This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Anisotropic conformal change of conic pseudo-Finsler surfaces, I

S. G. Elgendi1, Nabil L. Youssef2\,{}^{2}, A. A. Kotb3 and Ebtsam H. Taha2
Abstract

The present work is devoted to investigate anisotropic conformal transformation of conic pseudo-Finsler surfaces (M,F)(M,F), that is, F(x,y)F¯(x,y)=eϕ(x,y)F(x,y)F(x,y)\longmapsto\overline{F}(x,y)=e^{\phi(x,y)}F(x,y), where the function ϕ(x,y)\phi(x,y) depends on both position xx and direction yy, contrary to the ordinary (isotropic) conformal transformation which depends on position only. If FF is a pseudo-Finsler metric, the above transformation does not yield necessarily a pseudo-Finsler metric. Consequently, we find out necessary and sufficient condition for a (conic) pseudo-Finsler surface (M,F)(M,F) to be transformed to a (conic) pseudo-Finsler surface (M,F¯)(M,\overline{F}) under the transformation F¯=eϕ(x,y)F\overline{F}=e^{\phi(x,y)}F. In general dimension, it is extremely difficult to find the anisotropic conformal change of the inverse metric tensor in a tensorial form. However, by using the modified Berwald frame on a Finsler surface, we obtain the change of the components of the inverse metric tensor in a tensorial form. This progress enables us to study the transformation of the Finslerian geometric objects and the geometric properties associated with the transformed Finsler function F¯\overline{F}. In contrast to isotropic conformal transformation, we have a non-homothetic conformal factor ϕ(x,y)\phi(x,y) that preserves the geodesic spray. Also, we find out some invariant geometric objects under the anisotropic conformal change. Furthermore, we investigate a sufficient condition for F¯\overline{F} to be dually flat or/and projectively flat. Finally, we study some special cases of the conformal factor ϕ(x,y)\phi(x,y). Various examples are provided whenever the situation needs.

1 Department of Mathematics, Faculty of Science,

Islamic University of Madinah, Madinah, Kingdom of Saudia Arabia

2Department of Mathematics, Faculty of Science,

Cairo University, Giza, Egypt

3Department of Mathematics, Faculty of Science,

Damietta University, Damietta , Egypt

salah.ali@fsc.bu.edu.eg, salahelgendi@yahoo.com

nlyoussef@sci.cu.edu.eg, nlyoussef2003@yahoo.fr

alikotb@du.edu.eg, kotbmath2010@yahoo.com

ebtsam.taha@sci.cu.edu.eg, ebtsam.h.taha@hotmail.com

Keywords:  conic pseudo-Finsler surface; modified Berwald frame; anisotropic conformal change; projectively flat; dually flat

MSC 2020: 53B40, 53C60

Introduction

Conformal transformations have been investigated in different frameworks, since they have some important geometric features [9, 10, 18, 20, 22] and successful applications such as those in physics, biology and ecology [1, 12, 14, 16, 21]. In the conformal transformation theory, it is useful to study the geometric properties and geometric objects that are preserved under conformal transformations. In Riemannian geometry, (isotropic) conformal transformation is an angle-preserving. In pseudo Riemannian metrics with signature (Lorentzian metrics), it preserves causality. In parallelizable manifolds, it preserves both angles and causality as each parallelization structure induces a pseudo-Riemannian (or Lorentzian) metric, cf. [16, 22]. In Finsler geometry, (isotropic) conformal transformation is angle-preserving [9] and leaves the geodesic spray invariant if the conformal factor is a homothety [2, Theorem 3.3]. Further, each Randers space (M,F=α+β)(M,F=\alpha+\beta) has a globally defined nonholonomic frame which is called the Holland frame [11]. This frame is an isotropic conformally invariant in the sense that the transformation F(x,y)F¯(x,y)=eϕ(x)F(x,y)F(x,y)\longmapsto\overline{F}(x,y)=e^{\phi(x)}F(x,y) leaves the frame elements fixed [4, Theorem 5.10.1].

Given two pseudo-Finsler metrics F(x,y)F(x,y) and F¯(x,y)\overline{F}(x,y), the anisotropic conformal transformation F(x,y)F¯(x,y)=eϕ(x,y)F(x,y)F(x,y)\longmapsto\overline{F}(x,y)=e^{\phi(x,y)}F(x,y) preserves the lightcone [14] and lightlike geodesics and their focal points [13, 14]. The anisotropic conformal change in Finsler Geometry is not only valuable in applications, but also it has a great impact in the study of Finsler geometry. For example, in contrast to isotropic conformal change, the anisotropic conformal change of a pseudo-Finsler metric is not necessarily a pseudo-Finsler metric (see Theorem 2.11). In addition, the anisotropic conformal change can send a psudo-Finsler metric to a pseudo-Riemannian one and vice-versa.

Since conic pseudo-Finsler surfaces are used widely in applications, especially in physics, we study here the anisotropic conformal transformation F(x,y)F¯(x,y)=eϕ(x,y)F(x,y)F(x,y)\longmapsto\overline{F}(x,y)=e^{\phi(x,y)}F(x,y) of a conic pseudo-Finsler metric F(x,y)F(x,y). First, under the anisotropic conformal change, we compute the components g¯ij\overline{g}_{ij} of the metric tensor of F¯\overline{F}. Actually, the expression of g¯ij\overline{g}_{ij} contains the second derivative of the function ϕ\phi with respect to directional arguments. Generally, this term represents a severe obstacle to compute the components g¯ij\overline{g}^{ij} of the inverse metric tensor. Keeping in mind that the inverse metric tensor is the door to find the geodesic spray, which enables to study the geometry of the transformed space (M,F¯)(M,\overline{F}), this motivates us to consider the two-dimensional case to make use of the modified Berwald frame. Consequently, we become able to derive some important geometric objects associated with the transformed metric F¯\overline{F}, for example, the transformed Cartan tensor, main scalar, geodesic spray and Barthel connection. Further, we find out some invariant objects under anisotropic conformal transformations (see Theorem 3.11).

The present paper is organized in the following manner. In §1, we recall some basic facts on the geometry of sprays and Finsler manifolds. In §2, we first show that the fact that “two Finsler metrics are anisotropically conformally related” is not equivalent to the “proportionality of their associated metric tensors”, contrary to what has been mentioned in [20, (11.1.1)]. Then, we investigate the anisotropic conformal transformations of pseudo-Finsler surfaces. In §3, we characterize the anisotropic conformal transformations and study their action on some important Finslerian geometric objects. Some anisotropic conformal invariant geometric properties are found out. In §4, we study the case when the anisotropic conformal transformation is a projective transformation. Moreover, we obtain sufficient conditions for F¯\overline{F} to be projectively flat and dually flat. Finally, in §5, we consider two important special cases: the factor ϕ\phi is a function of position only and the factor ϕ\phi is a function of direction only. Interesting results in both cases are obtained.

It should be noted that, various examples have been provided whenever the situation needs. The Maple’s code of these examples is presented in the Appendix at the end of the paper.

1 Notation and preliminaries

Let MM be an n-dimensional smooth manifold and π:TMM\pi:TM\longrightarrow M the canonical projection of the tangent bundle TMTM onto MM. Let TM0:=TM(0)TM_{0}:=TM\setminus(0) be the slit tangent bundle, (0)(0) being the null section, and (xi,yi)(x^{i},y^{i}) the corresponding coordinate system TMTM. The natural almost-tangent structure JJ of TMTM is the vector 11-form defined by J=yidxiJ=\frac{\partial}{\partial y^{i}}\otimes dx^{i}. The vertical vector field 𝒞=yiyi{\mathcal{C}}=y^{i}\frac{\partial}{\partial y^{i}} on TMTM is called the Liouville vector field. The set of smooth functions on TM0TM_{0} is denoted by C(TM0)C^{\infty}(TM_{0}).

A spray on MM is a vector field SS on TMTM such that JS=𝒞JS={\mathcal{C}} and [𝒞,S]=S[{\mathcal{C}},S]=S. Locally, it is given by [8]

S=yixi2Gi(x,y)yi,S=y^{i}\frac{\partial}{\partial x^{i}}-2G^{i}(x,y)\,\frac{\partial}{\partial y^{i}},

where the spray coefficients Gi(x,y)G^{i}(x,y) are positively 22-homogeneous functions in yy (or simply h(2)h(2)-functions). A nonlinear connection is defined by an nn-dimensional distribution H(TM0)H(TM_{0}) on TM0TM_{0} which is supplementary to the vertical distribution V(TM0)V(TM_{0}). This means that for all uTM0u\in TM_{0}, we have

Tu(TM0)=Vu(TM0)Hu(TM0).T_{u}(TM_{0})=V_{u}(TM_{0})\oplus H_{u}(TM_{0}).

The local basis of Vu(TM0)V_{u}(TM_{0}) and Hu(TM0)H_{u}(TM_{0}) are given, respectively by, ˙i:=yi\dot{\partial}_{i}:=\dfrac{\partial}{\partial y^{i}} and δi:=δδxi=xiGij(x,y)yj\delta_{i}:=\dfrac{\delta}{\delta x^{i}}=\dfrac{\partial}{\partial x^{i}}-G^{j}_{i}(x,y)\dfrac{\partial}{\partial y^{j}}. The coefficients of Cartan nonlinear (or Barthel) connection and Berwald connection are defined by Gij(x,y):=GjyiG^{j}_{i}(x,y):=\dfrac{\partial G^{j}}{\partial y^{i}} and Gijh(x,y):=GjhyiG^{h}_{ij}(x,y):=\dfrac{\partial G^{h}_{j}}{\partial y^{i}}, respectively.

In the following we set the definition of a (conic pseudo-) Finsler manifold which will be used throughout the paper.

Definition 1.1.

A conic sub-bundle of TMTM is a non-empty open subset 𝒜TM0\mathcal{A}\subset TM_{0} such that π(𝒜)=M\pi(\mathcal{A})=M and λv𝒜v𝒜 and λ+\lambda v\in\mathcal{A}\quad\forall v\in\mathcal{A}\text{ and }\,\forall\lambda\in\mathbb{R^{+}}.

Definition 1.2.

A conic pseudo-Finsler metric on MM is a function F:𝒜\;F:\mathcal{A}\longrightarrow\mathbb{R} which satisfies the following conditions:

(i)

FF is smooth on 𝒜\mathcal{A},

(ii)

F(x,y)F(x,y) is positively homogeneous of degree one in yy: F(x,λy)=λF(x,y)F(x,\lambda y)=\lambda F(x,y) for all (x,y)𝒜(x,y)\in\mathcal{A} and λ+,\lambda\in\mathbb{R^{+}},

(iii)

The Finsler metric tensor gij(x,y)=12˙i˙jF2(x,y)g_{ij}(x,y)=\frac{1}{2}\dot{\partial}_{i}\dot{\partial}_{j}F^{2}(x,y) is non-degenerate at each point of 𝒜\mathcal{A}.

The pair (M,F)(M,F) is called a conic pseudo-Finsler manifold.

The Finsler metric FF is said to be:
\bullet a conic Finsler metric if the metric tensor gijg_{ij} in (iii) is positive definite, or equivalently, FF is non-negative, and in this case (M,F)(M,F) is a conic Finsler manifold.
\bullet a pseudo-Finsler metric if 𝒜\mathcal{A} is replaced by TMTM, and in this case (M,F)(M,F) is a pseudo-Finsler manifold.
\bullet a Finsler metric if 𝒜\mathcal{A} is replaced by TMTM and gijg_{ij} in (iii) is positive definite, and in this case (M,F)(M,F) is a Finsler manifold.

Each pseudo-Finsler metric FF induces a spray SS on MM, for which the spray coefficients are given by Gi=14gij(yk˙jkF2jF2)G^{i}=\frac{1}{4}g^{ij}(y^{k}\,\dot{\partial}_{j}\partial_{k}{F}^{2}-\partial_{j}{F}^{2}) [8, 20], this spray is called the geodesic spray of FF.

2 Anisotropic conformal transformation

In this section, we introduce the anisotropic conformal transformation of a conic pseudo-Finsler metric FF and investigate its elementary properties.

Conformality is classically defined as follows.

Definition 2.1.

[19] Let FF and F¯\overline{F} be two Finsler metric functions defined on a smooth manifold MM. The two Finsler metric tensors gijg_{ij} and g¯ij\overline{g}_{ij} resulting from FF and F¯\overline{F}, respectively, are called conformal if there exists a factor of proportionality Ψ(x,y)\Psi(x,y) between the metric tensors:

g¯ij(x,y)=Ψ(x,y)gij(x,y),\overline{g}_{ij}(x,y)=\Psi(x,y)\,g_{ij}(x,y), (2.1)

where Ψ(x,y)\Psi(x,y) is a positive smooth function of position xx and direction yy.

Suppose gijg_{ij} and g¯ij\overline{g}_{ij} are conformal, then (2.1) holds. As gijyiyj=F2g_{ij}y^{i}y^{j}=F^{2}, we get

F¯(x,y)=Ψ(x,y)F(x,y).\overline{F}(x,y)=\sqrt{\Psi(x,y)}\,F(x,y). (2.2)

This means that if gij(x,y)g_{ij}(x,y) and g¯ij(x,y)\overline{g}_{ij}(x,y) are proportional, then F(x,y)F(x,y) and F¯(x,y)\overline{F}(x,y) are proportional, or, in other words, (2.1) implies (2.2). The converse is not true in general [19]: proportional Finsler metric functions may yield non proportional Finsler metric tensors. Nevertheless, we have

Lemma 2.2.

Let two Finsler metric functions FF and F¯\overline{F} on MM be proportional, i.e., F¯(x,y)=Ψ(x,y)F(x,y)\overline{F}(x,y)=\Psi(x,y)\,F(x,y). A necessary and sufficient condition for the associated Finsler metric tensors gijg_{ij} and g¯ij\overline{g}_{ij} to be proportional is that Ψ(x,y)\Psi(x,y) is a functions of position xx only.

