This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Analysis of Dalitz decays with intrinsic parity violating interactions in resonance chiral perturbation theory

Daiji Kimura kimurad@ube-k.ac.jp National Institute of Technology, Ube College, Ube Yamaguchi 755-8555, Japan    Takuya Morozumi morozumi@hiroshima-u.ac.jp Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan Core of Research for the Energetic Universe, Hiroshima University, Higashi-Hiroshima 739-8526, Japan    Hiroyuki Umeeda umeeda@gate.sinica.edu.tw Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan Institute of Science and Engineering, Shimane University, Matsue 690-8504, Japan Institute of Physics, Academia Sinica, Nangang, Taipei 11529, Taiwan
(September 7, 2025)
Abstract

Observables of light hadron decays are analyzed in a model of chiral Lagrangian which includes resonance fields of vector mesons. In particular, transition form factors are investigated for Dalitz decays of VPl+lV\to Pl^{+}l^{-} and Pγl+lP\to\gamma l^{+}l^{-} (V=1,P=0)(V=1^{-},P=0^{-}). Moreover, the differential decay width of Pπ+πγP\to\pi^{+}\pi^{-}\gamma and the partial widths of P2γ,VPγ,ηVγ,ϕ(1020)ω(782)π0P\to 2\gamma,V\to P\gamma,\eta^{\prime}\to V\gamma,\phi(1020)\to\omega(782)\pi^{0} and V3PV\to 3P are also calculated. In this study, we consider a model which contains octet and singlet fields as representation of SU(3). As an extension of chiral perturbation theory, we include 1-loop ordered interaction terms. For both pseudoscalar and vector meson, we evaluate mixing matrices in which isospin/SU(3) breaking is taken into account. Furthermore, intrinsic parity violating interactions are considered with singlet fields. For parameter estimation, we carry out χ2\chi^{2} fittings in which a spectral function of τ\tau decays, vector meson masses, decay widths of VPγV\to P\gamma and transition form factor of VPl+lV\to Pl^{+}l^{-} are utilized as input data. Using the estimated parameter region in the model, we give predictions for decay widths and transition form factors of intrinsic parity violating decays. As further model predictions, we calculate the transition form factors of ϕ(1020)π0l+l\phi(1020)\to\pi^{0}l^{+}l^{-} and η(958)γl+l\eta^{\prime}(958)\to\gamma l^{+}l^{-} in the vicinity of resonance regions, taking account of the contribution for intermediate ρ(770)\rho(770) and ω(782)\omega(782).

preprint: HUPD1608

I Introduction

Decays of light hadrons play a crucial role to investigate low-energy behavior of quantum chromodynamics (QCD), and are measured extensively in experiments. In particular, Dalitz decays such as Pγl+lP\to\gamma l^{+}l^{-} and VPl+lV\to Pl^{+}l^{-} provide rich resources as hadronic observables. Using these experimental data, we can test the validity of QCD effective theories which include resonances of vector meson. As a recent result, high-precision data of transition form factors (TFFs) for ωπ0μ+μ\omega\to\pi^{0}\mu^{+}\mu^{-} and ηγμ+μ\eta\to\gamma\mu^{+}\mu^{-} are measured by the NA60 collaboration Arnaldi:2016pzu in proton-nucleus (p-A) collisions. Moreover, the measurement of the branching ratio and the TFF of ηγe+e\eta^{\prime}\to\gamma e^{+}e^{-} has been carried out by the BES III collaboration Ablikim:2015wnx .

In order to describe dynamics of light hadrons, we adopt a model of chiral Lagrangian which includes vector mesons. In this model, chiral octets and singlets are introduced as representation of SU(3). There are some models Bando:1984ej ; Ecker:1988te ; Ecker:1989yg , which incorporate vector mesons and the other resonances. In this study, we develop the framework so that one can include chiral correction to processes in which vector mesons and/or pseudoscalars are involved. On the basis of power counting of superficial degree of divergence, 1-loop order counter terms, which correspond to O(p4)O(p^{4}), are introduced Kimura:2014wsa . Finite parts of the coefficients of the counter terms are estimated in the fitting procedure with the experimental observables in the same way as the chiral perturbation theory (ChPT). Once those parameters are determined, one can predict other observables such as TFFs and decay widths.

This effective dynamics of hadrons is applicable to a variety of phenomena, e.g., hadronic τ\tau decays. As experimental results, a spectral function of τπ0πν\tau^{-}\to\pi^{0}\pi^{-}\nu decay is measured in the experiments Barate:1997hv ; Anderson:1999ui ; Fujikawa:2008ma . As for decays including kaons, a mass spectrum of τKπ0ν\tau^{-}\to K^{-}\pi^{0}\nu is observed in the BaBar experiment Aubert:2007jh while one of τKSπν\tau^{-}\to K_{S}\pi^{-}\nu is measured in the Belle experiment Epifanov:2007rf . In Ref. Inami:2008ar ; delAmoSanchez:2010pc , the branching ratios of τ\tau decays including η\eta are reported. As theoretical study, the spectral function of τKSπν\tau^{-}\to K_{S}\pi^{-}\nu decay is fitted with a resonance field of K(892)K^{*}(892)^{-} Kimura:2014wsa . The review for τ\tau decays is given in Ref. Pich:2013lsa .

For vector mesons, we calculate quantum correction to self-energies to obtain a 1-loop corrected mass matrix. The mixing matrix, which is an orthogonal matrix to diagonalize the mass matrix, is determined in the procedure of diagonalization. After diagonalizing the mass matrix, the relevant mass eigenstates play the role as resonance fields of ρ(770),ω(782)\rho(770),\omega(782) and ϕ(1020)\phi(1020). In our formulation, SU(3)/isospin breaking contribution in the self-energies is taken into account in the mixing matrix for vector mesons. We also consider kinetic mixing of neutral vector mesons, which arises from 1-loop correction to the self-energies. Including such mixing contribution, we obtain analytic formulae of the widths for VPPV\to PP decays. Furthermore, we consider mixing between vector meson and photon, which also comes from 1-loop correction to self-energies. As analyzed explicitly in this paper, we find that the VγV-\gamma mixing plays a crucial role in processes such as radiative decays. For pseudoscalars, we also take account of quantum correction to self-energies. We use parametrization in which the 1-loop correction to mass matrix elements is accounted. The mixing matrix for pseudoscalars is determined so as to diagonalize the 1-loop corrected mass matrix. Using this formulation, we consider SU(3)/isospin breaking in the 3×33\times 3 mixing matrix for π0,η\pi^{0},\eta and η\eta^{\prime}.

In processes such as P2γP\to 2\gamma and radiative decays of VPγV\to P\gamma, intrinsic parity (IP) Wick:1952nb is violated. It is well-known that intrinsic parity violation (IPV) in models with vector mesons is categorized as two types: The first one is the Wess-Zumino-Witten (WZW) term, which results from quantum anomaly of SU(3) symmetry Wess:1971yu ; Witten:1983tw . The second one comes from the presence of resonance fields for vector mesons, as originally suggested in the framework of hidden local symmetry (HLS) Fujiwara:1984mp ; Bando:1987br .

For IP violating interactions in the model, we introduce operators including SU(3) singlet fields, in addition to ones suggested in Refs. Fujiwara:1984mp ; Bando:1987br ; Hashimoto:1996ny . As shown in our numerical result, inclusion of the singlet-induced IP violating operators plays an important role in the framework of the octet++singlet scheme, typically for η2γ\eta^{\prime}\to 2\gamma.

Using the introduced operators, we write formulae of the IP violating decays of hadrons. In particular, the expressions of (differential) decay widths and electromagnetic TFFs are shown. These formulae are useful for thorough analysis to test the validity of the model.

Since IPV interactions include an anti-symmetric tensor, one needs the fourth derivatives on the chiral fields so that the Lagrangian is Lorentz invariant. It is O(p4p^{4}) contribution. In contrast to IP conserving part, SU(3) breaking effect for IPV interactions is O(p4mπ2)O(p^{4}m_{\pi}^{2}) and it is one loop effect. To this accuracy, we need to include SU(3) breaking both in IP conserving part and in IPV part. In the first part of our paper, we include SU(3) breaking effect for IP conserving part up to one loop order without introducing SU(3) breaking for IPV interaction. In the last part of the paper, we incorporate SU(3) breaking interactions for IPV part in the tree level.

In this paper, the observables of IP violating decays are analyzed in our model. For the HLS model, a numerical result for IP violating decay widths is given in Refs. Bramon:1994pq ; Hashimoto:1996ny , with SU(3) breaking effect in IP violating interactions. Radiative decays are analyzed with VPγVP\gamma vertices in Ref. Bramon:2000fr . Moreover, numerical analyses of the TFFs are given in Refs. Terschluesen:2010ik ; Terschlusen:2012xw ; Schneider:2012ez ; Chen:2012vw ; Roig:2014uja ; Escribano:2015vjz .

In our analysis, χ2\chi^{2} fittings are carried out to estimate parameters in the model. As input data in the fittings, the spectral function in τKSπν\tau^{-}\to K_{S}\pi^{-}\nu decay measured by the Belle collaboration Epifanov:2007rf are used. Furthermore, we also utilize the data of masses for the vector mesons, which are precisely determined in experiments. For parameter estimation of coefficients of IP violating operators, the data of partial widths for radiative decays and TFFs of VPl+lV\to Pl^{+}l^{-} decays are used. As shown in the numerical result, one can find a parameter region which is consistent with experimental data for the TFFs.

Using the estimated parameter region, model prediction for hadron decays is presented in this work. Specifically, we give predictions for (1) the electromagnetic TFFs of Pγl+lP\to\gamma l^{+}l^{-}, (2) the partial decay widths of Pγl+l,Pπ+πγ,ϕωπ0P\to\gamma l^{+}l^{-},P\to\pi^{+}\pi^{-}\gamma,\phi\to\omega\pi^{0} and VPl+lV\to Pl^{+}l^{-}, (3) the differential decay widths of Pπ+πγP\to\pi^{+}\pi^{-}\gamma, (4) the TFFs of ρ0π0l+l,ρ0ηl+l,ωηl+l\rho^{0}\to\pi^{0}l^{+}l^{-},\rho^{0}\to\eta l^{+}l^{-},\omega\to\eta l^{+}l^{-} and ϕηl+l\phi\to\eta^{\prime}l^{+}l^{-} and (5) the branching ratio and the partial widths of Vπ0π+πV\to\pi^{0}\pi^{+}\pi^{-}. As discussed in the latter part of this paper, the TFFs for ϕπ0l+l\phi\to\pi^{0}l^{+}l^{-} and ηγl+l\eta^{\prime}\to\gamma l^{+}l^{-} have a peak region around which di-lepton invariant mass is close to the pole of ω\omega.

Remaining part of this paper is organized as follows: In Sec. II, the model is introduced and 1-loop ordered interactions are given with SU(3) octets and singlets. The quantum correction to self-energies of vector mesons are also shown. Using the 1-loop corrected propagators, we write the width of VPPV\to PP decay, including the contribution of kinetic mixing. The VγV-\gamma vertex, which arises from 1-loop order interactions, is also shown. The mixing matrix for π0,η\pi^{0},\eta and η\eta^{\prime}, in which 1-loop correction is accounted, is introduced. In Sec. III, IP violating interaction terms are given. The formulae of decay widths for IP violating modes are explicitly shown. In Sec. IV, the results of numerical analysis are presented. We show the fitting result of the invariant mass distribution of τ\tau decay. Physical masses of vector mesons are also fitted in this section. Moreover, we estimate coefficients of the IP violating operators, via experimental data of hadron decays. We give the model prediction for decay widths, TFFs and differential decay widths for IP violating decays. In Sec. V, SU(3) breaking effect of IPV interaction is studied. Finally, Sec. VI is devoted to summary and discussion.

II The model with SU(3) octets and singlets

In this section, we introduce a model of chiral Lagrangian with vector mesons Kimura:2014wsa . In this paper, we extend the previous one so that it includes ϕ\phi meson and electromagnetic mass of pseudoscalar mesons as follows,

χ\displaystyle\mathcal{L}_{\chi} =\displaystyle= P+V+c,\displaystyle\mathcal{L}_{P}+\mathcal{L}_{V}+\mathcal{L}_{c}, (1)
P\displaystyle\mathcal{L}_{P} =\displaystyle= f24Tr(DμUDμU)+BTr[M(U+U)]+CTrQUQU\displaystyle\frac{f^{2}}{4}\mathrm{Tr}(D_{\mu}UD^{\mu}U^{\dagger})+B\mathrm{Tr}[M(U+U^{\dagger})]+C\mathrm{Tr}QUQU^{\dagger} (2)
+12μη0μη012M002η02ig2pη0Tr[M(UU)],\displaystyle+\frac{1}{2}\partial_{\mu}\eta_{0}\partial^{\mu}\eta_{0}-\frac{1}{2}M_{00}^{2}\eta_{0}^{2}-ig_{2p}\eta_{0}\mathrm{Tr}[M(U-U^{\dagger})],
V\displaystyle\mathcal{L}_{V} =\displaystyle= 12TrFVμνFVμν+MV2Tr(Vμαμg)2+g1Vϕμ0Tr{(Vμαμg)(ξMξ+ξMξ2)}\displaystyle-\frac{1}{2}\mathrm{Tr}F_{V}^{\mu\nu}F_{V\mu\nu}+M_{V}^{2}\mathrm{Tr}\left(V_{\mu}-\frac{\alpha_{\mu}}{g}\right)^{2}+g_{1V}\phi^{0}_{\mu}\mathrm{Tr}\left\{\left(V^{\mu}-\frac{\alpha^{\mu}}{g}\right)\left(\frac{\xi M\xi+\xi^{\dagger}M\xi^{\dagger}}{2}\right)\right\} (3)
14FVμν0FV0μν+12M0V2ϕμ0ϕ0μ,\displaystyle-\frac{1}{4}F_{V\mu\nu}^{0}F^{0\mu\nu}_{V}+\frac{1}{2}M_{0V}^{2}\phi^{0}_{\mu}\phi^{0\mu},

where

αμ\displaystyle\alpha_{\mu} =\displaystyle= 12i(ξDLμξ+ξDRμξ),\displaystyle\frac{1}{2i}(\xi^{\dagger}D_{L\mu}\xi+\xi D_{R\mu}\xi^{\dagger}), (4)
DL(R)μ\displaystyle D_{L(R)\mu} =\displaystyle= μ+iAL(R)μ,\displaystyle\partial_{\mu}+iA_{L(R)\mu}, (5)
U\displaystyle U =\displaystyle= ξ2=exp(2iπf),\displaystyle\xi^{2}=\exp\left(\frac{2i\pi}{f}\right), (6)
DμU\displaystyle D_{\mu}U =\displaystyle= μU+iALμUiUARμ,\displaystyle\partial_{\mu}U+iA_{L\mu}U-iUA_{R\mu}, (7)
M\displaystyle M =\displaystyle= diag(mu,md,ms),\displaystyle\mathrm{diag}(m_{u},m_{d},m_{s}), (8)
FVμν\displaystyle F_{V\mu\nu} =\displaystyle= μVννVμ+ig[Vμ,Vν],\displaystyle\partial_{\mu}V_{\nu}-\partial_{\nu}V_{\mu}+ig[V_{\mu},V_{\nu}], (9)
FVμν0\displaystyle F_{V\mu\nu}^{0} =\displaystyle= μϕννϕμ,\displaystyle\partial_{\mu}\phi_{\nu}-\partial_{\nu}\phi_{\mu}, (10)
Q\displaystyle Q =\displaystyle= diag(23,13,13).\displaystyle\mathrm{diag}\left(\frac{2}{3},-\frac{1}{3},-\frac{1}{3}\right). (11)

The Lagrangian is divided into three parts in Eq. (1), which consist of the parts of pseudoscalars, vector mesons, and 1-loop order counter terms. As fields of pseudoscalar, the octet matrix and the singlet field are contained in Eq. (2). η0\eta_{0} is U(1)A pseudoscalar and its mass is given as M00M_{00}. The term denoted as CTrQUQUC\mathrm{Tr}QUQU^{\dagger} in Eq. (2) is the electromagnetic correction to ChPT. This term describes the effect of virtual photon Urech:1994hd , and affects the mass of the charged pseudoscalar. Vector mesons are introduced as SU(3) octet and singlet in Eq. (3). Vector meson matrix for octet is denoted by VμV_{\mu}, and its mass is given as MVM_{V}, while the field ϕμ0\phi^{0}_{\mu} denotes SU(3) singlet vector meson.

In the following, we present how 1-loop counter terms given as c{\cal L}_{c} are introduced for chiral Lagrangian with vector mesons and pseudoscalar singlet. The form of 1-loop counter terms depends on the tree-level Lagrangian and is obtained with power counting of the superficial degree of divergence in the loop calculation. The tree-level Lagrangian is constructed based on the expansion with respect to derivatives and chiral SU(3) breaking. The Lagrangian includes either the second derivatives or an insertion of chiral SU(3) breaking. The interaction Lagrangian which satisfies such criteria is extracted from Eqs. (2, 3),

0\displaystyle{\cal L}_{0} =\displaystyle= f24TrDμUDμU+MV2Tr(Vμαμg)2\displaystyle\frac{f^{2}}{4}{\rm Tr}D_{\mu}UD^{\mu}U^{\dagger}+M_{V}^{2}{\rm Tr}\left(V_{\mu}-\frac{\alpha_{\mu}}{g}\right)^{2} (12)
+\displaystyle+ BTr(M(U+U))ig2pη0Tr(M(UU)).\displaystyle B{\rm Tr}(M(U+U^{\dagger}))-ig_{2p}\eta_{0}{\rm Tr}(M(U-U^{\dagger})).

Note that 0{\cal L}_{0} does not include the parts which are written only with vector mesons and singlet pseudoscalars. With 0{\cal L}_{0}, the divergent parts of the 1-loop correction is extracted and the counter terms are given in Eq. (204). As proven in App. B, the counter terms satisfy the power counting rule, which enables us to specify the structure of them. Based on the discussion, in Eq. (1), we have included a singlet-octets vector mesons mixing term as a finite counter term.

The counter terms for the self-energy for vector mesons and VγV-\gamma mixing can be summarized as the effective counter terms Kimura:2014wsa ,

ceff\displaystyle{\mathcal{L}}^{eff}_{c} =\displaystyle= 12ZV(1)Tr(VμνVμν)\displaystyle-\frac{1}{2}Z_{V}^{(1)}{\rm Tr}(\mathcal{F}_{V\mu\nu}\mathcal{F}_{V}^{\mu\nu}) (13)
+\displaystyle+ C1Tr[ξχξ+ξχξ2(Vμαμg)2]+C2Tr(ξχξ+ξχξ2)Tr[(Vμαμg)2]\displaystyle C_{1}{\rm Tr}\left[\frac{\xi\chi\xi+\xi^{\dagger}\chi^{\dagger}\xi^{\dagger}}{2}\left(V_{\mu}-\frac{\alpha_{\mu}}{g}\right)^{2}\right]+C_{2}{\rm Tr}\left(\frac{\xi\chi\xi+\xi^{\dagger}\chi^{\dagger}\xi^{\dagger}}{2}\right){\rm Tr}\left[\left(V_{\mu}-\frac{\alpha_{\mu}}{g}\right)^{2}\right]
+\displaystyle+ C4TrVμν(FLμν0+FRμν0),\displaystyle C_{4}{\rm Tr}\mathcal{F}_{V}^{\mu\nu}(F^{0}_{L\mu\nu}+F^{0}_{R\mu\nu}),
χ\displaystyle\chi =\displaystyle= 4BMf2.\displaystyle\frac{4BM}{f^{2}}. (14)

where all the field strength are Abelian part defined by, Vμν=μVννVμ\mathcal{F}_{V\mu\nu}=\partial_{\mu}V_{\nu}-\partial_{\nu}V_{\mu} and FL(R)μν0=μAL(R)ννAL(R)μF^{0}_{L(R)\mu\nu}=\partial_{\mu}A_{L(R)\nu}-\partial_{\nu}A_{L(R)\mu}. ZV(1)Z^{(1)}_{V} and CiC_{i} (i=1,2,4i=1,2,4) are renormalization constants and they are written in terms of the coefficients in Eq. (204),

ZV(r)(1)=K3(r)(gρππ)tr2,C1(r)=2K4(r)(gρππ)tr2,\displaystyle Z^{(r)(1)}_{V}=K^{(r)}_{3}(g_{\rho\pi\pi})_{\mathrm{tr}}^{2},\quad C^{(r)}_{1}=2K^{(r)}_{4}(g_{\rho\pi\pi})_{\mathrm{tr}}^{2},
C2(r)=2K5(r)(gρππ)tr2,C4(r)=(gρππ)tr2(K2(r)K3(r)MV22g2f2),\displaystyle C^{(r)}_{2}=2K^{(r)}_{5}(g_{\rho\pi\pi})_{\mathrm{tr}}^{2},\quad C^{(r)}_{4}=-\displaystyle\frac{(g_{\rho\pi\pi})_{\mathrm{tr}}}{2}\left(K^{(r)}_{2}-K^{(r)}_{3}\frac{M_{V}^{2}}{2g^{2}f^{2}}\right), (15)
(gρππ)tree=MV22gf2.\displaystyle(g_{\rho\pi\pi})_{\mathrm{tree}}=\displaystyle\frac{M_{V}^{2}}{2gf^{2}}. (16)

The coefficients of the effective counter terms in Eq. (15) include the divergent part and the finite part. The finite parts are denoted with suffix (r)(r). Both divergent and finite parts of KiK_{i} are recorded in Eq. (207).

In Eq. (16), (gρππ)tree(g_{\rho\pi\pi})_{\mathrm{tree}} denotes a tree-level vertex for ρππ\rho\pi\pi coupling. We also define the 1-loop ordered ρππ\rho\pi\pi coupling,

gρππ=MV22gfπ2.\displaystyle g_{\rho\pi\pi}=\frac{M_{V}^{2}}{2gf_{\pi}^{2}}. (17)

II.1 Neutral vector meson

In this subsection, we diagonalize the mass matrix for neutral vector mesons and obtain the mass eigenstates which correspond to (ρ\rho, ω\omega, ϕ\phi). The mixing matrix between (ρ0,ω8,ϕ0)(\rho_{0},\omega_{8},\phi_{0}) and mass eigenstates determines the interaction among the physical states. The inverse propagator for the vector mesons is,

12VμIDμνIJ1VνJ,\displaystyle\frac{1}{2}V^{\mu I}D^{-1}_{\mu\nu IJ}V^{\nu J}, (18)

where VIV^{I} denotes the eigenstate for the mass matrix, VμT=(Vμ1,Vμ2,Vμ3)=(ρμ,ωμ,ϕμ)V_{\mu}^{T}=(V^{1}_{\mu},V^{2}_{\mu},V^{3}_{\mu})=(\rho_{\mu},\omega_{\mu},\phi_{\mu}). The mixing matrix OVO_{V} relates the mass eigenstates to SU(3) basis in the following,

Vμ0=(ρμ0ωμ8ϕμ0)=OVVμ.\displaystyle V_{\mu}^{0}=\begin{pmatrix}\rho_{\mu}^{0}\\ \omega_{\mu}^{8}\\ \phi_{\mu}^{0}\end{pmatrix}=O_{V}V_{\mu}. (19)

In Eq. (18), Dμν1=OVTDμν01OVD_{\mu\nu}^{-1}=O_{V}^{T}D^{0-1}_{\mu\nu}O_{V} contains the self-energy correction,

Dμν01\displaystyle D^{0-1}_{\mu\nu} =\displaystyle= gμν(Mρ2MVρ82MV0ρ2MVρ82MV882MV082MV0ρ2MV082M0V2)+Qμν(δBρ(Q2)δBρ8(Q2)0δBρ8(Q2)δB88(Q2)0001),\displaystyle g_{\mu\nu}\begin{pmatrix}M^{2}_{\rho}&M^{2}_{V\rho 8}&M^{2}_{V0\rho}\\ M^{2}_{V\rho 8}&M^{2}_{V88}&M^{2}_{V08}\\ M^{2}_{V0\rho}&M^{2}_{V08}&M^{2}_{0V}\\ \end{pmatrix}+Q_{\mu\nu}\begin{pmatrix}\delta B_{\rho}(Q^{2})&\delta B_{\rho 8}(Q^{2})&0\\ \delta B_{\rho 8}(Q^{2})&\delta B_{88}(Q^{2})&0\\ 0&0&1\end{pmatrix}, (20)
Qμν\displaystyle Q_{\mu\nu} =\displaystyle= QμQνgμνQ2,\displaystyle Q_{\mu}Q_{\nu}-g_{\mu\nu}Q^{2}, (21)
δBρ\displaystyle\delta B_{\rho} =\displaystyle= ZVr(μ)+gρππ2(4Mπr+MK+r+MK0r),\displaystyle Z^{r}_{V}(\mu)+g_{\rho\pi\pi}^{2}\left(4M^{r}_{\pi}+M^{r}_{K^{+}}+M^{r}_{K^{0}}\right), (22)
δBρ8\displaystyle\delta B_{\rho 8} =\displaystyle= 3gρππ2ΔMK+K0r,\displaystyle\sqrt{3}g_{\rho\pi\pi}^{2}\Delta M^{r}_{K^{+}K^{0}}, (23)
δB88\displaystyle\delta B_{88} =\displaystyle= ZVr(μ)+3gρππ2(MK+r+MK0r),\displaystyle Z^{r}_{V}(\mu)+3g_{\rho\pi\pi}^{2}(M^{r}_{K^{+}}+M^{r}_{K^{0}}), (24)

where ΔMK+K0r=MK+rMK0r\Delta M^{r}_{K^{+}K^{0}}=M^{r}_{K^{+}}-M^{r}_{K^{0}}. In Eqs. (22, 24), ZVrZ_{V}^{r} denotes the coefficient of kinetic term of octet vector meson defined as 1+ZVr(1)1+Z_{V}^{r(1)}. MPrM_{P}^{r} are the loop functions of vector mesons,

MPr\displaystyle M^{r}_{P} =\displaystyle= 112[(14MP2Q2)J¯P116π2lnMP2μ2148π2],\displaystyle\frac{1}{12}\left[\left(1-\frac{4M_{P}^{2}}{Q^{2}}\right)\bar{J}_{P}-\frac{1}{16\pi^{2}}\ln\frac{M_{P}^{2}}{\mu^{2}}-\frac{1}{48\pi^{2}}\right], (25)
J¯P\displaystyle\bar{J}_{P} =\displaystyle= {116π214MP2Q2ln1+14MP2Q2114MP2Q2+18π2+i116π14MP2Q2,(Q24MP2),18π2(14MP2Q21arctan14MP2Q21),(Q24MP2),\displaystyle\left\{\begin{array}[]{c}-\displaystyle\frac{1}{16\pi^{2}}\sqrt{1-\frac{4M_{P}^{2}}{Q^{2}}}\ln\frac{1+\sqrt{1-\frac{4M_{P}^{2}}{Q^{2}}}}{1-\sqrt{1-\frac{4M_{P}^{2}}{Q^{2}}}}+\frac{1}{8\pi^{2}}+i\frac{1}{16\pi}\sqrt{1-\frac{4M_{P}^{2}}{Q^{2}}},\quad(Q^{2}\geq 4M_{P}^{2}),\\ \displaystyle\frac{1}{8\pi^{2}}\left(1-\sqrt{\frac{4M_{P}^{2}}{Q^{2}}-1}\arctan\frac{1}{\sqrt{\frac{4M_{P}^{2}}{Q^{2}}-1}}\right),\quad(Q^{2}\leq 4M_{P}^{2}),\end{array}\right. (27)

where μ\mu is a renormalization scale. In the numerical analysis, we fix it as μ=mK+\mu=m_{K^{*+}}. The elements in the mass matrix (20) are given by,

Mρ2\displaystyle M_{\rho}^{2} =\displaystyle= MV2+C1rMπ2+C2r(2M¯K2+Mπ2)4gρππ2(μπ+μ¯K2)f2,\displaystyle M_{V}^{2}+C^{r}_{1}M_{\pi}^{2}+C^{r}_{2}(2\bar{M}_{K}^{2}+M_{\pi}^{2})-4g_{\rho\pi\pi}^{2}\left(\mu_{\pi}+\frac{\bar{\mu}_{K}}{2}\right)f^{2}, (28)
MV882\displaystyle M_{V88}^{2} =\displaystyle= MV2+C1r4M¯K2Mπ23+C2r(2M¯K2+Mπ2)6gρππ2μ¯Kf2,\displaystyle M_{V}^{2}+C^{r}_{1}\frac{4\bar{M}_{K}^{2}-M_{\pi}^{2}}{3}+C_{2}^{r}(2\bar{M}_{K}^{2}+M_{\pi}^{2})-6g_{\rho\pi\pi}^{2}\bar{\mu}_{K}f^{2}, (29)
MVρ82\displaystyle M^{2}_{V\rho 8} =\displaystyle= 13{C1rΔK+K03gρππ2ΔμKf2},\displaystyle\frac{1}{\sqrt{3}}\left\{C^{r}_{1}\Delta_{K^{+}K^{0}}-3g_{\rho\pi\pi}^{2}\Delta\mu_{K}f^{2}\right\}, (30)
MV0ρ2\displaystyle M^{2}_{V0\rho} =\displaystyle= g^1V4ΔK+K0,\displaystyle\frac{\hat{g}_{1V}}{4}\Delta_{K^{+}K^{0}}, (31)
MV082\displaystyle M^{2}_{V08} =\displaystyle= g^1V23ΔKπ,\displaystyle-\frac{\hat{g}_{1V}}{2\sqrt{3}}\Delta_{K\pi}, (32)

with

μP=MP232π2f2ln(MP2μ2),μ¯K=μK++μK02\displaystyle\mu_{P}=\displaystyle\frac{M_{P}^{2}}{32\pi^{2}f^{2}}\ln\left(\displaystyle\frac{M_{P}^{2}}{\mu^{2}}\right),\quad\bar{\mu}_{K}=\displaystyle\frac{\mu_{K^{+}}+\mu_{K^{0}}}{2} , (33)
M¯K2=MK+2+MK022,Mπ2=Mπ+2=Mπ02,\displaystyle\bar{M}_{K}^{2}=\displaystyle\frac{M^{2}_{K^{+}}+M^{2}_{K^{0}}}{2},\quad M^{2}_{\pi}=M^{2}_{\pi^{+}}=M^{2}_{\pi^{0}}, (34)
g^1V=f2g1VB,ΔμK=μK+μK0,\displaystyle\hat{g}_{1V}=\displaystyle\frac{f^{2}g_{1V}}{B},\quad\Delta\mu_{K}=\mu_{K^{+}}-\mu_{K^{0}}, (35)
ΔPQ=MP2MQ2,ΔKπ=M¯K2Mπ2.\displaystyle\Delta_{PQ}=M_{P}^{2}-M_{Q}^{2},\quad\Delta_{K\pi}=\bar{M}_{K}^{2}-M_{\pi}^{2}. (36)

We calculate the mass of the neutral vector mesons, ρ,ω\rho,\omega and ϕ\phi. The first term in Eq. (20) is diagonalized as,

Dμν1\displaystyle D^{-1}_{\mu\nu} =\displaystyle= gμν2+δBV(Q2)Qμν,\displaystyle g_{\mu\nu}\mathcal{M}^{2}+\delta B_{V}(Q^{2})Q_{\mu\nu}, (37)
2\displaystyle\mathcal{M}^{2} =\displaystyle= diag(12,22,32),\displaystyle\mathrm{diag}(\mathcal{M}_{1}^{2},\mathcal{M}_{2}^{2},\mathcal{M}_{3}^{2}), (38)

where δBV(Q2)\delta B_{V}(Q^{2}) is a 3×33\times 3 matrix,

δBV(Q2)=OVTδB(Q2)OV.\displaystyle\delta B_{V}(Q^{2})=O_{V}^{T}\delta B(Q^{2})O_{V}. (39)

The propagator for the neutral vector mesons is denoted as,

Dμν\displaystyle D^{\mu\nu} =\displaystyle= gμνD0+QμQνDL,\displaystyle g^{\mu\nu}D_{0}+Q^{\mu}Q^{\nu}D_{L}, (40)
D0\displaystyle D_{0} =\displaystyle= (2Q2δBV)1,\displaystyle(\mathcal{M}^{2}-Q^{2}\delta B_{V})^{-1}, (41)
DL\displaystyle D_{L} =\displaystyle= 1Q2(1212Q2δBV).\displaystyle\frac{1}{Q^{2}}\left(\frac{1}{\mathcal{M}^{2}}-\frac{1}{\mathcal{M}^{2}-Q^{2}\delta B_{V}}\right). (42)

In the following, we expand the propagator in Eq. (40) with respect to the off-diagonal parts of δBV\delta B_{V},

(Dμν)IJ\displaystyle(D_{\mu\nu})_{IJ} =\displaystyle= {gμνQμQνI2δBVII2Q2δBVI,(I=J)Qμν1I2Q2δBVIδBVIJ1J2Q2δBVJ,(IJ)\displaystyle\begin{cases}\displaystyle\frac{g_{\mu\nu}-\displaystyle\frac{Q_{\mu}Q_{\nu}}{\mathcal{M}_{I}^{2}}\delta B_{VI}}{\mathcal{M}_{I}^{2}-Q^{2}\delta B_{VI}},\quad(I=J)\\ -Q_{\mu\nu}\displaystyle\frac{1}{\mathcal{M}_{I}^{2}-Q^{2}\delta B_{VI}}\delta B_{VIJ}\displaystyle\frac{1}{\mathcal{M}_{J}^{2}-Q^{2}\delta B_{VJ}},\quad(I\neq J)\end{cases} (43)

where I,J=1,2,3I,J=1,2,3 and δBVI\delta B_{VI} denotes the diagonal part in the matrix in Eq. (39). If one neglects the off-diagonal parts of δBV\delta B_{V}, the above propagator becomes diagonal matrix given in the first line in Eq. (43). The pole mass squared is defined as the momentum squared where the real part of the denominator of the propagator vanishes in the following as,

I2mI2ReδBVI(mI2)=0.\displaystyle\mathcal{M}_{I}^{2}-m_{I}^{2}{\rm Re}\delta B_{VI}(m_{I}^{2})=0. (44)

The denominator of the propagator in Eq. (43) is expanded in the vicinity of the pole mass,

I2Q2ReδBVI(Q2)\displaystyle\mathcal{M}_{I}^{2}-Q^{2}{\rm Re}\delta B_{VI}(Q^{2}) =\displaystyle= mI2ReδBVI(mI2)Q2ReδBVI(Q2)\displaystyle m_{I}^{2}{\rm Re}\delta B_{VI}(m_{I}^{2})-Q^{2}{\rm Re}\delta B_{VI}(Q^{2}) (45)
\displaystyle\simeq (mI2Q2)dQ2ReδBVI(Q2)dQ2|Q2=mI2.\displaystyle(m_{I}^{2}-Q^{2})\frac{dQ^{2}{\rm Re}\delta B_{VI}(Q^{2})}{dQ^{2}}\Bigr{|}_{Q^{2}=m_{I}^{2}}.

We define the wave function renormalization of neutral vector meson,

ZI1=dQ2ReδBVI(Q2)dQ2|Q2=mI2=ReδBVI(mI2)+mI2dReδBVI(Q2)dQ2|Q2=mI2.\displaystyle Z_{I}^{-1}=\frac{dQ^{2}{\rm Re}\delta B_{VI}(Q^{2})}{dQ^{2}}\Bigr{|}_{Q^{2}=m_{I}^{2}}={\rm Re}\delta B_{VI}(m_{I}^{2})+m_{I}^{2}\frac{d{\rm Re}\delta B_{VI}(Q^{2})}{dQ^{2}}\Bigr{|}_{Q^{2}=m_{I}^{2}}. (46)

Thus, in the vicinity of the pole mass, the propagator takes the following form,

(Dμν)II\displaystyle(D_{\mu\nu})_{II} \displaystyle\simeq ZIgμνQμQνmI2(1+iImδBVI(mI2)ReδBVI(mI2))mI2Q2imIΓI,\displaystyle Z_{I}\frac{g_{\mu\nu}-\displaystyle\frac{Q_{\mu}Q_{\nu}}{m_{I}^{2}}\left(1+i\frac{{\rm Im}\delta B_{VI}(m_{I}^{2})}{{\rm Re}\delta B_{VI}(m_{I}^{2})}\right)}{m_{I}^{2}-Q^{2}-im_{I}\Gamma_{I}}, (47)

where the definitions of the pole mass and width are given as,

mI2\displaystyle m_{I}^{2} =\displaystyle= I2ReδBVI(mI2),\displaystyle\frac{\mathcal{M}_{I}^{2}}{\mathrm{Re}\delta B_{VI}(m_{I}^{2})}, (48)
ΓI\displaystyle\Gamma_{I} =\displaystyle= mIZIImδBVI(mI2).\displaystyle m_{I}Z_{I}{\rm Im}\delta B_{VI}(m_{I}^{2}). (49)

II.2 1-loop correction to decay width of VPPV\to PP

In this subsection, we derive the formulae for width of vector meson decay into two pseudoscalars. We compute the 1-loop diagrams which are shown in Fig. II.1. For neutral vector mesons, ρ,ω\rho,\omega and ϕ\phi, the contribution of the kinetic mixing is also taken into account, in addition to the diagrams in Fig. II.1.

Refer to caption
Figure II.1: 1-loop ordered Feynman diagrams forVPPV\to PP decays. A black circle indicates a vertex of the 1-loop ordered counter term.

II.2.1 KKπK^{*}\to K\pi and ρ±π±π0\rho^{\pm}\to\pi^{\pm}\pi^{0}

The amplitude for VPπV\to P\pi is written as the sum of the tree-level amplitude and 1-loop correction,

(VPπ)=ϵμqμ(g^VPπ+ΔgVPπ),\displaystyle\mathcal{M}(V\to P\pi)=\epsilon^{\mu\ast}q_{\mu}(\hat{g}_{VP\pi}+\Delta g_{VP\pi}), (50)

where g^VPπ\hat{g}_{VP\pi} denotes the tree-level coupling and ΔgVPπ\Delta g_{VP\pi} is 1-loop correction. We denote q=pPpπq=p_{P}-p_{\pi}. Firstly, we consider the case that VV and PP consist of the same quark flavor contents. For V=K+(0)V=K^{\ast+(0)} and P=K+(0)P=K^{+(0)}, they are given as,

g^K+K+π0\displaystyle\hat{g}_{K^{\ast+}K^{+}\pi^{0}} =\displaystyle= (gρππ)tree2ZK+Zπ+=MV24gfKfπ\displaystyle\frac{(g_{\rho\pi\pi})_{\rm tree}}{2}\sqrt{Z_{K^{+}}Z_{\pi^{+}}}=\frac{M_{V}^{2}}{4gf_{K}f_{\pi}}
ΔgK+K+π0\displaystyle\Delta g_{K^{\ast+}K^{+}\pi^{0}} =\displaystyle= C2r(2MK2+Mπ2)+C1rMK24gf2\displaystyle\frac{{C_{2}^{r}}(2{M_{K}}^{2}+{M_{\pi}}^{2})+{C_{1}^{r}}{M_{K}}^{2}}{4gf^{2}} (51)
\displaystyle- 3(gρππ)tree4f2(1MV22g2f2){(MKπr+MKη8r)mK2+(LKπr+LKη8r)}\displaystyle\frac{3(g_{\rho\pi\pi})_{\rm tree}}{4f^{2}}\left(1-\frac{M_{V}^{2}}{2g^{2}f^{2}}\right)\{-(M_{K\pi}^{r}+M_{K\eta_{8}}^{r}){m^{2}_{K^{\ast}}}+(L_{K\pi}^{r}+L_{K\eta_{8}}^{r})\}
\displaystyle- 3(gρππ)tree28g(2μK+μπ+μη)+C3r8f2mK2.\displaystyle\frac{3(g_{\rho\pi\pi})_{\rm tree}^{2}}{8g}(2\mu_{K}+\mu_{\pi}+\mu_{\eta})+\frac{C_{3}^{r}}{8f^{2}}{m^{2}_{K^{\ast}}}.

