This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Hiroki Ishizaka 22institutetext: Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
22email: h.ishizaka005@gmail.com
33institutetext: Kenta Kobayashi44institutetext: Graduate School of Business Administration, Hitotsubashi University, Kunitachi, Japan
44email: kenta.k@r.hit-u.ac.jp
55institutetext: Takuya Tsuchiya 66institutetext: Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
66email: tsuchiya@math.sci.ehime-u.ac.jp

Anisotropic interpolation error estimates using a new geometric parameter

Hiroki Ishizaka    Kenta Kobayashi    Takuya Tsuchiya
(Received: date / Accepted: date)
Abstract

We present precise anisotropic interpolation error estimates for smooth functions using a new geometric parameter and derive inverse inequalities on anisotropic meshes. In our theory, the interpolation error is bounded in terms of the diameter of a simplex and the geometric parameter. Imposing additional assumptions makes it possible to obtain anisotropic error estimates. This paper also includes corrections to an error in Theorem 2 of our previous paper, “General theory of interpolation error estimates on anisotropic meshes” (Japan Journal of Industrial and Applied Mathematics, 38 (2021) 163-191).

Keywords:
Finite element Interpolation error estimates Anisotropic meshes
MSC:
65D05 65N30
journal: Japan Journal of Industrial and Applied Mathematics

1 Introduction

Analyzing the errors of interpolations on dd-simplices is an important subject in numerical analysis. It is particularly crucial for finite element error analysis. Let us briefly outline the problems considered in this paper using the Lagrange interpolation operator.

Let d{1,2,3}d\in\{1,2,3\}. Let T^d\widehat{T}\subset\mathbb{R}^{d} and T0dT_{0}\subset\mathbb{R}^{d} be a reference element and a simplex, respectively, that are affine equivalent. Let us consider two Lagrange finite elements {T^,P^:=𝒫k,Σ^}\{\widehat{T},\widehat{P}:=\mathcal{P}^{k},\widehat{\Sigma}\} and {T0,P:=𝒫k,Σ}\{{T}_{0},{P}:=\mathcal{P}^{k},{\Sigma}\} with associated normed vector spaces V(T^):=𝒞(T^)V(\widehat{T}):=\mathcal{C}(\widehat{T}) and V(T0):=𝒞(T0)V(T_{0}):=\mathcal{C}(T_{0}) with kk\in\mathbb{N}, where 𝒫m\mathcal{P}^{m} is the space of polynomials with degree at most m0:={0}m\in\mathbb{N}_{0}:=\mathbb{N}\cup\{0\}. For φ^V(T^)\hat{\varphi}\in V(\widehat{T}), we use the correspondences

(φ0:T0)(φ^:=φ0Φ:T^),\displaystyle(\varphi_{0}:T_{0}\to\mathbb{R})\to(\hat{\varphi}:={\varphi}_{0}\circ{\Phi}:\widehat{T}\to\mathbb{R}),

where Φ\Phi is an affine mapping. Let IT^k:V(T^)𝒫kI_{\widehat{T}}^{k}:V(\widehat{T})\to\mathcal{P}^{k} and IT0k:V(T0)𝒫kI_{{T}_{0}}^{k}:V({T}_{0})\to\mathcal{P}^{k} be the corresponding Lagrange interpolation operators. Details can be found in Section 2.3.

We first consider the case in which d=1d=1. Let Ω:=(0,1)\Omega:=(0,1)\subset\mathbb{R}. For NN\in\mathbb{N}, let 𝕋h={0=x0<x1<<xN<xN+1=1}\mathbb{T}_{h}=\{0=x_{0}\textless x_{1}\textless\cdots\textless x_{N}\textless x_{N+1}=1\} be a mesh of Ω¯\overline{\Omega} such as

Ω¯:=i=1NT0i,intT0iintT0j=for ij,\displaystyle\displaystyle\overline{\Omega}:=\bigcup_{i=1}^{N}T_{0}^{i},\quad\mathop{\rm{int}}T_{0}^{i}\cap\mathop{\rm{int}}T_{0}^{j}=\emptyset\quad\text{for $i\neq j$},

where T0i:=[xi,xi+1]T_{0}^{i}:=[x_{i},x_{i+1}] for 0iN0\leq i\leq N. We denote hi:=xi+1xih_{i}:=x_{i+1}-x_{i} for 0iN0\leq i\leq N. If we set xj:=jN+1x_{j}:=\frac{j}{N+1} for j=0,1,,N,N+1j=0,1,\ldots,N,N+1, the mesh 𝕋h\mathbb{T}_{h} is said to be the uniform mesh. If we set xj:=g(jN+1)x_{j}:=g\left(\frac{j}{N+1}\right) for j=1,,N,N+1j=1,\ldots,N,N+1 with a grading function gg, the mesh 𝕋h\mathbb{T}_{h} is said to be the graded mesh with respect to x=0x=0; see BabSur94 . In particular, when g(y):=yεg(y):=y^{\varepsilon} (ε>0\varepsilon\textgreater 0), the mesh is called the radical mesh. To obtain the Lagrange interpolation error estimates, we impose standard assumptions and specify that ,m0\ell,m\in\mathbb{N}_{0} and p,q[1,]p,q\in[1,\infty] such that

0m+1:W+1,p(T^)Wm,q(T^).\displaystyle\displaystyle 0\leq m\leq\ell+1:\quad W^{\ell+1,p}(\widehat{T})\hookrightarrow W^{m,q}(\widehat{T}). (1)

Under these assumptions, the following holds for any φ0W+1,p(T0i)\varphi_{0}\in W^{\ell+1,p}(T_{0}^{i}) with φ^=φ0Φ\hat{\varphi}=\varphi_{0}\circ\Phi:

|φ0IT0ikφ0|Wm,q(T0i)\displaystyle\displaystyle|\varphi_{0}-{I}_{T_{0}^{i}}^{k}\varphi_{0}|_{W^{m,q}(T_{0}^{i})} chi1q1p++1m|φ0|W+1,p(T0i).\displaystyle\leq ch_{i}^{\frac{1}{q}-\frac{1}{p}+\ell+1-m}|\varphi_{0}|_{W^{\ell+1,p}(T_{0}^{i})}. (2)

The proof of this statement is standard; see ErnGue04 . When p=qp=q, it is possible to obtain optimal error estimates even if the scale is different for each element. When q>pq\textgreater p, the order of convergence of the interpolation operator may deteriorate.

We now consider the cases in which d=2,3d=2,3. Let Ωd\Omega\subset\mathbb{R}^{d} be a bounded polyhedral domain. Let 𝕋h={T0}\mathbb{T}_{h}=\{T_{0}\} be a simplicial mesh of Ω¯\overline{\Omega} made up of closed dd-simplices, such as

Ω¯=T0𝕋hT0\displaystyle\displaystyle\overline{\Omega}=\bigcup_{T_{0}\in\mathbb{T}_{h}}T_{0}

with h:=maxT0𝕋hhT0h:=\max_{T_{0}\in\mathbb{T}_{h}}h_{T_{0}}, where hT0:=diam(T0)h_{T_{0}}:=\mathop{\mathrm{diam}}(T_{0}). For simplicity, we assume that 𝕋h\mathbb{T}_{h} is conformal. That is, 𝕋h\mathbb{T}_{h} is a simplicial mesh of Ω¯\overline{\Omega} without hanging nodes. Let T^d\widehat{T}\subset\mathbb{R}^{d} be the reference element defined in Section 2 and Φ\Phi be the affine mapping defined in Eq. (13). For any T0𝕋hT_{0}\in\mathbb{T}_{h}, it holds that T0=Φ(T^)T_{0}=\Phi(\widehat{T}). Under the standard assumptions and Eq. (1), the following holds for any φ0W+1,p(T0)\varphi_{0}\in W^{\ell+1,p}(T_{0}) with φ^=φ0Φ\hat{\varphi}=\varphi_{0}\circ\Phi:

|φ0IT0kφ0|Wm,q(T0)\displaystyle\displaystyle|\varphi_{0}-{I}_{T_{0}}^{k}\varphi_{0}|_{W^{m,q}(T_{0})} c|T0|1q1p(αmaxαmin)m(HT0hT0)mhT0+1m|φ0|W+1,p(T0),\displaystyle\leq c|T_{0}|^{\frac{1}{q}-\frac{1}{p}}\left(\frac{\alpha_{\max}}{\alpha_{\min}}\right)^{m}\left(\frac{H_{T_{0}}}{h_{T_{0}}}\right)^{m}h_{T_{0}}^{\ell+1-m}|\varphi_{0}|_{W^{\ell+1,p}(T_{0})}, (3)

where |T0||T_{0}| is the measure of T0T_{0}, the parameters αmax\alpha_{\max} and αmin\alpha_{\min} are defined in Eq. (50), and the parameter HT0H_{T_{0}} is as proposed in a recent paper IshKobTsu ; see Section 2.4 for a definition. The proof of estimate (3) can be found in Section 5. Compared with the one-dimensional case, the quantities αmax/αmin\alpha_{\max}/\alpha_{\min} and HT0/hT0H_{T_{0}}/h_{T_{0}} negatively affect the order of convergence and do not appear in Eq.(2). The two quantities αmax/αmin\alpha_{\max}/\alpha_{\min} and HT0/hT0H_{T_{0}}/h_{T_{0}} are considered in Section 7.1. As a mesh condition, the shape-regularity condition is widely used and well known. This condition states that there exists a constant γ>0\gamma\textgreater 0 such that

ρT0γhT0𝕋h{𝕋h},T0𝕋h,\displaystyle\displaystyle\rho_{T_{0}}\geq\gamma h_{T_{0}}\quad\forall\mathbb{T}_{h}\in\{\mathbb{T}_{h}\},\quad\forall T_{0}\in\mathbb{T}_{h}, (4)

where ρT0\rho_{T_{0}} is the radius of the inscribed ball of T0T_{0}. Under this condition, it holds that

|φ0IT0kφ0|Wm,q(T0)\displaystyle\displaystyle|\varphi_{0}-{I}_{T_{0}}^{k}\varphi_{0}|_{W^{m,q}(T_{0})} c|T0|1q1phT0+1m|φ0|W+1,p(T0);\displaystyle\leq c|T_{0}|^{\frac{1}{q}-\frac{1}{p}}h_{T_{0}}^{\ell+1-m}|\varphi_{0}|_{W^{\ell+1,p}(T_{0})}; (5)

see Section 7.1.1. If condition (4) is violated (i.e., the simplex becomes too flat as hT00h_{T_{0}}\to 0), the quantity

(αmaxαmin)m(HT0hT0)mhT0+1m\displaystyle\displaystyle\left(\frac{\alpha_{\max}}{\alpha_{\min}}\right)^{m}\left(\frac{H_{T_{0}}}{h_{T_{0}}}\right)^{m}h_{T_{0}}^{\ell+1-m}

may diverge even when p=qp=q. The effect of the quantity |T0|1q1p|T_{0}|^{\frac{1}{q}-\frac{1}{p}} on the interpolation error estimates is considered in Section 7.2.

In some cases, it is not necessary for condition (4) to hold to obtain Eq. (5). The shape-regularity condition can be relaxed to the maximum-angle condition, as stated in Eqs. (20) and (21), for both two-dimensional BabAzi76 and three-dimensional cases Kri92 . Anisotropic interpolation theory has also been developed ApeDob92 ; Ape99 ; CheShiZha04 . The idea of Apel et al. is to construct a set of functionals satisfying conditions (54), (55), and (56). The introduction of these functionals makes it possible to remove the quantity αmax/αmin\alpha_{\max}/\alpha_{\min}. Under the conditions of the maximum angle and coordinate system, anisotropic interpolation error estimates can then be deduced (e.g., see Ape99 ).

In contrast, this paper proposes anisotropic interpolation error estimates using the new parameter under conditions (54), (55), and (56) and Assumption 1; i.e., we derive the following anisotropic error estimate (Theorem B, in particular, Corollary 1):

|φ0IT0kφ0|Wm,q(T0)\displaystyle|{\varphi}_{0}-I_{{T}_{0}}^{k}{\varphi}_{0}|_{W^{m,q}({T}_{0})}
c|T0|1q1p(HT0hT0)m|γ|=mγ|γ(φ0ΦT0)|Wm,p(ΦT01(T0)),\displaystyle\quad\leq c|T_{0}|^{\frac{1}{q}-\frac{1}{p}}\left(\frac{H_{T_{0}}}{h_{T_{0}}}\right)^{m}\sum_{|\gamma|=\ell-m}\mathscr{H}^{\gamma}|\partial^{\gamma}{(\varphi_{0}\circ\Phi_{T_{0}})}|_{W^{m,p}(\Phi_{T_{0}}^{-1}(T_{0}))}, (6)

where ΦT0\Phi_{T_{0}} is defined in Eq. (12), γ:=(γ1,,γd)0d\gamma:=(\gamma_{1},\ldots,\gamma_{d})\in\mathbb{N}_{0}^{d} is a multi-index, and γ\mathscr{H}^{\gamma} is specified in Definition 3. Theorem B applies to interpolations other than the Lagrange interpolation, and the basis for the proof of Theorem B is the scaling argument described in Section 3.

Because the new geometric parameter is used in the interpolation error analysis, the coefficient cc used in the error estimation is independent of the geometry of the simplices, and the error estimations obtained may therefore be applied to arbitrary meshes, including very “flat” or anisotropic simplices. Furthermore, we are naturally able to consider the following geometric condition as being sufficient to obtain optimal order estimates (when p=qp=q): there exists γ0>0\gamma_{0}\textgreater 0 such that

HT0hT0γ0𝕋h{𝕋h},T0𝕋h.\displaystyle\displaystyle\frac{H_{T_{0}}}{h_{T_{0}}}\leq\gamma_{0}\quad\forall\mathbb{T}_{h}\in\{\mathbb{T}_{h}\},\quad\forall T_{0}\in\mathbb{T}_{h}. (7)

Condition (7) appears to be simpler than the maximum-angle condition. Furthermore, the quantity HT0/hT0H_{T_{0}}/h_{T_{0}} can be easily calculated in the numerical process of finite element methods. Therefore, the new condition may be useful. A recent paper IshKobSuzTsu21 showed that the new condition is satisfied if and only if the maximum-angle condition holds. We expect the new mesh condition to become an alternative to the maximum-angle condition.

Furthermore, under Assumption 1, component-wise inverse inequalities can be deduced as (see Section 7.3):

γφhLq(T)CIVC|T|1q1pγφhLp(T).\displaystyle\displaystyle\|\partial^{\gamma}\varphi_{h}\|_{L^{q}(T)}\leq C^{IVC}|T|^{\frac{1}{q}-\frac{1}{p}}\mathscr{H}^{-\gamma}\|{\varphi}_{h}\|_{L^{p}({T})}.

In a previous paper IshKobTsu , the present authors developed new interpolation error estimations in a general framework and derived Raviart–Thomas interpolations on dd-simplices. However, the statement of Theorem 2 in IshKobTsu includes a mistake. That is, under standard assumptions, the quantity αmax/αmin\alpha_{\max}/\alpha_{\min} cannot be removed. We need to modify the statement of this theorem to correct this error. The current paper presents Theorems A (see Section 5) and B (see Section 6), which replace Theorem 2 of IshKobTsu . In Section 4, we explain the inaccuracies in the proof of Theorem 2 in IshKobTsu and describe how the results can be recovered using our Theorems A and B. Furthermore, the Babuška and Aziz technique is generally not applicable on anisotropic meshes in the proof of Theorem 3 in IshKobTsu . Details will be discussed in a coming paper Ish21 .

When there is no ambiguity, we use the notation and definitions given in IshKobTsu . Throughout this paper, cc denotes a constant independent of hh (defined later), unless specified otherwise. These values may change in each context. +\mathbb{R}_{+} is the set of positive real numbers.

2 Strategy for constructing anisotropic interpolation theory

In standard interpolation theory, one introduces an affine mapping that connects the reference element to the mesh element. However, on anisotropic meshes, the interpolation errors may be overestimated. Therefore, our strategy is to divide the transformation into three affine mappings.

2.1 Standard positions of simplices

We recall (IshKobTsu, , Section 3). Let us first define a diagonal matrix A^(d)\widehat{A}^{(d)} as

A^(d):=diag(α1,,αd),αi+i.\displaystyle\displaystyle\widehat{A}^{(d)}:=\mathop{\mathrm{diag}}(\alpha_{1},\ldots,\alpha_{d}),\quad\alpha_{i}\in\mathbb{R}_{+}\quad\forall i. (8)

2.1.1 Two-dimensional case

Let T^2\widehat{T}\subset\mathbb{R}^{2} be the reference triangle with vertices x^1:=(0,0)T\hat{x}_{1}:=(0,0)^{T}, x^2:=(1,0)T\hat{x}_{2}:=(1,0)^{T}, and x^3:=(0,1)T\hat{x}_{3}:=(0,1)^{T}.

Let 𝔗~(2)\widetilde{\mathfrak{T}}^{(2)} be the family of triangles

T~=A^(2)(T^)\displaystyle\displaystyle\widetilde{T}=\widehat{A}^{(2)}(\widehat{T})

with vertices x~1:=(0,0)T\tilde{x}_{1}:=(0,0)^{T}, x~2:=(α1,0)T\tilde{x}_{2}:=(\alpha_{1},0)^{T}, and x~3:=(0,α2)T\tilde{x}_{3}:=(0,\alpha_{2})^{T}.

We next define the regular matrices A~2×2\widetilde{A}\in\mathbb{R}^{2\times 2} by

A~:=(1s0t),\displaystyle\displaystyle\widetilde{A}:=\begin{pmatrix}1&s\\ 0&t\\ \end{pmatrix}, (9)

with parameters

s2+t2=1,t>0.\displaystyle\displaystyle s^{2}+t^{2}=1,\quad t\textgreater 0.

For T~𝔗~(2)\widetilde{T}\in\widetilde{\mathfrak{T}}^{(2)}, let 𝔗(2)\mathfrak{T}^{(2)} be the family of triangles

T\displaystyle\displaystyle T =A~(T~)\displaystyle=\widetilde{A}(\widetilde{T})

with vertices x1:=(0,0)T,x2:=(α1,0)T,x3:=(α2s,α2t)Tx_{1}:=(0,0)^{T},\ x_{2}:=(\alpha_{1},0)^{T},\ x_{3}:=(\alpha_{2}s,\alpha_{2}t)^{T}. We then have that α1=|x1x2|>0\alpha_{1}=|x_{1}-x_{2}|\textgreater 0 and α2=|x1x3|>0\alpha_{2}=|x_{1}-x_{3}|\textgreater 0.

2.1.2 Three-dimensional case

Let T^1\widehat{T}_{1} and T^2\widehat{T}_{2} be reference tetrahedra with the following vertices:

(i)

T^1\widehat{T}_{1} has the vertices x^1:=(0,0,0)T\hat{x}_{1}:=(0,0,0)^{T}, x^2:=(1,0,0)T\hat{x}_{2}:=(1,0,0)^{T}, x^3:=(0,1,0)T\hat{x}_{3}:=(0,1,0)^{T}, x^4:=(0,0,1)T\hat{x}_{4}:=(0,0,1)^{T};

(ii)

T^2\widehat{T}_{2} has the vertices x^1:=(0,0,0)T\hat{x}_{1}:=(0,0,0)^{T}, x^2:=(1,0,0)T\hat{x}_{2}:=(1,0,0)^{T}, x^3:=(1,1,0)T\hat{x}_{3}:=(1,1,0)^{T}, x^4:=(0,0,1)T\hat{x}_{4}:=(0,0,1)^{T}.

Let 𝔗~i(3)\widetilde{\mathfrak{T}}_{i}^{(3)}, i=1,2i=1,2, be the family of triangles

T~i=A^(3)(T^i),i=1,2,\displaystyle\displaystyle\widetilde{T}_{i}=\widehat{A}^{(3)}(\widehat{T}_{i}),\quad i=1,2,

with vertices

(i)

x~1:=(0,0,0)T\tilde{x}_{1}:=(0,0,0)^{T}, x~2:=(α1,0,0)T\tilde{x}_{2}:=(\alpha_{1},0,0)^{T}, x~3:=(0,α2,0)T\tilde{x}_{3}:=(0,\alpha_{2},0)^{T}, and x~4:=(0,0,α3)T\tilde{x}_{4}:=(0,0,\alpha_{3})^{T};

(ii)

x~1:=(0,0,0)T\tilde{x}_{1}:=(0,0,0)^{T}, x~2:=(α1,0,0)T\tilde{x}_{2}:=(\alpha_{1},0,0)^{T}, x~3:=(α1,α2,0)T\tilde{x}_{3}:=(\alpha_{1},\alpha_{2},0)^{T}, and x~4:=(0,0,α3)T\tilde{x}_{4}:=(0,0,\alpha_{3})^{T}.