Proof.

Let FF and F¯\overline{F} be proportional, that is,

F¯(x,y)=Ψ(x,y)F(x,y).\displaystyle\overline{F}(x,y)=\Psi(x,y)\,F(x,y).

By squaring and differentiating with respect to yi and yj,y^{i}\text{ and }y^{j}, we get

g¯ij=Ψ2gij+{(˙iΨ)(˙jΨ)+Ψ(˙i˙jΨ)}F2+Ψ{(˙jΨ)˙iF2+(˙iΨ)˙jF2}.\overline{g}_{ij}=\Psi^{2}g_{ij}+\{(\dot{\partial}_{i}\Psi)(\dot{\partial}_{j}\Psi)+\Psi(\dot{\partial}_{i}\dot{\partial}_{j}\Psi)\}F^{2}+\Psi\{(\dot{\partial}_{j}\Psi)\dot{\partial}_{i}{F}^{2}+(\dot{\partial}_{i}\Psi)\dot{\partial}_{j}F^{2}\}.

Consequently, the metric tensors gijg_{ij} and g¯ij\overline{g}_{ij} are proportional if and only if

{(˙iΨ)(˙jΨ)+Ψ(˙i˙jΨ)}F2+Ψ{(˙jΨ)˙iF2+(˙iΨ)˙jF2}=0.\{(\dot{\partial}_{i}\Psi)(\dot{\partial}_{j}\Psi)+\Psi(\dot{\partial}_{i}\dot{\partial}_{j}\Psi)\}F^{2}+\Psi\{(\dot{\partial}_{j}\Psi)\dot{\partial}_{i}{F}^{2}+(\dot{\partial}_{i}\Psi)\dot{\partial}_{j}F^{2}\}=0.

Contracting both sides of the above equation by yjy^{j} and using the homogeneity properties of FF and Ψ\Psi, we get

Ψ(˙iΨ)F2=0,\Psi(\dot{\partial}_{i}\Psi)F^{2}=0,

from which ˙iΨ(x,y)=0\dot{\partial}_{i}\Psi(x,y)=0 and Ψ0\Psi\neq 0 is a function of xx only. ∎

Remark 2.3.

(a) The above discussion shows that the proportionality of FF and F¯\overline{F} does not imply automatically that the conformal factor Ψ\Psi is independent of direction, contrary to what has been mentioned by Y. Shen and Z. Shen in [20, (11.1.1)].
(b) On the other hand, it was proved by Knebelman [15] that the proportionality of gijg_{ij} and g¯ij\overline{g}_{ij} does imply automatically that the conformal factor Ψ\Psi is independent of direction, as has been mentioned by H. Rund in [19, VI,2].

We begin our investigation from the proportionality of FF and F¯\overline{F}, regardless of the proportionality of gijg_{ij} and g¯ij\overline{g}_{ij} and regardless of the independence of the conformal factor of direction. In fact, we are particularly interested in the dependence of the conformal factor on both position and direction, motivated by the current applications in physics and other branches of science, and by the high potentiality of near future applications.

Now, let us set our definition of conformality.

Definition 2.4.

Let (M,F)(M,F) be a conic pseudo-Finsler manifold. The anisotropic conformal transformation of FF is defined by

FF¯(x,y)=eϕ(x,y)F(x,y),F\longmapsto\overline{F}(x,y)=e^{\phi(x,y)}F(x,y), (2.3)

where ϕ(x,y)\phi(x,y) is an h(0)h(0) smooth function on 𝒜\mathcal{A}. In this case, we say that FF and F¯\overline{F} are anisotropically conformally related, or F¯\overline{F} is anisotropically conformal to FF.

If the conformal factor ϕ(x,y)\phi(x,y) is independent of direction, (2.3) is called isotropic conformal, or, simply, conformal transformation.

One of the benefits of the anisotropic conformal transformation is that, unlike conformal transformation [9], the anisotropic conformal transformation can transform a Riemannian metric to a Finslerian one.

Proposition 2.5.

Let (M,F)(M,F) be a conic pseudo-Finsler space, then under the anisotropic conforaml transformation (2.3), we have

g¯ij=e2ϕ[gij+2F2i˙ϕj˙ϕ+2F(ji˙ϕ+ij˙ϕ)+F2˙i˙jϕ].\overline{g}_{ij}=e^{2\phi}\left[g_{ij}+2F^{2}\,\dot{\partial_{i}}\phi\,\dot{\partial_{j}}\phi+2F(\,{\ell}_{j}\,\dot{\partial_{i}}\phi+{\ell}_{i}\,\dot{\partial_{j}}\phi)+F^{2}\,\dot{\partial}_{i}\dot{\partial}_{j}\phi\right]. (2.4)
Proof.

Since F¯2=e2ϕ(x,y)F2\overline{F}^{2}=e^{2\phi(x,y)}F^{2}, we get i˙F¯2=e2ϕ(2F2i˙ϕ+i˙F2).\dot{\partial_{i}}\overline{F}^{2}=e^{2\phi}\,(2\,F^{2}\,\dot{\partial_{i}}\phi+\dot{\partial_{i}}F^{2}). Thereby,

g¯ij=12i˙j˙F¯2\displaystyle\overline{g}_{ij}=\frac{1}{2}\dot{\partial_{i}}\dot{\partial_{j}}\overline{F}^{2} =e2ϕ[2F2(i˙ϕ)(j˙ϕ)+2F(ji˙ϕ+ij˙ϕ)+F2˙i˙jϕ+12i˙j˙F2]\displaystyle=e^{2\phi}[2F^{2}(\dot{\partial_{i}}\phi)(\dot{\partial_{j}}\phi)+2F\,(\ell_{j}\,\dot{\partial_{i}}\phi+\ell_{i}\,\dot{\partial_{j}}\phi)+F^{2}\,\dot{\partial}_{i}\dot{\partial}_{j}\phi+\frac{1}{2}\dot{\partial_{i}}\dot{\partial_{j}}F^{2}]
=e2ϕ[gij+2F2(i˙ϕ)(j˙ϕ)+2F(ji˙ϕ+ij˙ϕ)+F2˙i˙jϕ],\displaystyle=e^{2\phi}[g_{ij}+2F^{2}(\dot{\partial_{i}}\phi)(\dot{\partial_{j}}\phi)+2F\,(\ell_{j}\,\dot{\partial_{i}}\phi+\ell_{i}\,\dot{\partial_{j}}\phi)+F^{2}\,\dot{\partial}_{i}\dot{\partial}_{j}\phi],
where i=˙iF.\displaystyle\text{ where }\ell_{i}=\dot{\partial}_{i}F.
Remark 2.6.

The existence of the term F2˙i˙jϕF^{2}\dot{\partial}_{i}\dot{\partial}_{j}\phi in (2.4) makes calculating the inverse metric g¯ij\overline{g}^{ij}, in a tensorial form, very complicated in general dimension. However, g¯ij\overline{g}^{ij} can be found out in the two-dimensional case thanks to the existence of Berwald frame in such a case.

Henceforward, we work in a two-dimensional conic pseudo-Finsler space equipped with a modified Berwald frame (i,mi)(\ell_{i},m_{i}) [3, 17]. The components gijg_{ij} of the metric tensor are given by

gij=ij+εmimj,\displaystyle g_{ij}=\ell_{i}\ell_{j}+\varepsilon m_{i}m_{j}, (2.5)

where ε=±1\varepsilon=\pm 1 is called the signature of FF. Further, the angular metric coefficients hijh_{ij} can be expressed as

hij=εmimj.\displaystyle h_{ij}=\varepsilon m_{i}m_{j}.

Also, we have

gij=ij+εmimj,g^{ij}=\ell^{i}\ell^{j}+\varepsilon m^{i}m^{j},

where i=yiF\ell^{i}=\frac{y^{i}}{F}. The two vector fields =(1,2)\ell=(\ell^{1},\ell^{2}) and m=(m1,m2)m=(m^{1},m^{2}) have been chosen in such a way that they satisfy

g(,)=1,g(,m)=0,g(m,m)=ε.g(\ell,\ell)=1,\;g(\ell,m)=0,\;g(m,m)=\varepsilon.

Moreover, the determinant 𝔤\mathfrak{g} of the matrix (gij)(g_{ij}) is given by

𝔤:=det(gij)=ε(1m22m1)2.\mathfrak{g}:=\det(g_{ij})=\varepsilon(\ell_{1}m_{2}-\ell_{2}m_{1})^{2}. (2.6)

To calculate mim^{i} and mim_{i}, we give the following lemma.

Lemma 2.7.

The covector mim_{i} is given by

m1=ε𝔤2,m2=ε𝔤1.m_{1}=-\sqrt{\varepsilon\mathfrak{g}}\ \ell^{2},\quad m_{2}=\sqrt{\varepsilon\mathfrak{g}}\ \ell^{1}.

Moreover, the vector mim^{i} is given by

m1=1ε𝔤2,m2=1ε𝔤1.m^{1}=-\frac{1}{\sqrt{\varepsilon\mathfrak{g}}}\,\ell_{2},\quad m^{2}=\frac{1}{\sqrt{\varepsilon\mathfrak{g}}}\,\ell_{1}.
Proof.

By (2.6), we have

1m22m1=ε𝔤.\ell_{1}m_{2}-\ell_{2}m_{1}=\sqrt{\varepsilon\mathfrak{g}}.

Also, the property g(,m)=0g(\ell,m)=0 gives

1m1+2m2=0.\ell^{1}m_{1}+\ell^{2}m_{2}=0.

Then, the result follows by solving the above two equations for m1m_{1} and m2m_{2}. The proof of the formulae of mim^{i} can be calculated in a similar manner. ∎

Thus, the components CijkC_{ijk} of the Cartan tensor are given by [3]

FCijk=mimjmk,FC_{ijk}=\mathcal{I}\;m_{i}m_{j}m_{k},

where \mathcal{I} is the main scalar of the surface (M,F)(M,F).

From now on, when we say that (M,F)(M,F) is a conic pseudo-Finsler surface, this means that (M,F)(M,F) is a conic pseudo-Finsler surface equipped with the modified Berwald frame.

Lemma 2.8.

[17] Let (M,F)(M,F) be a conic pseudo-Finsler surface. Then we have the following:

(i)

imi=imi=0\ell^{i}m_{i}=\ell_{i}m^{i}=0,

(ii)

mimi=εm^{i}m_{i}=\varepsilon,ii=1\quad\ell^{i}\ell_{i}=1,

(iii)

δij=ij+εmimj\delta_{i}^{j}=\ell_{i}\ell^{j}+\varepsilon m_{i}m^{j},

(iv)

Fj˙i=εmimj=hij,Fj˙i=εmimjF\dot{\partial_{j}}\ell_{i}=\varepsilon m_{i}m_{j}=h_{ij},\qquad F\dot{\partial_{j}}\ell^{i}=\varepsilon m^{i}m_{j},

(v)

Fj˙mi=(iεmi)mjF\dot{\partial_{j}}m_{i}=-(\ell_{i}-\varepsilon\mathcal{I}m_{i})m_{j},  Fj˙mi=(i+εmi)mjF\dot{\partial_{j}}m^{i}=-(\ell^{i}+\varepsilon\mathcal{I}m^{i})m_{j},

(vi)

For a smooth function ff on 𝒜\mathcal{A}, we have Fi˙f=f;1i+f;2miF\dot{\partial_{i}}f=f_{;1}\,\ell_{i}+f_{;2}\,m_{i}, where f;1=F(i˙f)if_{;1}=F(\dot{\partial_{i}}f)\,\ell^{i} and f;2=εF(i˙f)mi.f_{;2}=\varepsilon F\,(\dot{\partial_{i}}f)m^{i}. In particular, if ff is h(r)h(r), then f;1=rff_{;1}=rf,

(vii)

Fi˙kf=(kf);1i+(kf);2miF\dot{\partial_{i}}\partial_{k}f=(\partial_{k}f)_{;1}\,\ell_{i}+(\partial_{k}f)_{;2}\,m_{i}, where k=xk\partial_{k}=\frac{\partial}{\partial x^{k}},

(viii)

δif=f,1i+f,2mi,\delta_{i}f=f_{,1}\,\ell_{i}+f_{,2}\,m_{i}, where f,1=(δif)if_{,1}=(\delta_{i}f)\ell^{i} and f;2=ε(δif)mif_{;2}=\varepsilon(\delta_{i}f)m^{i}.

Using the modified Berwald frame, we can write the formulae of the objects ˙iϕ\dot{\partial}_{i}\phi and ˙i˙jϕ\dot{\partial}_{i}\dot{\partial}_{j}\phi in terms of the frame elements. Consequently, plugging these objects into (2.4), we are able to find the formula of components g¯ij\overline{g}^{ij} of the inverse metric of F¯\overline{F}. More precisely, we have:

Lemma 2.9.

Let (M,F)(M,F) be a conic pseudo-Finsler surface. The term i˙j˙ϕ\dot{\partial_{i}}\dot{\partial_{j}}\phi given in (2.4) can be expressed in the form

F2˙i˙jϕ=ϕ;2(imj+jmi)+(ϕ;2;2+εϕ;2)mjmi.\displaystyle F^{2}\dot{\partial}_{i}\dot{\partial}_{j}\phi=-\phi_{;2}\,(\ell_{i}m_{j}+\ell_{j}m_{i})+(\phi_{;2;2}+\varepsilon\,\mathcal{I}\,\phi_{;2})\,m_{j}m_{i}. (2.7)
Proof.