In the isospin limit, one can find the relations, g^K+K0π+=2g^K+K+π0\hat{g}_{K^{\ast+}K^{0}\pi^{+}}=\sqrt{2}\hat{g}_{K^{\ast+}K^{+}\pi^{0}} and ΔgK+K0π+=2ΔgK+K+π0\Delta g_{K^{\ast+}K^{0}\pi^{+}}=\sqrt{2}\Delta g_{K^{\ast+}K^{+}\pi^{0}}, are satisfied. Therefore, the decay width of K+K0π+K^{*+}\to K^{0}\pi^{+} is two times larger than that of K+K+π0K^{*+}\to K^{+}\pi^{0}. For V=ρ+V=\rho^{+} and P=π+P=\pi^{+}, the couplings are given as,

g^ρππ\displaystyle\hat{g}_{\rho\pi\pi} =\displaystyle= (gρππ)treeZπ+Zρ+=MV22gfπ2Zρ+,\displaystyle(g_{\rho\pi\pi})_{\rm tree}Z_{\pi^{+}}\sqrt{Z_{\rho^{+}}}=\frac{M_{V}^{2}}{2gf_{\pi}^{2}}\sqrt{Z_{\rho^{+}}},
Δgρππ\displaystyle\Delta g_{\rho\pi\pi} =\displaystyle= C2r(2MK2+Mπ2)+C1rMπ22gf2\displaystyle\frac{{C_{2}^{r}}(2{M_{K}}^{2}+{M_{\pi}}^{2})+{C_{1}^{r}}{M_{\pi}}^{2}}{2gf^{2}} (52)
+\displaystyle+ (gρππ)treef2(1MV22g2f2)(2Mππr+MKKr)mρ2\displaystyle\frac{(g_{\rho\pi\pi})_{\rm tree}}{f^{2}}\left(1-\frac{M_{V}^{2}}{2g^{2}f^{2}}\right)(2M_{\pi\pi}^{r}+M_{KK}^{r}){m^{2}_{\rho}}
\displaystyle- (gρππ)treeg(μK+2μπ)+C3r4f2mρ2.\displaystyle\frac{(g_{\rho\pi\pi})_{\rm tree}}{g}(\mu_{K}+2\mu_{\pi})+\frac{C_{3}^{r}}{4f^{2}}m^{2}_{\rho}.

In the above calculation, the isospin breaking effect is not taken into account. Using the 1-loop corrected couplings, we obtain the partial decay width for VPπV\to P\pi,

Γ[VPπ]\displaystyle\Gamma[V\to P\pi] =\displaystyle= νPπ(mV2)348πg^VPπ2mV5(1+2Re(ΔgVPπg^VPπ)),\displaystyle\frac{\nu_{P\pi}(m_{V}^{2})^{3}}{48\pi}\frac{\hat{g}^{2}_{VP\pi}}{m_{V}^{5}}\left(1+2\mathrm{Re}\left(\frac{\Delta g_{VP\pi}}{\hat{g}_{VP\pi}}\right)\right), (53)
νPπ(Q2)\displaystyle\nu_{P\pi}(Q^{2}) =\displaystyle= Q4Q2(MP2+Mπ2)+(MP2Mπ2)2.\displaystyle\sqrt{Q^{4}-Q^{2}(M_{P}^{2}+M_{\pi}^{2})+(M_{P}^{2}-M_{\pi}^{2})^{2}}. (54)

Using the isospin relation of KK^{*} decays, one can find,

Γ[K+K+π0]+Γ[K+K0π+]=νKπ(mK2)316πg^K+K+π02mK5(1+2Re(ΔgK+K+π0g^K+K+π0)).\displaystyle\Gamma[K^{\ast+}\to K^{+}\pi^{0}]+\Gamma[K^{\ast+}\to K^{0}\pi^{+}]=\frac{\nu_{K\pi}(m_{K^{\ast}}^{2})^{3}}{16\pi}\frac{\hat{g}^{2}_{K^{\ast+}K^{+}\pi^{0}}}{m_{K^{\ast}}^{5}}\left(1+2\mathrm{Re}\left(\frac{\Delta g_{K^{\ast+}K^{+}\pi^{0}}}{\hat{g}_{K^{\ast+}K^{+}\pi^{0}}}\right)\right).\quad\qquad (55)

II.2.2 Vπ+πV\to\pi^{+}\pi^{-} (V=ω,ϕ)(V=\omega,\phi) and ϕK+K(K0K¯0)\phi\to K^{+}K^{-}(K^{0}\bar{K}^{0})

In this subsection, we study the decay width of VPPV\to PP, including the effect of kinetic mixing. First, Vπ+πV\to\pi^{+}\pi^{-} (V=ω,ϕV=\omega,\phi) is investigated. Since the two pions in the final state are p wave and form an isotriplet, the decays of ω\omega and ϕ\phi occur due to isospin breaking. There are two major contributions to the isospin breaking amplitude. The first one is due to a partial component of isotriplet state (ρ0\rho^{0}) in the mass eigenstate of ω(ϕ)\omega(\phi). This effect is incorporated as the mixing matrix of the neutral vector mesons. Another contribution comes from the non-vanishing decay amplitude for isosinglet due to isospin breaking. In our model, incomplete cancellation between 1-loop diagram of charged kaon and one of neutral kaon leads to such contribution. The decay amplitudes for octet states ρ0\rho^{0}, ω8\omega^{8} and a singlet state ϕ0\phi^{0} are given as,

T(ρ0π+π)\displaystyle T(\rho^{0}\to\pi^{+}\pi^{-}) =\displaystyle= (gρππ)treeqμϵμ,\displaystyle-({g_{\rho\pi\pi})_{\mathrm{tree}}}q_{\mu}\epsilon^{\mu\ast},
T(ω8π+π)\displaystyle T(\omega^{8}\to\pi^{+}\pi^{-}) =\displaystyle= 32(gρππ)treeϵμqμ((HK+HK0)\displaystyle\frac{\sqrt{3}}{2}(g_{\rho\pi\pi})_{\mathrm{tree}}\epsilon^{\mu\ast}q_{\mu}\Bigl{(}-(H_{K^{+}}-H_{K^{0}})
+\displaystyle+ MV22g2f2(HK+HK0+μK+μK0)2C1r3MK+2MK02MV2),\displaystyle\left.\frac{M_{V}^{2}}{2g^{2}f^{2}}(H_{K^{+}}-H_{K^{0}}+\mu_{K^{+}}-\mu_{K^{0}})-\frac{2C_{1}^{r}}{3}\frac{M_{K^{+}}^{2}-M_{K^{0}}^{2}}{M_{V}^{2}}\right),
T(ϕ0π+π)\displaystyle T(\phi^{0}\to\pi^{+}\pi^{-}) =\displaystyle= g^1V8gf2(MK+2MK02)=(gρππ)treeg^1VMK+2MK024MV2qμϵμ.\displaystyle-\frac{\hat{g}_{1V}}{8gf^{2}}(M_{K^{+}}^{2}-M_{K^{0}}^{2})=-(g_{\rho\pi\pi})_{\mathrm{tree}}\ \hat{g}_{1V}\frac{M_{K^{+}}^{2}-M_{K^{0}}^{2}}{4M_{V}^{2}}q_{\mu}\epsilon^{\mu\ast}. (56)

The effective Lagrangian for the singlet and octet states is given as,

\displaystyle\mathcal{L} =\displaystyle= i((gρππ)treeρ0μ+gωππω8μ+gϕππϕ0μ)(π+μπ),\displaystyle i((g_{\rho\pi\pi})_{\mathrm{tree}}\rho^{0\mu}+g_{\omega\pi\pi}\omega^{8\mu}+g_{\phi\pi\pi}\phi^{0\mu})\left(\pi^{+}\overleftrightarrow{\partial}_{\mu}\pi^{-}\right), (57)

where coupling constants are defined as,

gωππ\displaystyle g_{\omega\pi\pi} =\displaystyle= 32(gρππ)tree(HK+HK0\displaystyle\frac{\sqrt{3}}{2}(g_{\rho\pi\pi})_{\mathrm{tree}}\Bigl{(}H_{K^{+}}-H_{K^{0}} (58)
MV22g2f2(HK+HK0+μK+μK0)+2C1r3MK+2MK02MV2),\displaystyle\left.\qquad-\frac{M_{V}^{2}}{2g^{2}f^{2}}(H_{K^{+}}-H_{K^{0}}+\mu_{K^{+}}-\mu_{K^{0}})+\frac{2C_{1}^{r}}{3}\frac{M_{K^{+}}^{2}-M_{K^{0}}^{2}}{M_{V}^{2}}\right),
gϕππ\displaystyle g_{\phi\pi\pi} =\displaystyle= (gρππ)treeg^1VMK+2MK024MV2.\displaystyle(g_{\rho\pi\pi})_{\mathrm{tree}}\ \hat{g}_{1V}\frac{M_{K^{+}}^{2}-M_{K^{0}}^{2}}{4M_{V}^{2}}.

Next one can rewrite the Lagrangian in terms of the mass eigenstates using their relations with the octet and singlet states,

(ρμ0ωμ8ϕμ0)=OV(Z1000Z2000Z3)(ρμRωμRϕμR).\displaystyle\begin{pmatrix}\rho_{\mu}^{0}\\ \omega_{\mu}^{8}\\ \phi_{\mu}^{0}\end{pmatrix}=O_{V}\begin{pmatrix}\sqrt{Z_{1}}&0&0\\ 0&\sqrt{Z_{2}}&0\\ 0&0&\sqrt{Z_{3}}\end{pmatrix}\begin{pmatrix}\rho_{\mu R}\\ \omega_{\mu R}\\ \phi_{\mu R}\end{pmatrix}. (59)

Substituting the above equation, one obtains the effective Lagrangian for renormalized mass eigenstates (Vμ1Vμ2Vμ3)=(ρRμωRμϕRμ)\begin{pmatrix}V_{\mu}^{1}&V_{\mu}^{2}&V_{\mu}^{3}\end{pmatrix}=\begin{pmatrix}\rho_{R\mu}&\omega_{R\mu}&\phi_{R\mu}\end{pmatrix},

|Vπ+π\displaystyle\mathcal{L}|_{V\pi^{+}\pi^{-}} =\displaystyle= i((gρππ)treeOV1I+gωππOV2I+gϕππOV3I)ZIVμI(π+μπ)\displaystyle i((g_{\rho\pi\pi})_{\mathrm{tree}}O_{V1I}+g_{\omega\pi\pi}O_{V2I}+g_{\phi\pi\pi}O_{V3I})\sqrt{Z_{I}}V_{\mu}^{I}\left(\pi^{+}\overleftrightarrow{\partial}^{\mu}\pi^{-}\right) (60)
=\displaystyle= i(gρππ)treeΠIZIVμI(π+μπ),\displaystyle i(g_{\rho\pi\pi})_{\mathrm{tree}}\Pi_{I}\sqrt{Z_{I}}V_{\mu}^{I}\left(\pi^{+}\overleftrightarrow{\partial}^{\mu}\pi^{-}\right),
ΠI\displaystyle\Pi_{I} =\displaystyle= OV1I+gωππ(gρππ)treeOV2I+gϕππ(gρππ)treeOV3I.\displaystyle O_{V1I}+\frac{g_{\omega\pi\pi}}{(g_{\rho\pi\pi})_{\mathrm{tree}}}O_{V2I}+\frac{g_{\phi\pi\pi}}{(g_{\rho\pi\pi})_{\mathrm{tree}}}O_{V3I}. (61)

To evaluate the partial decay width for VIPPV^{I}\to PP, kinetic mixing in the decay process, i.e., VIVJPPV^{I}\to V^{J}\to PP, should be taken into account. Using the renormalized fields, we can express the kinetic mixing terms,

KM=12(ρμR,ωμR,ϕμR)Qμν(0δBV12δBV13δBV120δBV23δBV13δBV230)(ρνRωνRϕνR).\displaystyle\mathcal{L}_{\mathrm{KM}}=\frac{1}{2}\begin{pmatrix}\rho_{\mu}^{R},&\omega_{\mu}^{R},&\phi_{\mu}^{R}\end{pmatrix}Q^{\mu\nu}\begin{pmatrix}0&\delta B_{V12}&\delta B_{V13}\\ \delta B_{V12}&0&\delta B_{V23}\\ \delta B_{V13}&\delta B_{V23}&0\\ \end{pmatrix}\begin{pmatrix}\rho_{\nu}^{R}\\ \omega_{\nu}^{R}\\ \phi_{\nu}^{R}\end{pmatrix}. (62)

In the above Lagrangian, we set the wave function renormalization ZI=1Z_{I}=1, since δBVIJ(IJ)\delta B_{VIJ}\ (I\not=J) is 1-loop order contribution.

The TT-matrix elements for VPPV\to PP decays are,

T[VIπ+π]\displaystyle T[V^{I}\to\pi^{+}\pi^{-}] =\displaystyle= gVIπ+πeff(qϵ),(I=2,3)\displaystyle-g_{V^{I}\pi^{+}\pi^{-}}^{\mathrm{eff}}\ (q\cdot\epsilon^{*}),\quad(I=2,3)
T[ϕK+K]\displaystyle T[\phi\to K^{+}K^{-}] =\displaystyle= gϕK+Keff(qϵ),\displaystyle-g_{\phi K^{+}K^{-}}^{\mathrm{eff}}\ (q\cdot\epsilon^{*}), (63)
T[ϕK0K0¯]\displaystyle T[\phi\to K^{0}\bar{K^{0}}] =\displaystyle= gϕK0K0¯eff(qϵ),\displaystyle-g_{\phi K^{0}\bar{K^{0}}}^{\mathrm{eff}}\ (q\cdot\epsilon^{*}),

where q=p+(0)p(0¯)q=p_{+(0)}-p_{-(\bar{0})}. Including the contribution of kinetic mixing, the effective couplings in Eq. (63) are given as,

gVIπ+πeff\displaystyle g_{V^{I}\pi^{+}\pi^{-}}^{\mathrm{eff}} =\displaystyle= gρππ[ΠIZI+mI2JIΠJδBVJIJ2mI2δBVJ(mI2)],\displaystyle g_{\rho\pi\pi}\left[\Pi_{I}\sqrt{Z_{I}}+m_{I}^{2}\displaystyle\sum_{J\neq I}\Pi_{J}\frac{\delta B_{VJI}}{\mathcal{M}_{J}^{2}-m_{I}^{2}\delta B_{VJ}(m_{I}^{2})}\right], (64)
gϕK+Keff\displaystyle g_{\phi K^{+}K^{-}}^{\mathrm{eff}} =\displaystyle= gρππ(fπfK)2[Z3Π3K++mϕ2J3ΠJK+δBVJ3J2mϕ2δBVJ(m32)],\displaystyle g_{\rho\pi\pi}\left(\frac{f_{\pi}}{f_{K}}\right)^{2}\left[\sqrt{Z_{3}}\Pi_{3}^{K^{+}}+m_{\phi}^{2}\displaystyle\sum_{J\neq 3}\Pi_{J}^{K^{+}}\frac{\delta B_{VJ3}}{\mathcal{M}_{J}^{2}-m_{\phi}^{2}\delta B_{VJ}(m_{3}^{2})}\right], (65)
gϕK0K0¯eff\displaystyle g_{\phi K^{0}\bar{K^{0}}}^{\mathrm{eff}} =\displaystyle= gρππ(fπfK)2[Z3Π3K0+mϕ2J3ΠJK0δBVJ3J2mϕ2δBVJ(m32)],\displaystyle g_{\rho\pi\pi}\left(\frac{f_{\pi}}{f_{K}}\right)^{2}\left[\sqrt{Z_{3}}\Pi_{3}^{K^{0}}+m_{\phi}^{2}\displaystyle\sum_{J\neq 3}\Pi_{J}^{K^{0}}\frac{\delta B_{VJ3}}{\mathcal{M}_{J}^{2}-m_{\phi}^{2}\delta B_{VJ}(m_{3}^{2})}\right], (66)
ΠIK+\displaystyle\Pi_{I}^{K^{+}} =\displaystyle= OV1I2+32OV2I+g^1V(Mπ+2MK02)4MV2OV3I,\displaystyle\frac{O_{V1I}}{2}+\frac{\sqrt{3}}{2}O_{V2I}+\frac{\hat{g}_{1V}(M_{\pi^{+}}^{2}-M_{K^{0}}^{2})}{4M_{V}^{2}}O_{V3I}, (67)
ΠIK0\displaystyle\Pi_{I}^{K^{0}} =\displaystyle= OV1I2+32OV2I+g^1V(Mπ+2MK+2)4MV2OV3I.\displaystyle-\frac{O_{V1I}}{2}+\frac{\sqrt{3}}{2}O_{V2I}+\frac{\hat{g}_{1V}(M_{\pi^{+}}^{2}-M_{K^{+}}^{2})}{4M_{V}^{2}}O_{V3I}. (68)

Ignoring the isospin breaking effect, we note that T[ρ0π+π]T[\rho^{0}\to\pi^{+}\pi^{-}] is the same as the amplitude of ρ+π+π0\rho^{+}\to\pi^{+}\pi^{0} which was studied in the previous subsection. In Eqs. (64-66), the second terms denote the kinetic mixing effects for VIVJPPV^{I}\to V^{J}\to PP decay process and J(J=1,2,3)\mathcal{M}_{J}\ (J=1,2,3) is the eigenvalue for the vector meson mass matrix, which differs from the physical masses, mρ,mωm_{\rho},m_{\omega} or mϕm_{\phi}. However, within the accuracy, one can set J=mJ\mathcal{M}_{J}=m_{J} since their difference arises from only the wavefunction renormalization. One can obtain the partial widths for VPPV\to PP decay,

Γ[VIPP]=mI|gVPPeff|248π(14MP2mI2)32,\displaystyle\Gamma[V^{I}\to PP]=\frac{m_{I}|g_{VPP}^{\mathrm{eff}}|^{2}}{48\pi}\left(1-\frac{4M_{P}^{2}}{m_{I}^{2}}\right)^{\frac{3}{2}}, (69)

where gVPPeffg_{VPP}^{\mathrm{eff}} is the coupling associated with Eqs. (64-66).

II.3 Mixing between photon and vector meson

In this subsection, the mixing between photon and vector mesons is analyzed. The contributing diagrams for VAV-A mixing in 1-loop order are exhibited in Fig. II.2.

Refer to caption
Figure II.2: Feynman diagrams for the two-point function of the mixing of photon and vector meson. Wavy lines imply vector meson while bold wavy lines indicate the vector mesons.

The VγV-\gamma conversion vertex is denoted as,

χ|Vγ\displaystyle\mathcal{L}_{\chi}|_{V\gamma} =\displaystyle= Vμ0IΠμνV0IAAν=VμIΠμνVIAAν,\displaystyle V^{0I}_{\mu}\Pi^{\mu\nu V^{0I}A}A_{\nu}=V^{I}_{\mu}\Pi^{\mu\nu V^{I}A}A_{\nu}, (70)
ΠμνVIA\displaystyle\Pi_{\mu\nu}^{V^{I}A} =\displaystyle= OVTΠμνV0IA.\displaystyle O_{V}^{T}\Pi_{\mu\nu}^{V^{0I}A}. (71)

In the basis of SU(3)SU(3), the two-point functions in the l.h.s. of Eq. (70) are given as,

ΠμνV0IA\displaystyle\Pi_{\mu\nu}^{V^{0I}A} =\displaystyle= egμνΠV0IA+eQμνΠTV0IA,\displaystyle eg_{\mu\nu}\Pi^{V^{0I}A}+eQ_{\mu\nu}\Pi_{T}^{V^{0I}A}, (72)
Πρ0A\displaystyle\Pi^{\rho_{0}A} =\displaystyle= 1g{MV2+4gρππ2(μπ+μK+2)f2\displaystyle\frac{1}{g}\left\{-M_{V}^{2}+4g_{\rho\pi\pi}^{2}\left(\mu_{\pi}+\frac{\mu_{K^{+}}}{2}\right)f^{2}\right. (73)
C1r(Mπ2+ΔK+K03)C2r(2M¯K2+Mπ2)},\displaystyle\left.-C_{1}^{r}\left(M^{2}_{\pi}+\frac{\Delta_{K^{+}K^{0}}}{3}\right)-C_{2}^{r}(2\bar{M}_{K}^{2}+M_{\pi}^{2})\right\},
ΠTρ0A\displaystyle\Pi_{T}^{\rho_{0}A} =\displaystyle= gρππ(1MV22g2f2)(4Mπr+2MK+r)2C4r,\displaystyle g_{\rho\pi\pi}\left(1-\frac{M_{V}^{2}}{2g^{2}f^{2}}\right)(4M_{\pi}^{r}+2M_{K^{+}}^{r})-2C_{4}^{r}, (74)
Πω8A\displaystyle\Pi^{\omega_{8}A} =\displaystyle= 13g{MV2+6gρππ2μK+f2\displaystyle\frac{1}{\sqrt{3}g}\left\{-M_{V}^{2}+6g_{\rho\pi\pi}^{2}\mu_{K^{+}}f^{2}\right. (75)
C1r(4M¯K2Mπ23+ΔK+K0)C2r(2M¯K2+Mπ2)},\displaystyle\left.-C_{1}^{r}\left(\frac{4\bar{M}_{K}^{2}-M_{\pi}^{2}}{3}+\Delta_{K^{+}K^{0}}\right)-C_{2}^{r}(2\bar{M}_{K}^{2}+M_{\pi}^{2})\right\},
ΠTω8A\displaystyle\Pi_{T}^{\omega_{8}A} =\displaystyle= 23gρππ(1MV22g2f2)MK+r23C4r,\displaystyle 2\sqrt{3}g_{\rho\pi\pi}\left(1-\frac{M_{V}^{2}}{2g^{2}f^{2}}\right)M_{K^{+}}^{r}-\frac{2}{\sqrt{3}}C_{4}^{r}, (76)
Πϕ0A\displaystyle\Pi^{\phi_{0}A} =\displaystyle= g^1Vg(ΔKπ6ΔK+K04),\displaystyle\frac{\hat{g}_{1V}}{g}\left(\frac{\Delta_{K\pi}}{6}-\frac{\Delta_{K^{+}K^{0}}}{4}\right), (77)
ΠTϕ0A\displaystyle\Pi_{T}^{\phi_{0}A} =\displaystyle= 0.\displaystyle 0. (78)

One can find that gμνg^{\mu\nu} part in Eq. (72) is related to the matrix elements of the 1-loop corrected neutral vector meson masses in Eqs. (28, 29, 32),

ΠV0A=1g(Mρ2+13MVρ82MVρ82+13MV882MV0ρ2+13MV082).\displaystyle\Pi^{V^{0}A}=-\frac{1}{g}\begin{pmatrix}M_{\rho}^{2}+\displaystyle\frac{1}{\sqrt{3}}M^{2}_{V\rho 8}\\ M_{V\rho 8}^{2}+\displaystyle\frac{1}{\sqrt{3}}M_{V88}^{2}\\ M_{V0\rho}^{2}+\displaystyle\frac{1}{\sqrt{3}}M_{V08}^{2}\end{pmatrix}. (79)

One can write the two-point functions in Eq. (71),

ΠVA=OVTΠV0A=1g(120002200032)(OV11+13OV21OV12+13OV22OV13+13OV23).\displaystyle\Pi^{VA}=O_{V}^{T}\Pi^{V^{0}A}=-\frac{1}{g}\begin{pmatrix}\mathcal{M}_{1}^{2}&0&0\\ 0&\mathcal{M}_{2}^{2}&0\\ 0&0&\mathcal{M}_{3}^{2}\end{pmatrix}\begin{pmatrix}O_{V11}+\displaystyle\frac{1}{\sqrt{3}}O_{V21}\\ O_{V12}+\displaystyle\frac{1}{\sqrt{3}}O_{V22}\\ O_{V13}+\displaystyle\frac{1}{\sqrt{3}}O_{V23}\end{pmatrix}. (80)

The derivation of Eq. (80) is shown in App. D. Thus, the mixing vertices for VγV-\gamma in Eq. (70) are expressed as,

χ|Vγ\displaystyle\mathcal{L}_{\chi}|_{V\gamma} =\displaystyle= eI2gηIVμIAμ,\displaystyle-\frac{e\mathcal{M}_{I}^{2}}{g}\eta_{I}V^{I}_{\mu}A^{\mu},\quad (81)
ηI\displaystyle\eta_{I} =\displaystyle= OV1I+13OV2I.\displaystyle O_{V1I}+\frac{1}{\sqrt{3}}O_{V2I}. (82)

II.4 Pseudoscalar

In this subsection, the structures of a mixing matrix and decay constants for pseudoscalars are given. We take account of 1-loop correction to both mixing and the decay constants.

The basis for an SU(3) eigenstate is written in terms of mass eigenstates as,

(π3η8η0)=ZO(π0ηη),\displaystyle\begin{pmatrix}\pi_{3}\\ \eta_{8}\\ \eta_{0}\end{pmatrix}=\sqrt{Z}O\begin{pmatrix}\pi^{0}\\ \eta\\ \eta^{\prime}\end{pmatrix}, (83)

where OO denotes an orthogonal matrix which diagonalizes a mass matrix of pseudoscalars. Z\sqrt{Z} in Eq. (83) is a matrix which canonically rescales 1-loop corrected kinetic terms for pseudoscalars. The result of 1-loop correction to the mass terms for charged particles is summarized in App. E, while one to the mass matrix for neutral particles is shown in App. F. The 1-loop expression of Z\sqrt{Z} is recorded in Eq. (267). We denote the mixing matrix as,

O\displaystyle O =\displaystyle= (cosθ2sinθ20sinθ2cosθ20001)(1000cosθ1sinθ10sinθ1cosθ1)(cosθ3sinθ30sinθ3cosθ30001)\displaystyle\begin{pmatrix}\cos\theta_{2}&\sin\theta_{2}&0\\ -\sin\theta_{2}&\cos\theta_{2}&0\\ 0&0&1\end{pmatrix}\begin{pmatrix}1&0&0\\ 0&\cos\theta_{1}&\sin\theta_{1}\\ 0&-\sin\theta_{1}&\cos\theta_{1}\end{pmatrix}\begin{pmatrix}\cos\theta_{3}&\sin\theta_{3}&0\\ -\sin\theta_{3}&\cos\theta_{3}&0\\ 0&0&1\end{pmatrix} (84)
=\displaystyle= (cosθ2cosθ3cosθ1sinθ2sinθ3cosθ2sinθ3+cosθ1sinθ2cosθ3sinθ1sinθ2sinθ2cosθ3cosθ1cosθ2sinθ3sinθ2sinθ3+cosθ1cosθ2cosθ3sinθ1cosθ2sinθ1sinθ3sinθ1cosθ3cosθ1),\displaystyle\begin{pmatrix}\cos\theta_{2}\cos\theta_{3}-\cos\theta_{1}\sin\theta_{2}\sin\theta_{3}&\cos\theta_{2}\sin\theta_{3}+\cos\theta_{1}\sin\theta_{2}\cos\theta_{3}&\sin\theta_{1}\sin\theta_{2}\\ -\sin\theta_{2}\cos\theta_{3}-\cos\theta_{1}\cos\theta_{2}\sin\theta_{3}&-\sin\theta_{2}\sin\theta_{3}+\cos\theta_{1}\cos\theta_{2}\cos\theta_{3}&\sin\theta_{1}\cos\theta_{2}\\ \sin\theta_{1}\sin\theta_{3}&-\sin\theta_{1}\cos\theta_{3}&\cos\theta_{1}\end{pmatrix},\quad\quad\quad

where ranges of the mixing angles in Eq. (84) are defined as,

πθ10,πθ2π,πθ3π.\displaystyle-\pi\leq\theta_{1}\leq 0,\quad-\pi\leq\theta_{2}\leq\pi,\quad-\pi\leq\theta_{3}\leq\pi. (85)

The mixing angles denoted as θ2\theta_{2} and θ3\theta_{3} are almost 0 or π\pi due to isospin breaking. In Eq. (84), if we take the limit where θ2,30\theta_{2,3}\to 0 or π\pi, one can find that θ1\theta_{1} corresponds to a 2×22\times 2 mixing angle for η8η0\eta_{8}-\eta_{0}. Hence, in order to calculate a mixing angle for ηη\eta-\eta^{\prime} in the 3×33\times 3 mixing matrix, we use the value of θ1\theta_{1} in Eq. (84).

For decay constants of π+\pi^{+} and K+K^{+}, we also consider the 1-loop quantum correction. As stated in App. G, the ratio of a pion decay constant to one for kaon is determined with wave function renormalization of pseudoscalars Kimura:2014wsa ,

fK+fπ+\displaystyle\frac{f_{K^{+}}}{f_{\pi^{+}}} =\displaystyle= Zπ+ZK+1+4MK+2Mπ+2f2L5r+c4(5μπ+3μ882μK+),\displaystyle\sqrt{\frac{Z_{\pi^{+}}}{Z_{K^{+}}}}\sim 1+4\frac{M_{K^{+}}^{2}-M_{\pi^{+}}^{2}}{f^{2}}L_{5}^{r}+\frac{c}{4}\left(5\mu_{\pi^{+}}-3\mu_{88}-2\mu_{K^{+}}\right), (86)

where cc is defined as,

c=1MV2g2f2.\displaystyle c=1-\frac{M_{V}^{2}}{g^{2}f^{2}}. (87)

III Intrinsic parity violation

In this section, we discuss IPV in the model. As well as ChPT, quantum anomaly of chiral symmetry causes an IP violating interaction. The expression of the WZW term is given in Eq. (287). In addition to this operator, IP violating interaction terms, which come from the resonance field of vector mesons, are introduced. Subsequently, we write the formula of widths, TFFs, differential widths for IP violating decays.

III.1 Intrinsic parity violating operators with vector mesons

Since SU(3) singlet fields are contained in the model, IP violating operators with singlets should be taken into account. We consider such singlet-induced operators within invariance of SU(3) symmetry. Imposing the charge conjugation (C) symmetry, one can obtain the operators in the model,

1\displaystyle\mathcal{L}_{1} =\displaystyle= iϵμνρσTr[αLμαLναLραRσ(RL)],\displaystyle i\epsilon^{\mu\nu\rho\sigma}\mathrm{Tr}[\alpha_{L\mu}\alpha_{L\nu}\alpha_{L\rho}\alpha_{R\sigma}-(R\leftrightarrow L)], (88)
2\displaystyle\mathcal{L}_{2} =\displaystyle= iϵμνρσTr[αLμαRναLραRσ],\displaystyle i\epsilon^{\mu\nu\rho\sigma}\mathrm{Tr}[\alpha_{L\mu}\alpha_{R\nu}\alpha_{L\rho}\alpha_{R\sigma}], (89)
3\displaystyle\mathcal{L}_{3} =\displaystyle= ϵμνρσTr[gFVμν{αLραRσ(RL)}],\displaystyle\epsilon^{\mu\nu\rho\sigma}\mathrm{Tr}[gF_{V\mu\nu}\{\alpha_{L\rho}\alpha_{R\sigma}-(R\leftrightarrow L)\}], (90)
4\displaystyle\mathcal{L}_{4} =\displaystyle= 12ϵμνρσTr[(F^Lμν+F^Rμν){αLρ,αRσ}],\displaystyle\frac{1}{2}\epsilon^{\mu\nu\rho\sigma}\mathrm{Tr}[(\hat{F}_{L\mu\nu}+\hat{F}_{R\mu\nu})\{\alpha_{L\rho},\alpha_{R\sigma}\}], (91)
5\displaystyle\mathcal{L}_{5} =\displaystyle= ϵμνρσFVμν0Tr[αLραRσ(RL)],\displaystyle\epsilon^{\mu\nu\rho\sigma}F^{0}_{V\mu\nu}\mathrm{Tr}[\alpha_{L\rho}\alpha_{R\sigma}-(R\leftrightarrow L)], (92)
6\displaystyle\mathcal{L}_{6} =\displaystyle= η0fϵμνρσTrFVμνFVρσ,\displaystyle\frac{\eta_{0}}{f}\epsilon^{\mu\nu\rho\sigma}\mathrm{Tr}F_{V\mu\nu}F_{V\rho\sigma}, (93)
7\displaystyle\mathcal{L}_{7} =\displaystyle= η0fϵμνρσFVμν0FVρσ0,\displaystyle\frac{\eta_{0}}{f}\epsilon^{\mu\nu\rho\sigma}F^{0}_{V\mu\nu}F^{0}_{V\rho\sigma}, (94)
8\displaystyle\mathcal{L}_{8} =\displaystyle= ϵμνρσTr(F^Lμν+F^Rμν)ϕρ0αLσαRσ2,\displaystyle\epsilon^{\mu\nu\rho\sigma}\mathrm{Tr}(\hat{F}_{L\mu\nu}+\hat{F}_{R\mu\nu})\phi^{0}_{\rho}\frac{\alpha_{L\sigma}-\alpha_{R\sigma}}{2}, (95)
9\displaystyle\mathcal{L}_{9} =\displaystyle= η0fϵμνρσTr(F^Lμν+F^Rμν)FVρσ,\displaystyle\frac{\eta_{0}}{f}\epsilon^{\mu\nu\rho\sigma}\mathrm{Tr}(\hat{F}_{L\mu\nu}+\hat{F}_{R\mu\nu})F_{V\rho\sigma}, (96)
10\displaystyle\mathcal{L}_{10} =\displaystyle= η0fϵμνρσTr(F^Lμν+F^Rμν)(F^Lρσ+F^Rρσ),\displaystyle\frac{\eta_{0}}{f}\epsilon^{\mu\nu\rho\sigma}\mathrm{Tr}(\hat{F}_{L\mu\nu}+\hat{F}_{R\mu\nu})(\hat{F}_{L\rho\sigma}+\hat{F}_{R\rho\sigma}), (97)

where ϵ0123=ϵ0123=+1\epsilon^{0123}=-\epsilon_{0123}=+1 and,

F^Lμν\displaystyle\hat{F}_{L\mu\nu} =\displaystyle= ξFLμνξ,\displaystyle\xi^{\dagger}F_{L\mu\nu}\xi, (98)
F^Rμν\displaystyle\hat{F}_{R\mu\nu} =\displaystyle= ξFRμνξ,\displaystyle\xi F_{R\mu\nu}\xi^{\dagger}, (99)
FL(R)μν\displaystyle F_{L(R)\mu\nu} =\displaystyle= μAL(R)ννAL(R)μ+i[AL(R)μ,AL(R)ν],\displaystyle\partial_{\mu}A_{L(R)\nu}-\partial_{\nu}A_{L(R)\mu}+i[A_{L(R)\mu},A_{L(R)\nu}], (100)
αLμ\displaystyle\alpha_{L\mu} =\displaystyle= αμ+αμgVμ,\displaystyle\alpha_{\mu}+\alpha_{\perp\mu}-gV_{\mu}, (101)
αRμ\displaystyle\alpha_{R\mu} =\displaystyle= αμαμgVμ,\displaystyle\alpha_{\mu}-\alpha_{\perp\mu}-gV_{\mu}, (102)
αμ\displaystyle\alpha_{\perp\mu} =\displaystyle= 12i(ξDLμξξDRμξ).\displaystyle\frac{1}{2i}(\xi^{\dagger}D_{L\mu}\xi-\xi D_{R\mu}\xi^{\dagger}). (103)

In Eqs. (88-90), 13\mathcal{L}_{1-3} are introduced in Refs. Fujiwara:1984mp ; Bando:1987br while 4\mathcal{L}_{4} is considered in Ref. Hashimoto:1996ny . We introduced 510\mathcal{L}_{5-10}, which are written with singlets of η0\eta_{0} or ϕ0\phi_{0}. In Eqs. (88-97), we required that the operators should be Hermite.

In contrast to our work, the singlet fields are contained as a component of chiral nonet matrix in Ref. Hashimoto:1996ny and i(i=510)\mathcal{L}_{i}(i=5-10) is not included in that work. Chiral SU(3) breaking effect in IP violating interactions is introduced with spurion field method in Ref. Hashimoto:1996ny , while the operators in Eqs. (88-97) are invariant under SU(3) transformation. The number of the derivatives and vector fields included in the IP violating terms i(i=110)\mathcal{L}_{i}(i=1-10) are four by applying the same power counting rule as that of IP conserving part. The interaction Lagrangian 67\mathcal{L}_{6-7} and 910\mathcal{L}_{9-10} include a SU(3) singlet pseudo-scalar meson η0\eta_{0}.

The IP violating interactions in our model are denoted as,

IPV=WZ+i=110ciIPi.\displaystyle\mathcal{L}_{\mathrm{IPV}}=\mathcal{L}_{\mathrm{WZ}}+\displaystyle\sum_{i=1}^{10}c_{i}^{\mathrm{IP}}\mathcal{L}_{i}. (104)

In Eq. (104), the coefficients of the operators, ciIP(i=110)c_{i}^{\mathrm{IP}}\ (i=1-10), are free parameters. As carried out in Sec. IV, these parameters are estimated via experimental data which are sensitive to IPV. In the following subsections, with the interaction in Eq. (104), the formulae of IP violating decay modes are explicitly written.

III.2 Intrinsic parity violating decays

III.2.1 VPγV\to P\gamma and PVγP\to V\gamma

In this subsection, IP violating decays of VPγV\rightarrow P\gamma and PVγP\to V\gamma are investigated. Diagrams contributing to VPγV\to P\gamma and PVγP\to V\gamma are listed in Fig. III.1.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure III.1: Diagrams contributing to the decay width for: (a)-(b) VIPiγV^{I}\to P^{i}\gamma and (c)-(d) ηVγ\eta^{\prime}\rightarrow V\gamma.