We next define the regular matrices A~1,A~23×3\widetilde{A}_{1},\widetilde{A}_{2}\in\mathbb{R}^{3\times 3} by

A~1:=(1s1s210t1s2200t2),A~2:=(1s1s210t1s2200t2)\displaystyle\displaystyle\widetilde{A}_{1}:=\begin{pmatrix}1&s_{1}&s_{21}\\ 0&t_{1}&s_{22}\\ 0&0&t_{2}\\ \end{pmatrix},\ \widetilde{A}_{2}:=\begin{pmatrix}1&-s_{1}&s_{21}\\ 0&t_{1}&s_{22}\\ 0&0&t_{2}\\ \end{pmatrix} (10)

with parameters

{s12+t12=1,s1>0,t1>0,α2s1α1/2,s212+s222+t22=1,t2>0,α3s21α1/2.\displaystyle\displaystyle\begin{cases}s_{1}^{2}+t_{1}^{2}=1,\ s_{1}\textgreater 0,\ t_{1}\textgreater 0,\ \alpha_{2}s_{1}\leq\alpha_{1}/2,\\ s_{21}^{2}+s_{22}^{2}+t_{2}^{2}=1,\ t_{2}\textgreater 0,\ \alpha_{3}s_{21}\leq\alpha_{1}/2.\end{cases}

For T~i𝔗~i(3)\widetilde{T}_{i}\in\widetilde{\mathfrak{T}}_{i}^{(3)}, i=1,2i=1,2, let 𝔗i(3)\mathfrak{T}_{i}^{(3)}, i=1,2i=1,2, be the family of tetrahedra

Ti\displaystyle\displaystyle T_{i} =A~i(T~i),i=1,2,\displaystyle=\widetilde{A}_{i}(\widetilde{T}_{i}),\quad i=1,2,

with vertices

x1:=(0,0,0)T,x2:=(α1,0,0)T,x4:=(α3s21,α3s22,α3t2)T,\displaystyle x_{1}:=(0,0,0)^{T},\ x_{2}:=(\alpha_{1},0,0)^{T},\ x_{4}:=(\alpha_{3}s_{21},\alpha_{3}s_{22},\alpha_{3}t_{2})^{T},
{x3:=(α2s1,α2t1,0)Tfor case (i),x3:=(α1α2s1,α2t1,0)Tfor case (ii).\displaystyle\begin{cases}x_{3}:=(\alpha_{2}s_{1},\alpha_{2}t_{1},0)^{T}\quad\text{for case (i)},\\ x_{3}:=(\alpha_{1}-\alpha_{2}s_{1},\alpha_{2}t_{1},0)^{T}\quad\text{for case (ii)}.\end{cases}

We then have α1=|x1x2|>0\alpha_{1}=|x_{1}-x_{2}|\textgreater 0, α3=|x1x4|>0\alpha_{3}=|x_{1}-x_{4}|\textgreater 0, and

α2={|x1x3|>0for case (i),|x2x3|>0for case (ii).\displaystyle\displaystyle\alpha_{2}=\begin{cases}|x_{1}-x_{3}|\textgreater 0\quad\text{for case (i)},\\ |x_{2}-x_{3}|\textgreater 0\quad\text{for case (ii)}.\end{cases}

In the following, we impose conditions for T𝔗(2)T\in\mathfrak{T}^{(2)} in the two-dimensional case and T𝔗1(3)𝔗2(3)=:𝔗(3)T\in\mathfrak{T}_{1}^{(3)}\cup\mathfrak{T}_{2}^{(3)}=:\mathfrak{T}^{(3)} in the three-dimensional case.

Condition 1 (Case in which d=2d=2)

Let T𝔗(2)T\in\mathfrak{T}^{(2)} with the vertices xix_{i} (i=1,,3i=1,\ldots,3) introduced in Section 2.1.1. We assume that x2x3¯\overline{x_{2}x_{3}} is the longest edge of TT; i.e., hT:=|x2x3|h_{T}:=|x_{2}-x_{3}|. Recall that α1=|x1x2|\alpha_{1}=|x_{1}-x_{2}| and α2=|x1x3|\alpha_{2}=|x_{1}-x_{3}|. We then assume that α2α1\alpha_{2}\leq\alpha_{1}. Note that α1=𝒪(hT)\alpha_{1}=\mathcal{O}(h_{T}).

Condition 2 (Case in which d=3d=3)

Let T𝔗(3)T\in\mathfrak{T}^{(3)} with the vertices xix_{i} (i=1,,4i=1,\ldots,4) introduced in Section 2.1.2. Let LiL_{i} (1i61\leq i\leq 6) be the edges of TT. We denote by LminL_{\min} the edge of TT that has the minimum length; i.e., |Lmin|=min1i6|Li||L_{\min}|=\min_{1\leq i\leq 6}|L_{i}|. We set α2:=|Lmin|\alpha_{2}:=|L_{\min}| and assume that

the end points of Lmin are either {x1,x3} or {x2,x3}.\displaystyle\text{the end points of $L_{\min}$ are either $\{x_{1},x_{3}\}$ or $\{x_{2},x_{3}\}$}.

Among the four edges that share an end point with LminL_{\min}, we take the longest edge Lmax(min)L^{({\min})}_{\max}. Let x1x_{1} and x2x_{2} be the end points of edge Lmax(min)L^{({\min})}_{\max}. Thus, we have that

α1=|Lmax(min)|=|x1x2|.\displaystyle\displaystyle\alpha_{1}=|L^{(\min)}_{\max}|=|x_{1}-x_{2}|.

Consider cutting 3\mathbb{R}^{3} with the plane that contains the midpoint of edge Lmax(min)L^{(\min)}_{\max} and is perpendicular to the vector x1x2x_{1}-x_{2}. We then have two cases:

(Type i)

x3x_{3} and x4x_{4} belong to the same half-space;

(Type ii)

x3x_{3} and x4x_{4} belong to different half-spaces.

In each respective case, we set

(Type i)

x1x_{1} and x3x_{3} as the end points of LminL_{\min}, that is, α2=|x1x3|\alpha_{2}=|x_{1}-x_{3}|;

(Type ii)

x2x_{2} and x3x_{3} as the end points of LminL_{\min}, that is, α2=|x2x3|\alpha_{2}=|x_{2}-x_{3}|.

Finally, we set α3=|x1x4|\alpha_{3}=|x_{1}-x_{4}|. Note that we implicitly assume that x1x_{1} and x4x_{4} belong to the same half-space. In addition, note that α1=𝒪(hT)\alpha_{1}=\mathcal{O}(h_{T}).

Remark 1

Let 𝕋h\mathbb{T}_{h} be a conformal mesh. We assume that any simplex T0𝕋hT_{0}\in\mathbb{T}_{h} is transformed into T1𝔗(2)T_{1}\in\mathfrak{T}^{(2)} such that Condition 1 is satisfied (in the two-dimensional case) or Ti𝔗i(3)T_{i}\in\mathfrak{T}_{i}^{(3)}, i=1,2i=1,2, such that Condition 2 is satisfied (in the three-dimensional case) through appropriate rotation, translation, and mirror imaging. Note that none of the lengths of the edges of a simplex or the measure of the simplex is changed by the transformation.

Assumption 1

In anisotropic interpolation error analysis, we may impose the following geometric conditions for the simplex TT:

  1. 1.

    If d=2d=2, there are no additional conditions;

  2. 2.

    If d=3d=3, there exists a positive constant MM, independent of hTh_{T}, such that |s22|Mα2t1α3|s_{22}|\leq M\frac{\alpha_{2}t_{1}}{\alpha_{3}}. Note that if s220s_{22}\neq 0, this condition means that the order with respect to hTh_{T} of α3\alpha_{3} coincides with the order of α2\alpha_{2}, whereas if s22=0s_{22}=0, the order of α3\alpha_{3} may be different from that of α2\alpha_{2}.

2.2 Affine mappings

In our strategy, we adopt the following affine mappings.

Definition 1 (Affine mappings)

Let T~,T^d\widetilde{T},\widehat{T}\subset\mathbb{R}^{d} be the simplices defined in Sections 2.1.1 and 2.1.2. That is,

T~=Φ^(T^),T=Φ~(T~)withx~:=Φ^(x^):=A^(d)x^,x:=Φ~(x~):=A~x~.\displaystyle\displaystyle\widetilde{T}=\widehat{\Phi}(\widehat{T}),\quad{T}=\widetilde{\Phi}(\widetilde{T})\quad\text{with}\quad\tilde{x}:=\widehat{\Phi}(\hat{x}):=\widehat{{A}}^{(d)}\hat{x},\quad x:=\widetilde{\Phi}(\tilde{x}):=\widetilde{{A}}\tilde{x}.

We then define an affine mapping ΦT:T^T\Phi_{T}:\widehat{T}\to T as

ΦT:=Φ~Φ^:T^T,x:=ΦT(x^):=ATx^,AT:=A~A^(d).\displaystyle\displaystyle\Phi_{T}:=\widetilde{\Phi}\circ\widehat{\Phi}:\widehat{T}\to T,\ {x}:={\Phi}_{T}(\hat{x}):={{A}}_{T}\hat{x},\quad{A}_{T}:=\widetilde{{A}}\widehat{{A}}^{(d)}. (11)

Furthermore, let ΦT0\Phi_{T_{0}} be an affine mapping defined as

ΦT0:TxAT0x+bT0T0,\displaystyle\displaystyle\Phi_{T_{0}}:T\ni x\mapsto{A}_{T_{0}}x+b_{T_{0}}\in T_{0}, (12)

where bT0db_{T_{0}}\in\mathbb{R}^{d} and AT0O(d){A}_{T_{0}}\in O(d) is a rotation and mirror imaging matrix. We then define an affine mapping Φ:T^T0\Phi:\widehat{T}\to T_{0} as

Φ:=ΦT0ΦT:T^T0,x(0):=Φ(x^)=(ΦT0ΦT)(x^)=Ax^+bT0,\displaystyle\displaystyle\Phi:={\Phi}_{T_{0}}\circ{\Phi}_{T}:\widehat{T}\to T_{0},\ x^{(0)}:=\Phi(\hat{x})=({\Phi}_{T_{0}}\circ{\Phi}_{T})(\hat{x})={A}\hat{x}+b_{T_{0}}, (13)

where A:=AT0AT{A}:={A}_{T_{0}}{A}_{T}.

2.3 Finite element generation

We follow the procedure described in (ErnGue04, , Section 1.4.1 and 1.2.1); see also (IshKobTsu, , Section 3.5).

For the reference element T^\widehat{T} defined in Sections 2.1.1 and 2.1.2, let {T^,P^,Σ^}\{\widehat{T},\widehat{{P}},\widehat{\Sigma}\} be a fixed reference finite element, where P^\widehat{{P}} is a vector space of functions p^:T^n\hat{p}:\widehat{T}\to\mathbb{R}^{n} for some positive integer nn (typically n=1n=1 or n=dn=d) and Σ^\widehat{\Sigma} is a set of n0n_{0} linear forms {χ^1,,χ^n0}\{\hat{\chi}_{1},\ldots,\hat{\chi}_{n_{0}}\} such that

P^p^(χ^1(p^),,χ^n0(p^))Tn0\displaystyle\displaystyle\widehat{{P}}\ni\hat{p}\mapsto(\hat{\chi}_{1}(\hat{p}),\ldots,\hat{\chi}_{n_{0}}(\hat{p}))^{T}\in\mathbb{R}^{n_{0}}

is bijective; i.e., Σ^\widehat{\Sigma} is a basis for (P^;)\mathcal{L}(\widehat{P};\mathbb{R}). Further, we denote by {θ^1,,θ^n0}\{\hat{\theta}_{1},\ldots,\hat{\theta}_{n_{0}}\} in P^\widehat{{P}} the local (n\mathbb{R}^{n}-valued) shape functions such that

χ^i(θ^j)=δij,1i,jn0.\displaystyle\displaystyle\hat{\chi}_{i}(\hat{\theta}_{j})=\delta_{ij},\quad 1\leq i,j\leq n_{0}.

Let V(T^)V(\widehat{T}) be a normed vector space of functions φ^:T^n\hat{\varphi}:\widehat{T}\to\mathbb{R}^{n} such that P^V(T^)\widehat{P}\subset V(\widehat{T}) and the linear forms {χ^1,,χ^n0}\{\hat{\chi}_{1},\ldots,\hat{\chi}_{n_{0}}\} can be extended to V(T^)V(\widehat{T})^{\prime}. The local interpolation operator IT^{I}_{\widehat{T}} is then defined by

IT^:V(T^)φ^i=1n0χ^i(φ^)θ^iP^.\displaystyle\displaystyle{I}_{\widehat{T}}:V(\widehat{T})\ni\hat{\varphi}\mapsto\sum_{i=1}^{n_{0}}\hat{\chi}_{i}(\hat{\varphi})\hat{\theta}_{i}\in\widehat{{P}}. (14)

It is obvious that

χ^i(IT^φ^)=χ^i(φ^)φ^V(T^),i=1,,n0,\displaystyle\hat{\chi}_{i}({I}_{\widehat{T}}\hat{\varphi})=\hat{\chi}_{i}(\hat{\varphi})\quad\forall\hat{\varphi}\in V(\widehat{T}),\quad i=1,\ldots,n_{0}, (15)
IT^p^=p^p^P^.\displaystyle I_{\widehat{T}}\hat{p}=\hat{p}\quad\forall\hat{p}\in\widehat{P}. (16)

Let Φ{\Phi} be the affine mapping defined in Eq. (13). For T0=Φ(T^)T_{0}={\Phi}(\widehat{T}), we first define a Banach space V(T0)V(T_{0}) of n\mathbb{R}^{n}-valued functions that is the counterpart of V(T^)V(\widehat{T}) and define a linear bijection mapping by

ψ:=ψT^ψT~ψT:V(T0)φφ^:=ψ(φ):=φΦV(T^)\displaystyle\displaystyle\psi:=\psi_{\widehat{T}}\circ\psi_{\widetilde{T}}\circ\psi_{T}:V(T_{0})\ni\varphi\mapsto\hat{\varphi}:=\psi(\varphi):=\varphi\circ\Phi\in V(\widehat{T})

with the three linear bijection mappings

ψT:V(T0)φ0φ:=ψT(φ0):=φ0ΦT0V(T),\displaystyle\psi_{{T}}:V({T}_{0})\ni\varphi_{0}\mapsto{\varphi}:=\psi_{{T}}(\varphi_{0}):=\varphi_{0}\circ{\Phi}_{T_{0}}\in V({T}),
ψT~:V(T)φφ~:=ψT~(φ):=φΦ~V(T~),\displaystyle\psi_{\widetilde{T}}:V({T})\ni\varphi\mapsto\tilde{\varphi}:=\psi_{\widetilde{T}}(\varphi):=\varphi\circ\widetilde{\Phi}\in V(\widetilde{T}),
ψT^:V(T~)φ~φ^:=ψT^(φ~):=φ~Φ^V(T^).\displaystyle\psi_{\widehat{T}}:V(\widetilde{T})\ni\tilde{\varphi}\mapsto\hat{\varphi}:=\psi_{\widehat{T}}(\tilde{\varphi}):=\tilde{\varphi}\circ\widehat{\Phi}\in V(\widehat{T}).

The triple {T~,P~,Σ~}\{\widetilde{T},\widetilde{P},\widetilde{\Sigma}\} is defined as

{T~=Φ^(T^);P~={ψT^1(p^);p^P^};Σ~={{χ~i}1in0;χ~i=χ^i(ψT^(p~)),p~P~,χ^iΣ^}.\displaystyle\displaystyle\begin{cases}\displaystyle\widetilde{T}=\widehat{\Phi}(\widehat{T});\\ \displaystyle\widetilde{P}=\{\psi_{\widehat{T}}^{-1}(\hat{p});\ \hat{p}\in\widehat{{P}}\};\\ \displaystyle\widetilde{\Sigma}=\{\{\tilde{\chi}_{i}\}_{1\leq i\leq n_{0}};\ \tilde{\chi}_{i}=\hat{\chi}_{i}(\psi_{\widehat{T}}(\tilde{p})),\forall\tilde{p}\in\widetilde{P},\hat{\chi}_{i}\in\widehat{\Sigma}\}.\end{cases}

The triples {T,P,Σ}\{{T},{P},{\Sigma}\} and {T0,P0,Σ0}\{{T}_{0},{P}_{0},{\Sigma}_{0}\} are similarly defined. These triples are finite elements and the local shape functions are θ~i=ψT^1(θ^i)\tilde{\theta}_{i}=\psi_{\widehat{T}}^{-1}(\hat{\theta}_{i}), θi=ψT~1(θ~i)\theta_{i}=\psi_{\widetilde{T}}^{-1}(\tilde{\theta}_{i}), and θ0,i:=ψT1(θi)\theta_{0,i}:=\psi_{T}^{-1}(\theta_{i}) for 1in01\leq i\leq n_{0}, and the associated local interpolation operators are respectively defined by

IT~:V(T~)φ~IT~φ~\displaystyle\displaystyle{I}_{\widetilde{T}}:V(\widetilde{T})\ni\tilde{\varphi}\mapsto{I}_{\widetilde{T}}\tilde{\varphi} :=i=1n0χ~i(φ~)θ~iP~,\displaystyle:=\sum_{i=1}^{n_{0}}\tilde{\chi}_{i}(\tilde{\varphi})\tilde{\theta}_{i}\in\widetilde{P}, (17)
IT:V(T)φITφ\displaystyle{I}_{T}:V(T)\ni\varphi\mapsto{I}_{T}\varphi :=i=1n0χi(φ)θiP,\displaystyle:=\sum_{i=1}^{n_{0}}\chi_{i}(\varphi)\theta_{i}\in{P}, (18)
IT0:V(T0)φ0IT0φ0\displaystyle{I}_{T_{0}}:V(T_{0})\ni\varphi_{0}\mapsto{I}_{T_{0}}\varphi_{0} :=i=1n0χ0,i(φ0)θiP0.\displaystyle:=\sum_{i=1}^{n_{0}}\chi_{0,i}(\varphi_{0})\theta_{i}\in{P}_{0}. (19)
Proposition 1

The diagrams

commute.

Proof

See, for example, (ErnGue04, , Proposition 1.62). ∎

2.4 New parameters

In a previous paper IshKobTsu , we proposed two geometric parameters,

Definition 2

The parameter HTH_{T} is defined as

HT:=i=1dαi|T|hT,\displaystyle\displaystyle H_{T}:=\frac{\prod_{i=1}^{d}\alpha_{i}}{|T|}h_{T},

and the parameter HT0H_{T_{0}} is defined as

HT0:=hT02|T0|min1i3|Li|if d=2,HT0:=hT02|T0|min1i,j6,ij|Li||Lj|if d=3\displaystyle\displaystyle H_{T_{0}}:=\frac{h_{T_{0}}^{2}}{|T_{0}|}\min_{1\leq i\leq 3}|L_{i}|\quad\text{if $d=2$},\quad H_{T_{0}}:=\frac{h_{T_{0}}^{2}}{|T_{0}|}\min_{1\leq i,j\leq 6,i\neq j}|L_{i}||L_{j}|\quad\text{if $d=3$}

where LiL_{i} denotes the edges of the simplex T0dT_{0}\subset\mathbb{R}^{d}.

The following lemma shows the equivalence between HTH_{T} and HT0H_{T_{0}}.

Lemma 1

It holds that

12HT0<HT<2HT0.\displaystyle\displaystyle\frac{1}{2}H_{T_{0}}\textless H_{T}\textless 2H_{T_{0}}.

Furthermore, in the two-dimensional case, HT0H_{T_{0}} is equivalent to the circumradius R2R_{2} of T0T_{0}.

Proof

The proof can be found in (IshKobTsu, , Lemma 3). ∎

Remark 2

We set

H(h):=maxT0𝕋hHT0.\displaystyle\displaystyle H(h):=\max_{T_{0}\in\mathbb{T}_{h}}H_{T_{0}}.

As we stated in the Introduction, if the maximum-angle condition is violated, the parameter H(h)H(h) may diverge as h0h\to 0 on anisotropic meshes. Therefore, imposing the maximum-angle condition for mesh partitions guarantees the convergence of finite element methods Apeet21 . Reference BabAzi76 studied cases in which the finite element solution may not converge to the exact solution.

We now state the following theorem concerning the new condition.

Theorem 1

Condition (7) holds if and only if there exist 0<γ1,γ2<π0\textless\gamma_{1},\gamma_{2}\textless\pi such that

d=2:θT0,maxγ1𝕋h{𝕋h},T0𝕋h,\displaystyle\displaystyle d=2:\quad\theta_{T_{0},\max}\leq\gamma_{1}\quad\forall\mathbb{T}_{h}\in\{\mathbb{T}_{h}\},\quad\forall T_{0}\in\mathbb{T}_{h}, (20)

where θT0,max\theta_{T_{0},\max} is the maximum angle of T0T_{0}, and

d=3:θT0,maxγ2,ψT0,maxγ2𝕋h{𝕋h},T0𝕋h,\displaystyle\displaystyle d=3:\quad\theta_{T_{0},\max}\leq\gamma_{2},\quad\psi_{T_{0},\max}\leq\gamma_{2}\quad\forall\mathbb{T}_{h}\in\{\mathbb{T}_{h}\},\quad\forall T_{0}\in\mathbb{T}_{h}, (21)

where θT0,max\theta_{T_{0},\max} is the maximum angle of all triangular faces of the tetrahedron T0T_{0} and ψT0,max\psi_{T_{0},\max} is the maximum dihedral angle of T0T_{0}. Conditions (20) and (21) together constitute the maximum-angle condition.