From Lemma 2.8 (vi),\textbf{(vi)}, F˙iϕ=ϕ;1i+ϕ;2mi.F\dot{\partial}_{i}\phi=\phi_{;1}\;\ell_{i}+\phi_{;2}\,m_{i}. Since ϕ\phi is h(0)h(0), then ϕ;1=0\phi_{;1}=0. That is,

F˙iϕ=ϕ;2mi.\displaystyle F\dot{\partial}_{i}\phi=\phi_{;2}\;m_{i}. (2.8)

Multiplying both sides of (2.8) by FF, then differentiating with respect to yjy^{j} and use Lemma 2.8 (v) and (vi), we get

F2˙i˙jϕ=ϕ;2(imj+imj)+(ϕ;2;2+εϕ;2)mjmi.F^{2}\dot{\partial}_{i}\dot{\partial}_{j}\phi=-\phi_{;2}\,(\ell_{i}m_{j}+\ell_{i}m_{j})+(\phi_{;2;2}+\varepsilon\,\mathcal{I}\,\phi_{;2})\,m_{j}m_{i}.
Proposition 2.10.

Let (M,F)(M,F) be a conic pseudo-Finsler surface, then under the anisotropic conformal transformation (2.3), the metric tensors of F¯\overline{F} and FF are related by

g¯ij\displaystyle\overline{g}_{ij} =e2ϕ[gij+ϕ;2(imj+jmi)+σmimj]\displaystyle=e^{2\phi}[g_{ij}+\phi_{;2}(\ell_{i}m_{j}+\ell_{j}m_{i})+\sigma m_{i}m_{j}]
=e2ϕ[ij+ϕ;2(imj+jmi)+(σ+ε)mimj],\displaystyle=e^{2\phi}[\ell_{i}\ell_{j}+\phi_{;2}(\ell_{i}m_{j}+\ell_{j}m_{i})+(\sigma+\varepsilon)m_{i}m_{j}], (2.9)

where σ=ϕ;2;2+εϕ;2+2(ϕ;2)2\sigma=\phi_{;2;2}+\varepsilon\mathcal{I}\phi_{;2}+2\,(\phi_{;2})^{2}.

Proof.

It follows from (2.4), (2.5), (2.7) and (2.8). ∎

It should be noted that the anisotropic conformal transformation of a conic pseudo-Finsler surface (M,F)(M,F) does not yield in general a conic pseudo-Finsler surface, as shown in Example 2.12 below. The following result gives a necessary and sufficient condition for (M,F¯)(M,\overline{F}) to be a conic pseudo-Finsler surface.

Theorem 2.11.

Let (M,F)(M,F) be a conic pseudo-Finsler surface and (2.3) be an anisotropic conformal transformation of FF. Then, (M,F¯)(M,\overline{F}) is a conic pseudo-Finsler surface if and only if

σ(ϕ;2)2+ε=F2[˙i˙jϕ+(˙iϕ)(˙jϕ)]mimj+ε0.\sigma-(\phi_{;2})^{2}+\varepsilon=F^{2}[\dot{\partial}_{i}\dot{\partial}_{j}\phi+(\dot{\partial}_{i}\phi)(\dot{\partial}_{j}\phi)]m^{i}m^{j}+\varepsilon\neq 0.
Proof.

Since both F(x,y)F(x,y) and eϕ(x,y)e^{\phi(x,y)} are smooth on 𝒜\mathcal{A}, then F¯(x,y)\overline{F}(x,y) is smooth on 𝒜\mathcal{A}. Moreover, F¯(x,y)\overline{F}(x,y) is h(1)h(1). Now, from (2.10), we get

det(g¯ij)=e4ϕ|11+2ϕ;21m1+(σ+ε)m1m112+ϕ;2(1m2+2m1)+(σ+ε)m1m212+ϕ;2(1m2+2m1)+(σ+ε)m1m222+2ϕ;22m2+(σ+ε)m2m2|.\det(\overline{g}_{ij})=e^{4\phi}\begin{vmatrix}\ell_{1}\ell_{1}+2\phi_{;2}\,\ell_{1}m_{1}+(\sigma+\varepsilon)\,m_{1}m_{1}&\ell_{1}\ell_{2}+\phi_{;2}(\ell_{1}m_{2}+\ell_{2}m_{1})+(\sigma+\varepsilon)m_{1}m_{2}\\ \ell_{1}\ell_{2}+\phi_{;2}(\ell_{1}m_{2}+\ell_{2}m_{1})+(\sigma+\varepsilon)m_{1}m_{2}&\ell_{2}\ell_{2}+2\phi_{;2}\,\ell_{2}m_{2}+(\sigma+\varepsilon)\,m_{2}m_{2}\end{vmatrix}.

That is, by using (2.6), we have

det(g¯ij)\displaystyle\det(\overline{g}_{ij}) =\displaystyle= e4ϕ[(σ+ε)11m2m2+(σ+ε)22m1m12(σ+ε)1m12m2\displaystyle e^{4\phi}[(\sigma+\varepsilon)\ell_{1}\ell_{1}m_{2}m_{2}+(\sigma+\varepsilon)\ell_{2}\ell_{2}m_{1}m_{1}-2(\sigma+\varepsilon)\ell_{1}m_{1}\ell_{2}m_{2}
(ϕ;2)211m2m2(ϕ;2)222m1m1+2(ϕ;2)21m12m2]\displaystyle\quad\,\,-(\phi_{;2})^{2}\ell_{1}\ell_{1}m_{2}m_{2}-(\phi_{;2})^{2}\ell_{2}\ell_{2}m_{1}m_{1}+2(\phi_{;2})^{2}\ell_{1}m_{1}\ell_{2}m_{2}]
=\displaystyle= e4ϕ[σ+ε(ϕ;2)2](1m22m1)2\displaystyle e^{4\phi}[\sigma+\varepsilon-(\phi_{;2})^{2}](\ell_{1}m_{2}-\ell_{2}m_{1})^{2}
=\displaystyle= εe4ϕ[σ(ϕ;2)2+ε]det(gij).\displaystyle\varepsilon e^{4\phi}[\sigma-(\phi_{;2})^{2}+\varepsilon]\det(g_{ij}).

Therefore, the matrix (g¯ij)(\overline{g}_{ij}) is non-degenerate if and only if

σ(ϕ;2)2+ε=F2[˙i˙jϕ+(˙iϕ)(˙jϕ)]mimj+ε0.\sigma-(\phi_{;2})^{2}+\varepsilon=F^{2}[\dot{\partial}_{i}\dot{\partial}_{j}\phi\ +(\dot{\partial}_{i}\phi)(\dot{\partial}_{j}\phi)]m^{i}m^{j}+\varepsilon\neq 0.
Example 2.12.

This example gives a conic pseudo-Finsler surface FF whose anisotropic conformal transformation F¯=eϕF\overline{F}=e^{\phi}F is not a conic pseudo-Finsler surface for a certain smooth h(0)h(0) function  ϕ\phi. Let F(x,y)=|y|2(|x|2|y|2x,y2)1|x|2F(x,y)=\dfrac{\sqrt{|y|^{2}-(|x|^{2}|y|^{2}-\langle x,y\rangle^{2})}}{1-|x|^{2}} be the Klein metric on unit ball BnnB^{n}\subset\mathbb{R}^{n}. Define

F¯(x,y)=eϕ(x,y)F(x,y)=x,y1|x|2,\overline{F}(x,y)=e^{\phi(x,y)}F(x,y)=\dfrac{\langle x,y\rangle}{1-|x|^{2}},

where ϕ(x,y)=ln(x,y|y|2(|x|2|y|2x,y2)).\phi(x,y)=\ln\left(\dfrac{\langle x,y\rangle}{\sqrt{|y|^{2}-\left(|x|^{2}|y|^{2}-\langle x,y\rangle^{2}\right)}}\right).
It is clear that F¯\overline{F} is linear function in yy, i.e., det(g¯ij)=0\det(\overline{g}_{ij})=0. That is, σ+ε(ϕ;2)2=0.\sigma+\varepsilon-(\phi_{;2})^{2}=0. Hence, F¯\overline{F} is not a conic pseudo-Finsler metric, by Theorem 2.11.

Proposition 2.13.

Let  (M,F)(M,F) be a conic pseudo-Finsler surface and (2.3) be an anisotropic conformal transformation of FF. Then, we have

g¯ij=e2ϕ[ερgij+σρijεϕ;2ρ(imj+jmi)]=e2ϕ[gij+(ϕ;2)2ρijεϕ;2ρ(imj+jmi)+(ρε)mimj],\displaystyle\begin{split}\overline{g}^{ij}&=e^{-2\phi}[\varepsilon\rho g^{ij}+\sigma\rho\ell^{i}\ell^{j}-\varepsilon\phi_{;2}\;\rho(\ell^{i}m^{j}+\ell^{j}m^{i})]\\ &=e^{-2\phi}[g^{ij}+(\phi_{;2})^{2}\rho\ell^{i}\ell^{j}-\varepsilon\phi_{;2}\;\rho(\ell^{i}m^{j}+\ell^{j}m^{i})+(\rho-\varepsilon)m^{i}m^{j}],\end{split} (2.10)

where ρ:=1σ+ε(ϕ;2)2.\rho:=\dfrac{1}{\sigma+\varepsilon-(\phi_{;2})^{2}}.

Proof.

In a conic pseudo-Finsler surface (M,F)(M,F), a tensor of type (2,0) can be written as Tij=A1ij+A2imj+A3mij+A4mimj,T^{ij}=A_{1}\ell^{i}\ell^{j}+A_{2}\ell^{i}m^{j}+A_{3}m^{i}\ell^{j}+A_{4}m^{i}m^{j}, where A1,A2,A3 and A4A_{1},\;A_{2},\;A_{3}\text{ and }A_{4} are smooth function on 𝒜\mathcal{A}. Consequently, the inverse of the metric tensor g¯ij\overline{g}_{ij}, given by (2.10), can be written as

g¯ij=e2ϕ[A1ij+A2imj+A3mij+A4mimj].\overline{g}^{ij}=e^{-2\phi}[A_{1}\ell^{i}\ell^{j}+A_{2}\ell^{i}m^{j}+A_{3}m^{i}\ell^{j}+A_{4}m^{i}m^{j}]. (2.11)

To determine the functions A1,A2,A3 and A4A_{1},\;A_{2},\;A_{3}\text{ and }A_{4}, we calculate

g¯irg¯rj=δji=[A1ir+A2imr+A3mir+A4mimr][rj+ϕ;2(rmj+jmr)+(σ+ε)mrmj].\overline{g}^{ir}\overline{g}_{rj}=\delta_{j}^{i}=[A_{1}\ell^{i}\ell^{r}+A_{2}\ell^{i}m^{r}+A_{3}m^{i}\ell^{r}+A_{4}m^{i}m^{r}][\ell_{r}\ell_{j}+\phi_{;2}(\ell_{r}m_{j}+\ell_{j}m_{r})+(\sigma+\varepsilon)m_{r}m_{j}].

Using Lemma 2.8 ((i)-(iii)), we get

0=\displaystyle 0= (A1+εϕ;2A21)ji+(A3+εϕ;2A4)jmi+(ϕ;2A1+εA2(σ+ε))mji\displaystyle(A_{1}+\varepsilon\phi_{;2}\;A_{2}-1)\ell_{j}\ell^{i}+(A_{3}+\varepsilon\phi_{;2}\;A_{4})\ell_{j}m^{i}+(\phi_{;2}\;A_{1}+\varepsilon A_{2}(\sigma+\varepsilon))m_{j}\ell^{i}
+(ϕ;2A3+εA4(σ+ε)ε)mjmi.\displaystyle+(\phi_{;2}\;A_{3}+\varepsilon A_{4}(\sigma+\varepsilon)-\varepsilon)m_{j}m^{i}. (2.12)

Contracting (2) by ij,mimj,imj and mij,\ell^{i}\ell_{j},m^{i}m_{j},\ell^{i}m_{j}\text{ and }m^{i}\ell_{j}, respectively, we get the following equations:

A1+εϕA2=1,A3+εϕ;2A4=0,ϕ;2A1+ε(σ+ε)A2=0,ϕ;2A3+ε(σ+ε)A4=ε.A_{1}+\varepsilon\phi A_{2}=1,\quad A_{3}+\varepsilon\phi_{;2}\;A_{4}=0,\quad\phi_{;2}\;A_{1}+\varepsilon(\sigma+\varepsilon)A_{2}=0,\quad\phi_{;2}\;A_{3}+\varepsilon(\sigma+\varepsilon)A_{4}=\varepsilon. (2.13)

Solving the system (2.13) yields

A1=σ+εσ+ε(ϕ;2)2,A2=A3=εϕ;2σ+ε(ϕ;2)2,A4=1σ+ε(ϕ;2)2.A_{1}=\frac{\sigma+\varepsilon}{\sigma+\varepsilon-(\phi_{;2})^{2}},\hskip 42.67912ptA_{2}=A_{3}=\frac{-\varepsilon\phi_{;2}}{\sigma+\varepsilon-(\phi_{;2})^{2}},\hskip 42.67912ptA_{4}=\frac{1}{\sigma+\varepsilon-(\phi_{;2})^{2}}.

Substituting A1,A2,A3 and A4A_{1},\;A_{2},\;A_{3}\text{ and }A_{4} into (2.11), noting that ρ:=1σ+ε(ϕ;2)2\rho:=\frac{1}{\sigma+\varepsilon-(\phi_{;2})^{2}}, we obtain

g¯ij=e2ϕ[ρ(σ+ε)ijεϕ;2ρ(imj+jmi)+ρmimj].\overline{g}^{ij}=e^{-2\phi}[\rho(\sigma+\varepsilon)\ell^{i}\ell^{j}-\varepsilon\phi_{;2}\;\rho(\ell^{i}m^{j}+\ell^{j}m^{i})+\rho m^{i}m^{j}].

By (2.5), we get

g¯ij=e2ϕ[ερgij+σρijεϕ;2ρ(imj+jmi)].\overline{g}^{ij}=e^{-2\phi}[\varepsilon\rho g^{ij}+\sigma\rho\ell^{i}\ell^{j}-\varepsilon\phi_{;2}\;\rho(\ell^{i}m^{j}+\ell^{j}m^{i})].