Interaction vertices of vector meson are shown as,

IPV|VPγ\displaystyle\mathcal{L}_{\mathrm{IPV}}|_{VP\gamma} =\displaystyle= efπχiIϵμνρσμVνIρPiAσ,\displaystyle-\displaystyle\frac{e}{f_{\pi}}\chi_{iI}\epsilon^{\mu\nu\rho\sigma}\partial_{\mu}V^{I}_{\nu}\partial_{\rho}P^{i}A_{\sigma}, (105)
IPV|VVP\displaystyle\mathcal{L}_{\mathrm{IPV}}|_{VVP} =\displaystyle= gfπθiIJϵμνρσμVνIρPiVσJ,\displaystyle\displaystyle\frac{g}{f_{\pi}}\theta_{iIJ}\epsilon^{\mu\nu\rho\sigma}\partial_{\mu}V^{I}_{\nu}\partial_{\rho}P^{i}V^{J}_{\sigma}, (106)
IPV|V+Pγ+h.c.\displaystyle\mathcal{L}_{\mathrm{IPV}}|_{V^{+}P^{-}\gamma\>+\;\mathrm{h}.\mathrm{c}.} =\displaystyle= 2eg3fπc34ϵμνρσ(μρν+ρπ+μρνρπ+)Aσ\displaystyle\frac{2eg}{3f_{\pi}}c_{34}^{-}\epsilon^{\mu\nu\rho\sigma}(\partial_{\mu}\rho^{+}_{\nu}\partial_{\rho}\pi^{-}+\partial_{\mu}\rho^{-}_{\nu}\partial_{\rho}\pi^{+})A_{\sigma} (107)
+2eg3fKc34ϵμνρσ(μKν+ρK+μKνρK+)Aσ\displaystyle+\frac{2eg}{3f_{K}}c_{34}^{-}\epsilon^{\mu\nu\rho\sigma}(\partial_{\mu}K^{*+}_{\nu}\partial_{\rho}K^{-}+\partial_{\mu}K^{*-}_{\nu}\partial_{\rho}K^{+})A_{\sigma}
4eg3fKc34ϵμνρσ(μKνρK0¯+μK¯νρK0)Aσ,\displaystyle-\frac{4eg}{3f_{K}}c_{34}^{-}\epsilon^{\mu\nu\rho\sigma}(\partial_{\mu}K^{*}_{\nu}\partial_{\rho}\bar{K^{0}}+\partial_{\mu}\bar{K^{*}}_{\nu}\partial_{\rho}K^{0})A_{\sigma},
IPV|VP+V0+h.c.\displaystyle\mathcal{L}_{\mathrm{IPV}}|_{V^{-}P^{+}V^{0}\>+\;\mathrm{h}.\mathrm{c}.} =\displaystyle= gfπγIϵμνρσ(μρν+ρπ+μρνρπ+)VσI\displaystyle\frac{g}{f_{\pi}}\gamma_{I}\epsilon^{\mu\nu\rho\sigma}(\partial_{\mu}\rho^{+}_{\nu}\partial_{\rho}\pi^{-}+\partial_{\mu}\rho^{-}_{\nu}\partial_{\rho}\pi^{+})V_{\sigma}^{I} (108)
+gfKLIϵμνρσ(μKν+ρK+μKνρK+)VσI\displaystyle+\frac{g}{f_{K}}L_{I}\epsilon^{\mu\nu\rho\sigma}(\partial_{\mu}K^{*+}_{\nu}\partial_{\rho}K^{-}+\partial_{\mu}K^{*-}_{\nu}\partial_{\rho}K^{+})V_{\sigma}^{I}
gfKφIϵμνρσ(μKνρK0¯+μK¯νρK0)VσI,\displaystyle-\frac{g}{f_{K}}\varphi_{I}\epsilon^{\mu\nu\rho\sigma}(\partial_{\mu}K^{*}_{\nu}\partial_{\rho}\bar{K^{0}}+\partial_{\mu}\bar{K^{*}}_{\nu}\partial_{\rho}K^{0})V^{I}_{\sigma},

where i,Ii,I and JJ run from 11 to 33 and c34=c3IPc4IPc_{34}^{-}=c_{3}^{\mathrm{IP}}-c_{4}^{\mathrm{IP}}. In Eqs. (105-106, 108), fields of mass eigenstate are denoted for vector mesons as (V1,V2,V3)=(ρ,ω,ϕ)(V^{1},V^{2},V^{3})=(\rho,\omega,\phi) and for pseudoscalars as (P1,P2,P3)=(π0,η,η)(P^{1},P^{2},P^{3})=(\pi^{0},\eta,\eta^{\prime}), respectively. The coefficients, χiI\chi_{iI} in Eq. (105), describes the vertex of each component, e.g., χ11\chi_{11} for ρπ0γ\rho\pi^{0}\gamma vertex and χ12\chi_{12} for ωπ0γ\omega\pi^{0}\gamma vertex. Note that the vertex coefficient of ρωπ0\rho\omega\pi^{0} is proportional to θ121+θ112\theta_{121}+\theta_{112} in Eq. (106) since an operator with I=1,J=2I=1,\>J=2 and another operator with I=2,J=1I=2,\>J=1 give the same amplitude. The coefficients of the vertices in Eqs. (105-108) are given as,

VIPiγ:χiI\displaystyle V^{I}P^{i}\gamma:\ \chi_{iI} =\displaystyle= 2g3c34[(O1i+3Z2πZ1πO2i)OV1I+(3O1iZ2πZ1πO2i)OV2I]\displaystyle-\frac{2g}{3}c_{34}^{-}\left[\left(O_{1i}+\sqrt{3}\sqrt{\frac{Z_{2}^{\pi}}{Z_{1}^{\pi}}}O_{2i}\right)O_{V1I}+\left(\sqrt{3}O_{1i}-\sqrt{\frac{Z_{2}^{\pi}}{Z_{1}^{\pi}}}O_{2i}\right)O_{V2I}\right] (109)
4c5IP(O1i+13Z2πZ1πO2i)OV3I+2c8IP(O1i+13Z2πZ1πO2i)OV3I\displaystyle-4c_{5}^{\mathrm{IP}}\left(O_{1i}+\frac{1}{\sqrt{3}}\sqrt{\frac{Z_{2}^{\pi}}{Z_{1}^{\pi}}}O_{2i}\right)O_{V3I}+2c_{8}^{\mathrm{IP}}\left(O_{1i}+\frac{1}{\sqrt{3}}\sqrt{\frac{Z_{2}^{\pi}}{Z_{1}^{\pi}}}O_{2i}\right)O_{V3I}
+2c9IP1Z1πO3i(OV1I+13OV2I),\displaystyle\ +2c_{9}^{\mathrm{IP}}\sqrt{\frac{1}{Z_{1}^{\pi}}}O_{3i}\left(O_{V1I}+\frac{1}{\sqrt{3}}O_{V2I}\right),
VIVJPi:θiIJ\displaystyle V^{I}V^{J}P^{i}:\ \theta_{iIJ} =\displaystyle= 2gc3IP3[(2O1iOV1IZ2πZ1πO2iOV2I)OV2J+Z2πZ1πO2iOV1IOV1J]\displaystyle-\frac{2gc_{3}^{\mathrm{IP}}}{\sqrt{3}}\left[\left(2O_{1i}O_{V1I}-\sqrt{\frac{Z_{2}^{\pi}}{Z_{1}^{\pi}}}O_{2i}O_{V2I}\right)O_{V2J}+\sqrt{\frac{Z_{2}^{\pi}}{Z_{1}^{\pi}}}O_{2i}O_{V1I}O_{V1J}\right] (110)
4c5IP(O1iOV3IOV1J+Z2πZ1πO2iOV3IOV2J)\displaystyle-4c_{5}^{\mathrm{IP}}\left(O_{1i}O_{V3I}O_{V1J}+\sqrt{\frac{Z_{2}^{\pi}}{Z_{1}^{\pi}}}O_{2i}O_{V3I}O_{V2J}\right)
2c6IPg1Z1πO3i(OV1IOV1J+OV2IOV2J)4c7IPg1Z1πO3iOV3IOV3J,\displaystyle-\frac{2c_{6}^{\mathrm{IP}}}{g}\sqrt{\frac{1}{Z_{1}^{\pi}}}O_{3i}(O_{V1I}O_{V1J}+O_{V2I}O_{V2J})-\frac{4c_{7}^{\mathrm{IP}}}{g}\sqrt{\frac{1}{Z_{1}^{\pi}}}O_{3i}O_{V3I}O_{V3J},\
ρ+πVI+h.c.:γI\displaystyle\rho^{+}\pi^{-}V^{I}+\mathrm{h}.\mathrm{c}.:\ \gamma_{I} =\displaystyle= 4gc3IP3OV2I4c5IPOV3I,\displaystyle-\frac{4gc_{3}^{\mathrm{IP}}}{\sqrt{3}}O_{V2I}-4c_{5}^{\mathrm{IP}}O_{V3I}, (111)
K+KVI+h.c.:LI\displaystyle K^{*+}K^{-}V^{I}+\mathrm{h}.\mathrm{c}.:\ L_{I} =\displaystyle= 2gc3IP(OV1I13OV2I)4c5IPOV3I,\displaystyle-2gc_{3}^{\mathrm{IP}}\left(O_{V1I}-\frac{1}{\sqrt{3}}O_{V2I}\right)-4c_{5}^{\mathrm{IP}}O_{V3I}, (112)
K0K0¯VI+h.c.:φI\displaystyle K^{*0}\bar{K^{0}}V^{I}+\mathrm{h}.\mathrm{c}.:\ \varphi_{I} =\displaystyle= 2gc3IP(OV1I+13OV2I)+4c5IPOV3I.\displaystyle-2gc_{3}^{\mathrm{IP}}\left(O_{V1I}+\frac{1}{\sqrt{3}}O_{V2I}\right)+4c_{5}^{\mathrm{IP}}O_{V3I}. (113)

Vector mesons can decay into PγP\gamma directly with the operator in Eq. (105). VPγVP\gamma vertex is absent in Ref. Hashimoto:1996ny since the relation c3IP=c4IPc_{3}^{\mathrm{IP}}=c_{4}^{\mathrm{IP}} is adopted. Meanwhile, IP violating VVPVVP operator in Eq. (106) also causes VPγV\rightarrow P\gamma with the VγV-\gamma conversion vertex in Eq. (81). The notation of propagators for neutral vector meson is given as,

iDμνJ(Q)=igμνDJ(Q2)+iQμQνDLJ(Q2),(J=1,2,3),\displaystyle iD^{J}_{\mu\nu}(Q)=ig_{\mu\nu}D^{J}(Q^{2})+iQ_{\mu}Q_{\nu}D_{L}^{J}(Q^{2}),\quad(J=1,2,3), (114)

where J=1,2,3J=1,2,3 is assigned with the propagator of ρ,ω\rho,\omega and ϕ\phi, respectively. In the calculation of the VγV-\gamma conversion decay VPVPγV\rightarrow PV^{*}\to P\gamma, the term proportional to DLJ(0)D_{L}^{J}(0) vanishes since the momentum product QμQνQ_{\mu}Q_{\nu} is eliminated when multiplied with antisymmetric tensor. Consequently, the conversion process VPVPγV\rightarrow PV^{*}\to P\gamma is proportional to the contribution from the metric tensor part of intermediate vector mesons. With Eq. (80), one can find that the following relation is satisfied,

DJ(0)(eJ2gηJ)=egηJ.\displaystyle D^{J}(0)\cdot\left(-\frac{e\mathcal{M}_{J}^{2}}{g}\eta_{J}\right)=-\frac{e}{g}\eta_{J}. (115)

Although vector meson propagator is shown apparently in Fig. III.1(b), the dependence on the mass cancels out in Eq. (115).

Decay amplitudes are obtained from the operators in Eqs. (105-108) as,

VIPiγ\displaystyle\mathcal{M}_{V^{I}\rightarrow P^{i}\gamma} =\displaystyle= XiIϵμνρσpμγpνPϵρVϵσγ\displaystyle X_{iI}\epsilon^{\mu\nu\rho\sigma}p_{\mu}^{\gamma}p_{\nu}^{P}\epsilon^{V}_{\rho}\epsilon_{\sigma}^{\gamma*} (116)
ρ+π+γ\displaystyle\mathcal{M}_{\rho^{+}\rightarrow\pi^{+}\gamma} =\displaystyle= Xρ+ϵμνρσpμγpνπ+ϵρρ+ϵσγ,\displaystyle X_{\rho^{+}}\epsilon^{\mu\nu\rho\sigma}p^{\gamma}_{\mu}p^{\pi^{+}}_{\nu}\epsilon^{\rho^{+}}_{\rho}\epsilon^{\gamma*}_{\sigma},\quad (117)
K+K+γ\displaystyle\mathcal{M}_{K^{*+}\rightarrow K^{+}\gamma} =\displaystyle= XK+ϵμνρσpμγpνK+ϵρK+ϵσγ\displaystyle X_{K^{*+}}\epsilon^{\mu\nu\rho\sigma}p^{\gamma}_{\mu}p^{K^{+}}_{\nu}\epsilon^{K^{*+}}_{\rho}\epsilon^{\gamma*}_{\sigma} (118)
K0K0γ\displaystyle\mathcal{M}_{K^{*0}\rightarrow K^{0}\gamma} =\displaystyle= XK0ϵμνρσpμγpνK0ϵρKϵσγ,\displaystyle X_{K^{*0}}\epsilon^{\mu\nu\rho\sigma}p_{\mu}^{\gamma}p_{\nu}^{K^{0}}\epsilon_{\rho}^{K^{*}}\epsilon_{\sigma}^{\gamma*}, (119)
ηVIγ\displaystyle\mathcal{M}_{\eta^{\prime}\rightarrow V^{I}\gamma} =\displaystyle= X3IϵμνρσpμVpνγϵρVϵσγ,(I=1,2)\displaystyle X_{3I}\epsilon^{\mu\nu\rho\sigma}p^{V}_{\mu}p^{\gamma}_{\nu}\epsilon^{V*}_{\rho}\epsilon^{\gamma*}_{\sigma},\quad(I=1,2) (120)
XiI\displaystyle X_{iI} =\displaystyle= eZIfπχ¯iI,\displaystyle\displaystyle\frac{e\sqrt{Z_{I}}}{f_{\pi}}\bar{\chi}_{iI},\quad (121)
χ¯iI\displaystyle\bar{\chi}_{iI} =\displaystyle= χiIJ=13θ¯iIJηJ,(θ¯iIJ=θiIJ+θiJI)\displaystyle\chi_{iI}-\displaystyle\sum_{J=1}^{3}\bar{\theta}_{iIJ}\eta_{J},\quad(\bar{\theta}_{iIJ}=\theta_{iIJ}+\theta_{iJI})
=\displaystyle= 2gc34+3[(Z2πZ1πO2i+13O1i)OV1I+(O1i13Z2πZ1πO2i)OV2I]\displaystyle\frac{2gc_{34}^{+}}{\sqrt{3}}\left[\left(\sqrt{\frac{Z^{\pi}_{2}}{Z^{\pi}_{1}}}O_{2i}+\frac{1}{\sqrt{3}}O_{1i}\right)O_{V1I}+\left(O_{1i}-\frac{1}{\sqrt{3}}\sqrt{\frac{Z^{\pi}_{2}}{Z^{\pi}_{1}}}O_{2i}\right)O_{V2I}\right]
+\displaystyle+ 2c69g1Z1πO3i(OV1I+13OV2I)+2c8IP(O1i+13Z2πZ1πO2i)OV3I,\displaystyle\frac{2c_{69}}{g}\sqrt{\frac{1}{Z^{\pi}_{1}}}O_{3i}(O_{V1I}+\frac{1}{\sqrt{3}}O_{V2I})+2c_{8}^{\mathrm{IP}}\left(O_{1i}+\frac{1}{\sqrt{3}}\sqrt{\frac{Z^{\pi}_{2}}{Z^{\pi}_{1}}}O_{2i}\right)O_{V3I},\; (123)
Xρ+\displaystyle X_{\rho^{+}} =\displaystyle= eZρfπ(2g3c34J=13γJηJ)=2egZρ3fπc34+,\displaystyle\displaystyle\frac{e\sqrt{Z_{\rho}}}{f_{\pi}}\left(-\frac{2g}{3}c_{34}^{-}-\displaystyle\sum_{J=1}^{3}\gamma_{J}\eta_{J}\right)=\displaystyle\frac{2eg\sqrt{Z_{\rho}}}{3f_{\pi}}c_{34}^{+}, (124)
XK+\displaystyle X_{K^{*+}} =\displaystyle= eZKfK(2g3c34J=13LJηJ)=2egZK3fKc34+,\displaystyle\displaystyle\frac{e\sqrt{Z_{K^{*}}}}{f_{K}}\left(-\frac{2g}{3}c_{34}^{-}-\displaystyle\sum_{J=1}^{3}L_{J}\eta_{J}\right)=\displaystyle\frac{2eg\sqrt{Z_{K^{\ast}}}}{3f_{K}}c_{34}^{+},\quad (125)
XK0\displaystyle X_{K^{*0}} =\displaystyle= eZKfK(4g3c34+J=13φJηJ)=4egZK3fKc34+,\displaystyle\displaystyle\frac{e\sqrt{Z_{K^{*}}}}{f_{K}}\left(\frac{4g}{3}c_{34}^{-}+\displaystyle\sum_{J=1}^{3}\varphi_{J}\eta_{J}\right)=-\frac{4eg\sqrt{Z_{K^{\ast}}}}{3f_{K}}c_{34}^{+}, (126)

where c34+=c3IP+c4IPc_{34}^{+}=c_{3}^{\mathrm{IP}}+c_{4}^{\mathrm{IP}} and c69=2c6IP+gc9IPc_{69}=2c_{6}^{\mathrm{IP}}+gc_{9}^{\mathrm{IP}}. The coefficient of neutral meson decay amplitude denoted as XiIX_{iI} in Eq. (121) includes the factor (Z1,Z2,Z3)=(Zρ,Zω,Zϕ)(\sqrt{Z_{1}},\sqrt{Z_{2}},\sqrt{Z_{3}})=(\sqrt{Z_{\rho}},\sqrt{Z_{\omega}},\sqrt{Z_{\phi}}), which comes from the wave function renormalization of an external vector line in Fig. III.1. In Eqs. (124 ,125), we assume that the wave function renormalization of charged vector meson is equal to one for neutral vector meson, i.e., Zρ+=Zρ\sqrt{Z_{\rho^{+}}}=\sqrt{Z_{\rho}} and ZK=ZK+\sqrt{Z_{K^{*}}}=\sqrt{Z_{K^{*+}}}, which is valid in the isospin limit. One can write the partial decay width of VPγV\rightarrow P\gamma and PVγP\to V\gamma with XX’s in Eqs. (121, 124-126) as,

Γ[VIPiγ]\displaystyle\Gamma[V^{I}\rightarrow P^{i}\gamma] =\displaystyle= 196πXiI2mI3(1MPi2mI2)3,\displaystyle\frac{1}{96\pi}X_{iI}^{2}m_{I}^{3}\left(1-\frac{M_{P^{i}}^{2}}{m_{I}^{2}}\right)^{3}, (127)
Γ[ρ+π+γ]\displaystyle\Gamma[\rho^{+}\rightarrow\pi^{+}\gamma] =\displaystyle= 196πXρ+2mρ+3(1Mπ+2mρ+2)3,\displaystyle\frac{1}{96\pi}X_{\rho^{+}}^{2}m_{\rho^{+}}^{3}\left(1-\frac{M_{\pi^{+}}^{2}}{m_{\rho^{+}}^{2}}\right)^{3}, (128)
Γ[K+K+γ]\displaystyle\Gamma[K^{*+}\rightarrow K^{+}\gamma] =\displaystyle= 196πXK+2mK+3(1MK+2mK+2)3,\displaystyle\frac{1}{96\pi}X_{K^{*+}}^{2}m_{K^{*+}}^{3}\left(1-\frac{M_{K^{+}}^{2}}{m_{K^{*+}}^{2}}\right)^{3}, (129)
Γ[K0K0γ]\displaystyle\Gamma[K^{*0}\rightarrow K^{0}\gamma] =\displaystyle= 196πXK02mK03(1MK02mK02)3,\displaystyle\frac{1}{96\pi}X_{K^{*0}}^{2}m_{K^{*0}}^{3}\left(1-\frac{M_{K^{0}}^{2}}{m_{K^{*0}}^{2}}\right)^{3}, (130)
Γ[ηVIγ]\displaystyle\Gamma[\eta^{\prime}\rightarrow V^{I}\gamma] =\displaystyle= 132πX3I2Mη3(1mI2Mη2)3.(I=1,2)\displaystyle\frac{1}{32\pi}X_{3I}^{2}M_{\eta^{\prime}}^{3}\left(1-\frac{m_{I}^{2}}{M_{\eta^{\prime}}^{2}}\right)^{3}.\quad(I=1,2) (131)

The pseudoscalar decay width in Eq. (131) is analogous to one for VPγV\rightarrow P\gamma given in Eqs. (127-130) and its coefficient is different by a factor 1/31/3 which comes from spin average of vector meson. One can find that Γ[VIPiγ]\Gamma[V^{I}\to P^{i}\gamma] and Γ[ρ+π+γ]\Gamma[\rho^{+}\to\pi^{+}\gamma] in Eqs. (127-128) provide the relation,

|XiIXρ+|=ΓVIPiγΓρ+π+γmI3mρ+3(mρ+2Mπ+2mI2MPi2)3.\displaystyle\left|\frac{X_{iI}}{X_{\rho^{+}}}\right|=\sqrt{\frac{\Gamma_{V^{I}\rightarrow P^{i}\gamma}}{\Gamma_{\rho^{+}\rightarrow\pi^{+}\gamma}}\frac{m_{I}^{3}}{m_{\rho^{+}}^{3}}\left(\displaystyle\frac{m_{\rho^{+}}^{2}-M_{\pi^{+}}^{2}}{m_{I}^{2}-M_{P^{i}}^{2}}\right)^{3}}. (132)

In the above relation, the ratio of the effective coupling for VIPiγV^{I}\to P^{i}\gamma to one for ρ+π+γ\rho^{+}\to\pi^{+}\gamma is written in terms experimental data on r.h.s. Using Eqs. (127-128), we can rewrite l.h.s. in Eq. (132),

|XiIXρ+|\displaystyle\left|\frac{X_{iI}}{X_{\rho^{+}}}\right| =\displaystyle= ZIZρ+|O1i(OV1I+3OV2I)+Z2πZ1πO2i(3OV1IOV2I)\displaystyle\sqrt{\frac{Z_{I}}{Z_{\rho^{+}}}}\left|O_{1i}(O_{V1I}+\sqrt{3}O_{V2I})+\sqrt{\frac{Z^{\pi}_{2}}{Z^{\pi}_{1}}}O_{2i}(\sqrt{3}O_{V1I}-O_{V2I})\right. (133)
+3c69g2c34+1Z1πO3i(3OV1I+OV2I)+3c8IPgc34+(3O1i+Z2πZ1πO2i)OV3I|.\displaystyle+\frac{\sqrt{3}c_{69}}{g^{2}c_{34}^{+}}\sqrt{\frac{1}{Z^{\pi}_{1}}}O_{3i}(\sqrt{3}O_{V1I}+O_{V2I})\left.+\frac{\sqrt{3}c_{8}^{\mathrm{IP}}}{gc_{34}^{+}}\left(\sqrt{3}O_{1i}+\sqrt{\frac{Z^{\pi}_{2}}{Z^{\pi}_{1}}}O_{2i}\right)O_{V3I}\right|.\qquad\qquad

In the above relation, the effective coupling is written in terms of model parameters. We use the relations in Eqs. (132, 133) for the numerical analysis of χ2\chi^{2} fitting.

III.2.2 ϕωπ0\phi\rightarrow\omega\pi^{0}

In this subsection, an IP violating process of ϕωπ0\phi\rightarrow\omega\pi^{0} is analyzed. The contributing operator to ϕωπ0\phi\rightarrow\omega\pi^{0} is given in Eq. (106), and the diagram is shown in Fig. III.2.

Refer to caption
Figure III.2: Diagram contributing to the IP violating decay of ϕωπ0\phi\rightarrow\omega\pi^{0}.

The transition amplitude of ϕωπ0\phi\rightarrow\omega\pi^{0} is written as,

ϕωπ0\displaystyle\mathcal{M}_{\phi\rightarrow\omega\pi^{0}} =\displaystyle= Xϕωπ0ϵμνρσpμωpνπ0ϵρϕϵσω,\displaystyle X_{\phi\rightarrow\omega\pi^{0}}\epsilon^{\mu\nu\rho\sigma}p^{\omega}_{\mu}p^{\pi^{0}}_{\nu}\epsilon^{\phi}_{\rho}\epsilon^{\omega*}_{\sigma}, (134)
Xϕωπ0\displaystyle X_{\phi\rightarrow\omega\pi^{0}} =\displaystyle= gZϕZωfπθ¯123.\displaystyle-\frac{g\sqrt{Z_{\phi}Z_{\omega}}}{f_{\pi}}\bar{\theta}_{123}. (135)

The contribution coming from VγV-\gamma conversion is negligible since it gives rise to 𝒪(α)\mathcal{O}(\alpha) correction. In Eq. (135), the factor of wave function renormalization of external vectors is included. Thus, the partial decay width of ϕωπ0\phi\rightarrow\omega\pi^{0} is,

Γ[ϕωπ0]\displaystyle\Gamma[\phi\rightarrow\omega\pi^{0}] =\displaystyle= 196πXϕωπ02\displaystyle\frac{1}{96\pi}X_{\phi\rightarrow\omega\pi^{0}}^{2} (136)
×(mϕ4+mω4+Mπ042(mϕ2mω2+mω2Mπ02+Mπ02mϕ2)mϕ)3.\displaystyle\times\left(\frac{\sqrt{m_{\phi}^{4}+m_{\omega}^{4}+M_{\pi^{0}}^{4}-2(m_{\phi}^{2}m_{\omega}^{2}+m_{\omega}^{2}M_{\pi^{0}}^{2}+M_{\pi^{0}}^{2}m_{\phi}^{2})}}{m_{\phi}}\right)^{3}.

III.2.3 P2γP\rightarrow 2\gamma

In this subsection, we evaluate partial decay widths of the IP violating process given as Pi2γP^{i}\rightarrow 2\gamma. The IP violating interaction terms yield contribution to PγγP\gamma\gamma vertex as,

IPV|Piγγ\displaystyle\mathcal{L}_{\mathrm{IPV}}|_{P^{i}\gamma\gamma} =\displaystyle= e2fπhiϵμνρσPiμAνρAσ,\displaystyle-\displaystyle\frac{e^{2}}{f_{\pi}}h_{i}\epsilon^{\mu\nu\rho\sigma}P^{i}\partial_{\mu}A_{\nu}\partial_{\rho}A_{\sigma}, (137)
hi\displaystyle h_{i} =\displaystyle= (18π2+4c4IP3)(O1i+13Z2πZ1πO2i)323c10IP1Z1πO3i,\displaystyle\left(\displaystyle\frac{1}{8\pi^{2}}+\displaystyle\frac{4c_{4}^{\mathrm{IP}}}{3}\right)\left(O_{1i}+\displaystyle\frac{1}{\sqrt{3}}\sqrt{\frac{Z_{2}^{\pi}}{Z_{1}^{\pi}}}O_{2i}\right)-\displaystyle\frac{32}{3}c_{10}^{\mathrm{IP}}\sqrt{\frac{1}{Z_{1}^{\pi}}}O_{3i}, (138)

where the first term proportional to 1/8π21/8\pi^{2} in Eq. (138) implies the contribution from the WZW term. Diagrams of the decay of Pi2γP^{i}\rightarrow 2\gamma are given in Fig. III.3.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure III.3: Diagrams contributing to the decay width of Pi2γP^{i}\to 2\gamma.

With the operators in Eqs. (81, 105, 137), the transition amplitude of Pi2γP^{i}\rightarrow 2\gamma is written as,

Pi2γ\displaystyle\mathcal{M}_{P^{i}\rightarrow 2\gamma} =\displaystyle= Riϵμνρσpμγ1pνγ2ϵργ1ϵσγ2,\displaystyle R_{i}\epsilon^{\mu\nu\rho\sigma}p^{\gamma 1}_{\mu}p^{\gamma 2}_{\nu}\epsilon^{\gamma 1*}_{\rho}\epsilon^{\gamma 2*}_{\sigma}, (139)
Ri\displaystyle R_{i} =\displaystyle= e2fπ[2hi1g(2I=13χiIηII,J=13θ¯iIJηIηJ)]\displaystyle-\frac{e^{2}}{f_{\pi}}\left[2h_{i}-\frac{1}{g}\left(2\displaystyle\sum_{I=1}^{3}\chi_{iI}\eta_{I}-\displaystyle\sum_{I,J=1}^{3}\bar{\theta}_{iIJ}\eta_{I}\eta_{J}\right)\right] (140)
=\displaystyle= e2fπ[14π2(O1i+13Z2πZ1πO2i)163c69101Z1πO3i].\displaystyle-\frac{e^{2}}{f_{\pi}}\left[\frac{1}{4\pi^{2}}\left(O_{1i}+\frac{1}{\sqrt{3}}\sqrt{\frac{Z_{2}^{\pi}}{Z_{1}^{\pi}}}O_{2i}\right)-\frac{16}{3}c_{6-9-10}\sqrt{\frac{1}{Z_{1}^{\pi}}}O_{3i}\right].

where c6910=c6IP/g2+c9IP+4c10IPc_{6-9-10}=c_{6}^{\mathrm{IP}}/g^{2}+c_{9}^{\mathrm{IP}}+4c_{10}^{\mathrm{IP}}. The partial decay width of Pi2γP^{i}\rightarrow 2\gamma is given as,

Γ[Pi2γ]=164πRi2MPi3.\displaystyle\Gamma[P^{i}\rightarrow 2\gamma]=\frac{1}{64\pi}R_{i}^{2}M_{P^{i}}^{3}. (141)

III.2.4 Pγl+lP\rightarrow\gamma l^{+}l^{-}

In this subsection, a form factor for IP violating modes Piγl+lP^{i}\rightarrow\gamma l^{+}l^{-} is obtained. The contributing diagrams are displayed in Fig. III.4.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure III.4: Diagrams contributing to the decay width of Piγl+lP^{i}\to\gamma l^{+}l^{-}.

Following the notations used in experiments, the differential decay width is written in terms of the TFF as,

dΓ(Piγl+l)dsdcosθ\displaystyle\frac{\mathrm{d}\Gamma(P^{i}\to\gamma l^{+}l^{-})}{\mathrm{d}s\mathrm{d}\cos\theta} =\displaystyle= α4πΓ(Pi2γ)βls(2βl2sin2θ)(1sMPi2)3|FPi(s)|2,\displaystyle\frac{\alpha}{4\pi}\Gamma(P^{i}\to 2\gamma)\frac{\beta_{l}}{s}(2-\beta^{2}_{l}\sin^{2}\theta)\left(1-\frac{s}{M_{P^{i}}^{2}}\right)^{3}|F_{P^{i}}(s)|^{2},\quad\quad (142)
dΓ(Piγl+l)ds\displaystyle\frac{\mathrm{d}\Gamma(P^{i}\to\gamma l^{+}l^{-})}{\mathrm{d}s} =\displaystyle= 2α3πΓ(Pi2γ)βls(1+2ml2s)(1sMPi2)3|FPi(s)|2,\displaystyle\frac{2\alpha}{3\pi}\Gamma(P^{i}\to 2\gamma)\frac{\beta_{l}}{s}\left(1+\frac{2m_{l}^{2}}{s}\right)\left(1-\frac{s}{M_{P^{i}}^{2}}\right)^{3}|F_{P^{i}}(s)|^{2}, (143)
βl\displaystyle\beta_{l} =\displaystyle= 14ml2/s,\displaystyle\sqrt{1-4m_{l}^{2}/s}, (144)

where ss denotes the squared invariant mass in di-lepton system while θ\theta indicates an angle between PiP^{i} and l+l^{+} in the di-lepton rest frame. The model prediction for the TFF is,

|FPi(s)|2=|1+e2sgfπRiI=13χ¯iIηIδBVIIDI(s)|2.\displaystyle|F_{P^{i}}(s)|^{2}=\left|1+\frac{e^{2}s}{gf_{\pi}R_{i}}\displaystyle\sum_{I=1}^{3}\bar{\chi}_{iI}\eta_{I}\delta B_{VII}D_{I}(s)\right|^{2}. (145)

III.2.5 VPl+lV\rightarrow Pl^{+}l^{-}

In this subsection, a form factor for IP violating electromagnetic decays for neutral vector mesons is analyzed. Contributing diagrams are exhibited in Fig. III.5.

Refer to caption
Refer to caption
Figure III.5: Diagrams contributing to the decay width of VIPił+lV^{I}\to P^{i}\l ^{+}l^{-}.

The differential decay width for VPl+lV\to Pl^{+}l^{-} is written in terms of the TFF in the following form,

d2Γ(VIPil+l)dsdcosθ\displaystyle\frac{\mathrm{d}^{2}\Gamma(V^{I}\to P^{i}l^{+}l^{-})}{\mathrm{d}s\mathrm{d}\cos\theta} =\displaystyle= α8πΓ(VIPiγ)βls(2βl2sin2θ)\displaystyle\frac{\alpha}{8\pi}\Gamma(V^{I}\to P^{i}\gamma)\frac{\beta_{l}}{s}(2-\beta^{2}_{l}\sin^{2}\theta) (146)
×[(1+smI2MPi2)24mI2s(mI2MPi2)2]32|FVIPi(s)|2,\displaystyle\times\left[\left(1+\frac{s}{m_{I}^{2}-M_{P^{i}}^{2}}\right)^{2}-\frac{4m_{I}^{2}s}{(m_{I}^{2}-M_{P^{i}}^{2})^{2}}\right]^{\frac{3}{2}}|F_{V^{I}P^{i}}(s)|^{2},
dΓ(VIPil+l)ds\displaystyle\frac{\mathrm{d}\Gamma(V^{I}\to P^{i}l^{+}l^{-})}{\mathrm{d}s} =\displaystyle= α3πΓ(VIPiγ)βls(1+2ml2s)\displaystyle\frac{\alpha}{3\pi}\Gamma(V^{I}\to P^{i}\gamma)\frac{\beta_{l}}{s}\left(1+\frac{2m_{l}^{2}}{s}\right) (147)
×[(1+smI2MPi2)24mI2s(mI2MPi2)2]32|FVIPi(s)|2,\displaystyle\times\left[\left(1+\frac{s}{m_{I}^{2}-M_{P^{i}}^{2}}\right)^{2}-\frac{4m_{I}^{2}s}{(m_{I}^{2}-M_{P^{i}}^{2})^{2}}\right]^{\frac{3}{2}}|F_{V^{I}P^{i}}(s)|^{2},

where θ\theta is an angle between VIV^{I} and l+l^{+} in the di-lepton rest frame. As the model prediction, the TFF is obtained as,

|FVIPi(s)|2=|1+sχ¯iIJ=13θ¯iIJηJδBVJJDJ(s)|2.\displaystyle|F_{V^{I}P^{i}}(s)|^{2}=\left|1+\frac{s}{\bar{\chi}_{iI}}\displaystyle\sum_{J=1}^{3}\bar{\theta}_{iIJ}\eta_{J}\delta B_{VJJ}D_{J}(s)\right|^{2}. (148)

The TFF in the above equation are normalized as unity in the limit where virtual photon goes on-shell.

III.2.6 VPπ+πV\rightarrow P\pi^{+}\pi^{-}

In this subsection, partial decay widths for VPπ+πV\rightarrow P\pi^{+}\pi^{-} are analyzed. Interaction terms for the process are,

IPV|VIPiπ+π\displaystyle\mathcal{L}_{\mathrm{IPV}}|_{V^{I}P^{i}\pi^{+}\pi^{-}} =\displaystyle= iJiIfπ3ϵμνρσVμIνPiρπ+σπ,\displaystyle i\frac{J_{iI}}{f^{3}_{\pi}}\epsilon^{\mu\nu\rho\sigma}V_{\mu}^{I}\partial_{\nu}P^{i}\partial_{\rho}\pi^{+}\partial_{\sigma}\pi^{-}, (149)
χ|ρPiπ++h.c.\displaystyle\mathcal{L}_{\chi}|_{\rho^{-}P^{i}\pi^{+}+\mathrm{h}.\mathrm{c}.} =\displaystyle= igρππO1i[ρμ(Piμπ+)ρμ+(Piμπ)],\displaystyle ig_{\rho\pi\pi}O_{1i}\left[\rho^{-}_{\mu}\left(P^{i}\overleftrightarrow{\partial}^{\mu}\pi^{+}\right)-\rho^{+}_{\mu}\left(P^{i}\overleftrightarrow{\partial}^{\mu}\pi^{-}\right)\right], (150)
JiI\displaystyle J_{iI} =\displaystyle= gc1233(3O1iOV2I+Z2πZ1πO2iOV1I)+12c5IPO1iOV3I,\displaystyle\frac{gc_{123}}{\sqrt{3}}\left(3O_{1i}O_{V2I}+\sqrt{\frac{Z^{\pi}_{2}}{Z^{\pi}_{1}}}O_{2i}O_{V1I}\right)+12c_{5}^{\mathrm{IP}}O_{1i}O_{V3I}, (151)

where c123=c12+2c3IPc_{123}=c_{12}^{-}+2c_{3}^{\mathrm{IP}}. The diagrams for the decay of VIPiπ+πV^{I}\rightarrow P^{i}\pi^{+}\pi^{-} are given in Fig. III.6.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure III.6: Diagrams contributing to the decay width of VIPiπ+πV^{I}\to P^{i}\pi^{+}\pi^{-}.

Propagators for ρ±\rho^{\pm} are formulated in the following form as,

iD±μν(Q)=igμνD±(Q2)+iQμQνDL±(Q2).\displaystyle iD^{\mu\nu}_{\pm}(Q)=ig^{\mu\nu}D_{\pm}(Q^{2})+iQ^{\mu}Q^{\nu}D_{L\pm}(Q^{2}). (152)

The transition amplitude is given as,

\displaystyle\mathcal{M} =\displaystyle= YiIϵμνρσϵμVpνpρ+pσ0,\displaystyle Y_{iI}\epsilon^{\mu\nu\rho\sigma}\epsilon^{V}_{\mu}p^{-}_{\nu}p^{+}_{\rho}p^{0}_{\sigma}, (153)
YiI\displaystyle Y_{iI} =\displaystyle= ZIfπ3[JiI+J=13ζiIJDJ(s+)+κiI(D+(s+0)+D(s0))],\displaystyle\frac{\sqrt{Z_{I}}}{f^{3}_{\pi}}\left[J_{iI}+\displaystyle\sum_{J=1}^{3}\zeta_{iIJ}D^{J}(s_{+-})+\kappa_{iI}(D_{+}(s_{+0})+D_{-}(s_{-0}))\right],\;\; (154)
ζiIJ\displaystyle\zeta_{iIJ} =\displaystyle= MV2θ¯iIJΠJ,κiI=MV2O1iγI,\displaystyle M_{V}^{2}\bar{\theta}_{iIJ}\Pi_{J},\quad\kappa_{iI}=M_{V}^{2}O_{1i}\gamma_{I}, (155)

where s+0,s0s_{+0},s_{-0} and s+s_{+-} are squared invariant masses for the π+Pi,πPi\pi^{+}P^{i},\pi^{-}P^{i} and π+π\pi^{+}\pi^{-} system, respectively. s+s_{+-} is kinematically related with the other variables as s+=mI2+2Mπ+2+MPi2s+0s0s_{+-}=m_{I}^{2}+2M_{\pi^{+}}^{2}+M_{P^{i}}^{2}-s_{+0}-s_{-0}. The formula of the partial decay width is obtained as,

Γ[VI\displaystyle\Gamma[V^{I} \displaystyle\rightarrow Piπ+π]=13072π3mI3(mIMπ+)2(Mπ++MPi)2|YiI|2Hθ(H)ds+0ds0,\displaystyle P^{i}\pi^{+}\pi^{-}]=\displaystyle\frac{1}{3072\pi^{3}m_{I}^{3}}\displaystyle\iint^{(m_{I}-M_{\pi^{+}})^{2}}_{(M_{\pi^{+}}+M_{P^{i}})^{2}}|Y_{iI}|^{2}H\theta(H)ds_{+0}ds_{-0}, (156)
H\displaystyle H =\displaystyle= s+[s+0s0+(mI2Mπ+2)(Mπ+2MPi2)]Mπ+2(mI2MPi2)2,\displaystyle s_{+-}[s_{+0}s_{-0}+(m_{I}^{2}-M_{\pi^{+}}^{2})(M_{\pi^{+}}^{2}-M_{P^{i}}^{2})]-M_{\pi^{+}}^{2}(m_{I}^{2}-M_{P^{i}}^{2})^{2}, (157)

where θ(H)\theta(H) denotes step function, and the integral regions are common for s+0s_{+0} and s0s_{-0}.

III.2.7 Pπ+πγP\rightarrow\pi^{+}\pi^{-}\gamma

In this subsection, differential decay widths for Pπ+πγP\rightarrow\pi^{+}\pi^{-}\gamma are calculated. The diagrams contributing to this process are given in Fig. III.7.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure III.7: Diagrams contributing to the decay width for Piπ+πγP^{i}\to\pi^{+}\pi^{-}\gamma.

The transition amplitude for the process Piπ+πγ(i=2,3)P^{i}\rightarrow\pi^{+}\pi^{-}\gamma\ (i=2,3) is,

Piπ+πγ\displaystyle\mathcal{M}_{P^{i}\rightarrow\pi^{+}\pi^{-}\gamma} =\displaystyle= Yiγϵμνρσϵμγpνpρ+pσγ,\displaystyle Y^{\gamma}_{i}\epsilon^{\mu\nu\rho\sigma}\epsilon_{\mu}^{\gamma*}p^{-}_{\nu}p^{+}_{\rho}p^{\gamma}_{\sigma}, (158)
Yiγ\displaystyle Y_{i}^{\gamma} =\displaystyle= efπ3[A¯i+B¯iIDI(s)+C¯i(D+(s+0)+D(s0))],\displaystyle-\frac{e}{f^{3}_{\pi}}\left[\bar{A}_{i}+\bar{B}_{iI}D^{I}(s)+\bar{C}_{i}(D_{+}(s_{+0})+D_{-}(s_{-0}))\right], (159)
A¯i\displaystyle\bar{A}_{i} =\displaystyle= (14π2+2c34+)(O1i+13Z2πZ1πO2i),\displaystyle\left(\frac{1}{4\pi^{2}}+2c_{34}^{+}\right)\left(O_{1i}+\frac{1}{\sqrt{3}}\sqrt{\frac{Z_{2}^{\pi}}{Z_{1}^{\pi}}}O_{2i}\right),
B¯iI\displaystyle\bar{B}_{iI} =\displaystyle= 2gρππfπ2χ¯iIΠI,C¯i=4gρππfπ23gc34+O1i.\displaystyle-2g_{\rho\pi\pi}f^{2}_{\pi}\bar{\chi}_{iI}\Pi^{I},\quad\bar{C}_{i}=-\frac{4g_{\rho\pi\pi}f^{2}_{\pi}}{3}gc_{34}^{+}O_{1i}. (160)

Using the above equations, one can obtain the differential decay width,

d2Γ[Piπ+πγ]dsdcosθ=18192π3MPi3|Yiγ|2sin2θs4βπ+3(1MPi2s)3,\displaystyle\displaystyle\frac{\mathrm{d}^{2}\Gamma[P^{i}\rightarrow\pi^{+}\pi^{-}\gamma]}{\mathrm{d}s\mathrm{d}\cos\theta}=\displaystyle\frac{1}{8192\pi^{3}M_{P^{i}}^{3}}|Y_{i}^{\gamma}|^{2}\sin^{2}\theta s^{4}\beta^{3}_{\pi^{+}}\left(1-\frac{M_{P^{i}}^{2}}{s}\right)^{3}, (161)

where ss denotes the squared invariant mass in π+π\pi^{+}\pi^{-} system and θ\theta implies the angle between π+\pi^{+} and γ\gamma in the rest frame of π+π\pi^{+}\pi^{-}.

IV Numerical analysis

In this section, phenomenological analysis is carried out in the model. In the following subsection, we perform χ2\chi^{2} fittings in order to estimate the parameters in the model. As input data in the fittings, the following data are utilized: (1) the spectral function of τ\tau decay, (2) the masses of vector mesons and (3) the IP violating decay widths, the masses of pseudoscalars and the TFFs of VPl+lV\to Pl^{+}l^{-}. Subsequently, using the parameters estimated from the aforementioned observables, we give the prediction of the model. Specifically, the results are presented for Dalitz distributions and partial decay widths of IP violating modes.

In order to carry out the analysis, the following points are addressed:

  • For the parameter cc defined in Eq. (87), we take f=fπf=f_{\pi}.

  • For μP\mu_{P} given in Eq. (33), f=fπf=f_{\pi} is also taken.

  • In the expression of (gρππ)tree(g_{\rho\pi\pi})_{\mathrm{tree}} in Eqs. (51, 52, 56-58, 60, 61), we use tree-level decay constant ff, which is a free parameter.

IV.1 Parameter fit

IV.1.1 τKsπν\tau^{-}\to K_{s}\pi^{-}\nu

In this subsection, we estimate parameters in the model with the decay distribution for τKsπν\tau^{-}\to K_{s}\pi^{-}\nu. To evaluate the decay distribution, we use the procedure similar to the method in Ref. Kimura:2014wsa . Throughout the analysis, we take isospin limit in the decay distribution.

The differential branching fraction for KPν(P=π,η)KP\nu\ (P=\pi,\eta) is given as,

dBr[τKPν]dQ2\displaystyle\frac{\mathrm{d}{\rm Br}[\tau\to KP\nu]}{\mathrm{d}\sqrt{Q^{2}}} =\displaystyle= 1ΓτGF2|Vus|225π3(mτ2Q2)2mτ3pK\displaystyle\frac{1}{\Gamma_{\tau}}\frac{G_{F}^{2}|V_{us}|^{2}}{2^{5}\pi^{3}}\frac{(m_{\tau}^{2}-Q^{2})^{2}}{m_{\tau}^{3}}p_{K} (162)
×[(2mτ23Q2+43)pK2|FVKP(Q2)|2+mτ22|FSKP(Q2)|2],\displaystyle\times\left[\left(\frac{2m_{\tau}^{2}}{3Q^{2}}+\frac{4}{3}\right){p_{K}}^{2}|F_{V}^{KP}(Q^{2})|^{2}+\frac{m_{\tau}^{2}}{2}|F_{S}^{KP}(Q^{2})|^{2}\right],

where pKp_{K} is the momentum of KK in the hadronic center of mass (CM) frame. The vector and scalar form factors are written in App. I. In order to compare the model prediction with the Belle data, we use the method in Ref. Kimura:2014wsa . Including the overall normalization, the differential width in Eq. (162) is rewritten as,

NtotBrBelle[τKsπν]×11.5MeV×dBr[τKsπν]dQ2,\displaystyle\frac{N_{\mathrm{tot}}}{\mathrm{Br}^{\mathrm{Belle}}[\tau^{-}\to K_{s}\pi^{-}\nu]}\times 11.5\ \mathrm{MeV}\times\frac{\mathrm{d}{\rm Br}[\tau^{-}\to K_{s}\pi^{-}\nu]}{\mathrm{d}\sqrt{Q^{2}}}, (163)

where NtotN_{\mathrm{tot}} denotes the observed number of events for τ\tau decay while 11.5MeV11.5\ \mathrm{MeV} indicates the width of bins in the Belle experiment. We carry out the χ2\chi^{2} fitting based on Eq. (163), which represents the expected number of events in the model.

In this paper, we take the tree-level pion decay constant, ff, as a parameter. Since the effect of the KK^{*} resonance is important in the decay mode, we choose the mass and the decay width of KK^{*} meson as fitting parameters. Additionally, the octet vector meson mass and the finite parts of 1-loop ordered coefficients, K1r+K2rK_{1}^{r}+K_{2}^{r} and L9rL_{9}^{r}, are also free parameters. To summarize, (MV,K1r+K2r,L9r,MK,ΓK,f)(M_{V},\ K_{1}^{r}+K_{2}^{r},\ L_{9}^{r},\ M_{K^{*}},\ \Gamma_{K^{*}},\ f) are the relevant fitting parameters in this mode. These six parameters are estimated from 90 bins of the data in the region MK+MπQ21665M_{K}+M_{\pi}\leq\sqrt{Q^{2}}\leq 1665 MeV. As a result of fitting, the parameters are determined as,

MV\displaystyle M_{V} =\displaystyle= 851±100MeV,K1r+K2r=0.0268±0.0091,L9r=(2.06±1.89)×103,\displaystyle 851\pm 100{\rm MeV},\ \ K_{1}^{r}+K_{2}^{r}=0.0268\pm 0.0091,\ \ L_{9}^{r}=(2.06\pm 1.89)\times 10^{-3},\quad\quad (164)
MK\displaystyle M_{K^{*}} =\displaystyle= 895.6±0.3MeV,ΓK=48.4±0.6MeV,f=136±19MeV,\displaystyle 895.6\pm 0.3{\rm MeV},\ \ \quad\;\;\Gamma_{K^{*}}=48.4\pm 0.6{\rm MeV},\ \ \;\;\;f=136\pm 19{\rm MeV},\quad\quad

where the obtained χmin2/n.d.f.\chi^{2}_{\mathrm{min}}/{\rm n.d.f.} is 147.1/84147.1/84. The correlation matrix of (MV,K1r+K2r,L9r,MK,ΓK,f)(M_{V},\ K_{1}^{r}+K_{2}^{r},\ L_{9}^{r},\ M_{K^{*}},\ \Gamma_{K^{*}},\ f) is,

(10.280.260.490.290.6411.00.0710.410.9210.0670.450.9110.260.1510.441).\displaystyle\begin{pmatrix}1&\hskip 14.79541pt0.28&\hskip 11.95013pt0.26&\hskip 5.69054pt0.49&\hskip 5.69054pt0.29&\hskip 9.95845pt-0.64\\ *&\hskip 14.79541pt1&\hskip 11.95013pt1.0&\hskip 5.69054pt-0.071&\hskip 5.69054pt0.41&\hskip 9.95845pt-0.92\\ *&\hskip 14.79541pt*&\hskip 11.95013pt1&\hskip 5.69054pt-0.067&\hskip 5.69054pt0.45&\hskip 9.95845pt-0.91\\ *&\hskip 14.79541pt*&\hskip 11.95013pt*&\hskip 5.69054pt1&\hskip 5.69054pt0.26&\hskip 9.95845pt-0.15\\ *&\hskip 14.79541pt*&\hskip 11.95013pt*&\hskip 5.69054pt*&\hskip 5.69054pt1&\hskip 9.95845pt-0.44\\ *&\hskip 14.79541pt*&\hskip 11.95013pt*&\hskip 5.69054pt*&\hskip 5.69054pt*&\hskip 9.95845pt1\end{pmatrix}. (165)

Since the tree-level KKπK^{*}K\pi coupling is proportional to MV2/f2M_{V}^{2}/f^{2}, tree-level expressions of the form factors in Eq. (162) does not depend on MVM_{V} and ff solely, but on the ratio. Due to this fact, MVM_{V} and ff are determined through 1-loop correction in the form factors so that large errors arise from the fitting, as shown in Eq. (164).

The result of the decay distribution is shown in Fig. IV.1. In this plot, one can find that the resonance of KK^{*} is seen around Q2900\sqrt{Q^{2}}\simeq 900 MeV.

Refer to caption
Figure IV.1: The fitting result of the decay distribution for τKsπν\tau^{-}\to K_{s}\pi^{-}\nu. The red line corresponds to the prediction of our model. The closed circles with the error bars are experimental data Epifanov:2007rf .

The prediction for the branching fraction is 0.403±0.069%0.403\pm 0.069\% (the experimental value is (0.404±0.002±0.0130.404\pm 0.002\pm 0.013)%\% Epifanov:2007rf ).

Table 1: Numerical values of the parameters in the model.
gg 6.68±1.566.68\pm 1.56 C2rC_{2}^{r} 0.415±0.331-0.415\pm 0.331   gρππg_{\rho\pi\pi} 6.37±0.046.37\pm 0.04
ZVrZ_{V}^{r} 0.819±0.0020.819\pm 0.002   C3r4C4rC_{3}^{r}-4C_{4}^{r} 0.1490.086+0.080-0.149^{+0.080}_{-0.086}   (gρππ)tree(g_{\rho\pi\pi})_{\mathrm{tree}} 2.90.7+1.12.9^{+1.1}_{-0.7}
C1rC_{1}^{r} 0.275±0.0070.275\pm 0.007 C5rC_{5}^{r} (9.928.88+18.62)×104(9.92^{+18.62}_{-8.88})\times 10^{-4} cc 0.910.53+0.37-0.91^{+0.37}_{-0.53}
Z1π\sqrt{Z_{1}^{\pi}} 1.490.24+0.271.49^{+0.27}_{-0.24} L4rL_{4}^{r} (1.61.1+1.0)×103(-1.6^{+1.0}_{-1.1})\times 10^{-3}
Z2π\sqrt{Z_{2}^{\pi}} 0.960.14+0.170.96^{+0.17}_{-0.14} L5rL_{5}^{r} (4.67.3+2.1)×103(4.6^{+2.1}_{-7.3})\times 10^{-3}

In Table 1, we show other parameters which are also determined through Eqs. (164, 165). In the following, we clarify how the parameters in Table 1 are determined. In order to obtain the ρππ\rho\pi\pi coupling, we note that the decay width of KK^{*} is given by the imaginary part of the self-energy Kimura:2014wsa ,

ΓK=116πMKνKπ3(MK2)MK4(gρππ2)2,\displaystyle\Gamma_{K^{*}}=\frac{1}{16\pi M_{K^{*}}}\frac{\nu_{K\pi}^{3}(M_{K^{*}}^{2})}{M_{K^{*}}^{4}}\left(\frac{g_{\rho\pi\pi}}{2}\right)^{2}, (166)

where νPπ(Q2)\nu_{P\pi}(Q^{2}) is defined in Eq. (54). Solving Eq. (166) with respect to gρππg_{\rho\pi\pi}, one can fix the ρππ\rho\pi\pi coupling since (MK,ΓK)(M_{K^{*}},\Gamma_{K^{*}}) are determined from the fitting result in Eq. (164). Moreover, gg is also obtained from the definition of the ρππ\rho\pi\pi coupling in Eq. (17). Since the large error of MVM_{V} propagates to gg, the error of gg increases. In Table 1 we also give the value of (gρππ)tree(g_{\rho\pi\pi})_{\mathrm{tree}} in Eq. (16). One can find that (gρππ)tree(g_{\rho\pi\pi})_{\mathrm{tree}} and gρππg_{\rho\pi\pi} are deviated from each other. This is because the tree-level decay constant denoted as ff given in Eq. (164) is deviated from PDG value, fπ=92.2MeVf_{\pi}=92.2\ \mathrm{MeV}. In order to calculate L4rL_{4}^{r} and L5rL_{5}^{r}, we use the following pion and kaon decay constants Gasser:1984ux with obtained ff,

fπ\displaystyle f_{\pi} =\displaystyle= f{1c(2μπ+μK)+4(Mπ2+2MK2f2L4r+Mπ2f2L5r)},\displaystyle f\left\{1-c(2\mu_{\pi}+\mu_{K})+4\left(\frac{M_{\pi}^{2}+2M_{K}^{2}}{f^{2}}L_{4}^{r}+\frac{M_{\pi}^{2}}{f^{2}}L_{5}^{r}\right)\right\}, (167)
fK\displaystyle f_{K} =\displaystyle= f{13c4(μπ+2μK+μη8)+4(Mπ2+2MK2f2L4r+MK2f2L5r)},\displaystyle f\left\{1-\frac{3c}{4}(\mu_{\pi}+2\mu_{K}+\mu_{\eta_{8}})+4\left(\frac{M_{\pi}^{2}+2M_{K}^{2}}{f^{2}}L_{4}^{r}+\frac{M_{K}^{2}}{f^{2}}L_{5}^{r}\right)\right\}, (168)

where in the above expressions, ff represents the tree-level parameter given in Eq. (164). The coefficients of 1-loop ordered interaction, (C3r4C4r,C5r)(C_{3}^{r}-4C_{4}^{r},\ C_{5}^{r}), are also determined from the procedure similar to one of Ref. Kimura:2014wsa . Wavefunction renormalizations for π3\pi_{3} and η8\eta_{8} are calculated from Eq. (268) and Eq. (269), respectively. If one fixes the parameters as the best fit values in Eq. (164), the wavefunction renormalizations are,

Z1π=1.52,Z2π=0.763.\displaystyle\sqrt{Z_{1}^{\pi}}=1.52,\quad\sqrt{Z_{2}^{\pi}}=0.763. (169)

Hereafter, the values in Eq. (169) are referred to as best fit values of the wavefunction renormalizations for pseudoscalars.

For the ratio of decay constants of pseudoscalars, we verify whether the model prediction of fK/fπf_{K^{-}}/f_{\pi^{-}} is consistent with the experimental data if one uses fπf_{\pi} instead of the tree-level parameter in Eq. (86). The results in the model and the experimental data extracted from the PDG data PDG are,

fK/fπ={1.400.11+0.18(68.3%C.L.inthemodel)1.400.24+0.96(99.7%C.L.inthemodel)1.197±0.006(1σinthePDG).\displaystyle f_{K^{-}}/f_{\pi^{-}}=\begin{cases}1.40^{+0.18}_{-0.11}\qquad(68.3\%~\mathrm{C.L.}~\mathrm{in}~\mathrm{the}~\mathrm{model})\\ 1.40^{+0.96}_{-0.24}\qquad(99.7\%~\mathrm{C.L.}~\mathrm{in}~\mathrm{the}~\mathrm{model})\\ 1.197\pm 0.006\qquad(1\sigma~\mathrm{in}~\mathrm{the}~\mathrm{PDG})\end{cases}. (170)

In the above result, one can find that the model prediction is slightly deviated from the case of the tree-level ρππ\rho\pi\pi coupling in Eq. (86). This is because the estimated value of ff is deviated from the experimental value of fπf_{\pi}. However, up to the 99.7%99.7\% confidence interval of the model prediction, it is shown that the central value of the PDG data PDG is included.

IV.1.2 Mass and width of vector mesons

In this subsection, we explain how the parameters, C1r,C2r,ZVr,g^1VC_{1}^{r},C_{2}^{r},Z_{V}^{r},\hat{g}_{1V} and M0VM_{0V} are fixed, and evaluate the vector meson mass, the renormalization constant and the decay width.

At first, we consider the off-diagonal elements of VμV_{\mu}, i.e., ρ+\rho^{+}, K+K^{*+} and K0K^{*0} to obtain the parameters, C1r,C2rC_{1}^{r},C_{2}^{r} and ZVrZ_{V}^{r}. We define the masses of ρ+\rho^{+} and K+K^{*+} mesons as the momentum-squared for which real parts of inverse propagators vanish,

MV2+Re[δAρ+(Q2=mρ+2;C1r,C2r)]\displaystyle M_{V}^{2}+{\rm Re}[\delta A_{\rho^{+}}(Q^{2}=m_{\rho^{+}}^{2};C_{1}^{r},C_{2}^{r})] =\displaystyle= 0,\displaystyle 0, (171)
MV2+Re[δAK+(Q2=mK+2;C1r,C2r)]\displaystyle M_{V}^{2}+{\rm Re}[\delta A_{K^{*+}}(Q^{2}=m_{K^{*+}}^{2};C_{1}^{r},C_{2}^{r})] =\displaystyle= 0,\displaystyle 0, (172)

where δAρ+\delta A_{\rho^{+}} and δAK+\delta A_{K^{*+}} are shown in Eqs. (237) and (241), respectively. Solving the above equations, we have C1rC_{1}^{r} and C2rC_{2}^{r},

C1r\displaystyle C_{1}^{r} =\displaystyle= 1ΔK+π{ZVrΔK+ρ+Re[ΔAK+(mK+2)]+Re[ΔAρ+(mρ+2)]},\displaystyle\frac{1}{\Delta_{K^{+}\pi}}\left\{Z_{V}^{r}\Delta_{K^{*+}\rho^{+}}-{\rm Re}[\Delta A_{K^{*+}}(m_{K^{*+}}^{2})]+{\rm Re}[\Delta A_{\rho^{+}}(m_{\rho^{+}}^{2})]\right\}, (173)
C2r\displaystyle C_{2}^{r} =\displaystyle= 12M¯K2+Mπ2{MV2ZVrmK+2+Re[ΔAK+(mK+2)]+C1rMK+2}.\displaystyle-\frac{1}{2\bar{M}_{K}^{2}+M_{\pi}^{2}}\left\{M_{V}^{2}-Z_{V}^{r}m_{K^{*+}}^{2}+{\rm Re}[\Delta A_{K^{*+}}(m_{K^{*+}}^{2})]+C_{1}^{r}M_{K^{+}}^{2}\right\}. (174)

Imposing the condition for the residue of the vector meson propagator, ResD(Q2=mK+2)=1{\rm Res}D(Q^{2}=m_{K^{*+}}^{2})=1, we have

ZVr=1+dRe[ΔAK+(Q2)]dQ2|Q2=mK+2.\displaystyle Z_{V}^{r}=1+\left.\frac{d{\rm Re}[\Delta A_{K^{*+}}(Q^{2})]}{dQ^{2}}\right|_{Q^{2}=m_{K^{*+}}^{2}}. (175)

Since ΔAV\Delta A_{V} only depends on gρππg_{\rho\pi\pi}, C1rC_{1}^{r} and ZVrZ_{V}^{r} can be fixed by gρππg_{\rho\pi\pi}. On the other hand, C2rC_{2}^{r} is related to two parameters, gρππg_{\rho\pi\pi} and MVM_{V}.

The decay widths are given by the imaginary part of the inverse propagators,

mIΓI\displaystyle m_{I}\Gamma_{I} =\displaystyle= ZIIm[δAI(mI2)],\displaystyle-Z_{I}{\rm Im}[\delta A_{I}(m_{I}^{2})], (176)

where I=ρ+,K+,K0I=\rho^{+},K^{*+},K^{*0},

(ZI)1=ZVrdRe[ΔAI(Q2)]dQ2|Q2=mI2,\displaystyle(Z_{I})^{-1}=Z_{V}^{r}-\left.\frac{d{\rm Re}[\Delta A_{I}(Q^{2})]}{dQ^{2}}\right|_{Q^{2}=m_{I}^{2}}, (177)

where ΔAI\Delta A_{I} is defined in Eqs. (238, 240, 242). The renormalization constants ZiZ_{i} are estimated as follows,

Zρ+\displaystyle Z_{\rho^{+}} =\displaystyle= 1.0461±0.0006,ZK0=1.00244±0.00003.\displaystyle 1.0461\pm 0.0006,\quad Z_{K^{*0}}=1.00244\pm 0.00003. (178)

In the following, we determine the parameters g^1V\hat{g}_{1V} and M0VM_{0V} with the χ2\chi^{2} fitting of the neutral vector meson mass. The masses in Eq. (48) are written in terms of the mass eigenvalues of the mass matrix and the mixing angles of vector mesons. In Ref. Pilaftsis:1999qt , the authors introduced a method to express mixing angles and the eigenvalues in terms of the elements of the mass matrix. With varying the parameters in the elements of the mass matrix, one can conduct χ2\chi^{2} fitting with respect to physical masses. The fitted results of the masses are shown in Table 2, where the obtained χ2\chi^{2}/n.d.f is 0.386/1. The parameters g^1V\hat{g}_{1V} and M0VM_{0V} are fixed as,

g^1V=3.185±0.001,M0V=871.8±0.1MeV.\displaystyle\hat{g}_{1V}=3.185\pm 0.001,\quad M_{0V}=871.8\pm 0.1{\rm MeV}. (179)
Table 2: The results of the neutral vector meson mass.
Mass     Theory(MeV) PDG (MeV)
mρ0m_{\rho^{0}} 775.42±0.01775.42\pm 0.01 775.26±0.25775.26\pm 0.25
mωm_{\omega} 782.650.15+0.18782.65^{+0.18}_{-0.15} 782.65±0.12782.65\pm 0.12
mϕm_{\phi} 1019.46±0.041019.46\pm 0.04 1019.461±0.0191019.461\pm 0.019

Using the above parameters, we have the orthogonal matrix OVO_{V} which diagonalizes vector meson mass matrix,

OV=(0.9979±0.00010.0644±0.0010.00375±0.000040.0447±0.00060.6475±0.00060.7608±0.00050.0466±0.00090.7594±0.00040.6490±0.0005),\displaystyle O_{V}=\begin{pmatrix}0.9979\pm 0.0001&0.0644\pm 0.001&-0.00375\pm 0.00004\\ -0.0447\pm 0.0006&0.6475\pm 0.0006&-0.7608\pm 0.0005\\ -0.0466\pm 0.0009&0.7594\pm 0.0004&0.6490\pm 0.0005\end{pmatrix}, (180)

where ωϕ\omega-\phi mixing angle is (40.59±0.04)(40.59\pm 0.04)^{\circ}. The wave function renormalization of the neutral vector meson and the eigenvalues for the mass matrix are obtained as follows,

Zρ0=1.0462±0.0005,Zω=1.0281±0.0004,Zϕ=0.9167±0.0008,\displaystyle Z_{\rho^{0}}=1.0462\pm 0.0005,\quad Z_{\omega}=1.0281\pm 0.0004,\quad Z_{\phi}=0.9167\pm 0.0008,
1=791.8±0.2MeV,2=763.2±0.3MeV,3=1001.9±0.2MeV.\displaystyle\mathcal{M}_{1}=791.8\pm 0.2{\rm MeV},\quad\mathcal{M}_{2}=763.2\pm 0.3{\rm MeV},\quad\mathcal{M}_{3}=1001.9\pm 0.2{\rm MeV}. (181)

IV.1.3 Intrinsic parity violating decays

In this subsection, we estimate model parameters by using the IP violating observables for light hadrons. As input data of χ2\chi^{2} fittings, experimental data of decay widths and Dalitz distributions are used. We also utilize experimental values of masses for pseudoscalars to estimate parameters in the mass matrix.

The widths of radiative decays, Γ[ρ+π+γ]\Gamma[\rho^{+}\to\pi^{+}\gamma], Γ[K0K0γ]\Gamma[K^{*0}\to K^{0}\gamma] and Γ[K+K+γ]\Gamma[K^{*+}\to K^{+}\gamma], are proportional to the IP violating parameter (gc34+)2(gc_{34}^{+})^{2}. In order to estimate this parameter, we consider the following statistic,

χ2=(Γ[ρ+π+γ]ΓPDG[ρ+π+γ]δΓPDG[ρ+π+γ])2+(Γ[K0K0γ]ΓPDG[K0K0γ]δΓPDG[K0K0γ])2,\displaystyle\chi^{2}=\left(\frac{\Gamma[\rho^{+}\to\pi^{+}\gamma]-\Gamma^{\mathrm{PDG}}[\rho^{+}\to\pi^{+}\gamma]}{\delta\Gamma^{\mathrm{PDG}}[\rho^{+}\to\pi^{+}\gamma]}\right)^{2}+\left(\frac{\Gamma[K^{0*}\to K^{0}\gamma]-\Gamma^{\mathrm{PDG}}[K^{0*}\to K^{0}\gamma]}{\delta\Gamma^{\mathrm{PDG}}[K^{0*}\to K^{0}\gamma]}\right)^{2},\quad\quad\quad (182)

where δΓPDG\delta\Gamma^{\mathrm{PDG}} denotes experimental errors of the widths. As a result of the fitting, we find that the minimum of Eq. (182) is χmin2/d.o.f.=1.08/1\chi^{2}_{\mathrm{min}}/\mathrm{d.o.f.}=1.08/1, which results in the estimated parameter as,

g|c34+|=0.102±0.05.\displaystyle g|c_{34}^{+}|=0.102\pm 0.05. (183)

In this fitting, the sign of c34+c_{34}^{+} is not fixed since the widths in Eqs. (128-130) depend on square of this parameter. In Table 3, the widths calculated in the model are compared with the PDG values PDG . The model prediction for Γ[K+K+γ]\Gamma[K^{*+}\to K^{+}\gamma] is also given in Table 3. For the PDG value PDG of Γ[K+K+γ]\Gamma[K^{*+}\to K^{+}\gamma], we adopt the full width of K+K^{*+} obtained from tau decays. One finds 3.4σ3.4\sigma discrepancy between the model prediction and the experimental value of the width for K+K+γK^{*+}\to K^{+}\gamma. Since the K0K0γK^{*0}K^{0}\gamma coupling in Eq. (126) is two times larger than one for K+K+γK^{*+}K^{+}\gamma in Eq. (125), the widths are related as Γ[K0K0γ]4Γ[K+K+γ]\Gamma[K^{*0}\to K^{0}\gamma]\sim 4\Gamma[K^{*+}\to K^{+}\gamma]. However, this relation is not valid for the present PDG values PDG so that the deviation arises.

Table 3: Partial widths of radiative decays. For ρ+π+γ\rho^{+}\to\pi^{+}\gamma and K0K0γK^{*0}\to K^{0}\gamma, the fitting result for χmin2/d.o.f.=1.08/1\chi^{2}_{\mathrm{min}}/\mathrm{d.o.f.}=1.08/1 is shown. The model prediction is given for K+K+γK^{*+}\to K^{+}\gamma. For comparison, the PDG data PDG are also written.
Decay mode     Model [MeV] PDG [MeV]
Γ[ρ+π+γ]\Gamma[\rho^{+}\rightarrow\pi^{+}\gamma] (7.3±0.7)×102(7.3\pm 0.7)\times 10^{-2} (6.7±0.7)×102(6.7\pm 0.7)\times 10^{-2}
Γ[K0K0γ]\Gamma[K^{*0}\rightarrow K^{0}\gamma] 0.11±0.010.11\pm 0.01 0.12±0.010.12\pm 0.01
Γ[K+K+γ]\Gamma[K^{*+}\rightarrow K^{+}\gamma] (2.8±0.3)×102(2.8\pm 0.3)\times 10^{-2} (4.6±0.4)×102(4.6\pm 0.4)\times 10^{-2}

For parameter estimation, we use observables for pseudoscalars. In particular, the PDG data PDG for masses of π0,η\pi^{0},\eta^{\prime} and decay widths of P2γ(P=π0,η,η)P\to 2\gamma\ (P=\pi^{0},\eta,\eta^{\prime}) are adopted. In order to constrain parameters in the model, we consider the following system of equations,

Mπ0(g^2p,ΔEM,M882,M802)\displaystyle M_{\pi^{0}}(\hat{g}_{2p},\Delta_{\mathrm{EM}},M_{88}^{\prime 2},M_{80}^{\prime 2}) =\displaystyle= Mπ0PDG,\displaystyle M_{\pi^{0}}^{\mathrm{PDG}}, (184)
Mη(g^2p,ΔEM,M882,M802)\displaystyle M_{\eta^{\prime}}(\hat{g}_{2p},\Delta_{\mathrm{EM}},M_{88}^{\prime 2},M_{80}^{\prime 2}) =\displaystyle= MηPDG,\displaystyle M_{\eta^{\prime}}^{\mathrm{PDG}}, (185)
Γ[π02γ](c6910,g^2p,ΔEM,M882,M802)\displaystyle\Gamma[\pi^{0}\to 2\gamma](c_{6-9-10},\hat{g}_{2p},\Delta_{\mathrm{EM}},M_{88}^{\prime 2},M_{80}^{\prime 2}) =\displaystyle= ΓPDG[π02γ],\displaystyle\Gamma^{\mathrm{PDG}}[\pi^{0}\to 2\gamma], (186)
Γ[η2γ](c6910,g^2p,ΔEM,M882,M802)\displaystyle\Gamma[\eta\to 2\gamma](c_{6-9-10},\hat{g}_{2p},\Delta_{\mathrm{EM}},M_{88}^{\prime 2},M_{80}^{\prime 2}) =\displaystyle= ΓPDG[η2γ],\displaystyle\Gamma^{\mathrm{PDG}}[\eta\to 2\gamma], (187)
Γ[η2γ](c6910,g^2p,ΔEM,M882,M802)\displaystyle\Gamma[\eta^{\prime}\to 2\gamma](c_{6-9-10},\hat{g}_{2p},\Delta_{\mathrm{EM}},M_{88}^{\prime 2},M_{80}^{\prime 2}) =\displaystyle= ΓPDG[η2γ],\displaystyle\Gamma^{\mathrm{PDG}}[\eta^{\prime}\to 2\gamma], (188)

where the left-handed sides in these equations denote the model expressions. Solution to Eqs. (184-188) leads to estimated values for the parameters given as (c6910,g^2p,ΔEM,M882,M802)(c_{6-9-10},\hat{g}_{2p},\Delta_{\mathrm{EM}},M_{88}^{\prime 2},M_{80}^{\prime 2}). This procedure of solving the equations is carried out in the following way: provided that the PDG data PDG obey Gaussian distributions, the right-handed sides in Eqs. (184-188) are generated as Gaussian data. For (Z1π,Z2π)(\sqrt{Z_{1}^{\pi}},\sqrt{Z_{2}^{\pi}}), we use the parameter list obtained from the fitting of tau decays, which is summarized in Table 1. In order to determine model values of the masses in Eqs. (184-185), we use formalism in App. F which incorporates 1-loop correction to the mass matrix. One can numerically calculate the model values for pseudoscalar masses, which are eigenvalues of the mass matrix in Eq. (280). For Eq. (186-188), the widths in the model are calculated on the basis of Eq. (141). Since Γ[P2γ]\Gamma[P\to 2\gamma] depends on the pseudoscalar mixing matrix elements, we adopt a method Pilaftsis:1999qt to write a mixing matrix in terms of mass matrix elements. Using 10410^{4} data samples, we solve the system of Eqs. (184-188) to obtain the parameters (c6910,g^2p,ΔEM,M882,M802)(c_{6-9-10},\hat{g}_{2p},\Delta_{\mathrm{EM}},M_{88}^{\prime 2},M_{80}^{\prime 2}). Confidence intervals of the parameters are estimated from a list of the solutions to Eqs. (184-188). In Table 4, we show confidence intervals of the model parameters which are determined in this procedure. Since the parameters in the mass matrix are estimated, a mixing angle for pseudoscalars is also determined. θ1\theta_{1} is obtained as θ1=arccos(O33)\theta_{1}=\arccos(O_{33}), where O33O_{33} is the mixing matrix element in Eq. (84). The numerical value of this angle is,

θ1={285+2[degree](68.3%C.L.)2843+5[degree](99.7%C.L.).\displaystyle\theta_{1}=\begin{cases}-28^{+2}_{-5}[\mathrm{degree}]\quad(68.3\%\ \mathrm{C.L.})\\ -28^{+5}_{-43}[\mathrm{degree}]\quad(99.7\%\ \mathrm{C.L.})\end{cases}. (189)
Table 4: Confidence intervals of the model parameters estimated from the data PDG of widths and masses for pseudoscalars. See the text for a detailed explanation of parameter estimation.
Parameter c6910×102c_{6-9-10}\times 10^{2} g^2p\hat{g}_{2p} ΔEM[MeV2]\Delta_{\mathrm{EM}}\ [\mathrm{MeV}^{2}] M882[MeV]\sqrt{M_{88}^{\prime 2}}\ [\mathrm{MeV}] |M802|[MeV]\sqrt{|M_{80}^{\prime 2}|}\ [\mathrm{MeV}]
68.3%C.L.68.3\%\ \mathrm{C.L.} 1.10.2+0.21.1^{+0.2}_{-0.2} 1.00.7+0.7-1.0^{+0.7}_{-0.7} 122060+201220^{+20}_{-60} 66020+30660^{+30}_{-20} 510±20510\pm 20
99.7%C.L.99.7\%\ \mathrm{C.L.} 1.10.5+0.71.1_{-0.5}^{+0.7} 1.02.3+2.1-1.0^{+2.1}_{-2.3} 1220310+301220^{+30}_{-310} 66060+260660^{+260}_{-60} 510±80510\pm 80

In Eqs. (184-188), if one adopts the best fit model parameters in Eq. (164) on left-handed sides and central values of the PDG data PDG on right-handed sides, solution is obtained as,

c6910=1.1×102,g^2p=1.0,\displaystyle c_{6-9-10}=1.1\times 10^{-2},\quad\hat{g}_{2p}=-1.0,
ΔEM=1220[MeV2],M88=662[MeV],M80=507[MeV].\displaystyle\Delta_{\mathrm{EM}}=1220\ [\mathrm{MeV^{2}}],\quad M_{88}^{\prime}=662\ [\mathrm{MeV}],\quad M_{80}^{\prime}=507\ [\mathrm{MeV}]. (190)

Using the above values, the mixing matrix and the wavefunction renormalizations of pseudoscalars are calculated as,

O=(0.999983.3×1046.8×1033.5×1030.880.475.8×1030.470.88),\displaystyle O=\begin{pmatrix}0.99998&-3.3\times 10^{-4}&-6.8\times 10^{-3}\\ 3.5\times 10^{-3}&0.88&0.47\\ 5.8\times 10^{-3}&-0.47&0.88\\ \end{pmatrix}, (191)

In the following analysis, the parameter values in Eq. (191) are referred to as best fit values for the mixing matrix elements.

Here, we discuss a case in which singlet-induced contribution is absent. If one takes the limit c69100c_{6-9-10}\to 0, the partial width of η\eta^{\prime} becomes Γ[η2γ]=7×105\Gamma[\eta^{\prime}\to 2\gamma]=7\times 10^{-5}MeV. This value is much smaller than the experimental data, ΓPDG[η2γ]=(4.4±0.3)×103\Gamma^{\mathrm{PDG}}[\eta^{\prime}\to 2\gamma]=(4.4\pm 0.3)\times 10^{-3}MeV. Hence, one notices that the presence of singlet-induced IP violation is necessary in the framework of the singlet++octet scheme.

For parameter estimation of the IP violating parameters, the ratio of the effective coupling for VPγVP\gamma to one for ρ+π+γ\rho^{+}\pi^{+}\gamma in Eq. (133) are compared with experimental values. Model parameters are estimated from the following statistic,

χ2\displaystyle\chi^{2} =\displaystyle= (i,I)(1,2),(2,2),(3,2),(3,3)(|XiI/Xρ+||XiI/Xρ+|PDGδ|XiI/Xρ+|PDG)2.\displaystyle\displaystyle\sum_{(i,I)}^{(1,2),(2,2),(3,2),(3,3)}\left(\frac{|X_{iI}/X_{\rho^{+}}|-|X_{iI}/X_{\rho^{+}}|^{\mathrm{PDG}}}{\delta|X_{iI}/X_{\rho^{+}}|^{\mathrm{PDG}}}\right)^{2}. (192)

The experimental data used in the above χ2\chi^{2} are extracted from PDG PDG through r.h.s in Eq. (132). In Eq. (133), the wavefunction renormalizations and the mixing matrices for mesons are set as the best fit values obtained in Eqs. (169, 191). (for vector meson mixing, Eq. number should be referred.) In the procedure to minimize the statistic in Eq. (192), one can vary model parameters, c69/g2c34+c_{69}/g^{2}c_{34}^{+} and c8IP/gc34+c_{8}^{\mathrm{IP}}/gc_{34}^{+}. The fitting results are shown in Table 5. The parameter ranges estimated from this fitting are,

c69/g2c34+=0.91±0.04,c8IP/gc34+=0.85±0.05,\displaystyle c_{69}/g^{2}c_{34}^{+}=-0.91\pm 0.04,\qquad c_{8}^{\mathrm{IP}}/gc_{34}^{+}=0.85\pm 0.05, (193)

where the correlation coefficient of these parameters is 0.120.12. Predictions for effective coupling ratios of Γ[VIPiγ]\Gamma[V^{I}\to P^{i}\gamma] to Γ[ρ+π+γ]\Gamma[\rho^{+}\to\pi^{+}\gamma] for (i,I)=(1,1),(1,3),(2,1),(2,3)(i,I)=(1,1),(1,3),(2,1),(2,3) are given in Table 5. Furthermore, the prediction for the decay widths of VIPiγV^{I}\to P^{i}\gamma are shown in Table 6.

Table 5: Fitting result and model prediction of the ratio of effective coupling for VIPiγV^{I}\to P^{i}\gamma to one for ρ+π+γ\rho^{+}\to\pi^{+}\gamma. For (i,I)=(1,2),(2,2),(3,2),(3,3)(i,I)=(1,2),(2,2),(3,2),(3,3), the fitting result for χmin2/d.o.f.=1.12/2\chi^{2}_{\mathrm{min}}/\mathrm{d.o.f.}=1.12/2 is shown while the model predictions are given for (i,I)=(1,1),(1,3),(2,1),(2,3)(i,I)=(1,1),(1,3),(2,1),(2,3). For comparison, the experimental data extracted from the PDG data PDG are also shown. In the fourth column, the model prediction in the isospin limit is displayed with wave function renormalizations set as unity. Mixing angles for vector meson are defined as cosθV08=OV22OV33\cos\theta_{V}^{08}=O_{V22}\sim O_{V33} and sinθV08=OV23OV32\sin\theta_{V}^{08}=O_{V23}\sim-O_{V32}.
  Ratio Model PDG     Model in the isospin limit
|X12/Xρ+||X_{12}/X_{\rho^{+}}| 3.1±0.13.1\pm 0.1 3.2±0.23.2\pm 0.2 3|cosθV083c8IPgc34+sinθV08|\sqrt{3}|\cos\theta_{V}^{08}-\frac{3c_{8}^{\mathrm{IP}}}{gc_{34}^{+}}\sin\theta_{V}^{08}|
|X22/Xρ+||X_{22}/X_{\rho^{+}}| 0.710.08+0.090.71^{+0.09}_{-0.08} 0.62±0.040.62\pm 0.04 |cosθV08||cosθ1+3(c69g2c34)sinθ13c8IPgc34+cosθ1tanθV08||\cos\theta_{V}^{08}||\cos\theta_{1}+\sqrt{3}(\frac{c_{69}}{g^{2}c_{34}})\sin\theta_{1}-\frac{\sqrt{3}c_{8}^{\mathrm{IP}}}{gc_{34}^{+}}\cos\theta_{1}\tan\theta_{V}^{08}|
|X32/Xρ+||X_{32}/X_{\rho^{+}}| 0.530.13+0.160.53^{+0.16}_{-0.13} 0.60±0.040.60\pm 0.04 |cosθV08||sinθ13(c69g2c34)cosθ13c8IPgc34+sinθ1cotθV08||\cos\theta_{V}^{08}||\sin\theta_{1}-\sqrt{3}(\frac{c_{69}}{g^{2}c_{34}})\cos\theta_{1}-\frac{\sqrt{3}c_{8}^{\mathrm{IP}}}{gc_{34}^{+}}\sin\theta_{1}\cot\theta_{V}^{08}|
|X33/Xρ+||X_{33}/X_{\rho^{+}}| 1.150.13+0.151.15^{+0.15}_{-0.13} 0.99±0.060.99\pm 0.06 |sinθV08||sinθ13(c69g2c34)cosθ1+3c8IPgc34+sinθ1cotθV08||\sin\theta_{V}^{08}||\sin\theta_{1}-\sqrt{3}(\frac{c_{69}}{g^{2}c_{34}})\cos\theta_{1}+\frac{\sqrt{3}c_{8}^{\mathrm{IP}}}{gc_{34}^{+}}\sin\theta_{1}\cot\theta_{V}^{08}|
|X11/Xρ+||X_{11}/X_{\rho^{+}}| 0.80±0.020.80\pm 0.02 1.15±0.101.15\pm 0.10 1
|X13/Xρ+||X_{13}/X_{\rho^{+}}| 0.31±0.090.31\pm 0.09 0.18±0.010.18\pm 0.01 3|sinθV08+3c8IPgc34+cosθV08|\sqrt{3}|\sin\theta_{V}^{08}+\frac{3c_{8}^{\mathrm{IP}}}{gc_{34}^{+}}\cos\theta_{V}^{08}|
|X21/Xρ+||X_{21}/X_{\rho^{+}}| 1.8±0.21.8\pm 0.2 2.2±0.12.2\pm 0.1 3|cosθ1(c69g2c34)tanθ1|\sqrt{3}|\cos\theta_{1}-(\frac{c_{69}}{g^{2}c_{34}})\tan\theta_{1}|
|X23/Xρ+||X_{23}/X_{\rho^{+}}| 0.60.2+0.10.6^{+0.1}_{-0.2} 0.96±0.050.96\pm 0.05 |sinθV08||cosθ1+3(c69g2c34)sinθ1+3c8IPgc34+cosθ1cotθV08||\sin\theta_{V}^{08}||\cos\theta_{1}+\sqrt{3}(\frac{c_{69}}{g^{2}c_{34}})\sin\theta_{1}+\frac{\sqrt{3}c_{8}^{\mathrm{IP}}}{gc_{34}^{+}}\cos\theta_{1}\cot\theta_{V}^{08}|
Table 6: Partial widths of the radiative decays for vector mesons. For comparison, the PDG data PDG are also shown.
    Model [MeV] PDG [MeV]
Γ[ωπ0γ]\Gamma[\omega\rightarrow\pi^{0}\gamma] 0.71±0.090.71\pm 0.09 0.70±0.020.70\pm 0.02
Γ[ωηγ]\Gamma[\omega\rightarrow\eta\gamma] (5.51.3+1.6)×103(5.5^{+1.6}_{-1.3})\times 10^{-3} (3.9±0.3)×103(3.9\pm 0.3)\times 10^{-3}
Γ[ηωγ]\Gamma[\eta^{\prime}\rightarrow\omega\gamma] (4.62.0+3.3)×103(4.6^{+3.3}_{-2.0})\times 10^{-3} (5.4±0.5)×103(5.4\pm 0.5)\times 10^{-3}
Γ[ϕηγ]\Gamma[\phi\rightarrow\eta^{\prime}\gamma] (3.90.9+1.2)×104(3.9^{+1.2}_{-0.9})\times 10^{-4} (2.67±0.09)×104(2.67\pm 0.09)\times 10^{-4}
Γ[ρ0π0γ]\Gamma[\rho^{0}\rightarrow\pi^{0}\gamma] (4.6±0.5)×102(4.6\pm 0.5)\times 10^{-2} (9±1)×102(9\pm 1)\times 10^{-2}
Γ[ϕπ0γ]\Gamma[\phi\rightarrow\pi^{0}\gamma] (179+12)×103(17^{+12}_{-9})\times 10^{-3} (5.4±0.3)×103(5.4\pm 0.3)\times 10^{-3}
Γ[ρηγ]\Gamma[\rho\rightarrow\eta\gamma] (3.30.9+0.8)×102(3.3^{+0.8}_{-0.9})\times 10^{-2} (4.5±0.3)×102(4.5\pm 0.3)\times 10^{-2}
Γ[ϕηγ]\Gamma[\phi\rightarrow\eta\gamma] (2.21.2+0.9)×102(2.2^{+0.9}_{-1.2})\times 10^{-2} (5.6±0.1)×102(5.6\pm 0.1)\times 10^{-2}

In the following, TFFs for Dalitz decay of vector mesons are analyzed. In particular, we fit |FVIPi|2|F_{V^{I}P^{i}}|^{2} for (i,I)=(1,2),(1,3)(i,I)=(1,2),(1,3) and (2,3)(2,3), in each bin for di-lepton invariant mass. In order to minimize the statistic,

χ2=Availabledata(i,I)(1,2),(1,3),(2,3)(|FVIPi|2(|FVIPi|2)Exp.δ(|FVIPi|2)Exp.)2,\displaystyle\chi^{2}=\displaystyle\sum_{\mathrm{Available}\ \mathrm{data}}\displaystyle\sum_{(i,I)}^{(1,2),(1,3),(2,3)}\left(\frac{|F_{V^{I}P^{i}}|^{2}-(|F_{V^{I}P^{i}}|^{2})^{\mathrm{Exp.}}}{\delta(|F_{V^{I}P^{i}}|^{2})^{\mathrm{Exp.}}}\right)^{2}, (194)

we vary the IP violating parameters: (c3IP,c5IP,c6IP,c7IP)(c_{3}^{\mathrm{IP}},c_{5}^{\mathrm{IP}},c_{6}^{\mathrm{IP}},c_{7}^{\mathrm{IP}}). For the expression of |FVIPi|2|F_{V^{I}P^{i}}|^{2} in Eq. (148), the mixing matrices and wavefunction renormalizations of mesons are set as the best fit values in Eqs. (169, 180, 191). In Eq. (194) the experimental data extracted from Refs. Arnaldi:2016pzu ; Achasov:2008zz ; Dzhelyadin:1980tj ; Akhmetshin:2005vy ; Babusci:2014ldz ; Achasov:2000ne ; ::2016hdx are adopted for parameter estimation. In the fitting procedure, two cases: c34+<0c_{34}^{+}<0 and c34+>0c_{34}^{+}>0 are considered. For these cases, one can find that the goodness-of-fit is comparable with each other. We find that the minimum of Eq. (194) is χmin2/d.o.f.=211.8/151(215.4/151)\chi^{2}_{\mathrm{min}}/\mathrm{d.o.f.}=211.8/151\;(215.4/151) for c34+<0(>0)c_{34}^{+}<0\;(>0). As an alternative analysis, we also fit χ2\chi^{2} in the case without the Lepton-G data Dzhelyadin:1980tj . This fitting analysis leads to χmin2/d.o.f.=170.1/144(173.7/144)\chi^{2}_{\mathrm{min}}/\mathrm{d.o.f.}=170.1/144\;(173.7/144) for c34+<0(>0)c_{34}^{+}<0\;(>0), which is a slightly improved result. In this case, we find that the best fit values and the errors of (c3IP,c5IP,c6IP,c7IP)(c_{3}^{\mathrm{IP}},c_{5}^{\mathrm{IP}},c_{6}^{\mathrm{IP}},c_{7}^{\mathrm{IP}}) are almost identical to ones in the case with the Lepton-G data. For each fitting, χmin2/d.o.f.\chi^{2}_{\mathrm{min}}/\mathrm{d.o.f.}, corresponding p-values and the estimated parameters are summarized in Table 7.

Table 7: Fitting results of the TFFs for vector meson decays. For the four cases of fitting, the-goodness-of fit is shown. Estimated 1σ\sigma ranges for the IP violating parameters are also given.
χmin2/d.o.f.\chi^{2}_{\mathrm{min}}/\mathrm{d.o.f.}\hskip 5.69054pt   p-value c3IP×102c_{3}^{\mathrm{IP}}\times 10^{2} c5IP×102c_{5}^{\mathrm{IP}}\times 10^{2} c6IPc_{6}^{\mathrm{IP}} c7IPc_{7}^{\mathrm{IP}}
c34+<0c_{34}^{+}<0 without Lepton-G 170.1/144 0.0680.068 1.12±0.051.12\pm 0.05 6.5±0.26.5\pm 0.2 1.3±0.7-1.3\pm 0.7 1.8±1.3-1.8\pm 1.3
c34+<0c_{34}^{+}<0 with Lepton-G 211.8/151 8.1×1048.1\times 10^{-4} 1.12±0.051.12\pm 0.05 6.5±0.26.5\pm 0.2 1.3±0.7-1.3\pm 0.7 1.8±1.3-1.8\pm 1.3
c34+>0c_{34}^{+}>0 without Lepton-G 173.7/144 0.046 1.12±0.05-1.12\pm 0.05 6.5±0.2-6.5\pm 0.2 0.3±0.8-0.3\pm 0.8 1.1±1.4-1.1\pm 1.4
c34+>0c_{34}^{+}>0 with Lepton-G 215.4/151 4.5×1044.5\times 10^{-4} 1.12±0.05-1.12\pm 0.05 6.5±0.2-6.5\pm 0.2 0.3±0.8-0.3\pm 0.8 1.1±1.4-1.1\pm 1.4

As a result of the fittings without the Lepton-G data, the correlation matrices for (c3IP,c5IP,c6IP,c7IP)(c_{3}^{\mathrm{IP}},c_{5}^{\mathrm{IP}},c_{6}^{\mathrm{IP}},c_{7}^{\mathrm{IP}}) are,

(10.750.120.08210.140.1111.01)(c34+<0),(10.750.120.08610.140.1111.01)(c34+>0).\displaystyle\begin{pmatrix}1&\hskip 8.53581pt0.75&-0.12&-0.082\\ *&\hskip 8.53581pt1&-0.14&-0.11\\ *&\hskip 8.53581pt*&1&1.0\\ *&\hskip 8.53581pt*&*&1\end{pmatrix}(c_{34}^{+}<0),\qquad\begin{pmatrix}1&\hskip 8.53581pt0.75&-0.12&-0.086\\ *&\hskip 8.53581pt1&-0.14&-0.11\\ *&\hskip 8.53581pt*&1&1.0\\ *&\hskip 8.53581pt*&*&1\end{pmatrix}(c_{34}^{+}>0). (195)

In Table 7, one can find that the errors of c6IPc_{6}^{\mathrm{IP}} and c7IPc_{7}^{\mathrm{IP}} are large. This is because the contributions of c6IPc_{6}^{\mathrm{IP}} and c7IPc_{7}^{\mathrm{IP}} are suppressed by either isospin breaking or the ηη\eta-\eta^{\prime} mixing angle for |Fωπ0|2|F_{\omega\pi^{0}}|^{2}, |Fϕπ0|2|F_{\phi\pi^{0}}|^{2} and |Fϕη|2|F_{\phi\eta}|^{2} in Eq. (148). To improve the precisions of c6IPc_{6}^{\mathrm{IP}} and c7IPc_{7}^{\mathrm{IP}}, the experimental errors of the TFFs should be reduced, especially for |Fϕη|2|F_{\phi\eta}|^{2}.

In the following analysis in this paper, we adopt parameter sets which are estimated from the case without the Lepton-G data. The TFFs obtained in the model, which result from the case without the Lepton-G data, are shown in Fig. IV.2. One can see that best fit curves for c34+<0c_{34}^{+}<0 and c34+>0c_{34}^{+}>0 are slightly deviated from one another in ϕηł+l\phi\to\eta\l ^{+}l^{-} whereas the two predictions mostly overlap with each other for ωπ0l+l\omega\to\pi^{0}l^{+}l^{-} and ϕπ0l+l\phi\to\pi^{0}l^{+}l^{-}.

We determine the IP violating parameters, (c4IP,c8IP,c9IP,c10IP)(c_{4}^{\mathrm{IP}},c_{8}^{\mathrm{IP}},c_{9}^{\mathrm{IP}},c_{10}^{\mathrm{IP}}), from Eqs. (183, 190, 193) and Table 7. The result is shown in Table 8 for two cases, c34+<0c_{34}^{+}<0 and c34+>0c_{34}^{+}>0, separately.

Refer to caption
Refer to caption
Refer to caption
Figure IV.2: Transition form factors versus di-lepton invariant mass: (a) ωπ0l+l\omega\to\pi^{0}l^{+}l^{-}, (b) ϕπ0l+l\phi\to\pi^{0}l^{+}l^{-} and (c) ϕηl+l\phi\to\eta l^{+}l^{-}. Black solid lines indicate best fit curves for c34+<0c_{34}^{+}<0 while blue dotted lines imply ones for c34+>0c_{34}^{+}>0. For comparison, experimental data are shown for (a) NA60 Arnaldi:2016pzu , SND Achasov:2008zz , Lepton-G Dzhelyadin:1980tj and CMD-2 Akhmetshin:2005vy , (b) KLOE-2 Babusci:2014ldz and (c) SND Achasov:2000ne and KLOE-2 ::2016hdx .
Table 8: Intrinsic parity violating parameters estimated in the fittings. For c34+<0c_{34}^{+}<0 and c34+>0c_{34}^{+}>0, the confidence intervals are shown, respectively.
(c34+<0)(c_{34}^{+}<0)    c4IP×102c_{4}^{\mathrm{IP}}\times 10^{2}    c8IP×102c_{8}^{\mathrm{IP}}\times 10^{2}     c9IPc_{9}^{\mathrm{IP}}    c10IPc_{10}^{\mathrm{IP}}
68.3% C.L.    2.70.4+0.3-2.7^{+0.3}_{-0.4} 8.60.7+0.7-8.6^{+0.7}_{-0.7} 0.470.22+0.260.47^{+0.26}_{-0.22}    0.110.06+0.05-0.11^{+0.05}_{-0.06}
99.7% C.L.    2.72.1+0.7-2.7^{+0.7}_{-2.1} 8.62.2+2.0-8.6^{+2.0}_{-2.2} 0.470.66+1.110.47^{+1.11}_{-0.66}     0.110.24+0.15-0.11^{+0.15}_{-0.24}
(c34+>0)(c_{34}^{+}>0)    c4IP×102c_{4}^{\mathrm{IP}}\times 10^{2} c8IP×102c_{8}^{\mathrm{IP}}\times 10^{2} c9IPc_{9}^{\mathrm{IP}}     c10IPc_{10}^{\mathrm{IP}}
68.3% C.L.    0.330.31+0.430.33^{+0.43}_{-0.31} 8.60.7+0.78.6^{+0.7}_{-0.7} 0.290.22+0.260.29^{+0.26}_{-0.22}     0.060.06+0.05-0.06^{+0.05}_{-0.06}
99.7% C.L.    0.330.74+2.110.33^{+2.11}_{-0.74} 8.62.0+2.28.6^{+2.2}_{-2.0} 0.290.67+1.090.29^{+1.09}_{-0.67}    0.060.23+0.15-0.06^{+0.15}_{-0.23}

IV.2 Model prediction

In this subsection, predictions of the model are given for the TFFs of Dalitz decays, partial widths and differential decay widths of IP violating modes. We utilize the parameter set obtained in the previous subsection.

In Fig. IV.3, the model predictions for Piγl+l(i=1,2,3)P^{i}\to\gamma l^{+}l^{-}\ (i=1,2,3) are given. We show the result for the two cases, c34+<0c_{34}^{+}<0 and c34+>0c_{34}^{+}>0, respectively. For c34+>0c_{34}^{+}>0, one can find a discrepancy between the model prediction and the precise data obtained by the NA60 collaboration Arnaldi:2016pzu . Thus, we do not give a further result of analysis for the case of c34+>0c_{34}^{+}>0 since this case is disfavored.

In Table 9, the model predictions for widths of IP violating decays are exhibited. Within 99.7%C.L.99.7\%\ \mathrm{C.L.} of the model predictions, one can find no disagreement with experimental data. The substantial error of ϕωπ0\phi\to\omega\pi^{0} comes from gθ¯123g\bar{\theta}_{123} in Eq. (135), which is proportional to a ϕωπ0\phi\omega\pi^{0} coupling. Using the best-fit mixing matrix for mesons, one can obtain the coupling,

gθ¯123=0.11c3IPg20.15c5IPg+0.011c6IP0.023c7IP,\displaystyle g\bar{\theta}_{123}=0.11c_{3}^{\mathrm{IP}}g^{2}-0.15c_{5}^{\mathrm{IP}}g+0.011c_{6}^{\mathrm{IP}}-0.023c_{7}^{\mathrm{IP}}, (196)

where each term has a comparable contribution to gθ¯123g\bar{\theta}_{123}. In Eq. (196), the errors of g,c6IPg,c_{6}^{\mathrm{IP}} and c7IPc_{7}^{\mathrm{IP}} in Tables 1 and 7 are large, and give rise to uncertainty of Γ[ϕωπ0]\Gamma[\phi\to\omega\pi^{0}] in Eq. (136). Likewise, for Γ[ϕπ0l+l]\Gamma[\phi\to\pi^{0}l^{+}l^{-}], the substantial error arises since the width includes the VVP coupling in Eq. (148). For ηπ+πγ\eta\to\pi^{+}\pi^{-}\gamma the coupling associated with ηππγ\eta\pi\pi\gamma is given in Eq. (159). To determine c34+c_{34}^{+} in Eq. (160), we used the relation c34+=gc34+/gc_{34}^{+}=gc_{34}^{+}/g. With Eq. (183), Table 1 and c34+<0c_{34}^{+}<0, one can obtain c34+=(1.5±0.4)×102c_{34}^{+}=(-1.5\pm 0.4)\times 10^{-2}, which leads to uncertainty of Γ[ηπ+πγ]\Gamma[\eta\to\pi^{+}\pi^{-}\gamma].

In Fig. IV.4, the differential decay widths for Piπ+πγ(i=2,3)P^{i}\to\pi^{+}\pi^{-}\gamma\ (i=2,3) are displayed. For comparison, the data measured by the WASA-at-COSY collaboration Adlarson:2011xb , which are originally given in arbitrary unit, are also shown for ηπ+πγ\eta\to\pi^{+}\pi^{-}\gamma. For ηπ+πγ\eta\to\pi^{+}\pi^{-}\gamma in (a) and (b), the widths are given in two units: one is physical unit which is based on the calculation of decay width, while another is arbitrary unit. In order to compare the model values in physical unit with the experimental data, we multiplied WASA-at-COSY data (including central values and 1σ\sigma errors) by (a) 101010^{-10} and (b) 5×1095\times 10^{-9}, respectively. Likewise, in arbitrary unit, our data are rescaled by the same factors. We find that our numerical result agrees with the experimental data if one chooses the appropriate rescaling factors for comparison. In (c), one can find a resonance region around Eγ160MeVE_{\gamma}\sim 160\mathrm{MeV}. This is because the photon energy in the rest frame of η\eta^{\prime} is related to π+π\pi^{+}\pi^{-} invariant mass as Eγ=(Mη2s+)/2MηE_{\gamma}=(M_{\eta^{\prime}}^{2}-s_{+-})/2M_{\eta^{\prime}}, which indicates that Eγ=164.9MeV(159.1MeV)E_{\gamma}=164.9\mathrm{MeV}(159.1\mathrm{MeV}) corresponds to the pole which arises from intermediate ρ(ω)\rho\ (\omega).

In Fig. IV.5, we present the numerical result for the Dalitz distributions of VIPil+lV^{I}\to P^{i}l^{+}l^{-} for (i,I)=(1,1),(2,1),(2,2),(3,3)(i,I)=(1,1),(2,1),(2,2),(3,3). Since these modes are not measured yet, it is expected that one can test the validity of the model via future experiments.

In Fig. IV.6, predictions for a branching ratio for ρ0π0π+π\rho^{0}\to\pi^{0}\pi^{+}\pi^{-} and decay widths of VIπ0π+π(I=2,3)V^{I}\to\pi^{0}\pi^{+}\pi^{-}\ (I=2,3) are shown. Varying the value of gc123gc_{123}, we estimate error bands of the model prediction. For simplicity, we do not account uncertainty which arises from parameters in the vector meson propagators in Eq. (43). We find that if one fixes gc1230.35gc_{123}\sim 0.35, the predictions for VIπ0π+π(I=1,2,3)V^{I}\to\pi^{0}\pi^{+}\pi^{-}\ (I=1,2,3) are consistent with the PDG data PDG .

In the vicinity of the peak region, plots of the TFFs are exhibited for Dalitz decays in Fig. IV.7. The partial contributions from ρ,ω\rho,\omega, and interference between ρ\rho and ω\omega are also indicated. In (a) and (c), the predictions in 68.3%\% C.L. are shown for TFFs of ϕπ0l+l\phi\to\pi^{0}l^{+}l^{-} and ηγl+l\eta^{\prime}\to\gamma l^{+}l^{-}, respectively. In (b) and (d), the best fit predictions, in which the model parameters are fixed, are given for the two modes. For both ϕπ0l+l\phi\to\pi^{0}l^{+}l^{-} and ηγl+l\eta^{\prime}\to\gamma l^{+}l^{-}, we find that the contribution from ω\omega pole is dominant around the region of resonance. It is shown that the partial contribution of interference between ρ\rho and ω\omega is not negligible. In particular, for (b), one can see that the contribution of the interference is sizable.

Using Eq. (69), we obtain the decay widths for ωππ,ϕK+K\omega\to\pi\pi,\phi\to K^{+}K^{-} and ϕK0K¯0\phi\to K^{0}\bar{K}^{0} which are shown in Table 10. We should note that the leading contribution of the decay is a one-loop level and isospin breaking amplitude. About the ϕK+K\phi\to K^{+}K^{-} and ϕK0K¯0\phi\to K^{0}\bar{K}^{0}, they are smaller than the experimental values. However the discrepancy depends on the choice of fπ/fKf_{\pi}/f_{K} and its deviation from unity leads to two loop order effect. If the ratio is modified properly, one can obtain theoretical predictions which are in good agreement with the experimental results. We also note that the ratio of the decay widths of ϕK+K\phi\to K^{+}K^{-} and ϕK0K¯0\phi\to K^{0}\bar{K}^{0} deviates from unity for both theoretical prediction and experimental result. This implies the presence of the isospin breaking contribution. We note the ratio of the two decay widths is in good agreement between theory and experiment:

(Γ[ϕK+K]/Γ[ϕK0K0¯])Th.\displaystyle(\Gamma[\phi\to K^{+}K^{-}]/\Gamma[\phi\to K^{0}\bar{K^{0}}])_{\mathrm{Th}.} =\displaystyle= 1.530.15+0.22,\displaystyle 1.53^{+0.22}_{-0.15}, (197)
(Γ[ϕK+K]/Γ[ϕK0K0¯])PDG\displaystyle(\Gamma[\phi\to K^{+}K^{-}]/\Gamma[\phi\to K^{0}\bar{K^{0}}])_{\mathrm{PDG}} =\displaystyle= 1.430±0.026.\displaystyle 1.430\pm 0.026. (198)

With tree-level formulae, one may not explain the width of KK^{*} and ρ\rho simultaneously, while the 1-loop formulae in Eqs. (53, 55) can reproduce both of them within errors. In Table 11, the model predictions with 1-loop correction for Γ[ρππ]\Gamma[\rho\to\pi\pi] and Γ[K±(Kπ)±]\Gamma[K^{*\pm}\to(K\pi)^{\pm}] are shown. The 1-loop corrected formulae include the parameters in Table 1 so that these parameters lead to the sizable errors in the 1-loop prediction for the widths which are given in Table 11.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure IV.3: Transition form factors versus di-lepton invariant mass: (a) π0γl+l\pi^{0}\to\gamma l^{+}l^{-}, (b)-(c) ηγl+l\eta\to\gamma l^{+}l^{-} in the mass range for [2me,300]MeV[2m_{e},300]\mathrm{MeV} and for [300,470]MeV[300,470]\mathrm{MeV} respectively and (d) ηγl+l\eta^{\prime}\to\gamma l^{+}l^{-}. For c34+<0c_{34}^{+}<0, blue (cyan) bands indicate theoretical predictions in 68.3%68.3\% (99.7%)(99.7\%) C.L. while for c34+>0c_{34}^{+}>0, green (yellow) bands represent ones in 68.3%68.3\% (99.7%)(99.7\%) C.L. For comparison, the experimental data obtained by (b)-(c) NA60 Arnaldi:2016pzu , Lepton-G Dzhelyadin:1980kh , CB/TAPS Aguar-Bartolome:2013vpw and SND Achasov:2000ne and (d) BES III Ablikim:2015wnx , Lepton-G Dzhelyadin:1980ki are shown.
Table 9: Partial decay widths of IPV decay modes. As model predictions, we give the estimated ranges of 68.3%68.3\% C.L. and ones for 99.7%99.7\% C.L., respectively. For comparison, the data obtained by the BES III collaboration Ablikim:2015wnx is shown for Γ[ηγe+e]\Gamma[\eta^{\prime}\to\gamma e^{+}e^{-}] and the PDG data PDG are given for other decay modes. For ρ0π0e+e\rho^{0}\to\pi^{0}e^{+}e^{-} and ϕημ+μ\phi\to\eta\mu^{+}\mu^{-}, the 90%90\% C.L. upper bounds are written while 1σ1\sigma errors are shown for the other experimental values.
Decay mode   Model (68.3%C.L.)(68.3\%\mathrm{C.L.}) [MeV]   Model (99.7%C.L.)(99.7\%\mathrm{C.L.}) [MeV]   Exp. [MeV]
Γ[π0γe+e]\Gamma[\pi^{0}\to\gamma e^{+}e^{-}] (9.050.01+0.01)×108(9.05^{+0.01}_{-0.01})\times 10^{-8} (9.050.48+1.44)×108(9.05^{+1.44}_{-0.48})\times 10^{-8} (9.1±0.3)×108(9.1\pm 0.3)\times 10^{-8}
Γ[ηγe+e]\Gamma[\eta\to\gamma e^{+}e^{-}] (8.540.04+0.05)×106(8.54^{+0.05}_{-0.04})\times 10^{-6} (8.540.08+0.41)×106(8.54^{+0.41}_{-0.08})\times 10^{-6} (9.0±0.6)×106(9.0\pm 0.6)\times 10^{-6}
Γ[ηγμ+μ]\Gamma[\eta\to\gamma\mu^{+}\mu^{-}] (3.70.2+0.3)×107(3.7^{+0.3}_{-0.2})\times 10^{-7} (3.70.4+2.2)×107(3.7^{+2.2}_{-0.4})\times 10^{-7} (4.1±0.6)×107(4.1\pm 0.6)\times 10^{-7}
Γ[ηγe+e]\Gamma[\eta^{\prime}\to\gamma e^{+}e^{-}] (8.70.3+0.5)×105(8.7^{+0.5}_{-0.3})\times 10^{-5} (8.70.8+38.2)×105(8.7^{+38.2}_{-0.8})\times 10^{-5} (9.28±0.95)×105(9.28\pm 0.95)\times 10^{-5}
Γ[ηγμ+μ]\Gamma[\eta^{\prime}\to\gamma\mu^{+}\mu^{-}] (1.60.3+0.5)×105(1.6^{+0.5}_{-0.3})\times 10^{-5} (1.60.7+38.5)×105(1.6^{+38.5}_{-0.7})\times 10^{-5} (2.1±0.6)×105(2.1\pm 0.6)\times 10^{-5}
Γ[ηπ+πγ]\Gamma[\eta\to\pi^{+}\pi^{-}\gamma] (8.72.2+2.4)×105(8.7^{+2.4}_{-2.2})\times 10^{-5} (8.77.2+8.4)×105(8.7^{+8.4}_{-7.2})\times 10^{-5} (5.5±0.2)×105(5.5\pm 0.2)\times 10^{-5}
Γ[ηπ+πγ]\Gamma[\eta^{\prime}\to\pi^{+}\pi^{-}\gamma] (6.21.0+1.2)×102(6.2^{+1.2}_{-1.0})\times 10^{-2} (6.22.6+4.3)×102(6.2^{+4.3}_{-2.6})\times 10^{-2} (5.8±0.3)×102(5.8\pm 0.3)\times 10^{-2}
Γ[ϕωπ0]\Gamma[\phi\to\omega\pi^{0}] (4844+314)×104(48^{+314}_{-44})\times 10^{-4} (4848+4845)×104(48^{+4845}_{-48})\times 10^{-4} (2.0±0.2)×104(2.0\pm 0.2)\times 10^{-4}
Γ[ρ0π0e+e]\Gamma[\rho^{0}\to\pi^{0}e^{+}e^{-}] (0.430.05+0.05)×103(0.43^{+0.05}_{-0.05})\times 10^{-3} (0.430.13+0.16)×103(0.43^{+0.16}_{-0.13})\times 10^{-3} <6.0×103<6.0\times 10^{-3}
Γ[ρ0π0μ+μ]\Gamma[\rho^{0}\to\pi^{0}\mu^{+}\mu^{-}] (5.00.7+0.9)×105(5.0^{+0.9}_{-0.7})\times 10^{-5} (5.02.2+3.3)×105(5.0^{+3.3}_{-2.2})\times 10^{-5} -
Γ[ρ0ηe+e]\Gamma[\rho^{0}\to\eta e^{+}e^{-}] (2.50.5+0.7)×104(2.5^{+0.7}_{-0.5})\times 10^{-4} (2.52.2+2.4)×104(2.5^{+2.4}_{-2.2})\times 10^{-4} -
Γ[ρ0ημ+μ]\Gamma[\rho^{0}\to\eta\mu^{+}\mu^{-}] (3.30.8+1.1)×108(3.3^{+1.1}_{-0.8})\times 10^{-8} (3.32.8+4.4)×108(3.3^{+4.4}_{-2.8})\times 10^{-8} -
Γ[ωπ0e+e]\Gamma[\omega\to\pi^{0}e^{+}e^{-}] (6.80.8+0.9)×103(6.8^{+0.9}_{-0.8})\times 10^{-3} (6.82.3+3.3)×103(6.8^{+3.3}_{-2.3})\times 10^{-3} (6.5±0.5)×103(6.5\pm 0.5)\times 10^{-3}
Γ[ωπ0μ+μ]\Gamma[\omega\to\pi^{0}\mu^{+}\mu^{-}] (0.890.13+0.15)×103(0.89^{+0.15}_{-0.13})\times 10^{-3} (0.890.30+0.49)×103(0.89^{+0.49}_{-0.30})\times 10^{-3} (1.1±0.3)×103(1.1\pm 0.3)\times 10^{-3}
Γ[ωηe+e]\Gamma[\omega\to\eta e^{+}e^{-}] (4.21.0+1.3)×105(4.2^{+1.3}_{-1.0})\times 10^{-5} (4.23.4+4.6)×105(4.2^{+4.6}_{-3.4})\times 10^{-5} -
Γ[ωημ+μ]\Gamma[\omega\to\eta\mu^{+}\mu^{-}] (1.70.5+0.7)×108(1.7^{+0.7}_{-0.5})\times 10^{-8} (1.71.3+4.3)×108(1.7^{+4.3}_{-1.3})\times 10^{-8} -
Γ[ϕπ0e+e]\Gamma[\phi\to\pi^{0}e^{+}e^{-}] (2313+22)×105(23^{+22}_{-13})\times 10^{-5} (2323+424)×105(23^{+424}_{-23})\times 10^{-5} (4.8±1.2)×105(4.8\pm 1.2)\times 10^{-5}
Γ[ϕπ0μ+μ]\Gamma[\phi\to\pi^{0}\mu^{+}\mu^{-}] (6.74.7+16.7)×105(6.7^{+16.7}_{-4.7})\times 10^{-5} (6.76.6+388.3)×105(6.7^{+388.3}_{-6.6})\times 10^{-5} -
Γ[ϕηe+e]\Gamma[\phi\to\eta e^{+}e^{-}] (1.91.0+0.8)×104(1.9^{+0.8}_{-1.0})\times 10^{-4} (1.91.9+71.0)×104(1.9^{+71.0}_{-1.9})\times 10^{-4} (4.9±0.4)×104(4.9\pm 0.4)\times 10^{-4}
Γ[ϕημ+μ]\Gamma[\phi\to\eta\mu^{+}\mu^{-}] (1.10.6+0.5)×105(1.1^{+0.5}_{-0.6})\times 10^{-5} (1.11.1+105.0)×105(1.1^{+105.0}_{-1.1})\times 10^{-5} <4.0×105<4.0\times 10^{-5}
Γ[ϕηe+e]\Gamma[\phi\to\eta^{\prime}e^{+}e^{-}] (2.00.5+0.7)×106(2.0^{+0.7}_{-0.5})\times 10^{-6} (2.01.7+2.5)×106(2.0^{+2.5}_{-1.7})\times 10^{-6} -
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure IV.4: Plots of differential decay width of Pπ+πγP\to\pi^{+}\pi^{-}\gamma: (a), (c) the distributions of photon energy in the rest frame of η\eta and η\eta^{\prime}, (b), (d) the distributions of cosine of the angle between π+\pi^{+} and γ\gamma in the rest frame of π+π\pi^{+}\pi^{-} for decays of η\eta and η\eta^{\prime}, respectively. For comparison, the data measured by the WASA-at-COSY collaboration Adlarson:2011xb are shown as red circles in (a) and (b). For both (a) and (b), the vertical axis on the left side denotes the physical differential width while one on the right side shows arbitrary unit. See the text for a detailed explanation of units in which the differential widths of ηπ+πγ\eta\to\pi^{+}\pi^{-}\gamma are calculated.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure IV.5: Prediction of the model for TFFs: (a) ρ0π0l+l\rho^{0}\to\pi^{0}l^{+}l^{-}, (b) ρ0ηl+l\rho^{0}\to\eta l^{+}l^{-}, (c) ωηl+l\omega\to\eta l^{+}l^{-} and (d) ϕηl+l\phi\to\eta^{\prime}l^{+}l^{-}. Blue (cyan) bands imply model prediction in 68.3%68.3\% (95.4%)(95.4\%) C.L.
Refer to caption
Refer to caption
Refer to caption
Figure IV.6: Plots of model prediction: (a) branching ratio of ρ0π0π+π\rho^{0}\to\pi^{0}\pi^{+}\pi^{-}, (b) decay width of ωπ0π+π\omega\to\pi^{0}\pi^{+}\pi^{-} and (c) decay width of ϕπ0π+π\phi\to\pi^{0}\pi^{+}\pi^{-}. In these plots, blue (cyan) bands represent 68.3%68.3\% (99.7%\%) confidence intervals of the model predictions while red bands indicate 1σ\sigma ranges of the PDG data PDG .
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure IV.7: Transition form factors versus di-lepton invariant mass in the vicinity of the resonance regions: (a) ϕπ0l+l\phi\to\pi^{0}l^{+}l^{-} with 68.3%\% C.L. error bands, (b) ϕπ0l+l\phi\to\pi^{0}l^{+}l^{-} for the best fit prediction, (c) ηγl+l\eta^{\prime}\to\gamma l^{+}l^{-} with 68.3%\% C.L. error bands and (d) ηγl+l\eta^{\prime}\to\gamma l^{+}l^{-} for the best fit prediction. For each figure, partial contributions from ρ0\rho^{0}, ω\omega and interference between ρ0\rho^{0} and ω\omega are shown, respectively.
Table 10: The results of the decay widths for VPPV\to PP. They are obtained based on the one-loop corrected formulae in Eq.(53) and Eq.(55).
Decay mode     Theory (MeV) PDG (MeV)
Γ[ωππ]\Gamma[\omega\to\pi\pi] 0.1140.02+0.030.114^{+0.03}_{-0.02} 0.130±0.0160.130\pm 0.016
Γ[ϕK+K]\Gamma[\phi\to K^{+}K^{-}] 1.430.10+0.151.43^{+0.15}_{-0.10} 2.086±0.0262.086\pm 0.026
Γ[ϕK0K¯0]\Gamma[\phi\to K^{0}\bar{K}^{0}] 0.9350.06+0.090.935^{+0.09}_{-0.06} 1.459±0.0201.459\pm 0.020
Table 11: The results of the decay widths for VPPV\to PP.
Decay mode     Theory (MeV) PDG (MeV)
Γ[ρππ]\Gamma[\rho\to\pi\pi] 15747+66157^{+66}_{-47} 149.1±0.8149.1\pm 0.8
Γ[K±(Kπ)±]\Gamma[K^{*\pm}\to(K\pi)^{\pm}] 45.414.6+20.645.4^{+20.6}_{-14.6} 46.2±1.346.2\pm 1.3

V SU(3) breaking effect in IPV interaction

In the previous sections, we include the SU(3) breaking effects from the intrinsic parity conserving part. These effects are order of O(p4mπ2)O(p^{4}m_{\pi}^{2}). The full SU(3) breaking effect for IPV processes up to this order comes from one loop diagrams and also from SU(3) breaking IPV vertex. The latter interactions are studied in Hashimoto:1996ny . Below we study the SU(3) breaking effect from the IPV vertex. We focus on the processes ρπγ\rho\to\pi\gamma and KKγK^{\ast}\to K\gamma and show how these terms improve the predictions compared with those without SU(3) breaking terms. One loop corrections and the renormalization of the divergence is beyond the scope of this paper. We consider the following SU(3) breaking IPV interaction terms

ΔL3\displaystyle\Delta L_{3} =\displaystyle= c31bIPϵμνρσTr[g{FVμν,ϵ^}{αLραRσαRραLσ}],\displaystyle c_{31b}^{\text{IP}}\epsilon^{\mu\nu\rho\sigma}\text{Tr}[g\{F_{V\mu\nu},\hat{\epsilon}\}\{\alpha_{L\rho}\alpha_{R\sigma}-\alpha_{R\rho}\alpha_{L\sigma}\}],
ΔL3\displaystyle\Delta L_{3}^{\prime} =\displaystyle= c32bIPϵμνρσTr[gFVμν{αLρϵ^αRσαRρϵ^αLσ}],\displaystyle c_{32b}^{\text{IP}}\epsilon^{\mu\nu\rho\sigma}\text{Tr}[gF_{V\mu\nu}\{\alpha_{L\rho}\hat{\epsilon}\alpha_{R\sigma}-\alpha_{R\rho}\hat{\epsilon}\alpha_{L\sigma}\}],
ΔL3′′\displaystyle\Delta L_{3}^{{}^{\prime\prime}} =\displaystyle= c33bIPϵμνρσTr[g{FVμν,ϵ^}]Tr{αLραRσαRραLσ},\displaystyle c_{33b}^{\text{IP}}\epsilon^{\mu\nu\rho\sigma}\text{Tr}[g\{F_{V\mu\nu},\hat{\epsilon}\}]\text{Tr}\{\alpha_{L\rho}\alpha_{R\sigma}-\alpha_{R\rho}\alpha_{L\sigma}\},
ΔL4\displaystyle\Delta L_{4} =\displaystyle= c41bIPϵμνρσTr[{(F^L+F^R)μν,ϵ^}{αLραRσαRραLσ}],\displaystyle c_{41b}^{\text{IP}}\epsilon^{\mu\nu\rho\sigma}\text{Tr}[\{(\hat{F}_{L}+\hat{F}_{R})_{\mu\nu},\hat{\epsilon}\}\{\alpha_{L\rho}\alpha_{R\sigma}-\alpha_{R\rho}\alpha_{L\sigma}\}],
ΔL4\displaystyle\Delta L_{4}^{\prime} =\displaystyle= c42bIPϵμνρσTr[(F^L+F^R)μν{αLρϵ^αRσαRρϵ^αLσ}],\displaystyle c_{42b}^{\text{IP}}\epsilon^{\mu\nu\rho\sigma}\text{Tr}[(\hat{F}_{L}+\hat{F}_{R})_{\mu\nu}\{\alpha_{L\rho}\hat{\epsilon}\alpha_{R\sigma}-\alpha_{R\rho}\hat{\epsilon}\alpha_{L\sigma}\}],
ΔL4′′\displaystyle\Delta L_{4}^{{}^{\prime\prime}} =\displaystyle= c43bIPϵμνρσTr[{(F^L+F^R)μν,ϵ^}]Tr{αLραRσαRραLσ},\displaystyle c_{43b}^{\text{IP}}\epsilon^{\mu\nu\rho\sigma}\text{Tr}[\{(\hat{F}_{L}+\hat{F}_{R})_{\mu\nu},\hat{\epsilon}\}]\text{Tr}\{\alpha_{L\rho}\alpha_{R\sigma}-\alpha_{R\rho}\alpha_{L\sigma}\}, (199)

where ϵ^\hat{\epsilon} are spurion field for SU(3) breaking,

ϵ^\displaystyle\hat{\epsilon} =\displaystyle= ξϵξ+ξϵξ,ϵ=diag.(ϵ1,ϵ2,ϵ3).\displaystyle\xi\epsilon\xi+\xi^{\dagger}\epsilon\xi^{\dagger},\epsilon=\text{diag.}(\epsilon_{1},\epsilon_{2},\epsilon_{3}). (200)

ΔL3′′\Delta L_{3}^{{}^{\prime\prime}} and ΔL4′′\Delta L_{4}^{{}^{\prime\prime}} are newly introduced and the others are studied in Hashimoto:1996ny . Below we assume that ϵ\epsilon is proportional to current quark mass matrix diag.(mu,md,ms)\text{diag.}(m_{u},m_{d},m_{s}). Using the Lagrangian, one can compute the effective interactions for ρπγ\rho\rightarrow\pi\gamma and KKγK^{\ast}\rightarrow K\gamma. To obtain the interactions, not only the direct interaction of VPγV\to P\gamma but also the contribution from VV0PγPV\to V^{0}P\to\gamma P is included.

Leff\displaystyle L_{eff} =\displaystyle= 4efϵμνρσAρ[{16gc^34+2md^3ac}μρν0σπ0\displaystyle-\frac{4e}{f}\epsilon^{\mu\nu\rho\sigma}A_{\rho}\left[\left\{-\frac{1}{6}g\hat{c}_{34}^{+}-\frac{2-\widehat{m_{d}}}{3}a-c\right\}\partial_{\mu}\rho^{0}_{\nu}\partial_{\sigma}\pi^{0}\right. (201)
+\displaystyle+ {16gc^34+2md^3a+1md^2bc}μρν+σπ\displaystyle\left\{-\frac{1}{6}g\hat{c}_{34}^{+}-\frac{2-\widehat{m_{d}}}{3}a+\frac{1-\widehat{m_{d}}}{2}b-c\right\}\partial_{\mu}\rho^{+}_{\nu}\partial_{\sigma}\pi^{-}
\displaystyle- {13gc^34+md^+ms^3(a+3c)}μKν0σK¯0\displaystyle\left\{-\frac{1}{3}g\hat{c}_{34}^{+}-\frac{\widehat{m_{d}}+\widehat{m_{s}}}{3}(a+3c)\right\}\partial_{\mu}K^{\ast 0}_{\nu}\partial_{\sigma}\bar{K}^{0}
+\displaystyle+ {16gc^34+2ms^3a+1ms^2bc}μKν+σK],\displaystyle\left.\left\{-\frac{1}{6}g\hat{c}_{34}^{+}-\frac{2-\widehat{m_{s}}}{3}a+\frac{1-\widehat{m_{s}}}{2}b-c\right\}\partial_{\mu}K^{\ast+}_{\nu}\partial_{\sigma}K^{-}\right],

where ms^=msmu\widehat{m_{s}}=\frac{m_{s}}{m_{u}} and md^=mdmu\widehat{m_{d}}=\frac{m_{d}}{m_{u}}. gc^34+g\hat{c}_{34}^{+}, aa, bb and cc are defined as,

gc^34+\displaystyle g\hat{c}_{34}^{+} =\displaystyle= gc34+2(1+ms^+md^)c,\displaystyle gc_{34}^{+}-2(1+\widehat{m_{s}}+\widehat{m_{d}})c,
a\displaystyle a =\displaystyle= gϵ1(c31bIP+2c41bIP+12(c32bIP+2c42bIP)),\displaystyle g\epsilon_{1}\left(c_{31b}^{\text{IP}}+2c_{41b}^{\text{IP}}+\frac{1}{2}(c_{32b}^{\text{IP}}+2c_{42b}^{\text{IP}})\right),
b\displaystyle b =\displaystyle= gϵ1(c32bIP+2c42bIP),\displaystyle g\epsilon_{1}(c_{32b}^{\text{IP}}+2c_{42b}^{\text{IP}}),
c\displaystyle c =\displaystyle= gϵ1(c33bIP+2c43bIP).\displaystyle g\epsilon_{1}(c_{33b}^{\text{IP}}+2c_{43b}^{\text{IP}}). (202)

We note that cc contributes to all four modes in the same manner and the strength of the contribution is proportional to Tr(QM)=2mu(md+ms)3\text{Tr}{(QM)}=\frac{2m_{u}-(m_{d}+m_{s})}{3}.

In our numerical calculation, we fit all four modes and determine the parameters.

(gc^34+,a,b,c)=(0.10,0.031,0.022,0.01).\displaystyle(g\hat{c}_{34}^{+},a,b,c)=(-0.10,0.031,0.022,-0.01). (203)

With the determined parameters, we reproduce the central values of PDG decay widths for KKγK^{\ast}\to K\gamma and ρπγ\rho\to\pi\gamma shown in Table III and IV.

VI Summary and discussion

The IP violating phenomena of light hadrons are investigated in the model of chiral Lagrangian including vector mesons. We introduced the suitable tree-level interaction terms which include singlet fields of vector meson and pseudoscalar. Power counting of superficial degree of divergence enables us to specify the 1-loop order interaction Lagrangian under the presence of the tree-level part. With introduced interactions, 1-loop correction to the self-energies of vector mesons is analyzed. Using the 1-loop corrected mass matrix, we obtained the expressions of physical masses and the mixing matrix of ρ,ω\rho,\omega and ϕ\phi. Including the kinetic mixing effect, the model expressions of the width for VPPV\to PP decay are calculated. We also analyzed the mixing between photon and neutral vector mesons, which gives important contribution to processes such as VPVPγV\to PV^{*}\to P\gamma.

For pseusoscalars, we took account of 1-loop correction to the mass matrix. The physical states of π0,η,η\pi^{0},\eta,\eta^{\prime} are written in terms of SU(3) eigenstates through wavefunction renormalizations and an orthogonal matrix which diagonalizes the 1-loop corrected mass matrix.

On the basis of the framework incorporating octet and singlet fields, the IP violating operators are introduced within SU(3) invariance. We constructed i(i=510)\mathcal{L}_{i}(i=5-10), which includes the SU(3) singlet fields of a pseudoscalar and a vector meson in addition to ones introduced in Refs. Fujiwara:1984mp ; Bando:1987br ; Hashimoto:1996ny . In order to realize the experimental data in the framework including the singlets and octets, we found that the singlet-induced operators play an important role; if i(i=510)\mathcal{L}_{i}(i=5-10) were absent in the model, Γ[η2γ]\Gamma[\eta^{\prime}\to 2\gamma] would become much smaller than the observed value in the experiments.

Using the introduced IP violating operators, we obtained the analytic formulae for the IP violating (differential) decay widths. In particular, the widths of PVγ,VPγ,ϕωγ,P2γ,VPπ+πP\to V\gamma,V\to P\gamma,\phi\to\omega\gamma,P\to 2\gamma,V\to P\pi^{+}\pi^{-} are given. Moreover, the electromagnetic TFFs of Pγl+lP\to\gamma l^{+}l^{-} and VPl+lV\to Pl^{+}l^{-} are also obtained. Additionally, the formula of the differential width for Pπ+πγP\to\pi^{+}\pi^{-}\gamma is also shown.

For parameter estimation, we used precise data of spectrum function for τKSπν\tau^{-}\to K_{S}\pi^{-}\nu measured by the Belle collaboration Epifanov:2007rf . Furthermore, the PDG data PDG of physical masses of charged vector mesons, ρ+\rho^{+} and K+K^{*+} are used for parameter estimation of the coefficient of 1-loop order interaction terms. We also estimated the model parameters which appear in the mass matrix of neutral vector mesons by using the PDG data PDG of mρ,mωm_{\rho},m_{\omega} and mϕm_{\phi}. Since the masses of vector mesons are precisely measured in the experiment, the model parameters in the mass matrix are estimated with smaller uncertainty.

The numerical analyses of IP violating decay widths, the TFFs for electromagnetic decays, are carried out in the model. In order to estimate the IP violating parameters, we utilized the PDG data PDG of widths for radiative decays. Specifically, the experimental data of Γ[KKγ]\Gamma[K^{*}\to K\gamma] and the effective coupling ratios of V0V0P0V^{0}V^{0}P^{0} to ρ+π+γ\rho^{+}\pi^{+}\gamma are used. We also considered constraints on a mass matrix and a mixing matrix of pseudoscalars. To obtain a parameter region which is consistent with the masses and Γ[P2γ]\Gamma[P\to 2\gamma], we solved the system of equations to realize the PDG data PDG . Furthermore, χ2\chi^{2} fitting for the TFFs measured in the experiments Arnaldi:2016pzu ; Achasov:2008zz ; Dzhelyadin:1980tj ; Akhmetshin:2005vy ; Babusci:2014ldz ; Achasov:2000ne ; ::2016hdx is carried out. We found that the goodness-of-fit is improved if one does not use the input data measured by the Lepton-G experiment. Hence, we adopted the parameter set estimated without their data.

Using the estimated model parameters, we gave the model predictions for IP violating decays. In particular, we found that the electromagnetic TFFs of ηγl+l,ηγl+l\eta\to\gamma l^{+}l^{-},\eta^{\prime}\to\gamma l^{+}l^{-} are consistent with the experimental data for c34+<0c_{34}^{+}<0. The partial widths of Pγl+lP\to\gamma l^{+}l^{-}, Pπ+πγP\to\pi^{+}\pi^{-}\gamma, ϕωπ0\phi\to\omega\pi^{0} and VPl+lV\to Pl^{+}l^{-} are calculated, none of which result in significant deviation from the experimental data up to 99.7%99.7\% C.L. For the differential widths of ηπ+πγ\eta\to\pi^{+}\pi^{-}\gamma and ηπ+πγ\eta^{\prime}\to\pi^{+}\pi^{-}\gamma, the model predictions are given. The differential width of ηπ+πγ\eta\to\pi^{+}\pi^{-}\gamma is compared with the data measured by the WASA-at-COSY collaboration Adlarson:2011xb . Here, no significant deviation is found in this result. The predictions are also obtained for the TFFs of ρπ0l+l,ρηl+l,ωηl+l\rho\to\pi^{0}l^{+}l^{-},\rho\to\eta l^{+}l^{-},\omega\to\eta l^{+}l^{-} and ϕηl+l\phi\to\eta^{\prime}l^{+}l^{-}, which are expected be observed in future experiments. The model predictions for Br[ρ0π0π+π]\mathrm{Br}[\rho^{0}\to\pi^{0}\pi^{+}\pi^{-}], Γ[ωπ0π+π]\Gamma[\omega\to\pi^{0}\pi^{+}\pi^{-}] and Γ[ϕπ0π+π]\Gamma[\phi\to\pi^{0}\pi^{+}\pi^{-}] are also presented. We found that these IP violating observables are consistent with the PDG values PDG . In the vicinity of resonance region, the TFFs for ϕπ0l+l\phi\to\pi^{0}l^{+}l^{-} and one for ηγl+l\eta^{\prime}\to\gamma l^{+}l^{-} are analyzed. It is shown that the ω\omega pole is dominant in the peak region for both TFFs. We also found that the contribution of the interference between ρ\rho and ω\omega is non-negligible in the peak region. It is shown that the theoretical prediction for Γ[ϕK+K]/Γ[ϕK0K0¯]\Gamma[\phi\to K^{+}K^{-}]/\Gamma[\phi\to K^{0}\bar{K^{0}}] agrees with the experimental value, although Γ[ϕK+K(K0K0¯)]\Gamma[\phi\to K^{+}K^{-}(K^{0}\bar{K^{0}})] depends on two-loop ordered uncertainty. Our framework, which includes O(p4)O(p^{4}) contribution both in IP conserving part and in IPV part, can not explain simultaneously decay widths of K+K+γK^{\ast+}\to K^{+}\gamma and K0K0γK^{\ast 0}\to K^{0}\gamma. As the possible solutions of the problem, we study the O(p4mπ2)O(p^{4}m_{\pi}^{2}) contribution. In addition to SU(3) breaking interactions for IPV part of Ref. Hashimoto:1996ny , we include two new terms. With these terms, we can explain the decay widths for all four modes of ρπγ\rho\to\pi\gamma and KKγK^{\ast}\to K\gamma. In contrast to the treatment of Ref. Hashimoto:1996ny , we assume that SU(3) breaking is proportional to current quark mass.

Acknowledgement

We thank H. Tagawa for helpful discussion. This work is partially supported by Scientific Grants by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Nos. 24540272 (HU), 26247038 (HU), 15H01037 (HU), 16H00871 (HU), 16H02189 (HU)) and by JSPS KAKENHI Grant Numbers JP16H03993 (TM), and JP17K05418 (TM).

Appendix A Counter terms

The counter terms are computed with 1-loop correction of SU(3) singlet pseudoscalar in Ref. Kimura:2014wsa . In this work, we only consider the corrections due to SU(3) octet pseudoscalars. The effect of SU(3)R external gauge boson is included. The counter terms in 1-loop order are,

c=\displaystyle\mathcal{L}_{c}= L1(Tr(DμU(DμU)))2+L2Tr(DμU(DνU))Tr(DμU(DνU))\displaystyle L_{1}\left({\rm Tr}(D_{\mu}U(D^{\mu}U)^{\dagger})\right)^{2}+L_{2}{\rm Tr}(D_{\mu}U(D_{\nu}U)^{\dagger}){\rm Tr}(D^{\mu}U(D^{\nu}U)^{\dagger}) (204)
+\displaystyle+ L3Tr{DμU(DμU)DνU(DνU)}\displaystyle L_{3}{\rm Tr}\{D^{\mu}U(D_{\mu}U)^{\dagger}D^{\nu}U(D_{\nu}U)^{\dagger}\}
+\displaystyle+ 4Bf2L4Tr{DμU(DμU)}Tr{M(U+U)}\displaystyle\frac{4B}{f^{2}}L_{4}{\rm Tr}\{D_{\mu}U(D^{\mu}U)^{\dagger}\}{\rm Tr}\{M(U+U^{\dagger})\}
+\displaystyle+ 4Bf2L5Tr{DμU(DμU)(UM+MU)}\displaystyle\frac{4B}{f^{2}}L_{5}{\rm Tr}\{D_{\mu}U(D^{\mu}U)^{\dagger}(UM+MU^{\dagger})\}
+\displaystyle+ 16B2f4L6{Tr(M(U+U))}2\displaystyle\frac{16B^{2}}{f^{4}}L_{6}\{{\rm Tr}(M(U+U^{\dagger}))\}^{2}
+\displaystyle+ 16B2f4L7{Tr(M(UU))}2\displaystyle\frac{16B^{2}}{f^{4}}L_{7}\{{\rm Tr}(M(U-U^{\dagger}))\}^{2}
+\displaystyle+ 16B2f4L8Tr(MUMU+MUMU)\displaystyle\frac{16B^{2}}{f^{4}}L_{8}{\rm Tr}(MUMU+MU^{\dagger}MU^{\dagger})
+\displaystyle+ iL9Tr{FLμν(DμU)(DνU)+FRμν(DμU)DνU}\displaystyle iL_{9}{\rm Tr}\{F_{L\mu\nu}(D^{\mu}U)(D^{\nu}U)^{\dagger}+F_{R\mu\nu}(D^{\mu}U)^{\dagger}D^{\nu}U\}
+\displaystyle+ L10Tr(FLμνUFRμνU)\displaystyle L_{10}\mathrm{Tr}(F_{L\mu\nu}U{F_{R}}^{\mu\nu}U^{\dagger})
+\displaystyle+ H1Tr(FLμνFLμν+FRμνFRμν)\displaystyle H_{1}{\rm Tr}(F_{L\mu\nu}{F_{L}}^{\mu\nu}+F_{R\mu\nu}{F_{R}}^{\mu\nu})
+\displaystyle+ H2(4Bf2)2Tr(M2)\displaystyle H_{2}\left(\frac{4B}{f^{2}}\right)^{2}{\rm Tr}(M^{2})
+\displaystyle+ iK12Tr(ξDμU(DνU)ξ)(DμvνDνvμ+i[vμ,vν])\displaystyle i\frac{K_{1}}{2}{\rm Tr}(\xi^{\dagger}D^{\mu}U(D^{\nu}U)^{\dagger}\xi)(D_{\mu}v_{\nu}-D_{\nu}v_{\mu}+i[v_{\mu},v_{\nu}])
\displaystyle- 12(K2Tr(ξFLμνξ+ξFRμνξ)(DμvνDνvμ+i[vμ,vν])\displaystyle\frac{1}{2}\left(K_{2}{\rm Tr}(\xi^{\dagger}F_{L\mu\nu}\xi+\xi F_{R\mu\nu}\xi^{\dagger})(D^{\mu}v^{\nu}-D^{\nu}v^{\mu}+i[v^{\mu},v^{\nu}])\right.
+\displaystyle+ K3Tr(DμvνDνvμ+i[vμ,vν])(DμvνDνvμ+i[vμ,vν]))\displaystyle\left.K_{3}{\rm Tr}(D_{\mu}v_{\nu}-D_{\nu}v_{\mu}+i[v_{\mu},v_{\nu}])(D^{\mu}v^{\nu}-D^{\nu}v^{\mu}+i[v^{\mu},v^{\nu}])\right)
+\displaystyle+ 4Bf2(K4Tr{(ξMξ+ξMξ)v2}+K5Tr{M(U+U)}Tr(v2))\displaystyle\frac{4B}{f^{2}}\left(K_{4}{\rm Tr}\{(\xi M\xi+\xi^{\dagger}M\xi^{\dagger})v^{2}\}+K_{5}{\rm Tr}\{M(U+U^{\dagger})\}{\rm Tr}(v^{2})\right)
+\displaystyle+ K6Tr(vραμ)Tr(vραμ)+K7Tr(v2αμαμ)+K8Tr(α2)Tr(v2)\displaystyle K_{6}{\rm Tr}(v_{\rho}\alpha_{\perp}^{\mu}){\rm Tr}(v^{\rho}\alpha_{\perp\mu})+K_{7}{\rm Tr}(v^{2}\alpha_{\perp\mu}\alpha_{\perp}^{\mu})+K_{8}{\rm Tr}(\alpha_{\perp}^{2}){\rm Tr}(v^{2})
+\displaystyle+ K9{Tr(v2)}2+K10Tr(v4)\displaystyle K_{9}\{{\rm Tr}(v^{2})\}^{2}+K_{10}{\rm Tr}(v^{4})
+\displaystyle+ ig2pf2T1η0Tr{(ξMξξMξ)v2}\displaystyle i\frac{g_{2p}}{f^{2}}T_{1}\eta_{0}{\rm Tr}\{(\xi M\xi-\xi^{\dagger}M\xi^{\dagger})v^{2}\}
+\displaystyle+ ig2pf2T2η0Tr{M(UU)}Tr(v2)\displaystyle i\frac{g_{2p}}{f^{2}}T_{2}\eta_{0}{\rm Tr}\{M(U-U^{\dagger})\}{\rm Tr}(v^{2})
+\displaystyle+ T3ig2pf24Bf2η0TrM(U+U)TrM(UU)\displaystyle T_{3}i\frac{g_{2p}}{f^{2}}\frac{4B}{f^{2}}\eta_{0}{\rm Tr}M(U+U^{\dagger}){\rm Tr}M(U-U^{\dagger})
+\displaystyle+ T4(g2pf2)2η02(TrM(UU))2+iT54Bf2g2pf2η0Tr(MUMUMUMU)\displaystyle T_{4}\left(\frac{g_{2p}}{f^{2}}\right)^{2}{\eta_{0}}^{2}\left({\rm Tr}M(U-U^{\dagger})\right)^{2}+iT_{5}\frac{4B}{f^{2}}\frac{g_{2p}}{f^{2}}\eta_{0}{\rm Tr}(MUMU-MU^{\dagger}MU^{\dagger})
+\displaystyle+ T6(g2pf2)2η02Tr(MUMU+MUMU2M2)\displaystyle T_{6}\left(\frac{g_{2p}}{f^{2}}\right)^{2}\eta_{0}^{2}{\rm Tr}(MUMU+MU^{\dagger}MU^{\dagger}-2M^{2})
+\displaystyle+ ig2pf2η0[T7Tr{M(DμU(DμU)UUDμU(DμU))}\displaystyle i\frac{g_{2p}}{f^{2}}\eta_{0}\bigl{[}T_{7}{\rm Tr}\{M(D_{\mu}U(D^{\mu}U)^{\dagger}U-U^{\dagger}D_{\mu}U(D^{\mu}U)^{\dagger})\}
+\displaystyle+ T8Tr(M(UU))Tr(DμU(DμU))],\displaystyle T_{8}{\rm Tr}(M(U-U^{\dagger})){\rm Tr}(D_{\mu}U(D^{\mu}U)^{\dagger})\bigr{]},
vμ\displaystyle v_{\mu} =\displaystyle= gρππ(Vμαμg),\displaystyle g_{\rho\pi\pi}\left(V_{\mu}-\frac{\alpha_{\mu}}{g}\right), (205)
Li\displaystyle L_{i} =\displaystyle= λΓi+Lir(i=110),\displaystyle\lambda\Gamma_{i}+L_{i}^{r}(i=1-10), (206)
Ki\displaystyle K_{i} =\displaystyle= λki+Kir(i=110),\displaystyle\lambda k_{i}+{K_{i}}^{r}(i=1-10), (207)
Hi\displaystyle H_{i} =\displaystyle= λΔi+Hir(i=12),\displaystyle\lambda\Delta_{i}+H_{i}^{r}(i=1-2), (208)
Ti\displaystyle T_{i} =\displaystyle= λti+Tir(i=18),\displaystyle\lambda t_{i}+T_{i}^{r}(i=1-8), (209)
λ\displaystyle\lambda =\displaystyle= 132π2(1+CUVlnμ2),\displaystyle-\frac{1}{32\pi^{2}}(1+C_{UV}-\ln\mu^{2}), (210)
CUV\displaystyle C_{UV} =\displaystyle= 12d2γ+ln4π.\displaystyle\displaystyle\frac{1}{2-\frac{d}{2}}-\gamma+\ln 4\pi. (211)

In Eq. (204), the contribution from singlet pseudoscalar is omitted in the coefficients of Γ6,Γ8\Gamma_{6},\Gamma_{8} and Δ2\Delta_{2}. We have also corrected the sign of k9k_{9} and k10k_{10} in Ref. Kimura:2014wsa .

Table 12: The coefficients of the counter terms: ki,Γik_{i},\Gamma_{i} and Δi\Delta_{i}.
k1=1k_{1}=1 t1=6t_{1}=-6 Γ1=2c2+132\Gamma_{1}=\frac{2c^{2}+1}{32} Δ1=18\Delta_{1}=-\frac{1}{8}
k2=1k_{2}=1 t2=2t_{2}=-2 Γ2=1+2c216\Gamma_{2}=\frac{1+2c^{2}}{16} Δ2=524\Delta_{2}=\frac{5}{24}
k3=1k_{3}=1 t3=1118t_{3}=-\frac{11}{18} Γ3=3(c21)16\Gamma_{3}=\frac{3(c^{2}-1)}{16}
k4=32k_{4}=\frac{3}{2} t4=119t_{4}=-\frac{11}{9} Γ4=c8\Gamma_{4}=\frac{c}{8}
k5=12k_{5}=\frac{1}{2} t5=56t_{5}=-\frac{5}{6} Γ5=3c8\Gamma_{5}=\frac{3c}{8}
k6=4ck_{6}=4c t6=53t_{6}=-\frac{5}{3} Γ6=11144\Gamma_{6}=\frac{11}{144}
k7=6ck_{7}=6c t7=3c2t_{7}=-\frac{3c}{2} Γ7=0\Gamma_{7}=0
k8=2ck_{8}=2c t8=c2t_{8}=-\frac{c}{2} Γ8=548\Gamma_{8}=\frac{5}{48}
k9=3k_{9}=3 Γ9=14\Gamma_{9}=\frac{1}{4}
k10=3k_{10}=3 Γ10=14\Gamma_{10}=-\frac{1}{4}

Appendix B Power counting with SU(3) breaking and singlets

In this appendix, we show the power counting rule which is used to classify the interaction Lagrangian in Eq. (1) and counter terms in Eq. (204). Since we treat the electromagnetic correction due to the term proportional to CC in Eq. (1) only within tree level, in the following power counting, we do not take this term into account. Since we employ the loop expansion due to pseudoscalar octet, the Lagrangian is organized as follows,

n=0(n)n1,\displaystyle\sum_{n=0}^{\infty}{\cal L}^{(n)}{\hbar}^{n-1}, (212)

where we denote (n){\cal L}^{(n)} as nn loop contribution. We first evaluate the superficial degree of divergence of the nn loop diagram of Nambu-Goldstone bosons using the interaction part of the tree level Lagrangian,

int(0)=f24Tr(DμUDμU)+MV2g2Tr(αμαμ)2MV2gTr(Vμαμ)\displaystyle{\cal L}^{(0)}_{\rm int}=\frac{f^{2}}{4}{\rm Tr}(D_{\mu}UD^{\mu}U^{\dagger})+\frac{M_{V}^{2}}{g^{2}}{\rm Tr}(\alpha_{\mu}\alpha^{\mu})-\frac{2{M_{V}}^{2}}{g}{\rm Tr}(V_{\mu}\alpha^{\mu})
+BTr[M(U+U)]ig2pη0Tr[M(UU)].\displaystyle+B{\rm Tr}[M(U+U^{\dagger})]-ig_{2p}\eta_{0}{\rm Tr}[M(U-U^{\dagger})]. (213)

The first two terms of Eq.(213) denote the interaction with the second derivatives among the Nambu-Goldstone bosons. The third term with the first derivative is the interaction between SU(3) octet vector mesons and SU(3) octet pseudoscalars. The other terms are the chiral breaking term which is proportional to the coefficient BB and the interaction term between SU(3) singlet η0\eta_{0} and SU(3) octets. We compute the superficial degree of divergence ω\omega for NLN_{L} loop with NχN_{\chi} insertions of the chiral breaking term and with Nη0N_{\eta^{0}} (NV8)(N_{V_{8}}) external pseudoscalar singlets (vector meson octets) lines. It is given as follows,

ω=4NL+2N2+NV82NI,\displaystyle\omega=4N_{L}+2N_{2}+N_{V_{8}}-2N_{I}, (214)

where N2N_{2} is the number of the vertex with second derivatives and NIN_{I} denotes the numbers of the propagators of pseudoscalar octets in the internal line. It is related to the total number of the vertex (NvN_{v}) and the number of loop (NLN_{L}) as follows,

NI=NL+(Nv1),\displaystyle N_{I}=N_{L}+(N_{v}-1), (215)

where NvN_{v} is

Nv=Nη0+Nχ+NV8+N2.\displaystyle N_{v}=N_{\eta^{0}}+N_{\chi}+N_{V_{8}}+N_{2}. (216)

Substituting Eq.(215) with Eq.(216) into Eq. (214), one obtains the following formula,

ω\displaystyle\omega =\displaystyle= 2NL+2NV82(Nη0+Nχ).\displaystyle 2N_{L}+2-N_{V_{8}}-2(N_{\eta^{0}}+N_{\chi}). (217)

The ultraviolet divergence can occur when ω0\omega\geq 0 and we obtain the following condition which the divergent diagrams satisfy,

2NL+2NV8+2(Nη0+Nχ).\displaystyle 2N_{L}+2\geq N_{V_{8}}+2(N_{\eta^{0}}+N_{\chi}). (218)

The counter terms which subtract the divergence also satisfy the above condition on the number of the external lines (Nη0,NV8N_{\eta^{0}},N_{V_{8}}) and the powers of BB which correspond to NχN_{\chi}. Let us examine the types of the counter terms which are required within one-loop calculation by setting NL=1N_{L}=1. Then the superficial degree of divergence is

ω=4NV82(Nη0+Nχ).\displaystyle\omega=4-N_{V_{8}}-2(N_{\eta^{0}}+N_{\chi}). (219)

Note that the ω\omega is equal to the number of the derivatives ω0\omega_{0} included in the counter terms. In Table 13, we show ω0(0)\omega_{0}(\geq 0), NχN_{\chi};the powers of BB, Nη0N_{\eta_{0}} and NV8N_{V_{8}} in each 1-loop counter term. We classify each counter term in Eq. (204) according to these numbers and show their coefficients.

Next we study the power counting of the interaction terms for singlet vector meson. In contrast to the octet vector mesons, the chiral invariant interaction of the singlet vector meson to the octet pseudoscalars with the first derivative vanishes,

ϕ0μTr(Vμαμg)=0.\displaystyle\phi^{0\mu}{\rm Tr}\left(V_{\mu}-\frac{\alpha_{\mu}}{g}\right)=0. (220)

Therefore there is no tree level interaction for the singlet vector meson. The interaction of the singlet vector meson with chiral breaking term

g1Vϕμ0Tr(ξMξ+ξMξ)(Vμαμg),\displaystyle g_{1V}\phi^{\mu 0}{\rm Tr}(\xi M\xi+\xi^{\dagger}M\xi^{\dagger})\left(V_{\mu}-\frac{\alpha_{\mu}}{g}\right), (221)

is classified as the one loop level interaction since this term also includes a vector meson with the first derivative and the chiral breaking MM, which has a structure similar to the one loop effective counter terms in Eq. (222) for vector meson octets given below,

C12Bf2Tr{(ξMξ+ξMξ)(Vμαμg)(Vμαμg)}\displaystyle C_{1}\frac{2B}{f^{2}}{\rm Tr}\left\{\left(\xi M\xi+\xi^{\dagger}M\xi^{\dagger}\right)\left(V_{\mu}-\frac{\alpha_{\mu}}{g}\right)\left(V^{\mu}-\frac{\alpha^{\mu}}{g}\right)\right\} (222)
+\displaystyle+ C22Bf2Tr(ξMξ+ξMξ)Tr{(Vμαμg)(Vμαμg)}.\displaystyle C_{2}\frac{2B}{f^{2}}{\rm Tr}\left(\xi M\xi+\xi^{\dagger}M\xi^{\dagger}\right){\rm Tr}\left\{\left(V_{\mu}-\frac{\alpha_{\mu}}{g}\right)\left(V^{\mu}-\frac{\alpha^{\mu}}{g}\right)\right\}.
Table 13: (ω0,Nχ,Nη0,NV8)(\omega_{0},N_{\chi},N_{\eta_{0}},N_{V_{8}}) for 1-loop counter terms.
ω0\omega_{0} NχN_{\chi} Nη0N_{\eta_{0}} NV8N_{V_{8}} The coefficients of the counter terms
44 0 0 0 L1,L2,L3,L9,L10,H1,K1,K2,K3,K6,K7,K8,K9,K10L_{1},L_{2},L_{3},L_{9},L_{10},H_{1},K_{1},K_{2},K_{3},K_{6},K_{7},K_{8},K_{9},K_{10}
33 0 0 11 K1,K2,K3,K6,K7,K8,K9,K10K_{1},K_{2},K_{3},K_{6},K_{7},K_{8},K_{9},K_{10}
22 11 0 0 L4,L5,K4,K5L_{4},L_{5},K_{4},K_{5}
0 22 0 0 L6,L7,L8,H2L_{6},L_{7},L_{8},H_{2}
22 0 0 22 K1,K2,K3,K6,K7,K8,K9,K10K_{1},K_{2},K_{3},K_{6},K_{7},K_{8},K_{9},K_{10}
22 0 11 0 T1,T2,T7,T8T_{1},T_{2},T_{7},T_{8}
11 0 11 11 T1,T2T_{1},T_{2}
0 0 11 22 T1,T2T_{1},T_{2}
0 11 11 0 T3,T5T_{3},T_{5}
0 0 22 0 T4,T6T_{4},T_{6}
0 11 0 22 K4,K5K_{4},K_{5}
11 11 0 11 K4,K5K_{4},K_{5}
11 0 0 33 K3,K9,K10K_{3},K_{9},K_{10}
0 0 0 44 K3,K9,K10K_{3},K_{9},K_{10}

Appendix C 1-loop correction to self-energy for K+,K0K^{*+},K^{*0} and ρ+\rho^{+}

In this appendix, we study self-energy corrections to K+0K^{\ast+0} mesons and charged ρ\rho meson taking SU(3) breaking into account. The interaction Lagrangian for VPPV\to PP is given as,

VPP\displaystyle{\mathcal{L}}^{VPP} =\displaystyle= 2gρππiTr(Vμ[Δ,μΔ])\displaystyle-\frac{2g_{\rho\pi\pi}}{i}{\rm Tr}(V_{\mu}[\Delta,\partial^{\mu}\Delta]) (223)
=\displaystyle= igρππ2[K+μ(K^μπ^3+3K^μη^8+2K¯^0π^)\displaystyle i\frac{g_{\rho\pi\pi}}{2}\left[K^{\ast+\mu}\left(\hat{K}^{-}\stackrel{{\scriptstyle\leftrightarrow}}{{\partial}}_{\mu}\hat{\pi}_{3}+\sqrt{3}\hat{K}^{-}\stackrel{{\scriptstyle\leftrightarrow}}{{\partial}}_{\mu}\hat{\eta}_{8}+\sqrt{2}\hat{\bar{K}}^{0}\stackrel{{\scriptstyle\leftrightarrow}}{{\partial}}\hat{\pi}^{-}\right)\right.
+K0μ(K¯^0μπ^3+3K¯^0μη^8+2K^μπ^)\displaystyle+\left.K^{\ast 0\mu}\left(-\hat{\bar{K}}^{0}\stackrel{{\scriptstyle\leftrightarrow}}{{\partial}}_{\mu}\hat{\pi}_{3}+\sqrt{3}\hat{\bar{K}}^{0}\stackrel{{\scriptstyle\leftrightarrow}}{{\partial}}_{\mu}\hat{\eta}_{8}+\sqrt{2}\hat{K}^{-}\stackrel{{\scriptstyle\leftrightarrow}}{{\partial}}_{\mu}\hat{\pi}^{-}\right)\right.
+ρ+μ(2π^μπ^3+2K¯^0μK^)]+h.c.,\displaystyle+\left.\rho^{+\mu}\left(2\hat{\pi}^{-}\stackrel{{\scriptstyle\leftrightarrow}}{{\partial}}_{\mu}\hat{\pi}_{3}+\sqrt{2}\hat{\bar{K}}^{0}\stackrel{{\scriptstyle\leftrightarrow}}{{\partial}}_{\mu}\hat{K}^{-}\right)\right]+h.c.,
Δ\displaystyle\Delta =\displaystyle= 12(π^3+η^832π^+2K^+2π^π^3+η^832K^02K^+2K¯^02η^83),\displaystyle\frac{1}{2}\begin{pmatrix}\hat{\pi}_{3}+\displaystyle\frac{\hat{\eta}_{8}}{\sqrt{3}}&\sqrt{2}\hat{\pi}^{+}&\sqrt{2}\hat{K}^{+}\\ \sqrt{2}\hat{\pi}^{-}&-\hat{\pi}_{3}+\displaystyle\frac{\hat{\eta}_{8}}{\sqrt{3}}&\sqrt{2}\hat{K}^{0}\\ \sqrt{2}\hat{K}^{+}&\sqrt{2}\hat{\bar{K}}^{0}&-2\displaystyle\frac{\hat{\eta}_{8}}{\sqrt{3}}\end{pmatrix}, (224)

where Δ\Delta denotes the quantum fluctuation for the pseudoscalar octet in the background field method Kimura:2014wsa . The isospin breaking leads to π3η8\pi_{3}-\eta_{8} mixing and the Feynman diagrams of the self-energy for K+0K^{*+0} are shown in Fig. C.1.

Refer to caption
Figure C.1: Self-energy corrections to K+0K^{\ast+0}. The diagrams include the π3η8\pi_{3}-\eta_{8} mixing due to the isospin breaking effect.

π3η8\pi_{3}-\eta_{8} mixing obtained from the chiral breaking term is given by the following Lagrangian,

\displaystyle{\cal L} =\displaystyle= M382π^3η^8,\displaystyle-M^{2}_{38}\hat{\pi}_{3}\hat{\eta}_{8}, (225)
M382\displaystyle M_{38}^{2} =\displaystyle= 13(MK+2MK02).\displaystyle\frac{1}{\sqrt{3}}(M^{2}_{K^{+}}-M^{2}_{K^{0}}). (226)

We treat the mixing in Eq. (225) as perturbation. The mixing insertion is denoted with black circles in Fig. C.1. Below, the amplitude corresponding to the diagrams in Fig. C.1 is shown,

gρππ24ddk(2π)di(Q2k)μ(Q2k)ν((Qk)2Mπ2)((Qk)2Mη82)(k2MK2)23M382\displaystyle\frac{g_{\rho\pi\pi}^{2}}{4}\int\frac{d^{d}k}{(2\pi)^{d}i}\frac{(Q-2k)_{\mu}(Q-2k)_{\nu}}{((Q-k)^{2}-M^{2}_{\pi})((Q-k)^{2}-M^{2}_{\eta_{8}})(k^{2}-M_{K}^{2})}2\sqrt{3}M^{2}_{38} (227)
=\displaystyle= gρππ22MK+2MK02Mη82Mπ2(Jμνη8KJμνπ0K)\displaystyle\frac{g_{\rho\pi\pi}^{2}}{2}\frac{M_{K^{+}}^{2}-M_{K^{0}}^{2}}{M^{2}_{\eta^{8}}-M^{2}_{\pi}}(J_{\mu\nu}^{\eta_{8}K}-J_{\mu\nu}^{\pi^{0}K})
=\displaystyle= 2gρππ2MK+2MK02Mη82Mπ2Qμν(MKη8rMKπr)\displaystyle 2g_{\rho\pi\pi}^{2}\frac{M_{K^{+}}^{2}-M_{K^{0}}^{2}}{M^{2}_{\eta^{8}}-M^{2}_{\pi}}Q_{\mu\nu}(M^{r}_{K\eta_{8}}-M^{r}_{K\pi})
+gρππ2(MK+2MK02)gμν(2LKη8LKπMη82Mπ2λμη8μπMη82Mπ2),\displaystyle+g_{\rho\pi\pi}^{2}(M_{K^{+}}^{2}-M_{K^{0}}^{2})g_{\mu\nu}\Bigl{(}2\frac{L_{K\eta_{8}}-L_{K\pi}}{M^{2}_{\eta_{8}}-M_{\pi}^{2}}-\lambda-\frac{\mu_{\eta_{8}}-\mu_{\pi}}{M^{2}_{\eta_{8}}-M_{\pi}^{2}}\Bigr{)},

where QμνQ_{\mu\nu} is defined in Eq. (21) and MKM_{K} denotes MK+M_{K^{+}} or MK0M_{K^{0}} and one uses the following 1-loop function,

JμνQP\displaystyle J_{\mu\nu}^{QP} =\displaystyle= ddk(2π)di(Q2k)μ(Q2k)ν((Qk)2MQ2)(k2MP2)\displaystyle\int\frac{d^{d}k}{(2\pi)^{d}i}\frac{(Q-2k)_{\mu}(Q-2k)_{\nu}}{((Q-k)^{2}-M^{2}_{Q})(k^{2}-M_{P}^{2})} (228)
=\displaystyle= Qμν(4MPQr23λ)+gμν(4LPQ2λΣPQ2(μQ+μP)),\displaystyle Q_{\mu\nu}\left(4M^{r}_{PQ}-\frac{2}{3}\lambda\right)+g_{\mu\nu}(4L_{PQ}-2\lambda\Sigma_{PQ}-2(\mu_{Q}+\mu_{P})),
ΣPQ\displaystyle\Sigma_{PQ} =\displaystyle= MP2+MQ2.\displaystyle M_{P}^{2}+M_{Q}^{2}. (229)

In Eqs. (227, 228), λ\lambda denotes the ultraviolet divergence defined in Eq. (210). In Eq. (228), LPQL_{PQ} and MPQrM^{r}_{PQ} are functions given below,

MPQr\displaystyle M^{r}_{PQ} =\displaystyle= 112Q2(Q22ΣPQ)J¯PQ+ΔPQ23Q4[J¯PQQ2132π2(ΣPQΔPQ2+2MP2MQ2ΔPQ3lnMQ2MP2)]\displaystyle\frac{1}{12Q^{2}}\left(Q^{2}-2\Sigma_{PQ}\right)\bar{J}_{PQ}+\frac{\Delta_{PQ}^{2}}{3Q^{4}}\left[\bar{J}_{PQ}-Q^{2}\frac{1}{32\pi^{2}}\left(\frac{\Sigma_{PQ}}{\Delta_{PQ}^{2}}+2\frac{M_{P}^{2}M_{Q}^{2}}{\Delta_{PQ}^{3}}\ln\frac{M_{Q}^{2}}{M_{P}^{2}}\right)\right] (230)
kPQ6+1288π2,\displaystyle-\frac{k_{PQ}}{6}+\frac{1}{288\pi^{2}},
LPQ\displaystyle L_{PQ} =\displaystyle= ΔPQ24sJ¯PQ,\displaystyle\frac{\Delta_{PQ}^{2}}{4s}\bar{J}_{PQ}, (231)
kPQ\displaystyle k_{PQ} =\displaystyle= (μPμQ)f2ΔPQ.\displaystyle\frac{(\mu_{P}-\mu_{Q})f^{2}}{\Delta_{PQ}}. (232)

In Eqs. (230, 231), J¯PQ\bar{J}_{PQ} is a 1-loop scalar function of pseudoscalar mesons with masses MPM_{P} and MQM_{Q}. Above the threshold Q2(MP+MQ)2Q^{2}\geq(M_{P}+M_{Q})^{2}, it is given by,

J¯PQ(Q2)\displaystyle\bar{J}_{PQ}(Q^{2}) =\displaystyle= 132π2[2+ΔPQQ2lnMQ2MP2ΣPQΔPQlnMQ2MP2\displaystyle\frac{1}{32\pi^{2}}\left[2+\frac{\Delta_{PQ}}{Q^{2}}\ln\frac{M_{Q}^{2}}{M_{P}^{2}}-\frac{\Sigma_{PQ}}{\Delta_{PQ}}\ln\frac{M_{Q}^{2}}{M_{P}^{2}}\right. (233)
νPQQ2ln(Q2+νPQ)2ΔPQ2(Q2νPQ)2ΔPQ2]+i16πνPQQ2,\displaystyle-\left.\frac{\nu_{PQ}}{Q^{2}}\ln\frac{(Q^{2}+\nu_{PQ})^{2}-\Delta_{PQ}^{2}}{(Q^{2}-\nu_{PQ})^{2}-\Delta_{PQ}^{2}}\right]+\frac{i}{16\pi}\frac{\nu_{PQ}}{Q^{2}},
νPQ2\displaystyle\nu_{PQ}^{2} =\displaystyle= Q42Q2ΣPQ+ΔPQ2,\displaystyle Q^{4}-2Q^{2}\Sigma_{PQ}+\Delta_{PQ}^{2}, (234)

while below the threshold (MPMQ)2Q2(MP+MQ)2(M_{P}-M_{Q})^{2}\leq Q^{2}\leq(M_{P}+M_{Q})^{2},

J¯PQ(Q2)\displaystyle\bar{J}_{PQ}(Q^{2}) =\displaystyle= 132π2[2+ΔPQQ2lnMQ2MP2ΣPQΔPQlnMQ2MP2\displaystyle\frac{1}{32\pi^{2}}\left[2+\frac{\Delta_{PQ}}{Q^{2}}\ln\frac{M_{Q}^{2}}{M_{P}^{2}}-\frac{\Sigma_{PQ}}{\Delta_{PQ}}\ln\frac{M_{Q}^{2}}{M_{P}^{2}}\right. (235)
2νPQ2Q2(arctanQ2ΔPQνPQ2+arctanQ2+ΔPQνPQ2)].\displaystyle-\left.2\frac{\sqrt{-\nu_{PQ}^{2}}}{Q^{2}}\left(\arctan\frac{Q^{2}-\Delta_{PQ}}{\sqrt{-\nu_{PQ}^{2}}}+\arctan\frac{Q^{2}+\Delta_{PQ}}{\sqrt{-\nu_{PQ}^{2}}}\right)\right].

We write inverse propagators of vector mesons as,

DVμν1\displaystyle D_{V\mu\nu}^{-1} =\displaystyle= (MV2+δAV)gμν+δB~VQμQν,\displaystyle(M_{V}^{2}+\delta A_{V})g_{\mu\nu}+\delta\tilde{B}_{V}Q_{\mu}Q_{\nu}, (236)

where the metric part of the inverse propagator consists of the sum of tree-level mass MVM_{V} and loop correction δAV\delta A_{V}. Using loop functions defined, we add the isospin breaking corrections in Fig. C.1 to the calculation given in Ref. Kimura:2014wsa . We also take account of the mass differences of K+K0K^{+}-K^{0} and π+π0\pi^{+}-\pi^{0}, which were not considered in the previous study. The self-energy corrections to K+0K^{\ast+0} and ρ+\rho^{+} mesons are obtained as,

δB~K+\displaystyle\delta\tilde{B}_{K^{\ast+}} =\displaystyle= ZVr(μ)+gρππ2[2MrK0π++MrK+π0+3MrK+η8+2MK+2MK02Mη82Mπ2(MK+η8rMK+π0r)],\displaystyle Z_{V}^{r}(\mu)+g_{\rho\pi\pi}^{2}\Bigr{[}2M^{r}_{K^{0}\pi^{+}}+M^{r}_{K^{+}\pi^{0}}+3M^{r}_{K^{+}\eta_{8}}+2\frac{M^{2}_{K^{+}}-M^{2}_{K^{0}}}{M^{2}_{\eta_{8}}-M^{2}_{\pi}}(M^{r}_{K^{+}\eta_{8}}-M^{r}_{K^{+}\pi^{0}})\Bigl{]},
δAK+\displaystyle\delta A_{K^{\ast+}} =\displaystyle= ΔAK++C1r(μ)MK+2+C2r(μ)(2M¯K2+Mπ2)Q2ZVr(μ),\displaystyle\Delta A_{K^{\ast+}}+C_{1}^{r}(\mu)M^{2}_{K^{+}}+C_{2}^{r}(\mu)(2\bar{M}^{2}_{K}+M^{2}_{\pi})-Q^{2}Z_{V}^{r}(\mu), (237)
ΔAK+\displaystyle\Delta A_{K^{\ast+}} =\displaystyle= Q2gρππ2[2MrK0π++MrK+π0+3MrK+η8+2MK+2MK02Mη82Mπ2(MK+η8rMK+π0r)]\displaystyle-Q^{2}g_{\rho\pi\pi}^{2}\Bigr{[}2M^{r}_{K^{0}\pi^{+}}+M^{r}_{K^{+}\pi^{0}}+3M^{r}_{K^{+}\eta_{8}}+2\frac{M^{2}_{K^{+}}-M^{2}_{K^{0}}}{M^{2}_{\eta_{8}}-M^{2}_{\pi}}(M^{r}_{K^{+}\eta_{8}}-M^{r}_{K^{+}\pi^{0}})\Bigl{]} (238)
+\displaystyle+ gρππ2[2(MK+2MK02Mη82Mπ2)(LK+η8LK+π0f22(μη8μπ))+2LK0π++LK+π0\displaystyle g_{\rho\pi\pi}^{2}\Bigr{[}2\left(\frac{M^{2}_{K^{+}}-M^{2}_{K^{0}}}{M^{2}_{\eta_{8}}-M^{2}_{\pi}}\right)\left(L_{K^{+}\eta_{8}}-L_{K^{+}\pi^{0}}-\frac{f^{2}}{2}(\mu_{\eta_{8}}-\mu_{\pi})\right)+2L_{K^{0}\pi^{+}}+L_{K^{+}\pi^{0}}
+\displaystyle+ 3LK+η8f22{2(μK0+μπ)+μK++μπ+3(μK++μη8)}],\displaystyle 3L_{K^{+}\eta_{8}}-\frac{f^{2}}{2}\{2(\mu_{K^{0}}+\mu_{\pi})+\mu_{K^{+}}+\mu_{\pi}+3(\mu_{K^{+}}+\mu_{\eta_{8}})\}\Bigr{]},
δB~K0\displaystyle\delta\tilde{B}_{K^{\ast 0}} =\displaystyle= ZVr(μ)+gρππ2[2MrK+π+MrK0π0+3MrK0η82MK+2MK02Mη82Mπ2(MK0η8rMK0π0r)],\displaystyle Z_{V}^{r}(\mu)+g_{\rho\pi\pi}^{2}\Bigr{[}2M^{r}_{K^{+}\pi^{-}}+M^{r}_{K^{0}\pi^{0}}+3M^{r}_{K^{0}\eta_{8}}-2\frac{M^{2}_{K^{+}}-M^{2}_{K^{0}}}{M^{2}_{\eta_{8}}-M^{2}_{\pi}}(M^{r}_{K^{0}\eta_{8}}-M^{r}_{K^{0}\pi^{0}})\Bigl{]},
δAK0\displaystyle\delta A_{K^{\ast 0}} =\displaystyle= ΔAK0+C1r(μ)MK02+C2r(μ)(2M¯K2+Mπ2)Q2ZVr(μ),\displaystyle\Delta A_{K^{*0}}+C_{1}^{r}(\mu)M^{2}_{K^{0}}+C_{2}^{r}(\mu)(2\bar{M}^{2}_{K}+M^{2}_{\pi})-Q^{2}Z_{V}^{r}(\mu), (239)
ΔAK0\displaystyle\Delta A_{K^{\ast 0}} =\displaystyle= Q2gρππ2[2MrK+π+MrK0π0+3MrK0η82MK+2MK02Mη82Mπ2(MK0η8rMK0π0r)]\displaystyle-Q^{2}g_{\rho\pi\pi}^{2}\Bigr{[}2M^{r}_{K^{+}\pi^{-}}+M^{r}_{K^{0}\pi^{0}}+3M^{r}_{K^{0}\eta_{8}}-2\frac{M^{2}_{K^{+}}-M^{2}_{K^{0}}}{M^{2}_{\eta_{8}}-M^{2}_{\pi}}(M^{r}_{K^{0}\eta_{8}}-M^{r}_{K^{0}\pi^{0}})\Bigl{]} (240)
+\displaystyle+ gρππ2[2(MK+2MK02Mη82Mπ2)(LK0η8LK0π0f22(μη8μπ))\displaystyle g_{\rho\pi\pi}^{2}\Bigr{[}-2\left(\frac{M^{2}_{K^{+}}-M^{2}_{K^{0}}}{M^{2}_{\eta_{8}}-M^{2}_{\pi}}\right)\left(L_{K^{0}\eta_{8}}-L_{K^{0}\pi^{0}}-\frac{f^{2}}{2}(\mu_{\eta_{8}}-\mu_{\pi})\right)
+\displaystyle+ 2LK+π+LK0π0+3LK0η8f22{2(μK++μπ)+μK0+μπ+3(μK0+μη8)}],\displaystyle 2L_{K^{+}\pi^{-}}+L_{K^{0}\pi^{0}}+3L_{K^{0}\eta_{8}}-\frac{f^{2}}{2}\{2(\mu_{K^{+}}+\mu_{\pi})+\mu_{K^{0}}+\mu_{\pi}+3(\mu_{K^{0}}+\mu_{\eta_{8}})\}\Bigr{]},\qquad\quad
δB~ρ+\displaystyle\delta\tilde{B}_{\rho^{+}} =\displaystyle= ZVr(μ)+gρππ2(4Mπ+π0r+2MK+K¯0r),\displaystyle Z_{V}^{r}(\mu)+g_{\rho\pi\pi}^{2}(4M^{r}_{\pi^{+}\pi^{0}}+2M^{r}_{K^{+}\bar{K}^{0}}),
δAρ+\displaystyle\delta A_{\rho^{+}} =\displaystyle= ΔAρ++C1r(μ)Mπ2+C2r(μ)(2M¯K2+Mπ2)Q2ZVr(μ),\displaystyle\Delta A_{\rho^{+}}+C_{1}^{r}(\mu)M_{\pi}^{2}+C_{2}^{r}(\mu)(2\bar{M}^{2}_{K}+M^{2}_{\pi})-Q^{2}Z_{V}^{r}(\mu), (241)
ΔAρ+\displaystyle\Delta A_{\rho^{+}} =\displaystyle= Q2gρππ2(4Mπ+π0r+2MK+K¯0r)\displaystyle-Q^{2}g_{\rho\pi\pi}^{2}(4M^{r}_{\pi^{+}\pi^{0}}+2M^{r}_{K^{+}\overline{K}^{0}}) (242)
+2gρππ2(2Lπ+π0+LK+K¯0f22(4μπ+μK++μK0)).\displaystyle+2g_{\rho\pi\pi}^{2}\left(2L_{\pi^{+}\pi^{0}}+L_{K^{+}\bar{K}^{0}}-\frac{f^{2}}{2}(4\mu_{\pi}+\mu_{K^{+}}+\mu_{K^{0}})\right).

Appendix D Proof of the relation for VAV-A mixing vertex

In this section, we show that the metric tensor part of the two-point functions for the VAV-A mixing satisfies the relation in Eq. (80). Multiplying Eq. (79) by OVTO^{T}_{V}, one can find,

ΠVA=OVTΠV0A\displaystyle\Pi^{VA}=O_{V}^{T}\Pi^{V^{0}A}
=1g(Mρ2OV11+MVρ82OV21+MV0ρ2OV31+MVρ82OV11+MV882OV21+MV082OV313Mρ2OV12+MVρ82OV22+MV0ρ2OV32+MVρ82OV12+MV882OV22+MV082OV323Mρ2OV13+MVρ82OV23+MV0ρ2OV33+MVρ82OV13+MV882OV23+MV082OV333).\displaystyle=-\frac{1}{g}\begin{pmatrix}M_{\rho}^{2}O_{V11}+M_{V\rho 8}^{2}O_{V21}+M_{V0\rho}^{2}O_{V31}+\displaystyle\frac{M_{V\rho 8}^{2}O_{V11}+M_{V88}^{2}O_{V21}+M_{V08}^{2}O_{V31}}{\sqrt{3}}\\ M_{\rho}^{2}O_{V12}+M_{V\rho 8}^{2}O_{V22}+M_{V0\rho}^{2}O_{V32}+\displaystyle\frac{M_{V\rho 8}^{2}O_{V12}+M_{V88}^{2}O_{V22}+M_{V08}^{2}O_{V32}}{\sqrt{3}}\\ M_{\rho}^{2}O_{V13}+M_{V\rho 8}^{2}O_{V23}+M_{V0\rho}^{2}O_{V33}+\displaystyle\frac{M_{V\rho 8}^{2}O_{V13}+M_{V88}^{2}O_{V23}+M_{V08}^{2}O_{V33}}{\sqrt{3}}\end{pmatrix}.\quad\quad (243)

Meanwhile, the diagonalization of the mass matrix leads to,

(Mρ2MVρ82MV0ρ2MVρ82MV882MV082MV0ρ2MV082M0V2)OV=OV(120002200032).\displaystyle\begin{pmatrix}M^{2}_{\rho}&M^{2}_{V\rho 8}&M^{2}_{V0\rho}\\ M^{2}_{V\rho 8}&M^{2}_{V88}&M^{2}_{V08}\\ M^{2}_{V0\rho}&M^{2}_{V08}&M^{2}_{0V}\\ \end{pmatrix}O_{V}=O_{V}\begin{pmatrix}\mathcal{M}_{1}^{2}&0&0\\ 0&\mathcal{M}_{2}^{2}&0\\ 0&0&\mathcal{M}_{3}^{2}\end{pmatrix}. (244)

In the above equation, the matrix elements for (i,j)=(1,I),(2,I)(i,j)=(1,I),(2,I) indicate the following relations,

Mρ2OV1I+MVρ82OV2I+MV0ρ2OV3I\displaystyle M^{2}_{\rho}O_{V1I}+M^{2}_{V\rho 8}O_{V2I}+M^{2}_{V0\rho}O_{V3I} =\displaystyle= I2OV1I,\displaystyle\mathcal{M}_{I}^{2}O_{V1I}, (245)
MVρ82OV1I+MV882OV2I+MV082OV3I\displaystyle M^{2}_{V\rho 8}O_{V1I}+M^{2}_{V88}O_{V2I}+M^{2}_{V08}O_{V3I} =\displaystyle= I2OV2I.\displaystyle\mathcal{M}_{I}^{2}O_{V2I}. (246)

Plugging Eqs. (245, 246) into Eq. (243), one can find that the relation in Eq. (80) is satisfied.

Appendix E 1-loop correction to self-energy for π+,K+\pi^{+},K^{+} and K0K^{0}

In this appendix, the radiative correction to charged pseudoscalar masses is discussed. Background field method is used to evaluate the chiral loop correctionDonoghue:1992dd ; Gasser:1984gg . Kinetic terms and 1-loop corrected masses in effective Lagrangian are given as,

eff\displaystyle\mathcal{L}_{\mathrm{eff}} =\displaystyle= Pπ+,K+,K0(1ZPμPfμP¯fMP2PfP¯f)\displaystyle\sum_{P}^{\pi^{+},K^{+},K^{0}}\left(\frac{1}{Z_{P}}\partial_{\mu}P_{f}\partial^{\mu}\bar{P}_{f}-M_{P}^{2}P_{f}\bar{P}_{f}\right) (247)
=\displaystyle= Pπ+,K+,K0(μPμP¯MP2PP¯).\displaystyle\sum_{P}^{\pi^{+},K^{+},K^{0}}(\partial_{\mu}P\partial^{\mu}\bar{P}-M_{P}^{\prime 2}P\bar{P}). (248)

In Eq. (247), we denote PfP_{f} as the pseudoscalar in original flavor basis and the coefficient of the kinetic term is,

1ZP\displaystyle\frac{1}{Z_{P}} =\displaystyle= 1ZP(1),\displaystyle 1-Z_{P(1)}, (249)
Zπ+(1)\displaystyle Z_{\pi^{+}(1)} \displaystyle\sim 8(Mπ+2+2M¯K2f2L4r+Mπ+2f2L5r)+2c(2μπ++μ¯K),\displaystyle-8\left(\frac{M_{\pi^{+}}^{2}+2\bar{M}_{K}^{2}}{f^{2}}L_{4}^{r}+\frac{M_{\pi^{+}}^{2}}{f^{2}}L_{5}^{r}\right)+2c(2\mu_{\pi^{+}}+\bar{\mu}_{K}), (250)
ZK+(1)\displaystyle Z_{K^{+}(1)} \displaystyle\simeq ZK0(1)8(Mπ+2+2M¯K2f2L4r+M¯K2f2L5r)+c(32μπ++32μ88+3μ¯K).\displaystyle Z_{K^{0}(1)}\sim-8\left(\frac{M_{\pi^{+}}^{2}+2\bar{M}_{K}^{2}}{f^{2}}L_{4}^{r}+\frac{\bar{M}_{K}^{2}}{f^{2}}L_{5}^{r}\right)+c\left(\frac{3}{2}\mu_{\pi^{+}}+\frac{3}{2}\mu_{88}+3\bar{\mu}_{K}\right). (251)

In Eq. (247), normalization of the kinetic term is slightly deviated from unity due to 1-loop correction. In order to canonically normalize ZPZ_{P} in Eq. (247), one should implement the transformation in the following form as,

Pf()\displaystyle\overset{\small(-)}{P_{f}} =\displaystyle= ZPP(),\displaystyle\sqrt{Z_{P}}\overset{\small(-)}{P}, (252)
ZP\displaystyle\sqrt{Z_{P}} \displaystyle\sim 1+ZP(1)2.\displaystyle 1+\frac{Z_{P(1)}}{2}. (253)

Using transformation in Eq. (252), one obtains Lagrangian in Eq. (248). We keep linear order of the small quantities (we neglect quadratic terms with respect to isospin breaking and 1-loop correction multiplied by isospin violation). The masses in Eq. (248) are,

Mπ+2\displaystyle M_{\pi^{+}}^{\prime 2} \displaystyle\simeq (Mπ+2)tr[1+(4c3)μπ+13μ88+2(c1)μ¯K\displaystyle\left(M_{\pi^{+}}^{2}\right)_{\mathrm{tr}}\left[1+(4c-3)\mu_{\pi^{+}}-\frac{1}{3}\mu_{88}+2(c-1)\bar{\mu}_{K}\right. (254)
8Mπ+2+2M¯K2f2L46r8Mπ+2f2L58r]+ΔEM,\displaystyle\qquad\qquad\qquad\left.-8\frac{M_{\pi^{+}}^{2}+2\bar{M}_{K}^{2}}{f^{2}}L_{46}^{r}-8\frac{M_{\pi^{+}}^{2}}{f^{2}}L_{58}^{r}\right]+\Delta_{\mathrm{EM}},
MK+2\displaystyle M_{K^{+}}^{\prime 2} \displaystyle\simeq (MK+2)tr[1+32(c1)μπ++16(9c5)μ88+3(c1)μ¯K\displaystyle\left(M_{K^{+}}^{2}\right)_{\mathrm{tr}}\left[1+\frac{3}{2}(c-1)\mu_{\pi^{+}}+\frac{1}{6}(9c-5)\mu_{88}+3(c-1)\bar{\mu}_{K}\right. (255)
8Mπ+2+2M¯K2f2L46r8M¯K2f2L58r]+ΔEM,\displaystyle\qquad\qquad\qquad\left.-8\frac{M_{\pi^{+}}^{2}+2\bar{M}_{K}^{2}}{f^{2}}L_{46}^{r}-8\frac{\bar{M}_{K}^{2}}{f^{2}}L_{58}^{r}\right]+\Delta_{\mathrm{EM}},
MK02\displaystyle M_{K^{0}}^{\prime 2} \displaystyle\simeq (MK02)tr[1+32(c1)μπ++16(9c5)μ88+3(c1)μ¯K\displaystyle\left(M_{K^{0}}^{2}\right)_{\mathrm{tr}}\left[1+\frac{3}{2}(c-1)\mu_{\pi^{+}}+\frac{1}{6}(9c-5)\mu_{88}+3(c-1)\bar{\mu}_{K}\right. (256)
8Mπ+2+2M¯K2f2L46r8M¯K2f2L58r],\displaystyle\qquad\qquad\qquad\left.-8\frac{M_{\pi^{+}}^{2}+2\bar{M}_{K}^{2}}{f^{2}}L_{46}^{r}-8\frac{\bar{M}_{K}^{2}}{f^{2}}L_{58}^{r}\right],

where low energy constants are denoted as,

L46r=L4r2L6r,L58r=L5r2L8r,ΔEM=2C9f2.\displaystyle L_{46}^{r}=L_{4}^{r}-2L_{6}^{r},\quad L_{58}^{r}=L_{5}^{r}-2L_{8}^{r},\quad\Delta_{\mathrm{EM}}=\frac{2C}{9f^{2}}. (257)

In Eqs. (254-256), (MP2)tr(M_{P}^{2})_{\mathrm{tr}} denotes the tree-level mass parameters, and in the loop corrections, pseudoscalar masses are identified with physical masses expressed as Mπ+2M_{\pi^{+}}^{2} and M¯K2\bar{M}_{K}^{2} defined in Eq. (34) since their difference gives rise to minor correction in Eqs. (254-256). The tree-level mass parameters in r.h.s. of Eqs. (254-256) are given as Gell-Mann-Oakes-Renner (GMOR) relation,

(Mπ+2)tr=2B(mu+md)f2,(MK+2)tr=2B(mu+ms)f2,(MK02)tr=2B(md+ms)f2.\displaystyle\left(M_{\pi^{+}}^{2}\right)_{\mathrm{tr}}=\frac{2B(m_{u}+m_{d})}{f^{2}},\;\;\left(M_{K^{+}}^{2}\right)_{\mathrm{tr}}=\frac{2B(m_{u}+m_{s})}{f^{2}},\;\;\left(M_{K^{0}}^{2}\right)_{\mathrm{tr}}=\frac{2B(m_{d}+m_{s})}{f^{2}}.\;\;\quad (258)

One can clarify that the 1-loop masses are renormalization scale invariant. Therefore, we find that the following equation is satisfied,

Mπ+2lnμ=MK+2lnμ=MK02lnμ=0.\displaystyle\frac{\partial M_{\pi^{+}}^{\prime 2}}{\partial\ln\mu}=\frac{\partial M_{K^{+}}^{\prime 2}}{\partial\ln\mu}=\frac{\partial M_{K^{0}}^{\prime 2}}{\partial\ln\mu}=0. (259)

Appendix F 1-loop correction to self-energy for neutral pseudoscalars

In this appendix, the radiative correction to pseudoscalar masses is evaluated for neutral particles. As analogous to the previous section, the background field method is used to evaluate the quantum correction. We consider the framework in which chiral octet loop correction is taken into account. Masses and kinetic terms of pseudoscalars in 1-loop corrected effective Lagrangian are written as,

eff\displaystyle\mathcal{L}_{\mathrm{eff}} =\displaystyle= 12(μπ3,μη8,μη0)1Z(μπ3,μη8,μη0)T12(π3,η8,η0)M2(π3,η8,η0)T\displaystyle\frac{1}{2}(\partial_{\mu}\pi_{3},\partial_{\mu}\eta_{8},\partial_{\mu}\eta_{0})\frac{1}{Z}(\partial^{\mu}\pi_{3},\partial^{\mu}\eta_{8},\partial^{\mu}\eta_{0})^{T}-\frac{1}{2}(\pi_{3},\eta_{8},\eta_{0})M^{2}(\pi_{3},\eta_{8},\eta_{0})^{T}\quad
(SU(3)eigenstate)\displaystyle(\mathrm{SU}(3)\>\mathrm{eigenstate})
=\displaystyle= 12μπ3Rμπ3R+12μη8Rμη8R+12μη0Rμη0R12(π3R,η8R,η0R)M2(π3R,η8R,η0R)T\displaystyle\frac{1}{2}\partial_{\mu}\pi_{3}^{R}\partial^{\mu}\pi_{3}^{R}+\frac{1}{2}\partial_{\mu}\eta_{8}^{R}\partial^{\mu}\eta_{8}^{R}+\frac{1}{2}\partial_{\mu}\eta_{0}^{R}\partial^{\mu}\eta_{0}^{R}-\frac{1}{2}(\pi_{3}^{R},\eta_{8}^{R},\eta_{0}^{R})M^{\prime 2}(\pi_{3}^{R},\eta_{8}^{R},\eta_{0}^{R})^{T}\quad
(kinetictermsrescaled)\displaystyle(\mathrm{kinetic}\>\mathrm{terms}\>\mathrm{rescaled})
=\displaystyle= 12μπ0μπ0+12μημη+12μημη12(π0,η,η)diag(Mπ02,Mη2,Mη2)(π0,η,η)T.\displaystyle\frac{1}{2}\partial_{\mu}\pi^{0}\partial^{\mu}\pi^{0}+\frac{1}{2}\partial_{\mu}\eta\partial^{\mu}\eta+\frac{1}{2}\partial_{\mu}\eta^{\prime}\partial^{\mu}\eta^{\prime}-\frac{1}{2}(\pi^{0},\eta,\eta^{\prime})\mathrm{diag}(M^{\prime 2}_{\pi^{0}},M^{\prime 2}_{\eta},M^{\prime 2}_{\eta^{\prime}})(\pi^{0},\eta,\eta^{\prime})^{T}.\quad\;\;\qquad
(masseigenstate)\displaystyle(\mathrm{mass}\>\mathrm{eigenstate})

In Eq. (F), the coefficient of kinetic terms is given as a 3×33\times 3 matrix,

1Z\displaystyle\frac{1}{Z} \displaystyle\simeq (1Z33(1)0001Z88(1)0001),\displaystyle\begin{pmatrix}1-Z_{33(1)}&0&0\\ 0&1-Z_{88(1)}&0\\ 0&0&1\end{pmatrix}, (263)
Z33(1)\displaystyle Z_{33(1)} \displaystyle\sim Zπ+(1),\displaystyle Z_{\pi^{+}(1)}, (264)
Z88(1)\displaystyle Z_{88(1)} =\displaystyle= 8(Mπ+2+2M¯K2f2L4r+M882f2L5r)+6cμK¯,\displaystyle-8\left(\displaystyle\frac{M_{\pi^{+}}^{2}+2\bar{M}_{K}^{2}}{f^{2}}L_{4}^{r}+\displaystyle\frac{M_{88}^{2}}{f^{2}}L_{5}^{r}\right)+6c\mu_{\bar{K}}, (265)
M882\displaystyle M_{88}^{2} =\displaystyle= 2(MK+2)tr+2(MK02)tr(Mπ+2)tr3.\displaystyle\frac{2(M_{K^{+}}^{2})_{\mathrm{tr}}+2(M_{K^{0}}^{2})_{\mathrm{tr}}-(M_{\pi^{+}}^{2})_{\mathrm{tr}}}{3}. (266)

The matrix in Eq. (263) implies that the kinetic terms in Eq. (F) are slightly deviated from unity with 1-loop correction. The mass matrix denoted as M2M^{2} in Eq. (F) indicates the 1-loop corrected mixing mass matrix in the SU(3) basis. To normalize the kinetic terms in Eq. (F) canonically, one should implement basis transformation,

(π3η8η0)\displaystyle\begin{pmatrix}\pi_{3}\\ \eta_{8}\\ \eta_{0}\end{pmatrix} =\displaystyle= Z(π3Rη8Rη0R),Z(Z1π000Z2π0001),\displaystyle\sqrt{Z}\begin{pmatrix}\pi_{3}^{R}\\ \eta^{R}_{8}\\ \eta^{R}_{0}\end{pmatrix},\qquad\quad\sqrt{Z}\sim\begin{pmatrix}\sqrt{Z_{1}^{\pi}}&0&0\\ 0&\sqrt{Z_{2}^{\pi}}&0\\ 0&0&1\end{pmatrix}, (267)
Z1π\displaystyle\sqrt{Z^{\pi}_{1}} =\displaystyle= 1+Z33(1)2Zπ+,\displaystyle 1+\displaystyle\frac{Z_{33(1)}}{2}\sim\sqrt{Z_{\pi^{+}}}, (268)
Z2π\displaystyle\sqrt{Z^{\pi}_{2}} =\displaystyle= 1+Z88(1)2.\displaystyle 1+\displaystyle\frac{Z_{88(1)}}{2}. (269)

The transformation in Eq. (267) relates the basis in Eq. (F) to one given in Eq. (F). Thus, the kinetic terms are canonically normalized in Eqs. (F-F). One diagonalizes the mass matrix in Eq. (F) and obtains Lagrangian with mass eigenstates in Eq. (F). The mass matrix given in Eq. (F) is expressed as,

M2=(M332M382M302M882M802M002).\displaystyle M^{\prime 2}=\begin{pmatrix}M_{33}^{\prime 2}&M_{38}^{\prime 2}&M_{30}^{\prime 2}\\ *&M_{88}^{\prime 2}&M_{80}^{\prime 2}\\ *&*&M_{00}^{2}\end{pmatrix}. (270)

In the above mass matrix, the 1-loop corrected masses are denoted with primes. We ignore quadratic terms with respect to the small quantities so that the 1-loop corrected masses in Eq. (270) are simplified as,

M332\displaystyle M_{33}^{\prime 2} \displaystyle\simeq (Mπ+2)tr[1+(4c3)μπ+13μ88+2(c1)μ¯K\displaystyle\left(M_{\pi^{+}}^{2}\right)_{\mathrm{tr}}\left[1+(4c-3)\mu_{\pi^{+}}-\frac{1}{3}\mu_{88}+2(c-1)\bar{\mu}_{K}\right. (271)
8Mπ+2+2M¯K2f2L46r8Mπ+2f2L58r],\displaystyle\left.\qquad\qquad\qquad-8\frac{M_{\pi^{+}}^{2}+2\bar{M}_{K}^{2}}{f^{2}}L_{46}^{r}-8\frac{M_{\pi^{+}}^{2}}{f^{2}}L_{58}^{r}\right],
M382\displaystyle M_{38}^{\prime 2} \displaystyle\simeq M382=(MK+2)tr(MK02)tr3,\displaystyle M_{38}^{2}=\frac{(M_{K^{+}}^{2})_{\mathrm{tr}}-(M_{K^{0}}^{2})_{\mathrm{tr}}}{\sqrt{3}}, (272)
M882\displaystyle M_{88}^{\prime 2} \displaystyle\simeq M882Mπ+2μπ+(16M¯K27Mπ+29)μ88+23(9cM882+3Mπ+28M¯K2)μ¯K\displaystyle M_{88}^{2}-M_{\pi^{+}}^{2}\mu_{\pi^{+}}-\left(\frac{16\bar{M}^{2}_{K}-7M_{\pi^{+}}^{2}}{9}\right)\mu_{88}+\frac{2}{3}\left(9cM_{88}^{2}+3M_{\pi^{+}}^{2}-8\bar{M}_{K}^{2}\right)\bar{\mu}_{K} (273)
8M882f2(Mπ+2+2M¯K2)L46r8f2M884L5r+163f2[8(Mπ+2M¯K2)2L7r\displaystyle-\frac{8M_{88}^{2}}{f^{2}}(M_{\pi^{+}}^{2}+2\bar{M}_{K}^{2})L_{46}^{r}-\frac{8}{f^{2}}M_{88}^{4}L_{5}^{r}+\frac{16}{3f^{2}}[8(M_{\pi^{+}}^{2}-\bar{M}_{K}^{2})^{2}L_{7}^{r}
+(Mπ+4+2(Mπ+22M¯K2)2)L8r],\displaystyle+(M_{\pi^{+}}^{4}+2(M_{\pi^{+}}^{2}-2\bar{M}_{K}^{2})^{2})L_{8}^{r}],
M302\displaystyle M_{30}^{\prime 2} \displaystyle\simeq M302=g^2p[(MK+2)tr(MK02)tr],\displaystyle M_{30}^{2}=-\hat{g}_{2p}\left[(M_{K^{+}}^{2})_{\mathrm{tr}}-(M_{K^{0}}^{2})_{\mathrm{tr}}\right], (274)
M802\displaystyle M_{80}^{\prime 2} \displaystyle\simeq M802+g^2p3[3Mπ+2μπ++13(5Mπ+28M¯K2)μ88+2{3c(Mπ+2M¯K2)\displaystyle M_{80}^{2}+\frac{\hat{g}_{2p}}{\sqrt{3}}\left[3M_{\pi^{+}}^{2}\mu_{\pi^{+}}+\frac{1}{3}\left(5M_{\pi^{+}}^{2}-8\bar{M}_{K}^{2}\right)\mu_{88}+2\left\{3c(M_{\pi^{+}}^{2}-\bar{M}_{K}^{2})\right.\right. (275)
+(3Mπ+24M¯K2)}μ¯K]2M802[Mπ+2+2M¯K2f2T34r2M¯K2f2T5r+2M882f2L5r],\displaystyle\left.\left.+(3M_{\pi^{+}}^{2}-4\bar{M}_{K}^{2})\right\}\bar{\mu}_{K}\right]-2M_{80}^{2}\left[\frac{M_{\pi^{+}}^{2}+2\bar{M}_{K}^{2}}{f^{2}}T_{34}^{r}-\frac{2\bar{M}_{K}^{2}}{f^{2}}T_{5}^{r}+\frac{2M_{88}^{2}}{f^{2}}L_{5}^{r}\right],\qquad

where T34r=2L4rT3rT_{34}^{r}=2L_{4}^{r}-T_{3}^{r} and g^2p=fg2p/B\hat{g}_{2p}=fg_{2p}/B. Since 1-loop corrected masses in Eqs. (271-275) are invariant under renormalization, one can confirm that they satisfy the following relation,

M332lnμ=M382lnμ=M882lnμ=M302lnμ=M802lnμ=0.\displaystyle\frac{\partial M_{33}^{\prime 2}}{\partial\ln\mu}=\frac{\partial M_{38}^{\prime 2}}{\partial\ln\mu}=\frac{\partial M_{88}^{\prime 2}}{\partial\ln\mu}=\frac{\partial M_{30}^{\prime 2}}{\partial\ln\mu}=\frac{\partial M_{80}^{\prime 2}}{\partial\ln\mu}=0. (276)

Comparing Eqs. (254-256) with Eqs. (271, 272, 274), we find that the neutral mass matrix elements are related to charged ones as,

M332\displaystyle M_{33}^{\prime 2} \displaystyle\sim Mπ+2ΔEM,\displaystyle M^{\prime 2}_{\pi^{+}}-\Delta_{\mathrm{EM}}, (277)
M382\displaystyle M_{38}^{\prime 2} \displaystyle\sim 13(MK+2MK02ΔEM),\displaystyle\frac{1}{\sqrt{3}}(M^{\prime 2}_{K^{+}}-M^{\prime 2}_{K^{0}}-\Delta_{\mathrm{EM}}), (278)
M302\displaystyle M_{30}^{\prime 2} \displaystyle\sim g^2p(MK+2MK02ΔEM).\displaystyle-\hat{g}_{2p}(M^{\prime 2}_{K^{+}}-M^{\prime 2}_{K^{0}}-\Delta_{\mathrm{EM}}). (279)

Using Eqs. (277-279), one can write the mass matrix in Eq. (270) as,

M2=(Mπ+2ΔEM13(MK+2MK02ΔEM)g^2p(MK+2MK02ΔEM)M882M802Mπ02+Mη2+Mη2Mπ+2ΔEMM882),\displaystyle M^{\prime 2}=\begin{pmatrix}M^{\prime 2}_{\pi^{+}}-\Delta_{\mathrm{EM}}&\displaystyle\frac{1}{\sqrt{3}}(M^{\prime 2}_{K^{+}}-M^{\prime 2}_{K^{0}}-\Delta_{\mathrm{EM}})&-\hat{g}_{2p}(M^{\prime 2}_{K^{+}}-M^{\prime 2}_{K^{0}}-\Delta_{\mathrm{EM}})\\ *&M_{88}^{\prime 2}&M_{80}^{\prime 2}\\ *&*&M_{\pi^{0}}^{\prime 2}+M_{\eta}^{\prime 2}+M_{\eta^{\prime}}^{\prime 2}-M^{\prime 2}_{\pi^{+}}-\Delta_{\mathrm{EM}}-M_{88}^{\prime 2}\end{pmatrix},
(280)

where we utilized the relation of trace for the mass matrix,

M002=Mπ02+Mη2+Mη2M332M882.\displaystyle M_{00}^{2}=M_{\pi^{0}}^{\prime 2}+M_{\eta}^{\prime 2}+M_{\eta^{\prime}}^{\prime 2}-M_{33}^{\prime 2}-M_{88}^{\prime 2}. (281)

Provided that physical masses, Mπ+2,MK+2,MK02,Mπ02,Mη2M_{\pi^{+}}^{\prime 2},M_{K^{+}}^{\prime 2},M_{K^{0}}^{\prime 2},M_{\pi^{0}}^{\prime 2},M_{\eta}^{\prime 2} and Mη2M_{\eta^{\prime}}^{\prime 2} are given as experimental values, the mass matrix in Eq. (280) is written in terms of four model parameters: (g^2p,ΔEM,M882,M802)(\hat{g}_{2p},\Delta_{\mathrm{EM}},M_{88}^{\prime 2},M_{80}^{\prime 2}). The mixing matrix should be determined to diagonalize the mass matrix in Eq. (280) as,

OTM2O=diag(Mπ02,Mη2,Mη2).\displaystyle O^{T}M^{\prime 2}O=\mathrm{diag}(M_{\pi^{0}}^{\prime 2},M_{\eta}^{\prime 2},M_{\eta^{\prime}}^{\prime 2}). (282)

Appendix G 1-loop correction to decay constants of π+\pi^{+} and K+K^{+}

In this appendix, 1-loop corrected decay constants are analyzed for charged pseudoscalars. The decay constants are defined with parameterizing matrix elements as,

π+(p)|u¯γμγ5d|0|1looporder\displaystyle\braket{\pi^{+}(p)|\bar{u}\gamma_{\mu}\gamma_{5}d|0}|_{1-\mathrm{loop}\>\mathrm{order}} =\displaystyle= i2fπ+pμ,\displaystyle i\sqrt{2}f_{\pi^{+}}p_{\mu}, (283)
K+(p)|u¯γμγ5s|0|1looporder\displaystyle\braket{K^{+}(p)|\bar{u}\gamma_{\mu}\gamma_{5}s|0}|_{1-\mathrm{loop}\>\mathrm{order}} =\displaystyle= i2fK+pμ.\displaystyle i\sqrt{2}f_{K^{+}}p_{\mu}. (284)

One can find that 1-loop corrected decay constants are related with wave function renormalization in Eq. (252) in the following as,

fπ+=fZπ+,fK+=fZK+,\displaystyle f_{\pi^{+}}=\frac{f}{\sqrt{Z_{\pi^{+}}}},\qquad f_{K^{+}}=\frac{f}{\sqrt{Z_{K^{+}}}}, (285)

where one can show that the quantities in Eq. (285) are renormalization scale invariant, i.e.,

lnμfπ+=lnμfK+=0.\displaystyle\frac{\partial}{\partial\mathrm{ln}\mu}f_{\pi^{+}}=\frac{\partial}{\partial\mathrm{ln}\mu}f_{K^{+}}=0. (286)

Equation (285) leads to the relation between the decay constants of pion and one for kaon in Eq. (86).

Appendix H Wess-Zumino-Witten term

In this appendix, we give the expression for the WZW term. As suggested in Ref. Wess:1971yu , one can obtain the WZW term by integrating the Bardeen form anomaly. Following Ref. Fujikawa:2004cx , we can write the expression for the WZW term,

WZ\displaystyle\mathcal{L}_{\mathrm{WZ}} =\displaystyle= Nc16π2ϵμνρσ01dttrπf[Vμν(t)Vρσ(t)+13Aμν(t)Aρσ(t)\displaystyle-\frac{N_{c}}{16\pi^{2}}\epsilon^{\mu\nu\rho\sigma}\int_{0}^{1}\mathrm{d}t\mathrm{tr}\frac{\pi}{f}\left[V_{\mu\nu}(t)V_{\rho\sigma}(t)+\frac{1}{3}A_{\mu\nu}(t)A_{\rho\sigma}(t)\right. (287)
8i3(Vμν(t)Aρ(t)Aσ(t)+Aμ(t)Vνρ(t)Aσ(t)+Aμ(t)Aν(t)Vρσ(t))\displaystyle\left.-\frac{8i}{3}(V_{\mu\nu}(t)A_{\rho}(t)A_{\sigma}(t)+A_{\mu}(t)V_{\nu\rho}(t)A_{\sigma}(t)+A_{\mu}(t)A_{\nu}(t)V_{\rho\sigma}(t))\right.
323Aμ(t)Aν(t)Aρ(s)Aσ(t)],\displaystyle\left.-\frac{32}{3}A_{\mu}(t)A_{\nu}(t)A_{\rho}(s)A_{\sigma}(t)\right],

where Nc=3N_{c}=3 indicates the color factor. The notations in Eq. (287) are defined as,

Vμ(t)\displaystyle V_{\mu}(t) =\displaystyle= 12(ξ(t)Vμξ(t)+ξ(t)Vμξ(t)+ξ(t)Aμξ(t)ξ(t)Aμξ(t)\displaystyle\frac{1}{2}(\xi(t)V_{\mu}\xi(-t)+\xi(-t)V_{\mu}\xi(t)+\xi(t)A_{\mu}\xi(-t)-\xi(-t)A_{\mu}\xi(t) (288)
iξ(t)μξ(t)iξ(t)μξ(t)),\displaystyle-i\xi(t)\partial_{\mu}\xi(-t)-i\xi(-t)\partial_{\mu}\xi(t)),
Aμ(t)\displaystyle A_{\mu}(t) =\displaystyle= 12(ξ(t)Vμξ(t)ξ(t)Vμξ(t)+ξ(t)Aμξ(t)+ξ(t)Aμξ(t)\displaystyle\frac{1}{2}(\xi(t)V_{\mu}\xi(-t)-\xi(-t)V_{\mu}\xi(t)+\xi(t)A_{\mu}\xi(-t)+\xi(-t)A_{\mu}\xi(t) (289)
iξ(t)μξ(t)+iξ(t)μξ(t)),\displaystyle-i\xi(t)\partial_{\mu}\xi(-t)+i\xi(-t)\partial_{\mu}\xi(t)),
Vμν(t)\displaystyle V_{\mu\nu}(t) =\displaystyle= μVν(t)νVμ(t)+i[Vμ(t),Vν(t)]+i[Aμ(t),Aν(t)],\displaystyle\partial_{\mu}V_{\nu}(t)-\partial_{\nu}V_{\mu}(t)+i[V_{\mu}(t),V_{\nu}(t)]+i[A_{\mu}(t),A_{\nu}(t)], (290)
Aμν(t)\displaystyle A_{\mu\nu}(t) =\displaystyle= μAν(t)νAμ(t)+i[Vμ(t),Aν(t)]+i[Aμ(t),Vν(t)],\displaystyle\partial_{\mu}A_{\nu}(t)-\partial_{\nu}A_{\mu}(t)+i[V_{\mu}(t),A_{\nu}(t)]+i[A_{\mu}(t),V_{\nu}(t)], (291)
ξ(t)\displaystyle\xi(t) =\displaystyle= ei(1t)π/f.\displaystyle e^{-i(1-t)\pi/f}. (292)

The expressions given in Eqs. (287-292) are all defined in Minkowski space-time.

Appendix I Form factors at O(p4)O(p^{4}) for τKsπν\tau^{-}\to K_{s}\pi^{-}\nu decay

The vector form factors for τKsπν\tau^{-}\to K_{s}\pi^{-}\nu decays including η0\eta^{0} meson loop were computed in Ref. Kimura:2014wsa . In the present work, we do not include the loop contribution of the singlet meson. Below, we show the expression for form factors without the singlet meson loop contribution, which is used to calculate the decay spectrum of τKsπν\tau^{-}\to K_{s}\pi^{-}\nu. The expression in this appendix can be obtained from Eqs. (40-54) in Kimura:2014wsa , by simply setting the mixing angle ( θ08\theta_{08}) between the singlet meson and the octet meson to be zero. In the formulas shown below, the isospin breaking effect and the mixing induced CP violation of the neutral kaon system is also neglected. By ignoring CP violation due to the mixing, KsK_{s} is CP even state,

|Ks=12(|K0|K¯0),\displaystyle|K_{s}\rangle=\frac{1}{\sqrt{2}}(|K^{0}\rangle-|\bar{K}^{0}\rangle), (293)

where |K¯0=CP|K0|\bar{K}^{0}\rangle=-CP|K^{0}\rangle. Since ΔS=ΔQ=1\Delta S=\Delta Q=-1 rule holds, one finds the following relation,

Ksπ|s¯γμu|0=12K¯0π|s¯γμu|0.\displaystyle\langle K_{s}\pi^{-}|\bar{s}\gamma_{\mu}u|0\rangle=-\frac{1}{\sqrt{2}}\langle\bar{K}^{0}\pi^{-}|\bar{s}\gamma_{\mu}u|0\rangle. (294)

One defines the vector form factors for K¯0π(Kπ0)\bar{K}^{0}\pi^{-}(K^{-}\pi^{0}) and its CP conjugate states,

K¯0π|s¯γμu|0\displaystyle\langle\bar{K}^{0}\pi^{-}|\bar{s}\gamma_{\mu}u|0\rangle =\displaystyle= FVK¯0π(qμQμΔKπQ2)+FSK¯0πQμQ2,\displaystyle F_{V}^{\bar{K}^{0}\pi^{-}}(q_{\mu}-Q_{\mu}\frac{\Delta_{K\pi}}{Q^{2}})+F_{S}^{\bar{K}^{0}\pi^{-}}\frac{Q_{\mu}}{Q^{2}},
K0π+|u¯γμs|0\displaystyle\langle K^{0}\pi^{+}|\bar{u}\gamma_{\mu}s|0\rangle =\displaystyle= FVK0π+(qμQμΔKπQ2)+FSK0π+QμQ2,\displaystyle F_{V}^{K^{0}\pi^{+}}(q_{\mu}-Q_{\mu}\frac{\Delta_{K\pi}}{Q^{2}})+F_{S}^{K^{0}\pi^{+}}\frac{Q_{\mu}}{Q^{2}},
Kπ0|s¯γμu|0\displaystyle\langle K^{-}\pi^{0}|\bar{s}\gamma_{\mu}u|0\rangle =\displaystyle= FVKπ0(qμQμΔKπQ2)+FSKπ0QμQ2,\displaystyle F_{V}^{K^{-}\pi^{0}}(q_{\mu}-Q_{\mu}\frac{\Delta_{K\pi}}{Q^{2}})+F_{S}^{K^{-}\pi^{0}}\frac{Q_{\mu}}{Q^{2}},
K+π0|u¯γμs|0\displaystyle\langle K^{+}\pi^{0}|\bar{u}\gamma_{\mu}s|0\rangle =\displaystyle= FVK+π0(qμQμΔKπQ2)+FSK+π0QμQ2.\displaystyle F_{V}^{K^{+}\pi^{0}}(q_{\mu}-Q_{\mu}\frac{\Delta_{K\pi}}{Q^{2}})+F_{S}^{K^{+}\pi^{0}}\frac{Q_{\mu}}{Q^{2}}. (295)

Since under CP transformation, the charged currents are related to each other as follows,

CP(s¯γμu)(CP)1=u¯γμs,\displaystyle CP(\bar{s}\gamma_{\mu}u)(CP)^{-1}=-\bar{u}\gamma^{\mu}s, (296)

the following relations among the form factors are derived,

FVK¯0π\displaystyle F_{V}^{\bar{K}^{0}\pi^{-}} =\displaystyle= FVK0π+,FSK¯0π=FSK0π+,\displaystyle-F_{V}^{K^{0}\pi^{+}},F_{S}^{\bar{K}^{0}\pi^{-}}=-F_{S}^{K^{0}\pi^{+}},
FVKπ0\displaystyle F_{V}^{K^{-}\pi^{0}} =\displaystyle= FVK+π0,FSKπ0=FSK+π0.\displaystyle-F_{V}^{K^{+}\pi^{0}},F_{S}^{K^{-}\pi^{0}}=-F_{S}^{K^{+}\pi^{0}}. (297)

In the isospin limit, we also obtain the relations,

FVK¯0π\displaystyle F_{V}^{\bar{K}^{0}\pi^{-}} =\displaystyle= 2FVKπ0,FSK¯0π=2FSKπ0,\displaystyle\sqrt{2}F_{V}^{K^{-}\pi^{0}},F_{S}^{\bar{K}^{0}\pi^{-}}=\sqrt{2}F_{S}^{K^{-}\pi^{0}},
FVK0π+\displaystyle F_{V}^{K^{0}\pi^{+}} =\displaystyle= 2FVK+π0,FSK0π+=2FSK+π0.\displaystyle\sqrt{2}F_{V}^{K^{+}\pi^{0}},F_{S}^{K^{0}\pi^{+}}=\sqrt{2}F_{S}^{K^{+}\pi^{0}}. (298)

Using Eq. (294), Eq, (295), Eq. (297) and Eq. (298), one can relate the form factor of KsπK_{s}\pi^{-} of Eq. (294) to that of K+π0K^{+}\pi^{0},

Ksπ|s¯γμu|0=K+π0|u¯γμs|0.\displaystyle\langle K_{s}\pi^{-}|\bar{s}\gamma_{\mu}u|0\rangle=\langle K^{+}\pi^{0}|\bar{u}\gamma_{\mu}s|0\rangle. (299)

The contribution to the form factors is divided into two parts. One of them comes from 1 PI diagrams and the other comes from the diagrams which include the propagator of KK^{\ast} meson,

FVK+π0\displaystyle F_{V}^{K^{+}\pi^{0}} =\displaystyle= FV1PI+FVK,\displaystyle F_{V}^{1PI}+F_{V}^{K^{\ast}}, (300)
FSK+π0\displaystyle F_{S}^{K^{+}\pi^{0}} =\displaystyle= FS1PI+FSK.\displaystyle F_{S}^{1PI}+F_{S}^{K^{\ast}}. (301)

Each contribution to form factors is given below (See also Kimura:2014wsa ),

FV1PI\displaystyle F_{V}^{1PI} =\displaystyle= 12(1MV22g2f2)+12[3c2(HKπ+HKη8)+cMV28g2f2(10μK+3μη8+11μπ)\displaystyle-\frac{1}{\sqrt{2}}(1-\frac{M_{V}^{2}}{2g^{2}f^{2}})+\frac{1}{\sqrt{2}}\Bigl{[}-\frac{3c}{2}(H_{K\pi}+H_{K\eta_{8}})+\frac{cM_{V}^{2}}{8g^{2}f^{2}}(10\mu_{K}+3\mu_{\eta_{8}}+11\mu_{\pi}) (302)
\displaystyle- 38(MV2g2f2)2(HKπ+HKη8+2μK+μπ+μη82)C5r2Q2f2\displaystyle\frac{3}{8}\left(\frac{M_{V}^{2}}{g^{2}f^{2}}\right)^{2}(H_{K\pi}+H_{K\eta_{8}}+\frac{2\mu_{K}+\mu_{\pi}+\mu_{\eta_{8}}}{2})-\frac{C_{5}^{r}}{2}\frac{Q^{2}}{f^{2}}
+\displaystyle+ MV22g2f2{MV22g2f2K4rmK2f24L5rΣKπf2+2mK2+mπ2f2(MV22g2f2K5r8L4r)}],\displaystyle\frac{M_{V}^{2}}{2g^{2}f^{2}}\Bigl{\{}\frac{M_{V}^{2}}{2g^{2}f^{2}}K_{4}^{r}\frac{m_{K}^{2}}{f^{2}}-4L_{5}^{r}\frac{\Sigma_{K\pi}}{f^{2}}+\frac{2m_{K}^{2}+m_{\pi}^{2}}{f^{2}}(\frac{M_{V}^{2}}{2g^{2}f^{2}}K_{5}^{r}-8L_{4}^{r})\Bigr{\}}\Bigr{]},
FVK\displaystyle F_{V}^{K^{\ast}} =\displaystyle= 122gMV2MV2+δAK[4E+2G+Q2f2MV2gf2],\displaystyle-\frac{1}{2\sqrt{2}g}\frac{M_{V}^{2}}{M_{V}^{2}+\delta A_{K^{\ast}}}\left[4E+\sqrt{2}\frac{G+Q^{2}{\mathcal{H}}}{f^{2}}-\frac{M_{V}^{2}}{gf^{2}}\right], (303)
FS1PI\displaystyle F_{S}^{1PI} =\displaystyle= 121Q2[(1MV22g2f2){ΔKπJ¯Kπ8f2{5cQ2(5c3)ΣKπ}+ΔKη8J¯Kη88f2{3cQ2(3c1)ΣKπ}}\displaystyle\frac{1}{\sqrt{2}}\frac{1}{Q^{2}}\Bigl{[}(1-\frac{M_{V}^{2}}{2g^{2}f^{2}})\Bigl{\{}-\frac{\Delta_{K\pi}\bar{J}_{K\pi}}{8f^{2}}\{5cQ^{2}-(5c-3)\Sigma_{K\pi}\}+\frac{\Delta_{K\eta_{8}}\bar{J}_{K\eta_{8}}}{8f^{2}}\{3cQ^{2}-(3c-1)\Sigma_{K\pi}\}\Bigr{\}} (304)
+3ΔKπ8f2(1MV22g2f2)2{ΔKπ2sJ¯Kπ+ΔKη82sJ¯Kη8}]\displaystyle+\frac{3\Delta_{K\pi}}{8f^{2}}(1-\frac{M_{V}^{2}}{2g^{2}f^{2}})^{2}\{\frac{\Delta_{K\pi}^{2}}{s}\bar{J}_{K\pi}+\frac{\Delta_{K\eta_{8}}^{2}}{s}\bar{J}_{K\eta_{8}}\}\Bigr{]}
+\displaystyle+ 12ΔKπQ2[(1MV22g2f2)+c4Q23μη8+2μK5μπΔKπ+cMV28g2f2(10μK+3μ8+11μπ)\displaystyle\frac{1}{\sqrt{2}}\frac{\Delta_{K\pi}}{Q^{2}}\Bigl{[}-(1-\frac{M_{V}^{2}}{2g^{2}f^{2}})+\frac{c}{4}Q^{2}\frac{3\mu_{\eta_{8}}+2\mu_{K}-5\mu_{\pi}}{\Delta_{K\pi}}+c\frac{M_{V}^{2}}{8g^{2}f^{2}}(10\mu_{K}+3\mu_{8}+11\mu_{\pi})
\displaystyle- 316(MV2g2f2)2(2μK+μπ+μη8)4L5rQ2f2\displaystyle\frac{3}{16}\left(\frac{M_{V}^{2}}{g^{2}f^{2}}\right)^{2}(2\mu_{K}+\mu_{\pi}+\mu_{\eta_{8}})-4L_{5}^{r}\frac{Q^{2}}{f^{2}}
+\displaystyle+ MV22g2f2{MV22g2f2K4rmK2f24L5rΣKπf2+2mK2+mπ2f2(MV22g2f2K5r8L4r)}],\displaystyle\frac{M_{V}^{2}}{2g^{2}f^{2}}\Bigl{\{}\frac{M_{V}^{2}}{2g^{2}f^{2}}K_{4}^{r}\frac{m_{K}^{2}}{f^{2}}-4L_{5}^{r}\frac{\Sigma_{K\pi}}{f^{2}}+\frac{2m_{K}^{2}+m_{\pi}^{2}}{f^{2}}(\frac{M_{V}^{2}}{2g^{2}f^{2}}K_{5}^{r}-8L_{4}^{r})\Bigr{\}}\Bigr{]},
FSK\displaystyle F_{S}^{K^{\ast}} =\displaystyle= 122gΔKπQ2MV2MV2+δAK+Q2δB~K[4(E+Q2)+2Gf2MV2gf2],\displaystyle-\frac{1}{2\sqrt{2}g}\frac{\Delta_{K\pi}}{Q^{2}}\frac{M_{V}^{2}}{M_{V}^{2}+\delta A_{K^{\ast}}+Q^{2}\delta\tilde{B}_{K^{\ast}}}\left[4(E+Q^{2}{\mathcal{F}})+\sqrt{2}\frac{G}{f^{2}}-\frac{M_{V}^{2}}{gf^{2}}\right], (305)

where G,,EG,{\mathcal{H}},E and {\mathcal{F}} are given as,

G\displaystyle G =\displaystyle= 12g{MV2+δAK+Q2δB~K3MV22f2(LKπ+LKη8)},\displaystyle\frac{1}{\sqrt{2}g}\{M_{V}^{2}+\delta A_{K^{\ast}}+Q^{2}\delta\tilde{B}_{K^{\ast}}-\frac{3M_{V}^{2}}{2f^{2}}(L_{K\pi}+L_{K\eta_{8}})\}, (306)
\displaystyle{\mathcal{H}} =\displaystyle= 12g{ZVr2gC4rδB~K+3MV22f2(MKπr+MKη8r)},\displaystyle\frac{1}{\sqrt{2}g}\{Z^{r}_{V}-2gC^{r}_{4}-\delta\tilde{B}_{K^{\ast}}+\frac{3M_{V}^{2}}{2f^{2}}(M^{r}_{K\pi}+M^{r}_{K\eta_{8}})\}, (307)
E\displaystyle E =\displaystyle= MV24gf2g2MV2{(δAK+Q2δB~K)(1MV22g2f2)C1rmK2C2r(2mK2+mπ2)}\displaystyle\frac{M_{V}^{2}}{4gf^{2}}-\frac{g}{2M_{V}^{2}}\{(\delta A_{K^{\ast}}+Q^{2}\delta\tilde{B}_{K^{\ast}})(1-\frac{M_{V}^{2}}{2g^{2}f^{2}})-C_{1}^{r}m_{K}^{2}-C_{2}^{r}(2m_{K}^{2}+m_{\pi}^{2})\} (308)
+\displaystyle+ MV216gf2{3(2μK+μπ+μη8)+c(10μK+3μη8+11μπ)32L4r2mK2+mπ2f216L5rΣKπf2}\displaystyle\frac{M_{V}^{2}}{16gf^{2}}\{-3(2\mu_{K}+\mu_{\pi}+\mu_{\eta_{8}})+c(10\mu_{K}+3\mu_{\eta_{8}}+11\mu_{\pi})-32L_{4}^{r}\frac{2m_{K}^{2}+m_{\pi}^{2}}{f^{2}}-16L_{5}^{r}\frac{\Sigma_{K\pi}}{f^{2}}\}
+\displaystyle+ {g2MV2(1MV22g2f2)(δB~KZVr)+C3r8f2}Q2,\displaystyle\{\frac{g}{2M_{V}^{2}}(1-\frac{M_{V}^{2}}{2g^{2}f^{2}})(\delta\tilde{B}_{K^{\ast}}-Z^{r}_{V})+\frac{C_{3}^{r}}{8f^{2}}\}Q^{2},
\displaystyle{\mathcal{F}} =\displaystyle= {g2MV2(1MV22g2f2)(δB~KZVr)+C3r8f2}+MV28gf41Q2{ΣKπ(34J¯Kπ+112J¯Kη8)\displaystyle-\{\frac{g}{2M_{V}^{2}}(1-\frac{M_{V}^{2}}{2g^{2}f^{2}})(\delta\tilde{B}_{K^{\ast}}-Z^{r}_{V})+\frac{C_{3}^{r}}{8f^{2}}\}+\frac{M_{V}^{2}}{8gf^{4}}\frac{1}{Q^{2}}\{\Sigma_{K\pi}(\frac{3}{4}\bar{J}_{K\pi}+\frac{1}{12}\bar{J}_{K\eta_{8}}) (309)
+\displaystyle+ c(Q2ΣKπ)(54J¯Kπ+14J¯Kη8)}.\displaystyle c(Q^{2}-\Sigma_{K\pi})(\frac{5}{4}\bar{J}_{K\pi}+\frac{1}{4}\bar{J}_{K\eta_{8}})\}.

We obtain δB~K\delta\tilde{B}_{K^{\ast}} and δAK\delta A_{K^{\ast}} in the above equations by taking the isospin limit of Eq. (238) and Eq. (237) and they are given respectively as follows,

δB~K\displaystyle\delta\tilde{B}_{K^{\ast}} =\displaystyle= ZVr(μ)+3gρππ2[MrKπ+MrKη8],\displaystyle Z_{V}^{r}(\mu)+3g_{\rho\pi\pi}^{2}\Bigr{[}M^{r}_{K\pi}+M^{r}_{K\eta_{8}}\Bigl{]},
δAK\displaystyle\delta A_{K^{\ast}} =\displaystyle= ΔAK++C1r(μ)MK+2+C2r(μ)(2M¯K2+Mπ2)Q2ZVr(μ),\displaystyle\Delta A_{K^{\ast+}}+C_{1}^{r}(\mu)M^{2}_{K^{+}}+C_{2}^{r}(\mu)(2\bar{M}^{2}_{K}+M^{2}_{\pi})-Q^{2}Z_{V}^{r}(\mu), (310)

where ΔAK\Delta A_{K^{\ast}} is given by,

ΔAK\displaystyle\Delta A_{K^{\ast}} =\displaystyle= 3Q2gρππ2[MKπr+MKη8r]+3gρππ2[LKπ+LKη8f22{2μK+μπ+μη8}].\displaystyle-3Q^{2}g_{\rho\pi\pi}^{2}\Bigr{[}M^{r}_{K\pi}+M^{r}_{K\eta_{8}}\Bigl{]}+3g_{\rho\pi\pi}^{2}\Bigr{[}L_{K\pi}+L_{K\eta_{8}}-\frac{f^{2}}{2}\{2\mu_{K}+\mu_{\pi}+\mu_{\eta_{8}}\}\Bigr{]}. (311)

References

  • (1) R. Arnaldi et al. [NA60 Collaboration], Phys. Lett. B 757, 437 (2016) [arXiv:1608.07898 [hep-ex]].
  • (2) M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 92, no. 1, 012001 (2015) [arXiv:1504.06016 [hep-ex]].
  • (3) M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida,
    Phys. Rev. Lett.  54, 1215 (1985).
  • (4) G. Ecker, J. Gasser, A. Pich and E. de Rafael, Nucl. Phys. B 321, 311 (1989).
  • (5) G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Phys. Lett. B 223, 425 (1989).
  • (6) D. Kimura, K. Y. Lee and T. Morozumi, PTEP 2013, 053B03 (2013) [Erratum-ibid.  2014, no. 8, 089202 (2014)] [arXiv:1201.1794 [hep-ph]].
  • (7) S. Anderson et al. [CLEO Collaboration], Phys. Rev. D 61, 112002 (2000) [hep-ex/9910046 [hep-ex]].
  • (8) M. Fujikawa et al. [Belle Collaboration], Phys. Rev. D 78, 072006 (2008) [arXiv:0805.3773 [hep-ex]].
  • (9) M. Davier, A. Höcker, B. Malaescu, C. Z. Yuan and Z. Zhang, Eur. Phys. J. C 74, no. 3, 2803 (2014) [arXiv:1312.1501 [hep-ex]].
  • (10) B. Aubert et al. [BaBar Collaboration], Phys. Rev. D 76, 051104 (2007) [arXiv:0707.2922 [hep-ex]].
  • (11) D. Epifanov et al. [Belle Collaboration], Phys. Lett. B 654, 65 (2007) [arXiv:0706.2231 [hep-ex]].
  • (12) K. Inami et al. [Belle Collaboration], Phys. Lett. B 672, 209 (2009) [arXiv:0811.0088 [hep-ex]].
  • (13) P. del Amo Sanchez et al. [BaBar Collaboration], Phys. Rev. D 83, 032002 (2011) [arXiv:1011.3917 [hep-ex]].
  • (14) A. Pich, Prog. Part. Nucl. Phys.  75, 41 (2014) [arXiv:1310.7922 [hep-ph]].
  • (15) G. C. Wick, A. S. Wightman and E. P. Wigner, Phys. Rev.  88, 101 (1952).
  • (16) J. Wess and B. Zumino, Phys. Lett. B 37, 95 (1971).
  • (17) E. Witten, Nucl. Phys. B 223, 422 (1983).
  • (18) T. Fujiwara, T. Kugo, H. Terao, S. Uehara and K. Yamawaki,
    Prog. Theor. Phys.  73, 926 (1985).
  • (19) M. Bando, T. Kugo and K. Yamawaki, Phys. Rept.  164, 217 (1988).
  • (20) M. Hashimoto, Phys. Rev. D 54, 5611 (1996) [hep-ph/9605422].
  • (21) A. Bramon, A. Grau and G. Pancheri, Phys. Lett. B 344, 240 (1995).
  • (22) A. Bramon, R. Escribano and M. D. Scadron, Phys. Lett. B 503, 271 (2001) [hep-ph/0012049].
  • (23) C. Terschlüsen and S. Leupold, Phys. Lett. B 691, 191 (2010) [arXiv:1003.1030 [hep-ph]].
  • (24) C. Terschlüsen, S. Leupold and M. F. M. Lutz, Eur. Phys. J. A 48, 190 (2012) [arXiv:1204.4125 [hep-ph]].
  • (25) S. P. Schneider, B. Kubis and F. Niecknig, Phys. Rev. D 86, 054013 (2012) [arXiv:1206.3098 [hep-ph]].
  • (26) Y. H. Chen, Z. H. Guo and H. Q. Zheng, Phys. Rev. D 85, 054018 (2012) [arXiv:1201.2135 [hep-ph]].
  • (27) P. Roig, A. Guevara and G. López Castro, Phys. Rev. D 89, no. 7, 073016 (2014) [arXiv:1401.4099 [hep-ph]].
  • (28) R. Escribano and S. Gonzalez-Solis, [arXiv:1511.04916 [hep-ph]].
  • (29) R. Urech, Nucl. Phys. B 433, 234 (1995) [hep-ph/9405341].
  • (30) J. Gasser and H. Leutwyler, Nucl. Phys.  B 250 (1985) 517.
  • (31) A. Pilaftsis and C. E. M. Wagner, Nucl. Phys. B 553, 3 (1999) [hep-ph/9902371].
  • (32) K.A. Olive et al. [Particle Data Group], Chin. Phys. C38, 090001 (2014).
  • (33) M. N. Achasov et al., J. Exp. Theor. Phys.  107, 61 (2008).
  • (34) R. I. Dzhelyadin et al., Phys. Lett. B 102, 296 (1981); JETP Lett.  33, 228 (1981).
  • (35) R. R. Akhmetshin et al. [CMD-2 Collaboration], Phys. Lett. B 613, 29 (2005) [hep-ex/0502024].
  • (36) D. Babusci et al. [KLOE-2 Collaboration], Phys. Lett. B 742, 1 (2015) [arXiv:1409.4582 [hep-ex]].
  • (37) M. N. Achasov et al., Phys. Lett. B 504, 275 (2001).
  • (38) A. Anastasi et al. [KLOE-2 Collaboration], Phys. Lett. B 757, 362 (2016) [arXiv:1601.06565 [hep-ex]].
  • (39) P. Adlarson et al. [WASA-at-COSY Collaboration], Phys. Lett. B 707, 243 (2012) [arXiv:1107.5277 [nucl-ex]].
  • (40) R. I. Dzhelyadin et al., Phys. Lett. B 94, 548 (1980);
    Sov. J. Nucl. Phys.  32, 516 (1980); Yad. Fiz.  32, 998 (1980).
  • (41) P. Aguar-Bartolome et al. [A2 Collaboration], Phys. Rev. C 89, no. 4, 044608 (2014) [arXiv:1309.5648 [hep-ex]].
  • (42) R. I. Dzhelyadin et al., Sov. J. Nucl. Phys.  32, 520 (1980); Yad. Fiz.  32, 1005 (1980).
  • (43) T. D. Lee and C. N. Yang, Nuovo Cim.  10, 749 (1956).
  • (44) J. F. Donoghue, E. Golowich and B. R. Holstein,
    Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol.  2, 1 (1992).
  • (45) J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985).
  • (46) K. Fujikawa and H. Suzuki, Oxford, UK: Clarendon (2004) 284 p.