Proof

In the case of d=2d=2, we use the previous result presented in Kri91 ; i.e., there exists a constant γ3>0\gamma_{3}\textgreater 0 such that

R2hT0γ3𝕋h{𝕋h},T0𝕋h,\displaystyle\displaystyle\frac{R_{2}}{h_{T_{0}}}\leq\gamma_{3}\quad\forall\mathbb{T}_{h}\in\{\mathbb{T}_{h}\},\quad\forall T_{0}\in\mathbb{T}_{h},

if and only if condition (20) is satisfied. Combining this result with HT0H_{T_{0}} being equivalent to the circumradius R2R_{2} of T0T_{0}, we have the desired conclusion. In the case of d=3d=3, the proof can be found in a recent paper IshKobSuzTsu21 . ∎

Lemma 2

It holds that

A^(d)2\displaystyle\displaystyle\|\widehat{{A}}^{(d)}\|_{2} hT,A^(d)2(A^(d))12=max{α1,,αd}min{α1,,αd},\displaystyle\leq h_{T},\quad\|\widehat{{A}}^{(d)}\|_{2}\|(\widehat{{A}}^{(d)})^{-1}\|_{2}=\frac{\max\{\alpha_{1},\cdots,\alpha_{d}\}}{\min\{\alpha_{1},\cdots,\alpha_{d}\}}, (22a)
A~2\displaystyle\|\widetilde{{A}}\|_{2} {2if d=2,2if d=3,A~2A~12{α1α2|T|=HThTif d=2,23α1α2α3|T|=23HThTif d=3,\displaystyle\leq\begin{cases}\sqrt{2}\quad\text{if $d=2$},\\ 2\quad\text{if $d=3$},\end{cases}\quad\|\widetilde{{A}}\|_{2}\|\widetilde{{A}}^{-1}\|_{2}\leq\begin{cases}\frac{\alpha_{1}\alpha_{2}}{|T|}=\frac{H_{T}}{h_{T}}\quad\text{if $d=2$},\\ \frac{2}{3}\frac{\alpha_{1}\alpha_{2}\alpha_{3}}{|T|}=\frac{2}{3}\frac{H_{T}}{h_{T}}\quad\text{if $d=3$},\end{cases} (22b)
AT02\displaystyle\|A_{T_{0}}\|_{2} =1,AT012=1.\displaystyle=1,\quad\|A_{T_{0}}^{-1}\|_{2}=1. (22c)

Furthermore, we have

|det(AT)|=|det(A~)||det(A^(d))|=d!|T|,|det(AT0)|=1.\displaystyle\displaystyle|\det({A}_{T})|=|\det(\widetilde{{A}})||\det(\widehat{{A}}^{(d)})|=d!|T|,\quad|\det({A}_{T_{0}})|=1. (23)
Proof

The proof of (22b) can be found in (IshKobTsu, , (4.4), (4.5), (4.6), and (4.7)). The inequality (22a) is easily proved. Because AT0O(d)A_{T_{0}}\in O(d), one easily finds that AT01O(d)A_{T_{0}}^{-1}\in O(d) and recovers Eq. (22c). The proof of equality (23) is standard. ∎

For matrix Ad×dA\in\mathbb{R}^{d\times d}, we denote by [A]ij[{A}]_{ij} the (i,j)(i,j)-component of AA. We set Amax:=max1i,jd|[A]ij|\|A\|_{\max}:=\max_{1\leq i,j\leq d}|[{A}]_{ij}|. Furthermore, we use the inequality

AmaxA2.\displaystyle\displaystyle\|{A}\|_{\max}\leq\|{A}\|_{2}. (24)

3 Scaling argument

This section gives estimates related to a scaling argument corresponding to (ErnGue04, , Lemma 1.101). The estimates play major roles in our analysis. Furthermore, we use the following inequality (see (ErnGue04, , Exercise 1.20)). Let 0<rs0\textless r\leq s and ai0a_{i}\geq 0, i=1,2,,ni=1,2,\ldots,n (nn\in\mathbb{N}), be real numbers. Then, we have that

(i=1nais)1/s(i=1nair)1/r.\displaystyle\displaystyle\left(\sum_{i=1}^{n}a_{i}^{s}\right)^{1/s}\leq\left(\sum_{i=1}^{n}a_{i}^{r}\right)^{1/r}. (25)
Lemma 3

Let s0s\geq 0 and 1p1\leq p\leq\infty. There exist positive constants c1c_{1} and c2c_{2} such that, for all T0𝕋hT_{0}\in\mathbb{T}_{h} and φ0Ws,p(T0)\varphi_{0}\in W^{s,p}(T_{0}),

c1|φ0|Ws,p(T0)|φ|Ws,p(T)\displaystyle\displaystyle c_{1}|\varphi_{0}|_{W^{s,p}(T_{0})}\leq|\varphi|_{W^{s,p}(T)} c2|φ0|Ws,p(T0)\displaystyle\leq c_{2}|\varphi_{0}|_{W^{s,p}(T_{0})} (26)

with φ=φ0ΦT0\varphi=\varphi_{0}\circ{\Phi}_{T_{0}}.

Proof

The following inequalities can be found in (ErnGue04, , Lemma 1.101). There exists a positive constant cc such that, for all T0𝕋hT_{0}\in\mathbb{T}_{h} and φ0Ws,p(T0)\varphi_{0}\in W^{s,p}(T_{0}),

|φ|Ws,p(T)\displaystyle\displaystyle|\varphi|_{W^{s,p}(T)} cAT02s|det(AT0)|1p|φ0|Ws,p(T0),\displaystyle\leq c\|{A}_{T_{0}}\|_{2}^{s}|\det({A}_{T_{0}})|^{-\frac{1}{p}}|\varphi_{0}|_{W^{s,p}(T_{0})}, (27)
|φ0|Ws,p(T0)\displaystyle|\varphi_{0}|_{W^{s,p}(T_{0})} cAT012s|det(AT0)|1p|φ|Ws,p(T)\displaystyle\leq c\|{A}_{T_{0}}^{-1}\|_{2}^{s}|\det({A}_{T_{0}})|^{\frac{1}{p}}|\varphi|_{W^{s,p}(T)} (28)

with φ=φ0ΦT0\varphi=\varphi_{0}\circ{\Phi}_{T_{0}}. Using Eqs. (27) and (28) together with Eqs. (22c) and (23) yields Eq. (26). ∎

Lemma 4

Let m0m\in\mathbb{N}_{0} and p[0,)p\in[0,\infty). Let β:=(β1,,βd)0d\beta:=(\beta_{1},\ldots,\beta_{d})\in\mathbb{N}_{0}^{d} be a multi-index with |β|=m|\beta|=m. Then, for any φ^Wm,p(T^)\hat{\varphi}\in W^{m,p}(\widehat{T}) with φ~=φ^Φ^1\tilde{\varphi}=\hat{\varphi}\circ\widehat{\Phi}^{-1} and φ=φ~Φ~1{\varphi}=\tilde{\varphi}\circ\widetilde{\Phi}^{-1}, it holds that

|φ|Wm,p(T)\displaystyle\displaystyle|{\varphi}|_{W^{m,p}({T})} C1SA|det(AT)|1pA~12m(|β|=m(αβ)pβφ^Lp(T^)p)1/p,\displaystyle\leq C_{1}^{SA}|\det(A_{T})|^{\frac{1}{p}}\|\widetilde{A}^{-1}\|^{m}_{2}\left(\sum_{|\beta|=m}(\alpha^{-\beta})^{p}\|\partial^{\beta}\hat{\varphi}\|^{p}_{L^{p}(\widehat{T})}\right)^{1/p}, (29)

where C1SAC_{1}^{SA} is a constant that is independent of TT and T~\widetilde{T}. When p=p=\infty, for any φ^Wm,(T^)\hat{\varphi}\in W^{m,\infty}(\widehat{T}) with φ~=φ^Φ^1\tilde{\varphi}=\hat{\varphi}\circ\widehat{\Phi}^{-1} and φ=φ~Φ~1{\varphi}=\tilde{\varphi}\circ\widetilde{\Phi}^{-1}, it holds that

|φ|Wm,(T)\displaystyle\displaystyle|{\varphi}|_{W^{m,\infty}({T})} C1SA,A~12mmax|β|=m(αββφ^L(T^)),\displaystyle\leq C_{1}^{SA,\infty}\|\widetilde{A}^{-1}\|^{m}_{2}\max_{|\beta|=m}\left(\alpha^{-\beta}\|\partial^{\beta}\hat{\varphi}\|_{L^{\infty}(\widehat{T})}\right), (30)

where C1SA,C_{1}^{SA,\infty} is a constant that is independent of TT and T~\widetilde{T}.

Proof

Let p[1,)p\in[1,\infty). Because the space 𝒞m(T^)\mathcal{C}^{m}(\widehat{T}) is dense in the space Wm,p(T^){W}^{m,p}(\widehat{T}), we show that Eq. (29) holds for φ^𝒞m(T^)\hat{\varphi}\in\mathcal{C}^{m}(\widehat{T}) with φ~=φ^Φ^1\tilde{\varphi}=\hat{\varphi}\circ\widehat{\Phi}^{-1} and φ=φ~Φ~1{\varphi}=\tilde{\varphi}\circ\widetilde{\Phi}^{-1}. From x^j=αj1x~j\hat{x}_{j}=\alpha_{j}^{-1}\tilde{x}_{j}, we have that, for any multi-index β\beta,

βφ~\displaystyle\displaystyle\partial^{\beta}\tilde{\varphi} =α1β1αdβdβφ^=αββφ^.\displaystyle=\alpha_{1}^{-\beta_{1}}\cdots\alpha_{d}^{-\beta_{d}}\partial^{\beta}\hat{\varphi}=\alpha^{-\beta}\partial^{\beta}\hat{\varphi}. (31)

Through a change of variable, we obtain

|φ~|Wm,p(T~)p\displaystyle\displaystyle|\tilde{\varphi}|_{W^{m,p}(\widetilde{T})}^{p} =|β|=mβφ~Lp(T~)p=|det(A^(d))||β|=m(αβ)pβφ^Lp(T^)p.\displaystyle=\sum_{|\beta|=m}\|\partial^{\beta}\tilde{\varphi}\|^{p}_{L^{p}(\widetilde{T})}=|\det(\widehat{A}^{(d)})|\sum_{|\beta|=m}(\alpha^{-\beta})^{p}\|\partial^{\beta}\hat{\varphi}\|^{p}_{L^{p}(\widehat{T})}. (32)

From the standard estimate in (ErnGue04, , Lemma 1.101), we have

|φ|Wm,p(T)\displaystyle\displaystyle|{\varphi}|_{W^{m,p}({T})} C1SA|det(A~)|1pA~12m|φ~|Wm,p(T~).\displaystyle\leq C_{1}^{SA}|\det(\widetilde{A})|^{\frac{1}{p}}\|\widetilde{A}^{-1}\|^{m}_{2}|\tilde{\varphi}|_{W^{m,p}(\widetilde{T})}. (33)

Inequality (29) follows from Eqs. (32) and (33) with Eq. (23).

We consider the case in which p=p=\infty. A function φ^Wm,(T^)\hat{\varphi}\in W^{m,\infty}(\widehat{T}) belongs to the space Wm,p(T^)W^{m,p}(\widehat{T}) for any p[1,)p\in[1,\infty). Therefore, it holds that φ~Wm,p(T~)\tilde{\varphi}\in W^{m,p}(\widetilde{T}) for any p[1,)p\in[1,\infty) and, from Eq. (25), we obtain

γφ~Lp(T~)\displaystyle\displaystyle\|\partial^{\gamma}\tilde{\varphi}\|_{L^{p}(\widetilde{T})} |φ~|W|γ|,p(T~)\displaystyle\leq|\tilde{\varphi}|_{W^{|\gamma|,p}(\widetilde{T})}
=|det(A^(d))|1p(|β|=|γ|(αβ)pβφ^Lp(T^)p)1/p\displaystyle=|\det(\widehat{A}^{(d)})|^{\frac{1}{p}}\left(\sum_{|\beta|=|\gamma|}(\alpha^{-\beta})^{p}\|\partial^{\beta}\hat{\varphi}\|^{p}_{L^{p}(\widehat{T})}\right)^{1/p}
(sup1p|det(A^(d))|1p)|β|=|γ|αββφ^Lp(T^)\displaystyle\leq\left(\sup_{1\leq p}|\det(\widehat{A}^{(d)})|^{\frac{1}{p}}\right)\sum_{|\beta|=|\gamma|}\alpha^{-\beta}\|\partial^{\beta}\hat{\varphi}\|_{L^{p}(\widehat{T})}
c(sup1p|det(A^(d))|1p)|β|=|γ|αββφ^L(T^)<\displaystyle\leq c\left(\sup_{1\leq p}|\det(\widehat{A}^{(d)})|^{\frac{1}{p}}\right)\sum_{|\beta|=|\gamma|}\alpha^{-\beta}\|\partial^{\beta}\hat{\varphi}\|_{L^{\infty}(\widehat{T})}\textless\infty (34)

for the multi-index γ0d\gamma\in\mathbb{N}_{0}^{d} with |γ|m|\gamma|\leq m. This implies that the function γφ~\partial^{\gamma}\tilde{\varphi} is in the space L(T~)L^{\infty}(\widetilde{T}) for each |γ|m|\gamma|\leq m. Therefore, we have that φ~Wm,(T~)\tilde{\varphi}\in W^{m,\infty}(\widetilde{T}). Taking the limit pp\to\infty in Eq. (34) and using limpLp(T~)=L(T~)\lim_{p\to\infty}\|\cdot\|_{L^{p}(\widetilde{T})}=\|\cdot\|_{L^{\infty}(\widetilde{T})}, we have

|φ~|Wm,(T~)cmax|β|=m(αββφ^L(T^)).\displaystyle\displaystyle|\tilde{\varphi}|_{W^{m,\infty}(\widetilde{T})}\leq c\max_{|\beta|=m}\left(\alpha^{-\beta}\|\partial^{\beta}\hat{\varphi}\|_{L^{\infty}(\widehat{T})}\right). (35)

From the standard estimate in (ErnGue04, , Lemma 1.101), we have

|φ|Wm,(T)\displaystyle\displaystyle|{\varphi}|_{W^{m,\infty}({T})} cA~12m|φ~|Wm,(T~).\displaystyle\leq c\|\widetilde{A}^{-1}\|^{m}_{2}|\tilde{\varphi}|_{W^{m,\infty}(\widetilde{T})}. (36)

Inequality (30) follows from Eqs. (35) and (36). ∎

We now introduce the following new notation.

Definition 3

We define a parameter i\mathscr{H}_{i}, i=1,,di=1,\ldots,d, as

{1:=α1,2:=α2tif d=2,1:=α1,2:=α2t1,3:=α3t2if d=3.\displaystyle\displaystyle\begin{cases}\mathscr{H}_{1}:=\alpha_{1},\quad\mathscr{H}_{2}:=\alpha_{2}t\quad\text{if $d=2$},\\ \mathscr{H}_{1}:=\alpha_{1},\quad\mathscr{H}_{2}:=\alpha_{2}t_{1},\quad\mathscr{H}_{3}:=\alpha_{3}t_{2}\quad\text{if $d=3$}.\end{cases}

For a multi-index β=(β1,,βd)0d\beta=(\beta_{1},\ldots,\beta_{d})\in\mathbb{N}_{0}^{d}, we use the notation

β:=1β1dβd,β:=1β1dβd.\displaystyle\displaystyle\mathscr{H}^{\beta}:=\mathscr{H}_{1}^{\beta_{1}}\cdots\mathscr{H}_{d}^{\beta_{d}},\quad\mathscr{H}^{-\beta}:=\mathscr{H}_{1}^{-\beta_{1}}\cdots\mathscr{H}_{d}^{-\beta_{d}}.

We also define αβ:=α1β1αdβd\alpha^{\beta}:=\alpha_{1}^{\beta_{1}}\cdots\alpha_{d}^{\beta_{d}} and αβ:=α1β1αdβd\alpha^{-\beta}:=\alpha_{1}^{-\beta_{1}}\cdots\alpha_{d}^{-\beta_{d}}.

Definition 4

We define vectors rndr_{n}\in\mathbb{R}^{d}, n=1,,dn=1,\ldots,d, as follows. If d=2d=2,

r1:=(1,0)T,r2:=(s,t)T,\displaystyle\displaystyle r_{1}:=(1,0)^{T},\quad r_{2}:=(s,t)^{T},

and if d=3d=3,

r1:=(1,0,0)T,r3:=(s21,s22,t2)T,\displaystyle r_{1}:=(1,0,0)^{T},\quad r_{3}:=(s_{21},s_{22},t_{2})^{T},
{r2:=(s1,t1,0)Tfor case (i),r2:=(s1,t1,0)Tfor case (ii).\displaystyle\begin{cases}r_{2}:=(s_{1},t_{1},0)^{T}\quad\text{for case (i)},\\ r_{2}:=(-s_{1},t_{1},0)^{T}\quad\text{for case (ii)}.\end{cases}

Furthermore, we define a directional derivative as

ri(0):=(AT0ri)x(0)=j0=1d(AT0ri)j0xj0(0),i{1:d},\displaystyle\displaystyle\frac{\partial}{\partial{r_{i}}^{(0)}}:=(A_{T_{0}}r_{i})\cdot\nabla_{x^{(0)}}=\sum_{j_{0}=1}^{d}(A_{T_{0}}r_{i})_{j_{0}}\frac{\partial}{\partial x_{j_{0}}^{(0)}},\quad i\in\{1:d\},

where AT0O(d){A}_{T_{0}}\in O(d) is the orthogonal matrix defined in Eq. (12). For a multi-index β=(β1,,βd)0d\beta=(\beta_{1},\ldots,\beta_{d})\in\mathbb{N}_{0}^{d}, we use the notation

r(0)β:=|β|(r1(0))β1(rd(0))βd.\displaystyle\displaystyle\partial^{\beta}_{r^{(0)}}:=\frac{\partial^{|\beta|}}{(\partial r_{1}^{(0)})^{\beta_{1}}\ldots(\partial r_{d}^{(0)})^{\beta_{d}}}.
Note 1

Recall that

|s|1,α2α1if d=2,\displaystyle|s|\leq 1,\ \alpha_{2}\leq\alpha_{1}\quad\text{if $d=2$},
|s1|1,|s21|1,α2α3α1if d=3.\displaystyle|s_{1}|\leq 1,\ |s_{21}|\leq 1,\ \alpha_{2}\leq\alpha_{3}\leq\alpha_{1}\quad\text{if $d=3$}.

When d=3d=3, if Assumption 1 is imposed, there exists a positive constant MM, independent of hTh_{T}, such that |s22|Mα2t1α3|s_{22}|\leq M\frac{\alpha_{2}t_{1}}{\alpha_{3}}. Thus, if d=2d=2, we have

α1|[A~]j1|j,α2|[A~]j2|j,j=1,2,\displaystyle\alpha_{1}|[\widetilde{A}]_{j1}|\leq\mathscr{H}_{j},\quad\alpha_{2}|[\widetilde{A}]_{j2}|\leq\mathscr{H}_{j},\quad j=1,2,

and if d=3d=3, for A~{A~1,A~2}\widetilde{A}\in\{\widetilde{A}_{1},\widetilde{A}_{2}\} and j=1,2,3j=1,2,3, we have

α1|[A~]j1|j,α2|[A~]j2|j,α3|[A~]j3|max{1,M}j,j=1,2,3.\displaystyle\alpha_{1}|[\widetilde{A}]_{j1}|\leq\mathscr{H}_{j},\quad\alpha_{2}|[\widetilde{A}]_{j2}|\leq\mathscr{H}_{j},\quad\alpha_{3}|[\widetilde{A}]_{j3}|\leq\max\{1,M\}\mathscr{H}_{j},\quad j=1,2,3.
Note 2

We use the following calculations in Lemma 5. For any multi-indices β\beta and γ\gamma, we have

x^β+γ\displaystyle\displaystyle\partial^{\beta+\gamma}_{\hat{x}} =|β|+|γ|x^1β1x^dβdx^1γ1x^dγd\displaystyle=\frac{\partial^{|\beta|+|\gamma|}}{\partial\hat{x}_{1}^{\beta_{1}}\cdots\partial\hat{x}_{d}^{\beta_{d}}\partial\hat{x}_{1}^{\gamma_{1}}\cdots\partial\hat{x}_{d}^{\gamma_{d}}}
=i1(1)=1dα1[A~]i1(1)1iβ1(1)=1dα1[A~]iβ1(1)1β1timesi1(d)=1dαd[A~]i1(d)diβd(d)=1dαd[A~]iβd(d)dβdtimes\displaystyle=\underbrace{\sum_{i_{1}^{(1)}=1}^{d}\alpha_{1}[\widetilde{A}]_{i_{1}^{(1)}1}\cdots\sum_{i_{\beta_{1}}^{(1)}=1}^{d}\alpha_{1}[\widetilde{A}]_{i_{\beta_{1}}^{(1)}1}}_{\beta_{1}\text{times}}\cdots\underbrace{\sum_{i_{1}^{(d)}=1}^{d}\alpha_{d}[\widetilde{A}]_{i_{1}^{(d)}d}\cdots\sum_{i_{\beta_{d}}^{(d)}=1}^{d}\alpha_{d}[\widetilde{A}]_{i_{\beta_{d}}^{(d)}d}}_{\beta_{d}\text{times}}
j1(1)=1dα1[A~]j1(1)1jγ1(1)=1dα1[A~]jγ1(1)1γ1timesj1(d)=1dαd[A~]j1(d)djγd(d)=1dαd[A~]jγd(d)dγdtimes\displaystyle\underbrace{\sum_{j_{1}^{(1)}=1}^{d}\alpha_{1}[\widetilde{A}]_{j_{1}^{(1)}1}\cdots\sum_{j_{\gamma_{1}}^{(1)}=1}^{d}\alpha_{1}[\widetilde{A}]_{j_{\gamma_{1}}^{(1)}1}}_{\gamma_{1}\text{times}}\cdots\underbrace{\sum_{j_{1}^{(d)}=1}^{d}\alpha_{d}[\widetilde{A}]_{j_{1}^{(d)}d}\cdots\sum_{j_{\gamma_{d}}^{(d)}=1}^{d}\alpha_{d}[\widetilde{A}]_{j_{\gamma_{d}}^{(d)}d}}_{\gamma_{d}\text{times}}
β1xi11)xiβ1(1)β1timesβdxi1(d)xiβd(d)βdtimesγ1xj1(1)xjγ1(1)γ1timesγdxj1(d)xjγd(d)γdtimes.\displaystyle\underbrace{\frac{\partial^{\beta_{1}}}{\partial{x}_{i_{1}^{1)}}\cdots\partial{x}_{i_{\beta_{1}}^{(1)}}}}_{\beta_{1}\text{times}}\cdots\underbrace{\frac{\partial^{\beta_{d}}}{\partial{x}_{i_{1}^{(d)}}\cdots\partial{x}_{i_{\beta_{d}}^{(d)}}}}_{\beta_{d}\text{times}}\underbrace{\frac{\partial^{\gamma_{1}}}{\partial{x}_{j_{1}^{(1)}}\cdots\partial{x}_{j_{\gamma_{1}}^{(1)}}}}_{\gamma_{1}\text{times}}\cdots\underbrace{\frac{\partial^{\gamma_{d}}}{\partial{x}_{j_{1}^{(d)}}\cdots\partial{x}_{j_{\gamma_{d}}^{(d)}}}}_{\gamma_{d}\text{times}}.