Let us end this section by listing some properties of the functions ϕ\phi, ρ\rho, σ\sigma and \mathcal{I} for subsequent use.

Remark 2.14.

As  ϕ;2,σ,ρ\phi_{;2},\;\sigma,\;\rho and \mathcal{I} are h(0)h(0)-functions, the following relations hold:

(a)

σ=ϕ;2;2+εϕ;2+2(ϕ;2)2\sigma=\phi_{;2;2}+\varepsilon\mathcal{I}\phi_{;2}+2(\phi_{;2})^{2}, ρ=1σ+ε(ϕ;2)2=1ε+ϕ;2;2+εϕ;2+(ϕ;2)2\rho=\dfrac{1}{\sigma+\varepsilon-(\phi_{;2})^{2}}=\dfrac{1}{\varepsilon+\phi_{;2;2}+\varepsilon\mathcal{I}\phi_{;2}+(\phi_{;2})^{2}}.

(b)

F˙iϕ;2=ϕ;2;2miF\dot{\partial}_{i}\phi_{;2}=\phi_{;2;2}\;m_{i}, F˙iσ=σ;2mi,F˙iρ=ρ;2miF\dot{\partial}_{i}\sigma=\sigma_{;2}m_{i},\quad F\dot{\partial}_{i}\rho=\rho_{;2}\,m_{i},  F˙i=;2miF\dot{\partial}_{i}\mathcal{I}=\mathcal{I}_{;2}\;m_{i}.

3 Transformation of fundamental geometric objects

From now on, we consider the anisotropic conformal transformation of conic pseudo-Finsler metric FF given by

F¯(x,y)=eϕ(x,y)F(x,y),withσ+ε(ϕ;2)20.\overline{F}(x,y)=e^{\phi(x,y)}F(x,y),\quad\text{with}\,\,\,\sigma+\varepsilon-(\phi_{;2})^{2}\neq 0. (3.1)

We calculate the anisotropic conformal change (3.1) of some important geometric objects. Namely, we find the transformation of modified Berwald frame, angular metric, Cartan tensor, main scalar, geodesic spray, Barthel connection and Berwald connection.

Proposition 3.1.

Under the anisotropic conformal transformation (3.1), we obtain

(i)

¯i=eϕ[i+ϕ;2mi],\overline{\ell}_{i}=e^{\phi}[\ell_{i}+\phi_{;2}\;m_{i}],     ¯i=eϕi,\overline{\ell}^{i}=e^{-\phi}\ell^{i},

(ii)

h¯ij=e2ϕ[hij+(σ(ϕ;2)2)mimj],\overline{h}_{ij}=e^{2\phi}[h_{ij}+(\sigma-(\phi_{;2})^{2})m_{i}m_{j}],

(iii)

m¯i=eϕερmi,\overline{m}_{i}=e^{\phi}\sqrt{\frac{\varepsilon}{\rho}}\;m_{i},     m¯j=eϕερ[mjεϕ;2j],\overline{m}^{j}=e^{-\phi}\sqrt{\varepsilon\rho}[m^{j}-\varepsilon\phi_{;2}\;\ell^{j}],

(iv)

m¯im¯i=ε,\overline{m}_{i}\overline{m}^{i}=\varepsilon,     ¯i¯i=1,\overline{\ell}_{i}\overline{\ell}^{i}=1,     ¯im¯i=¯im¯i=0.\overline{\ell}^{i}\overline{m}_{i}=\overline{\ell}_{i}\overline{m}^{i}=0.

Proof.

(i) Since F¯=eϕF,\overline{F}=e^{\phi}F, by (2.8), we get

i˙F¯=¯i=eϕFi˙ϕ+eϕi˙F=eϕ[i+Fi˙ϕ]=eϕ[i+ϕ;2mi].\dot{\partial_{i}}\overline{F}=\overline{\ell}_{i}=e^{\phi}F\dot{\partial_{i}}\phi+e^{\phi}\,\dot{\partial_{i}}F=e^{\phi}[\ell_{i}+F\dot{\partial_{i}}\phi]=e^{\phi}[\ell_{i}+\phi_{;2}m_{i}]. (3.2)

Then from (2.10), we obtain

¯j:=g¯ij¯i\displaystyle\overline{\ell}^{j}:=\overline{g}^{ij}\,\overline{\ell}_{i} =eϕ[ρ(σ+ε)ijεϕ;2ρ(imj+jmi)+ρmimj](i+ϕ;2mi)\displaystyle=e^{-\phi}[\rho(\sigma+\varepsilon)\ell^{i}\ell^{j}-\varepsilon\phi_{;2}\;\rho(\ell^{i}m^{j}+\ell^{j}m^{i})+\rho m^{i}m^{j}](\ell_{i}+\phi_{;2}\;m_{i})
=eϕρj(σ+ε(ϕ;2)2)=eϕj.\displaystyle=e^{-\phi}\rho\,\ell^{j}(\sigma+\varepsilon-(\phi_{;2})^{2})=e^{-\phi}\,\ell^{j}.

(ii) Differentiating (3.2) with respect to yjy^{j}, we get

i˙j˙F¯=eϕ[F(i˙ϕ)(j˙ϕ)+Fi˙j˙ϕ+(i˙F)j˙ϕ+(j˙F)i˙ϕ+i˙j˙F].\dot{\partial_{i}}\dot{\partial_{j}}\overline{F}=e^{\phi}[F(\dot{\partial_{i}}\phi)(\dot{\partial_{j}}\phi)+F\dot{\partial_{i}}\dot{\partial_{j}}\phi+(\dot{\partial_{i}}F)\dot{\partial_{j}}\phi+(\dot{\partial_{j}}F)\dot{\partial_{i}}\phi+\dot{\partial_{i}}\dot{\partial_{j}}F].

From (2.7) and (2.8), we obtain

h¯ij=F¯i˙j˙F¯=e2ϕ[hij+(σ(ϕ;2)2)mimj].\overline{h}_{ij}=\overline{F}\,\dot{\partial_{i}}\dot{\partial_{j}}\overline{F}=e^{2\phi}[h_{ij}+(\sigma-(\phi_{;2})^{2})m_{i}m_{j}].

(iii) From (ii), we have εm¯im¯j=e2ϕ[σ+ε(ϕ;2)2]mimj=e2ϕρmimj.\varepsilon\overline{m}_{i}\overline{m}_{j}=e^{2\phi}[\sigma+\varepsilon-(\phi_{;2})^{2}]m_{i}m_{j}=\frac{e^{2\phi}}{\rho}\,m_{i}m_{j}.
Hence, m¯i=ερeϕmi\overline{m}_{i}=\sqrt{\frac{\varepsilon}{\rho}}\,e^{\phi}\,m_{i}. But mi=gijmjm^{i}=g^{ij}m_{j}, then from (2.10), we have

m¯j=ερeϕ[mjεϕ;2j].\overline{m}^{j}=\sqrt{\varepsilon\rho}\,e^{-\phi}\,[m^{j}-\varepsilon\phi_{;2}\;\ell^{j}].

(iv) It follows from (i) and (iii).

In view of Proposition 3.1 (iv), we have the following corollary.

Corollary 3.2.

Let (M,F)(M,F) be a conic pseudo-Finsler surface. The anisotropic conformal transformation of a modified Berwald frame is a modified Berwald frame.

Now, we find the anisotropic conformal transformation of some non-Riemannian quantities.

Proposition 3.3.

Under the anisotropic conformal transformation (3.1), we get

(i)

FC¯ijk=e2ϕFCijk+e2ϕ[εσ+12σ;2+ϕ;2(σ+2ε)]mimjmkF\;\overline{C}_{ijk}=e^{2\phi}F\,C_{ijk}+e^{2\phi}[\varepsilon\mathcal{I}\sigma+\frac{1}{2}\sigma_{;2}+\phi_{;2}(\sigma+2\varepsilon)]m_{i}m_{j}m_{k}
=e2ϕ[(1+εσ)+12σ;2+ϕ;2(σ+2ε)]mimjmk,\hskip 28.45274pt=e^{2\phi}[\mathcal{I}(1+\varepsilon\sigma)+\frac{1}{2}\sigma_{;2}+\phi_{;2}(\sigma+2\varepsilon)]m_{i}m_{j}m_{k},

(ii)

¯=(ερ)32[(1+εσ)+12σ;2+ϕ;2(σ+2ε)],\overline{\mathcal{I}}=(\varepsilon\rho)^{\frac{3}{2}}[\mathcal{I}(1+\varepsilon\sigma)+\frac{1}{2}\sigma_{;2}+\phi_{;2}(\sigma+2\varepsilon)],

(iii)

FC¯jki=ερ[FCjki+{εσ+12σ;2+ϕ;2(σ+2ε)}miεϕ;2{(1+εσ)+12σ;2+ϕ;2(σ+2ε)}i]mjmk.F\overline{C}_{jk}^{i}=\varepsilon\rho[FC_{jk}^{i}+\{\varepsilon\mathcal{I}\sigma+\frac{1}{2}\sigma_{;2}+\phi_{;2}(\sigma+2\varepsilon)\}m^{i}-\varepsilon\phi_{;2}\{\mathcal{I}(1+\varepsilon\sigma)+\frac{1}{2}\sigma_{;2}+\phi_{;2}(\sigma+2\varepsilon)\}\ell^{i}]m_{j}m_{k}.

Proof.

(i) Differentiating (2.10) with respect to yky^{k}, we have

2C¯ijk=\displaystyle 2\overline{C}_{ijk}= k˙(g¯ij)\displaystyle\dot{\partial_{k}}(\overline{g}_{ij})
=\displaystyle= 2e2ϕ˙kϕ[ij+ϕ;2(imj+jmi)+(σ+ε)mimj]\displaystyle 2e^{2\phi}\dot{\partial}_{k}\phi[\ell_{i}\ell_{j}+\phi_{;2}(\ell_{i}m_{j}+\ell_{j}m_{i})+(\sigma+\varepsilon)m_{i}m_{j}]
+e2ϕ˙k[gij+ϕ;2(imj+jmi)+σmimj].\displaystyle+e^{2\phi}\dot{\partial}_{k}[g_{ij}+\phi_{;2}(\ell_{i}m_{j}+\ell_{j}m_{i})+\sigma m_{i}m_{j}].

Multiplying both sides of the above equation by FF and using Lemma 2.8 (iv) and (v), we have

2FC¯ijk\displaystyle 2F\overline{C}_{ijk} =e2ϕ[2ϕ;2ijmk+2(ϕ;2)2(imjmk+jmimk)+2ϕ;2(σ+ε)mimjmk]\displaystyle=e^{2\phi}[2\phi_{;2}\ell_{i}\ell_{j}m_{k}+2(\phi_{;2})^{2}(\ell_{i}m_{j}m_{k}+\ell_{j}m_{i}m_{k})+2\phi_{;2}(\sigma+\varepsilon)m_{i}m_{j}m_{k}]
+2Fe2ϕCijk+e2ϕ[ϕ;2;2(imjmk+jmimk)+ϕ;2(εmimjmkijmk\displaystyle\;\;+2Fe^{2\phi}C_{ijk}+e^{2\phi}[\phi_{;2;2}(\ell_{i}m_{j}m_{k}+\ell_{j}m_{i}m_{k})+\phi_{;2}(\varepsilon m_{i}m_{j}m_{k}-\ell_{i}\ell_{j}m_{k}
+εimjmk+εmimjmkijmk+εjmimk)+σ;2mimjmk\displaystyle\;\;+\varepsilon\mathcal{I}\ell_{i}m_{j}m_{k}+\varepsilon m_{i}m_{j}m_{k}-\ell_{i}\ell_{j}m_{k}+\varepsilon\mathcal{I}\ell_{j}m_{i}m_{k})+\sigma_{;2}m_{i}m_{j}m_{k}
+σ(imjmk+εmimjmkjmimk+εmimjmk)].\displaystyle\;\;+\sigma(-\ell_{i}m_{j}m_{k}+\varepsilon\mathcal{I}m_{i}m_{j}m_{k}-\ell_{j}m_{i}m_{k}+\varepsilon\mathcal{I}m_{i}m_{j}m_{k})].

By Remark 2.14, we get

FC¯ijk=Fe2ϕCijk+e2ϕ(εσ+12σ;2+ϕ;2(σ+2ε))mimjmk.F\overline{C}_{ijk}=Fe^{2\phi}C_{ijk}+e^{2\phi}(\varepsilon\mathcal{I}\sigma+\frac{1}{2}\sigma_{;2}+\phi_{;2}(\sigma+2\varepsilon))m_{i}m_{j}m_{k}.

(ii) Since we have F¯C¯ijk=¯m¯im¯jm¯k,\overline{F}\;\overline{C}_{ijk}=\overline{\mathcal{I}}\;\overline{m}_{i}\;\overline{m}_{j}\;\overline{m}_{k}, then by (i) and Proposition 3.1 (iii), we obtain

¯e3ϕ(ερ)32mimjmk=e3ϕ[(1+εσ)+12σ;2+ϕ;2(σ+2ε)]mimjmk.\overline{\mathcal{I}}e^{3\phi}\left(\frac{\varepsilon}{\rho}\right)^{\frac{3}{2}}m_{i}m_{j}m_{k}=e^{3\phi}[\mathcal{I}(1+\varepsilon\sigma)+\frac{1}{2}\sigma_{;2}+\phi_{;2}(\sigma+2\varepsilon)]m_{i}m_{j}m_{k}.

That is,

¯=(ερ)32[(1+εσ)+12σ;2+ϕ;2(σ+2ε)].\overline{\mathcal{I}}=(\varepsilon\rho)^{\frac{3}{2}}[\mathcal{I}(1+\varepsilon\sigma)+\frac{1}{2}\sigma_{;2}+\phi_{;2}(\sigma+2\varepsilon)].

