP||dμC+SP||dμC\displaystyle\int\limits_{[a,b]-S_{P}}\ \left|\ldots\right|\ \text{d}\mu_{C}\hskip 1.42271pt+\hskip 1.42271pt\int\limits_{S_{P}}\ \left|\ldots\right|\ \text{d}\mu_{C}\ <ε3+2ε3\displaystyle<\ \frac{\varepsilon}{3}+\frac{2\varepsilon}{3}
=ε(P<δ)\displaystyle=\ \varepsilon\qquad(\left\lVert P\right\rVert<\delta)

and

I(C)=CF.I(C)\ =\ \int\limits_{C}F.

myn8

N.B.  The end result is independent of the choice of the ξi\xi_{i}.

myn9

THEOREM  If f1,,fMAC[a,b]f_{1},\ldots,f_{M}\in\text{AC}[a,b], then for any parametric integrand FF,

CF=abF(f1(x),,fM(x),f1(x),,fM(x))dx,\int\limits_{C}F\ =\ \int\limits_{a}^{b}F(f_{1}(x),\ldots,f_{M}(x),f_{1}^{\prime}(x),\ldots,f_{M}^{\prime}(x))\ \text{d}x,

the integral on the right being in the sense of Lebesgue.

PROOF  The absolute continuity of the fmf_{m} implies that

μC([c,d])=cdfdx\mu_{C}([c,d])\ =\ \int\limits_{c}^{d}\left\lVert f^{\prime}\right\rVert\ \text{d}x

for every subinterval [c,d][a,b][c,d]\subset[a,b], hence μC\mu_{C} is absolutely continuous w.r.t Lebesgue measure. It is also true that νm\nu_{m} is absolutely continuous w.r.t Lebesgue measure. This said, write

fm=dfmdx=dνmdx=dνmdμCdμCdx=θmdμCdx.f_{m}^{\prime}\ =\ \frac{\text{d}f_{m}}{\text{d}x}\ =\ \frac{\text{d}\nu_{m}}{\text{d}x}\ =\ \frac{\text{d}\nu_{m}}{\text{d}\mu_{C}}\frac{\text{d}\mu_{C}}{\text{d}x}\ =\ \theta_{m}\frac{\text{d}\mu_{C}}{\text{d}x}.

Then

I(C)\displaystyle I(C) =abF(f¯(x),θ¯(x))dμC\displaystyle=\ \int\limits_{a}^{b}\ F(\underline{f}(x),\hskip 0.85355pt\underline{\theta}(x))\ \text{d}\mu_{C}
=abF(f¯(x),θ¯(x))dμCdxdx\displaystyle=\ \int\limits_{a}^{b}\ F(\underline{f}(x),\hskip 0.85355pt\underline{\theta}(x))\frac{\text{d}\mu_{C}}{\text{d}x}\text{d}x
=abF(f¯(x),θ¯(x)dμCdx)dx,\displaystyle=\ \int\limits_{a}^{b}\ F\left(\underline{f}(x),\hskip 0.85355pt\underline{\theta}(x)\frac{\text{d}\mu_{C}}{\text{d}x}\right)\ \text{d}x,

where

dμCdx=f¯ 0.\frac{\text{d}\mu_{C}}{\text{d}x}\ =\ \left\lVert\underline{f}^{\prime}\right\rVert\ \geq\ 0.

Continuing

I(C)\displaystyle I(C)\ =abF(f1(x),,fM(x),θ1(x)dμCdx,,θM(x)dμCdx)dx\displaystyle=\ \int\limits_{a}^{b}\ F\left(f_{1}(x),\ldots,f_{M}(x),\hskip 0.85355pt\theta_{1}(x)\frac{\text{d}\mu_{C}}{\text{d}x},\ldots,\theta_{M}(x)\frac{\text{d}\mu_{C}}{\text{d}x}\right)\text{d}x
=abF(f1(x),,fM(x),f1(x),,fM(x))dx,\displaystyle=\ \int\limits_{a}^{b}\ F(f_{1}(x),\ldots,f_{M}(x),f_{1}^{\prime}(x),\ldots,f_{M}^{\prime}(x))\ \text{d}x,

the integrals being in the sense of Lebesgue.

Let

{Cf¯:[a,b]Dg¯:[a,b]\begin{cases}\ C\longleftrightarrow\underline{f}:[a,b]\rightarrow\mathbb{R}\\ \ D\longleftrightarrow\underline{g}:[a,b]\rightarrow\mathbb{R}\end{cases}

be curves, continuous and rectifiable.

myn10

RAPPEL  If CC and DD are Fréchet equivalent, then

[C]=[D]and(C)=(D).[C]\ =\ [D]\quad\text{and}\quad\ell(C)\ =\ \ell(D).

myn11

THEOREM  If CC and DD are Fréchet equivalent and if FF is a parametric integrand, then

CF=DF.\int\limits_{C}F=\int\limits_{D}F.

PROOF   Fix ε>0\varepsilon>0 and choose δ>0:\delta>0:

• P𝒫[a,b]P\in\mathcal{P}[a,b]  &   P<δ\left\lVert P\right\rVert<\delta \implies

|I(C)i=1nF(f¯(ξi),f¯(xi)f¯(xi1))|<ε3.\bigg{|}I(C)-\sum\limits_{i=1}^{n}F(\underline{f}(\xi_{i}),\underline{f}(x_{i})-\underline{f}(x_{i-1}))\bigg{|}\ <\ \frac{\varepsilon}{3}.

• Q𝒫[c,d]Q\in\mathcal{P}[c,d]  &   Q<δ\left\lVert Q\right\rVert<\delta \implies

|I(D)j=1mF(f¯(ξj),f¯(yj)f¯(yj1))|<ε3.\bigg{|}I(D)-\sum\limits_{j=1}^{m}F(\underline{f}(\xi_{j}),\underline{f}(y_{j})-\underline{f}(y_{j-1}))\bigg{|}\ <\ \frac{\varepsilon}{3}.

Fix PP and QQ satisfying these conditions and let kk be the number of intervals in PP and let \ell be the number of intervals in QQ. Fix γ>0\gamma>0 such that

|F(x¯1,t¯1)F(x¯2,t¯2)|<ε3(k+)\left|F(\underline{x}_{1},\underline{t}_{1})-F(\underline{x}_{2},\underline{t}_{2})\right|\ <\ \frac{\varepsilon}{3(k+\ell)}

when

x¯1x¯2<γ(x¯1,x¯2[C]=[D])\left\lVert\underline{x}_{1}-\underline{x}_{2}\right\rVert\ <\ \gamma\qquad(\underline{x}_{1},\underline{x}_{2}\in[C]=[D])

and

t¯1t¯2< 2γ(t¯1(C),t¯2(D)).\left\lVert\underline{t}_{1}-\underline{t}_{2}\right\rVert\ <\ 2\gamma\qquad(\left\lVert\underline{t}_{1}\right\rVert\ \leq\ \ell(C),\ \left\lVert\underline{t}_{2}\right\rVert\leq\ell(D)).

Let ϕ:[a,b][c,d]\phi:[a,b]\rightarrow[c,d] be a homeomorphism (ϕ(a)=c,ϕ(b)=d)(\phi(a)=c,\ \phi(b)=d) such that

f¯(x)g¯(ϕ(x))<γ(x[a,b]).\left\lVert\underline{f}(x)-\underline{g}(\phi(x))\right\rVert\ <\ \gamma\qquad(x\in[a,b]).

Let

P:a=x0<x1<<xr=bP^{*}:\ a=x_{0}^{*}<x_{1}^{*}<\cdots<x_{r}^{*}=b

be the partition obtained from PP by adjoining the images under ϕ1\phi^{-1} of the partition points of QQ. Let

Q:c=y0<y1<<ys=dQ^{*}:\ c=y_{0}^{*}<y_{1}^{*}<\cdots<y_{s}^{*}=d

be the partition obtained from QQ by adjoining the images under ϕ\phi of the partition points of PP. So, by construction, r=sr=s, either one is k+\leq k+\ell, and yp=ϕ(xp)(p=0,1,,q)y_{p}^{*}=\phi(x_{p}^{*})\ (p=0,1,\ldots,q). Choose a point ξp[xp1,xp]\xi_{p}\in[x_{p-1}^{*},x_{p}^{*}] and work with

f¯(ξp)andg¯(ϕ(ξp)).\underline{f}(\xi_{p})\quad\text{and}\quad\underline{g}(\phi(\xi_{p})).

Then

|I(C)I(D)|\displaystyle\left|I(C)-I(D)\right|\ |I(C)p=1qF(f¯(ξp),f¯(xp)f¯(xp1))|\displaystyle\leq\ \bigg{|}I(C)-\sum\limits_{p=1}^{q}\ F(\underline{f}(\xi_{p}),\underline{f}(x_{p}^{*})-\underline{f}(x_{p-1}^{*}))\bigg{|}
+p=1q|F(f¯(ξp),f¯(xp)f¯(xp1))F(g¯(ϕ(ξp)),g¯(yp)g¯(yp1))|\displaystyle\qquad+\sum\limits_{p=1}^{q}\ \left|F(\underline{f}(\xi_{p}),\underline{f}(x_{p}^{*})-\underline{f}(x_{p-1}^{*}))-F(\underline{g}(\phi(\xi_{p})),\underline{g}(y_{p}^{*})-\underline{g}(y_{p-1}^{*}))\right|
+|p=1qF(g¯(ϕ(ξp)),g¯(yp)g¯(yp1))I(D)|.\displaystyle\qquad\qquad+\bigg{|}\sum\limits_{p=1}^{q}\ F(\underline{g}(\phi(\xi_{p})),\underline{g}(y_{p}^{*})-\underline{g}(y_{p-1}^{*}))-I(D)\bigg{|}.

Since

{PP<δQQ<δ,\begin{cases}\ \left\lVert P^{*}\right\rVert\ \leq\ \left\lVert P\right\rVert\ <\ \delta\\[8.0pt] \ \left\lVert Q^{*}\right\rVert\ \leq\ \left\lVert Q\right\rVert\ <\ \delta\end{cases},

the first and third terms are each <ε3\displaystyle<\frac{\varepsilon}{3}. As for the middle term,

f¯(ξp)g¯(ϕ(ξp))<γ\left\lVert\underline{f}(\xi_{p})-\underline{g}(\phi(\xi_{p}))\right\rVert<\gamma

and

f¯(xp)f¯(xp1)g¯(yp)+g¯(yp1)\displaystyle\left\lVert\underline{f}(x_{p}^{*})-\underline{f}(x_{p-1}^{*})-\underline{g}(y_{p}^{*})+\underline{g}(y_{p-1}^{*})\right\rVert\
f¯(xp)g¯(yp)+f¯(xp1)g¯(yp1)\displaystyle\hskip 56.9055pt\leq\ \left\lVert\underline{f}(x_{p}^{*})-\underline{g}(y_{p}^{*})\right\rVert+\left\lVert\underline{f}(x_{p-1}^{*})-\underline{g}(y_{p-1}^{*})\right\rVert
=f¯(xp)g¯(ϕ(xp))+f¯(xp1)g¯(ϕ(xp1))\displaystyle\hskip 56.9055pt=\ \left\lVert\underline{f}(x_{p}^{*})-\underline{g}(\phi(x_{p}^{*}))\right\rVert+\left\lVert\underline{f}(x_{p-1}^{*})-\underline{g}(\phi(x_{p-1}^{*}))\right\rVert
<γ+γ\displaystyle\hskip 56.9055pt<\ \gamma+\gamma
= 2γ.\displaystyle\hskip 56.9055pt=\ 2\gamma.

Therefore the middle term is

<qε3(k+)=qk+ε3<ε3.<\ q\hskip 1.42271pt\frac{\varepsilon}{3(k+\ell)}\ =\ \frac{q}{k+\ell}\ \frac{\varepsilon}{3}\ <\ \frac{\varepsilon}{3}.

And finally

|I(C)I(D)|<ε3+ε3+ε3=ε\left|I(C)-I(D)\right|\ <\ \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}\ =\ \varepsilon

\implies

I(C)=I(D)(ε0)I(C)\ =\ I(D)\qquad(\varepsilon\downarrow 0)

\implies

CF=DF.\int\limits_{C}\ F\ =\ \int\limits_{D}\ F.

myn12

SETUP  

• C0f0¯:[a,b]MC_{0}\longleftrightarrow\underline{f_{0}}:[a,b]\rightarrow\mathbb{R}^{M}

is a curve, continuous and rectifiable.

• Ckfk¯:[a,b]M(k=1,2,)C_{k}\longleftrightarrow\underline{f_{k}}:[a,b]\rightarrow\mathbb{R}^{M}\qquad(k=1,2,\ldots)

is a sequence of curves, continuous and rectifiable.

Assumption: fk¯\underline{f_{k}} converges uniformly to f0¯\underline{f_{0}} in [a,b][a,b] and

limk(Ck)=(C0).\lim\limits_{k\rightarrow\infty}\ell(C_{k})=\ \ell(C_{0}).

myn13

THEOREM

limkI(Ck)=I(C0)\lim\limits_{k\rightarrow\infty}\ I(C_{k})\ =\ I(C_{0})

or still,

limkCkF=C0F.\lim\limits_{k\rightarrow\infty}\ \int\limits_{C_{k}}\ F\ =\ \int\limits_{C_{0}}\ F.

§\boldsymbol{\S}9. QUASI ADDITIVITY

myn1

DATA  AA is a nonempty set, ={I}\mathcal{I}=\{I\} is a nonempty collection of subsets of AA, 𝒟={D}\mathcal{D}=\{D\} is a nonempty collection of nonempty finite collections of D=[I]D=[I] of sets II\in\mathcal{I}, and δ\delta is a real valued function defined on 𝒟\mathcal{D}.

myn2

DEFINITIONS  The sets II\in\mathcal{I} are called intervals, the collections D𝒟D\in\mathcal{D} are called systems, and the function δ\delta is called a mesh.

myn3

ASSUMPTIONS  AA is a nonempty topological space, each interval II has a nonempty interior, the intervals of each system DD are nonoverlapping:: I1,I2DI_{1},I_{2}\in D, I1I2I_{1}\neq I_{2}

{intI1cI2=cI1intI2=.\implies\qquad\begin{cases}\ \text{int}\ I_{1}\cap\ c\ell I_{2}\ =\ \emptyset\\[4.0pt] \ c\ell\ I_{1}\cap\text{int}\ I_{2}\ =\ \emptyset\end{cases}.

myn4

ASSUMPTION  For each system DD, 0<δ(D)<+0<\delta(D)<+\infty, and each ε>0\varepsilon>0, there are systems with δ(D)<ε\delta(D)<\varepsilon.

myn5

REMARK  In the presence of δ\delta, one is able to convert 𝒟\mathcal{D} into a directed set with direction ``\gg'' by defining D2D1D_{2}\gg D_{1} iff δ(D2)<δ(D1)\delta(D_{2})<\delta(D_{1}).

myn6

EXAMPLE  Take A=[a,b]A=[a,b] and let ={I}\mathcal{I}=\{I\} be the collection of all closed subintervals of [a,b][a,b]. Take for 𝒟\mathcal{D} the class of all partitions DD of [a,b][a,b], i.e., 𝒟=𝒫[a,b]\mathcal{D}=\mathcal{P}[a,b], and let δ(D)\delta(D) be the norm of DD.

