This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Anisotropic Keldysh interaction

Andrei Galiautdinov Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA ag@physast.uga.edu
(September 18, 2025)
Abstract

We generalize the classic calculations by Rytova and Keldysh of screened Coulomb interaction in semiconductor thin films to systems with anisotropic permittivity tensor. Explicit asymptotic expressions for electrostatic potential energy of interaction in the weakly anisotropic case are found in closed analytical form. The case of strong in-plane anisotropy, however, requires evaluation of the inverse Fourier transform of 1/(k+Akx2+Bky2)1/(k+Ak_{x}^{2}+Bk_{y}^{2}), which, at present, remains unresolved.

semiconductor films; dielectric screening; Keldysh interaction; anisotropy

I Introduction

The important role played by the dielectric screening in determining excitonic properties of various two-dimensional semiconductor heterostructures has been the subject of numerous investigations over the last several decades (for recent studies see, for example, cudazzo2010strong ; cudazzo2011dielectric ; chernikov2014exciton ; low2014plasmons ; wang2015highly ; chaves2015anisotropic ; latini2015excitons ; pedersen2016exciton ; trolle2017model ; hichri2017dielectric ; szyniszewski2017binding ; mostaani2017diffusion ; cavalcante2018electrostatics ). A particularly interesting direction of current experimental research involves perovskite chalcogenide films whose in-plane dielectric anisotropy gives rise to some rather unusual optical behavior niu2018giant ; niu2018mid . Past theoretical work on two-dimensional dielectric screening involved various ab initio calculations cudazzo2010strong ; cudazzo2011dielectric , the use of the nonlinear Thomas-Fermi model low2014plasmons , latini2015excitons , the modified Mott-Wannier approach pedersen2016exciton , the transfer matrix method cavalcante2018electrostatics , as well as various approaches based on effective mass approximation chaves2015anisotropic ; hichri2017dielectric , Here we pursue what is likely the simplest possibility — generalization to anisotropic films of classic calculations by Rytova Rytova1967 and Keldysh keldysh1979coulomb ; keldysh1997excitons . The motivation for this approach is rather obvious: we want to get a better sense of how the famous isotropic form of screened electrostatic interaction energy,

V(ρ)=(πqq/ϵd)[H0(ρ/ρ0)Y0(ρ/ρ0)],V(\rho)=(\pi qq^{\prime}/\epsilon d)[H_{0}(\rho/\rho_{0})-Y_{0}(\rho/\rho_{0})], (1)

is modified under the minimal number of microscopic assumptions. In what follows, we provide the general expression for the Fourier image of the anisotropic potential in momentum space, and analytically work out in real space the weakly anisotropic case only. Interested readers are invited to improve on that calculation by exploring the strongly anisotropic scenario.

II General considerations

The electrostatic potential energy of interaction between charges qq and qq^{\prime} located at (𝝆,z)(\bm{\rho},z) and (𝟎,z)({\bf 0},z^{\prime}) (z>zz>z^{\prime}, 𝝆=(x,y)\bm{\rho}=(x,y)) inside an anisotropic semiconductor film of thickness dd surrounded by two isotropic media with dielectric constants ϵ1\epsilon_{1} and ϵ2\epsilon_{2} is given by (see Appendix for derivation and Fig. 6; compare with Rytova1967 ; keldysh1979coulomb )

V(𝝆,z,z)=d2𝐤(2π)2ei𝐤𝝆V(𝒌,z,z),V(\bm{\rho},z,z^{\prime})=\int\frac{d^{2}{\bf k}}{(2\pi)^{2}}e^{i{\bf k}\cdot{\bm{\rho}}}V({\bm{k}},z,z^{\prime}), (2)

with

V(𝒌,z,z)=4πqqϵzcosh[k~(d2z)+η~2]cosh[k~(d2+z)+η~1]k~sinh[k~d+η~1+η~2],\displaystyle V({\bm{k}},z,z^{\prime})=\frac{4{\pi}qq^{\prime}}{\epsilon_{z}}\frac{\cosh\left[{\tilde{k}}\left(\frac{d}{2}-z\right)+{\tilde{\eta}}_{2}\right]\cosh\left[{\tilde{k}}\left(\frac{d}{2}+z^{\prime}\right)+{\tilde{\eta}}_{1}\right]}{{\tilde{k}}\sinh[{\tilde{k}}d+{\tilde{\eta}}_{1}+{\tilde{\eta}}_{2}]}, (3)

where

η~1,2=12ln(ϵzk~+ϵ1,2kϵzk~ϵ1,2k),k~=ϵxkx2+ϵyky2ϵz,k=kx2+ky2,\displaystyle{\tilde{\eta}}_{1,2}=\frac{1}{2}\ln\left(\frac{\epsilon_{z}\tilde{k}+\epsilon_{1,2}k}{\epsilon_{z}\tilde{k}-\epsilon_{1,2}k}\right),\quad{\tilde{k}}=\sqrt{\frac{\epsilon_{x}k_{x}^{2}+\epsilon_{y}k_{y}^{2}}{\epsilon_{z}}},\quad k=\sqrt{k_{x}^{2}+k_{y}^{2}}, (4)

and the axes of the coordinate system (x,y,z)(x,y,z) coincide with the principal axes of the film’s permittivity tensor, ϵ=diag(ϵx,ϵy,ϵz)\epsilon={\rm diag}(\epsilon_{x},\epsilon_{y},\epsilon_{z}). In the most interesting for practical applications scenario, ϵ1,2ϵx,ϵy,ϵz\epsilon_{1,2}\ll\epsilon_{x},\epsilon_{y},\epsilon_{z}, and, for distances ρ|zz|d\rho\gg|z-z^{\prime}|\sim d, the main contribution to the integral in (2) comes from 𝐤{\bf k} satisfying kdkρ1kd\ll k\rho\lesssim 1. Under these conditions, k~d1{\tilde{k}}d\ll 1, η~1,2ϵ1,2k/(ϵzk~){\tilde{\eta}}_{1,2}\approx\epsilon_{1,2}k/(\epsilon_{z}{\tilde{k}}), and, with the dependence on zz and zz^{\prime} disappearing, we get the two-dimensional form of the interaction,