(iii) By using (2.10) and (i), we can write

FC¯jki=\displaystyle F\overline{C}_{jk}^{i}= g¯ihC¯hjk=[ερgih+σρihεϕ;2ρ(imh+hmi)]\displaystyle\overline{g}^{ih}\overline{C}_{hjk}=[\varepsilon\rho g^{ih}+\sigma\rho\ell^{i}\ell^{h}-\varepsilon\phi_{;2}\rho(\ell^{i}m^{h}+\ell^{h}m^{i})]
[FCijk+(εσ+12σ;2+ϕ;2(σ+2ε))mimjmk]\displaystyle\qquad\qquad\,\,[FC_{ijk}+(\varepsilon\mathcal{I}\sigma+\frac{1}{2}\sigma_{;2}+\phi_{;2}(\sigma+2\varepsilon))m_{i}m_{j}m_{k}]
=\displaystyle= ερ[FCjki+(εσ+12σ;2+ϕ;2(σ+2ε))mimjmk\displaystyle\varepsilon\rho[FC_{jk}^{i}+(\varepsilon\mathcal{I}\sigma+\frac{1}{2}\sigma_{;2}+\phi_{;2}(\sigma+2\varepsilon))m^{i}m_{j}m_{k}
εϕ;2((1+εσ)+12σ;2+ϕ;2(σ+2ε))imjmk].\displaystyle\;\;-\varepsilon\phi_{;2}(\mathcal{I}(1+\varepsilon\sigma)+\frac{1}{2}\sigma_{;2}+\phi_{;2}(\sigma+2\varepsilon))\ell^{i}m_{j}m_{k}].
Remark 3.4.

(a) Substituting Cjki=gihChjk=FmimjmkC^{i}_{jk}=g^{ih}C_{hjk}=\frac{\mathcal{I}}{F}m^{i}m_{j}m_{k} in Proposition 3.3 (iii), we get

FC¯jki=ρ((1+εσ)+12σ;2+ϕ;2(σ+2ε))(εmimjmkϕ;2imjmk).F\overline{C}^{i}_{jk}=\rho(\mathcal{I}(1+\varepsilon\sigma)+\frac{1}{2}\sigma_{;2}+\phi_{;2}(\sigma+2\varepsilon))(\varepsilon m^{i}m_{j}m_{k}-\phi_{;2}\ell^{i}m_{j}m_{k}).

(b) From Lemma 2.8 (v) and Proposition 3.1, we can get another equivalent formula of the main scalar ¯\overline{\mathcal{I}} of F¯\overline{F} as follows

¯=ερ[+2εϕ;2ερ;22ρ].\displaystyle\overline{\mathcal{I}}=\sqrt{\varepsilon\rho}\;[\mathcal{I}+2\varepsilon\phi_{;2}-\frac{\varepsilon\rho_{;2}}{2\rho}]. (3.3)

The equivalence of Proposition 3.3 (ii) and (3.3) can be proven easily.

(c) From (3.3), ¯=ερ\overline{\mathcal{I}}=\sqrt{\varepsilon\rho}\mathcal{I} if and only if 4ρϕ;2=ρ;24\rho\phi_{;2}=\rho_{;2}. Hence, a necessary and sufficient condition for the property of being Riemannian space to be preserved under anisotropic conformal change is that

4ρϕ;2=ρ;2.4\rho\phi_{;2}=\rho_{;2}.

In the following we find the change of the geodesic spray under the anisotropic conformal transformation (3.1) and consequently we find the transformation of the nonlinear connection and Berwald connection.

Proposition 3.5.

Under the anisotropic conformal transformation (3.1), the geodesic spray coefficients G¯i\overline{G}^{i} and GiG^{i} of F¯\overline{F} and F,F, respectively, are related by

G¯i=Gi+Qmi+Pi,\overline{G}^{i}=G^{i}+Q\,m^{i}+P\,\ell^{i}, (3.4)

where

P=\displaystyle P= 14[ϕ;2A+2F2(kϕ)k]),Q=14[εA+2εF(kF)mk2F(kF);2k],\displaystyle\frac{1}{4}[-\phi_{;2}\;A+2F^{2}(\partial_{k}\phi)\ell^{k}]),\;\quad\;Q=\frac{1}{4}[\varepsilon A+2\varepsilon F(\partial_{k}F)m^{k}-2F(\partial_{k}F)_{;2}\ell^{k}], (3.5)
A=\displaystyle A= {2Fϕ;2ρ(Fkϕ+kF)+2Fρ(Fkϕ+kF);2}k2εFρ(Fkϕ+kF)mk.\displaystyle\{2F\phi_{;2}\,\rho\;(F\partial_{k}\phi+\partial_{k}F)+2F\rho(F\partial_{k}\phi+\partial_{k}F)_{;2}\}\ell^{k}-2\varepsilon F\rho(F\partial_{k}\phi+\partial_{k}F)m^{k}.
Proof.

Since F¯2=e2ϕF2,\overline{F}^{2}=e^{2\phi}F^{2}, we get kF¯2=2Fe2ϕ[Fkϕ+kF].Thus,\partial_{k}\overline{F}^{2}=2Fe^{2\phi}[F\;\partial_{k}\phi+\partial_{k}F].\;\text{Thus,}

˙jkF¯2=e2ϕ[4ϕ;2(Fkϕ+kF)mj+4F(kϕ)j+2F(kϕ);2mj+˙jkF2].\dot{\partial}_{j}\partial_{k}\overline{F}^{2}=e^{2\phi}[4\phi_{;2}(F\partial_{k}\phi+\partial_{k}F)m_{j}+4F(\partial_{k}\phi)\ell_{j}+2F(\partial_{k}\phi)_{;2}\;m_{j}+\dot{\partial}_{j}\partial_{k}F^{2}].

Consequently,

yk˙jkF¯2jF¯2\displaystyle y^{k}\dot{\partial}_{j}\partial_{k}\overline{F}^{2}-\partial_{j}\overline{F}^{2} =e2ϕ[yk˙jkF2jF2+(4ϕ;2(F2kϕ+FkF)+2F2(kϕ);2)mjk\displaystyle=e^{2\phi}[y^{k}\dot{\partial}_{j}\partial_{k}F^{2}-\partial_{j}F^{2}+(4\phi_{;2}(\;F^{2}\partial_{k}\phi+F\partial_{k}F)+2F^{2}(\partial_{k}\phi)_{;2})m_{j}\ell^{k}
+4F2(kϕ)jk2F2jϕ].\displaystyle\quad+4F^{2}(\partial_{k}\phi)\ell_{j}\ell^{k}-2F^{2}\partial_{j}\phi]. (3.6)

Since kF2\partial_{k}F^{2} is h(2),h(2), Eqn. (3) can be written as

yk˙jkF¯2jF¯2\displaystyle y^{k}\dot{\partial}_{j}\partial_{k}\overline{F}^{2}-\partial_{j}\overline{F}^{2} =e2ϕ[{4ϕ;2(F2kϕ+FkF)+2F(Fkϕ+kF);2}mjk\displaystyle=e^{2\phi}[\{4\phi_{;2}(F^{2}\partial_{k}\phi+F\partial_{k}F)+2F(F\partial_{k}\phi+\partial_{k}F)_{;2}\}m_{j}\ell^{k}
+4F(Fkϕ+kF)jk2F(Fjϕ+jF)].\displaystyle\quad+4F(F\partial_{k}\phi+\partial_{k}F)\ell_{j}\ell^{k}-2F(F\partial_{j}\phi+\partial_{j}F)]. (3.7)

From (2.10), (3) and (3), we get

Gi¯=\displaystyle\overline{G^{i}}= 14g¯ij(yk˙jkF¯2jF¯2)\displaystyle\frac{1}{4}\overline{g}^{ij}(y^{k}\,\dot{\partial}_{j}\partial_{k}\overline{F}^{2}-\partial_{j}\overline{F}^{2})
=\displaystyle= Gi+14[{2F(ϕ;2)2ρ(Fkϕ+kF)2Fϕ;2ρ(Fkϕ+kF);2+2F2kϕ}k\displaystyle G^{i}+\frac{1}{4}[\{-2F(\phi_{;2})^{2}\rho(F\partial_{k}\phi+\partial_{k}F)-2F\phi_{;2}\rho(F\partial_{k}\phi+\partial_{k}F)_{;2}+2F^{2}\partial_{k}\phi\}\ell^{k}
+2εFρϕ;2(Fkϕ+kF)mk]i+14[{2εFϕ;2ρ(Fkϕ+kF)+2εFρ(Fkϕ+kF);2\displaystyle+2\varepsilon F\rho\phi_{;2}(F\partial_{k}\phi+\partial_{k}F)m^{k}]\ell^{i}+\frac{1}{4}[\{2\varepsilon F\phi_{;2}\rho(F\partial_{k}\phi+\partial_{k}F)+2\varepsilon F\rho(F\partial_{k}\phi+\partial_{k}F)_{;2}
2F(kF);2}k+{2Fρ(Fkϕ+kF)+2εFkF}mk]mi.\displaystyle-2F(\partial_{k}F)_{;2}\}\ell^{k}+\{-2F\rho(F\partial_{k}\phi+\partial_{k}F)+2\varepsilon F\partial_{k}F\}m^{k}]m^{i}.

Hence, the result follows. ∎

Remark 3.6.

Using δkϕ=kϕGki˙iϕ\delta_{k}\phi=\partial_{k}\phi-G_{k}^{i}\dot{\partial}_{i}\phi and δkF2=0\delta_{k}F^{2}=0, we obtain the following technical equalities:

(a)F2kkϕ=F2ϕ,1+2Gkϕ;2mk,(b)Fmkkϕ=εFϕ,2+Gkiϕ;2mkmi,(c)kkF2=4Gkk,(d)mkkF2=2FGkiimk,(e)F2k(kϕ);2=F2ϕ,1;2+εFGikϕ;2mkmi+2Gkϕ;2;2mk+2εϕ;2Gkmk2Gkϕ;2kF2ϕ,2(f)k(kF2);2=2εFGikkmi+4εGkmk.}\left.\begin{array}[]{r@{\;}l}\emph{{(a)}}&F^{2}\ell^{k}\,\partial_{k}\phi=F^{2}\phi_{,1}+2G^{k}\phi_{;2}\;m_{k},\\ \emph{{(b)}}&Fm^{k}\,\partial_{k}\phi=\varepsilon F\,\phi_{,2}+G^{i}_{k}\;\phi_{;2}\;m^{k}m_{i},\\ \emph{{(c)}}&\ell^{k}\,\partial_{k}F^{2}=4\,G^{k}\,\ell_{k},\\ \emph{{(d)}}&m^{k}\partial_{k}F^{2}=2FG_{k}^{i}\,\ell_{i}\,m^{k},\\ \emph{{(e)}}&F^{2}\ell^{k}(\partial_{k}\phi)_{;2}=F^{2}\,\phi_{,1;2}+\varepsilon FG^{k}_{i}\,\phi_{;2}\;m_{k}m^{i}+2G^{k}\;\phi_{;2;2}\;m_{k}+2\varepsilon\phi_{;2}\;\mathcal{I}\;G^{k}m_{k}\\ &\qquad\qquad\qquad-2G^{k}\,\phi_{;2}\,\ell_{k}-F^{2}\,\phi_{,2}\\ \emph{{(f)}}&\ell^{k}(\partial_{k}F^{2})_{;2}=2\varepsilon F\,G^{k}_{i}\,\ell_{k}\,m^{i}+4\varepsilon\,G^{k}\,m_{k}.\end{array}\right\} (3.8)

Subsituting (3.8) into the expressions of PP and QQ given by (3.5), we obtain the following short and compact expressions:

2Q\displaystyle 2Q =ερF2(ϕ;2ϕ,1+ϕ,1;22ϕ,2),\displaystyle=\varepsilon\rho F^{2}(\phi_{;2}\,\phi_{,1}+\phi_{,1;2}-2\phi_{,2}), (3.9)
2P\displaystyle 2P =ρF2ϕ;2(ϕ;2ϕ,1+ϕ,1;22ϕ,2)+F2ϕ,1.\displaystyle=-\rho F^{2}\phi_{;2}(\phi_{;2}\,\phi_{,1}+\phi_{,1;2}-2\phi_{,2})+F^{2}\phi_{,1}. (3.10)

Moreover, from (3.9) and (3.10), we get

2εϕ;2Q+2P=F2ϕ,1.\displaystyle 2\varepsilon\,\phi_{;2}\,Q+2P=F^{2}\phi_{,1}. (3.11)

Hence, we get the following equivalent form of Proposition 3.5.

Theorem 3.7.

Under the anisotropic conformal transformation (3.1), the geodesic spray coefficients G¯i\overline{G}^{i} and GiG^{i} of F¯\overline{F} and FF, respectively, are related by

G¯i=Gi+Qmi+(12F2ϕ,1εϕ;2Q)i,\displaystyle\overline{G}^{i}=G^{i}+Qm^{i}+(\frac{1}{2}F^{2}\phi_{,1}-\varepsilon\phi_{;2}\;Q)\ell^{i}, (3.12)

where QQ is given by (3.9).

Remark 3.8.

(a) As a direct consequence of (3.4), the geodesic spray S¯\overline{S} associated with F¯\overline{F} has the form

S¯=S2(Pi+Qmi)i˙.\overline{S}=S-2(P\,\ell^{i}+Q\,m^{i})\,\dot{\partial_{i}}.

(b) From (3.12), we get Gi=G¯iG^{i}=\overline{G}^{i} if and only if Q=0Q=0 and ϕ,1=0.\phi_{,1}=0.

Proposition 3.9.

Under the anisotropic conformal transformation (3.1), the coefficients of the Barthel connections G¯ji\overline{G}^{i}_{j} and GjiG^{i}_{j} associated with F¯\overline{F} and FF, respectively, are related by

FG¯ji=FGji+{2Pij+(P;2Q)imj+2Qjmi+(εP+Q;2εQ)mimj}.F\overline{G}_{j}^{i}=FG_{j}^{i}+\left\{2P\ell^{i}\ell_{j}+(P_{;2}-Q)\ell^{i}m_{j}+2Q\ell_{j}m^{i}+(\varepsilon P+Q_{;2}-\varepsilon\mathcal{I}Q)m^{i}m_{j}\right\}. (3.13)
Proof.