[Note:  Strictly speaking, an element of 𝒫[a,b]\mathcal{P}[a,b] is a finite set P={x0,,xn}P=\{x_{0},\ldots,x_{n}\}, where

a=x0<x1<<xn=b,a=x_{0}<x_{1}<\cdots<x_{n}=b,

the associated element DD in 𝒟\mathcal{D} being the set

[xi1,xi](i=1,,n).][x_{i-1},x_{i}]\qquad(i=1,\ldots,n).]

myn7

DEFINITION  An interval function is a function ϕ:M\phi:\mathcal{I}\rightarrow\mathbb{R}^{M}.

[Note:   Associated with ϕ\phi is the interval function ϕ\left\lVert\phi\right\rVert, as well as the

ϕm,|ϕm|,{ϕm+ϕm(m=1,,M).]\phi_{m},\ \left|\phi_{m}\right|,\ \begin{cases}\ \phi_{m}^{+}\\[4.0pt] \ \phi_{m}^{-}\end{cases}\qquad(m=1,\ldots,M).]

myn8

NOTATION  Given an interval function ϕ\phi, a subset SAS\subset A, and a system D=[I]D=[I], put

[ϕ,S,D]=Is(I,S)ϕ(I),\sum\ [\phi,S,D]\ =\ \sum\limits_{I}s(I,S)\ \phi(I),

where I\displaystyle\sum\limits_{I} ranges over all IDI\in D and s(I,S)=1s(I,S)=1 or 0 depending on whether ISI\subset S or ISI\not\subset S.

[Note:   Take for SS the empty set \emptyset -then II\subset\emptyset is inadmissible (II has nonempty interior) and ISI\not\subset S gives rise to zero. Therefore

[ϕ,,D]= 0.]\sum\ [\phi,\emptyset,D]\ =\ 0.]

myn9

N.B.  The absolute situation is when S=AS=A, thus in this case,

[ϕ,A,D][ϕ,D]=Iϕ(I).\sum\ [\phi,A,D]\ \equiv\ \sum\ [\phi,D]\ =\ \sum\limits_{I}\ \phi(I).

myn10

DEFINITION  Given an interval function ϕ\phi and a subset SAS\subset A, the BC-integral of ϕ\phi over SS is

limδ(D)0[ϕ,S,D]\lim\limits_{\delta(D)\rightarrow 0}\ \sum\ [\phi,S,D]

provided the limit exists in M\mathbb{R}^{M}.

[Note:  B = Burkill and C = Cesari.]

myn11

NOTATION  The BC-integral of ϕ\phi over SS is denoted by

BCSϕ.\text{BC}\int\limits_{S}\phi.

myn12

EXAMPLE

BCϕ=0¯(M).\text{BC}\int\limits_{\emptyset}\ \phi\ =\ \underline{0}\quad(\in\mathbb{R}^{M}).

myn13

DEFINITION  An interval function ϕ\phi is quasi additive on SS if for each ε>0\varepsilon>0 there exists η(ε,S)>0\eta(\varepsilon,S)>0 such that if D0=[I0]D_{0}=[I_{0}] is any system subject to δ(D0)<η(ε,S)\delta(D_{0})<\eta(\varepsilon,S), there also exists λ(ε,S,D0)>0\lambda(\varepsilon,S,D_{0})>0 such that for every system D=[I]D=[I] with δ(D)<λ(ε,S,D0)\delta(D)<\lambda(\varepsilon,S,D_{0}), the relations

(qa1S)I0s(I0,S)||Is(I,I0),ϕ(I)ϕ(I0)||<ε\displaystyle(\text{qa}_{1}-S)\hskip 1.42271pt\sum\limits_{I_{0}}s(I_{0},S)\ \big{|}\big{|}\sum\limits_{I}s(I,I_{0}),\phi(I)-\phi(I_{0})\big{|}\big{|}\ <\ \varepsilon
(qa2S)Is(I,S)[1I0s(I,I0),s(I0,S)]ϕ(I)<ε\displaystyle(\text{qa}_{2}-S)\hskip 1.42271pt\sum\limits_{I}s(I,S)\ \bigg{[}1\hskip 1.42271pt-\hskip 1.42271pt\sum\limits_{I_{0}}s(I,I_{0}),s(I_{0},S)\bigg{]}\left\lVert\phi(I)\right\rVert\ <\ \varepsilon

obtain.

myn14

N.B.  In the absolute situation, matters read as follows: An interval function ϕ\phi is quasi additive if for each ε>0\varepsilon>0 there exists η(ε)>0\eta(\varepsilon)>0 such that if D0=[I0]D_{0}=[I_{0}] is any system subject to δ(D0)<η(ε)\delta(D_{0})<\eta(\varepsilon) there exists λ(ε,D0)>0\lambda(\varepsilon,D_{0})>0 such that for every system D=[I]D=[I] with δ(D)<λ(ε,D0)\delta(D)<\lambda(\varepsilon,D_{0}), the relations

(qa1A)I0II0ϕ(I)ϕ(I0)<ε\displaystyle(\text{qa}_{1}-A)\ \sum\limits_{I_{0}}\ \big{|}\big{|}\sum\limits_{I\subset I_{0}}\ \phi(I)-\phi(I_{0})\big{|}\big{|}\ <\ \varepsilon
(qa2A)II0ϕ(I)<ε\displaystyle(\text{qa}_{2}-A)\ \sum\limits_{I\not\subset I_{0}}\ \left\lVert\phi(I)\right\rVert\ <\ \varepsilon

obtain.

[Note:  The sum

II0ϕ(I)\sum\limits_{I\not\subset I_{0}}\left\lVert\phi(I)\right\rVert

is over all IDI\in D, II0I\not\subset I_{0} for any I0D0.]I_{0}\in D_{0}.]

So, under the preceding conditions,

Iϕ(I)I0ϕ(I0)=I0[II0ϕ(I)ϕ(I0)]+II0ϕ(I)\sum\limits_{I}\ \phi(I)-\sum\limits_{I_{0}}\ \phi(I_{0})\ =\ \sum\limits_{I_{0}}\ \bigg{[}\sum\limits_{I\subset I_{0}}\ \phi(I)-\phi(I_{0})\bigg{]}+\sum\limits_{I\not\subset I_{0}}\ \phi(I)

\implies

Iϕ(I)I0ϕ(I0)< 2ε.\bigg{|}\bigg{|}\sum\limits_{I}\ \phi(I)-\sum\limits_{I_{0}}\ \phi(I_{0})\bigg{|}\bigg{|}\ <\ 2\varepsilon.

myn15

THEOREM  If ϕ\phi is quasi additive on SS, then

BCSϕ\text{BC}\int\limits_{S}\phi

exists.

PROOF  To simplify the combinatorics, take S=AS=A. Given ε>0\varepsilon>0, let η(ε)\eta(\varepsilon), D0D_{0}, λ(ε,D0)\lambda(\varepsilon,D_{0}) be per qa1\text{qa}_{1}-AA, qa2\text{qa}_{2}-AA and suppose that D1,D2𝒟D_{1},\ D_{2}\in\mathcal{D}, where

{δ(D1)<λ(ε,D0)δ(D2)<λ(ε,D0).\begin{cases}\ \delta(D_{1})\ <\ \lambda(\varepsilon,D_{0})\\[4.0pt] \ \delta(D_{2})\ <\ \lambda(\varepsilon,D_{0})\end{cases}.

Then

{I1ϕ(I1)I0ϕ(I0)< 2εI2ϕ(I2)I0ϕ(I0)< 2ε\begin{cases}\displaystyle\ \big{|}\big{|}\sum\limits_{I_{1}}\phi(I_{1})-\sum\limits_{I_{0}}\phi(I_{0})\big{|}\big{|}\ <\ 2\hskip 0.85355pt\varepsilon\\[26.0pt] \displaystyle\ \big{|}\big{|}\sum\limits_{I_{2}}\phi(I_{2})-\sum\limits_{I_{0}}\phi(I_{0})\big{|}\big{|}\ <\ 2\hskip 0.85355pt\varepsilon\end{cases}

\implies

I1ϕ(I1)I2ϕ(I2)< 4ε.\big{|}\big{|}\sum\limits_{I_{1}}\phi(I_{1})-\sum\limits_{I_{2}}\phi(I_{2})\big{|}\big{|}\ <\ 4\hskip 0.85355pt\varepsilon.

Therefore BCAϕ\displaystyle\text{BC}\int\limits_{A}\phi exists.

myn16

REMARK  

• If the ϕm\phi_{m} (m=1,,M)(m=1,\ldots,M) are quasi additive, then ϕ\phi is quasi additive.

• If the |ϕm|\left|\phi_{m}\right| (m=1,,M)(m=1,\ldots,M) are quasi additive, then ϕ\left\lVert\phi\right\rVert is quasi additive.

myn17

DEFINITION  AA real valued interval function ψ\psi is quasi subadditive on SS if for each ε>0\varepsilon>0 there exists η(ε,S)>0\eta(\varepsilon,S)>0 such that if D0=[I0]D_{0}=[I_{0}] is any system subject to δ(D0)<η(ε,S)\delta(D_{0})<\eta(\varepsilon,S) there also exists λ(ε,S,D0)>0\lambda(\varepsilon,S,D_{0})>0 such that for every system D=[I]D=[I] with δ(D)<λ(ε,S,D0)\delta(D)<\lambda(\varepsilon,S,D_{0}) the relation

(qsa-S)I0s(I0,S)[Is(I,I0)ψ(I)ψ(I0)]<ε(\text{qsa-}S)\ \sum\limits_{I_{0}}\ s(I_{0},S)\ \bigg{[}\sum\limits_{I}\ s(I,I_{0})\psi(I)-\psi(I_{0})\bigg{]}^{-}\ <\ \varepsilon

obtains.

myn18

N.B.  In the absolute situation, matters read as follows::

(qsa-A)I0[II0ψ(I)ψ(I0)]<ε.(\text{qsa-}A)\ \sum\limits_{I_{0}}\ \bigg{[}\sum\limits_{I\subset I_{0}}\ \psi(I)-\psi(I_{0})\bigg{]}^{-}\ <\ \varepsilon.

myn19

LEMMA  If ψ:𝒟0\psi:\mathcal{D}\rightarrow\mathbb{R}_{\geq 0} is nonnegative and quasi subadditive on SS, then

BCSψ\text{BC}\int\limits_{S}\psi

exists (+(+\infty is a permissible value)).

myn20

THEOREM  If ψ:0\psi:\mathcal{I}\rightarrow\mathbb{R}_{\geq 0} is nonnegative and quasi subadditive on SS and if

BCSψ\text{BC}\int\limits_{S}\psi

is finite, then ψ\psi is quasi additive on SS .

PROOF  To simplify the combinatorics, take S=AS=A. Since

BCAψ\text{BC}\ \int\limits_{A}\psi

exists and is finite, given ε>0\varepsilon>0 there is a number μ(ε)>0\mu(\varepsilon)>0 such that for any D0=[I0]𝒟D_{0}=[I_{0}]\in\mathcal{D} with δ(D0)<μ(ε)\delta(D_{0})<\mu(\varepsilon), we have

|BCAψI0ψ(I0)|<ε3,\bigg{|}\text{BC}\ \int\limits_{A}\ \psi-\sum\limits_{I_{0}}\psi(I_{0})\bigg{|}\ <\ \frac{\varepsilon}{3},

where I0\displaystyle\sum\limits_{I_{0}} is a sum ranging over all I0D0I_{0}\in D_{0}. Now choose D0D_{0} in such a way that

δ(D0)<min{μ(ε),η(ε/6)},\delta(D_{0})\ <\ \min\{\mu(\varepsilon),\eta(\varepsilon/6)\},

take

λ(ε)=min{μ(ε),λ(ε/6,D0)},\lambda^{\prime}(\varepsilon)\ =\ \min\{\mu(\varepsilon),\lambda(\varepsilon/6,D_{0})\},

and consider any system D=[I]D=[I] with δ(D)<λ\delta(D)<\lambda^{\prime}. Since ψ\psi is quasi subadditive,

I0[II0ψ(I)ψ(I0)]<ε6.\sum\limits_{I_{0}}\bigg{[}\sum\limits_{I\subset I_{0}}\ \psi(I)-\psi(I_{0})\bigg{]}^{-}\ <\ \frac{\varepsilon}{6}.

On the other hand,

|BCAψIψ(I)|<ε3.\bigg{|}\text{BC}\int\limits_{A}\ \psi-\sum\limits_{I}\psi(I)\bigg{|}\ <\ \frac{\varepsilon}{3}.

Denote by \displaystyle\sum^{\prime} a sum over all IDI\in D with II0I\not\subset I_{0} for any I0D0I_{0}\in D_{0} - then

0\displaystyle 0\ I0|II0ψ(I)ψ(I0)|+ψ(I)\displaystyle\leq\ \sum\limits_{I_{0}}\ \bigg{|}\sum\limits_{I\subset I_{0}}\ \psi(I)-\psi(I_{0})\bigg{|}\ +\ \sum{}^{\prime}\ \psi(I)
=I0[II0ψ(I)ψ(I0)]+2I0[II0ψ(I)ψ(I0)]\displaystyle=\ \sum\limits_{I_{0}}\ \bigg{[}\sum\limits_{I\subset I_{0}}\ \psi(I)-\psi(I_{0})\bigg{]}+2\hskip 1.42271pt\sum\limits_{I_{0}}\bigg{[}\sum\limits_{I\subset I_{0}}\psi(I)-\psi(I_{0})\bigg{]}^{-}
+ψ(I)\displaystyle\hskip 56.9055pt+\sum{}^{\prime}\psi(I)
=[Iψ(I)BCAψ][I0ψ(I0)BCAψ]\displaystyle=\ \bigg{[}\sum\limits_{I}\psi(I)-\text{BC}\int\limits_{A}\psi\bigg{]}-\bigg{[}\sum\limits_{I_{0}}\ \psi(I_{0})-\text{BC}\int\limits_{A}\psi\bigg{]}
+2I0[II0ψ(I)ψ(I0)]\displaystyle\hskip 56.9055pt+2\hskip 1.42271pt\sum\limits_{I_{0}}\hskip 1.42271pt\bigg{[}\sum\limits_{I\subset I_{0}}\psi(I)-\psi(I_{0})\bigg{]}^{-}
ε3+ε3+ 2ε6\displaystyle\leq\ \frac{\varepsilon}{3}\ +\ \frac{\varepsilon}{3}\ +\ 2\hskip 1.42271pt\frac{\varepsilon}{6}
=ε.\displaystyle=\ \varepsilon.