Let φ^𝒞(T^)\hat{\varphi}\in\mathcal{C}^{\ell}(\widehat{T}) with φ~=φ^Φ^1\tilde{\varphi}=\hat{\varphi}\circ\widehat{\Phi}^{-1} and φ=φ~Φ~1{\varphi}=\tilde{\varphi}\circ\widetilde{\Phi}^{-1}. Then, for 1id1\leq i\leq d,

|φ^x^i|\displaystyle\displaystyle\left|\frac{\partial\hat{\varphi}}{\partial\hat{x}_{i}}\right| i1(1)=1dαi|[A~]i1(1)i||φxi1(1)|{αiA~maxi1(1)=1d|φxi1(1)|or,ci1(1)=1di1(1)|φxi1(1)|,\displaystyle\leq\sum_{i_{1}^{(1)}=1}^{d}\alpha_{i}\left|[\widetilde{A}]_{i_{1}^{(1)}i}\right|\left|\frac{\partial\varphi}{\partial x_{i_{1}^{(1)}}}\right|\leq\begin{cases}\alpha_{i}\|\widetilde{A}\|_{\max}\sum_{i_{1}^{(1)}=1}^{d}\left|\frac{\partial\varphi}{\partial x_{i_{1}^{(1)}}}\right|\quad\text{or},\\ c\sum_{i_{1}^{(1)}=1}^{d}\mathscr{H}_{i_{1}^{(1)}}\left|\frac{\partial\varphi}{\partial x_{i_{1}^{(1)}}}\right|,\end{cases}

and for 1i,jd1\leq i,j\leq d,

|2φ^x^ix^j|\displaystyle\displaystyle\left|\frac{\partial^{2}\hat{\varphi}}{\partial\hat{x}_{i}\partial\hat{x}_{j}}\right| =|i1(1),j1(1)=1dαiαj[A~]i1(1)i[A~]j1(1)j2φxi1(1)xj1(1)|\displaystyle=\left|\sum_{i_{1}^{(1)},j_{1}^{(1)}=1}^{d}\alpha_{i}\alpha_{j}[\widetilde{A}]_{i_{1}^{(1)}i}[\widetilde{A}]_{j_{1}^{(1)}j}\frac{\partial^{2}\varphi}{\partial x_{i_{1}^{(1)}}\partial x_{j_{1}^{(1)}}}\right|
{αiαjA~max2i1(1),j1(1)=1d|2φxi1(1)xj1(1)|or,αjj1(1)=1d|[A~]j1(1)j||i1(1)=1dαi[A~]i1(1)i2φxi1(1)xj1(1)|cαjA~maxj1(1)=1di1(1)=1di1(1)|2φxi1(1)xj1(1)|or,ci1(1)=1dj1(1)=1di1(1)j1(1)|2φxi1(1)xj1(1)|.\displaystyle\leq\begin{cases}\alpha_{i}\alpha_{j}\|\widetilde{A}\|_{\max}^{2}\sum_{i_{1}^{(1)},j_{1}^{(1)}=1}^{d}\left|\frac{\partial^{2}\varphi}{\partial x_{i_{1}^{(1)}}\partial x_{j_{1}^{(1)}}}\right|\quad\text{or},\\ \alpha_{j}\sum_{j_{1}^{(1)}=1}^{d}|[\widetilde{A}]_{j_{1}^{(1)}j}|\left|\sum_{i_{1}^{(1)}=1}^{d}\alpha_{i}[\widetilde{A}]_{i_{1}^{(1)}i}\frac{\partial^{2}\varphi}{\partial x_{i_{1}^{(1)}}\partial x_{j_{1}^{(1)}}}\right|\\ \quad\leq c\alpha_{j}\|\widetilde{A}\|_{\max}\sum_{j_{1}^{(1)}=1}^{d}\sum_{i_{1}^{(1)}=1}^{d}\mathscr{H}_{i_{1}^{(1)}}\left|\frac{\partial^{2}\varphi}{\partial x_{i_{1}^{(1)}}\partial x_{j_{1}^{(1)}}}\right|\quad\text{or},\\ c\sum_{i_{1}^{(1)}=1}^{d}\sum_{j_{1}^{(1)}=1}^{d}\mathscr{H}_{i_{1}^{(1)}}\mathscr{H}_{j_{1}^{(1)}}\left|\frac{\partial^{2}\varphi}{\partial x_{i_{1}^{(1)}}\partial x_{j_{1}^{(1)}}}\right|.\end{cases}
Lemma 5

Suppose that Assumption 1 is imposed. Let m0m\in\mathbb{N}_{0}, 0\ell\in\mathbb{N}_{0} with m\ell\geq m and p[0,]p\in[0,\infty]. Let β:=(β1,,βd)0d\beta:=(\beta_{1},\ldots,\beta_{d})\in\mathbb{N}_{0}^{d} and γ:=(γ1,,γd)0d\gamma:=(\gamma_{1},\ldots,\gamma_{d})\in\mathbb{N}_{0}^{d} be multi-indices with |β|=m|\beta|=m and |γ|=m|\gamma|=\ell-m. Then, for any φ^W,p(T^)\hat{\varphi}\in W^{\ell,p}(\widehat{T}) with φ~=φ^Φ^1\tilde{\varphi}=\hat{\varphi}\circ\widehat{\Phi}^{-1} and φ=φ~Φ~1{\varphi}=\tilde{\varphi}\circ\widetilde{\Phi}^{-1}, it holds that

βγφ^Lp(T^)\displaystyle\displaystyle\|\partial^{\beta}\partial^{\gamma}\hat{\varphi}\|_{L^{p}(\widehat{T})} C2SA|det(AT)|1pA~2mαβ|ϵ|=|γ|ε|ϵφ|Wm,p(T),\displaystyle\leq C_{2}^{SA}|\det({A}_{T})|^{-\frac{1}{p}}\|\widetilde{A}\|^{m}_{2}\alpha^{\beta}\sum_{|\epsilon|=|\gamma|}\mathscr{H}^{\varepsilon}|\partial^{\epsilon}\varphi|_{W^{m,p}(T)}, (37)

where C2SAC_{2}^{SA} is a constant that is independent of TT and T~\widetilde{T}. Here, for p=p=\infty and any positive real xx, x1p=1x^{-\frac{1}{p}}=1.

Proof

Let ε=(ε1,,εd)0d\varepsilon=(\varepsilon_{1},\ldots,\varepsilon_{d})\in\mathbb{N}_{0}^{d} and δ=(δ1,,δd)0d\delta=(\delta_{1},\ldots,\delta_{d})\in\mathbb{N}_{0}^{d} be multi-indies with |ε|=|γ||\varepsilon|=|\gamma| and |δ|=|β||\delta|=|\beta|. Let p[1,)p\in[1,\infty). Because the space 𝒞(T^)\mathcal{C}^{\ell}(\widehat{T}) is dense in the space W,p(T^){W}^{\ell,p}(\widehat{T}), we show that Eq. (37) holds for φ^𝒞(T^)\hat{\varphi}\in\mathcal{C}^{\ell}(\widehat{T}) with φ~=φ^Φ^1\tilde{\varphi}=\hat{\varphi}\circ\widehat{\Phi}^{-1} and φ=φ~Φ~1{\varphi}=\tilde{\varphi}\circ\widetilde{\Phi}^{-1}. Through a simple calculation, we obtain

|β+γφ^|\displaystyle\displaystyle|\partial^{\beta+\gamma}\hat{\varphi}| =|φ^x^1β1x^dβdx^1γ1x^dγd|\displaystyle=\left|\frac{\partial^{\ell}\hat{\varphi}}{\partial\hat{x}_{1}^{\beta_{1}}\cdots\partial\hat{x}_{d}^{\beta_{d}}\partial\hat{x}_{1}^{\gamma_{1}}\cdots\partial\hat{x}_{d}^{\gamma_{d}}}\right|
cαβA~max|β|i1(1)=1diβ1(1)=1dβ1timesi1(d)=1diβd(d)=1dβdtimesj1(1)=1djγ1(1)=1dγ1timesj1(d)=1djγd(d)=1dγdtimes\displaystyle\leq c\alpha^{\beta}\|\widetilde{A}\|_{\max}^{|\beta|}\underbrace{\sum_{i_{1}^{(1)}=1}^{d}\cdots\sum_{i_{\beta_{1}}^{(1)}=1}^{d}}_{\beta_{1}\text{times}}\cdots\underbrace{\sum_{i_{1}^{(d)}=1}^{d}\cdots\sum_{i_{\beta_{d}}^{(d)}=1}^{d}}_{\beta_{d}\text{times}}\underbrace{\sum_{j_{1}^{(1)}=1}^{d}\cdots\sum_{j_{\gamma_{1}}^{(1)}=1}^{d}}_{\gamma_{1}\text{times}}\cdots\underbrace{\sum_{j_{1}^{(d)}=1}^{d}\cdots\sum_{j_{\gamma_{d}}^{(d)}=1}^{d}}_{\gamma_{d}\text{times}}
j1(1)jε1(1)γ1timesj1(d)jεd(d)γdtimes\displaystyle\underbrace{\mathscr{H}_{j_{1}^{(1)}}\cdots\mathscr{H}_{j_{\varepsilon_{1}}^{(1)}}}_{\gamma_{1}\text{times}}\cdots\underbrace{\mathscr{H}_{j_{1}^{(d)}}\cdots\mathscr{H}_{j_{\varepsilon_{d}}^{(d)}}}_{\gamma_{d}\text{times}}
|β1xi11)xiβ1(1)β1timesβdxi1(d)xiβd(d)βdtimesγ1xj1(1)xjγ1(1)γ1timesγdxj1(d)xjγd(d)γdtimesφ|\displaystyle\Biggl{|}\underbrace{\frac{\partial^{\beta_{1}}}{\partial{x}_{i_{1}^{1)}}\cdots\partial{x}_{i_{\beta_{1}}^{(1)}}}}_{\beta_{1}\text{times}}\cdots\underbrace{\frac{\partial^{\beta_{d}}}{\partial{x}_{i_{1}^{(d)}}\cdots\partial{x}_{i_{\beta_{d}}^{(d)}}}}_{\beta_{d}\text{times}}\underbrace{\frac{\partial^{\gamma_{1}}}{\partial{x}_{j_{1}^{(1)}}\cdots\partial{x}_{j_{\gamma_{1}}^{(1)}}}}_{\gamma_{1}\text{times}}\cdots\underbrace{\frac{\partial^{\gamma_{d}}}{\partial{x}_{j_{1}^{(d)}}\cdots\partial{x}_{j_{\gamma_{d}}^{(d)}}}}_{\gamma_{d}\text{times}}\varphi\Biggr{|}
cαβA~max|β||δ|=|β||ε|=|γ|ε|δεφ|.\displaystyle\leq c\alpha^{\beta}\|\widetilde{A}\|_{\max}^{|\beta|}\sum_{|\delta|=|\beta|}\sum_{|\varepsilon|=|\gamma|}\mathscr{H}^{\varepsilon}|{\partial^{\delta}\partial^{\varepsilon}\varphi}|.

Using Eq. (24), we then have that

T^|βγφ^|p𝑑x^\displaystyle\displaystyle\int_{\widehat{T}}|\partial^{\beta}\partial^{\gamma}\hat{\varphi}|^{p}d\hat{x} cA~2mpαβp|δ|=|β||ϵ|=|γ|εpT^|δεφ|p𝑑x^\displaystyle\leq c\|\widetilde{A}\|_{2}^{mp}\alpha^{\beta p}\sum_{|\delta|=|\beta|}\sum_{|\epsilon|=|\gamma|}\mathscr{H}^{\varepsilon p}\int_{\widehat{T}}|{\partial^{\delta}\partial^{\varepsilon}\varphi}|^{p}d\hat{x}
=c|det(AT)|1A~2mpαβp|δ|=|β||ϵ|=|γ|εpT|δεφ|p𝑑x.\displaystyle=c|\det(A_{T})|^{-1}\|\widetilde{A}\|_{2}^{mp}\alpha^{\beta p}\sum_{|\delta|=|\beta|}\sum_{|\epsilon|=|\gamma|}\mathscr{H}^{\varepsilon p}\int_{{T}}|{\partial^{\delta}\partial^{\varepsilon}\varphi}|^{p}d{x}.

Therefore, using (25), we obtain

βγφ^Lp(T^)\displaystyle\displaystyle\|\partial^{\beta}\partial^{\gamma}\hat{\varphi}\|_{L^{p}(\widehat{T})} c|det(AT)|1pA~2mαβ|ϵ|=|γ|ε|ϵφ|Wm,p(T),\displaystyle\leq c|\det(A_{T})|^{-\frac{1}{p}}\|\widetilde{A}\|_{2}^{m}\alpha^{\beta}\sum_{|\epsilon|=|\gamma|}\mathscr{H}^{\varepsilon}|\partial^{\epsilon}\varphi|_{W^{m,p}(T)},

which recovers Eq. (37).

We consider the case in which p=p=\infty. A function φW,(T)\varphi\in W^{\ell,\infty}(T) belongs to the space W,p(T)W^{\ell,p}(T) for any p[1,)p\in[1,\infty). Therefore, it holds that φ^W,p(T^)\hat{\varphi}\in W^{\ell,p}(\widehat{T}) for any p[1,)p\in[1,\infty), and thus,

βγφ^Lp(T^)\displaystyle\displaystyle\|\partial^{\beta}\partial^{\gamma}\hat{\varphi}\|_{L^{p}(\widehat{T})} c|det(AT)|1pA~2mαβ|ϵ|=|γ|ε|ϵφ|Wm,p(T)\displaystyle\leq c|\det(A_{T})|^{-\frac{1}{p}}\|\widetilde{A}\|_{2}^{m}\alpha^{\beta}\sum_{|\epsilon|=|\gamma|}\mathscr{H}^{\varepsilon}|\partial^{\epsilon}\varphi|_{W^{m,p}(T)}
cA~2mαβ|ϵ|=|γ|ε|ϵφ|Wm,(T)<.\displaystyle\leq c\|\widetilde{A}\|_{2}^{m}\alpha^{\beta}\sum_{|\epsilon|=|\gamma|}\mathscr{H}^{\varepsilon}|\partial^{\epsilon}\varphi|_{W^{m,\infty}(T)}\textless\infty. (38)

This implies that the function βγφ^\partial^{\beta}\partial^{\gamma}\hat{\varphi} is in the space L(T^)L^{\infty}(\widehat{T}). Inequality (37) for p=p=\infty is obtained by taking the limit pp\to\infty in Eq. (38) on the basis that limpLp(T^)=L(T^)\lim_{p\to\infty}\|\cdot\|_{L^{p}(\widehat{T})}=\|\cdot\|_{L^{\infty}(\widehat{T})}. ∎

Remark 3

In inequality (37), it is possible to obtain the estimates in T0T_{0} by specifically determining the matrix AT0A_{T_{0}}.

Let =2\ell=2, m=1m=1, and p=q=2p=q=2. Recall that

ΦT0:Txx(0):=AT0x+bT0T0.\displaystyle\displaystyle\Phi_{T_{0}}:T\ni x\mapsto x^{(0)}:={A}_{T_{0}}x+b_{T_{0}}\in T_{0}.

For φ𝒞2(T){\varphi}\in\mathcal{C}^{2}({T}) with φ0=φΦT01\varphi_{0}=\varphi\circ\Phi_{T_{0}}^{-1} and 1i,jd1\leq i,j\leq d, we have

|2φxixj(x)|\displaystyle\displaystyle\left|\frac{\partial^{2}{\varphi}}{\partial{x}_{i}{\partial{x}_{j}}}({x})\right| =|i1(1),j1(1)=12[AT0]i1(1)i[AT0]j1(1)j2φ0xi1(1)(0)xj1(1)(0)(x)|.\displaystyle=\left|\sum_{i_{1}^{(1)},j_{1}^{(1)}=1}^{2}[A_{T_{0}}]_{i_{1}^{(1)}i}[A_{T_{0}}]_{j_{1}^{(1)}j}\frac{\partial^{2}\varphi_{0}}{\partial x_{i_{1}^{(1)}}^{(0)}\partial x_{j_{1}^{(1)}}^{(0)}}(x)\right|.

Let d=2d=2. We define the matrix AT0A_{T_{0}} as

AT0:=(cosπ2sinπ2sinπ2cosπ2).\displaystyle\displaystyle A_{T_{0}}:=\begin{pmatrix}\cos\frac{\pi}{2}&-\sin\frac{\pi}{2}\\ \sin\frac{\pi}{2}&\cos\frac{\pi}{2}\end{pmatrix}.

Because AT0max=1\|A_{T_{0}}\|_{\max}=1, we have

|2φxixj(x)|\displaystyle\displaystyle\left|\frac{\partial^{2}{\varphi}}{\partial{x}_{i}{\partial{x}_{j}}}({x})\right| |2φ0xi+1(0)xj+1(0)(x)|,\displaystyle\leq\left|\frac{\partial^{2}\varphi_{0}}{\partial x_{i+1}^{(0)}\partial x_{j+1}^{(0)}}(x)\right|,

where the indices ii, i+1i+1 and jj, j+1j+1 must be evaluated modulo 2. Because |det(AT0)|=1|\det(A_{T_{0}})|=1, it holds that

2φxixjL2(T)2φ0xii+1(0)xj+1(0)L2(T0).\displaystyle\displaystyle\left\|\frac{\partial^{2}{\varphi}}{\partial{x}_{i}{\partial{x}_{j}}}\right\|_{L^{2}(T)}\leq\left\|\frac{\partial^{2}\varphi_{0}}{\partial x_{i_{i+1}}^{(0)}\partial x_{j+1}^{(0)}}\right\|_{L^{2}(T_{0})}.

We then have

j=12j|φxj|H1(T)\displaystyle\displaystyle\sum_{j=1}^{2}\mathscr{H}_{j}\left|\frac{\partial{\varphi}}{{\partial{x}_{j}}}\right|_{H^{1}(T)} j=12j|φ0xj+1(0)|H1(T0),\displaystyle\leq\sum_{j=1}^{2}\mathscr{H}_{j}\left|\frac{\partial\varphi_{0}}{\partial x_{j+1}^{(0)}}\right|_{H^{1}(T_{0})},

where the indices jj, j+1j+1 must be evaluated modulo 2.

We define the matrix AT0A_{T_{0}} as

AT0:=(cosπ4sinπ4sinπ4cosπ4).\displaystyle\displaystyle A_{T_{0}}:=\begin{pmatrix}\cos\frac{\pi}{4}&-\sin\frac{\pi}{4}\\ \sin\frac{\pi}{4}&\cos\frac{\pi}{4}\end{pmatrix}.

We then have

|2φxixj(x)|\displaystyle\displaystyle\left|\frac{\partial^{2}{\varphi}}{\partial{x}_{i}{\partial{x}_{j}}}({x})\right| 12i1(1),j1(1)=12|2φ0xi1(1)(0)xj1(1)(0)(x)|,\displaystyle\leq\frac{1}{\sqrt{2}}\sum_{i_{1}^{(1)},j_{1}^{(1)}=1}^{2}\left|\frac{\partial^{2}\varphi_{0}}{\partial x_{i_{1}^{(1)}}^{(0)}\partial x_{j_{1}^{(1)}}^{(0)}}(x)\right|,

which leads to

2φxixjL2(T)2ci1(1),j1(1)=122φ0xi1(1)(0)xj1(1)(0)L2(T0)2c|φ0|H2(T0)2.\displaystyle\displaystyle\left\|\frac{\partial^{2}{\varphi}}{\partial{x}_{i}{\partial{x}_{j}}}\right\|_{L^{2}(T)}^{2}\leq c\sum_{i_{1}^{(1)},j_{1}^{(1)}=1}^{2}\left\|\frac{\partial^{2}\varphi_{0}}{\partial x_{i_{1}^{(1)}}^{(0)}\partial x_{j_{1}^{(1)}}^{(0)}}\right\|_{L^{2}(T_{0})}^{2}\leq c|\varphi_{0}|^{2}_{H^{2}(T_{0})}.

Using (25), we than have that

j=12j|φxj|H1(T)\displaystyle\displaystyle\sum_{j=1}^{2}\mathscr{H}_{j}\left|\frac{\partial{\varphi}}{{\partial{x}_{j}}}\right|_{H^{1}(T)} j=12j|φ0|H2(T0)chT0|φ0|H2(T0).\displaystyle\leq\sum_{j=1}^{2}\mathscr{H}_{j}|\varphi_{0}|_{H^{2}(T_{0})}\leq ch_{T_{0}}|\varphi_{0}|_{H^{2}(T_{0})}.

In this case, anisotropic interpolation error estimates cannot be obtained.