The proof is obtained directly by differentiating (3.4) with respect to yjy^{j} and using Lemma 2.8. ∎

Proposition 3.10.

Under the anisotropic conformal transformation (3.1), the coefficients of the Berwald connection G¯jki\overline{G}^{i}_{jk} and GjkiG^{i}_{jk} associated with F¯\overline{F} and FF, respectively, are related by

F2G¯jki=\displaystyle F^{2}\;\overline{G}^{i}_{jk}= F2Gjki+(2Pi+2Qmi)jk+{(P;2Q)i+(εP+Q;2εQ)mi}(jmk+kmj)\displaystyle F^{2}\;{G}^{i}_{jk}+(2P\ell^{i}+2Qm^{i})\ell_{j}\ell_{k}+\{(P_{;2}-Q)\ell^{i}+(\varepsilon P+Q_{;2}-\varepsilon\mathcal{I}Q)m^{i}\}(\ell_{j}m_{k}+\ell_{k}m_{j})
+{(εP+P;2;22Q;2+εP;2)i+(2εP;2+εQ+Q;2;2ε;2QεQ;2)mi}mjmk.\displaystyle+\{(\varepsilon P+P_{;2;2}-2Q_{;2}+\varepsilon\mathcal{I}P_{;2})\ell^{i}+(2\varepsilon P_{;2}+\varepsilon Q+Q_{;2;2}-\varepsilon\mathcal{I}_{;2}Q-\varepsilon\mathcal{I}Q_{;2})m^{i}\}m_{j}m_{k}. (3.14)
Proof.

It follows from (3.13) by differentiating G¯ji\overline{G}^{i}_{j} with respect to yky^{k} and using Lemma 2.8. ∎

Geometric properties or geometric objects which are preserved under the anisotropic conformal transformation are said to be anisotropic conformal invariants. In general, the geodesic spray is not invariant under the anisotropic conformal change. In the (isotropic) conformal transformation F¯(x,y)=eϕ(x)F(x,y)\overline{F}(x,y)=e^{\phi(x)}F(x,y), the homothetic transformation is the only case that leads to unchanged geodesic spray [20, Proposition 11.1]. For the anisotropic conformal transformation (3.1), the geodesic spray is not invariant in general. Nevertheless, we have

Theorem 3.11.

Let (M,F)(M,F) be a conic pseudo-Finsler surface. Under the anisotropic conformal transformation (3.1), the following assertions are equivalent:

(i)

S¯=S\overline{S}=S, that is, P=Q=0,P=Q=0, where PP and QQ are given by (3.9) and (3.10), respectively.

(ii)

δiϕ=0\delta_{i}\phi=0, or equivalently, dhϕ=0d_{h}\phi=0.

Proof.

(i)(ii)\textbf{(i)}\Longrightarrow\textbf{(ii)}: F¯=eϕF\overline{F}=e^{\phi}F implies

δiF¯=δi(eϕF)=eϕFδiϕ+eϕδiF=F¯δiϕ+eϕδiF.\delta_{i}\overline{F}=\delta_{i}(e^{\phi}F)=e^{\phi}F\,\delta_{i}\phi+e^{\phi}\,\delta_{i}F=\overline{F}\delta_{i}\phi+e^{\phi}\,\delta_{i}F. (3.15)

It is known that FF is horizontally constant, that is, δiF=0.\delta_{i}F=0. By assumption S¯=S\overline{S}=S and so δ¯i=δi\overline{\delta}_{i}=\delta_{i}, then

δiF¯=δ¯iF¯=0.\delta_{i}\overline{F}=\overline{\delta}_{i}\overline{F}=0.

Thereby, (3.15) gives F¯δiϕ=0.\overline{F}\delta_{i}\phi=0. Hence, δiϕ=0.\delta_{i}\phi=0.
(ii)(i)\textbf{(ii)}\Longrightarrow\textbf{(i)}: Suppose δiϕ=0\delta_{i}\phi=0. Thus, Lemma 2.8 (vii) gives

ϕ,1i+ϕ,2mi=0.\displaystyle\phi_{,1}\ell_{i}+\phi_{,2}m_{i}=0. (3.16)

Contracting both sides of (3.16) by i\ell^{i} and mim^{i}, respectively, we obtain ϕ,1=ϕ,2=0\phi_{,1}=\phi_{,2}=0. Then, P=0P=0 and Q=0Q=0 by (3.9) and (3.10). From (3.4), G¯i=Gi\overline{G}^{i}=G^{i} and so S¯=S\overline{S}=S. ∎

Corollary 3.12.

Let (M,F)(M,F) be a conic pseudo-Finsler surface. Under the anisotropic conformal transformation (3.1), if δiϕ=0\delta_{i}\phi=0, then the Barthel connection GjiG^{i}_{j} and Berwald connection GjkiG^{i}_{jk} are invariant.

Proposition 3.13.

Let (M,F)(M,F) be a conic pseudo-Finsler surface. Under the anisotropic conformal transformation (3.1), the following assertions are equivalent:

(i)

G¯i=Gi.\overline{G}^{i}=G^{i}.     (ii) G¯ji=Gji.\overline{G}^{i}_{j}=G^{i}_{j}.     (iii) G¯jki=Gjki.\overline{G}^{i}_{jk}=G^{i}_{jk}.

Proof.

(i)\Longrightarrow(ii) and (ii)\Longrightarrow(iii) follow directly by differentiating GiG^{i} with respect to yjy^{j} and GjiG^{i}_{j} with respect to yk,y^{k}, respectively.
(iii)\Longrightarrow(i): From (3.10), G¯jki=Gjki\overline{G}^{i}_{jk}=G^{i}_{jk} implies that

0\displaystyle 0 =(2Pi+2Qmi)jk+{(P;2Q)i+(εP+Q;2εQ)mi}(jmk+kmj)+{(εP\displaystyle=(2P\ell^{i}+2Qm^{i})\ell_{j}\ell_{k}+\{(P_{;2}-Q)\ell^{i}+(\varepsilon P+Q_{;2}-\varepsilon\mathcal{I}Q)m^{i}\}(\ell_{j}m_{k}+\ell_{k}m_{j})+\{(\varepsilon P
+P;2;22Q;2+εP;2)i+(2εP;2+εQ+Q;2;2ε;2QεQ;2)mi}mjmk.\displaystyle+P_{;2;2}-2Q_{;2}+\varepsilon\mathcal{I}P_{;2})\ell^{i}+(2\varepsilon P_{;2}+\varepsilon Q+Q_{;2;2}-\varepsilon\mathcal{I}_{;2}Q-\varepsilon\mathcal{I}Q_{;2})m^{i}\}m_{j}m_{k}. (3.17)

Contracting (3) by ijk\ell_{i}\ell^{j}\ell^{k} and mijk,m_{i}\ell^{j}\ell^{k}, respectively, we get Q=P=0Q=P=0. Hence, by Theorem 3.11, the coefficients of the geodesic spray are invariant. ∎

The following example provides a non-trivial anisotropic conformal transformation which leaves the geodesic spray invariant. A Maple’s code of the detailed calculations is found in the Appendix at the end of the paper.

Example 3.14.

Let M=𝔹22M=\mathbb{B}^{2}\subset\mathbb{R}^{2}, xM,yTx𝔹22,a=(a1,a2)2x\in M,\;y\in T_{x}\mathbb{B}^{2}\cong\mathbb{R}^{2},\;a=(a_{1},a_{2})\in\mathbb{R}^{2} and aa is constant vector with |a|<1|a|<1. Let

zi=(1+a,x)yia,yxia,y.\displaystyle{z^{i}=\frac{(1+\langle a,x\rangle)y^{i}-\langle a,y\rangle x^{i}}{\langle a,y\rangle}}.

Define the Finsler metric FF by

F=a,y(z1)2+(z2)2(1+a,x)2.F=\frac{\langle a,y\rangle\sqrt{(z^{1})^{2}+(z^{2})^{2}}}{(1+\langle a,x\rangle)^{2}}.

The geodesic spray coefficients are given by

Gi=a,y1+a,xyi.G^{i}=-\frac{\langle a,y\rangle}{1+\langle a,x\rangle}y^{i}.

Now, let  F¯=eϕF=a,y(z1)2+(z2)2(1+a,x)2exp((z1)2+(z2)2),\overline{F}=e^{\phi}F=\dfrac{\langle a,y\rangle\sqrt{(z^{1})^{2}+(z^{2})^{2}}}{(1+\langle a,x\rangle)^{2}}\ \exp\left(\sqrt{(z^{1})^{2}+(z^{2})^{2}}\right), where ϕ=(z1)2+(z2)2.\phi=\sqrt{(z^{1})^{2}+(z^{2})^{2}}.
One can easily check that F¯\overline{F} satisfies Theorem 2.11 (which means that F¯\overline{F} is a pseudo-Finsler metric) and δiϕ=0\delta_{i}\phi=0. Furthermore,

G¯i=Gi=a,y1+a,xyi.\overline{G}^{i}=G^{i}=-\frac{\langle a,y\rangle}{1+\langle a,x\rangle}\,y^{i}.

4 Anisotropic conformal and Projective changes

Definition 4.1.

[7] Two sprays SS and S^\hat{S}on MM are projectively equivalent (or related) if there exists an h(1)h(1)-function 𝒫:TM\mathcal{P}:TM\longrightarrow\mathbb{R} such that S^=S2𝒫𝒞.\hat{S}=S-2\mathcal{P}\,\mathcal{C}. The function 𝒫\mathcal{P} is called the projective factor. Locally, G^i=Gi+𝒫yi.\hat{G}^{i}=G^{i}+\mathcal{P}y^{i}.

The association SS^=S2𝒫𝒞S\longmapsto\hat{S}=S-2\mathcal{P}\,\mathcal{C} or GG^i=Gi+𝒫yiG\longmapsto\hat{G}^{i}=G^{i}+\mathcal{P}y^{i} is said to be projective transformation (or projective change).

Theorem 4.2.

Under the anisotropic conformal transformation (3.1), the following assertions are equivalent:

(i)

the geodesic sprays SS and S¯\overline{S} are projectively equivalent,

(ii)

ϕ;2ϕ,1+ϕ,1;2=2ϕ,2,\phi_{;2}\phi_{,1}+\phi_{,1;2}=2\phi_{,2},

(iii)

G¯i=Gi+12Fϕ,1yi.\overline{G}^{i}=G^{i}+\frac{1}{2}F\phi_{,1}y^{i}.

Proof.

From (3.1) and (3.4), the two geodesic sprays SS and S¯\bar{S} are projectively equivalent if and only if G¯i=Gi+𝒫yi\overline{G}^{i}=G^{i}+\mathcal{P}y^{i} where 𝒫=PF\mathcal{P}=\dfrac{P}{F} and Q=0Q=0. This is equivalent to ϕ;2ϕ,1+ϕ,1;22ϕ,2=0,\phi_{;2}\phi_{,1}+\phi_{,1;2}-2\phi_{,2}=0, by (3.9). In this case (3.10) takes the form 2P=F2ϕ,12P=F^{2}\phi_{,1} and hence the geodesic spray of F¯\overline{F} is given by

G¯i=Gi+12Fϕ,1yi.\overline{G}^{i}=G^{i}+\frac{1}{2}F\phi_{,1}\;y^{i}.

In view of Theorem 4.2, we have

Corollary 4.3.

Under the anisotropic conformal transformation (3.1) with ϕ,1=0\phi_{,1}=0, the coefficients of the geodesic spray are invariant if and only if the two geodesic sprays SS and S¯\bar{S} are projectively equivalent.

Definition 4.4.

[6] A conic pseudo-Finsler metric F=F(x,y)F=F(x,y) on an open subset UnU\subset\mathbb{R}^{n} is said to be projectively flat if any one of the following equivalent conditions is satisfied:

(i)

the geodesics of F are straight line segments in UU,

(ii)

yjj˙iF=iFy^{j}\partial_{j}\dot{\partial}_{i}F=\partial_{i}F or equivalently ˙i(yjjF)=2iF,\dot{\partial}_{i}(y^{j}\partial_{j}F)=2\partial_{i}F,

(iii)

the geodesic spray coefficients GiG^{i} are of the form Gi=𝒫yiG^{i}=\mathcal{P}y^{i}, with the projective factor 𝒫\mathcal{P} is given by 𝒫=ykkF2F\mathcal{P}=\dfrac{y^{k}\partial_{k}F}{2F}.

Theorem 4.5.

Under the anisotropic conformal transformation (3.1), we have the following:

(i)

a necessary condition for F¯\overline{F} to be projectively flat is that  Q+εGkmk=0.Q+\varepsilon G^{k}m_{k}=0.

(ii)

a sufficient condition for F¯\overline{F} to be projectively flat is that  Fjϕ+jF=0F\partial_{j}\phi+\partial_{j}F=0.

Proof.