The requirements for quasi additivity are thus met.

myn21

THEOREM  Suppose that ϕ:M\phi:\mathcal{I}\rightarrow\mathbb{R}^{M} is quasi additive on SS -then ϕ:0\left\lVert\phi\right\rVert:\mathcal{I}\rightarrow\mathbb{R}_{\geq 0} is quasi additive on SS.

PROOF  Fix ε>0\varepsilon>0, take S=AS=A, and in the notation above, introduce η(ε)\eta(\varepsilon), D0=[I0]D_{0}=[I_{0}], λ(ε,D0)\lambda(\varepsilon,D_{0}), D=[I]D=[I] -then the objective is to show that

I0[II0ϕ(I)ϕ(I0)]<ε.\sum\limits_{I_{0}}\ \bigg{[}\sum\limits_{I\subset I_{0}}\ \left\lVert\phi(I)\right\rVert-\left\lVert\phi(I_{0})\right\rVert\bigg{]}^{-}\ <\ \varepsilon.

To this end, let

Φ(I0)=II0ϕ(I)ϕ(I0).\Phi(I_{0})\ =\ \sum\limits_{I\subset I_{0}}\ \phi(I)-\phi(I_{0}).

Then

ϕ(I0)+Φ(I0)\displaystyle\left\lVert\phi(I_{0})+\Phi(I_{0})\right\rVert =II0ϕ(I)\displaystyle=\ \sum\limits_{I\subset I_{0}}\ \phi(I)\
=[m=1M(II0ϕm(I))2]12\displaystyle=\ \bigg{[}\sum\limits_{m=1}^{M}\ \bigg{(}\sum\limits_{I\subset I_{0}}\ \phi_{m}(I)\bigg{)}^{2}\ \bigg{]}^{\frac{1}{2}}
II0[m=1Mϕm(I)2]12\displaystyle\leq\ \sum\limits_{I\subset I_{0}}\ \bigg{[}\sum\limits_{m=1}^{M}\ \phi_{m}(I)^{2}\ \bigg{]}^{\frac{1}{2}}
=II0ϕ(I).\displaystyle=\ \sum\limits_{I\subset I_{0}}\ \left\lVert\phi(I)\right\rVert.

Meanwhile

ϕ(I0)=[ϕ(I0)+Φ(I0)]+[Φ(I0)]\phi(I_{0})=[\phi(I_{0})+\Phi(I_{0})]+[-\Phi(I_{0})]

\implies

II0ϕ(I)ϕ(I0)\displaystyle\sum\limits_{I\subset I_{0}}\ \left\lVert\phi(I)\right\rVert-\left\lVert\phi(I_{0})\right\rVert\ ϕ(I0)+Φ(I0)ϕ(I0)\displaystyle\geq\ \left\lVert\phi(I_{0})+\Phi(I_{0})\right\rVert-\left\lVert\phi(I_{0})\right\rVert
Φ(I0)\displaystyle\geq-\left\lVert\Phi(I_{0})\right\rVert

\implies

[II0ϕ(I)ϕ(I0)]Φ(I0)\bigg{[}\sum\limits_{I\subset I_{0}}\left\lVert\phi(I)\right\rVert-\left\lVert\phi(I_{0})\right\rVert\bigg{]}^{-}\ \leq\ \left\lVert\Phi(I_{0})\right\rVert

\implies

I0[II0ϕ(I)ϕ(I0)]\displaystyle\sum\limits_{I_{0}}\ \bigg{[}\sum\limits_{I\subset I_{0}}\ \left\lVert\phi(I)\right\rVert-\left\lVert\phi(I_{0})\right\rVert\bigg{]}^{-}\ I0Φ(I0)\displaystyle\leq\ \sum\limits_{I_{0}}\ \left\lVert\Phi(I_{0})\right\rVert
=I0II0ϕ(I)ϕ(I0)\displaystyle=\ \sum\limits_{I_{0}}\ \big{|}\big{|}\sum\limits_{I\subset I_{0}}\ {\phi(I)}-{\phi(I_{0})}\big{|}\big{|}
<ε,\displaystyle<\ \varepsilon,

ϕ\phi being quasi additive.

myn22

APPLICATION  If ϕ:M\phi:\mathcal{I}\rightarrow\mathbb{R}^{M} is quasi additive, then the interval functions

I|ϕm(I)|(m=1,,M)I\rightarrow\left|\phi_{m}(I)\right|\quad(m=1,\ldots,M)

are quasi subadditive.

[In fact, the quasi additivity of the ϕ\phi implies the quasi additivity of the ϕm\phi_{m} and

ϕm=|ϕm|.]\left\lVert\phi_{m}\right\rVert=\left|\phi_{m}\right|.]

[Note:   It is also true that ϕm+,ϕm\phi_{m}^{+},\ \phi_{m}^{-} are quasi subadditive.]

myn23

LEMMA  If ϕ:M\phi:\mathcal{I}\rightarrow\mathbb{R}^{M} is quasi additive on SS and if

BCSϕ<+,\text{BC}\int\limits_{S}\ \left\lVert\phi\right\rVert\ <\ +\infty,

then ϕ\phi is quasi additive on every subset SSS^{\prime}\subset S.

PROOF  First of all, ϕ\left\lVert\phi\right\rVert is quasi subadditive on SS , hence also on SS^{\prime}. Therefore

BCSϕ\text{BC}\int\limits_{S^{\prime}}\ \left\lVert\phi\right\rVert

exists and

BCSϕBCSϕ<+,\text{BC}\int\limits_{S^{\prime}}\ \left\lVert\phi\right\rVert\ \leq\ \text{BC}\int\limits_{S}\ \left\lVert\phi\right\rVert\ <\ +\infty,

from which it follows that ϕ\left\lVert\phi\right\rVert is quasi additive on SS^{\prime}. Given ε>0\varepsilon>0, determine the parameters in the definition of quasi additive in such a way that the relevant relations are simultaneously satisfied per ϕ\phi on SS and per ϕ\left\lVert\phi\right\rVert on SS^{\prime}, hence

I0s(I0,S)Is(I,I0)ϕ(I)ϕ(I0)\displaystyle\sum\limits_{I_{0}}s(I_{0},S^{\prime})\ \big{|}\big{|}\sum\limits_{I}s(I,I_{0})\ \phi(I)-\phi(I_{0})\big{|}\big{|}\ I0s(I0,S)Is(I,I0)ϕ(I)ϕ(I0)\displaystyle\leq\ \sum\limits_{I_{0}}s(I_{0},S)\ \big{|}\big{|}\sum\limits_{I}s(I,I_{0})\ \phi(I)-\phi(I_{0})\big{|}\big{|}
<ε\displaystyle<\ \varepsilon

and

Is(I,S)[1I0s(I,I0)s(I0,S)]ϕ(I)<ε.\sum\limits_{I}s(I,S^{\prime})\ \bigg{[}1-\sum\limits_{I_{0}}\ s(I,I_{0})\hskip 0.85355pts(I_{0},S^{\prime})\bigg{]}\left\lVert\phi(I)\right\rVert\ <\ \varepsilon.

Therefore ϕ\phi is quasi additive on SS^{\prime}.

myn24

APPLICATION  If ϕ:M\phi:\mathcal{I}\rightarrow\mathbb{R}^{M} is quasi additive and if

BCAϕ<+,\text{BC}\int\limits_{A}\ \left\lVert\phi\right\rVert\ <\ +\infty,

then ϕ\phi is quasi additive on every subset of AA.

Here is a summary of the fundamental points of this §\S. Work with ϕ\phi and ϕ\left\lVert\phi\right\rVert.

• Suppose that ϕ\left\lVert\phi\right\rVert is quasi subadditive on SS and

BCSϕ<+.\text{BC}\int\limits_{S}\ \left\lVert\phi\right\rVert\ <\ +\infty.

Then ϕ\left\lVert\phi\right\rVert is quasi additive on SS .

• Suppose that ϕ{\phi} is quasi additive on SS -then ϕ\left\lVert\phi\right\rVert is quasi subadditive on SS .

So:: If ϕ\phi is quasi additive on SS AND if

BCSϕ<+,\text{BC}\int\limits_{S}\ \left\lVert\phi\right\rVert\ <\ +\infty,

then ϕ\left\lVert\phi\right\rVert is quasi additive on SS.

[Note:   It is not true in general that ϕ\left\lVert\phi\right\rVert quasi additive implies ϕ\phi quasi additive.]

myn25

EXAMPLE  Take A=[a,b]A=[a,b] and let ,𝒟\mathcal{I},\ \mathcal{D}, and δ\delta be as at the beginning. Given a continuous curve

Cf¯:[a,b]M,C\longleftrightarrow\underline{f}:[a,b]\rightarrow\mathbb{R}^{M},

define a quasi additive interval function ϕ:M\phi:\mathcal{I}\rightarrow\mathbb{R}^{M} by the rule

ϕ(I)\displaystyle\phi(I)\ =(ϕ1(I),,ϕM(I))\displaystyle=\ (\phi_{1}(I),\ldots,\phi_{M}(I))
=(f1(d)f1(c),,fM(d)fM(c)),\displaystyle=\ (f_{1}(d)-f_{1}(c),\ldots,f_{M}(d)-f_{M}(c)),

where I=[c,d][a,b]I=[c,d]\subset[a,b], thus

ϕ(I)=f¯(d)f¯(c),\left\lVert\phi(I)\right\rVert\ =\ \left\lVert\underline{f}(d)-\underline{f}(c)\right\rVert,

so if P𝒫[a,b]P\in\mathcal{P}[a,b] corresponds to

D{[xi1,xi]:i=1,,n},D\longleftrightarrow\{[x_{i-1},x_{i}]:i=1,\ldots,n\},

then

IDϕ(I)=i=1nf¯(xi)f¯(xi1)\sum\limits_{I\in D}\ \left\lVert\phi(I)\right\rVert\ =\ \sum\limits_{i=1}^{n}\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert

\implies

BCAϕ\displaystyle\text{BC}\int\limits_{A}\left\lVert\phi\right\rVert\ =limδ(D)0IDϕ(I)\displaystyle=\ \lim\limits_{\delta(D)\rightarrow 0}\ \sum\limits_{I\in D}\ \left\lVert\phi(I)\right\rVert
=limP0i=1nf¯(xi)f¯(xi1)\displaystyle=\ \lim\limits_{\left\lVert P\right\rVert\rightarrow 0}\ \sum\limits_{i=1}^{n}\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert
=(C).\displaystyle=\ \ell(C).

Therefore CC is rectifiable iff

BCAϕ<+.\text{BC}\int\limits_{A}\left\lVert\phi\right\rVert\ <\ +\infty.

And when this is the case, ϕ\left\lVert\phi\right\rVert is quasi additive on AA.

[Note:   A priori,

(C)=supP𝒫[a,b]i=1nf¯(xi)f¯(xi1).\ell(C)\ =\ \sup\limits_{P\in\mathcal{P}[a,b]}\ \sum\limits_{i=1}^{n}\ \left\lVert\underline{f}(x_{i})-\underline{f}(x_{i-1})\right\rVert.

But here, thanks to the continuity of f¯\underline{f}, the sup\sup can be replace by lim\lim.]

myn26

EXAMPLE  Take A=[a,b]A=[a,b] and let \mathcal{I} and 𝒟\mathcal{D} be as above. Suppose that

Cf¯:[a,b]MC\longleftrightarrow\underline{f}:[a,b]\rightarrow\mathbb{R}^{M}

is a rectifiable curve, potentially discontinuous.

• Given ax0<ba\leq x_{0}<b, put

s+(x0)=lim supxx0f¯(x)f¯(x0)s^{+}(x_{0})\ =\ \limsup\limits_{x\downarrow x_{0}}\ \left\lVert\underline{f}(x)-\underline{f}(x_{0})\right\rVert

and let s+(b)=0.s^{+}(b)=0.

• Given a<x0ba<x_{0}\leq b, put

s(x0)=lim supxx0f¯(x)f¯(x0)s^{-}(x_{0})\ =\ \limsup\limits_{x\uparrow x_{0}}\left\lVert\underline{f}(x)-\underline{f}(x_{0})\right\rVert

and let s(a)=0s^{-}(a)=0. Combine the data and set

s(x)=s+(x)+s(x)(axb).s(x)\ =\ s^{+}(x)+s^{-}(x)\qquad(a\leq x\leq b).

Then s(x)s(x) is zero everywhere save for at most countably many xx and

σ=xs(x)(C).\sigma\ =\ \sum\limits_{x}s(x)\ \leq\ \ell(C).

Take ϕ\phi as above and define a mesh δ\delta by the rule

δ(D)=P+σi=0ns(xi).\delta(D)\ =\ \left\lVert P\right\rVert+\sigma-\sum\limits_{i=0}^{n}s(x_{i}).

One can then show that ϕ\phi is quasi additive and

BCAϕ=(C).\text{BC}\int\limits_{A}\left\lVert\phi\right\rVert\ =\ \ell(C).

myn27

NOTATION  Given a quasi additive interval function ϕ\phi, let

V[ϕ,S]=supD𝒟[ϕ,S,D].V[\phi,S]\ =\ \sup\limits_{D\in\mathcal{D}}\ \sum\ [\hskip 0.85355pt\left\lVert\phi\right\rVert,\hskip 0.85355ptS,\hskip 0.85355ptD\hskip 0.85355pt].

myn28

N.B.  By definition,

BCSϕ=limδ(D)0[ϕ,S,D],\text{BC}\int\limits_{S}\ \left\lVert\phi\right\rVert\ =\ \lim\limits_{\delta(D)\rightarrow 0}\ \sum\ [\hskip 0.85355pt\left\lVert\phi\right\rVert,\hskip 0.85355ptS,\hskip 0.85355ptD\hskip 0.85355pt],

so

BCSϕV[ϕ,S]\text{BC}\int\limits_{S}\left\lVert\phi\right\rVert\ \leq\ V[\phi,S]

and strict inequality may hold.

myn29

LEMMA  Given a quasi additive ϕ\phi and a subset SAS\subset A, suppose that for every ε>0\varepsilon>0 and any D0=[I0]D_{0}=[I_{0}] there exists λ(ε,S,D0)>0\lambda(\varepsilon,S,D_{0})>0 such that for every system D=[I]D=[I] with δ(D)<λ(ε,S,D0)\delta(D)<\lambda(\varepsilon,S,D_{0}) the relation

I0s(I0,S)[Is(I,I0)ϕ(I)ϕ(I0)]<ε\sum\limits_{I_{0}}s(I_{0},S)\ \bigg{[}\sum\limits_{I}s(I,I_{0})\ \left\lVert\phi(I)\right\rVert-\left\lVert\phi(I_{0})\right\rVert\bigg{]}^{-}\ <\ \varepsilon

obtains -then

BCSϕ=V[ϕ,S].\text{BC}\int\limits_{S}\ \left\lVert\phi\right\rVert\ =\ V[\phi,S].