Note 3

We use the following calculations in Lemma 6. For any multi-indices β\beta and γ\gamma, we have

x^β+γ\displaystyle\displaystyle\partial^{\beta+\gamma}_{\hat{x}} =|β|+|γ|x^1β1x^dβdx^1γ1x^dγd\displaystyle=\frac{\partial^{|\beta|+|\gamma|}}{\partial\hat{x}_{1}^{\beta_{1}}\cdots\partial\hat{x}_{d}^{\beta_{d}}\partial\hat{x}_{1}^{\gamma_{1}}\cdots\partial\hat{x}_{d}^{\gamma_{d}}}
=i1(1),i1(0,1)=1dα1[A~]i1(1)1[AT0]i1(0,1)i1(1)iβ1(1),iβ1(0,1)=1dα1[A~]iβ1(1)1[AT0]iβ1(0,1)iβ1(1)β1times\displaystyle=\underbrace{\sum_{i_{1}^{(1)},i_{1}^{(0,1)}=1}^{d}\alpha_{1}[\widetilde{A}]_{i_{1}^{(1)}1}[A_{T_{0}}]_{i_{1}^{(0,1)}i_{1}^{(1)}}\cdots\sum_{i_{\beta_{1}}^{(1)},i_{\beta_{1}}^{(0,1)}=1}^{d}\alpha_{1}[\widetilde{A}]_{i_{\beta_{1}}^{(1)}1}[A_{T_{0}}]_{i_{\beta_{1}}^{(0,1)}i_{\beta_{1}}^{(1)}}}_{\beta_{1}\text{times}}\cdots
i1(d),i1(0,d)=1dαd[A~]i1(d)d[AT0]i1(0,d)i1(d)iβd(d),iβd(0,d)=1dαd[A~]iβd(d)d[AT0]iβd(0,d)iβd(d)βdtimes\displaystyle\underbrace{\sum_{i_{1}^{(d)},i_{1}^{(0,d)}=1}^{d}\alpha_{d}[\widetilde{A}]_{i_{1}^{(d)}d}[A_{T_{0}}]_{i_{1}^{(0,d)}i_{1}^{(d)}}\cdots\sum_{i_{\beta_{d}}^{(d)},i_{\beta_{d}}^{(0,d)}=1}^{d}\alpha_{d}[\widetilde{A}]_{i_{\beta_{d}}^{(d)}d}[A_{T_{0}}]_{i_{\beta_{d}}^{(0,d)}i_{\beta_{d}}^{(d)}}}_{\beta_{d}\text{times}}
j1(1),j1(0,1)=1dα1[A~]j1(1)1[AT0]j1(0,1)j1(1)jγ1(1),jγ1(0,1)=1dα1[A~]jγ1(1)1[AT0]jγ1(0,1)jγ1(1)γ1times\displaystyle\underbrace{\sum_{j_{1}^{(1)},j_{1}^{(0,1)}=1}^{d}\alpha_{1}[\widetilde{A}]_{j_{1}^{(1)}1}[A_{T_{0}}]_{j_{1}^{(0,1)}j_{1}^{(1)}}\cdots\sum_{j_{\gamma_{1}}^{(1)},j_{\gamma_{1}}^{(0,1)}=1}^{d}\alpha_{1}[\widetilde{A}]_{j_{\gamma_{1}}^{(1)}1}[A_{T_{0}}]_{j_{\gamma_{1}}^{(0,1)}j_{\gamma_{1}}^{(1)}}}_{\gamma_{1}\text{times}}\cdots
j1(d),j1(0,d)=1dαd[A~]j1(d)d[AT0]j1(0,d)j1(d)jγd(d),jγd(0,d)=1dαd[A~]jγd(d)d[AT0]jγd(0,d)jγd(d)γdtimes\displaystyle\underbrace{\sum_{j_{1}^{(d)},j_{1}^{(0,d)}=1}^{d}\alpha_{d}[\widetilde{A}]_{j_{1}^{(d)}d}[A_{T_{0}}]_{j_{1}^{(0,d)}j_{1}^{(d)}}\cdots\sum_{j_{\gamma_{d}}^{(d)},j_{\gamma_{d}}^{(0,d)}=1}^{d}\alpha_{d}[\widetilde{A}]_{j_{\gamma_{d}}^{(d)}d}[A_{T_{0}}]_{j_{\gamma_{d}}^{(0,d)}j_{\gamma_{d}}^{(d)}}}_{\gamma_{d}\text{times}}
β1xi1(0,1)(0)xiβ1(0,1)(0)β1timesβdxi1(0,d)(0)xiβd(0,d)(0)βdtimesγ1xj1(0,1)(0)xjγ1(0,1)(0)γ1timesγdxj1(0,d)(0)xjγd(0,d)(0)γdtimes.\displaystyle\underbrace{\frac{\partial^{\beta_{1}}}{\partial{x}_{i_{1}^{(0,1)}}^{(0)}\cdots\partial{x}_{i_{\beta_{1}}^{(0,1)}}^{(0)}}}_{\beta_{1}\text{times}}\cdots\underbrace{\frac{\partial^{\beta_{d}}}{\partial{x}_{i_{1}^{(0,d)}}^{(0)}\cdots\partial{x}_{i_{\beta_{d}}^{(0,d)}}^{(0)}}}_{\beta_{d}\text{times}}\underbrace{\frac{\partial^{\gamma_{1}}}{\partial{x}_{j_{1}^{(0,1)}}^{(0)}\cdots\partial{x}_{j_{\gamma_{1}}^{(0,1)}}^{(0)}}}_{\gamma_{1}\text{times}}\cdots\underbrace{\frac{\partial^{\gamma_{d}}}{\partial{x}_{j_{1}^{(0,d)}}^{(0)}\cdots\partial{x}_{j_{\gamma_{d}}^{(0,d)}}^{(0)}}}_{\gamma_{d}\text{times}}.

Let φ^𝒞(T^)\hat{\varphi}\in\mathcal{C}^{\ell}(\widehat{T}) with φ~=φ^Φ^1\tilde{\varphi}=\hat{\varphi}\circ\widehat{\Phi}^{-1}, φ=φ~Φ~1{\varphi}=\tilde{\varphi}\circ\widetilde{\Phi}^{-1} and φ0=φΦT01\varphi_{0}=\varphi\circ\Phi_{T_{0}}^{-1}. Then, for 1id1\leq i\leq d,

|φ^x^i|\displaystyle\displaystyle\left|\frac{\partial\hat{\varphi}}{\partial\hat{x}_{i}}\right| =|i1(1)=1di1(0,1)=1dαi[A~]i1(1)i[AT0]i1(0,1)i1(1)φ0xi1(0,1)(0)|\displaystyle=\left|\sum_{i_{1}^{(1)}=1}^{d}\sum_{i_{1}^{(0,1)}=1}^{d}\alpha_{i}[\widetilde{A}]_{i_{1}^{(1)}i}[A_{T_{0}}]_{i_{1}^{(0,1)}i_{1}^{(1)}}\frac{\partial\varphi_{0}}{\partial x_{i_{1}^{(0,1)}}^{(0)}}\right|
=αi|i1(1)=1di1(0,1)=1d[AT0]i1(0,1)i1(1)(ri)i1(1)φ0xi1(0,1)(0)|=αi|φ0ri(0)|\displaystyle=\alpha_{i}\left|\sum_{i_{1}^{(1)}=1}^{d}\sum_{i_{1}^{(0,1)}=1}^{d}[A_{T_{0}}]_{i_{1}^{(0,1)}i_{1}^{(1)}}(r_{i})_{i_{1}^{(1)}}\frac{\partial\varphi_{0}}{\partial x_{i_{1}^{(0,1)}}^{(0)}}\right|=\alpha_{i}\left|\frac{\partial\varphi_{0}}{\partial r_{i}^{(0)}}\right|
αiA~maxAT0maxi1(1)=1di1(0,1)=1d|φ0xi1(0,1)(0)|,\displaystyle\leq\alpha_{i}\|\widetilde{A}\|_{\max}\|A_{T_{0}}\|_{\max}\sum_{i_{1}^{(1)}=1}^{d}\sum_{i_{1}^{(0,1)}=1}^{d}\left|\frac{\partial\varphi_{0}}{\partial x_{i_{1}^{(0,1)}}^{(0)}}\right|,

and for 1i,jd1\leq i,j\leq d,

|2φ^x^ix^j|\displaystyle\displaystyle\left|\frac{\partial^{2}\hat{\varphi}}{\partial\hat{x}_{i}\partial\hat{x}_{j}}\right| =|i1(1),j1(1)=1di1(0,1),j1(0,1)=1dαiαj[A~]i1(1)i[A~]j1(1)j\displaystyle=\Biggl{|}\sum_{i_{1}^{(1)},j_{1}^{(1)}=1}^{d}\sum_{i_{1}^{(0,1)},j_{1}^{(0,1)}=1}^{d}\alpha_{i}\alpha_{j}[\widetilde{A}]_{i_{1}^{(1)}i}[\widetilde{A}]_{j_{1}^{(1)}j}
[AT0]i1(0,1)i1(1)[AT0]j1(0,1)j1(1)2φ0xi1(0,1)(0)xj1(0,1)(0)|=αiαj|2φ0ri(0)rj(0)|\displaystyle\quad\quad[A_{T_{0}}]_{i_{1}^{(0,1)}i_{1}^{(1)}}[A_{T_{0}}]_{j_{1}^{(0,1)}j_{1}^{(1)}}\frac{\partial^{2}\varphi_{0}}{\partial x_{i_{1}^{(0,1)}}^{(0)}\partial x_{j_{1}^{(0,1)}}^{(0)}}\Biggr{|}=\alpha_{i}\alpha_{j}\left|\frac{\partial^{2}\varphi_{0}}{\partial r_{i}^{(0)}\partial r_{j}^{(0)}}\right|
αiαjj1(1)=1d|[A~]j1(1)j||j1(0,1)=1d[AT0]j1(0,1)j1(1)2φ0ri(0)xj1(0,1)(0)|\displaystyle\leq\alpha_{i}\alpha_{j}\sum_{j_{1}^{(1)}=1}^{d}|[\widetilde{A}]_{j_{1}^{(1)}j}|\Biggl{|}\sum_{j_{1}^{(0,1)}=1}^{d}[A_{T_{0}}]_{j_{1}^{(0,1)}j_{1}^{(1)}}\frac{\partial^{2}\varphi_{0}}{\partial r_{i}^{(0)}\partial x_{j_{1}^{(0,1)}}^{(0)}}\Biggr{|}
αiαjA~maxAT0maxj1(0,1)=1d|2φ0ri(0)xj1(0,1)(0)|\displaystyle\leq\alpha_{i}\alpha_{j}\|\widetilde{A}\|_{\max}\|{A}_{T_{0}}\|_{\max}\sum_{j_{1}^{(0,1)}=1}^{d}\Biggl{|}\frac{\partial^{2}\varphi_{0}}{\partial r_{i}^{(0)}\partial x_{j_{1}^{(0,1)}}^{(0)}}\Biggr{|}
αiαjA~max2AT0max2i1(0,1),j1(0,1)=1d|2φ0xi1(0,1)(0)xj1(0,1)(0)|.\displaystyle\leq\alpha_{i}\alpha_{j}\|\widetilde{A}\|_{\max}^{2}\|{A}_{T_{0}}\|_{\max}^{2}\sum_{i_{1}^{(0,1)},j_{1}^{(0,1)}=1}^{d}\left|\frac{\partial^{2}\varphi_{0}}{\partial x_{i_{1}^{(0,1)}}^{(0)}\partial x_{j_{1}^{(0,1)}}^{(0)}}\right|.

If Assumption 1 is not imposed, the estimates corresponding to Lemma 5 are as follows.

Lemma 6

Let m0m\in\mathbb{N}_{0}, 0\ell\in\mathbb{N}_{0} with m\ell\geq m, and p[0,]p\in[0,\infty]. Let β:=(β1,,βd)0d\beta:=(\beta_{1},\ldots,\beta_{d})\in\mathbb{N}_{0}^{d} and γ:=(γ1,,γd)0d\gamma:=(\gamma_{1},\ldots,\gamma_{d})\in\mathbb{N}_{0}^{d} be multi-indices with |β|=m|\beta|=m and |γ|=m|\gamma|=\ell-m. Then, for any φ^W,p(T^)\hat{\varphi}\in W^{\ell,p}(\widehat{T}) with φ~=φ^Φ^1\tilde{\varphi}=\hat{\varphi}\circ\widehat{\Phi}^{-1}, φ=φ~Φ~1{\varphi}=\tilde{\varphi}\circ\widetilde{\Phi}^{-1}, and φ0=φΦT01\varphi_{0}=\varphi\circ\Phi_{T_{0}}^{-1}, it holds that

βγφ^Lp(T^)\displaystyle\displaystyle\|\partial^{\beta}\partial^{\gamma}\hat{\varphi}\|_{L^{p}(\widehat{T})} C3SA|det(AT)|1pA~2mαβ|ϵ|=|γ|αε|r(0)ϵφ0|Wm,p(T0),\displaystyle\leq C_{3}^{SA}|\det({A}_{T})|^{-\frac{1}{p}}\|\widetilde{{A}}\|_{2}^{m}\alpha^{\beta}\sum_{|\epsilon|=|\gamma|}{\alpha}^{\varepsilon}|\partial_{r^{(0)}}^{\epsilon}\varphi_{0}|_{W^{m,p}(T_{0})}, (39)

where C3SAC_{3}^{SA} is a constant that is independent of T0T_{0} and T~\widetilde{T}. Here, for p=p=\infty and any positive real xx, x1p=1x^{-\frac{1}{p}}=1.

Proof

We follow the proof of Lemma 5. Let p[1,)p\in[1,\infty). Because the space 𝒞(T^)\mathcal{C}^{\ell}(\widehat{T}) is dense in the space W,p(T^){W}^{\ell,p}(\widehat{T}), we show that Eq. (39) holds for φ^𝒞(T^)\hat{\varphi}\in\mathcal{C}^{\ell}(\widehat{T}) with φ~=φ^Φ^1\tilde{\varphi}=\hat{\varphi}\circ\widehat{\Phi}^{-1}, φ=φ~Φ~1{\varphi}=\tilde{\varphi}\circ\widetilde{\Phi}^{-1}, and φ0=φΦT01\varphi_{0}=\varphi\circ\Phi_{T_{0}}^{-1}. For 1i,kd1\leq i,k\leq d,

|β+γφ^|\displaystyle\displaystyle\left|\partial^{\beta+\gamma}\hat{\varphi}\right| cαβA~max|β|AT0max|β||δ|=|β||ε|=|γ|αε|δr(0)εφ0|.\displaystyle\leq c\alpha^{\beta}\|\widetilde{A}\|_{\max}^{|\beta|}\|{A}_{T_{0}}\|_{\max}^{|\beta|}\sum_{|\delta|=|\beta|}\sum_{|\varepsilon|=|\gamma|}\alpha^{\varepsilon}\left|\partial^{\delta}\partial_{r^{(0)}}^{\varepsilon}\varphi_{0}\right|.

Using Eqs. (22c) and (24), we obtain Eq. (39) for p[1,]p\in[1,\infty] by an argument analogous to that used for Lemma 5. ∎

4 Remarks on anisotropic interpolation analysis

We use the following Bramble–Hilbert-type lemma on anisotropic meshes proposed in (Ape99, , Lemma 2.1).

Lemma 7

Let DdD\subset\mathbb{R}^{d} with d{2,3}d\in\{2,3\} be a connected open set that is star-shaped with respect to a ball BB. Let γ\gamma be a multi-index with m:=|γ|m:=|\gamma| and φL1(D)\varphi\in L^{1}(D) be a function with γφWm,p(D)\partial^{\gamma}\varphi\in W^{\ell-m,p}(D), where \ell\in\mathbb{N}, m0m\in\mathbb{N}_{0}, 0m0\leq m\leq\ell, and p[1,]p\in[1,\infty]. Then, it holds that

γ(φQ()φ)Wm,p(D)CBH|γφ|Wm,p(D),\displaystyle\displaystyle\|\partial^{\gamma}(\varphi-Q^{(\ell)}\varphi)\|_{W^{\ell-m,p}(D)}\leq C^{BH}|\partial^{\gamma}\varphi|_{W^{\ell-m,p}(D)}, (40)

where CBHC^{BH} depends only on dd, \ell, diamD\mathop{\mathrm{diam}}D, and diamB\mathop{\mathrm{diam}}B, and Q()φQ^{(\ell)}\varphi is defined as

(Q()φ)(x):=|δ|1Bη(y)(δφ)(y)(xy)δδ!𝑑y𝒫1,\displaystyle\displaystyle(Q^{(\ell)}\varphi)(x):=\sum_{|\delta|\leq\ell-1}\int_{B}\eta(y)(\partial^{\delta}\varphi)(y)\frac{(x-y)^{\delta}}{\delta!}dy\in\mathcal{P}^{\ell-1}, (41)

where η𝒞0(B)\eta\in\mathcal{C}_{0}^{\infty}(B) is a given function with Bη𝑑x=1\int_{B}\eta dx=1.

As explained in the Introduction, there exist some mistakes in the proof of Theorem 2 of IshKobTsu , and the statement is not valid in its original form. To clarify the following description, we explain the errors in the proof. Let T^2\widehat{T}\subset\mathbb{R}^{2} be the reference element defined in Section 2.1.1. We set k=m=1k=m=1, =2\ell=2, and p=2p=2. For φ^H2(T^)\hat{\varphi}\in H^{2}(\widehat{T}), we set φ~:=φ^Φ^1\tilde{\varphi}:=\hat{\varphi}\circ\widehat{\Phi}^{-1} and φ:=φ~Φ~1{\varphi}:=\tilde{\varphi}\circ\widetilde{\Phi}^{-1}. Inequality (29) yields

|φITφ|H1(T)\displaystyle\displaystyle|{\varphi}-I_{T}\varphi|_{H^{1}({T})} c|det(AT)|12A~12(i=12αi2x^i(φ^IT^φ^)L2(T^)2)12.\displaystyle\leq c|\det(A_{T})|^{\frac{1}{2}}\|\widetilde{A}^{-1}\|_{2}\left(\sum_{i=1}^{2}\alpha^{-2}_{i}\|\partial_{\hat{x}_{i}}(\hat{\varphi}-I_{\widehat{T}}\hat{\varphi})\|^{2}_{L^{2}(\widehat{T})}\right)^{\frac{1}{2}}. (42)

The coefficient αi2\alpha_{i}^{-2} appears on the right-hand side of Eq. (42). In (IshKobTsu, , Theorem 2), we wrongly claimed that αi2\alpha_{i}^{-2} could be canceled out. In fact, a further assumption is required for this. Using Eq. (41) and the triangle inequality, we have

x^i(φ^IT^φ^)L2(T^)2\displaystyle\displaystyle\|\partial_{\hat{x}_{i}}(\hat{\varphi}-I_{\widehat{T}}\hat{\varphi})\|^{2}_{L^{2}(\widehat{T})} 2x^i(φ^Q(2)φ^)L2(T^)2+2x^i(Q(2)φ^IT^φ^)L2(T^)2.\displaystyle\leq 2\|\partial_{\hat{x}_{i}}(\hat{\varphi}-Q^{(2)}\hat{\varphi})\|^{2}_{L^{2}(\widehat{T})}+2\|\partial_{\hat{x}_{i}}(Q^{(2)}\hat{\varphi}-I_{\widehat{T}}\hat{\varphi})\|^{2}_{L^{2}(\widehat{T})}.

We use inequality (40) to obtain the target inequality (IshKobTsu, , Theorem 2). To this end, we have to show that

x^i(Q(2)φ^IT^φ^)L2(T^)\displaystyle\displaystyle\|\partial_{\hat{x}_{i}}(Q^{(2)}\hat{\varphi}-I_{\widehat{T}}\hat{\varphi})\|_{L^{2}(\widehat{T})} cx^i(φ^Q(2)φ^)H1(T^).\displaystyle\leq c\|\partial_{\hat{x}_{i}}(\hat{\varphi}-Q^{(2)}\hat{\varphi})\|_{H^{1}(\widehat{T})}. (43)

However, this is unlikely to hold because Eqs. (14) and (16) yield

x^i(Q(2)φ^IT^φ^)L2(T^)\displaystyle\displaystyle\|\partial_{\hat{x}_{i}}(Q^{(2)}\hat{\varphi}-I_{\widehat{T}}\hat{\varphi})\|_{L^{2}(\widehat{T})} =x^i(IT^(Q(2)φ^)IT^φ^)L2(T^)\displaystyle=\|\partial_{\hat{x}_{i}}(I_{\widehat{T}}(Q^{(2)}\hat{\varphi})-I_{\widehat{T}}\hat{\varphi})\|_{L^{2}(\widehat{T})}
cQ(2)φ^φ^H2(T^)c|φ^|H2(T^).\displaystyle\leq c\|Q^{(2)}\hat{\varphi}-\hat{\varphi}\|_{H^{2}(\widehat{T})}\leq c|\hat{\varphi}|_{H^{2}(\widehat{T})}.

Using the classical scaling argument (see (ErnGue04, , Lemma 1.101)), we have

|φ^|H2(T^)c|det(AT)|12A~2|φ|H2(T),\displaystyle\displaystyle|\hat{\varphi}|_{H^{2}(\widehat{T})}\leq c|\det(A_{T})|^{-\frac{1}{2}}\|\widetilde{A}\|_{2}|\varphi|_{H^{2}(T)},

which does not include the quantity αi\alpha_{i}. Therefore, the quantity αi1\alpha_{i}^{-1} in Eq. (42) remains. Thus, the proof of (IshKobTsu, , Theorem 2) is incorrect.

To overcome this problem, we use some results from previous studies ApeDob92 ; Ape99 . That is, we assume that there exists a linear functional 1\mathscr{F}_{1} such that

1H1(T^),\displaystyle\mathscr{F}_{1}\in H^{1}(\widehat{T})^{\prime},
1(x^i(φ^IT^φ^))=0i=1,2,φ^𝒞(T^):x^iφ^H1(T^),\displaystyle\mathscr{F}_{1}(\partial_{\hat{x}_{i}}(\hat{\varphi}-I_{\widehat{T}}\hat{\varphi}))=0\quad i=1,2,\quad\forall\hat{\varphi}\in\mathcal{C}({\widehat{T}}):\ \partial_{\hat{x}_{i}}\hat{\varphi}\in H^{1}(\widehat{T}),
η^𝒫1,1(x^iη^)=0i=1,2,x^iη^=0.\displaystyle\hat{\eta}\in\mathcal{P}^{1},\quad\mathscr{F}_{1}(\partial_{\hat{x}_{i}}\hat{\eta})=0\quad i=1,2,\quad\Rightarrow\quad\partial_{\hat{x}_{i}}\hat{\eta}=0.

Because the polynomial spaces are finite-dimensional, all norms are equivalent; i.e., because |1(x^i(η^IT^φ^))||\mathscr{F}_{1}(\partial_{\hat{x}_{i}}(\hat{\eta}-I_{\widehat{T}}\hat{\varphi}))| (i=1,2i=1,2) is a norm on 𝒫0\mathcal{P}^{0}, we have that, for i=1,2i=1,2,

x^i(η^IT^φ^)L2(T^)\displaystyle\displaystyle\|\partial_{\hat{x}_{i}}(\hat{\eta}-I_{\widehat{T}}\hat{\varphi})\|_{L^{2}(\widehat{T})} c|1(x^i(η^IT^φ^))|=c|1(x^i(η^φ^))|\displaystyle\leq c|\mathscr{F}_{1}(\partial_{\hat{x}_{i}}(\hat{\eta}-I_{\widehat{T}}\hat{\varphi}))|=c|\mathscr{F}_{1}(\partial_{\hat{x}_{i}}(\hat{\eta}-\hat{\varphi}))|
cx^i(η^φ^)H1(T^).\displaystyle\leq c\|\partial_{\hat{x}_{i}}(\hat{\eta}-\hat{\varphi})\|_{H^{1}(\widehat{T})}.

Setting η^:=Q(2)φ^\hat{\eta}:=Q^{(2)}\hat{\varphi}, we obtain Eq. (43). Using inequality (40) yields

x^i(φ^IT^φ^)L2(T^)2\displaystyle\displaystyle\|\partial_{\hat{x}_{i}}(\hat{\varphi}-I_{\widehat{T}}\hat{\varphi})\|^{2}_{L^{2}(\widehat{T})} c|x^iφ^|H1(T^)2,\displaystyle\leq c|\partial_{\hat{x}_{i}}\hat{\varphi}|^{2}_{H^{1}(\widehat{T})},

and so inequality (42) together with Eq. (25) can be written as

|φITφ|H1(T)\displaystyle\displaystyle|{\varphi}-I_{T}\varphi|_{H^{1}({T})} c|det(AT)|12A~12i,j=12αi1x^ix^jφ^L2(T^).\displaystyle\leq c|\det(A_{T})|^{\frac{1}{2}}\|\widetilde{A}^{-1}\|_{2}\sum_{i,j=1}^{2}\alpha^{-1}_{i}\|\partial_{\hat{x}_{i}}\partial_{\hat{x}_{j}}\hat{\varphi}\|_{L^{2}(\widehat{T})}. (44)

Inequality (37) yields

x^ix^jφ^L2(T^)\displaystyle\displaystyle\|\partial_{\hat{x}_{i}}\partial_{\hat{x}_{j}}\hat{\varphi}\|_{L^{2}(\widehat{T})} c|det(AT)|12A~2αin=12n|φxn|H1(T).\displaystyle\leq c|\det({A}_{T})|^{-\frac{1}{2}}\|\widetilde{A}\|_{2}\alpha_{i}\sum_{n=1}^{2}\mathscr{H}_{n}\left|\frac{\partial\varphi}{\partial x_{n}}\right|_{H^{1}(T)}. (45)

Therefore, the quantity αi1\alpha_{i}^{-1} in Eq. (44) and the quantity αi\alpha_{i} in Eq. (45) cancel out.

5 Classical interpolation error estimates

The following embedding results hold.

Theorem

Let d2d\geq 2, s>0s\textgreater 0, and p[1,]p\in[1,\infty]. Let DdD\subset\mathbb{R}^{d} be a bounded open subset of d\mathbb{R}^{d}. If DD is a Lipschitz set, we have that

Ws,p(D){Lq(D)q[p,pddsp] if sp<d,Lq(D)q[p,), if sp=d,L(D)𝒞0,ξ(D¯)ξ=1dsp if sp>d.\displaystyle\displaystyle W^{s,p}(D)\hookrightarrow\begin{cases}L^{q}(D)\quad\text{$\forall q\in[p,\frac{pd}{d-sp}]$ if $sp\textless d$},\\ L^{q}(D)\quad\text{$\forall q\in[p,\infty)$, if $sp=d$},\\ L^{\infty}(D)\cap\mathcal{C}^{0,\xi}(\overline{D})\quad\text{$\xi=1-\frac{d}{sp}$ if $sp\textgreater d$}.\end{cases} (46)

Furthermore,

Ws,p(D)L(D)𝒞0(D¯)(case s=d and p=1).\displaystyle\displaystyle W^{s,p}(D)\hookrightarrow L^{\infty}(D)\cap\mathcal{C}^{0}(\overline{D})\quad\text{(case $s=d$ and $p=1$)}. (47)
Proof

See, for example, (ErnGue04, , Corollary B.43, Theorem B.40), (ErnGue21a, , Theorem 2.31), and the references therein. ∎

Remark 4

Let s>0s\textgreater 0 and p[1,]p\in[1,\infty] be such that

s>dpif p>1,sdif p=1.\displaystyle\displaystyle s\textgreater\frac{d}{p}\quad\text{if $p\textgreater 1$},\quad s\geq d\quad\text{if $p=1$}.

Then, it holds that Ws,p(D)𝒞0(D¯)W^{s,p}(D)\hookrightarrow\mathcal{C}^{0}(\overline{D}).

Using the new geometric parameter HT0H_{T_{0}}, it is possible to deduce the classical interpolation error estimates; e.g., see (ErnGue04, , Theorem 1.103) and (ErnGue21a, , Theorem 11.13).

Theorem A

Let 1p1\leq p\leq\infty and assume that there exists a nonnegative integer kk such that

𝒫kP^Wk+1,p(T^)V(T^).\displaystyle\displaystyle\mathcal{P}^{k}\subset\widehat{{P}}\subset W^{k+1,p}(\widehat{T})\subset V(\widehat{T}).

Let \ell (0k0\leq\ell\leq k) be such that W+1,p(T^)V(T^)W^{\ell+1,p}(\widehat{T})\subset V(\widehat{T}) with the continuous embedding. Furthermore, assume that ,m{0}\ell,m\in\mathbb{N}\cup\{0\} and p,q[1,]p,q\in[1,\infty] such that 0m+10\leq m\leq\ell+1 and

W+1,p(T^)Wm,q(T^).\displaystyle\displaystyle W^{\ell+1,p}(\widehat{T})\hookrightarrow W^{m,q}(\widehat{T}). (48)

Then, for any φ0W+1,p(T0)\varphi_{0}\in W^{\ell+1,p}(T_{0}), it holds that

|φ0IT0φ0|Wm,q(T0)\displaystyle\displaystyle|\varphi_{0}-{I}_{T_{0}}\varphi_{0}|_{W^{m,q}(T_{0})} CI|T0|1q1p(αmaxαmin)m(HT0hT0)mhT0+1m|φ0|W+1,p(T0),\displaystyle\leq C_{*}^{I}|T_{0}|^{\frac{1}{q}-\frac{1}{p}}\left(\frac{\alpha_{\max}}{\alpha_{\min}}\right)^{m}\left(\frac{H_{T_{0}}}{h_{T_{0}}}\right)^{m}h_{T_{0}}^{\ell+1-m}|\varphi_{0}|_{W^{\ell+1,p}(T_{0})}, (49)

where CIC_{*}^{I} is a positive constant that is independent of hTh_{T} and HTH_{T}, and the parameters αmax\alpha_{\max} and αmin\alpha_{\min} are defined as

αmax:=max{α1,,αd},αmin:=min{α1,,αd}.\displaystyle\displaystyle\alpha_{\max}:=\max\{\alpha_{1},\ldots,\alpha_{d}\},\quad\alpha_{\min}:=\min\{\alpha_{1},\ldots,\alpha_{d}\}. (50)
Proof

Let φ^W+1,p(T^)\hat{\varphi}\in W^{\ell+1,p}(\widehat{T}). Because 0k0\leq\ell\leq k, 𝒫𝒫kP^\mathcal{P}^{\ell}\subset\mathcal{P}^{k}\subset\widehat{{P}}. Therefore, for any η^𝒫\hat{\eta}\in\mathcal{P}^{\ell}, we have IT^η^=η^I_{\widehat{T}}\hat{\eta}=\hat{\eta}. Using Eqs. (16) and (48), we obtain

|φ~IT^φ^|Wm,q(T^)\displaystyle\displaystyle|\tilde{\varphi}-I_{\widehat{T}}\hat{\varphi}|_{W^{m,q}(\widehat{T})} |φ~η^|Wm,q(T^)+|IT^(η^φ^)|Wm,q(T^)\displaystyle\leq|\tilde{\varphi}-\hat{\eta}|_{W^{m,q}(\widehat{T})}+|I_{\widehat{T}}(\hat{\eta}-\hat{\varphi})|_{W^{m,q}(\widehat{T})}
cφ~η^W+1,p(T^),\displaystyle\leq c\|\tilde{\varphi}-\hat{\eta}\|_{W^{\ell+1,p}(\widehat{T})},

where we have used the stability of the interpolation operator IT^I_{\widehat{T}}; i.e.,

|IT^(η^φ^)|Wm,q(T^)\displaystyle\displaystyle|I_{\widehat{T}}(\hat{\eta}-\hat{\varphi})|_{W^{m,q}(\widehat{T})} i=1n0|χ^i(η^φ^)||θ^i|Wm,q(T^)cη^φ~W+1,p(T^).\displaystyle\leq\sum_{i=1}^{n_{0}}|\hat{\chi}_{i}(\hat{\eta}-\hat{\varphi})||\hat{\theta}_{i}|_{W^{m,q}(\widehat{T})}\leq c\|\hat{\eta}-\tilde{\varphi}\|_{W^{\ell+1,p}(\widehat{T})}.

Using the classic Bramble–Hilbert-type lemma (e.g., (BreSco08, , Lemma 4.3.8)), we obtain

|φ~IT^φ^|Wm,q(T^)\displaystyle\displaystyle|\tilde{\varphi}-I_{\widehat{T}}\hat{\varphi}|_{W^{m,q}(\widehat{T})} cinfη^𝒫η^φ~W+1,p(T^)c|φ^|W+1,p(T^).\displaystyle\leq c\inf_{\hat{\eta}\in\mathcal{P}^{\ell}}\|\hat{\eta}-\tilde{\varphi}\|_{W^{\ell+1,p}(\widehat{T})}\leq c|\hat{\varphi}|_{W^{\ell+1,p}(\widehat{T})}. (51)

Inequalities (26), (29), (25), and (51) yield

|φ0IT0φ0|Wm,q(T0)c|φITφ|Wm,q(T)\displaystyle|\varphi_{0}-{I}_{T_{0}}\varphi_{0}|_{W^{m,q}({T}_{0})}\leq c|\varphi-{I}_{T}\varphi|_{W^{m,q}({T})}
c|det(AT)|1qA~12m(|β|=m(αβ)qβ(φ^IT^φ^)Lq(T^)q)1/q\displaystyle\ \leq c|\det({A}_{T})|^{\frac{1}{q}}\|\widetilde{A}^{-1}\|_{2}^{m}\left(\sum_{|\beta|=m}(\alpha^{-\beta})^{q}\|\partial^{\beta}(\hat{\varphi}-I_{\widehat{T}}\hat{\varphi})\|^{q}_{L^{q}(\widehat{T})}\right)^{1/q}
c|det(AT)|1qA~12mmax{α11,,αd1}|β||φ~IT^φ^|Wm,q(T^)\displaystyle\ \leq c|\det({A}_{T})|^{\frac{1}{q}}\|\widetilde{A}^{-1}\|_{2}^{m}\max\{\alpha_{1}^{-1},\ldots,\alpha_{d}^{-1}\}^{|\beta|}|\tilde{\varphi}-I_{\widehat{T}}\hat{\varphi}|_{W^{m,q}(\widehat{T})}
c|det(AT)|1qA~12mαmin|β||φ^|W+1,p(T^).\displaystyle\ \leq c|\det({A}_{T})|^{\frac{1}{q}}\|\widetilde{A}^{-1}\|_{2}^{m}\alpha_{\min}^{-|\beta|}|\hat{\varphi}|_{W^{\ell+1,p}(\widehat{T})}. (52)

Using inequalities (25) and (39) together with Eq. (22c), we have

|φ^|W+1,p(T^)\displaystyle|\hat{\varphi}|_{W^{\ell+1,p}(\widehat{T})}
|γ|=+1m|β|=mβγφ^Lp(T^)\displaystyle\ \leq\sum_{|\gamma|=\ell+1-m}\sum_{|\beta|=m}\|\partial^{\beta}\partial^{\gamma}\hat{\varphi}\|_{L^{p}(\widehat{T})}
c|det(AT)|1pA~2m|γ|=+1m|β|=mαβ|ϵ|=|γ|αε|r(0)ϵφ0|Wm,p(T0)\displaystyle\ \leq c|\det({A}_{T})|^{-\frac{1}{p}}\|\widetilde{{A}}\|_{2}^{m}\sum_{|\gamma|=\ell+1-m}\sum_{|\beta|=m}\alpha^{\beta}\sum_{|\epsilon|=|\gamma|}{\alpha}^{\varepsilon}|\partial_{r^{(0)}}^{\epsilon}\varphi_{0}|_{W^{m,p}(T_{0})}
c|det(AT)|1pA~2mmax{α1,,αd}|β|hT0+1m|φ0|W+1,p(T0)\displaystyle\ \leq c|\det({A}_{T})|^{-\frac{1}{p}}\|\widetilde{{A}}\|_{2}^{m}\max\{\alpha_{1},\ldots,\alpha_{d}\}^{|\beta|}h_{T_{0}}^{\ell+1-m}|\varphi_{0}|_{W^{\ell+1,p}(T_{0})}
c|det(AT)|1pA~2mαmax|β|hT0+1m|φ0|W+1,p(T0).\displaystyle\ \leq c|\det({A}_{T})|^{-\frac{1}{p}}\|\widetilde{{A}}\|_{2}^{m}\alpha_{\max}^{|\beta|}h_{T_{0}}^{\ell+1-m}|\varphi_{0}|_{W^{\ell+1,p}(T_{0})}. (53)

From Eqs. (52) and (53) together with Eq. (23), we have the desired estimate (49). ∎

6 Anisotropic interpolation error estimates

6.1 Main theorem

Theorem A can be applied to standard isotropic elements as well as some classes of anisotropic elements. If we are concerned with anisotropic elements, it is desirable to remove the quantity αmax/αmin\alpha_{\max}/\alpha_{\min} from estimate (49). To this end, we employ the approach described in Ape99 and consider the case of a finite element with V(T^):=𝒞(T^)V(\widehat{T}):=\mathcal{C}({\widehat{T}}) and P^:=𝒫k(T^)\widehat{{P}}:=\mathcal{P}^{k}(\widehat{T}) (Theorem B). However, one needs stronger assumptions to obtain the optimal estimate. When using finite elements that do not satisfy the assumptions of Theorem B (e.g., 𝒫1\mathcal{P}^{1}-bubble finite element), we have to use Theorem A. In these cases, it may not be possible to obtain optimal order estimates if the shape-regularity condition is violated.

Theorem B

Let {T^,P^,Σ^}\{\widehat{T},\widehat{{P}},\widehat{\Sigma}\} be a finite element with the normed vector space V(T^):=𝒞(T^)V(\widehat{T}):=\mathcal{C}({\widehat{T}}) and P^:=𝒫k(T^)\widehat{{P}}:=\mathcal{P}^{k}(\widehat{T}) with k1k\geq 1. Let IT^:V(T^)P^I_{\widehat{T}}:V({\widehat{T}})\to\widehat{{P}} be a linear operator. Fix \ell\in\mathbb{N}, m0m\in\mathbb{N}_{0}, and p,q[1,]p,q\in[1,\infty] such that 0mk+10\leq m\leq\ell\leq k+1, m1\ell-m\geq 1, and assume that the embeddings (46) and (47) with s:=ms:=\ell-m hold. Let β\beta be a multi-index with |β|=m|\beta|=m. We set j:=dim(β𝒫k)j:=\dim(\partial^{\beta}\mathcal{P}^{k}). Assume that there exist linear functionals i\mathscr{F}_{i}, i=1,,ji=1,\ldots,j, such that

iWm,p(T^),i=1,,j,\displaystyle\mathscr{F}_{i}\in W^{\ell-m,p}(\widehat{T})^{\prime},\quad\forall i=1,\ldots,j, (54)
i(β(φ^IT^φ^))=0i=1,,j,φ^𝒞(T^):βφ^Wm,p(T^),\displaystyle\mathscr{F}_{i}(\partial^{\beta}(\hat{\varphi}-I_{\widehat{T}}\hat{\varphi}))=0\quad\forall i=1,\ldots,j,\quad\forall\hat{\varphi}\in\mathcal{C}({\widehat{T}}):\ \partial^{\beta}\hat{\varphi}\in W^{\ell-m,p}(\widehat{T}), (55)
η^𝒫k,i(βη^)=0i=1,,jβη^=0.\displaystyle\hat{\eta}\in\mathcal{P}^{k},\quad\mathscr{F}_{i}(\partial^{\beta}\hat{\eta})=0\quad\forall i=1,\ldots,j\quad\Rightarrow\quad\partial^{\beta}\hat{\eta}=0. (56)

For any φ^W,p(T^)𝒞(T^)\hat{\varphi}\in W^{\ell,p}(\widehat{T})\cap\mathcal{C}({\widehat{T}}), we set φ0:=φ^Φ1{\varphi}_{0}:=\hat{\varphi}\circ{\Phi}^{-1}. If Assumption 1 is imposed, it holds that

|φ0IT0φ0|Wm,q(T0)\displaystyle|{\varphi}_{0}-I_{{T}_{0}}{\varphi}_{0}|_{W^{m,q}({T}_{0})}
C1TB|T0|1q1p(HT0hT0)m|γ|=mγ|γ(φ0ΦT0)|Wm,p(ΦT01(T0)),\displaystyle\quad\leq C_{1}^{TB}|T_{0}|^{\frac{1}{q}-\frac{1}{p}}\left(\frac{H_{T_{0}}}{h_{T_{0}}}\right)^{m}\sum_{|\gamma|=\ell-m}\mathscr{H}^{\gamma}|\partial^{\gamma}{(\varphi_{0}\circ\Phi_{T_{0}})}|_{W^{m,p}(\Phi_{T_{0}}^{-1}(T_{0}))}, (57)

where C1TBC_{1}^{TB} is a positive constant that is independent of hT0h_{T_{0}} and HT0H_{T_{0}}. Furthermore, if Assumption 1 is not imposed, it holds that

|φ0IT0φ0|Wm,q(T0)\displaystyle|{\varphi}_{0}-I_{{T}_{0}}{\varphi}_{0}|_{W^{m,q}({T}_{0})}
C2TB|T0|1q1p(HT0hT0)m|γ|=mαγ|r(0)γφ0|Wm,p(T0),\displaystyle\quad\leq C_{2}^{TB}|T_{0}|^{\frac{1}{q}-\frac{1}{p}}\left(\frac{H_{T_{0}}}{h_{T_{0}}}\right)^{m}\sum_{|\gamma|=\ell-m}{\alpha}^{\gamma}|\partial_{r^{(0)}}^{\gamma}{\varphi_{0}}|_{W^{m,p}(T_{0})}, (58)

where C2TBC_{2}^{TB} is a positive constant that is independent of hT0h_{T_{0}} and HT0H_{T_{0}}.

Proof

The introduction of the functionals i\mathscr{F}_{i} follows from Ape99 . In fact, under the same assumptions as made in Theorem B, we have (see (Ape99, , Lemma 2.2))

β(φ^IT^φ^)Lq(T^)\displaystyle\displaystyle\|\partial^{\beta}(\hat{\varphi}-I_{\widehat{T}}\hat{\varphi})\|_{L^{q}(\widehat{T})} CB|βφ^|Wm,p(T^),\displaystyle\leq C^{B}|\partial^{\beta}\hat{\varphi}|_{W^{\ell-m,p}(\widehat{T})}, (59)

where |β|=m|\beta|=m, φ^𝒞(T^)\hat{\varphi}\in\mathcal{C}({\widehat{T}}), and βφ^Wm,p(T^)\partial^{\beta}\hat{\varphi}\in W^{\ell-m,p}(\widehat{T}).

Inequalities (26), (29), (25), and (59) yield

|φ0IT0φ0|Wm,q(T0)c|φITφ|Wm,q(T)\displaystyle|\varphi_{0}-{I}_{T_{0}}\varphi_{0}|_{W^{m,q}({T}_{0})}\leq c|\varphi-{I}_{T}\varphi|_{W^{m,q}({T})}
c|det(AT)|1qA~12m(|β|=m(αβ)qβ(φ^IT^φ^)Lq(T^)q)1/q\displaystyle\ \leq c|\det({A}_{T})|^{\frac{1}{q}}\|\widetilde{A}^{-1}\|_{2}^{m}\left(\sum_{|\beta|=m}(\alpha^{-\beta})^{q}\|\partial^{\beta}(\hat{\varphi}-I_{\widehat{T}}\hat{\varphi})\|^{q}_{L^{q}(\widehat{T})}\right)^{1/q}
c|det(AT)|1qA~12m|β|=m(αβ)β(φ^IT^φ^)Lq(T^)\displaystyle\ \leq c|\det({A}_{T})|^{\frac{1}{q}}\|\widetilde{A}^{-1}\|_{2}^{m}\sum_{|\beta|=m}(\alpha^{-\beta})\|\partial^{\beta}(\hat{\varphi}-I_{\widehat{T}}\hat{\varphi})\|_{L^{q}(\widehat{T})}
c|det(AT)|1qA~12m|β|=m(αβ)|βφ^|Wm,p(T^).\displaystyle\ \leq c|\det({A}_{T})|^{\frac{1}{q}}\|\widetilde{A}^{-1}\|_{2}^{m}\sum_{|\beta|=m}(\alpha^{-\beta})|\partial^{\beta}\hat{\varphi}|_{W^{\ell-m,p}(\widehat{T})}. (60)

If Assumption 1 is imposed, then using inequalities (25) and (37) leads to

|β|=m(αβ)|βφ^|Wm,p(T^)\displaystyle\sum_{|\beta|=m}(\alpha^{-\beta})|\partial^{\beta}\hat{\varphi}|_{W^{\ell-m,p}(\widehat{T})}
|γ|=m|β|=m(αβ)β+γφ^Lp(T^)\displaystyle\quad\leq\sum_{|\gamma|=\ell-m}\sum_{|\beta|=m}(\alpha^{-\beta})\|\partial^{\beta+\gamma}\hat{\varphi}\|_{L^{p}(\widehat{T})}
c|det(AT)|1pA~2m|γ|=m|β|=m(αβ)αβ|ϵ|=|γ|ε|ϵφ|Wm,p(T)\displaystyle\quad\leq c|\det({A}_{T})|^{-\frac{1}{p}}\|\widetilde{A}\|^{m}_{2}\sum_{|\gamma|=\ell-m}\sum_{|\beta|=m}(\alpha^{-\beta})\alpha^{\beta}\sum_{|\epsilon|=|\gamma|}\mathscr{H}^{\varepsilon}|\partial^{\epsilon}\varphi|_{W^{m,p}(T)}
c|det(AT)|1pA~2m|ϵ|=mε|ϵφ|Wm,p(T).\displaystyle\quad\leq c|\det({A}_{T})|^{-\frac{1}{p}}\|\widetilde{A}\|^{m}_{2}\sum_{|\epsilon|=\ell-m}\mathscr{H}^{\varepsilon}|\partial^{\epsilon}\varphi|_{W^{m,p}(T)}. (61)

From Eqs. (60) and (61) together with Eqs. (22) and (23), we have the desired estimate (57) using T=ΦT01(T0)T=\Phi_{T_{0}}^{-1}(T_{0}) and φ=φ0ΦT0\varphi=\varphi_{0}\circ\Phi_{T_{0}}.

If Assumption 1 is not imposed, then an analogous argument using inequality (39) instead of (37) yields estimate (58). ∎

Example 1

Specific finite elements satisfying conditions (54), (55), and (56) are given in ApeDob92 and Ape99 ; see also Section 6.2.

Remark 5

Finite elements that do not satisfy conditions (54), (55), and (56) can be found in (ApeDob92, , Table 3); e.g., the 𝒫1\mathcal{P}^{1}-bubble finite element and the 𝒫3\mathcal{P}^{3} Hermite finite element. In these cases, Theorem A can be applied.

6.2 Examples satisfying conditions (54), (55), and (56) in Theorem B

Corollary 1

Let {T^,P^,Σ^}\{\widehat{T},\widehat{{P}},\widehat{\Sigma}\} be the Lagrange finite element with V(T^):=𝒞(T^)V(\widehat{T}):=\mathcal{C}({\widehat{T}}) and P^:=𝒫k(T^)\widehat{{P}}:=\mathcal{P}^{k}(\widehat{T}) for k1k\geq 1. Let IT:V(T)PI_{T}:V({T})\to{{P}} be the corresponding local Lagrange interpolation operator. Let m0m\in\mathbb{N}_{0}, \ell\in\mathbb{N}, and pp\in\mathbb{R} be such that 0mk+10\leq m\leq\ell\leq k+1 and

d=2:{p(2,]if m=0=1,p[1,]if m=02 or m1m1,\displaystyle d=2:\ \begin{cases}p\in(2,\infty]\quad\text{if $m=0$, $\ell=1$},\\ p\in[1,\infty]\quad\text{if $m=0$, $\ell\geq 2$ or $m\geq 1$, $\ell-m\geq 1$},\end{cases}
d=3:{p(3,]if m=0=1,2,p(2,]if m1m=1,p[1,]if m=03 or m1m2.\displaystyle d=3:\ \begin{cases}p\in\left(\frac{3}{\ell},\infty\right]\quad\text{if $m=0$, $\ell=1,2$},\\ p\in(2,\infty]\quad\text{if $m\geq 1$, $\ell-m=1$},\\ p\in[1,\infty]\quad\text{if $m=0$, $\ell\geq 3$ or $m\geq 1$, $\ell-m\geq 2$}.\end{cases}

We set q[1,]q\in[1,\infty] such that Wm,p(T^)Lq(T^)W^{\ell-m,p}(\widehat{T})\hookrightarrow L^{q}(\widehat{T}). Then, for all φ^W,p(T^)\hat{\varphi}\in W^{\ell,p}(\widehat{T}) with φ0:=φ^Φ1{\varphi}_{0}:=\hat{\varphi}\circ{\Phi}^{-1}, we recover Eq. (57) if Assumption 1 is imposed, and Eq. (58) holds.

Furthermore, for any φ^𝒞(T^)\hat{\varphi}\in\mathcal{C}(\widehat{T}) with φ0:=φ^Φ1{\varphi}_{0}:=\hat{\varphi}\circ{\Phi}^{-1}, it holds that

φ0IT0φ0L(T0)cφ0L(T0).\displaystyle\displaystyle\|{\varphi}_{0}-I_{{T}_{0}}{\varphi}_{0}\|_{L^{\infty}({T}_{0})}\leq c\|{\varphi}_{0}\|_{L^{\infty}(T_{0})}.
Proof

The existence of functionals satisfying Eqs. (54), (55), and (56) is shown in the proof of (Ape99, , Lemma 2.4) for d=2d=2 and in the proof of (Ape99, , Lemma 2.6) for d=3d=3. Inequality (59) then holds. This implies that estimates (57) and (58) hold. ∎

Setting V(T):=𝒞(T)V(T):=\mathcal{C}({{T}}), we define the nodal Crouzeix–Raviart interpolation operators as

ITCR,S:V(T)φITCR,Sφ:=i=1d+1φ(xFi)θi𝒫1.\displaystyle\displaystyle I_{T}^{CR,S}:V(T)\ni\varphi\mapsto I_{T}^{CR,S}\varphi:=\sum_{i=1}^{d+1}\varphi(x_{F_{i}})\theta_{i}\in\mathcal{P}^{1}.
Corollary 2

Let {T^,P^,Σ^}\{\widehat{T},\widehat{{P}},\widehat{\Sigma}\} be the Crouzeix–Raviart finite element with V(T^):=𝒞(T^)V(\widehat{T}):=\mathcal{C}({\widehat{T}}) and P^:=𝒫1(T^)\widehat{{P}}:=\mathcal{P}^{1}(\widehat{T}). Set IT;=ITCR,SI_{T};=I_{T}^{CR,S}. Let m0m\in\mathbb{N}_{0}, \ell\in\mathbb{N}, and pp\in\mathbb{R} be such that

d=2:{p(2,]if m=0=1,p[1,]if m=0=2 or m=1=2,\displaystyle d=2:\ \begin{cases}p\in(2,\infty]\quad\text{if $m=0$, $\ell=1$},\\ p\in[1,\infty]\quad\text{if $m=0$, $\ell=2$ or $m=1$, $\ell=2$},\end{cases}
d=3:{p(3,]if m=0=1,2,p(2,]if m=1=2.\displaystyle d=3:\ \begin{cases}p\in\left(\frac{3}{\ell},\infty\right]\quad\text{if $m=0$, $\ell=1,2$},\\ \displaystyle p\in(2,\infty]\quad\text{if $m=1$, $\ell=2$}.\end{cases}

Set q[1,]q\in[1,\infty] such that Wm,p(T^)Lq(T^)W^{\ell-m,p}(\widehat{T})\hookrightarrow L^{q}(\widehat{T}). Then, for all φ^W,p(T^)\hat{\varphi}\in W^{\ell,p}(\widehat{T}) with φ0:=φ^Φ1{\varphi}_{0}:=\hat{\varphi}\circ{\Phi}^{-1}, we recover Eq. (57) if Assumption 1 is imposed, and Eq. (58) holds.

Furthermore, for any φ^𝒞(T^)\hat{\varphi}\in\mathcal{C}(\widehat{T}) with φ0:=φ^Φ1{\varphi}_{0}:=\hat{\varphi}\circ{\Phi}^{-1}, it holds that

φ0IT0φ0L(T0)cφ0L(T0).\displaystyle\displaystyle\|{\varphi}_{0}-I_{{T}_{0}}{\varphi}_{0}\|_{L^{\infty}({T}_{0})}\leq c\|{\varphi}_{0}\|_{L^{\infty}(T_{0})}.
Proof

For k=1k=1, we only introduce functionals i\mathscr{F}_{i} satisfying Eqs. (54), (55), and (56) in Theorem B for each \ell and mm.

Let m=0m=0. From the Sobolev embedding theorem, we have W,p(T^)𝒞0(T^)W^{\ell,p}(\widehat{T})\subset\mathcal{C}^{0}(\widehat{T}) with 1<p1\textless p\leq\infty, d<pd\textless\ell p or p=1p=1, dd\leq\ell. Under this condition, we use

i(φ^):=φ^(x^F^i),φ^W,p(T^),i=1,,d+1.\displaystyle\displaystyle\mathscr{F}_{i}(\hat{\varphi}):=\hat{\varphi}(\hat{x}_{\widehat{F}_{i}}),\quad\hat{\varphi}\in W^{\ell,p}(\widehat{T}),\quad i=1,\ldots,d+1.

Let d=2d=2 and m=1m=1 (=2\ell=2). We set β=(1,0)\beta=(1,0). Then, we have that j=dim(β𝒫1)=1j=\dim(\partial^{\beta}\mathcal{P}^{1})=1. We consider a functional

1(φ^):=012φ^(x^1,1/2)𝑑x^1,φ^W2,p(T^).\displaystyle\displaystyle\mathscr{F}_{1}(\hat{\varphi}):=\int_{0}^{\frac{1}{2}}\hat{\varphi}(\hat{x}_{1},1/2)d\hat{x}_{1},\quad\hat{\varphi}\in W^{2,p}(\widehat{T}).

By an analogous argument, we can set a functional for the case β=(0,1)\beta=(0,1).

Let d=3d=3 and m=1m=1 (=2\ell=2). We first consider Type (i) in Section 2.1.2. That is, the reference element is T^=conv{0,e1,e2,e3}\widehat{T}=\mathop{\mathrm{conv}}\{0,e_{1},e_{2},e_{3}\}. Here, e1,,e33e_{1},\ldots,e_{3}\in\mathbb{R}^{3} form the canonical basis. We set β=(1,0,0)\beta=(1,0,0) and consider the functional

1(φ^):=013φ^(x^1,1/3,1/3)𝑑x^1,φ^W2,p(T^).\displaystyle\displaystyle\mathscr{F}_{1}(\hat{\varphi}):=\int_{0}^{\frac{1}{3}}\hat{\varphi}(\hat{x}_{1},1/3,1/3)d\hat{x}_{1},\quad\hat{\varphi}\in W^{2,p}(\widehat{T}).

We now consider Type (ii) in Section 2.1.2. That is, the reference element is T^=conv{0,e1,e1+e2,e3}\widehat{T}=\mathop{\mathrm{conv}}\{0,e_{1},e_{1}+e_{2},e_{3}\}. We set β=(1,0,0)\beta=(1,0,0) and consider the functional

Φ1(φ^):=1323φ^(x^1,1/3,1/3)𝑑x^1,φ^W2,p(T^).\displaystyle\displaystyle\Phi_{1}(\hat{\varphi}):=\int_{\frac{1}{3}}^{\frac{2}{3}}\hat{\varphi}(\hat{x}_{1},1/3,1/3)d\hat{x}_{1},\quad\hat{\varphi}\in W^{2,p}(\widehat{T}).

By an analogous argument, we can set functionals for cases β=(0,1,0),(0,0,1)\beta=(0,1,0),(0,0,1).

When m==0m=\ell=0 and p=p=\infty, we can easily check that

φ^IT^CR,Sφ^L(T^)\displaystyle\displaystyle\|\hat{\varphi}-I_{\widehat{T}}^{CR,S}\hat{\varphi}\|_{L^{\infty}(\widehat{T})} cφ^L(T^).\displaystyle\leq c\|\hat{\varphi}\|_{L^{\infty}(\widehat{T})}.

7 Concluding remarks

As our concluding remarks, we identify several topics related to the results described in this paper.

7.1 Good elements or not for d=2,3d=2,3?

In this subsection, we consider good elements on meshes. Here, we define “good elements” on meshes as those for which there exists some γ0>0\gamma_{0}\textgreater 0 satisfying Eq. (7). We treat a “Right-angled triangle,” “Blade,” and “Dagger” for d=2d=2, and a “Spire,” “Spear,” “Spindle,” “Spike,” “Splinter,” and ”Sliver” for d=3d=3, as introduced in Cheetal00 . We present the quantities αmax/αmin\alpha_{\max}/\alpha_{\min} and HT0/hT0H_{T_{0}}/h_{T_{0}} for these elements.

7.1.1 Isotropic mesh

We consider the following condition. There exists a constant γ1>0\gamma_{1}\textgreater 0 such that, for any 𝕋h{𝕋h}\mathbb{T}_{h}\in\{\mathbb{T}_{h}\} and any simplex T0𝕋hT_{0}\in\mathbb{T}_{h}, we have

|T0|γ1hT0d.\displaystyle\displaystyle|T_{0}|\geq\gamma_{1}h_{T_{0}}^{d}. (62)

Condition (62) is equivalent to the shape-regularity condition; see (BraKorKri08, , Theorem 1).

If geometric condition (62) is satisfied, it holds that

HT0hT0hT0d|T0|1γ1,αmaxαminchT0α2chT0d|T0|cγ1.\displaystyle\displaystyle\frac{H_{T_{0}}}{h_{T_{0}}}\leq\frac{h_{T_{0}}^{d}}{|T_{0}|}\leq\frac{1}{\gamma_{1}},\quad\frac{\alpha_{\max}}{\alpha_{\min}}\leq c\frac{h_{T_{0}}}{\alpha_{2}}\leq c\frac{h_{T_{0}}^{d}}{|T_{0}|}\leq\frac{c}{\gamma_{1}}.

If p=qp=q in Theorem A, one can obtain the optimal order hT0+1mh_{T_{0}}^{\ell+1-m}. In this case, elements satisfying geometric condition (62) are “good.”

7.1.2 Anisotropic mesh: two-dimensional case

Let S02S_{0}\subset\mathbb{R}^{2} be a triangle. Let 0<s10\textless s\ll 1, ss\in\mathbb{R}, and ε,δ,γ\varepsilon,\delta,\gamma\in\mathbb{R}. A dagger has one short edge and a blade has no short edge.

Example 2 (Right-angled triangle)

Let S02S_{0}\subset\mathbb{R}^{2} be the simplex with vertices x1:=(0,0)Tx_{1}:=(0,0)^{T}, x2:=(s,0)Tx_{2}:=(s,0)^{T}, and x3:=(0,sε)Tx_{3}:=(0,s^{\varepsilon})^{T} with 1<ε1\textless\varepsilon. Then, we have that α1=s\alpha_{1}=s and α2=sε\alpha_{2}=s^{\varepsilon}; i.e.,

αmaxαmin\displaystyle\displaystyle\frac{\alpha_{\max}}{\alpha_{\min}} s1εas s0,HS0hS0=2.\displaystyle\leq s^{1-\varepsilon}\to\infty\quad\text{as $s\to 0$},\quad\frac{H_{S_{0}}}{h_{S_{0}}}=2.

In this case, the element S0S_{0} is “good.”

Example 3 (Dagger)

Let S02S_{0}\subset\mathbb{R}^{2} be the simplex with vertices x1:=(0,0)Tx_{1}:=(0,0)^{T}, x2:=(s,0)Tx_{2}:=(s,0)^{T}, and x3:=(sδ,sε)Tx_{3}:=(s^{\delta},s^{\varepsilon})^{T} with 1<ε<δ1\textless\varepsilon\textless\delta. Then, we have that α1=(ssδ)2+s2ε\alpha_{1}=\sqrt{(s-s^{\delta})^{2}+s^{2\varepsilon}} and α2=s2δ+s2ε\alpha_{2}=\sqrt{s^{2\delta}+s^{2\varepsilon}}; i.e.,

αmaxαmin\displaystyle\displaystyle\frac{\alpha_{\max}}{\alpha_{\min}} =(ssδ)2+s2εs2δ+s2εcs1εas s0,\displaystyle=\frac{\sqrt{(s-s^{\delta})^{2}+s^{2\varepsilon}}}{\sqrt{s^{2\delta}+s^{2\varepsilon}}}\leq cs^{1-\varepsilon}\to\infty\quad\text{as $s\to 0$},
HS0hS0\displaystyle\frac{H_{S_{0}}}{h_{S_{0}}} =(ssδ)2+s2εs2δ+s2ε12s1+εc.\displaystyle=\frac{\sqrt{(s-s^{\delta})^{2}+s^{2\varepsilon}}\sqrt{s^{2\delta}+s^{2\varepsilon}}}{\frac{1}{2}s^{1+\varepsilon}}\leq c.

In this case, the element S0S_{0} is “good.”

Remark 6

In the above examples, α2α2t=2\alpha_{2}\approx\alpha_{2}t=\mathscr{H}_{2} holds. That is, the good element S02S_{0}\subset\mathbb{R}^{2} satisfies conditions such as α2α2t=2\alpha_{2}\approx\alpha_{2}t=\mathscr{H}_{2}.

Example 4 (Blade)

Let S02S_{0}\subset\mathbb{R}^{2} be the simplex with vertices x1:=(0,0)Tx_{1}:=(0,0)^{T}, x2:=(2s,0)Tx_{2}:=(2s,0)^{T}, and x3:=(s,sε)Tx_{3}:=(s,s^{\varepsilon})^{T} with 1<ε1\textless\varepsilon. Then, we have that α1=α2=s2+s2ε\alpha_{1}=\alpha_{2}=\sqrt{s^{2}+s^{2\varepsilon}}; i.e.,

αmaxαmin=1,HS0hS0=s2+s2εs1+εas s0.\displaystyle\displaystyle\frac{\alpha_{\max}}{\alpha_{\min}}=1,\quad\frac{H_{S_{0}}}{h_{S_{0}}}=\frac{s^{2}+s^{2\varepsilon}}{s^{1+\varepsilon}}\to\infty\quad\text{as $s\to 0$}.

In this case, the element S0S_{0} is “not good.”

Example 5 (Dagger)

Let S02S_{0}\subset\mathbb{R}^{2} be the simplex with vertices x1:=(0,0)Tx_{1}:=(0,0)^{T}, x2:=(s,0)Tx_{2}:=(s,0)^{T}, and x3:=(sδ,sε)Tx_{3}:=(s^{\delta},s^{\varepsilon})^{T} with 1<δ<ε1\textless\delta\textless\varepsilon. Then, we have that α1=(ssδ)2+s2ε\alpha_{1}=\sqrt{(s-s^{\delta})^{2}+s^{2\varepsilon}} and α2=s2δ+s2ε\alpha_{2}=\sqrt{s^{2\delta}+s^{2\varepsilon}}; i.e.,

αmaxαmin\displaystyle\displaystyle\frac{\alpha_{\max}}{\alpha_{\min}} =(ssδ)2+s2εs2δ+s2εcs1δas s0,\displaystyle=\frac{\sqrt{(s-s^{\delta})^{2}+s^{2\varepsilon}}}{\sqrt{s^{2\delta}+s^{2\varepsilon}}}\leq cs^{1-\delta}\to\infty\quad\text{as $s\to 0$},
HS0hS0\displaystyle\frac{H_{S_{0}}}{h_{S_{0}}} =(ssδ)2+s2εs2δ+s2ε12s1+εcsδεas s0.\displaystyle=\frac{\sqrt{(s-s^{\delta})^{2}+s^{2\varepsilon}}\sqrt{s^{2\delta}+s^{2\varepsilon}}}{\frac{1}{2}s^{1+\varepsilon}}\leq cs^{\delta-\varepsilon}\to\infty\quad\text{as $s\to 0$}.

In this case, the element S0S_{0} is “not good.”

Refer to caption
Figure 1: Example 2: Right-angled triangle
Refer to caption
Figure 2: Examples 3 and 5: Dagger
Refer to caption
Figure 3: Example 4: Blade

7.1.3 Anisotropic mesh: three-dimensional case

Example 6

Let T03T_{0}\subset\mathbb{R}^{3} be a tetrahedron. Let S0S_{0} be the base of T0T_{0}; i.e., S0=x1x2x3S_{0}=\triangle x_{1}x_{2}x_{3}. Recall that

HT0hT0=α1α2α3|T0|=α1α212α1α2t1α313α3t2HS0hS0α3133.\displaystyle\displaystyle\frac{H_{T_{0}}}{h_{T_{0}}}=\frac{\alpha_{1}\alpha_{2}\alpha_{3}}{|T_{0}|}=\frac{\alpha_{1}\alpha_{2}}{\frac{1}{2}\alpha_{1}\alpha_{2}t_{1}}\frac{\alpha_{3}}{\frac{1}{3}\alpha_{3}t_{2}}\leq\frac{H_{S_{0}}}{h_{S_{0}}}\frac{\alpha_{3}}{\frac{1}{3}\mathscr{H}_{3}}. (63)

If the triangle S0S_{0} is “not good,” such as in Examples 4 and 5, the quantity in Eq. (63) may diverge. In the following, we consider the case in which the triangle S0S_{0} is “good.”

Assume that there exists a positive constant MM such that HS0hS0M\frac{H_{S_{0}}}{h_{S_{0}}}\leq M. For simplicity, we set x1:=(0,0,0)Tx_{1}:=(0,0,0)^{T}, x2:=(2s,0,0)Tx_{2}:=(2s,0,0)^{T}, and x3:=(2s4s2s2γ,sγ,0)Tx_{3}:=(2s-\sqrt{4s^{2}-s^{2\gamma}},s^{\gamma},0)^{T} with 1<γ1\textless\gamma. Then,

α1=2s,α2=4s2γ2+4s2γ2,\displaystyle\displaystyle\alpha_{1}=2s,\ \alpha_{2}=\sqrt{\frac{4s^{2\gamma}}{2+\sqrt{4-s^{2\gamma-2}}}},

and because αmaxcs\alpha_{\max}\approx cs,

αmaxαmin\displaystyle\displaystyle\frac{\alpha_{\max}}{\alpha_{\min}} csα2cs1γas s0.\displaystyle\leq\frac{cs}{\alpha_{2}}\leq cs^{1-\gamma}\to\infty\quad\text{as $s\to 0$}.

If we set x4:=(s,0,sε)Tx_{4}:=(s,0,s^{\varepsilon})^{T} with 1<ε1\textless\varepsilon, the triangle x1x2x4\triangle x_{1}x_{2}x_{4} is the blade (Example 4). Then,

α3=s2+s2ε.\displaystyle\displaystyle\alpha_{3}=\sqrt{s^{2}+s^{2\varepsilon}}.

Thus, we have

HT0hT0cs2s+γs1+γ+εcs1εas s0.\displaystyle\displaystyle\frac{H_{T_{0}}}{h_{T_{0}}}\leq c\frac{s^{2s+\gamma}}{s^{1+\gamma+\varepsilon}}\leq cs^{1-\varepsilon}\to\infty\quad\text{as $s\to 0$}.

In this case, the element T0T_{0} is “not good.”

If we set x4:=(sδ,0,sε)Tx_{4}:=(s^{\delta},0,s^{\varepsilon})^{T} with 1<δ<ε<γ1\textless\delta\textless\varepsilon\textless\gamma, the triangle x1x2x4\triangle x_{1}x_{2}x_{4} is the dagger (Example 5). Then,

α3=s2δ+s2ε.\displaystyle\displaystyle\alpha_{3}=\sqrt{s^{2\delta}+s^{2\varepsilon}}.

Thus, we have

HT0hT0cs1+γ+δs1+γ+εcsδεas s0.\displaystyle\displaystyle\frac{H_{T_{0}}}{h_{T_{0}}}\leq c\frac{s^{1+\gamma+\delta}}{s^{1+\gamma+\varepsilon}}\leq cs^{\delta-\varepsilon}\to\infty\quad\text{as $s\to 0$}.

In this case, the element T0T_{0} is “not good.”

If we set x4:=(sδ,0,sε)Tx_{4}:=(s^{\delta},0,s^{\varepsilon})^{T} with 1<ε<δ<γ1\textless\varepsilon\textless\delta\textless\gamma, the triangle x1x2x4\triangle x_{1}x_{2}x_{4} is the dagger (Example 3). Then,

α3=s2δ+s2ε.\displaystyle\displaystyle\alpha_{3}=\sqrt{s^{2\delta}+s^{2\varepsilon}}.

Thus, we have

HT0hT0cs1+γ+εs1+γ+εc.\displaystyle\displaystyle\frac{H_{T_{0}}}{h_{T_{0}}}\leq c\frac{s^{1+\gamma+\varepsilon}}{s^{1+\gamma+\varepsilon}}\leq c.

In this case, the element T0T_{0} is “good” and α3α3t2=3\alpha_{3}\approx\alpha_{3}t_{2}=\mathscr{H}_{3} holds.

Refer to caption
Figure 4: Example 6
Example 7

In Cheetal00 , the spire has a cycle of three daggers among its four triangles. The splinter has four daggers. The spear and spike have two daggers and two blades as triangles. The spindle has four blades as triangles.

Refer to caption
Figure 5: Spire
Refer to caption
Figure 6: Spear
Refer to caption
Figure 7: Spindle
Refer to caption
Figure 8: Spike
Refer to caption
Figure 9: Splinter
Remark 7

The above examples reveal that the good element T03T_{0}\subset\mathbb{R}^{3} satisfies conditions such as α2α2t1=2\alpha_{2}\approx\alpha_{2}t_{1}=\mathscr{H}_{2} and α3α3t2=3\alpha_{3}\approx\alpha_{3}t_{2}=\mathscr{H}_{3}.

Example 8

Using an element T0T_{0} called a Sliver, we compare the three quantities hT03|T0|\frac{h_{T_{0}}^{3}}{|{T_{0}}|}, HT0hT0\frac{H_{T_{0}}}{h_{T_{0}}}, and R3hT0\frac{R_{3}}{h_{T_{0}}}, where the parameter R3R_{3} denotes the circumradius of T0T_{0}.

Let T03T_{0}\subset\mathbb{R}^{3} be the simplex with vertices x1:=(sε2,0,0)Tx_{1}:=(s^{\varepsilon_{2}},0,0)^{T}, x2:=(sε2,0,0)Tx_{2}:=(-s^{\varepsilon_{2}},0,0)^{T}, x3:=(0,s,sε1)Tx_{3}:=(0,-s,s^{\varepsilon_{1}})^{T}, and x4:=(0,s,sε1)Tx_{4}:=(0,s,s^{\varepsilon_{1}})^{T} (ε1,ε2>1\varepsilon_{1},\varepsilon_{2}\textgreater 1), where s:=1Ns:=\frac{1}{N}, NN\in\mathbb{N}. Let LiL_{i} (1i61\leq i\leq 6) be the edges of T0T_{0} with αmin=L1L2L6=hT0\alpha_{\min}=L_{1}\leq L_{2}\leq\cdots\leq L_{6}=h_{T_{0}}. Recall that αmaxhT0\alpha_{\max}\approx h_{T_{0}} and

αmaxαmincL6L1,HT0hT0=L1L2|T0|hT0.\displaystyle\displaystyle\frac{\alpha_{\max}}{\alpha_{\min}}\leq c\frac{L_{6}}{L_{1}},\quad\frac{H_{T_{0}}}{h_{T_{0}}}=\frac{L_{1}L_{2}}{|T_{0}|}h_{T_{0}}.
Table 1: hT03/|T0|h_{T_{0}}^{3}/{|T_{0}|}, HT0/hT0H_{T_{0}}/h_{T_{0}}, and R3/hT0R_{3}/h_{T_{0}} (ε1=1.5\varepsilon_{1}=1.5, ε2=1.0\varepsilon_{2}=1.0)
NN ss L6/L1L_{6}/L_{1} hT03/|T0|h_{T_{0}}^{3}/{|T_{0}|} HT0/hT0H_{T_{0}}/h_{T_{0}} R3/hT0R_{3}/h_{T_{0}}
32 3.1250e-02 1.4033 6.7882e+01 3.4471e+01 5.0195e-01
64 1.5625e-02 1.4087 9.6000e+01 4.8375e+01 5.0098e-01
128 7.8125e-03 1.4115 1.3576e+02 6.8147e+01 5.0049e-01
Table 2: hT03/|T0|h_{T_{0}}^{3}/{|T_{0}|}, HT0/hT0H_{T_{0}}/h_{T_{0}}, and R3/hT0R_{3}/h_{T_{0}} (ε1=1.0\varepsilon_{1}=1.0, ε2=1.5\varepsilon_{2}=1.5)
NN ss L6/L1L_{6}/L_{1} hT03/|T0|h_{T_{0}}^{3}/{|T_{0}|} HT0/hT0H_{T_{0}}/h_{T_{0}} R3/hT0R_{3}/h_{T_{0}}
32 3.1250e-02 5.6569 6.7882e+01 8.5513 5.0006e-01
64 1.5625e-02 8.0000 9.6000e+01 8.5184 5.0002e-01
128 7.8125e-03 1.1314e+01 1.3576e+02 8.5018 5.0000e-01
Table 3: hT03/|T0|h_{T_{0}}^{3}/{|T_{0}|}, HT0/hT0H_{T_{0}}/h_{T_{0}}, and R3/hT0R_{3}/h_{T_{0}} (ε1=1.5\varepsilon_{1}=1.5, ε2=1.5\varepsilon_{2}=1.5)
NN ss L6/L1L_{6}/L_{1} hT03/|T0|h_{T_{0}}^{3}/{|T_{0}|} HT0/hT0H_{T_{0}}/h_{T_{0}} R3/hT0R_{3}/h_{T_{0}}
32 3.1250e-02 5.6569 3.8400e+02 3.4986e+01 1.4170
64 1.5625e-02 8.0000 7.6800e+02 4.8744e+01 2.0010
128 7.8125e-03 1.1314e+01 1.5360e+03 6.8411e+01 2.8288

In Table 1, the angle between x1x2x3\triangle x_{1}x_{2}x_{3} and x1x2x4\triangle x_{1}x_{2}x_{4} tends to π\pi as s0s\to 0, and the simplex T0T_{0} is “not good.” In Table 2, the angle between x1x3x4\triangle x_{1}x_{3}x_{4} and x2x3x4\triangle x_{2}x_{3}x_{4} tends to 0 as s0s\to 0, and the simplex T0T_{0} is “good.” In Table 3, from the numerical results, the simplex T0T_{0} is “not good.”

Refer to caption
Figure 10: Example 8: Sliver

7.2 Effect of the quantity |T0|1q1p|T_{0}|^{\frac{1}{q}-\frac{1}{p}} on the interpolation error estimates for d=2,3d=2,3

We now consider the effect of the factor |T0|1q1p|T_{0}|^{\frac{1}{q}-\frac{1}{p}}.

7.2.1 Case in which q>pq\textgreater p

When q>pq\textgreater p, the factor may affect the convergence order. In particular, the interpolation error estimate may diverge on anisotropic mesh partitions.

Let T02T_{0}\subset\mathbb{R}^{2} be the triangle with vertices x1:=(0,0)Tx_{1}:=(0,0)^{T}, x2:=(s,0)Tx_{2}:=(s,0)^{T}, x3:=(0,sε)Tx_{3}:=(0,s^{\varepsilon})^{T} for 0<s10\textless s\ll 1, ε1\varepsilon\geq 1, ss\in\mathbb{R}, and ε\varepsilon\in\mathbb{R}; see Figure 2. Then,

αmaxαmin=s1ε,|T0|=12s1+ε.\displaystyle\displaystyle\frac{\alpha_{\max}}{\alpha_{\min}}=s^{1-\varepsilon},\quad|T_{0}|=\frac{1}{2}s^{1+\varepsilon}.

Let k=1k=1, =2\ell=2, m=1m=1, q=2q=2, and p(1,2)p\in(1,2). Then, W1,p(T0)L2(T0)W^{1,p}({T}_{0})\hookrightarrow L^{2}({T}_{0}) and Theorem B lead to

|φ0IT0φ0|H1(T0)cs(1+ε)2p2p(s|φ0x1|W1,p(T0)+sε|φ0x2|W1,p(T0)).\displaystyle\displaystyle|{\varphi}_{0}-I_{{T}_{0}}{\varphi}_{0}|_{H^{1}({T}_{0})}\leq cs^{-(1+\varepsilon)\frac{2-p}{2p}}\left(s\left|\frac{\partial\varphi_{0}}{\partial x_{1}}\right|_{W^{1,p}({T}_{0})}+s^{\varepsilon}\left|\frac{\partial\varphi_{0}}{\partial x_{2}}\right|_{W^{1,p}({T}_{0})}\right).

When ε=1\varepsilon=1 (i.e., an isotropic element), we obtain

|φ0IT0φ0|H1(T0)chT02(p1)p|φ0|W2,p(T0),2(p1)p>0.\displaystyle\displaystyle|{\varphi}_{0}-I_{{T}_{0}}{\varphi}_{0}|_{H^{1}({T}_{0})}\leq ch_{T_{0}}^{\frac{2(p-1)}{p}}|\varphi_{0}|_{W^{2,p}(T_{0})},\quad\frac{2(p-1)}{p}\textgreater 0.

However, when ε>1\varepsilon\textgreater 1 (i.e., an anisotropic element), the estimate may diverge as s0s\to 0. Therefore, if q>pq\textgreater p, the convergence order of the interpolation operator may deteriorate.

7.2.2 Case in which q<pq\textless p

We consider Theorem B. Let IT0L:𝒞0(T0)𝒫kI_{T_{0}}^{L}:\mathcal{C}^{0}(T_{0})\to\mathcal{P}^{k} (kk\in\mathbb{N}) be the local Lagrange interpolation operator. Let φ0W,(T0){\varphi}_{0}\in W^{\ell,\infty}(T_{0}) be such that \ell\in\mathbb{N}, 2k+12\leq\ell\leq k+1. Then, for any m{0,,1}m\in\{0,\ldots,\ell-1\} and q[1,]q\in[1,\infty], it holds that

|φ0IT0Lφ0|Wm,q(T0)c|T0|1q(HT0hT0)m|γ|=mγ|γ(φ0ΦT0)|Wm,(ΦT01(T0)).\displaystyle\displaystyle|{\varphi}_{0}-I_{{T}_{0}}^{L}{\varphi}_{0}|_{W^{m,q}({T}_{0})}\leq c|T_{0}|^{\frac{1}{q}}\left(\frac{H_{T_{0}}}{h_{T_{0}}}\right)^{m}\sum_{|\gamma|=\ell-m}\mathscr{H}^{\gamma}|\partial^{\gamma}{(\varphi_{0}\circ\Phi_{T_{0}})}|_{W^{m,\infty}(\Phi_{T_{0}}^{-1}(T_{0}))}. (64)

Therefore, the convergence order is improved by |T0|1q|T_{0}|^{\frac{1}{q}}.

We can perform some numerical tests to confirm this. Let k=1k=1 and

φ0(x,y,z):=x2+14y2+z2.\displaystyle\displaystyle\varphi_{0}(x,y,z):=x^{2}+\frac{1}{4}y^{2}+z^{2}.
(I)

Let T03T_{0}\subset\mathbb{R}^{3} be the simplex with vertices x1:=(0,0,0)Tx_{1}:=(0,0,0)^{T}, x2:=(s,0,0)Tx_{2}:=(s,0,0)^{T}, x3:=(0,sε,0)Tx_{3}:=(0,s^{\varepsilon},0)^{T}, and x4:=(0,0,sδ)Tx_{4}:=(0,0,s^{\delta})^{T} (1<δε1\textless\delta\leq\varepsilon), and 0<s10\textless s\ll 1, ss\in\mathbb{R}. Then, we have that α1=s2+s2ε\alpha_{1}=\sqrt{s^{2}+s^{2\varepsilon}}, α2=sε\alpha_{2}=s^{\varepsilon}, and α3:=s2ε+s2δ\alpha_{3}:=\sqrt{s^{2\varepsilon}+s^{2\delta}}; i.e.,

αmaxαmincs1ε,HT0hT0c.\displaystyle\displaystyle\frac{\alpha_{\max}}{\alpha_{\min}}\leq cs^{1-\varepsilon},\quad\frac{H_{T_{0}}}{h_{T_{0}}}\leq c.

From Eq. (64) with m=1m=1, =2\ell=2, and q=2q=2, because |T0|s1+ε+δ|T_{0}|\approx s^{1+\varepsilon+\delta}, we have the estimate

|φ0IT0Lφ0|H1(T0)chT03+ε+δ2.\displaystyle|{\varphi}_{0}-I_{{T}_{0}}^{L}{\varphi}_{0}|_{H^{1}({T}_{0})}\leq ch_{T_{0}}^{\frac{3+\varepsilon+\delta}{2}}.

Computational results for ε=3.0\varepsilon=3.0 and δ=2.0\delta=2.0 are presented in Table 4.

Table 4: Error of the local interpolation operator (ε=3.0,δ=2.0\varepsilon=3.0,\delta=2.0)
NN ss Errs3.0(H1)Err_{s}^{3.0}(H^{1}) rr
64 1.5625e-02 2.4336e-08
128 7.8125e-03 1.5209e-09 4.00
256 3.9062e-03 9.5053e-11 4.00
Refer to caption
Figure 11: Case in which q<pq\textless p, Example (I)
(II)

Let T03T_{0}\subset\mathbb{R}^{3} be the simplex with vertices x1:=(0,0,0)Tx_{1}:=(0,0,0)^{T}, x2:=(s,0,0)Tx_{2}:=(s,0,0)^{T}, x3:=(s/2,sε,0)Tx_{3}:=(s/2,s^{\varepsilon},0)^{T}, and x4:=(0,0,s)Tx_{4}:=(0,0,s)^{T} (1<ε61\textless\varepsilon\leq 6) and 0<s10\textless s\ll 1, ss\in\mathbb{R}. Then, we have that α1=s\alpha_{1}=s, α2=s2/4+s2ε\alpha_{2}=\sqrt{s^{2}/4+s^{2\varepsilon}}, and α3:=s\alpha_{3}:=s; i.e.,

αmaxαmin=ss2/4+s2εc,HT0hT0cs1ε.\displaystyle\displaystyle\frac{\alpha_{\max}}{\alpha_{\min}}=\frac{s}{\sqrt{s^{2}/4+s^{2\varepsilon}}}\leq c,\quad\frac{H_{T_{0}}}{h_{T_{0}}}\leq cs^{1-\varepsilon}.

From Eq. (64) with m=1m=1, =2\ell=2, and q=2q=2, because |T0|s2+ε|T_{0}|\approx s^{2+\varepsilon}, we have the estimate

|φ0IT0Lφ0|H1(T0)chT03ε2.\displaystyle|{\varphi}_{0}-I_{{T}_{0}}^{L}{\varphi}_{0}|_{H^{1}({T}_{0})}\leq ch_{T_{0}}^{3-\frac{\varepsilon}{2}}.

Computational results for ε=3.0,6.0\varepsilon=3.0,6.0 are presented in Table 5.

Table 5: Error of the local interpolation operator (ε=3.0,6.0\varepsilon=3.0,6.0)
NN ss Errs3.0(H1)Err_{s}^{3.0}(H^{1}) rr Errs6.0(H1)Err_{s}^{6.0}(H^{1}) rr
64 1.5625e-02 1.9934e-04 1.0206e-01
128 7.8125e-03 7.0477e-05 1.50 1.0206e-01 0
256 3.9062e-03 2.4917e-05 1.50 1.0206e-01 0
Refer to caption
Figure 12: Case in which q<pq\textless p, Example (II)

7.3 Inverse inequalities

This section presents some limited results for the inverse inequalities. The results are only stated; the proofs can be found in Ish22 .

Lemma 8

Let P^:=𝒫k\widehat{P}:=\mathcal{P}^{k} with kk\in\mathbb{N}. If Assumption 1 is imposed, there exist positive constants CiIV,dC_{i}^{IV,d}, i=1,,di=1,\ldots,d, independent of hTh_{T} and T{T}, such that, for all φhP={φ^hΦT1;φ^hP^}{\varphi}_{h}\in{P}=\{\hat{\varphi}_{h}\circ{\Phi}_{T}^{-1};\ \hat{\varphi}_{h}\in\widehat{P}\},

φhxiLq(T)\displaystyle\displaystyle\left\|\frac{\partial\varphi_{h}}{\partial x_{i}}\right\|_{L^{q}(T)} CiIV,d|T|1q1p1iφhLp(T).i=1,,d.\displaystyle\leq C_{i}^{IV,d}|T|^{\frac{1}{q}-\frac{1}{p}}\frac{1}{\mathscr{H}_{i}}\|\varphi_{h}\|_{L^{p}(T)}.\quad i=1,\ldots,d. (65)
Remark 8

If Assumption 1 is not imposed, estimate (65) for i=3i=3 is

φhx3Lq(T)\displaystyle\displaystyle\left\|\frac{\partial\varphi_{h}}{\partial x_{3}}\right\|_{L^{q}(T)} C3IV,3|T|1q1pHThT12φhLp(T).\displaystyle\leq C_{3}^{IV,3}|T|^{\frac{1}{q}-\frac{1}{p}}\frac{H_{T}}{h_{T}}\frac{1}{\mathscr{H}_{2}}\|\varphi_{h}\|_{L^{p}(T)}. (66)

This may not be sharp. We leave further arguments for future work.

Theorem D

Let P^:=𝒫k\widehat{P}:=\mathcal{P}^{k} with k0k\in\mathbb{N}_{0}. Let γ=(γ1,,γd)0d\gamma=(\gamma_{1},\ldots,\gamma_{d})\in\mathbb{N}_{0}^{d} be a multi-index such that 0|γ|k0\leq|\gamma|\leq k. If Assumption 1 is imposed, there exists a positive constant CIVCC^{IVC}, independent of hTh_{T} and T{T}, such that, for all φhP={φ^hΦT1;φ^hP^}{\varphi}_{h}\in{P}=\{\hat{\varphi}_{h}\circ{\Phi}_{T}^{-1};\ \hat{\varphi}_{h}\in\widehat{P}\},

γφhLq(T)CIVC|T|1q1pγφhLp(T).\displaystyle\displaystyle\|\partial^{\gamma}\varphi_{h}\|_{L^{q}(T)}\leq C^{IVC}|T|^{\frac{1}{q}-\frac{1}{p}}\mathscr{H}^{-\gamma}\|{\varphi}_{h}\|_{L^{p}({T})}. (67)
Acknowledgements.
We would like to thank the anonymous referees and the editor of the journal for the valuable comments.

References

  • (1) Apel, Th.: Anisotropic finite elements: Local estimates and applications. Advances in Numerical Mathematics. Teubner, Stuttgart, (1999)
  • (2) Apel, Th., Nicaise, S., Schöberl, J.: Crouzeix–Raviart type finite elements on anisotropic meshes. Numer. Math. 89, 193-223 (2001)
  • (3) Apel, Th, Dobrowolski, M.: Anisotropic interpolation with applications to the finite element method. Computing 47, 277-293 (1992)
  • (4) Apel, T., Eckardt, L., Hauhner, C., Kempf, V.: The maximum angle condition on finite elements: useful or not? , PAMM (2021)
  • (5) Babuška, I., Aziz, A.K.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13, 214-226 (1976)
  • (6) Babuška, I., Suri, M.: The pp and hh-pp versions of the finite elements method, basic principles and properties. SIAM Review. 36, 578-632 (1994)
  • (7) Brandts, J., Korotov, S., Krˇ\rm{\check{r}}ízˇ\rm{\check{z}}ek, M.: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comput. Math, Appl. 55, 2227-2233 (2008)
  • (8) Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Third Edition. Springer Verlag, New York (2008)
  • (9) Chen, S., Shi, D., Zhao, Y.: Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes. IMA Journal of Numerical Analysis, 24, 77-95 (2004)
  • (10) Cheng, S. -W., Dey, T. K., Edelsbrunner, H., Facello, M. A., Teng, S. -H.: Sliver Exudation. J. ACM, 47, 883-904 (2000)
  • (11) Ciarlet, P. G.: The Finite Element Method for Elliptic problems. SIAM, New York (2002)
  • (12) Dekel, S., Leviatan, D.: The Bramble–Hilbert Lemma for Convex Domains, SIAM Journal on Mathematical Analysis 35 No. 5, 1203-1212 (2004)
  • (13) Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Springer Verlag, New York (2004)
  • (14) Ern, A., Guermond, J.L.: Finite Elements I: Galerkin Approximation, Elliptic and Mixed PDEs. Springer Verlag, New York (2021)
  • (15) Ishizaka, H.: Anisotropic Raviart–Thomas interpolation error estimates using a new geometric parameter. https://arxiv.org/abs/2110.02348, (2021)
  • (16) Ishizaka, H.: Anisotropic interpolation error analysis using a new geometric parameter and its applications. Ehime University, Ph. D. thesis, (2022)
  • (17) Ishizaka, H., Kobayashi, K., Tsuchiya, T.: General theory of interpolation error estimates on anisotropic meshes. Jpn. J. Ind. Appl. Math., 38 (1), 163-191 (2021)
  • (18) Ishizaka, H., Kobayashi, K., Tsuchiya, T.: Crouzeix–Raviart and Raviart–Thomas finite element error analysis on anisotropic meshes violating the maximum-angle condition. Jpn. J. Ind. Appl. Math., 38 (2), 645-675 (2021)
  • (19) Ishizaka, H., Kobayashi, K., Suzuki, R. Tsuchiya, T.: A new geometric condition equivalent to the maximum angle condition for tetrahedrons, Computers & Mathematics with Applications 99, 323-328 (2021)
  • (20) Krˇ\rm{\check{r}}ízˇ\rm{\check{z}}ek, M.: On semiregular families of triangulations and linear interpolation. Appl. Math. Praha 36, 223-232 (1991)
  • (21) Krˇ\rm{\check{r}}ízˇ\rm{\check{z}}ek, M.: On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29, 513-520 (1992)