Since F¯=eϕF\overline{F}=e^{\phi}F, we get

jF¯=eϕ[Fjϕ+jF]\partial_{j}\overline{F}=e^{\phi}[F\partial_{j}\phi+\partial_{j}F] (4.1)

and  yjjF¯=eϕ[F2(jϕ)j+F(jF)j].y^{j}\partial_{j}\overline{F}=e^{\phi}[F^{2}(\partial_{j}\phi)\ell^{j}+F(\partial_{j}F)\ell^{j}]. Thereby,

˙i(yjjF¯)\displaystyle\dot{\partial}_{i}(y^{j}\partial_{j}\overline{F}) =eϕ[{ϕ;2Fjϕ+ϕ;2jF+F(jϕ);2+(jF);2}jmi+{2Fjϕ+2jF}ij\displaystyle=e^{\phi}[\{\phi_{;2}F\partial_{j}\phi+\phi_{;2}\partial_{j}F+F(\partial_{j}\phi)_{;2}+(\partial_{j}F)_{;2}\}\ell^{j}m_{i}+\{2F\partial_{j}\phi+2\partial_{j}F\}\ell_{i}\ell^{j}
+{εFjϕ+εjF}mjmi].\displaystyle\;\;\;+\{\varepsilon F\partial_{j}\phi+\varepsilon\partial_{j}F\}m^{j}m_{i}]. (4.2)

From (4.1) and (4), we get

˙i(yjjF¯)2iF¯=\displaystyle\dot{\partial}_{i}(y^{j}\partial_{j}\overline{F})-2\partial_{i}\overline{F}= eϕ[{ϕ;2(Fjϕ+jF)+(Fjϕ+jF);2}jmi+2(Fjϕ+jF)ij\displaystyle e^{\phi}[\{\phi_{;2}(F\partial_{j}\phi+\partial_{j}F)+(F\partial_{j}\phi+\partial_{j}F)_{;2}\}\ell^{j}m_{i}+2(F\partial_{j}\phi+\partial_{j}F)\ell_{i}\ell^{j}
+ε(Fjϕ+jF)mjmi2(Fiϕ+iF)].\displaystyle+\varepsilon(F\partial_{j}\phi+\partial_{j}F)m^{j}m_{i}-2(F\partial_{i}\phi+\partial_{i}F)]. (4.3)

(i) Let F¯\overline{F} be projectively flat, i.e., ˙i(yjjF¯)2iF¯=0\dot{\partial}_{i}(y^{j}\partial_{j}\overline{F})-2\partial_{i}\overline{F}=0. Then, the RHS of (4) vanishes. Contracing the later by mim^{i} and using (3.8), we obtain

2Fρ(Q+εGkmk)=0,\frac{2}{F\rho}(Q+\varepsilon G^{k}m_{k})=0,

which implies that Q+εGkmk=0.Q+\varepsilon G^{k}m_{k}=0.

(ii) The proof is obtained directly from (4).

Remark 4.6.

(a) [17, §3.1] Since 0=δiF=iFGirr0=\delta_{i}F=\partial_{i}F-G^{r}_{i}\ell_{r}, we get

2Gii=yiiF and  2Grmr=εF2𝔐h,2G^{i}\ell_{i}=y^{i}\partial_{i}F\text{ and }\,2G^{r}m_{r}=\frac{\varepsilon F^{2}\mathfrak{M}}{\mathrm{h}}, (4.4)

where h:=ε𝔤\mathrm{h}:=\sqrt{\varepsilon\mathfrak{g}} and 𝔐:=˙21F˙12F\mathfrak{M}:=\dot{\partial}_{2}\partial_{1}F-\dot{\partial}_{1}\partial_{2}F. From (4.4), we get

2Gi=yr(rF)i+F2𝔐hmi.2G^{i}=y^{r}(\partial_{r}F)\ell^{i}+\frac{F^{2}\mathfrak{M}}{\mathrm{h}}m^{i}. (4.5)

(b) From (a), the conic pseudo-Finsler surface is projectively flat if and only if Gimi=0G^{i}m_{i}=0, which is equivalent to 𝔐=˙21F˙12F=0\mathfrak{M}=\dot{\partial}_{2}\partial_{1}F-\dot{\partial}_{1}\partial_{2}F=0 (Hammel equation in two-dimensional spaces) and the geodesic spray coefficients have the form Gi=yr(rF)2Fyi.G^{i}=\frac{y^{r}(\partial_{r}F)}{2F}y^{i}.

Theorem 4.7.

Let FF be a projectively flat conic pseudo-Finsler metric and let F¯=eϕF\overline{F}=e^{\phi}F be the anisotropic conformal transformation (3.1). Then, the Finsler metric F¯\overline{F} is projectively flat if and only if ϕ;2ϕ,1+ϕ,1;22ϕ,2=0.\phi_{;2}\phi_{,1}+\phi_{,1;2}-2\phi_{,2}=0.

Proof.

By Theorem 4.2, we have ϕ;2ϕ,1+ϕ,1;22ϕ,2=0\phi_{;2}\phi_{,1}+\phi_{,1;2}-2\phi_{,2}=0 is equivalent to G¯i=Gi+12Fϕ,1yi\overline{G}^{i}=G^{i}+\frac{1}{2}F\phi_{,1}y^{i}. Since FF is projectively flat, then we get

G¯i=ykkF+F2ϕ,12Fyi.\displaystyle\overline{G}^{i}=\dfrac{y^{k}\partial_{k}F+F^{2}\phi_{,1}}{2F}\,y^{i}. (4.6)

By using (a) of (3.8), we obtain

ykkF¯2F¯=ykkF+ykFkϕ2F=ykkF+F2ϕ,1+2Gkϕ;2mk2F=ykkF+F2ϕ,12F,\frac{y^{k}\partial_{k}\overline{F}}{2\overline{F}}=\frac{y^{k}\partial_{k}F+y^{k}F\partial_{k}\phi}{2F}=\frac{y^{k}\partial_{k}F+F^{2}\phi_{,1}+2G^{k}\phi_{;2}\;m_{k}}{2F}=\frac{y^{k}\partial_{k}F+F^{2}\;\phi_{,1}}{2F}, (4.7)

since Gkmk=0G^{k}\;m_{k}=0, by Remark 4.6. From (4.6) and (4.7), we get G¯i=𝒫¯yi\overline{G}^{i}=\overline{\mathcal{P}}\,y^{i}, with    𝒫¯=ykkF¯2F¯\overline{\mathcal{P}}=\dfrac{y^{k}\partial_{k}\overline{F}}{2\overline{F}}.
This is equivalent to the projective flatness of the metric F¯\overline{F}. ∎

Proposition 4.8.

Let (M,F)(M,F) be a conic pseudo-Finsler surface and let F¯=eϕF\overline{F}=e^{\phi}F be the anisotropic conformal transformation (3.1) with ϕ;2ϕ,1+ϕ,1;22ϕ,2=0.\phi_{;2}\phi_{,1}+\phi_{,1;2}-2\phi_{,2}=0. Assume that F¯\overline{F} is projectively flat. Then, the Finsler metric FF is projectively flat if and only if either Gkmk=0G^{k}m_{k}=0 or the conformal factor ϕ\phi is a function of xx only.

Proof.

From Theorem 4.2, we have ϕ;2ϕ,1+ϕ,1;22ϕ,2=0\phi_{;2}\phi_{,1}+\phi_{,1;2}-2\phi_{,2}=0 is equivalent to G¯i=Gi+12Fϕ,1yi\overline{G}^{i}=G^{i}+\frac{1}{2}F\phi_{,1}y^{i}. Since F¯\overline{F} is projectively flat, we obtain

Gi=G¯i12Fϕ,1yi=ykkF+ykFkϕF2ϕ,12Fyi.\displaystyle G^{i}=\overline{G}^{i}-\frac{1}{2}F\phi_{,1}\;y^{i}=\frac{y^{k}\partial_{k}F+y^{k}F\partial_{k}\phi-F^{2}\;\phi_{,1}}{2F}\;y^{i}.

By using (a) of (3.8), we get

Gi=ykkF+2Gkϕ;2mk2Fyi.\displaystyle G^{i}=\frac{y^{k}\partial_{k}F+2G^{k}\;\phi_{;2}\;m_{k}}{2F}\;y^{i}. (4.8)

From (4.8), FF is projectively flat if and only if Gkϕ;2mk=0,G^{k}\phi_{;2}m_{k}=0, which is equivalent to either Gkmk=0G^{k}m_{k}=0 or the conformal factor ϕ\phi is a function of xx only. ∎

Definition 4.9.

[5] A conic pseudo-Finsler metric F=F(x,y)F=F(x,y) on an open subset UnU\subset\mathbb{R}^{n} is said to be dually flat if it satisfies the following equations:

yj˙ijF2=2iF2.y^{j}\dot{\partial}_{i}\partial_{j}F^{2}=2\partial_{i}F^{2}.
Theorem 4.10.

Under the anisotropic conformal transformation (3.1), the following hold:

(i)

a necessary condition for F¯\overline{F} to be dually flat is that

2Fρ(Q+εGkmk)+2εϕ;2FGkmkGkiimkϕ;2Gkimimk+εF(ϕ;2ϕ,1ϕ,2)=0.\frac{2}{F\rho}(Q+\varepsilon G^{k}m_{k})+\frac{2\varepsilon\phi_{;2}}{F}G^{k}m_{k}-G^{i}_{k}\ell_{i}m^{k}-\phi_{;2}G^{i}_{k}m_{i}m^{k}+\varepsilon F(\phi_{;2}\phi_{,1}-\phi_{,2})=0.
(ii)

a sufficient condition for F¯\overline{F} to be dually flat is that Fjϕ+jF=0F\partial_{j}\phi+\partial_{j}F=0.

Proof.

As F¯2=e2ϕF2\overline{F}^{2}=e^{2\phi}F^{2}, then jF¯2=2e2ϕ[F2jϕ+FjF]\partial_{j}\overline{F}^{2}=2e^{2\phi}[F^{2}\partial_{j}\phi+F\partial_{j}F]. Consequently, one can show that

yj˙i(jF¯2)2iF¯2=\displaystyle y^{j}\dot{\partial}_{i}(\partial_{j}\overline{F}^{2})-2\partial_{i}\overline{F}^{2}= 2Fe2ϕ[{2ϕ;2(Fjϕ+jF)+(Fjϕ+jF);2}jmi+2(Fjϕ+jF)ij\displaystyle 2Fe^{2\phi}[\{2\phi_{;2}(F\partial_{j}\phi+\partial_{j}F)+(F\partial_{j}\phi+\partial_{j}F)_{;2}\}\ell^{j}m_{i}+2(F\partial_{j}\phi+\partial_{j}F)\ell_{i}\ell^{j}
2(Fiϕ+iF)].\displaystyle-2(F\partial_{i}\phi+\partial_{i}F)]. (4.9)

(i) Let F¯\overline{F} be dually flat, that is, yj˙i(jF¯2)2iF¯2=0y^{j}\dot{\partial}_{i}(\partial_{j}\overline{F}^{2})-2\partial_{i}\overline{F}^{2}=0. Then, the RHS of (4) vanishes. Contracting the later by mim^{i} and using (3.8) and (3.9), we get

2Fρ(Q+εGkmk)+2εϕ;2FGkmkGkiimkϕ;2Gkimimk+εF(ϕ;2ϕ,1ϕ,2)=0.\frac{2}{F\rho}(Q+\varepsilon G^{k}m_{k})+\frac{2\varepsilon\phi_{;2}}{F}G^{k}m_{k}-G^{i}_{k}\ell_{i}m^{k}-\phi_{;2}G^{i}_{k}m_{i}m^{k}+\varepsilon F(\phi_{;2}\phi_{,1}-\phi_{,2})=0.

(ii) The proof is obtained directly From (4).

The following example shows that the condition Fjϕ+jF=0F\partial_{j}\phi+\partial_{j}F=0 is not a necessary condition for neither projective flatness nor dual flatness of F¯\overline{F} (A Maple’s code of the detailed calculations is found in the Appendix). On the other hand, the same condition Fjϕ+jF=0F\partial_{j}\phi+\partial_{j}F=0 is a sufficient condition for both projective flatness and dual flatness of F¯\overline{F}

Example 4.11.

Let FF be the Klein metric on the unit ball Bnn,B^{n}\subset\mathbb{R}^{n}, F=|y|2(|x|2|y|2x,y2)1|x|2F=\dfrac{\sqrt{|y|^{2}-(|x|^{2}|y|^{2}-\langle x,y\rangle^{2})}}{1-|x|^{2}}. We get

F¯=eϕF=|y|2(|x|2|y|2x,y2)1|x|2+x,y1|x|2,\overline{F}=e^{\phi}F=\frac{\sqrt{|y|^{2}-(|x|^{2}|y|^{2}-\langle x,y\rangle^{2})}}{1-|x|^{2}}+\frac{\langle x,y\rangle}{1-|x|^{2}},

where

ϕ=ln(1+x,y|y|2(|x|2|y|2x,y2)).\phi=\ln\left(1+\frac{\langle x,y\rangle}{\sqrt{|y|^{2}-\left(|x|^{2}|y|^{2}-\langle x,y\rangle^{2}\right)}}\right).

F¯\overline{F} is both projectively flat and dually flat [5], but Fjϕ+jF0.F\partial_{j}\phi+\partial_{j}F\neq 0.

5 Special cases for the anisotropic conformal factor

Based on the importance of the conformal factor ϕ(x,y)\phi(x,y) in studying the geometric objects associated with F¯\overline{F}, we focus our attention on studying some special cases of ϕ\phi. We consider two cases: the function ϕ\phi is a function of yy only and the function ϕ\phi is a function of xx only. In the later case the anisotropic conformal transformation reduces to the (isotropic) conformal transformation [9].

Proposition 5.1.

Let (M,F)(M,F) be a conic pseudo-finsler surface and consider the anisotropic conformal transformation (3.1) with ϕ\phi a function of yy only. Assume that FF is projectively flat. Then, F¯\overline{F} is projectively flat if and only if ϕ,2=0.\phi_{,2}=0.

Proof.

Since ϕ\phi is a function of yy only, we get

δiϕ=ϕ,1i+ϕ,2mi=ϕ;2FGirmr.\delta_{i}\phi=\phi_{,1}\ell_{i}+\phi_{,2}m_{i}=-\frac{\phi_{;2}}{F}G^{r}_{i}m_{r}. (5.1)

Multiple both sides of (5.1) by i\ell^{i}, we get

F2ϕ,1=2ϕ;2Grmr.F^{2}\phi_{,1}=-2\phi_{;2}G^{r}m_{r}. (5.2)

As FF is projectively flat, from Remark 4.6 and (5.2), we have

ϕ,1=0.\phi_{,1}=0. (5.3)

By Theorem 4.7 and (5.3), F¯\overline{F} is projectively flat if and only if ϕ,2=0.\phi_{,2}=0.

Proposition 5.2.

Let (M,F)(M,F) be a conic pseudo-finsler surface and consider the anisotropic conformal transformation (3.1) with ϕ\phi a function of yy only. Assume that F¯\overline{F} is projectively flat. Then, a necessary condition for F¯\overline{F} to be dually flat is that

εF(ϕ;2ϕ,1ϕ,1)Gkiimk=0.\varepsilon F(\phi_{;2}\phi_{,1}-\phi_{,1})-G^{i}_{k}\ell_{i}m^{k}=0.
Proof.

Since F¯\overline{F} is projectively flat, then by Theorem 4.5, we have

Q+εGkmk=0.Q+\varepsilon G^{k}m_{k}=0. (5.4)

Also, ϕ\phi is function of yy only, from (a)(a) and (b)(b) of (3.8), we get

2εϕ;2FGkmkϕ;2Gkimimk+εF(ϕ,1ϕ,2)=0.\frac{2\varepsilon\phi_{;2}}{F}G^{k}m_{k}-\phi_{;2}G^{i}_{k}m_{i}m^{k}+\varepsilon F(\phi_{,1}-\phi_{,2})=0. (5.5)

From (5.4), (5.5) and Theorem 4.10 if F¯\overline{F} is dually flat, then εF(ϕ;2ϕ,1ϕ,1)Gkiimk=0.\varepsilon F(\phi_{;2}\phi_{,1}-\phi_{,1})-G^{i}_{k}\ell_{i}m^{k}=0.

Lemma 5.3.

Let (M,F)(M,F) be a conic pseudo-Finsler surface and F¯=eϕF\overline{F}=e^{\phi}F be the anisotropic conformal transformation (3.1). If ϕ\phi is function of xx only, then

σ=0,ρ=ε.\sigma=0,\quad\rho=\varepsilon. (5.6)
Proof.

Since ϕ\phi is independent of yy, then ϕ;2=0\phi_{;2}=0 and σ=ϕ;2;2+εϕ;2+2(ϕ;2)2=0.\sigma=\phi_{;2;2}+\varepsilon\mathcal{I}\phi_{;2}+2(\phi_{;2})^{2}=0. Also we have ρ=1σ+ε(ϕ;2)2=1ε=ε.\rho=\dfrac{1}{\sigma+\varepsilon-(\phi_{;2})^{2}}=\dfrac{1}{\varepsilon}=\varepsilon.

Lemma 5.4.

Let (M,F)(M,F) be a conic pseudo-Finsler surface and F¯(x,y)=eϕ(x,y)F(x,y).\overline{F}(x,y)=e^{\phi(x,y)}F(x,y). Then, g¯ij=e2ϕgij\overline{g}_{ij}=e^{2\phi}g_{ij} if and only if ϕ\phi is either a function of xx only or is a constant (homothetic).

Proof.

Let ϕ\phi be a function of xx only and F¯=eϕF\overline{F}=e^{\phi}F. It is obvious that g¯ij=e2ϕgij\overline{g}_{ij}=e^{2\phi}g_{ij} (with no further condition). Conversely, let g¯ij=e2ϕgij.\overline{g}_{ij}=e^{2\phi}g_{ij}. Then, by (2.10), we get

e2ϕ[ϕ;2(imj+jmi)+σmimj]=0.e^{2\phi}[\phi_{;2}(\ell_{i}m_{j}+\ell_{j}m_{i})+\sigma m_{i}m_{j}]=0.

Contracting both sides of the previous equation by imj\ell^{i}m^{j}, we obtain ϕ;2=0.\phi_{;2}=0. Hence, by (2.8), ϕ\phi is either a function of xx only or is a constant. ∎

Proposition 5.5.

Let F¯=eϕF\overline{F}=e^{\phi}F be an anisotropic conformal transformation. If ϕ\phi is a function of xx only, then

(i)

g¯ij=e2ϕgij,g¯ij=e2ϕgij,\overline{g}_{ij}=e^{2\phi}g_{ij},\qquad\overline{g}^{ij}=e^{-2\phi}g^{ij},

(ii)

¯i=eϕi,¯i=eϕi,\overline{\ell}^{i}=e^{-\phi}\ell^{i},\qquad\overline{\ell}_{i}=e^{\phi}\ell_{i},

(iii)

m¯i=eϕmi,\overline{m}_{i}=e^{\phi}m_{i},   m¯i=eϕmi,\overline{m}^{i}=e^{-\phi}m^{i},  h¯ij=e2ϕhij,\overline{h}_{ij}=e^{2\phi}h_{ij},

(iv)

C¯ijk=e2ϕCijk,C¯jki=Cjki\overline{C}_{ijk}=e^{2\phi}C_{ijk},\qquad\overline{C}^{i}_{jk}=C^{i}_{jk},  ¯=,\overline{\mathcal{I}}=\mathcal{I},

(v)

G¯i=Gi+12F2(ϕ,1iϕ,2mi).\overline{G}^{i}=G^{i}+\frac{1}{2}F^{2}(\phi_{,1}\ell^{i}-\phi_{,2}m^{i}).

Proof.

The proof of (i)-(iv) follow by substituting (5.6) into Propositions 3.1 and 3.3.
(v) If ϕ\phi is a function of xx only, then by (3.5), we have

P=12F2iiϕ,Q=12εF2miiϕ.P=\frac{1}{2}F^{2}\ell^{i}\partial_{i}\phi,\qquad Q=-\frac{1}{2}\varepsilon F^{2}m^{i}\partial_{i}\phi.

By (1)(1) and (2)(2) of (3.8) and (3.4), where ϕ;2=0\phi_{;2}=0, we get

G¯i=Gi+12F2(ϕ,1iϕ,2mi).\overline{G}^{i}=G^{i}+\frac{1}{2}F^{2}(\phi_{,1}\ell^{i}-\phi_{,2}m^{i}).
Remark 5.6.

In view of Proposition 5.5, under the anisotropic conformal transformation with ϕ\phi is a function of xx only, we conclude the following

(a)

S¯\overline{S} and SS coincide if and only if ϕ\phi is homothetic.

(b)

From (v) and (4.5), we get

G¯i=12F[(rrF+Fϕ,1)i+F(𝔐hϕ,2)mi].\overline{G}^{i}=\frac{1}{2}F[(\ell^{r}\partial_{r}F+F\phi_{,1})\ell^{i}+F(\frac{\mathfrak{M}}{h}-\phi_{,2})m^{i}].
(c)

From (b) the geodesic spray of F¯\overline{F} is flat if and only if rrF+Fϕ,1=0\ell^{r}\partial_{r}F+F\phi_{,1}=0 and 𝔐h=ϕ,2.\frac{\mathfrak{M}}{h}=\phi_{,2}.

6 Concluding remarks

We end the present paper with the following comments and remarks. In this paper, we have investigated the notion of anisotropic conformal transformation of conic pseudo-Finsler metrics in two-dimensional manifolds using the associated modified Berwald frame. The following points are to be singled out:

  • The anisotropic conformal change of a pseudo-Finsler metric F(x,y)F(x,y) does not necessarily yield a pseudo-Finsler metric F¯(x,y)\overline{F}(x,y). Consequently, we find out the necessary and sufficient condition for F¯(x,y)=eϕ(x,y)F(x,y)\overline{F}(x,y)=e^{\phi(x,y)}F(x,y) to be a pseudo-Finsler metric. This is a crucial result which ensures that two (conic) pseudo-Finsler surfaces may or may not be anisotropically conformally related, contrary to the “pure” Finslerian case where any two Finsler metrics are anisotropically conformally related ( F¯=(F¯F)F\overline{F}=(\frac{\overline{F}}{F})F ). This justifies our choice of the object of study and certifies that our study is nontrivial.

  • We study some geometric objects associated with the transformed metric such as, the Berwald frame, metric tensor, Cartan tensor, inverse metric tensor, main scalar, geodesic spray, Barthel connection and Berwald connection.

  • It has been proved that the geodesic spray is an anisotropic conformal invariant if and only if the conformal factor ϕ(x,y)\phi(x,y) has the property that δiϕ=0\delta_{i}\phi=0 or equivalently is dhd_{h}-closed. On the other hand, it is well-known that in the (isotropic) conformal case, the geodesic spray is an (isotropic) conformal invariant if and only if the conformal factor ϕ(x)\phi(x) is homothetic [2, 20]. As the condition of being dhd_{h}-closed is more general than the condition of being homothetic, our result includes as a special case the (isotropic) conformal result. On the other hand, as a consequence of our result, the anisotropic conformal invariance of any one of the geodesic spray, Cartan nonlinear connection or Berwald connection implies the aniotropic conformal invariance of the other ones.

  • Under the anisotropic conformal transformation F¯=eϕF\overline{F}=e^{\phi}F, for two projectively related conic pseudo-Finsler surfaces, the pojective flatness property is preserved. Moreover, the condition Fjϕ+jF=0F\partial_{j}\phi+\partial_{j}F=0 is a sufficient condition for both projective flatness and dual flatness of F¯\overline{F}, but is neither a necessary condition for projective flatness nor dual flatness of F¯\overline{F}.

  • Two interesting special cases are considered: (i) when the anisotropic conformal factor depends on position only, (ii) when the anisotropic conformal factor depends on direction only. In the first case our anisotropic conformal transformation reduces to the well-known (isotropic) conformal transformation which was initiated in [9] and in the second case some interesting results are obtained.

This work will be continued in a forthcoming paper: “Anisotropic conformal transformation of conic pseudo-Finsler surface, IIII”, where further geometric properties along with special Finsler spaces will be investigated.

References

  • [1] P. L. Antonelli, R. S. Ingarden and M. Matsumoto, The theory of sprays and pseudo-Finsler spaces with applications in physics and biology, Kluwer Acad. Publ., 1993.
  • [2] S. Bacso and C. Xinyue, Finsler conformal transformations and the curvature invariances, Publ. Math. Debrecen, 70 (2007), 221-231.
  • [3] L. Berwald, On Finsler and Cartan geometries. III Two-dimensional Finsler spaces with rectilinear extremals, Ann. Math., 42 (1941), 84-112.
  • [4] I. Bucataru and R. Miron, Finsler-Lagrange geometry: Applications to dynamical systems, Editura Academiei Romane, 2007.
  • [5] X. Cheng, Z. Shen and Y. Zhou, On locally dually flat Finsler metrics, Int. J. Math., 21 (2010), 1531–1543.
  • [6] S. S. Chern and Z. Shen, Riemann-Finsler Geometry, World Scientific publ., Singapore, 2005.
  • [7] S. Elgendi and Z. Muzsnay, Metrizability of holonomy invariant projective deformation of sprays, Can. Math. Bull., 66 (2020), 1–14. arXiv: 1912.02257v1 [math.DG].
  • [8] J. Grifone, Structure présque-tangente et connexions, Ann. Inst. Fourier, Grenoble, 22 (1) (1972), 287-334.
  • [9] M. Hashiguchi, On conformal transformations of Finsler metrics, J. Math. Kyoto Univ., 16 (1976), 25–50.
  • [10] B. T. Hassan and F. Mesabah, Conformal transformations in Finsler Geometry, In: M. Anastasiei and P. L. Antonelli (Eds), Finsler and Lagrange Geometry, Kluwer Acad. Publ., 2003.
  • [11] P. R. Holland, Electromagnetism, Particles and Anholonomy, Phys. Lett., 91 (6) (1982), 275–278.
  • [12] M. A. Javaloyes and M. Sánchez, On the definition and examples of cones and Finsler spacetimes, Rev. R. Acad. Cienc., 114 (2020), 30- 46. arXiv: 1805.06978v4 [math.DG].
  • [13] M. A. Javaloyes and L. B. Soares, Geodesics and Jacobi fields of pseudo-Finsler manifolds, Publ. Math. Debrecen, 87 (2014), 57-78. arXiv: 1401.8149v3 [math.DG].
  • [14] M. A. Javaloyes and L. B. Soares, Anisotropic conformal invariance of lightlike geodesics in pseudo-Finsler manifolds, Class. Quantum Grav., 38 (2021), 025002-025017. arXiv: 2006.14959v1 [math.DG].
  • [15] M. S. Knebelman, Conformal geometry of generalized metric spaces, Proc. Nat, Acad. Sci. USA, 15 (1929), 376-379.
  • [16] J. W. Maluf and F. Faria, Conformally invariant teleparallel theories of gravity, Phys. Rev. D., 85 (2012), 027502-027506. arXiv: 1110.3095v3 [gr-qc].
  • [17] M. Matsumoto, Finsler geometry in the 20th-century, In: Handbook of Finsler geometry, Kluwer. Acad. Publ., 2003.
  • [18] C. Pfeifer, S. Heefer and A. Fuster, Identifying Berwald Finsler geometries, Differ. Geom. Appl., 79 (2021), 101817-101828. arXiv: 1909.05284v3 [math.DG].
  • [19] H. Rund, Differential geometry of Finsler spaces, Springer, Berlin, 1959.
  • [20] Y. Shen and Z. Shen, Introduction to modern Finsler geometry, World Scientific Publ., Singapore, 2016.
  • [21] N. Voicu, Conformal maps between pseudo-Finsler spaces, Int. J. Geom. Methods Mod. Phys., 15 (2018), 1850003. arXiv: 1706.01569v2 [math.DG].
  • [22] Nabil L. Youssef, A. Soleiman and Ebtsam H. Taha, New conformal invariants in absolute parallelism geometry, Int. J. Geom. Methods Mod. Phys., 15 (1) (2018), 1850012-1850021. arXiv: 1604.00474v2 [math.DG].

See pages 1-4 of Maple-code.pdf