V(𝝆)\displaystyle V(\bm{\rho}) =4πqq(2π)2dd2𝐤ei𝐤𝝆ϵxkx2+ϵyky2+(ϵ1+ϵ2)kd.\displaystyle=\frac{4\pi qq^{\prime}}{(2{\pi})^{2}d}\int\frac{d^{2}{\bf k}\,e^{i{\bf k}\cdot{\bm{\rho}}}}{\epsilon_{x}k_{x}^{2}+\epsilon_{y}k_{y}^{2}+(\epsilon_{1}+\epsilon_{2})\frac{k}{d}}. (5)

At this point it is convenient to introduce two “screening” lengths,

ρ0xϵxdϵ1+ϵ2,ρ0yϵydϵ1+ϵ2,\displaystyle\rho_{0x}\equiv\frac{\epsilon_{x}d}{\epsilon_{1}+\epsilon_{2}},\quad\rho_{0y}\equiv\frac{\epsilon_{y}d}{\epsilon_{1}+\epsilon_{2}}, (6)

characterizing polarizability of the film in the xx and yy directions, respectively, and write the interaction (5) in the form

V(𝝆)\displaystyle V(\bm{\rho}) =qqπ(ϵ1+ϵ2)d2𝐤ei𝐤𝝆kϵ(𝐤),\displaystyle=\frac{qq^{\prime}}{{\pi}(\epsilon_{1}+\epsilon_{2})}\int\frac{d^{2}{\bf k}\,e^{i{\bf k}\cdot{\bm{\rho}}}}{k\,\epsilon({\bf k})}, (7)

where ϵ(𝐤)\epsilon({\bf k}) is the dielectric function, formally defined by

ϵ(𝐤)=1+1k(ρ0xkx2+ρ0yky2),\epsilon({\bf k})=1+\frac{1}{k}\left(\rho_{0x}k_{x}^{2}+{\rho_{0y}k_{y}^{2}}\right), (8)

which generalizes the standard isotropic result cudazzo2011dielectric . In Ref. berkelbach2013theory , for the case of surrounding vacuum in the isotropic scenario, the authors have numerically verified that the screening length of a monolayer can be calculated with good accuracy on the basis of Eq. (6) provided the dielectric contrast is large and the relevant dielectric constant of the monolayer is the in-plane component of the permittivity tensor of the bulk material. We take that as an indication that the Keldysh model is a good approximation to realistic experimental situations and hypothesize that its anisotropic generalization proposed here should work reasonably well even for samples of monolayer thickness.

The problem thus reduces to the calculation of a two-dimensional Fourier integral,

F(x,y)=dkxdky(2π)2ei(kxx+kyy)k+Akx2+Bky2,F(x,y)=\int\frac{dk_{x}dk_{y}}{(2\pi)^{2}}\frac{e^{i(k_{x}x+k_{y}y)}}{k+Ak_{x}^{2}+Bk_{y}^{2}}, (9)

with A,B>0A,B>0. To that end, working in polar coordinates, we write,

V(𝝆)\displaystyle V(\bm{\rho}) =qqπ(ϵ1+ϵ2)002πdtdθeitcosθt[ρ0xcos2(θ+α)+ρ0ysin2(θ+α)]+ρ\displaystyle=\frac{qq^{\prime}}{{\pi}(\epsilon_{1}+\epsilon_{2})}\int_{0}^{\infty}\int_{0}^{2\pi}\frac{dtd\theta\,e^{it\cos\theta}}{t[\rho_{0x}\cos^{2}(\theta+\alpha)+\rho_{0y}\sin^{2}(\theta+\alpha)]+\rho}
=2qq(ϵ1+ϵ2)ρ00𝑑tI(t,α,a,b)t+b,\displaystyle=\frac{2qq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho_{0}}\int_{0}^{\infty}dt\,\frac{I(t,\alpha,a,b)}{t+b}, (10)

where t=kρt=k\rho, α\alpha is the angle between the position vector 𝝆{\bm{\rho}} and the positive xx-axis, as shown in Fig. 6,

I(t,α,a,b)=12π02π𝑑θeitcosθ1ε2(t,a,b)cos2(θ+α),I(t,\alpha,a,b)=\frac{1}{2{\pi}}\int_{0}^{2\pi}d\theta\frac{e^{it\cos\theta}}{1-\varepsilon^{2}(t,a,b)\cos^{2}(\theta+\alpha)}, (11)

and

ε2(t,a,b)att+b,a1ρ0xρ0y,bρρ0,ρ0ρ0y,\varepsilon^{2}(t,a,b)\equiv\frac{at}{t+b},\quad a\equiv 1-\frac{\rho_{0x}}{\rho_{0y}},\quad b\equiv\frac{\rho}{\rho_{0}},\quad{\rho}_{0}\equiv\rho_{0y}, (12)

with a(,1]a\in(-\infty,1] playing the role of the anisotropy parameter; the greater the |a||a|, the greater the anisotropy, with a=0a=0 corresponding to the isotropic case.

Without loss of generality, we may assume that 0<ρ0xρ0y0<\rho_{0x}\leq\rho_{0y}, and thus 0a<10\leq a<1. Then, since t0t\geq 0, we have 0ε2(t)<10\leq\varepsilon^{2}(t)<1. Taking into account the well-known Fourier series expansion mikhlin1964integral ,

11ε2cos2χ=11ε2[1+2n=1(ε1+1ε2)2ncos(2nχ)],\displaystyle\frac{1}{1-\varepsilon^{2}\cos^{2}\chi}=\frac{1}{\sqrt{1-\varepsilon^{2}}}\bigg{[}1+2\sum^{\infty}_{n=1}\bigg{(}\frac{\varepsilon}{1+\sqrt{1-\varepsilon^{2}}}\bigg{)}^{2n}\cos(2n\chi)\bigg{]}, (13)

and using the fact that 02π𝑑θeitcosθsin(2nθ)=0\int_{0}^{2\pi}d\theta\,e^{it\cos\theta}\sin(2n\theta)=0, we get for the θ\theta-integral in (11) the asymptotic multipole series,

I(t,α,a,b)\displaystyle I(t,\alpha,a,b) =11ε2(t)12π02π𝑑θeitcosθ\displaystyle=\frac{1}{\sqrt{1-\varepsilon^{2}(t)}}\frac{1}{2{\pi}}\int_{0}^{2\pi}d\theta\,e^{it\cos\theta}
+21ε2(t)n=1(ε(t)1+1ε2(t))2n(12π02π𝑑θeitcosθcos(2nθ))cos(2nα)\displaystyle\quad+\frac{2}{\sqrt{1-\varepsilon^{2}(t)}}\sum^{\infty}_{n=1}\bigg{(}\frac{\varepsilon(t)}{1+\sqrt{1-\varepsilon^{2}(t)}}\bigg{)}^{2n}\bigg{(}\frac{1}{2{\pi}}\int_{0}^{2\pi}d\theta\,e^{it\cos\theta}\cos(2n\theta)\bigg{)}\cos(2n\alpha)
=J0(t)1ε2(t)\displaystyle=\frac{J_{0}(t)}{\sqrt{1-\varepsilon^{2}(t)}}
+21ε2(t)(ε(t)1+1ε2(t))2tJ0(t)2J1(t)tcos(2α)\displaystyle\quad+\frac{2}{\sqrt{1-\varepsilon^{2}(t)}}\bigg{(}\frac{\varepsilon(t)}{1+\sqrt{1-\varepsilon^{2}(t)}}\bigg{)}^{2}\,\frac{tJ_{0}(t)-2J_{1}(t)}{t}\,\cos(2\alpha)
+21ε2(t)(ε(t)1+1ε2(t))4t(t224)J0(t)8(t26)J1(t)t3cos(4α)\displaystyle\quad+\frac{2}{\sqrt{1-\varepsilon^{2}(t)}}\bigg{(}\frac{\varepsilon(t)}{1+\sqrt{1-\varepsilon^{2}(t)}}\bigg{)}^{4}\,\frac{t\left(t^{2}-24\right)J_{0}(t)-8\left(t^{2}-6\right)J_{1}(t)}{t^{3}}\,\cos(4\alpha)
+21ε2(t)(ε(t)1+1ε2(t))6t(t4144t2+1920)J0(t)6(3t4128t2+640)J1(t)t5cos(6α)+,\displaystyle\quad+\frac{2}{\sqrt{1-\varepsilon^{2}(t)}}\bigg{(}\frac{\varepsilon(t)}{1+\sqrt{1-\varepsilon^{2}(t)}}\bigg{)}^{6}\,\frac{t\left(t^{4}-144t^{2}+1920\right)J_{0}(t)-6\left(3t^{4}-128t^{2}+640\right)J_{1}(t)}{t^{5}}\,\cos(6\alpha)+\,\dots,

where J0J_{0} and J1J_{1} are the Bessel functions of the first kind.

III Weak anisotropy

In a rather straightforward manner (for a better approach see Sec. IV), assuming 0a10\leq a\ll 1 and treating ε2(t,a,b)\varepsilon^{2}(t,a,b) as a small parameter in (II), we get, in lowest order,

I(t)J0(t)+ε2(t)2J0+ε2(t)2(J0(t)2J1(t)t)cos(2α),\displaystyle I(t)\approx J_{0}(t)+\frac{\varepsilon^{2}(t)}{2}J_{0}+\frac{\varepsilon^{2}(t)}{2}\bigg{(}J_{0}(t)-\frac{2J_{1}(t)}{t}\bigg{)}\,\cos(2\alpha), (15)

and, thus,

V(b,α)\displaystyle V(b,\alpha) =2qq(ϵ1+ϵ2)ρ00𝑑t{J0(t)t+b+a2[tJ0(t)(t+b)2+tJ0(t)2J1(t)(t+b)2cos(2α)]}.\displaystyle=\frac{2qq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho_{0}}\int_{0}^{\infty}dt\bigg{\{}\frac{J_{0}(t)}{t+b}+\frac{a}{2}\bigg{[}\frac{tJ_{0}(t)}{(t+b)^{2}}+\frac{tJ_{0}(t)-2J_{1}(t)}{(t+b)^{2}}\,\cos(2\alpha)\bigg{]}\bigg{\}}. (16)
Refer to caption
Figure 1: Graphs of V1V_{1} in units of |qq|/(ϵ1+ϵ2)ρ0{|qq^{\prime}|}/(\epsilon_{1}+\epsilon_{2})\rho_{0}, and V1/V0V_{1}/V_{0}, with a=0.1a=0.1, in the weakly anisotropic case, calculated on the basis of Eqs. (III) and (18) and direct numerical integration in Eq. (II).

Performing the remaining tt-integration we find,

V(b,α)=V0(b)+V1(b,α),V(b,\alpha)=V_{0}(b)+V_{1}(b,\alpha), (17)

where

V0(b,α)=πqq(ϵ1+ϵ2)ρ0[H0(b)Y0(b)]\displaystyle V_{0}(b,\alpha)=\frac{{\pi}qq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho_{0}}[{H}_{0}(b)-Y_{0}(b)] (18)

is the standard Keldysh-Rytova result, and

V1(b,α)\displaystyle V_{1}(b,\alpha) =a2πqq(ϵ1+ϵ2)ρ0[H0(b)Y0(b)+2πb+bY1(b)bH1(b)]\displaystyle=\frac{a}{2}\frac{\pi qq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho_{0}}\left[{H}_{0}(b)-Y_{0}(b)+\frac{2}{\pi}b+bY_{1}(b)-b{H}_{1}(b)\right]
+a2πqq(ϵ1+ϵ2)ρ0[2πb3+b[(b22)Y1(b)+bY0(b)]b[(b22)H1(b)+bH0(b)]4π]cos(2α)b2\displaystyle\quad+\frac{a}{2}\frac{\pi qq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho_{0}}\left[\frac{2}{\pi}b^{3}+b\left[\left(b^{2}-2\right)Y_{1}(b)+bY_{0}(b)\right]-b\left[\left(b^{2}-2\right){H}_{1}(b)+b{H}_{0}(b)\right]-\frac{4}{\pi}\right]\frac{\cos(2\alpha)}{b^{2}} (19)

is the linear correction whose graph is shown in Fig. 1 (assuming qq<0qq^{\prime}<0). In the above, various HiH_{i} and YiY_{i} denote the Struve and Neumann functions, respectively.

For b1b\ll 1, or dρρ0{d}\ll{\rho}\ll\rho_{0}, we get

V0\displaystyle V_{0} =2qq(ϵ1+ϵ2)ρ0[ln(2b)γ]=2qq(ϵ1+ϵ2)ρ0[ln(2ρ0ρ)γ],\displaystyle=\frac{2qq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho_{0}}\left[\ln\left(\frac{2}{b}\right)-\gamma\right]=\frac{2qq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho_{0}}\left[\ln\left(\frac{2\rho_{0}}{\rho}\right)-\gamma\right], (20)
V1\displaystyle V_{1} =aqq(ϵ1+ϵ2)ρ0[ln(2b)γ1cos(2α)2]=aqq(ϵ1+ϵ2)ρ0[ln(2ρ0ρ)γ1cos(2α)2],\displaystyle=\frac{aqq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho_{0}}\left[\ln\left(\frac{2}{b}\right)-\gamma-1-\frac{\cos(2\alpha)}{2}\right]=\frac{aqq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho_{0}}\left[\ln\left(\frac{2\rho_{0}}{\rho}\right)-\gamma-1-\frac{\cos(2\alpha)}{2}\right], (21)

where γ0.577216\gamma\approx 0.577216 is the Euler constant. Since 02πcos(2α)𝑑α=0\int_{0}^{2\pi}\cos(2\alpha)d\alpha=0, the excitonic ground state energy in this case experiences a first order shift,

ΔE0=2πaqq(ϵ1+ϵ2)ρ00(ln(2b)γ1)|ψ0(b)|2b𝑑b,\Delta E_{0}=\frac{2\pi aqq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho_{0}}\int_{0}^{\infty}\left(\ln\left(\frac{2}{b}\right)-\gamma-1\right)|\psi_{0}(b)|^{2}\,b\,db, (22)

where ψ0(b)\psi_{0}(b) is the unperturbed axially symmetric ground state wave function. On the other hand, for b1b\gg 1, or ρρ0{\rho}\gg\rho_{0}, Eqs. (18) and (III) reproduce the standard Coulomb asymptotics,

V(ρ)=2qq(ϵ1+ϵ2)ρ0(1bacos(2α)b2)2qq(ϵ1+ϵ2)ρ.V(\rho)=\frac{2qq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho_{0}}\left(\frac{1}{b}-\frac{a\cos(2\alpha)}{b^{2}}\right)\rightarrow\frac{2qq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho}. (23)
Refer to caption
Figure 2: Graphs of the relative errors defined in Eqs. (24) and (25). The vertical asymptote (in blue) is at the point with α=0\alpha=0, for which V=V0V=V_{0} (exact Keldysh value); compare with Fig. 1.

To get a sense of the error involved in this linear approximation, we define two relative errors by

Err1VexactVapproxVexact=V1exactV1Vexact{\rm Err}_{1}\equiv\frac{V_{\rm exact}-V_{\rm approx}}{V_{\rm exact}}=\frac{V_{1\,{\rm exact}}-V_{1}}{V_{\rm exact}} (24)

and

Err2VexactVapproxVexactV0=V1exactV1V1exact,{\rm Err}_{2}\equiv\frac{V_{\rm exact}-V_{\rm approx}}{V_{\rm exact}-V_{0}}=\frac{V_{1\,{\rm exact}}-V_{1}}{V_{1\,{\rm exact}}}, (25)

respectively, with V1exactVexactV0V_{1\,{\rm exact}}\equiv V_{\rm exact}-V_{0}. Here, VapproxV0+V1V_{\rm approx}\equiv V_{0}+V_{1} is calculated on the basis of Eqs. (18) and (III), and VexactV_{\rm exact} is found by direct numerical integration of the double integral in (II). The corresponding results are summarized in Fig. 2. Notice that for all ρ\rho the error Err1{\rm Err}_{1} is greatest for points with α=π/2\alpha=\pi/2. The error Err2{\rm Err}_{2} is particularly troublesome, as the blue curve clearly indicates.

IV Weak anisotropy: Renormalized Keldysh interaction

A better linear approximation can be achieved by “renormalizing” the zeroth order Keldysh contribution, V0V_{0}, as follows: we re-write the monopole term in (II) as shown below,

I\displaystyle I =J0(t)1a+[(J0(t)1ε2(t)J0(t)1a)+21ε2(t)(ε(t)1+1ε2(t))2tJ0(t)2J1(t)tcos(2α)+]𝒪(a),\displaystyle=\frac{J_{0}(t)}{\sqrt{1-a}}+\underbrace{\bigg{[}\bigg{(}\frac{J_{0}(t)}{\sqrt{1-\varepsilon^{2}(t)}}-\frac{J_{0}(t)}{\sqrt{1-a}}\bigg{)}+\frac{2}{\sqrt{1-\varepsilon^{2}(t)}}\bigg{(}\frac{\varepsilon(t)}{1+\sqrt{1-\varepsilon^{2}(t)}}\bigg{)}^{2}\,\frac{tJ_{0}(t)-2J_{1}(t)}{t}\,\cos(2\alpha)+\,\dots\bigg{]}}_{\sim{\cal O}(a)}, (26)

and expand everything in square brackets to linear (leading!) order in aa. The potential then becomes

V(b,α)\displaystyle V(b,\alpha) =2qq(ϵ1+ϵ2)ρ00𝑑t{11aJ0(t)t+b+a2[bJ0(t)(t+b)2+tJ0(t)2J1(t)(t+b)2cos(2α)]},\displaystyle=\frac{2qq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho_{0}}\int_{0}^{\infty}dt\,\bigg{\{}\frac{1}{\sqrt{1-a}}\frac{J_{0}(t)}{t+b}+\frac{a}{2}\,\bigg{[}-\frac{bJ_{0}(t)}{(t+b)^{2}}+\frac{tJ_{0}(t)-2J_{1}(t)}{(t+b)^{2}}\,\cos(2\alpha)\bigg{]}\bigg{\}}, (27)

which should be compared with (16). We then find

V(b,α)\displaystyle V(b,\alpha) =V0ren+V1ren,\displaystyle=V_{0\,{\rm ren}}+V_{1\,{\rm ren}}, (28)

where

V0ren(b,α)\displaystyle V_{0\,{\rm ren}}(b,\alpha) =πqq(ϵ1+ϵ2)ρ0H0(b)Y0(b)1a\displaystyle=\frac{{\pi}qq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho_{0}}\frac{{H}_{0}(b)-Y_{0}(b)}{\sqrt{1-a}} (29)

is the renormalized isotropic Keldysh term, and

V1ren(b,α)\displaystyle V_{1\,{\rm ren}}(b,\alpha) =a2πqq(ϵ1+ϵ2)ρ0[2πb+bY1(b)bH1(b)]\displaystyle=\frac{a}{2}\frac{\pi qq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho_{0}}\left[\frac{2}{\pi}b+bY_{1}(b)-b{H}_{1}(b)\right]
+a2πqq(ϵ1+ϵ2)ρ0[2πb3+b[(b22)Y1(b)+bY0(b)]b[(b22)H1(b)+bH0(b)]4π]cos(2α)b2\displaystyle\quad+\frac{a}{2}\frac{\pi qq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho_{0}}\left[\frac{2}{\pi}b^{3}+b\left[\left(b^{2}-2\right)Y_{1}(b)+bY_{0}(b)\right]-b\left[\left(b^{2}-2\right){H}_{1}(b)+b{H}_{0}(b)\right]-\frac{4}{\pi}\right]\frac{\cos(2\alpha)}{b^{2}} (30)

is the corresponding linear correction consisting of a linear monopole and a linear dipole contributions, Fig. 3.

Refer to caption
Figure 3: Graphs of V1renV_{1\,{\rm ren}} in units of |qq|/(ϵ1+ϵ2)ρ0{|qq^{\prime}|}/(\epsilon_{1}+\epsilon_{2})\rho_{0}, and V1ren/V0renV_{1\,{\rm ren}}/V_{0\,{\rm ren}}, with a=0.1a=0.1, in the weakly anisotropic case, calculated on the basis of Eqs. (29) and (IV) and direct numerical integration in Eq. (II). Compare with Fig. 1.

Now in the b1b\ll 1 limit we get

V0ren\displaystyle V_{0\,{\rm ren}} =2qq(ϵ1+ϵ2)ρ0ln(2b)γ1a\displaystyle=\frac{2qq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho_{0}}\frac{\ln\left(\frac{2}{b}\right)-\gamma}{\sqrt{1-a}} (31)

and a perfectly reasonable first order correction

V1ren\displaystyle V_{1\,{\rm ren}} =aqq(ϵ1+ϵ2)ρ0[1+cos(2α)2],\displaystyle=-\frac{aqq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho_{0}}\left[1+\frac{\cos(2\alpha)}{2}\right], (32)

which does not contain the logarithmic term. The excitonic ground state energy in this case undergoes a simple first order shift,

ΔE0ren=aqq(ϵ1+ϵ2)ρ0.\Delta E_{0\,{\rm ren}}=-\frac{aqq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho_{0}}. (33)

Notice that our renormalization procedure eliminates logarithmic terms in all orders of the monopole perturbation, not just the first one. For example, keeping the second order monopole contribution in square brackets in Eq. (26) would add the term

V2ren(monopole)\displaystyle V_{2\,{\rm ren}}^{({\rm monopole})} =3a216πqq(ϵ1+ϵ2)ρ0[8πb+b2Y0(b)b2H0(b)+3bY1(b)3bH1(b)]\displaystyle=\frac{3a^{2}}{16}\frac{\pi qq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho_{0}}\left[\frac{8}{\pi}b+b^{2}Y_{0}(b)-b^{2}{H}_{0}(b)+3bY_{1}(b)-3b{H}_{1}(b)\right] (34)

to the potential in (28), which in the b1b\ll 1 limit is just

V2ren(monopole)\displaystyle V_{2\,{\rm ren}}^{({\rm monopole})} =9a28qq(ϵ1+ϵ2)ρ0.\displaystyle=-\frac{9a^{2}}{8}\frac{qq^{\prime}}{(\epsilon_{1}+\epsilon_{2})\rho_{0}}. (35)
Refer to caption
Figure 4: Graphs of the relative errors defined in Eqs. (36) and (37). Compare with Fig. 2.
Refer to caption
Figure 5: Graphs of V1renexactV_{1\,{\rm ren}\,{\rm exact}} in units of |qq|/(ϵ1+ϵ2)ρ0{|qq^{\prime}|}/(\epsilon_{1}+\epsilon_{2})\rho_{0} and V1renexact/V0renV_{1\,{\rm ren}\,{\rm exact}}/V_{0\,{\rm ren}}, with a=0.9a=0.9, in the strongly anisotropic case (calculated numerically on the basis of Eqs. (II) and (29)).

Returning to the linear approximation (28), we again define two relative errors,

Err1renVexactVrenapproxVexact=V1renexactV1renVexact,{\rm Err}_{1\,{\rm ren}}\equiv\frac{V_{\rm exact}-V_{\rm ren\,approx}}{V_{\rm exact}}=\frac{V_{1\,{\rm ren}\,{\rm exact}}-V_{1\,{\rm ren}}}{V_{\rm exact}}, (36)

and

Err2renVexactVrenapproxVexactV0ren=V1renexactV1renV1renexact,{\rm Err}_{2\,{\rm ren}}\equiv\frac{V_{\rm exact}-V_{\rm ren\,approx}}{V_{\rm exact}-V_{0\,{\rm ren}}}=\frac{V_{1\,{\rm ren}\,{\rm exact}}-V_{1\,{\rm ren}}}{V_{1\,{\rm ren}\,{\rm exact}}}, (37)

with V1renexactVexactV0renV_{1\,{\rm ren}\,{\rm exact}}\equiv V_{\rm exact}-V_{0\,{\rm ren}} and VrenapproxV0ren+V1renV_{\rm ren\,approx}\equiv V_{0\,{\rm ren}}+V_{1\,{\rm ren}}. The corresponding numerical results presented in Fig. 4 show that our revised approximation scheme is indeed superior to the one used in Sec. III.

Finally, we also performed numerical simulations in the extreme anisotropic regime, as shown in Fig. 5. In this case, the “correction” V1renexactV_{1\,{\rm ren}\,{\rm exact}} becomes comparable to V0renV_{0\,{\rm ren}}, and the linear approximation breaks down.

V Summary

The classic Keldysh-Rytova formula for screened Coulomb interaction in semiconductor thin films has been generalized by taking into account the anisotropy of the layer’s dielectric permittivity tensor. The Fourier image of the anisotropic potential in momentum space, as well as the linear correction to the isotropic potential in real space, have been worked out in closed analytical form. The case of strong in-plane anisotropy, however, remains unresolved due to the appearance of the function I(t,α,a,b)I(t,\alpha,a,b) (see Eqs. (11) and (II)), whose explicit analytical expression is not known.

Acknowledgements.
The author thanks Robert Zaballa for useful discussions.

APPENDIX: Momentum space representation

Following Rytova1967 and keldysh1979coulomb , we consider a geometry in which the anisotropic semiconductor film occupies the region of space d/2zd/2-d/2\leq z\leq d/2, as shown in Fig. 6. The half-space z<d/2z<-d/2 (the substrate) is filled with an isotropic medium whose dielectric constant is ϵ1\epsilon_{1}, while the half-space z>d/2z>d/2 with an isotropic medium whose dielectric constant is ϵ2\epsilon_{2}.

We are assuming that the axes of the coordinate system (x,y,z)(x,y,z) coincide with the principal axes of the film’s dielectric permittivity tensor. The electrostatic potential at point 𝐫(𝝆,z)=(x,y,z){\bf r}\equiv(\bm{\rho},z)=(x,y,z) due to charge qq^{\prime} located at 𝐫=(0,0,z){\bf r}^{\prime}=(0,0,z^{\prime}) satisfies in regions 1, 2, and 3 (the film) the following system of equations:

(2x2+2y2+2z2)ϕ1(𝐫,𝐫)\displaystyle\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)\phi_{1}({\bf r},{\bf r}^{\prime}) =0,\displaystyle=0, (38)
(2x2+2y2+2z2)ϕ2(𝐫,𝐫)\displaystyle\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)\phi_{2}({\bf r},{\bf r}^{\prime}) =0,\displaystyle=0, (39)
(ϵx2x2+ϵy2y2+ϵz2z2)ϕ3(𝐫,𝐫)\displaystyle\left(\epsilon_{x}\frac{\partial^{2}}{\partial x^{2}}+\epsilon_{y}\frac{\partial^{2}}{\partial y^{2}}+\epsilon_{z}\frac{\partial^{2}}{\partial z^{2}}\right)\phi_{3}({\bf r},{\bf r}^{\prime}) =4πqδ(𝐫𝐫),\displaystyle=-4{\pi}q^{\prime}\delta({\bf r}-{\bf r}^{\prime}), (40)

with the boundary conditions at the interfaces,

(ϕ2ϕ3)z=d2=0,(ϵ2ϕ2zϵzϕ3z)z=d2=0,\displaystyle(\phi_{2}-\phi_{3})_{z=\frac{d}{2}}=0,\quad\left(\epsilon_{2}\frac{\partial\phi_{2}}{\partial z}-\epsilon_{z}\frac{\partial\phi_{3}}{\partial z}\right)_{z=\frac{d}{2}}=0, (41)
(ϕ3ϕ1)z=d2=0,(ϵzϕ3zϵ1ϕ1z)z=d2=0,\displaystyle(\phi_{3}-\phi_{1})_{z=-\frac{d}{2}}=0,\quad\left(\epsilon_{z}\frac{\partial\phi_{3}}{\partial z}-\epsilon_{1}\frac{\partial\phi_{1}}{\partial z}\right)_{z=-\frac{d}{2}}=0, (42)

and the boundary conditions at the two infinities,

ϕ2|z+=0,ϕ1|z=0.\phi_{2}|_{z\rightarrow+\infty}=0,\quad\phi_{1}|_{z\rightarrow-\infty}=0. (43)
Refer to caption
Figure 6: Left: Semiconductor film geometry; the (x,y,z)(x,y,z) axes coincide with the principal axes of the dielectric permittivity tensor of the film, ϵ\epsilon. Right: Mutual orientation of vectors 𝐤{\bf k} and 𝝆{\bm{\rho}} used in Eq. (5).

Fourier transforming,

ϕ1,2,3(𝐫,𝐫)\displaystyle\phi_{1,2,3}({\bf r},{\bf r}^{\prime}) =d2𝐤(2π)2ei𝐤𝝆ϕ1,2,3(𝐤,z,z),𝐤=(kx,ky),\displaystyle=\int\frac{d^{2}{\bf k}}{(2\pi)^{2}}e^{i{\bf k}\cdot{\bm{\rho}}}\phi_{1,2,3}({\bf k},z,z^{\prime}),\quad{\bf k}=(k_{x},k_{y}), (44)

and substituting into (38), (39), and (40), we get the following equations for the corresponding Fourier components,

(2z2k2)ϕ1(k,z,z)\displaystyle\left(\frac{\partial^{2}}{\partial z^{2}}-k^{2}\right)\phi_{1}(k,z,z^{\prime}) =0,\displaystyle=0, (45)
(2z2k2)ϕ2(k,z,z)\displaystyle\left(\frac{\partial^{2}}{\partial z^{2}}-k^{2}\right)\phi_{2}(k,z,z^{\prime}) =0,\displaystyle=0, (46)
(2z2k~2)ϕ3(k~,z,z)\displaystyle\left(\frac{\partial^{2}}{\partial z^{2}}-{\tilde{k}}^{2}\right)\phi_{3}({\tilde{k}},z,z^{\prime}) =4πqϵzδ(zz),\displaystyle=-\frac{4{\pi}q^{\prime}}{\epsilon_{z}}\delta(z-z^{\prime}), (47)

where

k|𝐤|=kx2+ky2,k~ϵxkx2+ϵyky2ϵz.k\equiv|{\bf k}|=\sqrt{k_{x}^{2}+k_{y}^{2}},\quad{\tilde{k}}\equiv\sqrt{\frac{\epsilon_{x}k_{x}^{2}+\epsilon_{y}k_{y}^{2}}{\epsilon_{z}}}. (48)

Conditions at infinity, (43), combined with Eqs. (45) and (46) give

ϕ2(k)\displaystyle\phi_{2}(k) =A2(z)ekz,ϕ2(k)z=kA2(z)ekz,\displaystyle=A_{2}(z^{\prime})e^{-kz},\quad\frac{\partial\phi_{2}(k)}{\partial z}=-kA_{2}(z^{\prime})e^{-kz}, (49)
ϕ1(k)\displaystyle\phi_{1}(k) =A1(z)ekz,ϕ1(k)z=kA1(z)ekz,\displaystyle=A_{1}(z^{\prime})e^{kz},\quad\frac{\partial\phi_{1}(k)}{\partial z}=kA_{1}(z^{\prime})e^{kz}, (50)

while Eq. (47) gives, for zzz\neq z^{\prime},

ϕ3(k~,zz)\displaystyle\phi_{3}({\tilde{k}},z\neq z^{\prime}) =A3(z)ek~z+B3(z)ek~z,\displaystyle=A_{3}(z^{\prime})e^{{\tilde{k}}z}+B_{3}(z^{\prime})e^{-{\tilde{k}}z}, (51)

and, at z=zz=z^{\prime}, the jump discontinuity in the zz-derivative,

ϕ3(k~)z|z=z0z=z+0=4πqϵz.\frac{\partial\phi_{3}({\tilde{k}})}{\partial z}\bigg{|}^{z=z^{\prime}+0}_{z=z^{\prime}-0}=-\frac{4{\pi}q^{\prime}}{\epsilon_{z}}. (52)

Imposing the boundary conditions at the z=+d/2z=+d/2 interface,

A2(z)ekd/2\displaystyle A_{2}(z^{\prime})e^{-{kd}/{2}} =A3(z)ek~d/2+B3(z)ek~d/2,\displaystyle=A_{3}(z^{\prime})e^{{{\tilde{k}}d}/{2}}+B_{3}(z^{\prime})e^{-{{\tilde{k}}d}/{2}}, (53)
ϵ2kA2(z)ekd/2\displaystyle-\epsilon_{2}kA_{2}(z^{\prime})e^{-{kd}/{2}} =ϵzk~[A3(z)ek~d/2B3(z)ek~d/2],\displaystyle=\epsilon_{z}{\tilde{k}}\left[A_{3}(z^{\prime})e^{{{\tilde{k}}d}/{2}}-B_{3}(z^{\prime})e^{-{{\tilde{k}}d}/{2}}\right], (54)

we get

ϕ3(k~)|z>z\displaystyle\phi_{3}({\tilde{k}})|_{z>z^{\prime}} =A3(z)[ek~z+e2η~2+k~(dz)],\displaystyle=A_{3}(z^{\prime})\left[e^{{\tilde{k}}z}+e^{2{\tilde{\eta}}_{2}+{\tilde{k}}(d-z)}\right], (55)

where

η~212ln(ϵzk~+ϵ2kϵzk~ϵ2k).{\tilde{\eta}}_{2}\equiv\frac{1}{2}\ln\left(\frac{\epsilon_{z}\tilde{k}+\epsilon_{2}k}{\epsilon_{z}\tilde{k}-\epsilon_{2}k}\right). (56)

Similarly, imposing the boundary conditions at the z=d/2z=-d/2 interface, we get

A~3(z)ek~d/2+B~3(z)ek~d/2\displaystyle{\tilde{A}}_{3}(z^{\prime})e^{-{{\tilde{k}}d}/{2}}+{\tilde{B}}_{3}(z^{\prime})e^{{{\tilde{k}}d}/{2}} =A1(z)ekd/2,\displaystyle=A_{1}(z^{\prime})e^{-{kd}/{2}}, (57)
ϵzk~[A~3(z)ek~d/2B~3(z)ek~d/2]\displaystyle\epsilon_{z}{\tilde{k}}\left[{\tilde{A}}_{3}(z^{\prime})e^{-{{\tilde{k}}d}/{2}}-{\tilde{B}}_{3}(z^{\prime})e^{{{\tilde{k}}d}/{2}}\right] =ϵ1kA1(z)ekd/2,\displaystyle=\epsilon_{1}kA_{1}(z^{\prime})e^{-{kd}/{2}}, (58)

and, after defining

η~112ln(ϵzk~+ϵ1kϵzk~ϵ1k),{\tilde{\eta}}_{1}\equiv\frac{1}{2}\ln\left(\frac{\epsilon_{z}\tilde{k}+\epsilon_{1}k}{\epsilon_{z}\tilde{k}-\epsilon_{1}k}\right), (59)

find

ϕ3(k~)|z<z\displaystyle\phi_{3}({\tilde{k}})|_{z<z^{\prime}} =A~3(z)[ek~z+e2η~1k~(d+z)].\displaystyle={\tilde{A}}_{3}(z^{\prime})\left[e^{{\tilde{k}}z}+e^{-2{\tilde{\eta}}_{1}-{\tilde{k}}(d+z)}\right]. (60)

Now, for z=zz=z^{\prime}, Eqs. (52), (55), and (60) give

A3(z)[ek~z+e2η~2+k~(dz)]A~3(z)[ek~z+e2η~1k~(d+z)]\displaystyle A_{3}(z^{\prime})\left[e^{{\tilde{k}}z^{\prime}}+e^{2{\tilde{\eta}}_{2}+{\tilde{k}}(d-z^{\prime})}\right]-{\tilde{A}}_{3}(z^{\prime})\left[e^{{\tilde{k}}z^{\prime}}+e^{-2{\tilde{\eta}}_{1}-{\tilde{k}}(d+z^{\prime})}\right] =0,\displaystyle=0, (61)
k~A3(z)[ek~ze2η~2+k~(dz)]k~A~3(z)[ek~ze2η~1k~(d+z)]\displaystyle{\tilde{k}}A_{3}(z^{\prime})\left[e^{{\tilde{k}}z^{\prime}}-e^{2{\tilde{\eta}}_{2}+{\tilde{k}}(d-z^{\prime})}\right]-{\tilde{k}}{\tilde{A}}_{3}(z^{\prime})\left[e^{{\tilde{k}}z^{\prime}}-e^{-2{\tilde{\eta}}_{1}-{\tilde{k}}(d+z^{\prime})}\right] =4πqϵz,\displaystyle=-\frac{4{\pi}q^{\prime}}{\epsilon_{z}}, (62)

resulting in

A~3(z)\displaystyle{\tilde{A}}_{3}(z^{\prime}) =A3(z)ek~z+e2η~2+k~(dz)ek~z+e2η~1k~(d+z),\displaystyle=A_{3}(z^{\prime})\frac{e^{{\tilde{k}}z^{\prime}}+e^{2{\tilde{\eta}}_{2}+{\tilde{k}}(d-z^{\prime})}}{e^{{\tilde{k}}z^{\prime}}+e^{-2{\tilde{\eta}}_{1}-{\tilde{k}}(d+z^{\prime})}}, (63)

and

A3(z)\displaystyle A_{3}(z^{\prime}) =4πqϵzk~ek~d/2η~2cosh[k~(d/2+z)+η~1]2sinh[k~d+η~1+η~2].\displaystyle=\frac{4{\pi}q^{\prime}}{\epsilon_{z}{\tilde{k}}}\frac{e^{-{\tilde{k}}d/2-{\tilde{\eta}}_{2}}\cosh\left[{\tilde{k}}(d/2+z^{\prime})+{\tilde{\eta}}_{1}\right]}{2\sinh\left[{\tilde{k}}d+{\tilde{\eta}}_{1}+{\tilde{\eta}}_{2}\right]}. (64)

Taking into account that

ek~z+e2η~2+k~(dz)\displaystyle e^{{\tilde{k}}z}+e^{2{\tilde{\eta}}_{2}+{\tilde{k}}(d-z)} =2ek~d/2+η~2cosh[k~(d/2z)+η~2],\displaystyle=2e^{{\tilde{k}}d/2+{\tilde{\eta}}_{2}}\cosh\left[{\tilde{k}}(d/2-z)+{\tilde{\eta}}_{2}\right], (65)

we get

ϕ3(k~,z>z)=4πqϵzcosh[k~(d2z)+η~2]cosh[k~(d2+z)+η~1]k~sinh[k~d+η~1+η~2].\displaystyle\phi_{3}({\tilde{k}},z>z^{\prime})=\frac{4{\pi}q^{\prime}}{\epsilon_{z}}\frac{\cosh\left[{\tilde{k}}\left(\frac{d}{2}-z\right)+{\tilde{\eta}}_{2}\right]\cosh\left[{\tilde{k}}\left(\frac{d}{2}+z^{\prime}\right)+{\tilde{\eta}}_{1}\right]}{{\tilde{k}}\sinh[{\tilde{k}}d+{\tilde{\eta}}_{1}+{\tilde{\eta}}_{2}]}. (66)

For z<zz<z^{\prime}, a similar calculation results in

ϕ3(k~,z<z)=4πqϵzcosh[k~(d2z)+η~2]cosh[k~(d2+z)+η~1]k~sinh[k~d+η~1+η~2].\displaystyle\phi_{3}({\tilde{k}},z<z^{\prime})=\frac{4{\pi}q^{\prime}}{\epsilon_{z}}\frac{\cosh\left[{\tilde{k}}\left(\frac{d}{2}-z^{\prime}\right)+{\tilde{\eta}}_{2}\right]\cosh\left[{\tilde{k}}\left(\frac{d}{2}+z\right)+{\tilde{\eta}}_{1}\right]}{{\tilde{k}}\sinh[{\tilde{k}}d+{\tilde{\eta}}_{1}+{\tilde{\eta}}_{2}]}. (67)

References

  • (1) P. Cudazzo, C. Attaccalite, I. V. Tokatly, and A. Rubio, “Strong Charge-Transfer Excitonic Effects and the Bose-Einstein Exciton Condensate in Graphane,” Phys. Rev. Lett. 104, 226804 (2010).
  • (2) P. Cudazzo, I. V. Tokatly, and A. Rubio, “Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane,” Phys. Rev. B 84, 085406 (2011).
  • (3) A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, “Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2,” Phys. Rev. Lett. 113, 076802 (2014).
  • (4) T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and Screening in Monolayer and Multilayer Black Phosphorus,” Phys. Rev. Lett. 113, 106802 (2014).
  • (5) X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu and F. Xia, “Highly anisotropic and robust excitons in monolayer black phosphorus,” Nature Nanotechnology 10, 517 (2015).
  • (6) A. Chaves, T. Low, P. Avouris, D. Cakir, and F. M. Peeters, “Anisotropic exciton Stark shift in black phosphorus,” Phys. Rev. B 92, 155311 (2015).
  • (7) S. Latini, T. Olsen, and K. S. Thygesen, ”Excitons in van der Waals heterostructures: The important role of dielectric screening,” Phys. Rev. B 92, 245123 (2015).
  • (8) T. G. Pedersen, S. Latini, K. S. Thygesen, H. Mera and B. K. Nikolić, “Exciton ionization in multilayer transition-metal dichalcogenides,” New J. Phys. 18 (2016).
  • (9) M. L. Trolle, T. G. Pedersen and V. Véniard, “Model dielectric function for 2D semiconductors including substrate screening,” Nature Sci. Rep. 7, 39844 (2017).
  • (10) A. Hichri, I. B. Amara, S. Ayari and S. Jaziri, “Dielectric environment and/or random disorder effects on free, charged and localized excitonic states in monolayer WS2,” J. Phys.: Condens. Matter 29, 435305 (2017).
  • (11) M. Szyniszewski, E. Mostaani, N. D. Drummond, and V. I. Fal’ko, “Binding energies of trions and biexcitons in two-dimensional semiconductors from diffusion quantum Monte Carlo calculations,” Phys. Rev. B 95, 081301(R) (2017).
  • (12) E. Mostaani, M. Szyniszewski, C. H. Price, R. Maezono, M. Danovich, R. J. Hunt, N. D. Drummond, V. I. Fal’ko, “Diffusion quantum Monte Carlo study of excitonic complexes in two-dimensional transition-metal dichalcogenides,” Phys. Rev. B 96, 075431(2017).
  • (13) L. S. R. Cavalcante, A. Chaves, B. Van Duppen, F. M. Peeters, and D. R. Reichman, “Electrostatics of electron-hole interactions in van derWaals heterostructures,” Phys. