This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Analysis of radial complex scaling methods: scalar resonance problems

Martin Halla halla@mps.mpg.de
Abstract.

We consider radial complex scaling/perfectly matched layer methods for scalar resonance problems in homogeneous exterior domains. We introduce a new abstract framework to analyze the convergence of domain truncations and discretizations. Our theory requires rather minimal assumptions on the scaling profile and includes affin, smooth and also unbounded profiles. We report a swift technique to analyze the convergence of domain truncations and a more technical one for approximations through simultaneaous truncation and discretization. We adapt the latter technique to cover also so-called exact methods which do not require a domain truncation. Our established results include convergence rates of eigenvalues and eigenfunctions.

The introduced framework is based on the ideas to interpret the domain truncation as Galerkin approximation, to apply theory on holomorphic Fredholm operator eigenvalue approximation theory to a linear eigenvalue problem, to employ the notion of weak T-coercivity and T-compatible approximations, to construct a suitable T-operator as multiplicatin operator, to smooth its symbol and to apply the discrete commutator technique.

Key words and phrases:
complex scaling, perfectly matched layer, pml, resonance problem, Helmholtz equation, T-coercivity.
2010 Mathematics Subject Classification:
65N30, 65N12, 35B34, 35J20.

1. Introduction

Since the 1970s a popular method has been used in molecular physics to study resonances [57, 53]. This method is referred to by various names: complex scaling (CS), analytic dilation (AD) and spectral deformation (SD). It admits a profound mathematical framework with the Aguilar-Balslev-Combes-Simon Theorem at its core [41]. A main advantage of the method is that it preserves the linear eigenvalue problem structure. In contrast other types of transparent boundary conditions such as absorbing boundary conditions [31, 32] do not work for resonance problems or destroy the linear nature like boundary element methods [61, 59, 62]. In the 1990s Bérenger [8] introduced his perfectly matched layer (PML) method as reflectionless sponge layer for electromagnetic scattering problems which became very popular for all kinds of wave propagation problems. In [24, 60, 26] the PML method was recognized to be a complex scaling technique. Also the original variant of the Hardy space infinite element method [54, 42, 33] was recognized in [56] to be a conjunction of a complex scaling and an infinite element method. We refer to [39, 40] for computational studies of CS/PML methods for resonance problems. Recently CS/PML methods have been applied to other kinds of problems as well. E.g. problems which are posed in bounded domains, but admit black hole phenomena [13]. A further application of CS/PML can be found in domain decomposition methods [30, 52]. We refer to the introduction of [34] for a rigorous overview on the existing literature on CS/PML methods.

The idea of CS/PML methods is to apply a continuous complex coordinate transformation (the complex scaling) to the resonance functions. For resonances in a suitable region of the complex plane the corresponding resonance functions become exponentially damped by this transformation. Consequently a new set of partial differential equations is derived for the transformed resonance functions and due to their exponential decay the resonance problem transforms to an eigenvalue problem in a suitable standard Sobolev space. Furthermore the domain is truncated to a bounded one and a homogeneous boundary condition imposed at the artificial boundary. Due to the rapid decay of the eigenfunctions the committed error is expected to be small. The derived problem can consequently be discretized with standard numerical schemes such as finite element methods.

We note that despite their popularity the construction of physically correct and stable CS/PML methods has to be executed with care. In general the complex scaling has to be designed so that evanescent waves stay evanescent and propagative waves with positive group velocity become evanescent. While for some equations this poses no problem at all it can lead to serious difficulties if the equation is anisotropic [6], advective [4, 5] or dispersiv [21, 7]. Also waveguide geometries [58, 14, 37, 36] can generate such difficulties since they cause dispersive effects (although the equation may be dispersionless itself).

While the application of the CS/PML method is widely spread, the results on proofs of convergence have been limited so far. For time-dependent equations the only actual convergence result known to us is [28, 29]. Time-harmonic scattering problems have been dealt with by a number of authors (e.g. [51, 44, 3, 15, 16, 17, 23]). However, the results are usually formulated for special scaling profiles and a unified framework was missing. For resonance problems the only known convergence results known to use are [48, 50, 49, 43]. Moreover with the exception of [43] all works analyze the domain truncation and the subsequent (finite element) discretization seperately. Consequently the important question if arbitrary combinations of domain truncations and discretizations can lead to erroneous results is left open.

This article considers radial CS/PML approximations for scalar resonance problems in homogeneous exterior domains. We introduce a new abstract framework for the convergence analysis which can also serve for the analysis of other equations and geometries. On the one hand we present a swift technique to analyze the domain truncation and the subsequent discretization seperately. On the other hand we also cover simultaneaous approximations (with more technical effort). Further, we adapt our analysis to treat so-called exact methods [45, 10] which do not require a domain truncation. Different to existing works [48, 50, 49, 43] we also report convergence rates of eigenvalues and eigenfunctions. Our results are formulated under rather minimal assumptions on the profile function and cover affine, smooth as well as unbounded profiles.

Our framework is build on the combination of several indepent ideas. Following [43] we interpret the domain truncation as Galerkin approximation. This restores a most convenient setup to perform the approximation analysis. In addition to [43] we propose to use this idea also for the analysis of the sole domain truncation (without discretization). Due to their large essential spectrum resonance problems can’t be reformulated as standard linear eigenvalue problems for a compact operator and standard eigenvalue approximation theory [2, 12] cannot be applied. Following [33] we apply literature on holomorphic Fredholm operator eigenvalue approximation theory [46, 47] to a linear eigenvalue problem. This allows us to employ readily available concepts and relieves us from conducting huge parts of the analysis manually (as done in [48, 50, 49, 43]). This way we also easily obtain convergence rates. We ensure the regularity/stability of Galerkin approximations through the notion of weak T-coercivity and T-compatible approximations [35]. For our eigenvalue problem at hand the construction of a suitable T-operator can be realized with a simple multiplication operator. For restricted kinds of scaling profiles this observation goes back to [15]. To treat simultaneaous approximations and exact methods we smooth the symbol of the multiplication operator and employ the discrete commutator technique of [11].

The remainder of this article is structured as follows. In Section 2 we introduce the original resonance problem, the CS/PML eigenvalue problem and discuss their relation. We further introduce the domain truncation as Galerkin approximation and discuss why convenient theory on linear eigenvalue problem approximations cannot be applied. In Section 3 we recall the T-analysis framework [35], explicitly construct a T-operator and establish a weak T-coercivity result in Theorem 3.5. In Section 4 we discuss approximation through domain truncations. We establish in Theorem 4.2 convergence and explain how to obtain convenient exponential error estimates by means of Lemma 4.3. In Section 5 we report similar results for the more subtle case of simultaneaous domain truncation and discretization. In Section 6 we introduce a reformulation of the CS/PML eigenvalue problem on a bounded domain and establish convergence of approximations in Theorem 6.7. We discuss how to choose the CS/PML parameters such that common finite element methods fit into the former theory. In Section 7 we conclude and discuss the perspective to generalize the presented results to other equations and geometric configurations.

2. The resonance problem and its approximation

2.1. The resonance problem

Let Br3B_{r}\subset\mathbb{R}^{3} be the open ball with radius r>0r>0 centered at the origin, Br(x0)3B_{r}(x_{0})\subset\mathbb{R}^{3} be the open ball with radius r>0r>0 centered at x0x_{0} and Ar1,r23A_{r_{1},r_{2}}\subset\mathbb{R}^{3} be the open annulus Br2Br1¯B_{r_{2}}\setminus\overline{B_{r_{1}}} with radii r2>r1>0r_{2}>r_{1}>0. For a Lipschitz domain D3D\subset\mathbb{R}^{3} let

(1) H~loc1(D)\displaystyle\tilde{H}^{1}_{\mathrm{loc}}(D) :={uHloc1(D):u|DBrH1(DBr) for all r>0 with DBr}.\displaystyle:=\{u\in H^{1}_{\mathrm{loc}}(D)\colon u|_{D\cap B_{r}}\in H^{1}(D\cap B_{r})\text{ for all }r>0\text{ with }D\cap B_{r}\neq\emptyset\}.

For a Lipschitz domain D3D\subset\mathbb{R}^{3} with finite boundary D\partial D and uHloc1(D)u\in H^{1}_{\mathrm{loc}}(D) the trace u|DH1/2(D)u|_{\partial D}\in H^{1/2}(\partial D) is well defined. Hence let

(2) H0,loc1(D)\displaystyle H^{1}_{\mathrm{0,loc}}(D) :={uH~loc1(D):u|D=0}.\displaystyle:=\{u\in\tilde{H}^{1}_{\mathrm{loc}}(D)\colon u|_{\partial D}=0\}.

Let Ω3\Omega\subset\mathbb{R}^{3} be a Lipschitz domain so that the complement Ωc\Omega^{c} is compact and non-empty. We seek non-trivial solutions (ω,u)(\omega,u) to

(3a) Δuω2u\displaystyle-\Delta u-\omega^{2}u =0in Ω,\displaystyle=0\quad\text{in }\Omega,
(3b) u\displaystyle u =0at Ω,\displaystyle=0\quad\text{at }\partial\Omega,
together with the abstract radiation condition (which will be specified in Definition 2.1)
(3c) u\displaystyle u is outgoing

in the distributional sense. That is (ω,u)(\omega,u) solves

find (ω,u){0}×H~0,loc1(Ω){0}\displaystyle\text{find }(\omega,u)\in\mathbb{C}\setminus\{0\}\times\tilde{H}^{1}_{\mathrm{0,loc}}(\Omega)\setminus\{0\} such that
(4a) u,uL2(Ω)ω2u,uL2(Ω)\displaystyle\langle\nabla u,\nabla u^{\prime}\rangle_{L^{2}(\Omega)}-\omega^{2}\langle u,u^{\prime}\rangle_{L^{2}(\Omega)} =0for all uC0(Ω),\displaystyle=0\quad\text{for all }u^{\prime}\in C^{\infty}_{0}(\Omega),
(4b) u\displaystyle u is outgoing.\displaystyle\text{ is outgoing}.

Let Sr2:={x3:|x|=r}S^{2}_{r}:=\{x\in\mathbb{R}^{3}\colon|x|=r\} be the sphere with radius r>0r>0 and S2:=S12S^{2}:=S^{2}_{1} be the unit sphere. Consider the standard parametrization

(5) Q(r,x^):=rx^,r>0,x^S2.\displaystyle Q(r,\hat{x}):=r\hat{x},\quad r>0,\hat{x}\in S^{2}.

It is well known (see e.g. [34, Lemmata 2.3 and 2.4]) that every solution to the Helmholtz equation Δuω2u=0-\Delta u-\omega^{2}u=0 in an annulus Ar1,r2A_{r_{1},r_{2}} can be expanded in a series of tensor product functions of spherical Hankel functions of the first hn1(r)h^{1}_{n}(r) and second hn2(r)h^{2}_{n}(r) kind and spherical harmonics Ynm(x^)Y_{n}^{m}(\hat{x}). The meaningful physical radiation condition demands that no spherical Hankel functions of the second kind occur.

Definition 2.1 (Radiation condition).

Let (ω,u){0}×H~0,loc1(Ω){0}(\omega,u)\in\mathbb{C}\setminus\{0\}\times\tilde{H}^{1}_{\mathrm{0,loc}}(\Omega)\setminus\{0\} be a solution to (4). We call uu to be outgoing if it admits a representation

(6) uQ(r,x^)=n=0m=nnanmhn1(ωr)Ynm(x^)\displaystyle u\circ Q(r,\hat{x})=\sum_{n=0}^{\infty}\sum_{m=-n}^{n}a_{n}^{m}h^{1}_{n}(\omega r)Y_{n}^{m}(\hat{x})

in L2(Ar1,r2)L^{2}(A_{r_{1},r_{2}}) for all 0<r1<r20<r_{1}<r_{2} with ΩcBr1\Omega^{c}\subset B_{r_{1}}.

2.2. The complex scaled eigenvalue problem

We will define a complex change of the radial coordinate r~(r)=(1+iα~(r))r\tilde{r}(r)=(1+i\tilde{\alpha}(r))r in terms of a profile function α~\tilde{\alpha}. We make assumptions on this profile function as follows.

Assumption 2.2.

Let r1>0r^{*}_{1}>0 be such that Ωc\Omega^{c} is contained in the ball Br1B_{r^{*}_{1}} and α~:0+0+\tilde{\alpha}\colon\mathbb{R}^{+}_{0}\to\mathbb{R}^{+}_{0} be such that

  1. (1)

    α~(r)=0\tilde{\alpha}(r)=0 for rr1r\leq r^{*}_{1},

  2. (2)

    α~\tilde{\alpha} is continuous,

  3. (3)

    α~(r)>0\tilde{\alpha}(r)>0 for r>r1r>r^{*}_{1},

  4. (4)

    α~\tilde{\alpha} is non-decreasing,

  5. (5)

    α~\tilde{\alpha} is twice continuously differentiable in (r1,+)(r^{*}_{1},+\infty) with continuous extensions of α~\tilde{\alpha}, rα~\partial_{r}\tilde{\alpha}, rrα~\partial_{r}\partial_{r}\tilde{\alpha} to [r1,+)[r^{*}_{1},+\infty).

Assumption 2.2 is very general. Later on we will require an additional Assumption 3.1 for our analysis. In particular Assumptions 2.2 and 3.1 are satisfied by profiles of the following kinds. The probably simplest complex scaling is

(7a) r~(r)=r+iα0(rr1),rr1\displaystyle\tilde{r}(r)=r+i\alpha_{0}(r-r_{1}^{*}),\quad r\geq r_{1}^{*}
with a constant α0>0\alpha_{0}>0. It corresponds to
(7b) α~affin(r):=α0(1r1/r),rr1.\displaystyle\tilde{\alpha}_{\mathrm{affin}}(r):=\alpha_{0}(1-r_{1}^{*}/r),\quad r\geq r_{1}^{*}.

A popular choice of complex scalings are power functions

(8a) r~(r)=r+iα0(rr1)m,rr1\displaystyle\tilde{r}(r)=r+i\alpha_{0}(r-r_{1}^{*})^{m},\quad r\geq r_{1}^{*}
with a constant α0>0\alpha_{0}>0 and mm\in\mathbb{N}. They correspond to
(8b) α~power(r)\displaystyle\tilde{\alpha}_{\mathrm{power}}(r) :=α0(rr1)m/r,rr1\displaystyle:=\alpha_{0}(r-r_{1}^{*})^{m}/r,\quad r\geq r_{1}^{*}

with a constant α0>0\alpha_{0}>0. A profile which is more or less motivated by the aim to simplify analysis is

(9) α~smooth non-decreasing and twice continuous differentiable in +,α~smooth(r):=0forrr1andα~smooth(r):=α0forrr2,\displaystyle\begin{split}&\tilde{\alpha}_{\mathrm{smooth}}\text{ non-decreasing and twice continuous differentiable in }\mathbb{R}^{+},\\ &\tilde{\alpha}_{\mathrm{smooth}}(r):=0\quad\text{for}\quad r\leq r_{1}^{*}\quad\text{and}\quad\tilde{\alpha}_{\mathrm{smooth}}(r):=\alpha_{0}\quad\text{for}\quad r\geq r_{2},\end{split}

with constants α0>0\alpha_{0}>0, r2>r1r_{2}>r_{1}^{*}. In particular, many authors (e.g. [51], [44], [15], [50]) only consider profiles of the last kind for their analysis. An infinitely many times differentiable example of Kind (9) is

(10) α~(r):=α0χ2(rr1)\displaystyle\tilde{\alpha}_{\infty}(r):=\alpha_{0}\chi_{2}(r-r_{1}^{*})

with constant α0>0\alpha_{0}>0, r2=r1+1r_{2}=r_{1}^{*}+1 and

(11c) χ1(r)\displaystyle\chi_{1}(r) :={0,for r0,exp(1/r),for r>0,\displaystyle:=\left\{\begin{array}[]{rl}0,&\text{for }r\leq 0,\\ \exp(-1/r),&\text{for }r>0,\end{array}\right.
(11g) χ2(r)\displaystyle\chi_{2}(r) :={0,for r0,χ1(r)χ1(r)+χ1(1r),for 0<r<1,1,for r1,.\displaystyle:=\left\{\begin{array}[]{rl}0,&\text{for }r\leq 0,\\ \frac{\chi_{1}(r)}{\chi_{1}(r)+\chi_{1}(1-r)},&\text{for }0<r<1,\\ 1,&\text{for }r\geq 1,\end{array}\right..

In the following we introduce additional functions which will all depend on α~\tilde{\alpha}. These auxiliary functions will be necessary to formulate the forthcoming theory. We adopt the notation of Bramble and Pasciak [15]. Hence let

(12a) d~(r)\displaystyle\tilde{d}(r) :=1+iα~(r),\displaystyle:=1+i\tilde{\alpha}(r),
(12b) r~(r)\displaystyle\tilde{r}(r) :=d~(r)r,\displaystyle:=\tilde{d}(r)r,
(12c) α(r)\displaystyle\alpha(r) :=rrα~(r)+α~(r),\displaystyle:=r\partial_{r}\tilde{\alpha}(r)+\tilde{\alpha}(r),
(12d) d(r)\displaystyle d(r) :=1+iα(r),\displaystyle:=1+i\alpha(r),
(12e) d0\displaystyle d_{0} :=limr+(d~(r)/|d~(r)|),\displaystyle:=\displaystyle\lim_{r\to+\infty}(\tilde{d}(r)/|\tilde{d}(r)|),
(12f) Px(x)\displaystyle\operatorname{P_{x}}(x) :=|x|2xx,x3,\displaystyle:=|x|^{-2}xx^{\top},\quad x\in\mathbb{R}^{3},
whereby xxxx^{\top} denotes the dyadic product. The definitions of α\alpha and dd have to be understood piece-wise. We note that the limes in (12e) exists in \mathbb{C} due to Assumption 2.2. The function dd is chosen such that rr~(r)=d(r)\partial_{r}\tilde{r}(r)=d(r). For f=α~,α,d~,d,r~f=\tilde{\alpha},\alpha,\tilde{d},d,\tilde{r} we adopt the overloaded notation
(12g) f(x):=f(|x|),x3.\displaystyle f(x):=f(|x|),\quad x\in\mathbb{R}^{3}.

Hence we write e.g. fQ(r,x^)=f(r)f\circ Q(r,\hat{x})=f(r).

Consider a solution (ω,u)(\omega,u) to (4). Formally we can define u~Q(r,x^):=uQ(r~(r),x^)\tilde{u}\circ Q(r,\hat{x}):=u\circ Q(\tilde{r}(r),\hat{x}). Due to Assumption 2.2, Expansion (6) and the asymptotic behaviour of spherical Hankel functions we expect that u~\tilde{u} is exponentially decreasing with respect to |x||x|. By means of the chain rule we can formally deduce that (ω,u~)(\omega,\tilde{u}) solves Δ~u~ω2u~=0-\tilde{\Delta}\tilde{u}-\omega^{2}\tilde{u}=0 whereby

(13) Δ~uQ:=(d~r)2d1r(d~2r2d1ruQ)+(d~r)2ΔS2uQ,\displaystyle\tilde{\Delta}u\circ Q:=(\tilde{d}r)^{-2}d^{-1}\partial_{r}(\tilde{d}^{2}r^{2}d^{-1}\partial_{r}u\circ Q)+(\tilde{d}r)^{-2}\Delta_{S^{2}}u\circ Q,

i.e.

(14) Δ~u=(d~2d)1div((d~2d1Px+d(IPx))u),\displaystyle\tilde{\Delta}u=(\tilde{d}^{2}d)^{-1}\operatorname{div}\big{(}(\tilde{d}^{2}d^{-1}\operatorname{P_{x}}+d(\operatorname{I}-\operatorname{P_{x}}))\nabla u\big{)},

whereby I\operatorname{I} denotes the three by three identity matrix. Vice-versa we expect that for a solution (ω,u~)(\omega,\tilde{u}) to Δ~u~ω2u~=0-\tilde{\Delta}\tilde{u}-\omega^{2}\tilde{u}=0 we can define uu in reversal of u~\tilde{u} and expect that (ω,u)(\omega,u) solves Δuω2u=0-\Delta u-\omega^{2}u=0. However, since our coordinate transformation is complex valued this result is non-trivial.

We continue to formulate the respective eigenvalue problem for u~\tilde{u}. For a Lipschitz domain DΩD\subset\Omega let

(15a) X(D)\displaystyle X(D) :={uH~0,loc1(D):u,uX(D)<},\displaystyle:=\{u\in\tilde{H}^{1}_{\mathrm{0,loc}}(D)\colon\langle u,u\rangle_{X(D)}<\infty\},
(15b) u,uX(D)\displaystyle\langle u,u^{\prime}\rangle_{X(D)} :=(|d~2d1|Px+|d|(IPx))u,uL2(D)+|d~2d|u,uL2(D).\displaystyle:=\langle(|\tilde{d}^{2}d^{-1}|\operatorname{P_{x}}+|d|(\operatorname{I}-\operatorname{P_{x}}))\nabla u,\nabla u^{\prime}\rangle_{L^{2}(D)}+\langle|\tilde{d}^{2}d|u,u^{\prime}\rangle_{L^{2}(D)}.

and

(16) aD(ω;u,u):=(d~2d1Px+d(IPx))u,uL2(D)ω2d~2du,uL2(D)\displaystyle a_{D}(\omega;u,u^{\prime}):=\langle(\tilde{d}^{2}d^{-1}\operatorname{P_{x}}+d(\operatorname{I}-\operatorname{P_{x}}))\nabla u,\nabla u^{\prime}\rangle_{L^{2}(D)}-\omega^{2}\langle\tilde{d}^{2}du,u^{\prime}\rangle_{L^{2}(D)}

for ω\omega\in\mathbb{C} and u,uX(D)u,u^{\prime}\in X(D). By definition of X(D)X(D) the sesquilinearform aD(ω;,)a_{D}(\omega;\cdot,\cdot) is bounded on X(D)×X(D)X(D)\times X(D). For D=ΩD=\Omega we set

(17) X:=X(Ω),,X:=,X(Ω),a(;,):=aΩ(;,).\displaystyle X:=X(\Omega),\qquad\langle\cdot,\cdot\rangle_{X}:=\langle\cdot,\cdot\rangle_{X(\Omega)},\qquad a(\cdot;\cdot,\cdot):=a_{\Omega}(\cdot;\cdot,\cdot).

Consider the eigenvalue problem to

(18) find (ω,u~)×X{0} such thata(ω;u~,u)=0for all uX.\displaystyle\text{find }(\omega,\tilde{u})\in\mathbb{C}\times X\setminus\{0\}\text{ such that}\quad a(\omega;\tilde{u},u^{\prime})=0\quad\text{for all }u^{\prime}\in X.

Note that the introduced space XX is of importance only for profile functions with α~,αL(+)\tilde{\alpha},\alpha\not\in L^{\infty}(\mathbb{R}^{+}). Else wise XX is reduced to the standard Sobolev space H01(Ω)H^{1}_{0}(\Omega) (equipped with an equivalent inner product).

We know from Theorem 2.16 of [34] that for each solution (ω,u)(\omega,u) to (4) with (iωd0)<0\Re(i\omega d_{0})<0 the function u~Q(r,x^):=uQ(r~(r),x^)\tilde{u}\circ Q(r,\hat{x}):=u\circ Q(\tilde{r}(r),\hat{x}) is well defined, contained in XX and (ω,u~)(\omega,\tilde{u}) solves (18). Moreover, for any ϵ>0\epsilon>0 there exists a constant C(u~)>0C(\tilde{u})>0 so that

(19) u~X(Brc)2C(u~)r+e2((iωd0)+ϵ)1+α~(t)2tdtfor allrr1.\displaystyle\|\tilde{u}\|_{X(B_{r}^{c})}^{2}\leq C(\tilde{u})\int_{r}^{+\infty}e^{2(\Re(i\omega d_{0})+\epsilon)\sqrt{1+\tilde{\alpha}(t)^{2}}t}\mathrm{d}t\quad\text{for all}\quad r\geq r_{1}^{*}.

Vice-versa if (ω,u~)(\omega,\tilde{u}) is a solution to (18) with (iωd0)<0\Re(i\omega d_{0})<0, then uu can be well defined in a reverse manner and (ω,u)(\omega,u) solves (4).

2.3. Domain truncation and discretization

For a solution (ω,u~)(\omega,\tilde{u}) to (18) with (iωd0)<0\Re(i\omega d_{0})<0 it follows from (19) that u~\tilde{u} decays exponentially to zero as xx\to\infty. Thus it seems natural to approximate (18) by replacing the domain Ω\Omega with a bounded subdomain Ωn\Omega_{n} and pose a homogeneous Dirichlet or Neumann boundary condition at the artificial boundary ΩnΩ\partial\Omega_{n}\setminus\partial\Omega. As most authors we stick to Dirichlet boundary conditions. The resulting equation can then be discretized with a standard numerical scheme such as finite element methods. The question arises if and also how fast the solutions to this approximation converge to the solutions of the original Equation (18).

It is a classical approach to separate the analysis into a truncation analysis and a discretization analysis. This seperation allows to simplfy the analysis considerably. In particular the analysis for the discretization step can be performed in the very same manner as for classical problems posed on bounded domains. However, such a seperated analysis does not ensure that every arbitrary (resonable) sequence of combinations of domain truncations and finite element spaces yields a converging approximation.

In the following we will explain why convenient techniques cannot be applied and therefore introduce a new notion to perform the truncation analysis. (Lateron, in Section 5 we will also present a way to perform a simultaneaous approximation analysis.) To this end, we make our Assumptions on Ωn\Omega_{n} more precise.

Assumption 2.3.

The sequence of subdomains (Ωn)n(\Omega_{n})_{n\in\mathbb{N}} is such that for each nn\in\mathbb{N}

  1. (1)

    Ωn\Omega_{n} is a bounded Lipschitz domain,

  2. (2)

    ΩnΩ\Omega_{n}\subset\Omega,

  3. (3)

    ΩΩn\partial\Omega\subset\partial\Omega_{n},

  4. (4)

    ΩnΩ\partial\Omega_{n}\setminus\partial\Omega splits Ω\Omega into two connected parts,

and for any R>0R>0 exists an index n0n_{0}\in\mathbb{N} such that (ΩBR)Ωn(\Omega\cap B_{R})\subset\Omega_{n} for all n>n0n>n_{0}.

The PML approximation to (18) reads

(20) find (ω,un)×X(Ωn){0} so thataΩn(ω;un,un)=0for all unX(Ωn).\displaystyle\text{find }(\omega,u_{n})\in\mathbb{C}\times X(\Omega_{n})\setminus\{0\}\text{ so that}\quad a_{\Omega_{n}}(\omega;u_{n},u_{n}^{\prime})=0\quad\text{for all }u_{n}^{\prime}\in X(\Omega_{n}).

We note that X(Ωn)\|\cdot\|_{X(\Omega_{n})} is an equivalent norm to H1(Ωn)\|\cdot\|_{H^{1}(\Omega_{n})} and hence X(Ωn)=H01(Ωn)X(\Omega_{n})=H^{1}_{0}(\Omega_{n}). Let

(21) Xn:={uX:u=0 in ΩΩn}\displaystyle X_{n}:=\{u\in X\colon u=0\text{ in }\Omega\setminus\Omega_{n}\}

and consider the problem to

(22) find (ω,un)×Xn{0} so thata(ω;un,un)=0for all unXn.\displaystyle\text{find }(\omega,u_{n})\in\mathbb{C}\times X_{n}\setminus\{0\}\text{ so that}\quad a(\omega;u_{n},u_{n}^{\prime})=0\quad\text{for all }u_{n}^{\prime}\in X_{n}.

It is obvious that for every solution (ω,un)(\omega,u_{n}) to (20) the extension u^n\hat{u}_{n} of unu_{n} to ΩΩn\Omega\setminus\Omega_{n} by zero is in XnX_{n} and (ω,u^n)(\omega,\hat{u}_{n}) solves (22). Vice-versa for every solution (ω,u)(\omega,u) to (22) (ω,u|Ωn)(\omega,u|_{\Omega_{n}}) solves (20). However as XnX_{n} is a subspace of XX we recognize (22) as conform Galerkin approximation to (18), which restores a common setup for numerical analysts. The former notion is motivated by [43] wherein certain finite element spaces are considered directly as subspaces of XX. We note that the choice of Dirichlet boundary condition at the artificial boundary is essential to ensure a conform approximation. Indeed an approximation with Neumann boundary condition could be analyzed as non-conform approximation to (18). We will not continue further in this direction as the analysis would be more intricate with barely additional gain.

Through our notion we can investigate the truncation error as a Galerkin error. A classical way [2, 12] to analyze Galerkin approximations to linear eigenvalue problems (such as ours) is to introduce solution operators

(23) S:XX,Sn:XnXn\displaystyle S\colon X\to X,\qquad S_{n}\colon X_{n}\to X_{n}

defined by

(24a) a(1;Su,u)\displaystyle a(1;Su,u^{\prime}) =d~2du,uL2(Ω)\displaystyle=\langle\tilde{d}^{2}du,u^{\prime}\rangle_{L^{2}(\Omega)} for all uX,\displaystyle\quad\text{for all }u^{\prime}\in X,
(24b) a(1;Snun,un)\displaystyle a(1;S_{n}u_{n},u_{n}^{\prime}) =d~2dun,unL2(Ωn)\displaystyle=\langle\tilde{d}^{2}du_{n},u_{n}^{\prime}\rangle_{L^{2}(\Omega_{n})} for all unXn.\displaystyle\quad\text{for all }u_{n}^{\prime}\in X_{n}.

Of course it has to be ensured that SS and SnS_{n} are well defined continuous operators (for sufficiently large nn) through Equation (24). The spectra of (18) and (22) are connected to the spectra of SS and SnS_{n} respectively by the transformation

(25) ω1ω21.\displaystyle\omega\mapsto\frac{1}{\omega^{2}-1}.

If SS is a compact operator it can be deduced that SnS_{n} converges to SS in operator norm which yields spectral convergence [2]. However, the essential spectrum of SS equals {1z21:z,(izd0)=0}\{\frac{1}{z^{2}-1}\colon z\in\mathbb{C},\Re(izd_{0})=0\} [34, Theorem 4.6]. Since the spectrum of a compact operator is discrete we deduce that SS is not compact. Thus the standard theory [2, 12] does not apply.

Differential operators with non-compact resolvent SS occur e.g. in electromagnetism where sufficient conditions on the Galerkin spaces to ensure spectral convergence have been obtained e.g. in [20, 19]. The analysis therein is based on [27], which state that

(26) SSnn:=supunXn{0}(SSn)unX/unX0asn\displaystyle\|S-S_{n}\|_{n}:=\sup_{u_{n}\in X_{n}\setminus\{0\}}\|(S-S_{n})u_{n}\|_{X}/\|u_{n}\|_{X}\to 0\quad\text{as}\quad n\to\infty

is sufficient to ensure spectral convergence. See also the very comprehensive works [1, 25]. However, in the previous references the essential spectrum consists only of one isolated eigenvalue with infinite dimensional eigenspace whereas in our case it consists of a continuum. Thus the techniques of [27, 1, 25] cannot be applied for our analysis. Roughly speaking we cannot hope to approximate an operator with a non-discrete essential spectrum by operators with discrete spectrum in a uniform way. All we can hope for is that we obtain locally (with respect to the spectral parameter) converging approximations.

Indeed local analysis techniques are the core of the holomorphic Fredholm operator approximation theory [46, 47]. We will recall the results of [35] in Section 3 and subsequently explain how to fit our eigenvalue problem at hand and its approximations into this theory.

3. Analytical framework

We introduce some common notation and recall the framework of weakly T()T(\cdot)-coercive operator functions and T()T(\cdot)-compatible Galerkin approximations [35] in Subsection 3.1. Subsequently in Subsection 3.2 we construct a suitable T()T(\cdot)-operator function for a(;,)a(\cdot;\cdot,\cdot) as defined in (17).

3.1. T-analysis framework

For generic Banach spaces (X,X)(X,\|\cdot\|_{X}), (Y,Y)(Y,\|\cdot\|_{Y}) denote L(X,Y)L(X,Y) the space of all bounded linear operators from XX to YY with operator norm AL(X,Y):=supuX{0}AuY/uX\|A\|_{L(X,Y)}:=\sup_{u\in X\setminus\{0\}}\|Au\|_{Y}/\|u\|_{X}, AL(X,Y)A\in L(X,Y). We further set L(X):=L(X,X)L(X):=L(X,X). For generic Hilbert spaces (X,,X)(X,\langle\cdot,\cdot\rangle_{X}), (Y,,Y)(Y,\langle\cdot,\cdot\rangle_{Y}) and AL(X,Y)A\in L(X,Y) we denote AL(Y,X)A^{*}\in L(Y,X) its adjoint operator defined through u,AuX=Au,uY\langle u,A^{*}u^{\prime}\rangle_{X}=\langle Au,u^{\prime}\rangle_{Y} for all uX,uYu\in X,u^{\prime}\in Y. We call an operator AL(X)A\in L(X) is coercive if infuX{0}|Au,uX|/uX2\inf_{u\in X\setminus\{0\}}|\langle Au,u\rangle_{X}|/\|u\|^{2}_{X} >0>0. We say that AL(X)A\in L(X) is weakly coercive, if there exists a compact operator KL(X)K\in L(X) so that A+KA+K is coercive. For bijective TL(X)T\in L(X) we say that AA is (weakly) TT-coercive, if TAT^{*}A is (weakly) coercive. Let Λ\Lambda\subset\mathbb{C} be open and connected and consider operator functions A(),T():ΛL(X)A(\cdot),T(\cdot)\colon\Lambda\to L(X) so that T(λ)T(\lambda) is bijective for all λΛ\lambda\in\Lambda. We call A()A(\cdot) (weakly) (T()T(\cdot)-)coercive if A(λ)A(\lambda) is (weakly) (T(λ)T(\lambda)-)coercive for all λΛ\lambda\in\Lambda. We denote the spectrum of A()A(\cdot) as σ(A()):={λΛ:A(λ) is not bijective}\sigma\big{(}A(\cdot)\big{)}:=\{\lambda\in\Lambda\colon A(\lambda)\text{ is not bijective}\} and the resolvent set as ρ(A()):=Λσ(A())\rho\big{(}A(\cdot)\big{)}:=\Lambda\setminus\sigma\big{(}A(\cdot)\big{)}. For a closed subspace XnXX_{n}\subset X denote PnL(X,Xn)P_{n}\in L(X,X_{n}) the orthogonal projection. Consider AL(X)A\in L(X) to be weakly TT-coercive. For a sequence (Xn)n(X_{n})_{n\in\mathbb{N}} of closed subspaces XnXX_{n}\subset X with limnuPnuX=0\lim_{n\in\mathbb{N}}\|u-P_{n}u\|_{X}=0 for each uXu\in X, we say that the Galerkin approximation PnA|XnL(Xn)P_{n}A|_{X_{n}}\in L(X_{n}) is TT-compatible, if each PnA|XnP_{n}A|_{X_{n}} is Fredholm with index zero and there exists a sequence of Fredholm index zero operators (Tn)n,TnL(Xn)(T_{n})_{n\in\mathbb{N}},T_{n}\in L(X_{n}) so that

(27) TTnn:=supunXn{0}(TTn)unX/unX\displaystyle\|T-T_{n}\|_{n}:=\sup_{u_{n}\in X_{n}\setminus\{0\}}\|(T-T_{n})u_{n}\|_{X}/\|u_{n}\|_{X}

tends to zero as nn\to\infty. Let A():ΛL(X)A(\cdot)\colon\Lambda\to L(X) be weakly T()T(\cdot)-coercive. We say that the Galerkin approximation PnA()|Xn:ΛL(Xn)P_{n}A(\cdot)|_{X_{n}}\colon\Lambda\to L(X_{n}) is T()T(\cdot)-compatible, if PnA(λ)|XnL(Xn)P_{n}A(\lambda)|_{X_{n}}\in L(X_{n}) is T(λ)T(\lambda)-compatible for each λΛ\lambda\in\Lambda.

We recall from [35, Corollary 2.8]: Let A():ΛL(X)A(\cdot)\colon\Lambda\to L(X) be a weakly T()T(\cdot)-coercive holomorphic operator function with non-empty resolvent set and An():ΛL(Xn)A_{n}(\cdot)\colon\Lambda\to L(X_{n}) be a T()T(\cdot)-compatible Galerkin approximation. Then

  1. i)

    For every eigenvalue λ0\lambda_{0} of A()A(\cdot) exists a sequence (λn)n(\lambda_{n})_{n\in\mathbb{N}} converging to λ0\lambda_{0} with λn\lambda_{n} being an eigenvalue of An()A_{n}(\cdot) for almost all nn\in\mathbb{N}.

  2. ii)

    Let (λn,un)n(\lambda_{n},u_{n})_{n\in\mathbb{N}} be a sequence of normalized eigenpairs of An()A_{n}(\cdot), i.e. An(λn)unA_{n}(\lambda_{n})u_{n} =0=0 and unX=1\|u_{n}\|_{X}=1, so that λnλ0Λ\lambda_{n}\to\lambda_{0}\in\Lambda. Then

    1. a)

      λ0\lambda_{0} is an eigenvalue of A()A(\cdot),

    2. b)

      (un)n(u_{n})_{n\in\mathbb{N}} is a compact sequence and its cluster points are normalized eigenelements of A(λ0)A(\lambda_{0}).

  3. iii)

    For every compact Λ~ρ(A)\tilde{\Lambda}\subset\rho(A) the sequence (An())n(A_{n}(\cdot))_{n\in\mathbb{N}} is stable on Λ~\tilde{\Lambda}, i.e. there exist n0n_{0}\in\mathbb{N} and c>0c>0 such that An(λ)1L(Xn)c\|A_{n}(\lambda)^{-1}\|_{L(X_{n})}\leq c for all n>n0n>n_{0} and all λΛ~\lambda\in\tilde{\Lambda}.

  4. iv)

    For every compact Λ~Λ\tilde{\Lambda}\subset\Lambda with rectifiable boundary Λ~ρ(A())\partial\tilde{\Lambda}\subset\rho\big{(}A(\cdot)\big{)} exists an index n0n_{0}\in\mathbb{N} such that

    dimG(A(),λ0)=λnσ(An())Λ~dimG(An(),λn).\displaystyle\operatorname{dim}G(A(\cdot),\lambda_{0})=\sum_{\lambda_{n}\in\sigma\left(A_{n}(\cdot)\right)\cap\tilde{\Lambda}}\operatorname{dim}G(A_{n}(\cdot),\lambda_{n}).

    for all n>n0n>n_{0}, whereby G(B(),λ)G(B(\cdot),\lambda) denotes the generalized eigenspace of an operator function B()B(\cdot) at λΛ\lambda\in\Lambda.

Let Λ~Λ\tilde{\Lambda}\subset\Lambda be a compact set with rectifiable boundary Λ~ρ(A())\partial\tilde{\Lambda}\subset\rho\big{(}A(\cdot)\big{)}, Λ~σ(A())={λ0}\tilde{\Lambda}\cap\sigma\big{(}A(\cdot)\big{)}=\{\lambda_{0}\} and

(28) δn:=maxu0G(A(),λ0)u0X1infunXnu0unX,δn:=maxu0G(A(¯),λ0)u0X1infunXnu0unX,\displaystyle\begin{split}\delta_{n}&:=\max_{\begin{subarray}{c}u_{0}\in G(A(\cdot),\lambda_{0})\\ \|u_{0}\|_{X}\leq 1\end{subarray}}\,\inf_{u_{n}\in X_{n}}\|u_{0}-u_{n}\|_{X},\\ \delta_{n}^{*}&:=\max_{\begin{subarray}{c}u_{0}\in G(A^{*}(\overline{\cdot}),\lambda_{0})\\ \|u_{0}\|_{X}\leq 1\end{subarray}}\,\inf_{u_{n}\in X_{n}}\|u_{0}-u_{n}\|_{X},\end{split}

whereby λ0¯\overline{\lambda_{0}} denotes the complex conjugate of λ0\lambda_{0} and A()A^{*}(\cdot) the adjoint operator function of A()A(\cdot) defined by A(λ):=A(λ)A^{*}(\lambda):=A(\lambda)^{*} for each λΛ\lambda\in\Lambda. Then there exist nn\in\mathbb{N} and c>0c>0 such that for all n>n0n>n_{0}

  1. v)
    |λ0λn|c(δnδn)1/ϰ(A(),λ0)\displaystyle|\lambda_{0}-\lambda_{n}|\leq c(\delta_{n}\delta_{n}^{*})^{1/\varkappa\left(A(\cdot),\lambda_{0}\right)}

    for all λnσ(An())Λ~\lambda_{n}\in\sigma\big{(}A_{n}(\cdot)\big{)}\cap\tilde{\Lambda}, whereby ϰ(A(),λ0)\varkappa\left(A(\cdot),\lambda_{0}\right) denotes the maximal length of a Jordan chain of A()A(\cdot) at the eigenvalue λ0\lambda_{0},

  2. vi)
    |λ0λnmean|cδnδn\displaystyle|\lambda_{0}-\lambda_{n}^{\mathrm{mean}}|\leq c\delta_{n}\delta_{n}^{*}

    whereby λnmean\lambda_{n}^{\mathrm{mean}} is the weighted mean of all the eigenvalues of An()A_{n}(\cdot) in Λ~\tilde{\Lambda}

    λnmean:=λσ(An())Λ~λdimG(An(),λ)dimG(A(),λ0),\displaystyle\lambda_{n}^{\mathrm{mean}}:=\sum_{\lambda\in\sigma\left(A_{n}(\cdot)\right)\cap\tilde{\Lambda}}\lambda\,\frac{\operatorname{dim}G(A_{n}(\cdot),\lambda)}{\operatorname{dim}G(A(\cdot),\lambda_{0})},
  3. vii)
    infu0kerA(λ0)unu0Xc(|λnλ0|+maxu0kerA(λ0)u0X1infunXnu0unX)c(c(δnδn)1/ϰ(A(),λ0)+δn)\displaystyle\begin{split}\inf_{u_{0}\in\ker A(\lambda_{0})}\|u_{n}-u_{0}\|_{X}&\leq c\Big{(}|\lambda_{n}-\lambda_{0}|+\max_{\begin{subarray}{c}u^{\prime}_{0}\in\ker A(\lambda_{0})\\ \|u_{0}^{\prime}\|_{X}\leq 1\end{subarray}}\inf_{u^{\prime}_{n}\in X_{n}}\|u^{\prime}_{0}-u^{\prime}_{n}\|_{X}\Big{)}\\ &\leq c\big{(}c(\delta_{n}\delta_{n}^{*})^{1/\varkappa\left(A(\cdot),\lambda_{0}\right)}+\delta_{n}\big{)}\end{split}

    for all λnσ(An())Λ~\lambda_{n}\in\sigma\big{(}A_{n}(\cdot)\big{)}\cap\tilde{\Lambda} and all unkerAn(λn)u_{n}\in\ker A_{n}(\lambda_{n}) with unX=1\|u_{n}\|_{X}=1.

For the forthcoming analysis it will be more suitable to work with operators instead of sesquilinearforms. Thus for a bounded λ\lambda-dependent sesquilinearform a(λ;,):X×Xa(\lambda;\cdot,\cdot)\colon X\times X\to\mathbb{C} we associate with the Riesz representation theorem a λ\lambda-dependent operator A(λ)L(X)A(\lambda)\in L(X) defined through

(29) A(λ)u,uX=a(λ;u,u)for allu,uX.\displaystyle\langle A(\lambda)u,u^{\prime}\rangle_{X}=a(\lambda;u,u^{\prime})\qquad\text{for all}\quad u,u^{\prime}\in X.

Eigenvalue Problem (18) can now be expressed as

(30) find(λ,u)×X{0}so thatA(λ)u=0.\displaystyle\text{find}\quad(\lambda,u)\in\mathbb{C}\times X\setminus\{0\}\quad\text{so that}\quad A(\lambda)u=0.

If XX is approximated by a closed subspace XnX_{n} we can associate a λ\lambda-dependent operator An(λ)L(Xn)A_{n}(\lambda)\in L(X_{n}) through

(31) An(λ)un,unX=a(λ;un,un)for allun,unXn.\displaystyle\langle A_{n}(\lambda)u_{n},u^{\prime}_{n}\rangle_{X}=a(\lambda;u_{n},u^{\prime}_{n})\qquad\text{for all}\quad u_{n},u^{\prime}_{n}\in X_{n}.

Similarly (22) can now be expressed as

(32) find(λ,un)×Xn{0}so thatAn(λ)un=0.\displaystyle\text{find}\quad(\lambda,u_{n})\in\mathbb{C}\times X_{n}\setminus\{0\}\quad\text{so that}\quad A_{n}(\lambda)u_{n}=0.

The operators A(λ)A(\lambda) and An(λ)A_{n}(\lambda) are related through An(λ)=PnA(λ)|XnA_{n}(\lambda)=P_{n}A(\lambda)|_{X_{n}}.

3.2. Construction of T()T(\cdot)

Now we discuss the construction of a suitable T()T(\cdot)-operator function for the operator function A()A(\cdot) associated to the sesquilinear a(;,)a(\cdot;\cdot,\cdot) from (17). Fortunately T(ω)T(\omega) can be realized as a simple multiplication operator. For specific profiles of the Kind (9) this was already exploited implicitly in [15] from wherein the ansatz is taken and extended. For our forthcoming analysis we additionally require the following assumption.

Assumption 3.1.

Let α~\tilde{\alpha} and r1r^{*}_{1} be as is Assumption 2.2 and d~\tilde{d}, dd be as in (12). Let

  1. (1)

    limr+d~(r)|d(r)|/(|d~(r)|d(r))=1\displaystyle\lim_{r\to+\infty}\tilde{d}(r)|d(r)|/\big{(}|\tilde{d}(r)|d(r)\big{)}=1,

  2. (2)

    limr+(r(d~/|d~|))(r)=limr(r(d/|d|))(r)=0\displaystyle\lim_{r\to+\infty}\big{(}\partial_{r}(\tilde{d}/|\tilde{d}|)\big{)}(r)=\lim_{r\to\infty}\big{(}\partial_{r}(d/|d|)\big{)}(r)=0.

Assumption 3.1.1 is necessary for Lemma 3.2 which will yield the essential argument to prove the “coercivity part” in Theorem 3.5. Assumption 3.1.2 on the other hand will be necessary to prove the “compactness part” in Theorem 3.5.

It can easily be seen that any α~\tilde{\alpha} of the Kind (7b), (8b) and (9) suffices Assumption 3.1. In general, any reasonable profile function that comes to our mind suffices Assumption 3.1.

Next we introduce two lemmata which will be essential for our analysis. Let

(33) argz:{0}[π,π),z=|z|exp(iargz).\displaystyle\arg z\colon\mathbb{C}\setminus\{0\}\to[-\pi,\pi),\quad z=|z|\exp(i\arg z).
Lemma 3.2.

Let Assumptions 2.2 and 3.1 hold. Then there exists τ(0,π/2)\tau\in(0,\pi/2) so that arg(d(r)/d~(r))[0,τ]\arg\big{(}d(r)/\tilde{d}(r)\big{)}\in[0,\tau] for all r>r1r>r_{1}^{*}.

Proof.

Let r>r1r>r_{1}^{*}. Due α~(r)0\tilde{\alpha}(r)\geq 0, the definition of d~,d\tilde{d},d and Assumption 2.2.4 it holds argd~(r)argd(r)\arg\tilde{d}(r)\leq\arg d(r). Since arg(d(r)/d~(r))=argd(r)argd~(r)\arg\big{(}d(r)/\tilde{d}(r)\big{)}=\arg d(r)-\arg\tilde{d}(r) it follows arg(d(r)/d~(r))[0,π/2)\arg\big{(}d(r)/\tilde{d}(r)\big{)}\in[0,\pi/2). Due to Assumption 2.2.5 d~/d\tilde{d}/d is continuous. Together with Assumption 3.1.1 it follows supr>r1arg(d(r)/d~(r))<π/2\sup_{r>r_{1}^{*}}\arg\big{(}d(r)/\tilde{d}(r)\big{)}<\pi/2. Hence the claim is proven. ∎

Lemma 3.3.

Let η1:Ω\eta_{1}\colon\Omega\to\mathbb{C} be measurable so that η1|ΩBnL(ΩBn)\eta_{1}|_{\Omega\cap B_{n}}\in L^{\infty}(\Omega\cap B_{n}) for all nn\in\mathbb{N}. Let YL2(Ω)Y\subset L^{2}(\Omega) be a Hilbert space so that η1uL2(Ω)CuY\|\eta_{1}u\|_{L^{2}(\Omega)}\leq C\|u\|_{Y} for a constant C>0C>0 and all uYu\in Y and so that the embedding and restriction operator Kn:YL2(ΩBn):uu|ΩBnK_{n}\colon Y\to L^{2}(\Omega\cap B_{n})\colon u\mapsto u|_{\Omega\cap B_{n}} is compact for each nn\in\mathbb{N}. Let η2L(Ω)\eta_{2}\in L^{\infty}(\Omega) be so that limrη2L(Brc)=0\lim_{r\to\infty}\|\eta_{2}\|_{L^{\infty}(B_{r}^{c})}=0. Then the multiplication and embedding operator Kη1η2:YL2(Ω):uη1η2uK_{\eta_{1}\eta_{2}}\colon Y\to L^{2}(\Omega)\colon u\mapsto\eta_{1}\eta_{2}u is compact.

Proof.

Consider a sequence (un)n(u_{n})_{n\in\mathbb{N}} with unY,unY1u_{n}\in Y,\|u_{n}\|_{Y}\leq 1. We construct a Cauchy subsequence as follows. We choose a subsequence N1:N_{1}\colon\mathbb{N}\to\mathbb{N} so that (K1uN1(n))n(K_{1}u_{N_{1}(n)})_{n\in\mathbb{N}} converges. Iteratively for mm\in\mathbb{N} we choose subsequences Nm:N_{m}\colon\mathbb{N}\to\mathbb{N} so that (KmuNm(n))n(K_{m}u_{N_{m}(n)})_{n\in\mathbb{N}} converges. Via diagonalization we construct a subsequence N(n):=Nn(n)N(n):=N_{n}(n). Let ϵ>0\epsilon>0 and n1>0n_{1}>0 be so that η2L(Bn1c)<ϵ/(4C)\|\eta_{2}\|_{L^{\infty}(B_{n_{1}}^{c})}<\epsilon/(4C). Let n2>0n_{2}>0 be so that Kn1(uN(n)uN(n))L2(ΩBn1)<ϵ/(2η1η2L(ΩBn1))\|K_{n_{1}}(u_{N(n)}-u_{N(n^{\prime})})\|_{L^{2}(\Omega\cap B_{n_{1}})}<\epsilon/(2\|\eta_{1}\eta_{2}\|_{L^{\infty}(\Omega\cap B_{n_{1}})}) for all n,n>n2n,n^{\prime}>n_{2}. It follows

η1η2(uN(n)uN(n))L2(Ω)\displaystyle\|\eta_{1}\eta_{2}(u_{N(n)}-u_{N(n^{\prime})})\|_{L^{2}(\Omega)} η1η2L(Ω)uN(n)uN(n)L2(ΩBn1)\displaystyle\leq\|\eta_{1}\eta_{2}\|_{L^{\infty}(\Omega)}\|u_{N(n)}-u_{N(n^{\prime})}\|_{L^{2}(\Omega\cap B_{n_{1}})}
+2η2L(Bn1c)<ϵ.\displaystyle+2\|\eta_{2}\|_{L^{\infty}(B_{n_{1}}^{c})}<\epsilon.

Hence the claim is proven. ∎

Our analysis will further require the following functions.

(34c) α^(r)\displaystyle\hat{\alpha}(r) :={limρr1+α(ρ)for 0rr1,α(r)for r>r1,\displaystyle:=\left\{\begin{array}[]{rl}\lim_{\rho\to r_{1}^{*}+}\alpha(\rho)&\text{for }0\leq r\leq r_{1}^{*},\\ \alpha(r)&\text{for }r>r_{1}^{*},\end{array}\right.
(34d) d^(r)\displaystyle\hat{d}(r) :=1+iα^(r),r0.\displaystyle:=1+i\hat{\alpha}(r),\quad r\geq 0.

Again, we adopt the overloaded notation f(x):=f(|x|),xΩf(x):=f(|x|),x\in\Omega for f=α^,d^f=\hat{\alpha},\hat{d}.

Lemma 3.4.

Let Assumptions 2.2 and 3.1 hold. For all ω{0}\omega\in\mathbb{C}\setminus\{0\} and all uXu\in X let

(37) T(ω)u:={|d^|d^¯ufor arg(ω2d02)[π,0),d^d~2|d~|2|d^|¯ufor arg(ω2d0)[0,π).\displaystyle T(\omega)u:=\left\{\begin{array}[]{ll}\overline{\frac{|\hat{d}|}{\hat{d}}}u&\text{for }\arg(-\omega^{2}d_{0}^{2})\in[-\pi,0),\vspace{3mm}\\ \overline{\frac{\hat{d}}{\tilde{d}^{2}}\frac{|\tilde{d}|^{2}}{|\hat{d}|}}u&\text{for }\arg(-\omega^{2}d_{0})\in[0,\pi).\end{array}\right.

Then T(ω)L(X)T(\omega)\in L(X) is bijective for all ω{0}\omega\in\mathbb{C}\setminus\{0\}.

Proof.

For any ηW1,(Ω)\eta\in W^{1,\infty}(\Omega) and uXu\in X it holds

ηuX2\displaystyle\|\eta u\|_{X}^{2} =(|d~2d1|Px+|d|(IPx))(ηu+uη),ηu+uηL2(Ω)\displaystyle=\langle(|\tilde{d}^{2}d^{-1}|\operatorname{P_{x}}+|d|(\operatorname{I}-\operatorname{P_{x}}))(\eta\nabla u+u\nabla\eta),\eta\nabla u+u\nabla\eta\rangle_{L^{2}(\Omega)}
+|d~2d|ηu,ηuL2(Ω)3ηW1,(Ω)2uX2.\displaystyle+\langle|\tilde{d}^{2}d|\eta u,\eta u\rangle_{L^{2}(\Omega)}\leq 3\|\eta\|_{W^{1,\infty}(\Omega)}^{2}\|u\|_{X}^{2}.

Thus multiplication with η\eta is bounded from XXX\to X. If |η|=1|\eta|=1 it follows 1/ηW1,(Ω)1/\eta\in W^{1,\infty}(\Omega) as well. Hence the inverse of multiplication with η\eta, which is multiplication with 1/η1/\eta, is bounded from XXX\to X as well.

Let η=|d^|d^¯\eta=\overline{\frac{|\hat{d}|}{\hat{d}}} or η=d^d~2|d~|2|d^|¯\eta=\overline{\frac{\hat{d}}{\tilde{d}^{2}}\frac{|\tilde{d}|^{2}}{|\hat{d}|}}. It follows |η|=1|\eta|=1. Due to the definition of d^\hat{d} (34) and Assumption 2.2, η\eta is weakly differentiable. Due to Assumption 2.2.5 and Assumption 3.1.2 it follows ηL(Ω)\nabla\eta\in L^{\infty}(\Omega) and hence ηW1,(Ω)\eta\in W^{1,\infty}(\Omega). Thus the claim is proven. ∎

Theorem 3.5.

Let Assumptions 2.2 and 3.1 hold. Let a(;,)a(\cdot;\cdot,\cdot) and XX be as in (17), A()A(\cdot) be as in (29), T()T(\cdot) be as in (37), d0d_{0} be as in (12e) and

(38) Λd0:={z:(izd0)0}.\displaystyle\Lambda_{d0}:=\{z\in\mathbb{C}\colon\Re(izd_{0})\neq 0\}.

Then A():Λd0L(X)A(\cdot)\colon\Lambda_{d_{0}}\to L(X) is weakly T()T(\cdot)-coercive.

Proof.

We consider the two cases arg(ω2d02)(π,0)\arg(-\omega^{2}d_{0}^{2})\in(-\pi,0) and arg(ω2d02)[0,π)\arg(-\omega^{2}d_{0}^{2})\in[0,\pi) separately. We split the sesquilinear form a(ω;,T(ω))a(\omega;\cdot,T(\omega)\cdot) into a coercive part a1(,)a_{1}(\cdot,\cdot) and a compact part a2(,)a_{2}(\cdot,\cdot).
First case ωΛd0\omega\in\Lambda_{d_{0}} with arg(ω2d02)(π,0)\arg(-\omega^{2}d_{0}^{2})\in(-\pi,0): A direct computation yields

a(ω;u,T(ω)u)=a1(u,u)+a2(u,u)\displaystyle a(\omega;u,T(\omega)u^{\prime})=a_{1}(u,u^{\prime})+a_{2}(u,u^{\prime})

with

a1(u,u)\displaystyle a_{1}(u,u^{\prime}) :=(d~2|d^|dd^Px+d|d^|d^(IPx))u,uL2(Ω)ω2d02|d~2d|u,uL2(Ω),\displaystyle:=\bigg{\langle}\bigg{(}\frac{\tilde{d}^{2}|\hat{d}|}{d\hat{d}}\operatorname{P_{x}}+\frac{d|\hat{d}|}{\hat{d}}(\operatorname{I}-\operatorname{P_{x}})\bigg{)}\nabla u,\nabla u^{\prime}\bigg{\rangle}_{L^{2}(\Omega)}-\omega^{2}d_{0}^{2}\langle|\tilde{d}^{2}d|u,u^{\prime}\rangle_{L^{2}(\Omega)},
a2(u,u)\displaystyle a_{2}(u,u^{\prime}) :=d~2dru,ur(|d^|d^)¯L2(Ω)ω2(d~2d|d^||d~2d|d^d02)|d~2d|u,uL2(Ω).\displaystyle:=\bigg{\langle}\frac{\tilde{d}^{2}}{d}\partial_{r}u,u^{\prime}\partial_{r}\overline{\left(\frac{|\hat{d}|}{\hat{d}}\right)}\bigg{\rangle}_{L^{2}(\Omega)}-\omega^{2}\bigg{\langle}\bigg{(}\frac{\tilde{d}^{2}d|\hat{d}|}{|\tilde{d}^{2}d|\hat{d}}-d_{0}^{2}\bigg{)}|\tilde{d}^{2}d|u,u^{\prime}\bigg{\rangle}_{L^{2}(\Omega)}.

Recall that d^(r)=d(r)\hat{d}(r)=d(r) for r>r1r>r_{1}^{*} and d^(r)=1+ilimrr1+α(r)\hat{d}(r)=1+i\lim_{r\to r_{1}^{*}+}\alpha(r) for rr1r\leq r_{1}^{*}. Due to Assumptions 2.2.4 and 2.2.5 it holds argd^(r1)[0,π/2)\arg\hat{d}(r_{1}^{*})\in[0,\pi/2). Let τ(0,π/2)\tau\in(0,\pi/2) be as in Lemma 3.2 and

τ1:=min{2τ,argd^(r1),arg(ω2d02)}.\displaystyle\tau_{1}:=\min\{-2\tau,-\arg\hat{d}(r_{1}^{*}),\arg(-\omega^{2}d_{0}^{2})\}.

It follows that τ1(π,0)\tau_{1}\in(-\pi,0) and

arg(d~2|d^|dd^)(r),arg(d|d^|d^)(r),arg(ω2d02)[τ1,0]\displaystyle\arg\left(\frac{\tilde{d}^{2}|\hat{d}|}{d\hat{d}}\right)(r),\,\arg\left(\frac{d|\hat{d}|}{\hat{d}}\right)(r),\,\arg(-\omega^{2}d_{0}^{2})\in[\tau_{1},0]

for all r0r\geq 0. Thus (iei(π+τ1)/2a1(u,u))cos(τ1/2)min{1,|ω2|}uX2\Re(ie^{-i(\pi+\tau_{1})/2}a_{1}(u,u))\geq\cos(\tau_{1}/2)\min\{1,|\omega^{2}|\}\|u\|_{X}^{2} for all uXu\in X, i.e. a1(,)a_{1}(\cdot,\cdot) is coercive. Further a2(u,u)=(K1L1ω2K2L2)u,uXa_{2}(u,u^{\prime})=\langle(K_{1}^{*}L_{1}-\omega^{2}K_{2}^{*}L_{2})u,u^{\prime}\rangle_{X} with bounded operators

L1\displaystyle L_{1} :XL2(Ω):ud~d1/2ru,\displaystyle\colon X\to L^{2}(\Omega)\colon u\mapsto\frac{\tilde{d}}{d^{1/2}}\partial_{r}u,
K1\displaystyle K_{1} :XL2(Ω):u(r(|d^|d^)¯)d~d1/2¯u,\displaystyle\colon X\to L^{2}(\Omega)\colon u\mapsto\left(\overline{\partial_{r}\left(\frac{|\hat{d}|}{\hat{d}}\right)}\right)\overline{\frac{\tilde{d}}{d^{1/2}}}u,
L2\displaystyle L_{2} :XL2(Ω):u|d~d1/2|u,\displaystyle\colon X\to L^{2}(\Omega)\colon u\mapsto|\tilde{d}d^{1/2}|u,
K2\displaystyle K_{2} :XL2(Ω):u(d~2d|d^||d~2d|d^d02)|d~d1/2|u.\displaystyle\colon X\to L^{2}(\Omega)\colon u\mapsto\left(\frac{\tilde{d}^{2}d|\hat{d}|}{|\tilde{d}^{2}d|\hat{d}}-d_{0}^{2}\right)|\tilde{d}d^{1/2}|u.

From the definitions of d0d_{0} and d^\hat{d} it follows (d~2d|d^||d~2d|d^d02)(r)0\left(\frac{\tilde{d}^{2}d|\hat{d}|}{|\tilde{d}^{2}d|\hat{d}}-d_{0}^{2}\right)(r)\to 0 as r+r\to+\infty. From Assumption 3.1.2 follows (r(|d^|d^)¯)(r)0\left(\overline{\partial_{r}\left(\frac{|\hat{d}|}{\hat{d}}\right)}\right)(r)\to 0 as r+r\to+\infty. Lemma 3.3, 1/|d|11/|d|\leq 1 and the compact Sobolev embedding H1(D)L2(D)H^{1}(D)\to L^{2}(D) for bounded Lipschitz domains DD yield that K1K_{1} and K2K_{2} are compact. Hence A2A_{2} (A2u,uX=a2(u,u)\langle A_{2}u,u^{\prime}\rangle_{X}=a_{2}(u,u^{\prime})) is compact too.
Second case ωΛd0\omega\in\Lambda_{d_{0}} with arg(ω2d02)[0,π)\arg(-\omega^{2}d_{0}^{2})\in[0,\pi): A direct computation yields a(ω;u,T(ω)u)=a1(u,u)+a2(u,u)a(\omega;u,T(\omega)u^{\prime})=a_{1}(u,u^{\prime})+a_{2}(u,u^{\prime}) with

a1(u,u)\displaystyle a_{1}(u,u^{\prime}) :=(d^|d~2|d|d^|Px+dd^|d~2|d~2|d^|(IPx))u,uL2(Ω)ω2d02|d~2d|u,uL2(Ω),\displaystyle:=\bigg{\langle}\bigg{(}\frac{\hat{d}|\tilde{d}^{2}|}{d|\hat{d}|}\operatorname{P_{x}}+\frac{d\hat{d}|\tilde{d}^{2}|}{\tilde{d}^{2}|\hat{d}|}(\operatorname{I}-\operatorname{P_{x}})\bigg{)}\nabla u,\nabla u^{\prime}\bigg{\rangle}_{L^{2}(\Omega)}-\omega^{2}d_{0}^{2}\langle|\tilde{d}^{2}d|u,u^{\prime}\rangle_{L^{2}(\Omega)},
a2(u,u)\displaystyle a_{2}(u,u^{\prime}) :=d~2dru,ur(d^|d~2|d~2|d^|)¯L2(Ω)ω2(d^|d~2|d~2dd~2|d^||d~2d|d02)|d~2d|u,uL2(Ω).\displaystyle:=\bigg{\langle}\frac{\tilde{d}^{2}}{d}\partial_{r}u,u^{\prime}\partial_{r}\overline{\left(\frac{\hat{d}|\tilde{d}^{2}|}{\tilde{d}^{2}|\hat{d}|}\right)}\bigg{\rangle}_{L^{2}(\Omega)}-\omega^{2}\bigg{\langle}\bigg{(}\frac{\hat{d}|\tilde{d}^{2}|\tilde{d}^{2}d}{\tilde{d}^{2}|\hat{d}||\tilde{d}^{2}d|}-d_{0}^{2}\bigg{)}|\tilde{d}^{2}d|u,u^{\prime}\bigg{\rangle}_{L^{2}(\Omega)}.

As in the previous case we find that

arg(d^|d~2|d|d^|)(r),arg(dd^|d~2|d~2|d^|)(r),arg(ω2d02)[0,τ1]\displaystyle\arg\left(\frac{\hat{d}|\tilde{d}^{2}|}{d|\hat{d}|}\right)(r),\,\arg\left(\frac{d\hat{d}|\tilde{d}^{2}|}{\tilde{d}^{2}|\hat{d}|}\right)(r),\,\arg(-\omega^{2}d_{0}^{2})\in[0,\tau_{1}]

for all r0r\geq 0 with τ1:=max{2τ,argd^(r1),arg(ω2d02)}[0,π)\tau_{1}:=\max\{2\tau,\arg\hat{d}(r_{1}^{*}),\arg(-\omega^{2}d_{0}^{2})\}\in[0,\pi). It follows

(iei(πτ2)/2a1(u,u))cos(τ1/2)min{1,|ω2|}uX2\displaystyle\Re(-ie^{i(\pi-\tau_{2})/2}a_{1}(u,u))\geq\cos(\tau_{1}/2)\min\{1,|\omega^{2}|\}\|u\|_{X}^{2}

for all uXu\in X, i.e. a1(,)a_{1}(\cdot,\cdot) is coercive. Further a2(u,u)=(K1L1ω2K2L2)u,uXa_{2}(u,u^{\prime})=\langle(K_{1}^{*}L_{1}-\omega^{2}K_{2}^{*}L_{2})u,u^{\prime}\rangle_{X} with bounded operators

L1\displaystyle L_{1} :XL2(Ω):ud~d1/2ru,\displaystyle\colon X\to L^{2}(\Omega)\colon u\mapsto\frac{\tilde{d}}{d^{1/2}}\partial_{r}u,
K1\displaystyle K_{1} :XL2(Ω):u(r(d^|d~2|d~2|d^|)¯)d~d1/2¯u,\displaystyle\colon X\to L^{2}(\Omega)\colon u\mapsto\left(\overline{\partial_{r}\left(\frac{\hat{d}|\tilde{d}^{2}|}{\tilde{d}^{2}|\hat{d}|}\right)}\right)\overline{\frac{\tilde{d}}{d^{1/2}}}u,
L2\displaystyle L_{2} :XL2(Ω):u|d~d1/2|u,\displaystyle\colon X\to L^{2}(\Omega)\colon u\mapsto|\tilde{d}d^{1/2}|u,
K2\displaystyle K_{2} :XL2(Ω):u(d^|d~2|d~2dd~2|d^||d~2d|d02)|d~d1/2|u.\displaystyle\colon X\to L^{2}(\Omega)\colon u\mapsto\left(\frac{\hat{d}|\tilde{d}^{2}|\tilde{d}^{2}d}{\tilde{d}^{2}|\hat{d}||\tilde{d}^{2}d|}-d_{0}^{2}\right)|\tilde{d}d^{1/2}|u.

From the definitions of d0d_{0}, d^\hat{d} and Assumption 3.1.1 follows (d^|d~2|d~2dd~2|d^||d~2d|d02)(r)0\left(\frac{\hat{d}|\tilde{d}^{2}|\tilde{d}^{2}d}{\tilde{d}^{2}|\hat{d}||\tilde{d}^{2}d|}-d_{0}^{2}\right)(r)\to 0 as r+r\to+\infty. From Assumption 3.1.2 it follows (r(d^|d~2|d~2|d^|)¯)(r)0\left(\overline{\partial_{r}\left(\frac{\hat{d}|\tilde{d}^{2}|}{\tilde{d}^{2}|\hat{d}|}\right)}\right)(r)\to 0 as r+r\to+\infty. Again, Lemma 3.3, 1/|d|11/|d|\leq 1 and the compact Sobolev embedding H1(D)L2(D)H^{1}(D)\to L^{2}(D) for bounded Lipschitz domains DD yield that K1K_{1} and K2K_{2} are compact. Hence A2A_{2} (A2u,uX=a2(u,u)\langle A_{2}u,u^{\prime}\rangle_{X}=a_{2}(u,u^{\prime})) is compact too. ∎

If we demand in addition to Assumptions 2.2, 3.1 that |d|/|d~||d|/|\tilde{d}| is bounded, then it can be proven [34, Theorem 4.6] that Theorem 3.5 is sharp, i.e. the essential spectrum of A()A(\cdot) equals Λd0={ω:(iωd0)=0}\mathbb{C}\setminus\Lambda_{d_{0}}=\{\omega\in\mathbb{C}\colon\Re(-i\omega d_{0})=0\}.

It is less intuitive why we need to employ the multiplication operator T(ω)T(\omega). The matrix of the principle part of a(ω;,)a(\omega;\cdot,\cdot) is d~2d1Px+d(IPx)\tilde{d}^{2}d^{-1}\operatorname{P_{x}}+d(\operatorname{I}-\operatorname{P_{x}}). The coefficients are bounded away from zero and only take values in the closed salient sector spanned by (1+iα(r))±1(1+i\alpha(r))^{\pm 1}. However, as the domain is unbounded the (asymptotic) complex sign of the L2L^{2}-term ω2d03-\omega^{2}d_{0}^{3} also has to be taken into account. Although there is no way to estimate 1+iα(r)1+i\alpha(r) in terms of d0d_{0} without further assumptions on α~\tilde{\alpha}. Nonetheless the asymptotic complex sign of the matrix coefficients is d0d_{0}. Thus it is meaningful to suitably rotate the complex sign of the principle part especially in the preasymptotic regime of the coefficients. The rotation for the L2L^{2}-term in the preasymptotic regime can be neglected as L2L^{2}-integrals on bounded sets lead to compact operators. In [15] it was noted that a rotation by d1d^{-1} yields the desired properties. Be aware that for different dimensions and different equations other rotations are necessary. A choice leading to coefficients 11 and d~2/d2\tilde{d}^{2}/d^{2} or 11 and d2/d~2d^{2}/\tilde{d}^{2} (depending on the complex sign of ω2d02-\omega^{2}d_{0}^{2}) in the principle part of the equation usually does the job.

4. Subsequent approximation

We consider a sequence of finite subdomains (Ωn)n(\Omega_{n})_{n\in\mathbb{N}} which suffices Assumption 2.3, corresponding subspaces XnX_{n} defined by (21) and corresponding operator functions An()A_{n}(\cdot) defined by (31). We investigate the approximation of A()A(\cdot) by An()A_{n}(\cdot).

Lemma 4.1.

Let Assumptions 2.2, 3.1 and 2.3 hold. Let XnX_{n} be as in (21) and T()T(\cdot) be as in (37). Then XnX_{n} is T(ω)T(\omega)-invariant and T1(ω)T^{-1}(\omega)-invariant for all nn\in\mathbb{N}, ω{0}\omega\in\mathbb{C}\setminus\{0\}, i.e. T(ω)un,T1(ω)unXnT(\omega)u_{n},T^{-1}(\omega)u_{n}\in X_{n} for all unXnu_{n}\in X_{n}, nn\in\mathbb{N}, ω{0}\omega\in\mathbb{C}\setminus\{0\}.

Proof.

A multiplication operator does not increase the support of a function. ∎

Theorem 4.2 (Spectral convergence).

Let Assumptions 2.2 and 3.1 hold. Let XX and a(;,)a(\cdot;\cdot,\cdot) be as in (17), A()A(\cdot) be as in (29), T()T(\cdot) be as in (37) and

(39) Λd0±:={z:±(izd0)<0}.\displaystyle\Lambda_{d_{0}}^{\pm}:=\{z\in\mathbb{C}\colon\pm\Re(izd_{0})<0\}.

Let Assumption 2.3 hold. Let XnX_{n} be as in (21) and An()A_{n}(\cdot) be as in (31).

Then A():Λd0±L(X)A(\cdot)\colon\Lambda_{d_{0}}^{\pm}\to L(X) is a weakly T()T(\cdot)-coercive holomorphic Fredholm operator function with non-empty resolvent set ρ(A())\rho\big{(}A(\cdot)\big{)} and An():Λd0±L(Xn)A_{n}(\cdot)\colon\Lambda_{d_{0}}^{\pm}\to L(X_{n}) is a T()T(\cdot)-compatible approximation, i.e. the convergence results i)-vii) from Subsection 3.1 hold.

Proof.

Since A(ω)A(\omega) is a polynomial in ω\omega it is holomorphic. Due to Theorem 3.5 A(ω)A(\omega) is weakly T(ω)T(\omega)-coercive. Due to [34, Theorem 2.16] and [34, Theorems 2.8-2.9] the resolvent sets ρ(A())Λd0±\rho\big{(}A(\cdot)\big{)}\cap\Lambda_{d_{0}}^{\pm} are non-empty. Thus A():Λd0±L(X)A(\cdot)\colon\Lambda_{d_{0}}^{\pm}\to L(X) is a weakly T()T(\cdot)-coercive holomorphic Fredholm operator function with non-empty resolvent set ρ(A())\rho\big{(}A(\cdot)\big{)}. Due to Lemma 4.1 XnX_{n} is T(ω)T(\omega)-invariant for all nn\in\mathbb{N}, ωΛd0±\omega\in\Lambda_{d_{0}}^{\pm}. Hence with Tn(ω):=T(ω)|XnT_{n}(\omega):=T(\omega)|_{X_{n}} it hold Tn(ω),Tn1(ω)L(Xn)T_{n}(\omega),T^{-1}_{n}(\omega)\in L(X_{n}) and T(ω)Tn(ω)n=0\|T(\omega)-T_{n}(\omega)\|_{n}=0 for all nn\in\mathbb{N}, ωΛd0±\omega\in\Lambda_{d_{0}}^{\pm} and consequently An(ω)A_{n}(\omega) and Tn(ω)T_{n}(\omega) are Fredholm with index zero for all ωΛd0±\omega\in\Lambda_{d_{0}}^{\pm}. ∎

Theorem 4.2 yields convergence rates with respect to the best approximation errors (28). To estimate these we introduce the next Lemma 4.3.

Lemma 4.3.

Let Assumptions 2.2, 3.1 and 2.3 hold. Let XX be as in (17) and XnX_{n} be as in (21). Let rn>0r_{n}>0 be so that ΩBrn+1Ωn\Omega\cap B_{r_{n}+1}\subset\Omega_{n}. Then there exists a constant C>0C>0 independent of nn so that

(40) infunXnuunXCuX(Brnc)\displaystyle\inf_{u_{n}\in X_{n}}\|u-u_{n}\|_{X}\leq C\|u\|_{X(B_{r_{n}}^{c})}

for all uXu\in X.

Proof.

We choose un(x):=χ2(1+rn|x|)u(x)Xnu_{n}(x):=\chi_{2}(1+r_{n}-|x|)u(x)\in X_{n} with χ2\chi_{2} as in (11g) and compute

uunX=uunX(ΩBrn)uX(ΩBrn)+CuX(Arn,rn+1)\displaystyle\|u-u_{n}\|_{X}=\|u-u_{n}\|_{X(\Omega\setminus B_{r_{n}})}\leq\|u\|_{X(\Omega\setminus B_{r_{n}})}+C\|u\|_{X(A_{r_{n},r_{n}+1})}

with a constant C>0C>0 independent of uu and nn. ∎

Due to (19) uX(Brnc)\|u\|_{X(B_{r_{n}}^{c})} can be estimated to decay exponentially for eigenfunctions uu, i.e. A(ω)u=0A(\omega)u=0. For generalized eigenfunctions (also called root functions) uX(Brnc)\|u\|_{X(B_{r_{n}}^{c})} can also be estimated to decay exponentially due to Lemma 6.1 of [50]. Together with Theorem 4.2 and Lemma 4.3 this yields convenient error bounds of the form

uunXeCrn\displaystyle\|u-u_{n}\|_{X}\lesssim e^{-Cr_{n}}

for some constant C>0C>0 with layer width rnr_{n}.

For solutions (ω,u)(\omega,u) to A(ω)u=0A(\omega)u=0 the quantity of interest is actually only (ω,u|ΩBr1)(\omega,u|_{\Omega\cap B_{r_{1}^{*}}}) where as u|Br1cu|_{B_{r_{1}^{*}}^{c}} could be called an auxiliary variable. It is indeed possible to improve the error estimate obtained by Theorem 4.2 and Lemma 4.3 for the eigenspaces if the error is only measured in X(ΩBr1)\|\cdot\|_{X(\Omega\cap B_{r_{1}^{*}})}. A hand waving explanation is that An()A_{n}(\cdot) differs from A()A(\cdot) only by a distortion at Br2cB_{r_{2}^{*}}^{c} and as “the error propagates” towards ΩBr1\Omega\cap B_{r_{1}^{*}} “the error decays”. This argumentation can be made rigorous by a comparison of the Dirichlet-to-Neumann operators generated by the complex scaling in the (un)truncated domains. For details see e.g. [38, Section 4.3].

Now consider for a fixed index nn\in\mathbb{N} a subsequent approximation of (22) by the following. We consider a sequence of subspaces (Xnh(m))m\big{(}X_{n}^{h(m)}\big{)}_{m\in\mathbb{N}}, Xnh(m)XnX_{n}^{h(m)}\subset X_{n}, mm\in\mathbb{N}, so that the orthogonal projections Pnh(m):XnXnh(m)P_{n}^{h(m)}\colon X_{n}\to X_{n}^{h(m)} converge point-wise to the identity in XnX_{n} and eigenvalue problem

(41) find (ω,uh(m))×Xnh(m){0} so thata(ω;uh(m),uh(m))=0for all uh(m)Xnh(m).\displaystyle\begin{split}\text{find }(\omega,u_{h(m)})\in\mathbb{C}\times X_{n}^{h(m)}\setminus\{0\}\text{ so that}\quad a(\omega;u_{h(m)},u_{h(m)}^{\prime})=0\\ \text{for all }u_{h(m)}^{\prime}\in X_{n}^{h(m)}.\end{split}

We note that restricted to XnX_{n} the norm X\|\cdot\|_{X} is equivalent to H1(Ω)\|\cdot\|_{H^{1}(\Omega)} and hence Xn={uH01(Ω):u=0 in ΩΩn}X_{n}=\{u\in H^{1}_{0}(\Omega)\colon u=0\text{ in }\Omega\setminus\Omega_{n}\}. It holds further that An(ω)L(Xn)A_{n}(\omega)\in L(X_{n}) is already weakly coercive. Hence the approximation of (22) by (41) can already be performed with common techniques [2].

The profile function α~\tilde{\alpha} limits the regularity of solutions. However, to achieve optimal approximations rates of solutions by general finite element spaces smooth solutions are necessary. Yet, if α~\tilde{\alpha} is piece-wise smooth optimal rates can be restored if the meshes of the finite element spaces are aligned to the jumps in the derivatives of α~\tilde{\alpha}. If this is not possible, e.g. because the finite element code is limited to polytopial meshes, it is desirable to chose a globally smooth profile function. Of course for finite element spaces with fixed maximal polynomial degree one can construct α~\tilde{\alpha} with appropriate smoothness as piece-wise polynomial. However, in this case it seems more natural to us to construct α~C(+)\tilde{\alpha}\in C^{\infty}(\mathbb{R}^{+}) in the first place, e.g. as in (10).

5. Simultaneaous approximation

In the previous section we considered a sequence of bounded subdomains (Ωn)n(\Omega_{n})_{n\in\mathbb{N}} as in Assumption 2.3, an approximation of (18) by (22) and subsequent a sequence of subspaces (Xnh(m))m\big{(}X_{n}^{h(m)}\big{)}_{m\in\mathbb{N}}, Xnh(m)XnX_{n}^{h(m)}\subset X_{n} and an approximation of (22) by (41). The two key ingredients which allowed a pretty simple analysis were the T()T(\cdot)-invariance of XnX_{n} and the weak coercivity of An()A_{n}(\cdot). This way we avoided to discuss the issue of the non-T()T(\cdot)-invariance of Xnh(m)X_{n}^{h(m)} and the construction of an appropriate Tnh(m)()T_{n}^{h(m)}(\cdot) operator function. Though this kind of analysis yields only limited results: It is left open if a sequence of approximations with simultaneaous increasing domains and decreasing mesh-width’ could lead to erroneous results (e.g. failure of convergence, spectral pollution). Nevertheless, the only work known to us (from the huge amount of articles on PML-approximations) which adressed this important issue so far is [43].

Thus in this section we consider a direct approximation of (18) through non-T()T(\cdot)-invariant subspaces of XX, e.g. the diagonal sequence (Xnh(n))n\big{(}X_{n}^{h(n)}\big{)}_{n\in\mathbb{N}}. To conduct our analysis we introduce an operator function Tϵ()T_{\epsilon}(\cdot) which is a slight modification of (37) in Lemmata 5.1 and 5.2. This new operator function has some favorable properties and is so that A()A(\cdot) is still weakly Tϵ()T_{\epsilon}(\cdot)-coercive. We consider finite dimensional Galerkin spaces Xh(m)XX^{h(m)}\subset X which suffice two Assumptions 5.3 and 5.4. In Theorem 5.5 we prove that under such assumptions we can construct appropriate operator functions Tϵh(m)():L(Xh(m))T_{\epsilon}^{h(m)}(\cdot)\colon\mathbb{C}\to L(X^{h(m)}) which converge to Tϵ()T_{\epsilon}(\cdot) in discrete norm at each ω\omega\in\mathbb{C}, i.e. the Approximation (Ah(m)():Λd0L(Xh(m)))m\big{(}A^{h(m)}(\cdot)\colon\Lambda_{d_{0}}\to L(X^{h(m)})\big{)}_{m\in\mathbb{N}} is Tϵ()T_{\epsilon}(\cdot)-compatible. A key ingredient for the analysis is a variant of the discrete commutator property of Bertoluzza [11]. Finally in Theorem 5.6 we formulate our convergence results.

Lemma 5.1.

Let r1r_{1}\in\mathbb{R} and r2{+}r_{2}\in\mathbb{R}\cup\{+\infty\} with r1<r2r_{1}<r_{2}. Let η:[r1,r2)\eta\colon[r_{1},r_{2})\to\mathbb{C} be continuous so that limrr2η(r)=:η(r2)\lim_{r\to r_{2}-}\eta(r)=:\eta(r_{2}) exists in \mathbb{C}. Then for each ϵ>0\epsilon>0 exist ηϵ:[r1,r2)\eta_{\epsilon}\colon[r_{1},r_{2})\to\mathbb{C} and r^1,r^2(r1,r2)\hat{r}_{1},\hat{r}_{2}\in(r_{1},r_{2}) so that

  1. (1)

    ηηϵL(r1,r2)<ϵ\|\eta-\eta_{\epsilon}\|_{L^{\infty}(r_{1},r_{2})}<\epsilon,

  2. (2)

    ηϵ(r)=η(r1)\eta_{\epsilon}(r)=\eta(r_{1}) for rr^1r\leq\hat{r}_{1},

  3. (3)

    ηϵ(r)=η(r2)\eta_{\epsilon}(r)=\eta(r_{2}) for rr^2r\geq\hat{r}_{2},

  4. (4)

    ηϵ\eta_{\epsilon} is infinitely many times differentiable.

Proof.

Since η\eta is continuous and limrr2η(r)\lim_{r\to r_{2}-}\eta(r) exists we can choose rˇ1,rˇ2(r1,r2)\check{r}_{1},\check{r}_{2}\in(r_{1},r_{2}) so that ηη(r1)L(r1,rˇ1)<ϵ/2\|\eta-\eta(r_{1})\|_{L^{\infty}(r_{1},\check{r}_{1})}<\epsilon/2 and ηη(r2)L(rˇ2,r2)<ϵ/2\|\eta-\eta(r_{2})\|_{L^{\infty}(\check{r}_{2},r_{2})}<\epsilon/2. Since C(r1,r2)C^{\infty}(r_{1},r_{2}) is dense in L(r1,r2)L^{\infty}(r_{1},r_{2}) we can choose η^C(r1,r2)\hat{\eta}\in C^{\infty}(r_{1},r_{2}) with ηη^L(r1,r2)<ϵ/2\|\eta-\hat{\eta}\|_{L^{\infty}(r_{1},r_{2})}<\epsilon/2. Let r^1(r1,rˇ1)\hat{r}_{1}\in(r_{1},\check{r}_{1}), r^2(rˇ2,r2)\hat{r}_{2}\in(\check{r}_{2},r_{2}) and

ηϵ:={η(r1),rr^1,(1χ2(rr^1rˇ1r^1))η(r1)+χ2(rr^1rˇ1r^1)η^(r),r^1<rrˇ1,η^(r),rˇ1<r<rˇ2,(1χ2(rrˇ1r^2rˇ2))η^(r)+χ2(rrˇ1r^2rˇ2)η(r2),r^2<rrˇ2,η(r2),rr^2,\displaystyle\eta_{\epsilon}:=\left\{\begin{array}[]{ll}\eta(r_{1}),&r\leq\hat{r}_{1},\\ \big{(}1-\chi_{2}(\frac{r-\hat{r}_{1}}{\check{r}_{1}-\hat{r}_{1}})\big{)}\eta(r_{1})+\chi_{2}(\frac{r-\hat{r}_{1}}{\check{r}_{1}-\hat{r}_{1}})\hat{\eta}(r),&\hat{r}_{1}<r\leq\check{r}_{1},\\ \hat{\eta}(r),&\check{r}_{1}<r<\check{r}_{2},\\ \big{(}1-\chi_{2}(\frac{r-\check{r}_{1}}{\hat{r}_{2}-\check{r}_{2}})\big{)}\hat{\eta}(r)+\chi_{2}(\frac{r-\check{r}_{1}}{\hat{r}_{2}-\check{r}_{2}})\eta(r_{2}),&\hat{r}_{2}<r\leq\check{r}_{2},\\ \eta(r_{2}),&r\geq\hat{r}_{2},\end{array}\right.

with χ2\chi_{2} as in (11g). From the triangle inequality and χ2(r)[0,1]\chi_{2}(r)\in[0,1] for all rr\in\mathbb{R} it follows ηηϵL(r1,r2)<ϵ\|\eta-\eta_{\epsilon}\|_{L^{\infty}(r_{1},r_{2})}<\epsilon. By construction ηϵ\eta_{\epsilon} suffices also the last three criteria. ∎

Lemma 5.2.

Let Assumptions 2.2 and 3.1 hold. Let XX and a(;,)a(\cdot;\cdot,\cdot) be as in (17) and A()A(\cdot) be as in (29). For ϵ>0\epsilon>0 and ω{0}\omega\in\mathbb{C}\setminus\{0\} let

(44) Tϵ(ω)u:=ηϵuwithη:={|d^|d^¯for arg(ω2d02)[π,0),d^d~2|d~|2|d^|¯for arg(ω2d02)[0,π)\displaystyle T_{\epsilon}(\omega)u:=\eta_{\epsilon}u\qquad\text{with}\qquad\eta:=\left\{\begin{array}[]{ll}\overline{\frac{|\hat{d}|}{\hat{d}}}&\text{for }\arg(-\omega^{2}d_{0}^{2})\in[-\pi,0),\vspace{3mm}\\ \overline{\frac{\hat{d}}{\tilde{d}^{2}}\frac{|\tilde{d}|^{2}}{|\hat{d}|}}&\text{for }\arg(-\omega^{2}d_{0}^{2})\in[0,\pi)\end{array}\right.

and ηϵ|(r1,+)\eta_{\epsilon}|_{(r_{1}^{*},+\infty)} as in Lemma 5.1 with r1=r1,r2=+r_{1}=r_{1}^{*},r_{2}=+\infty and ηϵ|[0,r1]:=ηϵ(r1)\eta_{\epsilon}|_{[0,r_{1}^{*}]}:=\eta_{\epsilon}(r_{1}^{*}).

For each ω{0}\omega\in\mathbb{C}\setminus\{0\} there exists ϵ0(ω)>0\epsilon_{0}(\omega)>0 so that for each ϵϵ0(ω)\epsilon\leq\epsilon_{0}(\omega), Tϵ(ω)L(X)T_{\epsilon}(\omega)\in L(X) is bijective and A(ω):Λd0L(X)A(\omega)\colon\Lambda_{d_{0}}\to L(X) is weakly Tϵ(ω)T_{\epsilon}(\omega)-coercive.

Proof.

Tϵ(ω)L(X)T_{\epsilon}(\omega)\in L(X) and its bijectivity can be proven for a sufficiently small ϵ\epsilon as in the proof of Lemma 3.4. Similarly the weak Tϵ(ω)T_{\epsilon}(\omega)-coercivity of A(ω)A(\omega) can be proven for a sufficiently small ϵ\epsilon as in the proof of Theorem 3.5. ∎

Assumption 5.3.

There exists a sequence (h(n))n(+)\big{(}h(n)\big{)}_{n\in\mathbb{N}}\in(\mathbb{R}^{+})^{\mathbb{N}} with limnh(n)=0\lim_{n\in\mathbb{N}}h(n)=0. There exist bounded linear projection operators Πh(n):XXh(n),n\Pi_{h(n)}\colon X\to X^{h(n)},n\in\mathbb{N} that act locally in the following sense: there exist constants C1,R>1C_{1},R^{*}>1 so that for nn\in\mathbb{N}, s{1,2}s\in\{1,2\}, x0Ωx_{0}\in\Omega, if BRh(n)(x0)ΩB_{R^{*}h(n)}(x_{0})\subset\Omega, uXu\in X and u|BRh(n)(x0)Hs(BRh(n)(x0))u|_{B_{R^{*}h(n)}(x_{0})}\in H^{s}(B_{R^{*}h(n)}(x_{0})), then

(45) uΠh(n)uH1(Bh(n)(x0))C1h(n)s1uHs(BRh(n)(x0)).\displaystyle\|u-\Pi_{h(n)}u\|_{H^{1}(B_{h(n)}(x_{0}))}\leq C_{1}h(n)^{s-1}\|u\|_{H^{s}(B_{R^{*}h(n)}(x_{0}))}.
Assumption 5.4.

For any DΩD\subset\Omega which is compact in Ω\Omega exists n0>0n_{0}>0 so that for each n,n>n0n\in\mathbb{N},n>n_{0} there exists uD,nXh(n)u_{D,n}\in X^{h(n)} with uD,n|D=1u_{D,n}|_{D}=1.

Theorem 5.5.

Let Assumptions 2.2 and 3.1 hold. Let XX be as in (17), (Xh(n))n\big{(}X^{h(n)}\big{)}_{n\in\mathbb{N}} be sequence of finite dimensional subspaces Xh(n)XX^{h(n)}\subset X so that the orthogonal projections from XX onto Xh(n)X^{h(n)} converge point-wise to the identity in XX and so that Assumptions 5.3 and 5.4 hold. Let ϵ0(ω)\epsilon_{0}(\omega) be as in Lemma 5.2, Tϵ0(ω):=Tϵ0(ω)(ω)T_{\epsilon_{0}}(\omega):=T_{\epsilon_{0}(\omega)}(\omega) be as in (44) and n\|\cdot\|_{n} be as in (27). For nn\in\mathbb{N} let Πh(n)\Pi_{h(n)} be as in Assumptions 5.3 and

(46) Tϵ0h(n)(ω):=Πh(n)Tϵ0(ω)|Xh(n)\displaystyle T_{\epsilon_{0}}^{h(n)}(\omega):=\Pi_{h(n)}T_{\epsilon_{0}}(\omega)|_{X^{h(n)}}

for ω{0}\omega\in\mathbb{C}\setminus\{0\}. Then Tϵ0h(n)(ω)L(Xh(n))T_{\epsilon_{0}}^{h(n)}(\omega)\in L(X^{h(n)}) is Fredholm with index zero and

(47) limnTϵ0(ω)Tϵ0h(n)(ω)n=0\displaystyle\lim_{n\in\mathbb{N}}\|T_{\epsilon_{0}}(\omega)-T_{\epsilon_{0}}^{h(n)}(\omega)\|_{n}=0

for all ω{0}\omega\in\mathbb{C}\setminus\{0\}.

Proof.

Let ω{0}\omega\in\mathbb{C}\setminus\{0\}. It is straightforward to see Tϵ0h(n)(ω)L(Xh(n))T_{\epsilon_{0}}^{h(n)}(\omega)\in L(X^{h(n)}). Since Xh(n)X^{h(n)} is finite dimensional, Tϵ0h(n)(ω)T_{\epsilon_{0}}^{h(n)}(\omega) is Fredholm with index zero. Further, we note that if nn\in\mathbb{N}, x0Ωx_{0}\in\Omega, BRh(n)(x0)ΩB_{R^{*}h(n)}(x_{0})\subset\Omega and u,u^Xu,\hat{u}\in X with u|BRh(n)(x0)=u^|BRh(n)(x0)u|_{B_{R^{*}h(n)}(x_{0})}=\hat{u}|_{B_{R^{*}h(n)}(x_{0})}, then also (Tϵ0h(n)(ω)u)|Bh(n)(x0)=(Tϵ0h(n)(ω)u^)|Bh(n)(x0)(T_{\epsilon_{0}}^{h(n)}(\omega)u)|_{B_{h(n)}(x_{0})}=(T_{\epsilon_{0}}^{h(n)}(\omega)\hat{u})|_{B_{h(n)}(x_{0})}. Indeed from Assumption 5.3 follows

Πh(n)(ηϵ0(uu^))H1(Bh(n)(x0))\displaystyle\|\Pi_{h(n)}(\eta_{\epsilon_{0}}(u-\hat{u}))\|_{H^{1}(B_{h(n)}(x_{0}))} =ηϵ0(uu^)Πh(ηϵ0(uu^))H1(Bh(n)(x0))\displaystyle=\|\eta_{\epsilon_{0}}(u-\hat{u})-\Pi_{h}(\eta_{\epsilon_{0}}(u-\hat{u}))\|_{H^{1}(B_{h(n)}(x_{0}))}
C1ηϵ0(uu^)H1(BC1h(n)(x0))=0.\displaystyle\leq C_{1}\|\eta_{\epsilon_{0}}(u-\hat{u})\|_{H^{1}(B_{C_{1}h(n)}(x_{0}))}=0.

So let r^1,r^2\hat{r}_{1},\hat{r}_{2} be as in Lemma 5.1. Let r2>r^2r_{2}^{*}>\hat{r}_{2}, h0>0h_{0}>0 with h0<min{r^1r1,r2r^2}/C1h_{0}<\min\{\hat{r}_{1}-r^{*}_{1},r_{2}^{*}-\hat{r}_{2}\}/C_{1} and n0>0n_{0}>0 be so that h(n)<h0h(n)<h_{0} for all n>n0n>n_{0}. Let n>n0n>n_{0} and unXh(n)u_{n}\in X^{h(n)}. Since Πh(n)\Pi_{h(n)} is linear and a projection it follows

(Tϵ0h(n)(ω)un)|ΩBr1=(Πh(n)(ηϵ0un))|ΩBr1\displaystyle(T_{\epsilon_{0}}^{h(n)}(\omega)u_{n})|_{\Omega\cap B_{r^{*}_{1}}}=\big{(}\Pi_{h(n)}(\eta_{\epsilon_{0}}u_{n})\big{)}|_{\Omega\cap B_{r^{*}_{1}}} =(Πh(n)(ηϵ0(r1)un))|ΩBr1\displaystyle=\big{(}\Pi_{h(n)}(\eta_{\epsilon_{0}}(r_{1}^{*})u_{n})\big{)}|_{\Omega\cap B_{r^{*}_{1}}}
=(ηϵ0(r1)Πh(n)un)|ΩBr1\displaystyle=(\eta_{\epsilon_{0}}(r_{1}^{*})\Pi_{h(n)}u_{n})|_{\Omega\cap B_{r^{*}_{1}}}
=(ηϵ0(r1)un)|ΩBr1\displaystyle=(\eta_{\epsilon_{0}}(r_{1}^{*})u_{n})|_{\Omega\cap B_{r^{*}_{1}}}
=(ηϵ0un)|ΩBr1=(Tϵ0(ω)un)|ΩBr1.\displaystyle=(\eta_{\epsilon_{0}}u_{n})|_{\Omega\cap B_{r^{*}_{1}}}=(T_{\epsilon_{0}}(\omega)u_{n})|_{\Omega\cap B_{r^{*}_{1}}}.

Likewise (Tϵ0h(n)(ω)un)|ΩBr2c=(Tϵ0(ω)un)|ΩBr2c(T_{\epsilon_{0}}^{h(n)}(\omega)u_{n})|_{\Omega\cap B_{r^{*}_{2}}^{c}}=(T_{\epsilon_{0}}(\omega)u_{n})|_{\Omega\cap B_{r^{*}_{2}}^{c}}. Hence

(Tϵ0(ω)Tϵ0h(n)(ω))unX2\displaystyle\|(T_{\epsilon_{0}}(\omega)-T_{\epsilon_{0}}^{h(n)}(\omega))u_{n}\|_{X}^{2}
=(|d~2d1|Px+|d|(IPx))(Tϵ0(ω)Tϵ0h(n)(ω))un,(Tϵ0(ω)Tϵ0h(n)(ω))unL2(Ω)\displaystyle=\langle(|\tilde{d}^{2}d^{-1}|\operatorname{P_{x}}+|d|(\operatorname{I}-\operatorname{P_{x}}))\nabla(T_{\epsilon_{0}}(\omega)-T_{\epsilon_{0}}^{h(n)}(\omega))u_{n},\nabla(T_{\epsilon_{0}}(\omega)-T_{\epsilon_{0}}^{h(n)}(\omega))u_{n}\rangle_{L^{2}(\Omega)}
+|d~2d|(Tϵ0(ω)Tϵ0h(n)(ω))un,(Tϵ0(ω)Tϵ0h(n)(ω))unL2(Ω)\displaystyle+\langle|\tilde{d}^{2}d|(T_{\epsilon_{0}}(\omega)-T_{\epsilon_{0}}^{h(n)}(\omega))u_{n},(T_{\epsilon_{0}}(\omega)-T_{\epsilon_{0}}^{h(n)}(\omega))u_{n}\rangle_{L^{2}(\Omega)}
=(|d~2d1|Px+|d|(IPx))(Tϵ0(ω)Tϵ0h(n)(ω))un,(Tϵ0(ω)Tϵ0h(n)(ω))unL2(Ar1,r2)\displaystyle=\langle(|\tilde{d}^{2}d^{-1}|\operatorname{P_{x}}+|d|(\operatorname{I}-\operatorname{P_{x}}))\nabla(T_{\epsilon_{0}}(\omega)-T_{\epsilon_{0}}^{h(n)}(\omega))u_{n},\nabla(T_{\epsilon_{0}}(\omega)-T_{\epsilon_{0}}^{h(n)}(\omega))u_{n}\rangle_{L^{2}(A_{r_{1}^{*},r_{2}^{*}})}
+|d~2d|(Tϵ0(ω)Tϵ0h(n)(ω))un,(Tϵ0(ω)Tϵ0h(n)(ω))unL2(Ar1,r2)\displaystyle+\langle|\tilde{d}^{2}d|(T_{\epsilon_{0}}(\omega)-T_{\epsilon_{0}}^{h(n)}(\omega))u_{n},(T_{\epsilon_{0}}(\omega)-T_{\epsilon_{0}}^{h(n)}(\omega))u_{n}\rangle_{L^{2}(A_{r_{1}^{*},r_{2}^{*}})}
C2(Tϵ0(ω)Tϵ0h(n)(ω))unH1(Ar1,r2)2\displaystyle\leq C^{2}\|(T_{\epsilon_{0}}(\omega)-T_{\epsilon_{0}}^{h(n)}(\omega))u_{n}\|_{H^{1}(A_{r^{*}_{1},r^{*}_{2}})}^{2}

with C2:=supxAr1,r2max{|d~2d1|,|d|,|d~2d|}<C^{2}:=\sup_{x\in A_{r^{*}_{1},r^{*}_{2}}}\max\{|\tilde{d}^{2}d^{-1}|,|d|,|\tilde{d}^{2}d|\}<\infty. Now we are in the position to apply the analysis of Bertoluzza [11]. Although we cannot apply [11, Theorem 2.1] directly since neither has ηϵ0\eta_{\epsilon_{0}} compact support in Ω\Omega nor is the constant function included in Xh(n)X^{h(n)} (due to the incorporated homogeneous Dirichlet boundary condition). Nevertheless, we can repeat the proof of [11, Theorem 2.1] line by line as follows.

Let h0>0h_{0}>0 be so that Ar1Rh0,r2+Rh0ΩA_{r^{*}_{1}-R^{*}h_{0},r^{*}_{2}+R^{*}h_{0}}\subset\Omega (with RR^{*} as in Assumption 5.3) and let n0>0n_{0}>0 be so that h(n)<h0h(n)<h_{0} for all n>n0n>n_{0}. For each nn\in\mathbb{N}, n>n0n>n_{0} we consider a collection of balls {Bh(n)(x),xZ}\{B_{h(n)}(x),x\in Z\} with ZAr1,r2Z\subset A_{r^{*}_{1},r^{*}_{2}} so that Ar1,r2xZBh(n)(x)A_{r^{*}_{1},r^{*}_{2}}\subset\bigcup_{x\in Z}B_{h(n)}(x) and so that any point yΩy\in\Omega belongs to at most mm\in\mathbb{N} (with mm independent of nn\in\mathbb{N}, n>n0n>n_{0}) balls of the collection {BRh(n)(x),xZ}\{B_{R^{*}h(n)}(x),x\in Z\}. This implies the existence of a constant C~1>0\tilde{C}_{1}>0 so that

xZuHs(Bh(n)(x))2C~1uHs(xZBh(n)(x))2\displaystyle\sum_{x\in Z}\|u\|_{H^{s}(B_{h(n)}(x))}^{2}\leq\tilde{C}_{1}\|u\|_{H^{s}(\bigcup_{x\in Z}B_{h(n)}(x))}^{2}

for s{0,1,2}s\in\{0,1,2\} and all uHs(xZBh(n)(x))u\in H^{s}(\bigcup_{x\in Z}B_{h(n)}(x)), nn\in\mathbb{N}, n>n0n>n_{0}. Hence for unXh(n)u_{n}\in X^{h(n)} we estimate

(Tϵ0(ω)Tϵ0h(n)(ω))unH1(Ar1,r2)2\displaystyle\|(T_{\epsilon_{0}}(\omega)-T_{\epsilon_{0}}^{h(n)}(\omega))u_{n}\|_{H^{1}(A_{r^{*}_{1},r^{*}_{2}})}^{2} =(1Πh(n))ηϵ0unH1(Ar1,r2)2\displaystyle=\|(1-\Pi_{h(n)})\eta_{\epsilon_{0}}u_{n}\|_{H^{1}(A_{r^{*}_{1},r^{*}_{2}})}^{2}
xZ(1Πh(n))ηϵ0unH1(Bh(n)(x))2.\displaystyle\leq\sum_{x\in Z}\|(1-\Pi_{h(n)})\eta_{\epsilon_{0}}u_{n}\|_{H^{1}(B_{h(n)}(x))}^{2}.

For each xZx\in Z Assumption 5.4 allows us to appropriately choose ux,nXh(n)u_{x,n}\in X^{h(n)} so that ux,n|BRh(n)(x)u_{x,n}|_{B_{R^{*}h(n)}(x)} is constant,

ux,nL2(BRh(n)(x))unL2(BRh(n)(x))\displaystyle\|u_{x,n}\|_{L^{2}(B_{R^{*}h(n)}(x))}\leq\|u_{n}\|_{L^{2}(B_{R^{*}h(n)}(x))}

and

unux,nH1(BRh(n)(x))C~2Rh(n)unH1(BRh(n)(x))\displaystyle\|u_{n}-u_{x,n}\|_{H^{1}(B_{R^{*}h(n)}(x))}\leq\tilde{C}_{2}R^{*}h(n)\|u_{n}\|_{H^{1}(B_{R^{*}h(n)}(x))}

with a constant C~2>0\tilde{C}_{2}>0 independent of unXh(n)u_{n}\in X^{h(n)} and nn\in\mathbb{N}, n>n0n>n_{0}. Thus we estimate further

(1Πh(n))ηϵ0unH1(Bh(n)(x))\displaystyle\|(1-\Pi_{h(n)})\eta_{\epsilon_{0}}u_{n}\|_{H^{1}(B_{h(n)}(x))} (1Πh(n))ηϵ0(unux,n)H1(Bh(n)(x))\displaystyle\leq\|(1-\Pi_{h(n)})\eta_{\epsilon_{0}}(u_{n}-u_{x,n})\|_{H^{1}(B_{h(n)}(x))}
+(1Πh(n))ηϵ0ux,nH1(Bh(n)(x)).\displaystyle+\|(1-\Pi_{h(n)})\eta_{\epsilon_{0}}u_{x,n}\|_{H^{1}(B_{h(n)}(x))}.

Since ux,n|BRh(n)(x)u_{x,n}|_{B_{R^{*}h(n)}(x)} is constant it follows with Assumption 5.3

(1Πh(n))ηϵ0ux,nH1(Bh(n)(x))\displaystyle\|(1-\Pi_{h(n)})\eta_{\epsilon_{0}}u_{x,n}\|_{H^{1}(B_{h(n)}(x))} C1h(n)ηϵ0ux,nH2(BRh(n)(x))\displaystyle\leq C_{1}h(n)\|\eta_{\epsilon_{0}}u_{x,n}\|_{H^{2}(B_{R^{*}h(n)}(x))}
C1h(n)ηϵ0W2,(BRh(n)(x))ux,nL2(BRh(n)(x)).\displaystyle\leq C_{1}h(n)\|\eta_{\epsilon_{0}}\|_{W^{2,\infty}(B_{R^{*}h(n)}(x))}\|u_{x,n}\|_{L^{2}(B_{R^{*}h(n)}(x))}.

On the other hand, since (unux,n)Xh(n)(u_{n}-u_{x,n})\in X^{h(n)} and Πh(n)\Pi_{h(n)} is a projection onto Xh(n)X^{h(n)} it follows that (1Πh(n))ηϵ0(x)(unux,n)=0(1-\Pi_{h(n)})\eta_{\epsilon_{0}}(x)(u_{n}-u_{x,n})=0. Together with Assumption 5.3 we estimate

(1Πh(n))ηϵ0(unux,n)H1(Bh(n)(x))\displaystyle\|(1-\Pi_{h(n)})\eta_{\epsilon_{0}}(u_{n}-u_{x,n})\|_{H^{1}(B_{h(n)}(x))} =(1Πh(n))(ηϵ0ηϵ0(x))(unux,n)H1(Bh(n)(x))\displaystyle=\|(1-\Pi_{h(n)})(\eta_{\epsilon_{0}}-\eta_{\epsilon_{0}}(x))(u_{n}-u_{x,n})\|_{H^{1}(B_{h(n)}(x))}
C1(ηϵ0ηϵ0(x))(unux,n)H1(BRh(n)(x)).\displaystyle\leq C_{1}\|(\eta_{\epsilon_{0}}-\eta_{\epsilon_{0}}(x))(u_{n}-u_{x,n})\|_{H^{1}(B_{R^{*}h(n)}(x))}.

We compute

(ηϵ0ηϵ0(x))(unux,n)H1(BRh(n)(x))2\displaystyle\|(\eta_{\epsilon_{0}}-\eta_{\epsilon_{0}}(x))(u_{n}-u_{x,n})\|_{H^{1}(B_{R^{*}h(n)}(x))}^{2} (ηϵ0ηϵ0(x))(unux,n)L2(BRh(n)(x))2\displaystyle\leq\|(\eta_{\epsilon_{0}}-\eta_{\epsilon_{0}}(x))(u_{n}-u_{x,n})\|_{L^{2}(B_{R^{*}h(n)}(x))}^{2}
+2(ηϵ0ηϵ0(x))un)L2(BRh(n)(x))2\displaystyle+2\|(\eta_{\epsilon_{0}}-\eta_{\epsilon_{0}}(x))\nabla u_{n})\|_{L^{2}(B_{R^{*}h(n)}(x))}^{2}
+2(ηϵ0)(unux,n)L2(BRh(n)(x))2\displaystyle+2\|(\nabla\eta_{\epsilon_{0}})(u_{n}-u_{x,n})\|_{L^{2}(B_{R^{*}h(n)}(x))}^{2}

and estimate

(ηϵ0ηϵ0(x))(unux,n)L2(BRh(n)(x))\displaystyle\|(\eta_{\epsilon_{0}}-\eta_{\epsilon_{0}}(x))(u_{n}-u_{x,n})\|_{L^{2}(B_{R^{*}h(n)}(x))} Rh(n)ηϵ0W1,(Ω)unL2(BRh(n)(x)),\displaystyle\leq R^{*}h(n)\|\eta_{\epsilon_{0}}\|_{W^{1,\infty}(\Omega)}\|u_{n}\|_{L^{2}(B_{R^{*}h(n)}(x))},
(ηϵ0ηϵ0(x))unL2(BRh(n)(x))\displaystyle\|(\eta_{\epsilon_{0}}-\eta_{\epsilon_{0}}(x))\nabla u_{n}\|_{L^{2}(B_{R^{*}h(n)}(x))} Rh(n)ηϵ0W1,(Ω)unH1(BRh(n)(x)),\displaystyle\leq R^{*}h(n)\|\eta_{\epsilon_{0}}\|_{W^{1,\infty}(\Omega)}\|u_{n}\|_{H^{1}(B_{R^{*}h(n)}(x))},
(ηϵ0)(unux,n)L2(BRh(n)(x))\displaystyle\|(\nabla\eta_{\epsilon_{0}})(u_{n}-u_{x,n})\|_{L^{2}(B_{R^{*}h(n)}(x))} C~2Rh(n)ηϵ0W1,(Ω)unH1(BRh(n)(x)).\displaystyle\leq\tilde{C}_{2}R^{*}h(n)\|\eta_{\epsilon_{0}}\|_{W^{1,\infty}(\Omega)}\|u_{n}\|_{H^{1}(B_{R^{*}h(n)}(x))}.

Altogether we obtain

(Tϵ0(ω)Tϵ0h(n)(ω))unH1(Ar1,r2)C~3h(n)unH1(Ar1Rh0,r2+Rh0)\displaystyle\|(T_{\epsilon_{0}}(\omega)-T_{\epsilon_{0}}^{h(n)}(\omega))u_{n}\|_{H^{1}(A_{r^{*}_{1},r^{*}_{2}})}\leq\tilde{C}_{3}h(n)\|u_{n}\|_{H^{1}(A_{r^{*}_{1}-R^{*}h_{0},r^{*}_{2}+R^{*}h_{0}})}

with a constant C~3>0\tilde{C}_{3}>0 independent of nn\in\mathbb{N}, n>n0n>n_{0}, unXh(n)u_{n}\in X^{h(n)}. It remains to note

unH1(Ar1Rh0,r2+Rh0)C~4unX\displaystyle\|u_{n}\|_{H^{1}(A_{r^{*}_{1}-R^{*}h_{0},r^{*}_{2}+R^{*}h_{0}})}\leq\tilde{C}_{4}\|u_{n}\|_{X}

for a constant C~4>0\tilde{C}_{4}>0 independent of nn\in\mathbb{N}, n>n0n>n_{0}, unXh(n)u_{n}\in X^{h(n)}. ∎

Theorem 5.6 (Spectral convergence).

Let Assumptions 2.2 and 3.1 hold. Let XX and a(;,)a(\cdot;\cdot,\cdot) be as in (17), A()A(\cdot) be as in (29) and Λd0±\Lambda_{d_{0}}^{\pm} be as in (39). Let (Xh(n))n\big{(}X^{h(n)}\big{)}_{n\in\mathbb{N}} be sequence of finite dimensional subspaces Xh(n)XX^{h(n)}\subset X so that the orthogonal projections from XX onto Xh(n)X^{h(n)} converge point-wise to the identity in XX and so that Assumptions 5.3 and 5.4 hold. Let Ah(n)()A^{h(n)}(\cdot) be defined by (31) and Tϵ0()T_{\epsilon_{0}}(\cdot) be as in Theorem 5.5.

Then A():Λd0±L(X)A(\cdot)\colon\Lambda_{d_{0}}^{\pm}\to L(X) is a weakly Tϵ0()T_{\epsilon_{0}}(\cdot)-coercive holomorphic Fredholm operator function with non-empty resolvent set ρ(A())\rho\big{(}A(\cdot)\big{)}, Ah(n)():Λd0±L(Xh(n))A^{h(n)}(\cdot)\colon\Lambda_{d_{0}}^{\pm}\to L(X^{h(n)}) is a Tϵ0()T_{\epsilon_{0}}(\cdot)-compatible approximation and hence the convergence results i)-vii) from Subsection 3.1 hold.

Proof.

Follows from Theorem 4.2 and Theorem 5.5. ∎

All three assumptions are fulfilled by common finite element spaces, see e.g. [18]. By means of Lemma 4.3 and the triangle inequality we can obtain convenient error bounds (for finite element methods) of the form

uunXeCrn+hp\displaystyle\|u-u_{n}\|_{X}\lesssim e^{-Cr_{n}}+h^{p}

for some constant C>0C>0 with layer width rnr_{n}, mesh width hh and polynomial degree pp.

6. Truncationless approximation

As previously discussed, the classical approach to approximate (18) is to first choose a bounded subdomain ΩnΩ\Omega_{n}\subset\Omega and secondly to choose a convenient Galerkin space XhH01(Ωn)X^{h}\subset H^{1}_{0}(\Omega_{n}), e.g. a finite element space. However, if the approximation is not satisfactory enough and a better approximation is desired, it is in general not enough to increase the dimension of the finite element space, but also the size of the domain Ωn\Omega_{n} needs to be increased. The latter involves a new domain and the generation of a new mesh. This may be undesirable for people who would prefer to work with a fixed domain and solely increase discretization parameters in order to avoid a new meshing process. There are at least two concepts to achieve this goal.

One is the implementation of infinite elements into the code. I.e. the fixed domain is ΩBr1\Omega\cap B_{r_{1}^{*}} and the exterior domain ΩBr1\Omega\setminus B_{r_{1}^{*}} is not explicitly meshed. Instead tensor product (finite element) functions with respect to polar coordinates can be used. This can indeed be implemented without the explicit generation of a mesh for ΩnBr1\Omega_{n}\setminus B_{r_{1}^{*}}. Of course it is possible to also use non-classical basis functions with respect to the radial variable, e.g. as exp(r)p(r)\exp(-r)p(r) with polynomials pp. We mention the recent work [56] wherein the Hardy space infinite element method introduced in [42] is framed as a complex scaling infinite element method. We note that the analysis thereof is already covered by [33].

A different approach is to derive a formulation of the eigenvalue problem which involves only a bounded domain (but singular coefficients) and subsequently to apply a classical finite element discretization. To our knowledge Bermúdez et. al. were the first to consider a variant of this idea in [9] and subsequently in [10]. Their idea is to use a profile function α~\tilde{\alpha} which is unbounded on (0,r2)(0,r_{2}^{*}) with r2>r1r_{2}^{*}>r_{1}^{*}. This leads to a formulation of the eigenvalue problem on the bounded domain ΩBr2\Omega\cap B_{r_{2}^{*}}. Since in this case the formulation (and subsequently the discretization) is posed on a bounded domain without committing a truncation error, Bermúdez et. al. coined their method “exact PML”. Another variant is to consider the formulation as derived in Section 2 and subsequently apply a real domain transformation Br1cAr1,r2B_{r_{1}^{*}}^{c}\to A_{r_{1}^{*},r_{2}^{*}}, which is essentially the approach of Hugonin and Lalanne [45]. There is a noteworthy alternative interpretation to both methods [55]. Namely the formulation can be transformed (back) to the unbounded domain Ω\Omega. If this happens after the discretization one obtains a discretization of the problem posed in Ω\Omega. This way one implicitly applies basis functions with unbounded support. Thus these mentioned “exact” methods could also validly be called “infinite element” methods. However, we will stick to the formulations on bounded domains for convenience.

A difference between these two methods is that the method based on the real domain transformation still allows the choice of d0d_{0} and hence a control of the essential spectrum {d01x:x}\{d_{0}^{-1}x\colon x\in\mathbb{R}\}, while for the method of Bermúdez et. al. the essential spectrum is implicitly set to {ix:x}\{-ix\colon x\in\mathbb{R}\}. This is of importance if one seeks to apply these techniques to problems which involve evanescent waves which occur e.g. for waveguide geometries. The former technique can be applied successfully to such problems, while the latter technique fails.

In the following, we consider only the method motivated by [45] and refer to [34] for a similar discussion on the method of [10]. We derive from Eigenvalue Problem (18) by means of a real domain transformation xex_{e} (see (48a) and Assumption 6.1) the related Eigenvalue Problem (52) and perform an approximation analysis. The analysis involves no new concepts but only slightly adapts the techniques of the previous sections, in particular the technique of Section 5. Finally we discuss how appropriate finite element spaces fit the derived theory.

We consider real domain transformations rer_{e} of the following kind.

Assumption 6.1.

Let r1r_{1}^{*} be as in Assumption 2.2 and r2>r1r_{2}^{*}>r_{1}^{*}. Let re:(0,r2)+r_{e}\colon(0,r_{2}^{*})\to\mathbb{R}^{+} be bijective, continuous, re|(r1,r2)r_{e}|_{(r_{1}^{*},r_{2}^{*})} be continuously differentiable and so that re(r)=rr_{e}(r)=r for rr1r\leq r^{*}_{1}.

Let α~\tilde{\alpha} suffice Assumption 2.2 and Assumption 3.1. Let rer_{e} suffice Assumption 6.1, d~\tilde{d}, r~\tilde{r}, α\alpha, dd be as in (12), d^\hat{d} be as in (34d) and

(48a) xe(x)\displaystyle x_{e}(x) :=re(|x|)/|x|x,\displaystyle:=r_{e}(|x|)/|x|x,
(48b) γe(x)\displaystyle\gamma_{e}(x) :=(rre)(|x|),\displaystyle:=(\partial_{r}r_{e})(|x|),
(48c) γ~e(x)\displaystyle\tilde{\gamma}_{e}(x) :=re(|x|)/|x|,\displaystyle:=r_{e}(|x|)/|x|,
(48d) α~e\displaystyle\tilde{\alpha}_{e} :=α~re,\displaystyle:=\tilde{\alpha}\circ r_{e},
(48e) d~e\displaystyle\tilde{d}_{e} :=d~re,\displaystyle:=\tilde{d}\circ r_{e},
(48f) r~e\displaystyle\tilde{r}_{e} :=r~re,\displaystyle:=\tilde{r}\circ r_{e},
(48g) αe\displaystyle\alpha_{e} :=αre,\displaystyle:=\alpha\circ r_{e},
(48h) de\displaystyle d_{e} :=dre,\displaystyle:=d\circ r_{e},
(48i) d^e\displaystyle\hat{d}_{e} :=d^re.\displaystyle:=\hat{d}\circ r_{e}.

As hitherto we adopt the overloaded notation (12g) also for the new quantities rer_{e}, r~e\tilde{r}_{e}, γe\gamma_{e}, γ~e\tilde{\gamma}_{e}, α~e\tilde{\alpha}_{e}, αe\alpha_{e}, d~e\tilde{d}_{e}, ded_{e}, d^e\hat{d}_{e}. We compute

(49a) Dxe\displaystyle\operatorname{D}x_{e} =γePx+γ~e(IPx),\displaystyle=\gamma_{e}\operatorname{P_{x}}+\tilde{\gamma}_{e}(\operatorname{I}-\operatorname{P_{x}}),
(49b) (Dxe)1\displaystyle(\operatorname{D}x_{e})^{-1} =γe1Px+γ~e1(IPx),\displaystyle=\gamma_{e}^{-1}\operatorname{P_{x}}+\tilde{\gamma}_{e}^{-1}(\operatorname{I}-\operatorname{P_{x}}),
(49c) detDxe\displaystyle\det\operatorname{D}x_{e} =γeγ~e2.\displaystyle=\gamma_{e}\tilde{\gamma}_{e}^{2}.

We consider the bounded domain

(50) Ωe\displaystyle\Omega_{e} :=ΩBr2,\displaystyle:=\Omega\cap B_{r_{2}^{*}},

subsequently set

(51a) ae(ω;u,u):=γ~e2γe1d~e2de1Px+γede(IPx))u,uL2(Ωe)ω2γ~e2γed~e2deu,uL2(Ωe),\displaystyle\begin{aligned} a_{e}(\omega;u,u^{\prime})&:=\langle\tilde{\gamma}_{e}^{2}\gamma_{e}^{-1}\tilde{d}_{e}^{2}d_{e}^{-1}\operatorname{P_{x}}+\gamma_{e}d_{e}(\operatorname{I}-\operatorname{P_{x}}))\nabla u,\nabla u^{\prime}\rangle_{L^{2}(\Omega_{e})}\\ &-\omega^{2}\langle\tilde{\gamma}_{e}^{2}\gamma_{e}\tilde{d}_{e}^{2}d_{e}u,u^{\prime}\rangle_{L^{2}(\Omega_{e})},\end{aligned}
(51b) Xe\displaystyle X_{e} :={uHloc1(Ωe):u,uXe<,u|Ω=0},\displaystyle:=\{u\in H^{1}_{\mathrm{loc}}(\Omega_{e})\colon\langle u,u\rangle_{X_{e}}<\infty,u|_{\partial\Omega}=0\},
(51c) u,uXe\displaystyle\langle u,u^{\prime}\rangle_{X_{e}} :=u,uXe(Ωe),\displaystyle:=\langle u,u^{\prime}\rangle_{X_{e}(\Omega_{e})},
and
(51d) u,uXe(D):=(γ~e2γe1|d~e2de1|Px+γe|de|(IPx))u,uL2(D)+γ~e2γe|d~e2de|u,uL2(D),\displaystyle\begin{aligned} \langle u,u^{\prime}\rangle_{X_{e}(D)}&:=\langle(\tilde{\gamma}_{e}^{2}\gamma_{e}^{-1}|\tilde{d}_{e}^{2}d_{e}^{-1}|\operatorname{P_{x}}+\gamma_{e}|d_{e}|(\operatorname{I}-\operatorname{P_{x}}))\nabla u,\nabla u^{\prime}\rangle_{L^{2}(D)}\\ &+\langle\tilde{\gamma}_{e}^{2}\gamma_{e}|\tilde{d}_{e}^{2}d_{e}|u,u^{\prime}\rangle_{L^{2}(D)},\end{aligned}

for ω\omega\in\mathbb{C}, u,uXeu,u^{\prime}\in X_{e} and DΩeD\subset\Omega_{e} and consider the eigenvalue problem to

(52) find (ω,u)×Xe{0} so thatae(ω;u,u)=0for all uXe.\displaystyle\text{find }(\omega,u)\in\mathbb{C}\times X_{e}\setminus\{0\}\text{ so that}\quad a_{e}(\omega;u,u^{\prime})=0\quad\text{for all }u^{\prime}\in X_{e}.

Due to the transformation rule and the chain rule it is clear that

(53) Feu:=uxe\displaystyle F_{e}u:=u\circ x_{e}

is a linear bijective Hilbert space isomorphism, i.e. FeL(X,Xe)F_{e}\in L(X,X_{e}), FeF_{e} is bijective and

(54) u,uX=Feu,FeuXe\displaystyle\langle u,u^{\prime}\rangle_{X}=\langle F_{e}u,F_{e}u^{\prime}\rangle_{X_{e}}

for all u,uXu,u^{\prime}\in X (with XX as in (17)). Further it holds

(55) a(ω;u,u)=ae(ω;Feu,Feu)\displaystyle a(\omega;u,u^{\prime})=a_{e}(\omega;F_{e}u,F_{e}u^{\prime})

for all u,uXu,u^{\prime}\in X. Thus we can simply deduce the properties of Ae()A_{e}(\cdot) (defined through (29)) from A()A(\cdot). In particular it holds that (ω,u)×X{0}(\omega,u)\in\mathbb{C}\times X\setminus\{0\} is a solution to A(ω)u=0A(\omega)u=0 if and only if Ae(ω)Feu=0A_{e}(\omega)F_{e}u=0. Ae(ω)A_{e}(\omega) is Fredholm if and only if ωΛd0\omega\in\Lambda_{d_{0}} (with Λd0\Lambda_{d_{0}} as in (38)). Further Ae()|Λd0A_{e}(\cdot)|_{\Lambda_{d_{0}}} is weakly Te()T_{e}(\cdot)-coercive with

(56) Te(ω)u=FeT(ω)Fe1u=(ηxe)u\displaystyle T_{e}(\omega)u=F_{e}T(\omega)F_{e}^{-1}u=(\eta\circ x_{e})u

for uXeu\in X_{e} and η\eta being the symbol of T(ω)T(\omega) as in (37). Further Ae(ω)A_{e}(\omega) is bijective for all ω{0}\omega\in\mathbb{C}\setminus\{0\} with argω[π,argd0)[0,πargd0)\arg\omega\in[-\pi,-\arg d_{0})\cup[0,\pi-\arg d_{0}).

It remains to discuss the approximation of (52). Hence we first adapt Lemma 3.3 to our current setting in Lemma 6.2. Then we proceed as in Section 5 and construct an operator function Te,ϵ()T_{e,\epsilon}(\cdot) with appropriate properties.

Lemma 6.2.

Let (rn)n(r_{n})_{n\in\mathbb{N}} with rn(r1,r2)r_{n}\in(r_{1}^{*},r_{2}^{*}) for all nn\in\mathbb{N} be a monotonically increasing sequence with limes r2r_{2}^{*}. Let η1:Ωe\eta_{1}\colon\Omega_{e}\to\mathbb{C} be mesuarable so that η1|ΩeBrn\eta_{1}|_{\Omega_{e}\cap B_{r_{n}}} \in L(ΩeBrn)L^{\infty}(\Omega_{e}\cap B_{r_{n}}) for all nn\in\mathbb{N}. Let YL2(Ωe)Y\subset L^{2}(\Omega_{e}) be a Hilbert space so that η1uL2(Ωe)CuY\|\eta_{1}u\|_{L^{2}(\Omega_{e})}\leq C\|u\|_{Y} with C>0C>0 for all uYu\in Y and so that the embedding and restriction operator Kn:YL2(ΩeBrn):uu|ΩeBrnK_{n}\colon Y\to L^{2}(\Omega_{e}\cap B_{r_{n}})\colon u\mapsto u|_{\Omega_{e}\cap B_{r_{n}}} is compact for each nn\in\mathbb{N}. Let η2L(Ωe)\eta_{2}\in L^{\infty}(\Omega_{e}) be so that limrr2η2L(ΩeBr)=0\lim_{r\to r_{2}^{*}-}\|\eta_{2}\|_{L^{\infty}(\Omega_{e}\setminus B_{r})}=0. Then the multiplication and embedding operator Kη1η2:YL2(Ωe):uη1η2uK_{\eta_{1}\eta_{2}}\colon Y\to L^{2}(\Omega_{e})\colon u\mapsto\eta_{1}\eta_{2}u is compact.

Proof.

Proceed as in the proof of Lemma 3.3. ∎

Lemma 6.3.

Let Assumptions 2.2, 3.1 and 6.1 hold. Let XeX_{e} be as in (51b), ae(;,)a_{e}(\cdot;\cdot,\cdot) be as in (51a) and Ae()A_{e}(\cdot) be as in (29). For ϵ>0\epsilon>0 and ω{0}\omega\in\mathbb{C}\setminus\{0\} let

(59) Te,ϵ(ω)u:=ηe,ϵuwithηe={|d^e|d^e¯for arg(ω2d02)[π,0),d^ed~e2|d~e|2|d^e|¯for arg(ω2d02)[0,π).\displaystyle T_{e,\epsilon}(\omega)u:=\eta_{e,\epsilon}u\qquad\text{with}\qquad\eta_{e}=\left\{\begin{array}[]{ll}\overline{\frac{|\hat{d}_{e}|}{\hat{d}_{e}}}&\text{for }\arg(-\omega^{2}d_{0}^{2})\in[-\pi,0),\vspace{3mm}\\ \overline{\frac{\hat{d}_{e}}{\tilde{d}_{e}^{2}}\frac{|\tilde{d}_{e}|^{2}}{|\hat{d}_{e}|}}&\text{for }\arg(-\omega^{2}d_{0}^{2})\in[0,\pi).\end{array}\right.

with ηe,ϵ|(r1,r2)\eta_{e,\epsilon}|_{(r_{1}^{*},r_{2}^{*})} as in Lemma 5.1 with r1=r1,r2=r2r_{1}=r_{1}^{*},r_{2}=r_{2}^{*} and ηe,ϵ|[0,r1]:=ηe,ϵ(r1)\eta_{e,\epsilon}|_{[0,r_{1}^{*}]}:=\eta_{e,\epsilon}(r_{1}^{*}).

There exists ϵ0(ω)>0\epsilon_{0}(\omega)>0 so that for each ϵϵ0(ω)\epsilon\leq\epsilon_{0}(\omega), Te,ϵ(ω)L(Xe)T_{e,\epsilon}(\omega)\in L(X_{e}) is bijective for all ω{0}\omega\in\mathbb{C}\setminus\{0\} and Ae():Λd0L(Xe)A_{e}(\cdot)\colon\Lambda_{d_{0}}\to L(X_{e}) is weakly Te,ϵ()T_{e,\epsilon}(\cdot)-coercive.

Proof.

Proceed as in the proof of Lemma 5.2 with Lemma 3.3 replaced by Lem. 6.2. ∎

Next we consider a sequence of finite dimensional subspaces (Xeh(n))n(X_{e}^{h(n)})_{n\in\mathbb{N}}, Xeh(n)XeX_{e}^{h(n)}\subset X_{e}, nn\in\mathbb{N} so that the orthogonal projections onto Xeh(n)X_{e}^{h(n)} converge point-wise to the identity in XeX_{e}. Further let

(60) find (ω,u)×Xeh(n){0} so thatae(ω;u,u)=0for all uXeh(n)\displaystyle\text{find }(\omega,u)\in\mathbb{C}\times X_{e}^{h(n)}\setminus\{0\}\text{ so that}\quad a_{e}(\omega;u,u^{\prime})=0\quad\text{for all }u^{\prime}\in X_{e}^{h(n)}

be the Galerkin approximation to (52). As in Section 5 we make two additional assumptions on the Galerkin spaces Xeh(n)X_{e}^{h(n)}.

Assumption 6.4.

There exists a sequence (h(n))n(+)\big{(}h(n)\big{)}_{n\in\mathbb{N}}\in(\mathbb{R}^{+})^{\mathbb{N}} with limnh(n)=0\lim_{n\in\mathbb{N}}h(n)=0. There exist bounded linear projection operators Πh(n)e:XeXeh(n),n\Pi^{e}_{h(n)}\colon X_{e}\to X_{e}^{h(n)},n\in\mathbb{N} that act locally in the following sense: there exist constants C1,R>1C_{1},R^{*}>1 so that for nn\in\mathbb{N}, s{1,2}s\in\{1,2\}, x0Ωex_{0}\in\Omega_{e}, if BRh(n)(x0)ΩeB_{R^{*}h(n)}(x_{0})\subset\Omega_{e}, uXeu\in X_{e} and u|BRh(n)(x0)Hs(BRh(n)(x0))u|_{B_{R^{*}h(n)}(x_{0})}\in H^{s}(B_{R^{*}h(n)}(x_{0})), then

(61) uΠh(n)euH1(Bh(n)(x0))C1h(n)s1uHs(BRh(n)(x0)).\displaystyle\|u-\Pi^{e}_{h(n)}u\|_{H^{1}(B_{h(n)}(x_{0}))}\leq C_{1}h(n)^{s-1}\|u\|_{H^{s}(B_{R^{*}h(n)}(x_{0}))}.
Assumption 6.5.

For any DΩeD\subset\Omega_{e} which is compact in Ωe\Omega_{e} exists n0>0n_{0}>0 so that for each n,n>n0n\in\mathbb{N},n>n_{0} there exists uD,nXeh(n)u_{D,n}\in X_{e}^{h(n)} with uD,n|D=1u_{D,n}|_{D}=1.

Theorem 6.6.

Let Assumptions 2.2, 3.1 and 6.1 hold. Let XeX_{e} be as in (51b), (Xeh(n))n\big{(}X_{e}^{h(n)})_{n\in\mathbb{N}} be a sequence of finite dimensional subspaces Xeh(n)XeX_{e}^{h(n)}\subset X_{e} so that the orthogonal projections onto Xeh(n)X_{e}^{h(n)} converge point-wise to the identity and so that Assumptions 6.4 and 6.5 hold. Let Te,ϵ0(ω):=Te,ϵ0(ω)(ω)T_{e,{\epsilon_{0}}}(\omega):=T_{e,\epsilon_{0}(\omega)}(\omega) be as in Lemma 6.3 and n\|\cdot\|_{n} be as in (27). For nn\in\mathbb{N} let Πh(n)e\Pi^{e}_{h(n)} be as in Assumptions 6.4 and

(62) Te,ϵ0h(n):=Πh(n)eTe,ϵ0(ω)|Xeh(n)\displaystyle T_{e,{\epsilon_{0}}}^{h(n)}:=\Pi^{e}_{h(n)}T_{e,{\epsilon_{0}}}(\omega)|_{X_{e}^{h(n)}}

for ω{0}\omega\in\mathbb{C}\setminus\{0\}. Then Te,ϵ0h(n)(ω)L(Xeh(n))T_{e,{\epsilon_{0}}}^{h(n)}(\omega)\in L(X_{e}^{h(n)}) is Fredholm with index zero and

(63) limnTe,ϵ0(ω)Te,ϵ0h(n)(ω)n=0\displaystyle\lim_{n\in\mathbb{N}}\|T_{e,{\epsilon_{0}}}(\omega)-T_{e,{\epsilon_{0}}}^{h(n)}(\omega)\|_{n}=0

for all ω{0}\omega\in\mathbb{C}\setminus\{0\}.

Proof.

Proceed as in the proof of Theorem 6.6. ∎

Theorem 6.7 (Spectral convergence).

Let Assumptions 2.2 and 3.1 hold. Let rer_{e} fulfill Assumption 6.1 and XeX_{e}, ae(;,)a_{e}(\cdot;\cdot,\cdot) be as defined in (51). Let Ae():ΛL(Xe)A_{e}(\cdot)\colon\Lambda\to L(X_{e}) be defined through (29), Te,ϵ0()T_{e,{\epsilon_{0}}}(\cdot) as in Theorem 6.6 and Λd0±\Lambda_{d_{0}}^{\pm} be as in (39). Let (Xeh(n))n\big{(}X_{e}^{h(n)}\big{)}_{n\in\mathbb{N}} be a sequence of finite dimensional subspaces Xeh(n)XeX_{e}^{h(n)}\subset X_{e} so that the orthogonal projections from XeX_{e} onto Xeh(n)X_{e}^{h(n)} converge point-wise to the identity in XeX_{e} and so that Assumptions 6.4 and 6.5 hold. Let Ae,h(n)()A_{e,h(n)}(\cdot) be defined by (31) and Te,ϵ0h(n)()T_{e,{\epsilon_{0}}}^{h(n)}(\cdot) be as in Theorem 6.6.

Then Ae():Λd0±L(Xe)A_{e}(\cdot)\colon\Lambda_{d_{0}}^{\pm}\to L(X_{e}) is a weakly Te,ϵ0()T_{e,{\epsilon_{0}}}(\cdot)-coercive holomorphic Fredholm operator function with non-empty resolvent set ρ(Ae())\rho\big{(}A_{e}(\cdot)\big{)} and Ae,h(n)():Λd0±L(Xeh(n))A_{e,h(n)}(\cdot)\colon\Lambda_{d_{0}}^{\pm}\to L(X_{e}^{h(n)}) is a Te,ϵ0()T_{e,{\epsilon_{0}}}(\cdot)-compatible approximation, i.e. the convergence results i)-vii) from Subsection 3.1 hold.

Proof.

Proceed as in the proof of Theorem 5.6. ∎

Finally we discuss how to choose appropriate parameters α~\tilde{\alpha}, rer_{e} and an appropriate sequence of subspaces (Xeh(n))n(X_{e}^{h(n)})_{n\in\mathbb{N}}, Xeh(n)XeX_{e}^{h(n)}\subset X_{e}. To this end we introduce two lemmata.

Lemma 6.8.

Assume that

(64) supxΩe1(r2|x|)γe(x)|de(x)|<+.\displaystyle\sup_{x\in\Omega_{e}}\frac{1}{(r_{2}^{*}-|x|)\gamma_{e}(x)|d_{e}(x)|}<+\infty.

Let (Xeh(n))n(X_{e}^{h(n)})_{n\in\mathbb{N}}, Xeh(n)XeX_{e}^{h(n)}\subset X_{e} be so that for any δ>0\delta>0 and uXeu\in X_{e} with u|Ar2δ,r2=0u|_{A_{r_{2}^{*}-\delta,r_{2}^{*}}}=0 it holds

(65) limninfuXeh(n)uuXe=0.\displaystyle\lim_{n\in\mathbb{N}}\inf_{u^{\prime}\in X_{e}^{h(n)}}\|u-u^{\prime}\|_{X_{e}}=0.

Then (65) holds for any uXeu\in X_{e}.

Proof.

For δ>0\delta>0 consider

gδ(x):=χ2(|x|/δ(r22δ)/δ)\displaystyle g_{\delta}(x):=\chi_{2}\big{(}|x|/\delta-(r_{2}^{*}-2\delta)/\delta\big{)}

with χ2\chi_{2} as in (11g). Let uXeu\in X_{e} and ϵ>0\epsilon>0 be given. By means of the product rule, the triangle inequality, the properties of gδg_{\delta} and the chain rule we compute

gδuXe\displaystyle\|g_{\delta}u\|_{X_{e}} 2γ~e2γe1|d~e2de1|Pxugδ,ugδL2(Ωe)\displaystyle\leq 2\langle\tilde{\gamma}_{e}^{2}\gamma_{e}^{-1}|\tilde{d}_{e}^{2}d_{e}^{-1}|\operatorname{P_{x}}u\nabla g_{\delta},u\nabla g_{\delta}\rangle_{L^{2}(\Omega_{e})}
+2γ~e2γe1|d~e2de1|gδ2Pxu,uL2(Ωe)\displaystyle+2\langle\tilde{\gamma}_{e}^{2}\gamma_{e}^{-1}|\tilde{d}_{e}^{2}d_{e}^{-1}|g_{\delta}^{2}\operatorname{P_{x}}\nabla u,\nabla u\rangle_{L^{2}(\Omega_{e})}
+γe|de|gδ2(IPx))u,uL2(Ωe)\displaystyle+\langle\gamma_{e}|d_{e}|g_{\delta}^{2}(\operatorname{I}-\operatorname{P_{x}}))\nabla u,\nabla u\rangle_{L^{2}(\Omega_{e})}
+γ~e2γe|d~e2de|gδ2u,uL2(Ωe)\displaystyle+\langle\tilde{\gamma}_{e}^{2}\gamma_{e}|\tilde{d}_{e}^{2}d_{e}|g_{\delta}^{2}u,u\rangle_{L^{2}(\Omega_{e})}
2(1+(supxAr22δ,r2δ|gδ|2(γede)2))uXe(Ar22δ,r2)2\displaystyle\leq 2\Big{(}1+\big{(}\sup_{x\in A_{r_{2}^{*}-2\delta,r_{2}^{*}-\delta}}|\nabla g_{\delta}|^{2}(\gamma_{e}d_{e})^{-2}\big{)}\Big{)}\|u\|^{2}_{X_{e}(A_{r_{2}^{*}-2\delta,r_{2}^{*}})}
2(1+rχ2L(0,1)2(supxAr22δ,r2δ(δγede)2))uXe(Ar22δ,r2)2\displaystyle\leq 2\Big{(}1+\|\partial_{r}\chi_{2}\|_{L^{\infty}(0,1)}^{2}\big{(}\sup_{x\in A_{r_{2}^{*}-2\delta,r_{2}^{*}-\delta}}(\delta\gamma_{e}d_{e})^{-2}\big{)}\Big{)}\|u\|^{2}_{X_{e}(A_{r_{2}^{*}-2\delta,r_{2}^{*}})}
2(1+rχ2L(0,1)2(supxAr22δ,r2δ((r2||)γede)2))uXe(Ar22δ,r2)2\displaystyle\leq 2\Big{(}1+\|\partial_{r}\chi_{2}\|_{L^{\infty}(0,1)}^{2}\big{(}\sup_{x\in A_{r_{2}^{*}-2\delta,r_{2}^{*}-\delta}}((r_{2}^{*}-|\cdot|)\gamma_{e}d_{e})^{-2}\big{)}\Big{)}\|u\|^{2}_{X_{e}(A_{r_{2}^{*}-2\delta,r_{2}^{*}})}
2(1+rχ2L(0,1)2(supxΩe((r2||)γede)2))uXe(Ar22δ,r2)2\displaystyle\leq 2\Big{(}1+\|\partial_{r}\chi_{2}\|_{L^{\infty}(0,1)}^{2}\big{(}\sup_{x\in\Omega_{e}}((r_{2}^{*}-|\cdot|)\gamma_{e}d_{e})^{-2}\big{)}\Big{)}\|u\|^{2}_{X_{e}(A_{r_{2}^{*}-2\delta,r_{2}^{*}})}
=:CuXe(Ar22δ,r2)2.\displaystyle=:C\|u\|^{2}_{X_{e}(A_{r_{2}^{*}-2\delta,r_{2}^{*}})}.

Due to limδ0+uXe(Ar22δ,r2)2=0\lim_{\delta\to 0+}\|u\|^{2}_{X_{e}(A_{r_{2}^{*}-2\delta,r_{2}^{*}})}=0 we can choose δ>0\delta>0 so that CuXe(Ar22δ,r2)2C\|u\|^{2}_{X_{e}(A_{r_{2}^{*}-2\delta,r_{2}^{*}})} << ϵ/2\epsilon/2. Since 1gδ(x)=01-g_{\delta}(x)=0 for xr2δx\geq r_{2}^{*}-\delta we can choose n0n_{0}\in\mathbb{N} so that

infuXeh(n)(1gδ)uuXe<ϵ/2\displaystyle\inf_{u^{\prime}\in X_{e}^{h(n)}}\|(1-g_{\delta})u-u^{\prime}\|_{X_{e}}<\epsilon/2

for all n>n0n>n_{0}. It follows for all n>n0n>n_{0}

infuXeh(n)uuXe\displaystyle\inf_{u^{\prime}\in X_{e}^{h(n)}}\|u-u^{\prime}\|_{X_{e}} gδuXe+infuXeh(n)(1gδ)uuXe\displaystyle\leq\|g_{\delta}u\|_{X_{e}}+\inf_{u^{\prime}\in X_{e}^{h(n)}}\|(1-g_{\delta})u-u^{\prime}\|_{X_{e}}
ϵ/2+ϵ/2=ϵ.\displaystyle\leq\epsilon/2+\epsilon/2=\epsilon.

Since ϵ>0\epsilon>0 was chosen arbitrarily it follows that limninfuXeh(n)uuXe=0\lim_{n\in\mathbb{N}}\inf_{u^{\prime}\in X_{e}^{h(n)}}\|u-u^{\prime}\|_{X_{e}}=0. ∎

Lemma 6.9.

Let α~\tilde{\alpha} be of Kind (7b) or (9). Let rer_{e} be so that for r(r1,r2)r\in(r^{*}_{1},r_{2}^{*}) either

(66a) re(r)=(ln(r2r)ln(r2r1))+r1\displaystyle r_{e}(r)=-(\ln(r_{2}^{*}-r)-\ln(r_{2}^{*}-r_{1}^{*}))+r_{1}^{*}
or
(66b) re(r)=(r2r)β(r2r1)β+r1\displaystyle r_{e}(r)=(r_{2}^{*}-r)^{\beta}-(r_{2}^{*}-r_{1}^{*})^{\beta}+r_{1}^{*}

with β(2/3,0)\beta\in(-2/3,0). Then (64) holds. If uH01(Ωe)u\in H^{1}_{0}(\Omega_{e}) is so that |u(x)|C(r2|x|)|u(x)|\leq C(r_{2}^{*}-|x|) for a constant C>0C>0 and all xΩex\in\Omega_{e}, then uXeu\in X_{e}.

Proof.

For rer_{e} as in (66a) it holds γe(x)=(r2|x|)1\gamma_{e}(x)=(r_{2}^{*}-|x|)^{-1}. For rer_{e} as in (66b) it holds γe(x)=β(r21)β1\gamma_{e}(x)=-\beta(r_{2}^{*}-1)^{\beta-1}. Since |de|1|d_{e}|\geq 1 it easiliy follows (64) in both cases. Due to the choice of α~\tilde{\alpha} the coefficients |d~e2/de||\tilde{d}_{e}^{2}/d_{e}|, |de||d_{e}|, |d~e2de||\tilde{d}_{e}^{2}d_{e}| are uniformly bounded. For rer_{e} as in (66a) we compute

(67a) γ~e(x)2/γe(x)\displaystyle\tilde{\gamma}_{e}(x)^{2}/\gamma_{e}(x) =((ln(r2|x|)ln(r2r1))+r1)2|x|2(r2|x|),\displaystyle=\big{(}-(\ln(r_{2}^{*}-|x|)-\ln(r_{2}^{*}-r_{1}^{*}))+r_{1}^{*}\big{)}^{2}|x|^{-2}(r_{2}^{*}-|x|),
(67b) γe(x)(r2|x|)2\displaystyle\gamma_{e}(x)(r_{2}^{*}-|x|)^{2} =(r2|x|),\displaystyle=(r_{2}^{*}-|x|),
(67c) γ~e(x)2γe(x)(r2|x|)2\displaystyle\tilde{\gamma}_{e}(x)^{2}\gamma_{e}(x)(r_{2}^{*}-|x|)^{2} =((ln(r2|x|)ln(r2r1))+r1)2|x|2(r2|x|).\displaystyle=\big{(}-(\ln(r_{2}^{*}-|x|)-\ln(r_{2}^{*}-r_{1}^{*}))+r_{1}^{*}\big{)}^{2}|x|^{-2}(r_{2}^{*}-|x|).

For rer_{e} as in (66b) we compute

(68a) γ~e(x)2/γe(x)\displaystyle\tilde{\gamma}_{e}(x)^{2}/\gamma_{e}(x) =((r2|x|)β(r2r1)β+r1)2|x|2(β)1(r2|x|)β+1,\displaystyle=\big{(}(r_{2}^{*}-|x|)^{\beta}-(r_{2}^{*}-r_{1}^{*})^{\beta}+r_{1}^{*}\big{)}^{2}|x|^{-2}(-\beta)^{-1}(r_{2}^{*}-|x|)^{-\beta+1},
(68b) γe(x)(r2|x|)2\displaystyle\gamma_{e}(x)(r_{2}^{*}-|x|)^{2} =β(r2|x|)β+1,\displaystyle=-\beta(r_{2}^{*}-|x|)^{\beta+1},
(68c) γ~e(x)2γe(x)(r2|x|)2\displaystyle\tilde{\gamma}_{e}(x)^{2}\gamma_{e}(x)(r_{2}^{*}-|x|)^{2} =((r2|x|)β(r2r1)β+r1)2|x|2(β)(r2|x|)β+1.\displaystyle=\big{(}(r_{2}^{*}-|x|)^{\beta}-(r_{2}^{*}-r_{1}^{*})^{\beta}+r_{1}^{*}\big{)}^{2}|x|^{-2}(-\beta)(r_{2}^{*}-|x|)^{\beta+1}.

It follows that each function in (67) and (68) is uniformly bounded in xAr1,r2x\in A_{r_{1}^{*},r_{2}^{*}}. It follows uXe<+\|u\|_{X_{e}}<+\infty. ∎

Consider rer_{e} and α~\tilde{\alpha} as in Lemma 6.9. Due to Lemma 6.9 common finite element spaces are indeed subspaces of XeX_{e}. Due to Lemma 6.8 (Xeh(n))n(X_{e}^{h(n)})_{n\in\mathbb{N}} is asymptotically dense in XeX_{e} if it is so in H01(Ωe)H^{1}_{0}(\Omega_{e}). Hence with the stated choice of parameters α~\tilde{\alpha}, rer_{e} a reliable discretization of (52) can be constructed straightforwardly.

7. Conclusion

We introduced a new abstract framework to analyze complex scaling/perfectly matched layer approximations of resonance problems. It requires rather minimal assumptions on the scaling profile and includes convergence rates. It also covers approximations through simultaneaous truncation and discretization, and also truncationless methods.

In this article we applied the framework to scalar resonance problems in homogeneous exterior domains. We constructed the framework in such a way that it can be suitably adapted to serve also for other kinds of partial differential equations and geometrical setups. In particular we plan to extend our results to electromagnetic and elastic equations, and to scalar equations in plates. On the other hand, an application to cartesian scalings seems only partially possible, because in this case an explicit T-operator (to achieve weak T-coercivity) is not known. For the same reason an application to open waveguide geometries seems challenging.

At last we give some remarks on the perspective to develop error estimators and adaptive methods for CS/PML. The interpretation of discretized truncations as conform Galerkin approximations opens a new door to this end. The truncation error is proportional to the decay of uu at the truncation boundary, which can be measured locally with the norm of the Dirichlet trace of uu. Since the solution uu is not available it is replaced by the numerical solution uhu_{h}. Because the Dirichlet trace of uhu_{h} vanishes due to the enforced boundary condition, the Neumann trace of uhu_{h} can be used instead. This notion can be made rigorous. E.g. for scattering problems a residual error estimator woud lead to local error estimators hF1/2ν(d~2d1Px+d(IPx))uhL2(F)h_{F}^{1/2}\|\nu\cdot(\tilde{d}^{2}d^{-1}\operatorname{P_{x}}+d(\operatorname{I}-\operatorname{P_{x}}))\nabla u_{h}\|_{L^{2}(F)} at the artificial boundary to measure the truncation error. This approach is kind of familiar to [22] which uses the Dirichlet trace of uhu_{h} at Sr12S^{2}_{r_{1}^{*}} to measure the truncation error. However, for both estimators a fully adaptive method would still require to increase the domain size and hence the domain size is usually chosen a priori large enough. To avoid this, the truncationless method of Section 6 obtrudes itself. Though, the (residual) error estimators would need to respect the weighted norm of the space.

References

  • [1] Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Amer. Math. Soc. (N.S.) 47 (2010), no. 2, 281–354. MR 2594630 (2011f:58005)
  • [2] I. Babuška and J. Osborn, Eigenvalue problems, Finite Element Methods (Part 1), Handbook of Numerical Analysis, vol. 2, Elsevier, 1991, pp. 641 – 787.
  • [3] Gang Bao and Haijun Wu, Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell’s equations, SIAM J. Numer. Anal. 43 (2005), no. 5, 2121–2143. MR 2192334
  • [4] Éliane Bécache, Anne-Sophie Bonnet-BenDhia, and Guillaume Legendre, Perfectly matched layers for the convected Helmholtz equation, SIAM Journal on Numerical Analysis 42 (2004), 409–433.
  • [5] by same author, Perfectly matched layers for time-harmonic acoustics in the presence of a uniform flow, SIAM J. Numer. Anal. 44 (2006), no. 3, 1191–1217. MR 2231861
  • [6] Éliane Bécache, Sandrine Fauqueux, and Patrick Joly, Stability of perfectly matched layers, group velocities and anisotropic waves, J. Comput. Phys. 188 (2003), no. 2, 399–433. MR 1985305 (2004d:74032)
  • [7] Bécache, Éliane and Kachanovska, Maryna, Stable perfectly matched layers for a class of anisotropic dispersive models. part i: necessary and sufficient conditions of stability, ESAIM: M2AN 51 (2017), no. 6, 2399–2434.
  • [8] Jean-Pierre Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114 (1994), no. 2, 185–200.
  • [9] A. Bermúdez, L. Hervella-Nieto, A. Prieto, and R. Rodríguez, An exact bounded PML for the Helmholtz equation, C. R. Math. Acad. Sci. Paris 339 (2004), no. 11, 803–808. MR 2110385
  • [10] by same author, An exact bounded perfectly matched layer for time-harmonic scattering problems, SIAM J. Sci. Comput. 30 (2007/08), no. 1, 312–338. MR 2377444 (2009d:35033)
  • [11] Silvia Bertoluzza, The discrete commutator property of approximation spaces, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 12, 1097–1102. MR 1735891
  • [12] Daniele Boffi, Finite element approximation of eigenvalue problems, Acta Numer. 19 (2010), 1–120. MR 2652780 (2011e:65256)
  • [13] A.-S. Bonnet-BenDhia, C. Carvalho, L. Chesnel, and P. Ciarlet, On the use of Perfectly Matched Layers at corners for scattering problems with sign-changing coefficients, J. Comput. Phys. 322 (2016), 224–247. MR 3534861
  • [14] Anne-Sophie Bonnet-BenDhia, Colin Chambeyron, and Guillaume Legendre, On the use of perfectly matched layers in the presence of long or backward guided elastic waves, Wave Motion 51(2) (2014), 266–283.
  • [15] James H. Bramble and Joseph E. Pasciak, Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems, Math. Comp. 76 (2007), no. 258, 597–614 (electronic). MR 2291829 (2008b:65130)
  • [16] by same author, Analysis of a finite element PML approximation for the three dimensional time-harmonic Maxwell problem, Math. Comp. 77 (2008), no. 261, 1–10 (electronic). MR 2353940 (2008i:65250)
  • [17] James H. Bramble, Joseph E. Pasciak, and Dimitar Trenev, Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem, Math. Comp. 79 (2010), no. 272, 2079–2101. MR 2684356 (2012b:74062)
  • [18] Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, third ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954
  • [19] Annalisa Buffa, Remarks on the discretization of some noncoercive operator with applications to heterogeneous maxwell equations, SIAM Journal on Numerical Analysis 43 (2005), no. 1, 1–18.
  • [20] Salvatore Caorsi, Paolo Fernandes, and Mirco Raffetto, On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems, SIAM J. Numer. Anal. 38 (2000), no. 2, 580–607 (electronic). MR 1770063 (2001e:65172)
  • [21] Maxence Cassier, Patrick Joly, and Maryna Kachanovska, Mathematical models for dispersive electromagnetic waves: An overview, Computers and Mathematics with Applications 74 (11) (2017), 2792–2830.
  • [22] Zhiming Chen and Xuezhe Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems, SIAM J. Numer. Anal. 43 (2005), no. 2, 645–671 (electronic). MR 2177884 (2006m:65260)
  • [23] Zhiming Chen, Xueshuang Xiang, and Xiaohui Zhang, Convergence of the PML method for elastic wave scattering problems, Math. Comp. 85 (2016), no. 302, 2687–2714. MR 3522967
  • [24] W. C. Chew and W. H. Weedon, A 3d perfectly matched medium from modified Maxwell’s equations with stretched coordinates, Microwave Optical Tech. Letters 7 (1994), 590–604.
  • [25] Snorre H. Christiansen and Ragnar Winther, On variational eigenvalue approximation of semidefinite operators, IMA J. Numer. Anal. 33 (2013), no. 1, 164–189. MR 3020954
  • [26] Francis Collino and Peter Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput. 19 (1998), no. 6, 2061–2090 (electronic). MR MR1638033 (99e:78029)
  • [27] Jean Descloux, Nabil Nassif, and Jacques Rappaz, On spectral approximation. part 1. the problem of convergence, ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 12 (1978), no. 2, 97–112 (eng).
  • [28] Julien Diaz, Approches analytiques et numériques de problèmes de transmission en propagation d’ondes en régime transitoire. application au couplage fluide-structure et aux méthodes de couches parfaitement adaptées, Ph.D. thesis, Université Paris 6, 2005.
  • [29] Julien Diaz and Patrick Joly, A time domain analysis of pml models in acoustics, Computer Methods in Applied Mechanics and Engineering 195, 29-32 (2006), 3820–3853.
  • [30] Björn Engquist and Lexing Ying, Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers, Multiscale Model. Simul. 9 (2011), no. 2, 686–710. MR 2818416
  • [31] Dan Givoli, Numerical methods for problems in infinite domains, Studies in Applied Mechanics, vol. 33, Elsevier Scientific Publishing Co., Amsterdam, 1992. MR 1199563
  • [32] Thomas Hagstrom, Radiation boundary conditions for the numerical simulation of waves, Acta numerica, 1999, Acta Numer., vol. 8, Cambridge Univ. Press, Cambridge, 1999, pp. 47–106. MR 1819643
  • [33] Martin Halla, Convergence of Hardy space infinite elements for Helmholtz scattering and resonance problems, SIAM J. Numer. Anal. 54 (2016), no. 3, 1385–1400. MR 3498515
  • [34] Martin Halla, Analysis of radial complex scaling methods for scalar resonance problems in open systems, Ph.D. thesis, Technische Universität Wien, 2019, https://repositum.tuwien.ac.at/urn:nbn:at:at-ubtuw:1-131893.
  • [35] by same author, Galerkin approximation of holomorphic eigenvalue problems: weak T-coercivity and T-compatibility, Preprint, 2019, https://arxiv.org/abs/1908.05029.
  • [36] Martin Halla, Thorsten Hohage, Lothar Nannen, and Joachim Schöberl, Hardy space infinite elements for time harmonic wave equations with phase and group velocities of different signs, Numer. Math. 133 (2016), no. 1, 103–139. MR 3475657
  • [37] Martin Halla and Lothar Nannen, Hardy space infinite elements for time-harmonic two-dimensional elastic waveguide problems, Wave Motion 59 (2015), 94 – 110.
  • [38] Martin Halla and Lothar Nannen, Two scale hardy space infinite elements for scalar waveguide problems, Advances in Computational Mathematics 44 (2018), no. 3, 611–643.
  • [39] Stefan Hein, Thorsten Hohage, and Werner Koch, On resonances in open systems, J. Fluid Mech. 506 (2004), 255–284.
  • [40] Stefan Hein, Thorsten Hohage, Werner Koch, and Joachim Schöberl, Acoustic resonances in high lift configuration, J. Fluid Mech. 582 (2007), 179–202.
  • [41] P. D. Hislop and I. M. Sigal, Introduction to spectral theory, Applied Mathematical Sciences, vol. 113, Springer-Verlag, New York, 1996, With applications to Schrödinger operators. MR 1361167
  • [42] Thorsten Hohage and Lothar Nannen, Hardy space infinite elements for scattering and resonance problems, SIAM J. Numer. Anal. 47 (2009), no. 2, 972–996.
  • [43] by same author, Convergence of infinite element methods for scalar waveguide problems, BIT Numerical Mathematics 55 (2015), no. 1, 215–254 (English).
  • [44] Thorsten Hohage, Frank Schmidt, and Lin Zschiedrich, Solving time-harmonic scattering problems based on the pole condition. II. Convergence of the PML method, SIAM J. Math. Anal. 35 (2003), no. 3, 547–560. MR MR2048399 (2005f:78003)
  • [45] Jean Paul Hugonin and Philippe Lalanne, Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization, J. Opt. Soc. Amer. A 22 (2005), no. 9, 1844–1849. MR 2220947
  • [46] Otto Karma, Approximation in eigenvalue problems for holomorphic Fredholm operator functions. I, Numer. Funct. Anal. Optim. 17 (1996), no. 3-4, 365–387. MR 1393166 (98e:47030)
  • [47] by same author, Approximation in eigenvalue problems for holomorphic Fredholm operator functions. II. (Convergence rate), Numer. Funct. Anal. Optim. 17 (1996), no. 3-4, 389–408. MR 1393167 (98e:47031)
  • [48] Seungil Kim, Analysis of a pml method applied to computation of resonances in open systems and acoustic scattering problems, Ph.D. thesis, College Station, TX, USA, 2009, AAI3384266.
  • [49] by same author, Cartesian PML approximation to resonances in open systems in 2\mathbb{R}^{2}, Appl. Numer. Math. 81 (2014), 50–75. MR 3212175
  • [50] Seungil Kim and Joseph E. Pasciak, The computation of resonances in open systems using a perfectly matched layer, Math. Comp. 78 (2009), no. 267, 1375–1398. MR 2501055 (2010d:65304)
  • [51] M. Lassas and E. Somersalo, On the existence and the convergence of the solution of the pml equations, Computing 60 (1998), 229–241.
  • [52] Fei Liu and Lexing Ying, Additive sweeping preconditioner for the Helmholtz equation, Multiscale Model. Simul. 14 (2016), no. 2, 799–822. MR 3499544
  • [53] N Moiseyev, Quantum theory of resonances: Calculating energies, width and cross-sections by complex scaling, Physics reports 302 (1998), 211–293.
  • [54] Lothar Nannen, Hardy-Raum Methoden zur numerischen Lösung von Streu- und Resonanzproblemen auf unbeschränkten Gebieten, Ph.D. thesis, Georg-August-Universität Göttingen, Der Andere Verlag, Tönning, 2008.
  • [55] by same author, personal communication, 2016.
  • [56] Lothar Nannen and Markus Wess, Complex scaled infinite elements for exterior helmholtz problems, Tech. report, 2019, https://arxiv.org/abs/1907.09746.
  • [57] Barry Simon, Resonances and complex scaling: A rigorous overview, International Journal of Quantum Chemistry 14 (1978), no. 4, 529–542.
  • [58] Elizabeth A. Skelton, Samuel D. M. Adams, and Richard V. Craster, Guided elastic waves and perfectly matched layers, Wave Motion 44 (2007), no. 7-8, 573–592. MR 2341031 (2008e:74045)
  • [59] O. Steinbach and G. Unger, A boundary element method for the dirichlet eigenvalue problem of the laplace operator, Numerische Mathematik 113 (2009), no. 2, 281–298.
  • [60] F.L. Teixeira and W.C. Chew, Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates, Microwave and Guided Wave Letters, IEEE 7 (1997), no. 11, 371–373.
  • [61] Gerhard Unger, Analysis of boundary element methods for laplacian eigenvalue problems, Ph.D. thesis, TU Graz, Graz, Austria, 2009.
  • [62] by same author, Convergence analysis of a galerkin boundary element method for electromagnetic eigenvalue problems, Tech. Report 2017/2, Institute of Computational Mathematics, Graz University of Technology, 2017, https://www.numerik.math.tugraz.at/berichte/Bericht0217.pdf.