§\boldsymbol{\S}10. LINE INTEGRALS (bis)

Throughout this §\S, the situation will be absolute, where A=[a,b]A=[a,b] and ,𝒟\mathcal{I},\ \mathcal{D}, and δ\delta have their usual connotations.

If

Cf¯:[a,b]MC\longleftrightarrow\underline{f}:[a,b]\rightarrow\mathbb{R}^{M}

is a curve, continuous and rectifiable, then

BCAϕ=(C).\text{BC}\ \int\limits_{A}\ \left\lVert\phi\right\rVert\ =\ \ell(C).

And if FF is a parametric integrand, then

CF=limP0i=1nF(f¯(ξi),f¯(xi)f¯(xi1))\int\limits_{C}F\ =\ \lim\limits_{\left\lVert P\right\rVert\rightarrow 0}\ \sum\limits_{i=1}^{n}\ F(\underline{f}(\xi_{i}),\underline{f}(x_{i})-\underline{f}(x_{i-1}))

exists, the result being independent of the ξi\xi_{i}.

myn1

N.B.  Recall the procedure: Introduce the integral

I(C)=abF(f¯(x),θ¯(x))dμCI(C)\ =\ \int\limits_{a}^{b}\ F(\underline{f}(x),\underline{\theta}(x))\ \text{d}\mu_{C}

and prove that

limP0i=1nF(f¯(ξi),f¯(xi)f¯(xi1))\lim\limits_{\left\lVert P\right\rVert\rightarrow 0}\ \sum\limits_{i=1}^{n}\ F(\underline{f}(\xi_{i}),\underline{f}(x_{i})-\underline{f}(x_{i-1}))

exists and equals I(C)I(C), the result being denoted by the symbol

CF\int\limits_{C}\ F

and called the line integral of FF along CC.

There is another approach to all of this which does not use measure theory. Thus define an interval function Φ:\Phi:\mathcal{I}\rightarrow\mathbb{R} by the prescription

Φ(I;ξ)=F(f¯(ξ),ϕ(I)),\Phi(I;\xi)\ =\ F(\underline{f}(\xi),\phi(I)),

where ξI\xi\in I is arbitrary.

[Note:  By definition

ϕ(I)=(ϕ1(I),,ϕM(I))=(f1(d)f1(c),,fM(d)fM(c)),\phi(I)=(\phi_{1}(I),\ldots,\phi_{M}(I))\ =\ (f_{1}(d)-f_{1}(c),\ldots,f_{M}(d)-f_{M}(c)),

II being [c,d][a,b][c,d]\subset[a,b]. Moreover, ϕ\phi is quasi additive.]

myn2

THEOREM  Φ\Phi is quasi additive.

Admit the contention -then

limδ(D)0IDΦ(I;ξ)=limP0i=1nF(f¯(ξi),f¯(xi)f¯(xi1))\lim\limits_{\delta(D)\rightarrow 0}\ \sum\limits_{I\in D}\ \Phi(I;\xi)\ =\ \lim\limits_{\left\lVert P\right\rVert\rightarrow 0}\ \sum\limits_{i=1}^{n}\ F(\underline{f}(\xi_{i}),\underline{f}(x_{i})-\underline{f}(x_{i-1}))

exists, call it

(ξ)CF.(\xi)\ \int\limits_{C}F.

myn3

N.B.  Needless to say, it turns out that

(ξ)CF(\xi)\ \int\limits_{C}F

is independent of the ξ\xi ((this follows by a standard ``ε/3\varepsilon/3'' argument)) ((details at the end)).

[Note:  This is one advantage of the approach via I(C)I(C) in that independence is manifest.]

To simplify matters, it will be best to generalize matters.

Assume from the outset that ϕ:M\phi:\mathcal{I}\rightarrow\mathbb{R}^{M} is now an arbitrary interval function which is quasi additive with

BCAϕ<+,\text{BC}\ \int\limits_{A}\left\lVert\phi\right\rVert\ <\ +\infty,

hence that ϕ\left\lVert\phi\right\rVert is also quasi additive as well.

Introduce another interval function ζ:N\zeta:\mathcal{I}\rightarrow\mathbb{R}^{N} and expand the definition of parametric integrand so that

F:X×M,F:X\times\mathbb{R}^{M}\rightarrow\mathbb{R},

where XNX\subset\mathbb{R}^{N} is compact and ζ(I)X\zeta(I)\subset X.

myn4

EXAMPLE  To recover the earlier set up, take N=MN=M, keep ϕ:M\phi:\mathcal{I}\rightarrow\mathbb{R}^{M}, let ω:[a,b]\omega:\mathcal{I}\rightarrow[a,b] be a choice function, i.e., suppose that ω(I)I[a,b]\omega(I)\in I\subset[a,b], let ζ(I)=f¯(ω(I))\zeta(I)=\underline{f}(\omega(I)), and take X=[C]MX=[C]\subset\mathbb{R}^{M}.

myn5

CONDITION  (ζ)(\zeta)ε>0\forall\ \varepsilon>0, t(ε)>0\exists\ t(\varepsilon)>0 such that if D0=[I0]D_{0}=[I_{0}] is any system subject to δ(D0)<t(ε)\delta(D_{0})<t(\varepsilon) there also exists T(ε,D0)T(\varepsilon,D_{0}), such that for any system D=[I]D=[I] with δ(D)<T(ε,D0)\delta(D)<T(\varepsilon,D_{0}) the relation

maxI0maxII0ζ(I)ζ(I0)<ε\max\limits_{I_{0}}\ \max\limits_{I\subset I_{0}}\ \left\lVert\zeta(I)-\zeta(I_{0})\right\rVert\ <\ \varepsilon

obtains.

myn6

N.B.  Owing to the uniform continuity of f¯\underline{f}, this condition is automatic in the special case supra.

myn7

THEOREM  Let FF be a parametric integrand, form the interval function Φ:\Phi:\mathcal{I}\rightarrow\mathbb{R} defined by the prescription

Φ(I)=F(ζ(I),ϕ(I)),\Phi(I)\ =\ F(\zeta(I),\phi(I)),

and impose condition (ζ)(\zeta) -then Φ\Phi is quasi additive.

The proof will emerge from the discussion below but there are some preliminaries that have to be dealt with first.

Start by writing down simultaneously (qa1\text{qa}_{1}-AA) and (qa2\text{qa}_{2}-AA) for ϕ\phi and ϕ\left\lVert\phi\right\rVert (both are quasi additive), ε¯\bar{\varepsilon} to be determined.

{I0II0ϕ(I)ϕ(I0)<ε¯II0ϕ(I)<ε¯{I0|II0ϕ(I)ϕ(I0)|<ε¯II0|ϕ(I)|<ε¯\begin{cases}\displaystyle\ \sum\limits_{I_{0}}\ \bigg{|}\bigg{|}\sum\limits_{I\subset I_{0}}\ \phi(I)-\phi(I_{0})\bigg{|}\bigg{|}\ <\ \bar{\varepsilon}\\[26.0pt] \displaystyle\ \sum\limits_{I\not\subset I_{0}}\ \left\lVert\phi(I)\right\rVert\ <\ \bar{\varepsilon}\end{cases}\quad\begin{cases}\displaystyle\ \sum\limits_{I_{0}}\ \bigg{|}\sum\limits_{I\subset I_{0}}\ \left\lVert\phi(I)\right\rVert-\left\lVert\phi(I_{0})\right\rVert\bigg{|}\ <\ \bar{\varepsilon}\\[26.0pt] \displaystyle\ \sum\limits_{I\not\subset I_{0}}\ \left|\left\lVert\phi(I)\right\rVert\right|\ <\ \bar{\varepsilon}\end{cases}

for δ(D0)<η(ε¯)\delta(D_{0})<\eta(\bar{\varepsilon}) and δ(D)<λ(ε¯,D0)\delta(D)<\lambda(\bar{\varepsilon},D_{0}) and in addition

|IDϕ(I)BCAϕ(I)|<ε¯\bigg{|}\sum\limits_{I\in D}\ \left\lVert\phi(I)\right\rVert-\text{BC}\ \int\limits_{A}\ \left\lVert\phi(I)\right\rVert\bigg{|}\ <\ \bar{\varepsilon}

for δ(D)<σ(ε¯)\delta(D)<\sigma(\bar{\varepsilon}).

Fix ε>0\varepsilon>0. Put

V=BCAϕ(<+).V\ =\ \text{BC}\ \int\limits_{A}\left\lVert\phi\right\rVert\qquad(<+\infty).

• (F)(F)X×U(M)X\times\text{U}(M) is a compact set on which FF is bounded:

|F(x¯,t¯)|C(x¯X,t¯U(M))\left|F(\underline{x},\underline{t})\right|\ \leq\ C\qquad(\underline{x}\in X,\hskip 0.85355pt\underline{t}\in\text{U}(M))

and uniformly continuous: γ\exists\ \gamma such that

{x¯x¯t¯t¯<γ|F(x¯,t¯)F(x¯,t¯)|<ε3(V+ε).\begin{cases}\left\lVert\underline{x}-\underline{x}^{\prime}\right\rVert\\[8.0pt] \left\lVert\underline{t}-\underline{t}^{\prime}\right\rVert\end{cases}<\ \gamma\ \implies\ \left|F(\underline{x},\underline{t})-F(\underline{x}^{\prime},\underline{t}^{\prime})\right|\ <\ \frac{\varepsilon}{3(V+\varepsilon)}.

• (α)(\alpha)

α(I0)=ϕ(I0)ϕ(I0)if ϕ(I0)0\alpha(I_{0})\ =\ \frac{\phi(I_{0})}{\left\lVert\phi(I_{0})\right\rVert}\quad\text{if }\phi(I_{0})\neq 0

but 0 otherwise and

α(I)=ϕ(I)ϕ(I)if ϕ(I)0\alpha(I)\ =\ \frac{\phi(I)}{\left\lVert\phi(I)\right\rVert}\quad\text{if }\phi(I)\neq 0

but 0 otherwise.

myn8

NOTATION  Denote by

γ+(I0)\sum{}_{\gamma^{+}}^{(I_{0})}

the sum over the II0I\subset I_{0} for which

α(I0)α(I)γ\left\lVert\alpha(I_{0})-\alpha(I)\right\rVert\ \geq\ \gamma

and denote by

γ(I0)\sum{}_{\gamma^{-}}^{(I_{0})}

the sum over the II0I\subset I_{0} for which

α(I0)α(I)<γ.\left\lVert\alpha(I_{0})-\alpha(I)\right\rVert\ <\ \gamma.

Therefore

II0=+γ+(I0).γ(I0)\sum\limits_{I\subset I_{0}}\ =\ \sum{}_{\gamma^{+}}^{(I_{0})}\ +\ \sum{}_{\gamma^{-}}^{(I_{0})}.

myn9

LEMMA  

γ22I0ϕ(I)γ+(I0)\displaystyle\frac{\gamma^{2}}{2}\ \sum\limits_{I_{0}}\ \sum{}_{\gamma^{+}}^{(I_{0})}\ \left\lVert\phi(I)\right\rVert\ \leq\ \ I0II0ϕ(I)ϕ(I0)+I0|II0ϕ(I)ϕ(I0)|.\displaystyle\sum\limits_{I_{0}}\ \Big{\|}\sum\limits_{I\subset I_{0}}\ \phi(I)-\phi(I_{0})\Big{\|}\ +\ \sum\limits_{I_{0}}\ \Big{|}\sum\limits_{I\subset I_{0}}\ \left\lVert\phi(I)\right\rVert-\left\lVert\phi(I_{0})\right\rVert\Big{|}.

PROOF  The inequality

α(I0)α(I)γ\left\lVert\alpha(I_{0})-\alpha(I)\right\rVert\ \geq\ \gamma

implies that

γ2\displaystyle\gamma^{2}\ α(I0)α(I)2\displaystyle\leq\ \left\lVert\alpha(I_{0})-\alpha(I)\right\rVert^{2}
=(α(I0)α(I))(α(I0)α(I))\displaystyle=\ (\alpha(I_{0})-\alpha(I))\cdot(\alpha(I_{0})-\alpha(I))
=α(I0)22α(I0)α(I)+α(I)2\displaystyle=\ \left\lVert\alpha(I_{0})\right\rVert^{2}-2\alpha(I_{0})\cdot\alpha(I)+\left\lVert\alpha(I)\right\rVert^{2}
=22α(I0)α(I),\displaystyle=2-2\alpha(I_{0})\cdot\alpha(I),

so

γ22 1α(I0)α(I)\frac{\gamma^{2}}{2}\ \leq\ 1-\alpha(I_{0})\cdot\alpha(I)

\implies

γ22ϕ(I)ϕ(I)α(I0)ϕ(I).\frac{\gamma^{2}}{2}\left\lVert\phi(I)\right\rVert\ \leq\ \left\lVert\phi(I)\right\rVert-\alpha(I_{0})\cdot\phi(I).

But for any II,

0ϕ(I)α(I0)ϕ(I).0\ \leq\ \left\lVert\phi(I)\right\rVert-\alpha(I_{0})\cdot\phi(I).

Proof:  In fact,

ϕ(I)ϕ(I0)ϕ(I)ϕ(I0)=1ϕ(I0)[ϕ(I)ϕ(I0)ϕ(I0)ϕ(I)].\left\lVert\phi(I)\right\rVert-\frac{\phi(I_{0})\cdot\phi(I)}{\left\lVert\phi(I_{0})\right\rVert}\ =\ \frac{1}{\left\lVert\phi(I_{0})\right\rVert}\left[\left\lVert\phi(I)\right\rVert\left\lVert\phi(I_{0})\right\rVert-\phi(I_{0})\cdot\phi(I)\right].

Now quote Schwarz's inequality. Thus we may write

γ22ϕ(I)γ+(I0)\displaystyle\frac{\gamma^{2}}{2}\ \sum{}_{\gamma^{+}}^{(I_{0})}\left\lVert\phi(I)\right\rVert\ (ϕ(I)α(I0)ϕ(I))γ+(I0)\displaystyle\leq\ \sum{}_{\gamma^{+}}^{(I_{0})}\ (\left\lVert\phi(I)-\alpha(I_{0})\cdot\phi(I))\right\rVert
II0(ϕ(I)α(I0)ϕ(I))\displaystyle\leq\ \sum\limits_{I\subset I_{0}}\ (\left\lVert\phi(I)-\alpha(I_{0})\cdot\phi(I))\right\rVert
=II0ϕ(I)ϕ(I0)+α(I0)(ϕ(I0)II0ϕ(I))\displaystyle=\ \sum\limits_{I\subset I_{0}}\ \left\lVert\phi(I)\right\rVert-\left\lVert\phi(I_{0})\right\rVert+\alpha(I_{0})\cdot\bigl{(}\phi(I_{0})-\sum\limits_{I\subset I_{0}}\ \phi(I)\bigr{)}
|II0(ϕ(I)ϕ(I0)|+||ϕ(I0)II0ϕ(I)||(Schwarz).\displaystyle\leq\ \bigg{|}\sum\limits_{I\subset I_{0}}\ (\left\lVert\phi(I)\right\rVert-\left\lVert\phi(I_{0})\right\rVert\bigg{|}+\big{|}\big{|}\phi(I_{0})-\sum\limits_{I\subset I_{0}}\ \phi(I)\big{|}\big{|}\qquad(\text{Schwarz}).

To finish, sum over I0I_{0}.

• (D0)(D_{0})  Assume

δ(D0)<min{t(γ),η(ε),η(εγ2)}.\qquad\qquad\delta(D_{0})\ <\ \min\{t(\gamma),\hskip 0.85355pt\eta(\varepsilon),\hskip 0.85355pt\eta(\varepsilon\gamma^{2})\}.

• (D)(D)  Assume

δ(D)<min{σ(ε),λ(ε,D0),λ(εγ2,D0),T(γ,D0)}.\qquad\qquad\delta(D)\ <\ \min\{\sigma(\varepsilon),\hskip 0.85355pt\lambda(\varepsilon,D_{0}),\hskip 0.85355pt\lambda(\varepsilon\gamma^{2},D_{0}),\hskip 0.85355ptT(\gamma,D_{0})\}.

• (ε¯)(\bar{\varepsilon})  Assume

ε¯<min{γ,ε3C,εγ224C}.\qquad\qquad\bar{\varepsilon}\ <\ \min\left\{\gamma,\hskip 0.85355pt\frac{\varepsilon}{3C},\hskip 0.85355pt\frac{\varepsilon\gamma^{2}}{24\hskip 0.85355ptC}\right\}.

Then

I0|II0\displaystyle\sum\limits_{I_{0}}\ \Big{|}\sum\limits_{I\subset I_{0}}\ Φ(I)Φ(I0)|\displaystyle\Phi(I)-\Phi(I_{0})\Big{|}\
=I0|II0F(ζ(I),ϕ(I))II0F(ζ(I0),α(I0))ϕ(I)\displaystyle=\ \sum\limits_{I_{0}}\ \Big{|}\sum\limits_{I\subset I_{0}}\ F(\zeta(I),\phi(I))-\sum\limits_{I\subset I_{0}}\ F(\zeta(I_{0}),\alpha(I_{0}))\left\lVert\phi(I)\right\rVert
+II0F(ζ(I0),α(I0))ϕ(I)F(ζ(I0),α(I0))ϕ(I0)|\displaystyle\qquad\qquad+\sum\limits_{I\subset I_{0}}\ F(\zeta(I_{0}),\alpha(I_{0}))\left\lVert\phi(I)\right\rVert-F(\zeta(I_{0}),\alpha(I_{0}))\left\lVert\phi(I_{0})\right\rVert\Big{|}
=I0|II0F(ζ(I),α(I))F(ζ(I0),α(I0)))ϕ(I)\displaystyle=\ \sum\limits_{I_{0}}\ \Big{|}\sum\limits_{I\subset I_{0}}\ F(\zeta(I),\alpha(I))-F(\zeta(I_{0}),\alpha(I_{0})))\left\lVert\phi(I)\right\rVert
+II0F(ζ(I0),α(I0))(ϕ(I)ϕ(I0))|\displaystyle\qquad\qquad+\sum\limits_{I\subset I_{0}}\ F(\zeta(I_{0}),\alpha(I_{0}))\hskip 0.85355pt(\left\lVert\phi(I)\right\rVert-\left\lVert\phi(I_{0})\right\rVert)\Big{|}
I0|F(ζ(I0),α(I0))||II0ϕ(I)ϕ(I0)|\displaystyle\leq\ \sum\limits_{I_{0}}\Big{|}F(\zeta(I_{0}),\alpha(I_{0}))\Big{|}\quad\Big{|}\sum\limits_{I\subset I_{0}}\left\lVert\phi(I)\right\rVert-\left\lVert\phi(I_{0})\right\rVert\Big{|}
+I0II0|F(ζ(I),α(I))F(ζ(I0),α(I0))|ϕ(I)\displaystyle\qquad\qquad+\sum\limits_{I_{0}}\ \sum\limits_{I\subset I_{0}}\ |F(\zeta(I),\alpha(I))-F(\zeta(I_{0}),\alpha(I_{0}))|\ \left\lVert\phi(I)\right\rVert
=I0|F(ζ(I0),α(I0))||II0ϕ(I)ϕ(I0)|\displaystyle=\ \sum\limits_{I_{0}}\ \Big{|}F(\zeta(I_{0}),\alpha(I_{0}))\Big{|}\quad\Big{|}\sum\limits_{I\subset I_{0}}\ \left\lVert\phi(I)\right\rVert-\left\lVert\phi(I_{0})\right\rVert\Big{|}
+I0(+γ(I0))γ+(I0)|F(ζ(I0),α(I0))F(ζ(I),α(I))|ϕ(I).\displaystyle\qquad+\sum\limits_{I_{0}}\ \Big{(}\sum{}_{\gamma^{-}}^{(I_{0})}+\sum{}_{\gamma^{+}}^{(I_{0})}\Big{)}\big{|}F(\zeta(I_{0}),\alpha(I_{0}))-F(\zeta(I),\alpha(I))\big{|}\left\lVert\phi(I)\right\rVert.

First:

I0|F(ζ(I0),α(I0))||II0ϕ(I)ϕ(I0)|\displaystyle\sum\limits_{I_{0}}\Big{|}F(\zeta(I_{0}),\alpha(I_{0}))\Big{|}\ \hskip 1.42271pt\Big{|}\sum\limits_{I\subset I_{0}}\left\lVert\phi(I)\right\rVert-\left\lVert\phi(I_{0})\right\rVert\Big{|}\ CI0|II0ϕ(I)ϕ(I0)|\displaystyle\leq\ C\hskip 1.42271pt\sum\limits_{I_{0}}\ \Big{|}\sum\limits_{I\subset I_{0}}\ \left\lVert\phi(I)\right\rVert-\left\lVert\phi(I_{0})\right\rVert\Big{|}
<Cε¯\displaystyle<\ C\bar{\varepsilon}
<Cε3C\displaystyle<\ C\frac{\varepsilon}{3C}
=ε3.\displaystyle=\ \frac{\varepsilon}{3}.

Second: Consider

I0|γ(I0)F(ζ(I0),α(I0))F(ζ(I),α(I))|ϕ(I).\sum\limits_{I_{0}}\ \sum{}_{\gamma^{-}}^{(I_{0})}\ \big{|}F(\zeta(I_{0}),\alpha(I_{0}))-F(\zeta(I),\alpha(I))\big{|}\left\lVert\phi(I)\right\rVert.

Here

{α(I0)=1,α(I)=1,α(I0)α(I)<γ,ζ(I0)ζ(I)<γ|F(ζ(I0),α(I0))F(ζ(I),α(I))|<ε3(V+ε).\begin{cases}\left\lVert\alpha(I_{0})\right\rVert=1,\\[8.0pt] \left\lVert\alpha(I)\right\rVert=1,\\[8.0pt] \left\lVert\alpha(I_{0})-\alpha(I)\right\rVert<\gamma,\\[8.0pt] \left\lVert\zeta(I_{0})-\zeta(I)\right\rVert<\gamma\end{cases}\implies\big{|}F(\zeta(I_{0}),\alpha(I_{0}))-F(\zeta(I),\alpha(I))\big{|}\ <\ \frac{\varepsilon}{3(V+\varepsilon)}.

The entity in question is thus majorized by

ε3(V+ε)I0ϕ(I)γ(I0)\displaystyle\frac{\varepsilon}{3(V+\varepsilon)}\ \sum\limits_{I_{0}}\ \sum{}_{\gamma^{-}}^{(I_{0})}\left\lVert\phi(I)\right\rVert\ ε3(V+ε)IDϕ(I)\displaystyle\leq\ \frac{\varepsilon}{3(V+\varepsilon)}\ \sum\limits_{I\in D}\ \left\lVert\phi(I)\right\rVert
ε3(V+ε)(V+ε)\displaystyle\leq\ \frac{\varepsilon}{3(V+\varepsilon)}(V+\varepsilon)
=ε3.\displaystyle=\ \frac{\varepsilon}{3}.

Third:

I0|γ+(I0)\displaystyle\sum\limits_{I_{0}}\ \sum{}_{\gamma^{+}}^{(I_{0})}\ \big{|} F(ζ(I0),α(I0))F(ζ(I),α(I))|ϕ(I)\displaystyle F(\zeta(I_{0}),\alpha(I_{0}))-F(\zeta(I),\alpha(I))\big{|}\left\lVert\phi(I)\right\rVert
2CI0ϕ(I)γ+(I0)\displaystyle\leq\ 2\hskip 0.85355ptC\ \sum\limits_{I_{0}}\ \sum{}_{\gamma^{+}}^{(I_{0})}\ \left\lVert\phi(I)\right\rVert
4Cγ2[I0II0ϕ(I)ϕ(I0)+I0|II0ϕ(I)ϕ(I0)|]\displaystyle\leq\ \frac{4\hskip 0.85355ptC}{\gamma^{2}}\ \Big{[}\sum\limits_{I_{0}}\ \sum\limits_{I\subset I_{0}}\ \left\lVert\phi(I)-\phi(I_{0})\right\rVert\ +\ \sum\limits_{I_{0}}\ \Big{|}\sum\limits_{I\subset I_{0}}\ \left\lVert\phi(I)\right\rVert-\left\lVert\phi(I_{0})\right\rVert\Big{|}\hskip 1.42271pt\Big{]}
4Cγ2(ε¯+ε¯)\displaystyle\leq\ \frac{4\hskip 0.85355ptC}{\gamma^{2}}(\bar{\varepsilon}+\bar{\varepsilon})
=8Cγ2ε¯\displaystyle=\ \frac{8\hskip 0.85355ptC}{\gamma^{2}}\bar{\varepsilon}
<8Cγ2εγ224C\displaystyle<\ \frac{8\hskip 0.85355ptC}{\gamma^{2}}\cdot\frac{\varepsilon\gamma^{2}}{24\hskip 0.85355ptC}
=ε3.\displaystyle=\ \frac{\varepsilon}{3}.

In total then:

I0|II0Φ(I)Φ(I0)|\displaystyle\sum\limits_{I_{0}}\Big{|}\sum\limits_{I\not\subset I_{0}}\ \Phi(I)-\Phi(I_{0})\Big{|}\ <ε3+ε3+ε3\displaystyle<\ \frac{\varepsilon}{3}\hskip 1.42271pt+\hskip 1.42271pt\frac{\varepsilon}{3}\hskip 1.42271pt+\hskip 1.42271pt\frac{\varepsilon}{3}
=ε.\displaystyle=\ \varepsilon.

And finally

II0|Φ(I)|\displaystyle\sum\limits_{I\not\subset I_{0}}\ \left|\Phi(I)\right|\ =II0|F(ζ(I),ϕ(I))|\displaystyle=\ \sum\limits_{I\not\subset I_{0}}\ \left|F(\zeta(I),\phi(I))\right|
=II0|F(ζ(I),α(I))|ϕ(I)\displaystyle=\ \sum\limits_{I\not\subset I_{0}}\ \left|F(\zeta(I),\alpha(I))\right|\left\lVert\phi(I)\right\rVert
CII0ϕ(I)\displaystyle\leq\ C\hskip 1.42271pt\sum\limits_{I\not\subset I_{0}}\ \left\lVert\phi(I)\right\rVert
<Cε¯\displaystyle<\ C\hskip 1.42271pt\bar{\varepsilon}
<Cε3C\displaystyle<\ C\hskip 1.42271pt\frac{\varepsilon}{3\hskip 0.85355ptC}
=ε3\displaystyle=\ \frac{\varepsilon}{3}
<ε.\displaystyle<\ \varepsilon.

Therefore Φ\Phi is quasi additive. And since the conditions on FF carry over to |F|\left|F\right|, it follows that Φ\left\lVert\Phi\right\rVert is also quasi additive, hence

BCAΦ\text{BC}\ \int\limits_{A}\ \left\lVert\Phi\right\rVert

exists and is finite.

To tie up one loose end, return to the beginning and consider the line integrals

(ξ)CF,(ξ)CF,(\xi)\ \int\limits_{C}\ F,\qquad(\xi^{\prime})\ \int\limits_{C}\ F,

the claim being that they are equal. That this is so can be seen by writing

|(ξ)CF\displaystyle\Big{|}(\xi)\ \int\limits_{C}\ F\ \ -\ \ (ξ)CF|\displaystyle(\xi^{\prime})\ \int\limits_{C}\ F\ \Big{|}\
=|(ξ)CFi=1nF(f¯(ξi),f¯(xi)f¯(xi1))\displaystyle=\ \Big{|}(\xi)\int\limits_{C}\ F-\sum\limits_{i=1}^{n}F(\underline{f}(\xi_{i}),\underline{f}(x_{i})-\underline{f}(x_{i-1}))
+i=1nF(f¯(ξi),f¯(xi)f¯(xi1))\displaystyle\quad\qquad+\sum\limits_{i=1}^{n}F(\underline{f}(\xi_{i}),\underline{f}(x_{i})-\underline{f}(x_{i-1}))
i=1nF(f¯(ξi),f¯(xi)f¯(xi1))\displaystyle\quad\qquad-\sum\limits_{i=1}^{n}F(\underline{f}(\xi_{i}^{\prime}),\underline{f}(x_{i})-\underline{f}(x_{i-1}))
+i=1nF(f¯(ξi),f¯(xi)f¯(xi1))(ξ)CF|\displaystyle\quad\qquad+\sum\limits_{i=1}^{n}\ F(\underline{f}(\xi_{i}^{\prime}),\underline{f}(x_{i})-\underline{f}(x_{i-1}))\ -\ (\xi^{\prime})\int\limits_{C}\ F\ \Big{|}

and proceed from here in the obvious way.

myn10

EXAMPLE  Take N=1N=1, M=1M=1 and define an interval function ||:\left|\ \cdot\ \right|:\mathcal{I}\rightarrow\mathbb{R} by sending II to its length |I|\left|I\right|. Fix a choice function ω:[a,b]\omega:\mathcal{I}\rightarrow[a,b]. Consider a curve

Cf:[a,b].C\longleftrightarrow f:[a,b]\rightarrow\mathbb{R}.

Assume: ff is continuous and of bounded variation, thus

(C)=Tf[a,b]<+.\ell(C)\ =\ T_{f}[a,b]\ <\ +\infty.

Work with the parametric integrand F(x,t)=xtF(x,t)=xt -then the data

I\displaystyle I F(ζ(I),|I|)\displaystyle\rightarrow F(\zeta(I),\left|I\right|)
=F(f(ω(I)),|I|)\displaystyle=\ F(f(\omega(I)),\left|I\right|)
=f(ω(I))|I|\displaystyle=\ f(\omega(I))\left|I\right|

leads to sums of the form

i=1nf(ξi)(xixi1),\sum\limits_{i=1}^{n}\ f(\xi_{i})(x_{i}-x_{i-1}),

hence to

CF=abf,\int\limits_{C}F\ =\ \int\limits_{a}^{b}f,

the Riemann integral of ff.

§\boldsymbol{\S}11. EXAMPLES

myn1

EXAMPLE  Suppose that A=[0,1]A=[0,1] with the usual topology, {I}\{I\} the class of all intervals I=[a,b]AI=[a,b]\subset A, a<ba<b, and define |I|=ba\left|I\right|=b-a. Let 𝒟\mathcal{D} be the family of all finite systems D=[I]D=[I] of nonoverlapping I{I}I\in\{I\}. If we take

δ(D)=(1|I|)+max|I|,\delta(D)\ =\ \left(1-\sum\ \left|I\right|\right)+\max\left|I\right|,

then

0<δ(D)<2,0\ <\ \delta(D)<2,

and the Assumption §9, #4, is trivially satisfied.

Take k=1k=1 and ϕ(I)=ba>0\phi(I)=b-a>0. Given ε>0\varepsilon>0 arbitrary take η=η(ε)=ε2\eta=\eta(\varepsilon)=\displaystyle\frac{\varepsilon}{2} and let

D0=(Ij,j=1,,N)D_{0}\ =\ (I_{j},\ j=1,\ldots,N)

be any system D0𝒟D_{0}\in\mathcal{D} with δ(D0)<η\delta(D_{0})<\eta. Take

λ=λ(ε,D0)=ε4N.\lambda\ =\ \lambda(\varepsilon,D_{0})\ =\ \frac{\varepsilon}{4N}.

If D=[J]D=[J] is any system with δ(D)<λ\delta(D)<\lambda, and we denote by \sum{}^{\prime} any sum ranging over all JDJ\in D with JIJ\not\subset I and for any ID0I\in D_{0}, we have

ϕ(J)\displaystyle\sum{}^{\prime}\ \phi(J)\ <(1|Ij|)+2N(ε/4N)\displaystyle<\ \left(1-\sum\left|I_{j}\right|\right)+2\hskip 0.85355ptN(\varepsilon/4N)
<ε2+ε2\displaystyle<\ \frac{\varepsilon}{2}+\frac{\varepsilon}{2}
=ε,\displaystyle=\ \varepsilon,

and (ϕ2)(\phi_{2}) holds. Also, if (j)\sum{}^{(j)} denotes a sum ranging over all JDJ\in D with JIjJ\subset I_{j}, we have

ϕ(Ij)ϕ(j)(J)> 0,\phi(I_{j})-\sum{}^{(j)}\ \phi(J)\ >\ 0,

and

j(ϕ(Ij)ϕ(j)(J))\displaystyle\sum\limits_{j}\ \left(\phi(I_{j})-\sum{}^{(j)}\ \phi(J)\right)\ <(1|J|)+2N(ε/4N)\displaystyle<\ \left(1-\sum\left|J\right|\right)+2\hskip 0.85355ptN(\varepsilon/4N)
<ε2+ε2\displaystyle<\ \frac{\varepsilon}{2}+\frac{\varepsilon}{2}
=ε,\displaystyle=\ \varepsilon,

and (ϕ1)(\phi_{1}) holds. Thus, ϕ\phi is quasi additive with =1\mathcal{B}=1.

myn2

EXAMPLE  Suppose that A=[0,1]A=[0,1] with the usual topology, {I}\{I\} the class of all intervals I=[a,b]AI=[a,b]\subset A, a<ba<b, and define |I|=ba\left|I\right|=b-a. Let 𝒟\mathcal{D} be the family of all finite systems D=[I]D=[I] of nonoverlapping I{I}I\in\{I\}. Take

δ(D)={(1|I|)+max|I|if for no ID we have a=0(1|I|)+max|I|+1if for one ID we have I=[0,b].\delta(D)\ =\ \begin{cases}\left(1-\sum\ \left|I\right|\right)+\max\left|I\right|\hskip 35.56593pt\text{if for no $I\in D$ we have $a=0$}\\[8.0pt] \left(1-\sum\ \left|I\right|\right)+\max\left|I\right|+1\hskip 14.22636pt\text{if for one $I\in D$ we have $I=[0,b]$}\end{cases}.

If η<1\eta<1, and δ(D)<1\delta(D)<1, D=[I]D=[I], then there is in DD no interval I=[0,b]I=[0,b]. The assumptions §9, #4 , are trivially satisfied. By the same reasoning as in the previous example with η=min[ε2,1]\displaystyle\eta=\min\hskip 1.42271pt\left[\frac{\varepsilon}{2},1\right] it follows that ϕ\phi is quasi additive with V=1V=1.

myn3

EXAMPLE  Suppose that A=[0,1]A=[0,1] with the usual topology, {I}\{I\} the class of all intervals I=[a,b]AI=[a,b]\subset A, a<ba<b, and define |I|=ba\left|I\right|=b-a. Let 𝒟\mathcal{D} be the family of all finite systems D=[I]D=[I] of nonoverlapping I{I}I\in\{I\}. Take

δ(D)={(1|I|)+max|I|+1if for no ID we have a=0(1|I|)+max|I|if for one ID we have I=[0,b].\delta(D)\ =\ \begin{cases}\left(1-\sum\ \left|I\right|\right)+\max\left|I\right|+1\hskip 17.07182pt\text{if for no $I\in D$ we have $a=0$}\\[8.0pt] \left(1-\sum\ \left|I\right|\right)+\max\left|I\right|\hskip 35.56593pt\text{if for one $I\in D$ we have $I=[0,b]$}\end{cases}.

If η<1\eta<1, and δ(D)<1\delta(D)<1, D=[I]D=[I], then there is in DD one interval I=[0,b]I=[0,b]. The assumptions §9, #4 , are trivially satisfied. By the same reasoning as in #2 we prove that ϕ\phi is quasi additive with V=1V=1.

myn4

EXAMPLE  Suppose that A=[0,1]A=[0,1] with the usual topology, {I}\{I\} the class of all intervals I=[a,b]AI=[a,b]\subset A, a<ba<b, and define |I|=ba\left|I\right|=b-a. Let 𝒟\mathcal{D} be the family of all finite systems D=[I]D=[I] of nonoverlapping I{I}I\in\{I\}. For every real mm, 0m10\leq m\leq 1, take

σ(m)={ 0if m is irrational1pifm=pq,p,q,p1minimum, 0qp.\sigma(m)\ =\ \begin{cases}\ 0\hskip 17.07182pt\text{if $m$ is irrational}\\ \ \displaystyle\frac{1}{p}\hskip 14.22636pt\text{if}\ m=\frac{p}{q},\ p,q\in\mathbb{Z},\ p\geq 1\hskip 1.42271pt\text{minimum},\ 0\leq q\leq p.\end{cases}

Take k=1k=1 and

ϕ(I)=I=baforI=[a,b]A.\phi(I)\ =\ I\ =\ b-a\quad\text{for}\ I=[a,b]\subset A.

For D=[Ii:j=1,,N]D=[I_{i}:j=1,\ldots,N], Ij=[aj,bj]I_{j}=[a_{j},b_{j}], take

δ(D)=(1|Ij|)+max|Ij|+σ(aj)+σ(bj)\delta(D)\ =\ \left(1-\sum\ \left|I_{j}\right|\right)+\max\left|I_{j}\right|+\sum\ \sigma(a_{j})+\sum\ \sigma(b_{j})

For D=[I1]D=[I_{1}], I1=[0,1]I_{1}=[0,1], we have

δ(D)= 0+1+1+1= 3;\delta(D)\ =\ 0+1+1+1\ =\ 3;

for D=[I1,I2]D=[I_{1},I_{2}], I1=[0,1/2]I_{1}=[0,1/2], I2=[1/2,1]I_{2}=[1/2,1], we have

δ(D)= 1/2+(1+1/2)+(1/2+1)= 3+1/2.\delta(D)\ =\ 1/2+(1+1/2)+(1/2+1)\ =\ 3+1/2.

Thus δ(D)\delta(D) does not necessarily decrease by refinement. The Assumption §9, #4 , is trivially satisfied. Given ε>0\varepsilon>0 let D=[Ij]D=[I_{j}] with Ij=[aj,bj]I_{j}=[a_{j},b_{j}], all aja_{j}, bjb_{j} irrational with

1(bjaj)<ε2,(bjaj)<ε2.1-\sum\ (b_{j}-a_{j})\ <\ \frac{\varepsilon}{2},\quad(b_{j}-a_{j})\ <\ \frac{\varepsilon}{2}.

Then

δ(D)<ε.\delta(D)<\varepsilon.

We may also choose an integer M:{M3,M>4ε,MM:\ \begin{cases}\ M\geq 3,\\[4.0pt] \ M>\displaystyle\frac{4}{\varepsilon}\end{cases},M prime. Suppose that aja_{j}, bjb_{j} are all of the form qM2\displaystyle\frac{q}{M^{2}}, q=1,2,,M21q=1,2,\ldots,M^{2}-1, and N=MN=M. Namely, we may take

a1\displaystyle a_{1} =(M1)M+1M2,\displaystyle=\frac{(M-1)}{M}+\frac{1}{M^{2}},
a2\displaystyle a_{2} =b1=1M+1M2,\displaystyle=b_{1}=\frac{1}{M}+\frac{1}{M^{2}},
a3\displaystyle a_{3} =b2=2M+1M2,\displaystyle=b_{2}=\frac{2}{M}+\frac{1}{M^{2}},
\displaystyle\hskip 28.45274pt\vdots
aN\displaystyle a_{N} =bN1=M1M+1M2,\displaystyle=b_{N-1}=\frac{M-1}{M}+\frac{1}{M^{2}},
bN\displaystyle b_{N} =11M2.\displaystyle=1-\frac{1}{M^{2}}.

Then

δ(D)\displaystyle\delta(D) =2M2+1M+M2M2\displaystyle=\ \frac{2}{M^{2}}\hskip 1.42271pt+\hskip 1.42271pt\frac{1}{M}\hskip 1.42271pt+\hskip 1.42271ptM\hskip 0.85355pt\frac{2}{M^{2}}
<4M\displaystyle<\ \frac{4}{M}
<ε.\displaystyle<\ \varepsilon.

This remark shows that the second part of the Assumption #4, §9, holds. The proof that (qa1\text{qa}_{1} -A) and (qa2\text{qa}_{2} -A), (cf. #14, §9), hold is the same as for #1. Thus ϕ\phi is quasi additive and =1\mathcal{B}=1.

myn5

EXAMPLE  Suppose that A=[0,1]A=[0,1] with the usual topology, {I}\{I\} the class of all intervals I=[a,b]AI=[a,b]\subset A, a<ba<b, and define |I|=ba\left|I\right|=b-a. Let 𝒟\mathcal{D} be the family of all finite systems D=[I]D=[I] of nonoverlapping I{I}I\in\{I\}. Suppose that k=1k=1 and

ϕ(I)={|I|=ba if both a and b are irrationalabotherwise.\phi(I)\ =\ \begin{cases}\ \left|I\right|=b-a\hskip 14.22636pt\text{ if both $a$ and $b$ are irrational}\\[4.0pt] \ \ a-b\hskip 42.67912pt\text{otherwise}\end{cases}.

For D=[I]𝒟D=[I]\in\mathcal{D}, I=[a,b],I=[a,b], take

δ(D)={(1|I|)+max|I| if both a and b are irrational 1otherwise.\delta(D)\ =\ \begin{cases}\left(1-\sum\ \left|I\right|\right)+\max\left|I\right|\hskip 14.22636pt\text{ if both $a$ and $b$ are irrational}\\[11.0pt] \ 1\hskip 120.92421pt\text{otherwise}\end{cases}.

Obviously the Assumptions §9, #4 are satisified. If D=[I]D=[I], δ(D)<1\delta(D)<1, then all aa and bb are irrational. Obviously (qa1\text{qa}_{1} -A) and (qa2\text{qa}_{2} -A), (cf. #14 §9), are satisfied. ϕ(I)\phi(I) is quasi additive, and =1\mathcal{B}=1.

myn6

EXAMPLE  Suppose that A=[0,1]A=[0,1] with the usual topology, {I}\{I\} the class of all intervals I=[a,b]AI=[a,b]\subset A, a<ba<b, and define |I|=ba\left|I\right|=b-a. Let 𝒟\mathcal{D} be the family of all finite systems D=[I]D=[I] of nonoverlapping I{I}I\in\{I\}. Suppose that k=1k=1 and

ϕ(I)={|I|=ba if both a and b are irrationalabotherwise.\phi(I)\ =\ \begin{cases}\ \left|I\right|=b-a\hskip 14.22636pt\text{ if both $a$ and $b$ are irrational}\\[4.0pt] \ \ a-b\hskip 42.67912pt\text{otherwise}\end{cases}.

For D=[I]𝒟D=[I]\in\mathcal{D}, I=[a,b],I=[a,b], take

δ(D)={(1|I|)+max|I| if both a and b are rational 1otherwise.\delta(D)\ =\ \begin{cases}\left(1-\sum\ \left|I\right|\right)+\max\left|I\right|\hskip 14.22636pt\text{ if both $a$ and $b$ are rational}\\[11.0pt] \ 1\hskip 120.92421pt\text{otherwise}\end{cases}.

Obviously the Assumptions §9, #4 are satisified. If D=[I]D=[I], δ(D)<1\delta(D)<1, then all aa and bb are irrational. Obviously (qa1\text{qa}_{1} -A) and (qa2\text{qa}_{2} -A), (cf. #14 §9), are satisfied. ϕ(I)\phi(I) is quasi additive, and =1\mathcal{B}=-1.

myn7

EXAMPLE  (Jordan length for continuous curves)  

Let C:x=x(t)C:x=x(t), 0t10\leq t\leq 1, x=(x1,,xk)x=(x_{1},\ldots,x_{k}), be any real continuous vector function (a continuous parameteric curve). Take A=[0,1]A=[0,1], {I}\{I\} the class of all intervals I=[a,b]AI=[a,b]\subset A, 𝒟\mathcal{D} the class of all finite subdivisions D=[Ij,j=1,,N]D=[I_{j},\hskip 0.85355ptj=1,\ldots,N], Ij=[aj1,aj]I_{j}=[a_{j-1},a_{j}], 0=a0<a1<<aN=10=a_{0}<a_{1}<\cdots<a_{N}=1, and suppose that

δ(D)=max|Ij|=max{ajaj1}.\delta(D)\ =\ \max\left|I_{j}\right|\ =\ \max\{a_{j}-a_{j-1}\}.

Then

0<δ(D) 10\ <\ \delta(D)\ \leq\ 1

and the assumptions §9, #4 , are trivially satisfied. Suppose that

{ϕ(I)=(ϕ1,,ϕk)whereϕr=xr(b)xr(a)(r=1,,k)I=[a,b]A.\begin{cases}\ \phi(I)=(\phi_{1},\ldots,\phi_{k})\\ \quad\text{where}\\ \ \phi_{r}=x_{r}(b)-x_{r}(a)\quad(r=1,\ldots,k)\end{cases}\forall\ I=[a,b]\subset A.

Denote by

{Mr=max0t1|xt(t)|M=max1rkMr.\begin{cases}\ M_{r}=\max\limits_{0\leq t\leq 1}\left|x_{t}(t)\right|\\[4.0pt] \ M=\max\limits_{1\leq r\leq k}\ M_{r}\end{cases}.

Given ε>0\varepsilon>0 take η=η(ε)=2\eta=\eta(\varepsilon)=2. Let

D0=[Ii:i=1,,N]D_{0}\ =\ [I_{i}:i=1,\ldots,N]

be any system D0𝒟D_{0}\in\mathcal{D} (with δ(D0)<2)\delta(D_{0})<2). Because of the continuity of x(t)x(t) there is a λ=λ(ε,D0)>0\lambda=\lambda(\varepsilon,D_{0})>0 such that |ϕ(I)|<ε2N\displaystyle\left|\phi(I)\right|<\frac{\varepsilon}{2N} for all I=[a,b]I=[a,b] with ba<λb-a<\lambda. Now suppose D=|J|D=\left|J\right| is any system D𝒟D\in\mathcal{D} with δ(D)<λ\delta(D)<\lambda. Then the sum ϕ(J)\sum{}^{\prime}\ \left\lVert\phi(J)\right\rVert contains at most 2(N1)2(N-1) terms and

ϕ(J)< 2(N1)ε2N<ε.\sum{}^{\prime}\ \left\lVert\phi(J)\right\rVert\ <\ 2(N-1)\frac{\varepsilon}{2N}\ <\ \varepsilon.

For each IiD0I_{i}\in D_{0} the intervals JDJ\in D, JIiJ\subset I_{i} leave uncovered in II at most two terminal intervals, say HH^{\prime}, H′′H^{\prime\prime} (if any). Then we have

ϕ(Ii)=ϕ(i)(J)+ϕ(H)+ϕ(H′′),\phi(I_{i})\ =\ \sum{}^{(i)}\ \phi(J)\hskip 1.42271pt+\hskip 1.42271pt\phi(H^{\prime})\hskip 1.42271pt+\hskip 1.42271pt\phi(H^{\prime\prime}),
ϕ(Ii)ϕ(i)(J)\displaystyle\big{|}\big{|}\phi(I_{i})-\sum{}^{(i)}\ \phi(J)\big{|}\big{|}\ ϕ(H)+ϕ(H′′)\displaystyle\leq\ \left\lVert\phi(H^{\prime})\right\rVert+\left\lVert\phi(H^{\prime\prime})\right\rVert
<εN,\displaystyle<\ \frac{\varepsilon}{N},

and

i=1,,Nϕ(Ii)JDJIiϕ(i)(J)\displaystyle\sum\limits_{i=1,\ldots,N}\big{|}\big{|}\phi(I_{i})-\sum\limits_{\begin{subarray}{c}J\in D\\ J\subset I_{i}\end{subarray}}{}^{(i)}\ \phi(J)\big{|}\big{|}\ <NεN\displaystyle<\ N\hskip 0.85355pt\frac{\varepsilon}{N}
=ε.\displaystyle=\ \varepsilon.

Thus ϕ\phi is quasi additive, as are ϕr\phi_{r}, ϕ\left\lVert\phi\right\rVert, ϕr+\phi_{r}^{+}, ϕr\phi_{r}^{-} (cf. §9, #16). Obviously V=V(ϕ)V=V(\left\lVert\phi\right\rVert) is the Jordan length of the curve CC, and Vr=V(|ϕr|)V_{r}=V(\left|\phi_{r}\right|), Vr+=V(ϕr+)V_{r}^{+}=V(\phi_{r}^{+}), Vr=V(ϕr)V_{r}^{-}=V(\phi_{r}^{-}), are the total variation, the positive and negative variations of xr(t)x_{r}(t), 0t10\leq t\leq 1. And

V<+{C is rectifiableVr,Vr+,Vr<+ϕ,ϕr,ϕ,|ϕ|,ϕr+,ϕrare all quasi additive.V<+\infty\implies\begin{cases}\ \text{$C$ is rectifiable}\\[4.0pt] \ V_{r},\hskip 0.85355ptV_{r}^{+},\hskip 0.85355ptV_{r}^{-}\hskip 1.42271pt<\hskip 1.42271pt+\infty\\[4.0pt] \ \phi,\hskip 0.85355pt\phi_{r},\hskip 0.85355pt\left\lVert\phi\right\rVert,\hskip 0.85355pt\left|\phi\right|,\hskip 0.85355pt\phi_{r}^{+},\hskip 0.85355pt\phi_{r}^{-}\quad\text{are all quasi additive}\end{cases}.

myn8

EXAMPLE  (Jordan length for discontinuous curves)  

Let C:x=x(t)C:x=x(t), 0t10\leq t\leq 1, x=(x1,,xk)x=(x_{1},\ldots,x_{k}), be any real vector function (a parameteric curve not necessarily continuous). Take A=[0,1]A=[0,1], {I}\{I\} the class of all intervals I=[a,b]AI=[a,b]\subset A, 𝒟\mathcal{D} the class of all finite subdivisions D=[Ij,j=1,,N]D=[I_{j},\hskip 0.85355ptj=1,\ldots,N], Ij=[aj1,aj]I_{j}=[a_{j-1},a_{j}], 0=a0<a1<<aN=10=a_{0}<a_{1}<\cdots<a_{N}=1. Let

s+(t0)={lim suptt0x(t)x(t0)0t0<10t0=1.s^{+}(t_{0})\ =\ \begin{cases}\limsup\limits_{t\downarrow t_{0}}\left\lVert x(t)-x(t_{0})\right\rVert\hskip 14.22636pt0\leq t_{0}<1\\[8.0pt] \quad 0\hskip 113.81102ptt_{0}=1\end{cases}.

Analogously, let

s(t0)={lim suptt0x(t)x(t0)0<t010t0=0.s^{-}(t_{0})\ =\ \begin{cases}\limsup\limits_{t\uparrow t_{0}}\left\lVert x(t)-x(t_{0})\right\rVert\hskip 14.22636pt0<t_{0}\leq 1\\[8.0pt] \quad 0\hskip 113.81102ptt_{0}=0\end{cases}.

Finally, let

s(t0)=s+(t0)+s(t0)0t01.s(t_{0})\ =\ s^{+}(t_{0})+s^{-}(t_{0})\qquad 0\leq t_{0}\leq 1.

As in the continuous situation, suppose that

{ϕ(I)=(ϕ1,,ϕk)whereϕr=xr(b)xr(a)(r=1,,k)I=[a,b]A.\begin{cases}\ \phi(I)=(\phi_{1},\ldots,\phi_{k})\\ \quad\text{where}\\ \ \phi_{r}=x_{r}(b)-x_{r}(a)\quad(r=1,\ldots,k)\end{cases}\forall\ I=[a,b]\subset A.

Then

V=supϕ(I)V\ =\ \sup\ \sum\ \left\lVert\phi(I)\right\rVert

is the Jordan length of CC, and V<+V<+\infty if and only if xr(t)x_{r}(t), r=1,,kr=1,\ldots,k are BV in AA. If V<+V<+\infty, then s(t)s(t), 0t10\leq t\leq 1, is zero everywhere but for countably many tt, and the sum (or the sum of the series)

σ=0t1s(t)V\sigma\ =\ \sum\limits_{0\leq t\leq 1}\ s(t)\ \leq\ V

is finite. If we take

δ(D)=maxi=1,,N|Ii|+σi=0Ns(ti)\delta(D)\ =\ \max\limits_{i=1,\ldots,N}\left|I_{i}\right|+\sigma-\sum\limits_{i=0}^{N}\ s(t_{i})

where

{D=[I1,,,IN]Ii=[ai1,ai]0=a0<a1<<aN=1,\begin{cases}\ D=[I_{1},\ldots,,I_{N}]\\ \ I_{i}=[a_{i-1},a_{i}]\quad 0=a_{0}<a_{1}<\cdots<a_{N}=1\end{cases},

then δ(D)\delta(D) is a mesh function and ϕ(I)\phi(I), I{I}I\in\{I\} is quasi additive w.r.t. δ(D)\delta(D) and 𝒟\mathcal{D}. We leave the proof to the reader. Then it is easy to prove also that

V\displaystyle V\ =V(ϕ)\displaystyle=\ V\left(\left\lVert\phi\right\rVert\right)
=limδ(D)0IDD𝒟ϕ(I).\displaystyle=\ \lim\limits_{\delta(D)\rightarrow 0}\ \sum\limits_{\begin{subarray}{c}I\in D\\ D\in\mathcal{D}\end{subarray}}\ \left\lVert\phi(I)\right\rVert.

myn9

EXAMPLE  (Cauchy integral in an interval in m\mathbb{R}^{m})  

We may suppose AA is the unit interval

A={(x1,,xm)m:0xr1,r=1,,m}.A\ =\ \{(x_{1},\ldots,x_{m})\in\mathbb{R}^{m}:0\leq x_{r}\leq 1,r=1,\ldots,m\}.

Let 𝒟\mathcal{D} be the collection of all finite subdivisions D=ID=I of AA into intervals

I=[arxrbr,r=1,,m].I\ =\ [a_{r}\leq x_{r}\leq b_{r},r=1,\ldots,m].

Let f(x),xA:|f(x)|Mf(x),\ x\in A:\left|f(x)\right|\leq M be any bounded real function. For every II, let {=(I)L=L(I)\begin{cases}\ \ell=\ell(I)\\ \ L=L(I)\end{cases} denote the  {infimumsupremum\begin{cases}\ \text{infimum}\\ \ \text{supremum}\end{cases} of f(x)f(x) in II, and let

{Δ(I)=LF=F(I),F:FLϕ(I)=F(I)|I|,|I|=(b1a1)(bmam).\begin{cases}\ \Delta(I)=L-\ell\\ \ F=F(I),\quad F:\ell\leq F\leq L\\ \ \phi(I)=F(I)\left|I\right|,\quad\left|I\right|=(b_{1}-a_{1})\cdots(b_{m}-a_{m})\end{cases}.

Let

δ(D)=maxID,D𝒟diamI.\delta(D)\ =\ \max\limits_{\begin{subarray}{c}I\in D,\\ D\in\mathcal{D}\end{subarray}}\ \text{diam}\hskip 1.42271ptI.

Then δ(D)\delta(D) is a mesh. The Riemann integrability condition reads:

(R)  Given ϵ>0\epsilon>0 there is a σ=σ(ϵ)>0\sigma=\sigma(\epsilon)>0 such that

Δ(I)|I|<ϵD𝒟withδ(D)<σ.\sum\ \Delta(I)\left|I\right|\ <\ \epsilon\quad\forall\ D\in\mathcal{D}\ \text{with}\ \delta(D)<\sigma.

It is easy to verify that (R) implies quasi additivity of ϕ(I)\phi(I) (w.r.t 𝒟\mathcal{D} and δ(D)\delta(D)) and vice-versa. The limit

=limϕ(I)\mathcal{B}\ =\ \lim\ \sum\ \phi(I)

is the Cauchy integral of f(x)f(x) in AA.

myn10

EXAMPLE  (Lebesgue-Stieltjes integral)  Let μ\mu be a measure in a σ\sigma-ring \mathcal{R} of subsets of a space AA, i.e., (A,,μ)(A,\mathcal{R},\mu) is a measure space, and let f(x)f(x), xAx\in A, be a μ\mu-measurable and μ\mu-integrable function. It is not restrictive to suppose f(x)0f(x)\geq 0. For every 0<p<+0<p<+\infty, and 0p<q+0\leq p<q\leq+\infty, denote by B(p)B(p), I(p,q)I(p,q) respectively the sets

B(p)={xA:f(x)=p}B(p)\ =\ \{x\in A:f(x)=p\}

and

I(p,q)={xA:p<f(x)q}.I(p,q)\ =\ \{x\in A:p<f(x)\leq q\}.

These sets are all μ\mu-measurable and

{ 0pμ(B(p))<+μ(B(+))=0,andpμ(B(p))0forp=+.\begin{cases}\ 0\leq p\hskip 0.85355pt\mu(B(p))<+\infty\\[4.0pt] \ \mu(B(+\infty))=0\end{cases},\ \text{and}\quad p\hskip 0.85355pt\mu(B(p))\equiv 0\quad\text{for}\quad p=+\infty.

And

{pμ(I(p,q))<+p>0pμ(B(p))M<+(M1).\begin{cases}\ p\hskip 0.85355pt\hskip 0.85355pt\mu(I(p,q))<+\infty\\[11.0pt] \ \displaystyle\sum\limits_{p>0}\ p\hskip 0.85355pt\mu(B(p))\leq M<+\infty\quad(\exists\ M\geq 1)\hskip 28.45274pt\end{cases}.\hskip 64.01869pt

Thus the set PP of all p>0p>0 with μ(B(p))>0\mu(B(p))>0 is countable and the corresponding series

pμ(B(p))\sum\ p\hskip 0.85355pt\mu(B(p))

is convergent. Also

{I(pτ,p+τ)B(p)μ(I(pτ,p+τ))μ(B(p))τ0,p>0.\begin{cases}I(p-\tau,p+\tau)\rightarrow B(p)\\[8.0pt] \mu(I(p-\tau,p+\tau))\rightarrow\mu(B(p))\end{cases}\tau\downarrow 0,\ \forall\ p>0.

Let {I}\{I\} be the collection of all sets

I(p,q)0p<q+,I(p,q)\quad 0\leq p<q\leq+\infty,

and let

ψ(I)=pμ(I(p,q)),I{I}.\psi(I)\ =\ p\hskip 0.85355pt\mu(I(p,q)),\quad I\in\{I\}.

Let 𝒟\mathcal{D} be the family of all finite decompositions D=[Ii,i=1,,n]D=[I_{i},\ i=1,\ldots,n] of AA into sets

Ii={xA:pi1<f(x)pi}{I}I_{i}\ =\ \{x\in A:p_{i-1}<f(x)\leq p_{i}\}\in\{I\}

with

0=p0<p1<<pn1<pn=+.0=p_{0}<p_{1}<\cdots<p_{n-1}<p_{n}=+\infty.

Finally, let

δ(D)={1n=1maxi=1,,n=1(pipi1)+1pn1+i=1n1piμ(B(p))n>1.\delta(D)\ =\ \begin{cases}\qquad 1\hskip 213.39566ptn=1\\[15.0pt] \displaystyle\ \max\limits_{i=1,\ldots,n=1}\ (p_{i}-p_{i-1})+\frac{1}{p_{n-1}}+\sum\limits_{i=1}^{n-1}\ p_{i}\hskip 0.85355pt\mu(B(p))\quad n>1\end{cases}.

Then δ(D)\delta(D) is a mesh function and ψ(I)\psi(I) is quasi additive (w.r.t 𝒟\mathcal{D} and δ(D)\delta(D)). To prove the last statement, given ε>0\varepsilon>0, take

η=η(ε)=min[ε4M,1]\eta\ =\ \eta(\varepsilon)\ =\ \min\hskip 1.42271pt\left[\frac{\varepsilon}{4M},1\right]

and let

D0=[Ii=I(pi1,pi):i=1,,N],0=p0<p1<<pn1<pn=+D_{0}\ =\ [I_{i}=I(p_{i-1},p_{i}):i=1,\ldots,N],\quad 0=p_{0}<p_{1}<\cdots<p_{n-1}<p_{n}=+\infty

be any D0𝒟D_{0}\in\mathcal{D} with δ(D0)<η\delta(D_{0})<\eta. Then there are numbers τi>0\tau_{i}>0 such that

μ(I(piτi,pi+τi)<μ(B(pi))+ε4Npi,i=1,,N1.\mu(I(p_{i}-\tau_{i},p_{i}+\tau_{i})\ <\ \mu(B(p_{i}))+\frac{\varepsilon}{4\hskip 0.85355ptN\hskip 0.85355ptp_{i}},\ i=1,\ldots,N-1.

Take

τ=minτi,\tau\ =\ \min\hskip 1.42271pt\tau_{i},

and

λ=λ(ε,D0)=min[pipi1,i=1,,N1;1/pN1;τ;η].\lambda\ =\ \lambda(\varepsilon,D_{0})\ =\ \min\hskip 1.42271pt[p_{i}-p_{i-1},\hskip 1.42271pti=1,\ldots,N-1;\hskip 1.42271pt1/p_{N-1};\hskip 1.42271pt\tau;\hskip 1.42271pt\eta].

If

D=[Ji=(qj1,qj),j=1,,n],0=q0<q1<<qn1<qn=+,D\ =\ [J_{i}=(q_{j-1},q_{j}),j=1,\ldots,n],\quad 0=q_{0}<q_{1}<\cdots<q_{n-1}<q_{n}=+\infty,

is any D𝒟D\in\mathcal{D} with δ(D)<λ\delta(D)<\lambda, we have J1I1J_{1}\subset I_{1}, JnINJ_{n}\subset I_{N}, and

Δ\displaystyle\Delta\ =i=1N[ψ(i)(Ji)ψ(Ii)]\displaystyle=\ \sum\limits_{i=1}^{N}\ \left[\sum{}^{(i)}\ \psi(J_{i})-\psi(I_{i})\right]^{-}
=i=1Npi1(μ(i)(J(qj1,qj))μ(I(pi1,pi)))\displaystyle=\ \sum\limits_{i=1}^{N}\ p_{i-1}\hskip 0.85355pt\left(\sum{}^{(i)}\ \mu(J(q_{j-1},q_{j}))-\mu(I(p_{i-1},p_{i}))\right)^{-}

where all qj1q_{j-1}, qjq_{j} relative to (i)\sum{}^{(i)} are between pi1p_{i-1} and pip_{i}, and q0=p0=0q_{0}=p_{0}=0. We have

Δ\displaystyle\Delta\ i=2Npi1(μ(i)(J(qj1,qj))μ(I(pi1,pi)))\displaystyle\leq\ \sum\limits_{i=2}^{N}\ p_{i-1}\hskip 0.85355pt\left(\sum{}^{(i)}\ \mu(J(q_{j-1},q_{j}))-\mu(I(p_{i-1},p_{i}))\right)^{-}
i=2Npi1[μ(B(pi1))+ε4Npi1+μ(B(pi1))+ε4Npi]\displaystyle\leq\ \sum\limits_{i=2}^{N}\ p_{i-1}\hskip 0.85355pt\left[\mu(B(p_{i-1}))+\frac{\varepsilon}{4}N\hskip 0.85355ptp_{i-1}+\mu(B(p_{i-1}))+\frac{\varepsilon}{4\hskip 0.85355ptN\hskip 0.85355ptp_{i}}\right]
+pN1[μ(B(pN1))+ε4NpN1]\displaystyle\hskip 85.35826pt+p_{N-1}\left[\mu(B(p_{N-1}))+\frac{\varepsilon}{4\hskip 0.85355ptN\hskip 0.85355ptp_{N-1}}\right]
< 2δ(D0)+ε4+ε4\displaystyle<\ 2\delta(D_{0})+\frac{\varepsilon}{4}+\frac{\varepsilon}{4}
<ε2+ε4+ε4\displaystyle<\ \frac{\varepsilon}{2}+\frac{\varepsilon}{4}+\frac{\varepsilon}{4}
=ε.\displaystyle=\ \varepsilon.

Thus ψ(I)\psi(I), I{I}I\in\{I\}, is quasi subadditive (w.r.t. 𝒟\mathcal{D} and δ(D)\delta(D)), and hence

V=V(ψ)=limδ(D)0IDψ(I).V\ =\ V(\psi)\ =\ \lim\limits_{\delta(D)\rightarrow 0}\ \sum\limits_{I\in D}\ \psi(I).

Since f(x)f(x) is μ\mu-integrable, we have

V=V(ψ)<+,V\ =\ V(\psi)\ <\ +\infty,

and (cf. §9, #16), ψ\psi is quasi additive. Also it is easy to prove that

V(ψ)=(A)f(x)dμV(\psi)\ =\ (A)\ \int\ f(x)\ \text{d}\mu

is the Lebesgue-Stieltjes integral of f(x)f(x) in AA (see, e.g. Rosenthal222Set Functions, Albuquerque, University of New Mexico Press, (1948). and Zaanen333Theory of Integration, New York, Interscience, (1958). ) It is also known that the limit above exists even if taken as

limΔ0IDψ(I)(Δ=max[pipi1]+1/pn1)\lim\limits_{\Delta\rightarrow 0}\ \sum\limits_{I\in D}\ \psi(I)\qquad(\Delta\hskip 1.42271pt=\hskip 1.42271pt\max\ [p_{i}-p_{i-1}]+1/p_{n-1})

myn11

EXAMPLE (Weierstrass integral over a rectifiable continuous curve CC)

Let C:x=x(t)C:x=x(t), 0t10\leq t\leq 1, x=(x1,,xk)x=(x_{1},\ldots,x_{k}), be any real continuous vector function with finite Jordan length LL. As in Example #7, let A=[0,1]A=[0,1], II the class of all I=[a,b]AI=[a,b]\subset A, 𝒟\mathcal{D} the class of all finite subdivisions D=[Ii:i=1,N]D=[I_{i}:i=1,\ldots N], Ii=[ai1,ai]I_{i}=[a_{i-1},a_{i}], 0=a0<a1<<aN=10=a_{0}<a_{1}<\cdots<a_{N}=1, and

δ=δ(D)=max{aiai1}.\delta\ =\ \delta(D)\ =\ \max\hskip 1.42271pt\{a_{i}-a_{i-1}\}.

And

{ϕ(I)=(ϕ1,,ϕk)whereϕr(I)=xr(b)xr(a)(r=1,,k)I=[a,b]A.\begin{cases}\ \phi(I)=(\phi_{1},\ldots,\phi_{k})\\ \quad\text{where}\\ \ \phi_{r}(I)=x_{r}(b)-x_{r}(a)\quad(r=1,\ldots,k)\end{cases}\forall\ I=[a,b]\subset A.

Then L=V(ϕ)L=V(\left\lVert\phi\right\rVert) (cf. Example #7) and the functions ϕ,ϕr,ϕ,|ϕ|,ϕr+,ϕr\phi,\hskip 0.85355pt\phi_{r},\hskip 0.85355pt\left\lVert\phi\right\rVert,\hskip 0.85355pt\left|\phi\right|,\hskip 0.85355pt\phi_{r}^{+},\hskip 0.85355pt\phi_{r}^{-} are all quasi additive w.r.t. DD and δ(D)\delta(D).

Let KK be any compact set containing the graph [C][C] of CC, i.e.,

[C]Kk,[C]\subset K\subset\mathbb{R}^{k},

and let f(p,q)f(p,q), pKp\in K, qkq\in\mathbb{R}^{k}, be any function continuous on K×kK\times\mathbb{R}^{k} such that

f(p,tq)=tf(p,q),t0,pK,qk.f(p,tq)\ =\ t\hskip 0.85355ptf(p,q),\quad\forall\ t\geq 0,\hskip 1.42271ptp\in K,\hskip 1.42271ptq\in\mathbb{R}^{k}.

For every I{I}I\in\{I\}, let

Φ(I)=f[x(τ),ϕ(I)]τIarbitary.\Phi(I)\ =\ f[x(\tau),\phi(I)]\qquad\tau\in I\quad\text{arbitary}.

Then (§10, #7) Φ(I)\Phi(I), I{I}I\in\{I\}, is quasi additive w.r.t. 𝒟\mathcal{D} and δ(D)\delta(D), and the numbers η(ε)\eta(\varepsilon), λ(ε,D0)\lambda(\varepsilon,D_{0}) can be taken independently of the choice of the τ\tau's in the intervals II. Thus, the following limit exists and is finite:

\displaystyle\mathcal{F}\ =Cf(p,q)\displaystyle=\ \int\limits_{C}\ f(p,q)
=limδ(D)0IDΦ(I)\displaystyle=\ \lim\limits_{\delta(D)\rightarrow 0}\ \sum\limits_{I\in D}\ \Phi(I)
=limδ(D)0i=1nf[x(τi),x(ai)x(ai1)],\displaystyle=\ \lim\limits_{\delta(D)\rightarrow 0}\ \sum\limits_{i=1}^{n}\ f[x(\tau_{i}),x(a_{i})-x(a_{i-1})],

independently of the choices of the points τi[ai1,ai]\tau_{i}\in[a_{i-1},a_{i}]. This limit is known as the Weierstrass integral of ff on the rectifiable curve CC and was studied by L. Tonelli, G. Bouligand, N. Aronszajn, K. Menger, C. Y. Pauc. See Cesari222Surface Area, Annals of Mathematics Studies, Number 35, Princeton University Press, (1956). for references.

It is known that \mathcal{F} is invariant w.r.t. Fréchet equivalence, i.e., it is independent of the representation C:x=x(t)C:x=x(t) of CC. In particular, if s=s(t)s=s(t) denotes the Jordan length of the curve CtC_{t} defined by x(t)x(t) on [0,t][0,t], 0sL0\leq s\leq L, and X(s)=x[s(t)]X(s)=x[s(t)], then C:x=x(s)C:x=x(s), 0sL0\leq s\leq L, is a representation of CC, X(s)X(s) is Lipschitz of constant 1, and \mathcal{F} is given by the Lebesgue integral

\displaystyle\mathcal{F}\ =Cf(p,q)\displaystyle=\ \int\limits_{C}\ f(p,q)
=0Lf[X(s),X(s)]ds.\displaystyle=\ \int\limits_{0}^{L}\ f[X(s),X^{\prime}(s)]\ \text{d}s.

REFERENCES

BOOKS
{rf}

Cesari, Lamberto, Surface Area, Annals of Mathematics Studies, Number 35, Princeton University Press, 1956.

{rf}

Evans, L. C. and Gariepy, R. F., Measure theory and fine properties of functions, CRC Press, Boca Raton, 1992.

{rf}

Goffman, Casper, Nishiura, Toga, and Waterman, Daniel, Homeomorphisms in Analysis, American Mathematical Society, 1997.

{rf}

Goffman, C., Real Functions, Rinehart, New York, 1953.

{rf}

Leoni, Giovanni, A First Course in Sobolev Spaces, Second Edition, American Mathematical Society, Providence, Rhode Island, 2017. (pp. 133-155).

ARTICLES
{rf}

Burkill, J.C., Functions of Intervals, Proc. London Math. Soc. (2) vol. 22 (1924), 275-310.

{rf}

Cesari, L., Quasi-additive set functions and the concept of integral over a variety, Trans. Amer. Math. Soc. vol. 102 (1962), 94-113.

{rf}

Cesari, L., Variation, Multiplicity, and Semicontinuity, American Mathematical Monthly vol. 65, issue 5, (1958), 317-332.

{rf}

Cesari, L., Rectifiable Curves and the Weierstrass Integral, American Mathematical Monthly vol. 65, issue 7, (1958), 485-500.

{rf}

Fréchet, M., Sur l’integral d’une fonctionnelle etendue a un ensemble abstrait, Bull. Soc. Math. France. vol. 43 (1915), 249-267.

{rf}

Gavurin, M., Uber die Stieltjessche Integration abstrakter Funktionen, Fund. Math. vol. 27 (1936), 255-268.

{rf}

Goffman, C., Non-parametric surfaces given by linearly continuous functions, Acta Math. 103 (1960), 269-291.

{rf}

Goffman, C., A characterization of linearly continuous functions whose partial derivatives are measures, Acta Math. 117 (1967), 165-190.

{rf}

Henstock, R., On interval functions and their integrals, J. Lond. Math. Soc. vol. 21 (1946), 204-209.

{rf}

Kempisty, S., Fonctions d’intervalle non additives, Actualites Sci. Ind. No. 824, Paris Hermann, 1939.

{rf}

Kober, H., On the existence of the Burkill integral, Canad. J. Math. vol. 10 (1957), 115-121.

{rf}

Kolmogoroff, A., Untersuchungen uber den Intergralbergriff, Math. Ann. vol. 103 (1930), 654-696.

{rf}

Krickeberg, K., Distributionen, Funktionen beschrankter variation und Lebesguescher Inhalt nichtparametrischer Flachen, Ann. Mat. Pura Appl. 4 (1957), 105-133.

{rf}

McShane, E. J., Generalized Curves, Duke Math. Journal vol. 6 (1940), 513-536.

{rf}

Pollard, S., The stieltjes integral and its generalizations, Quart. J. Math. vol. 49 (1923), 73-138.

{rf}

Serrin, J., A new definition of the integral for non-parametric problems in the calculus of variations, Acta Math. vol. 102 (1959), 23-32.

{rf}

Smith, H. L., Stieltjes Integral, Trans. Amer. Math. Soc. vol. 27 (1925), 490-507.

{rf}

Warner, G., The Burkill-Cesari Integral, Duke Mathematical Journal vol. 35, #1, (1968), 61-78.

Ph. D. THESES
{rf}

Breckenridge, John Clark, Geocze K-Area and Measure Theoretical Methods in Surface Area Theory, 1969.

{rf}

Gariepy, Ronald Francis, Current Valued Measures and Geocze Area, 1969.

{rf}

Nishiura, T., Analytic Theory of Continuous Transformations, 1959.

{rf}

Shapley, L. S., Additive and Non-Additive Set Functions, 1953.

{rf}

Stoddart, A. W. J., Integrals of the Calculus of Variations, 1964.

{rf}

Turner, L. H., The Direct Method in the Calculus of Variations, 1957.

{rf}

Warner, Garth W., Quasi Additive Set Functions and Non-linear Integration over a Variety, 1966.

Index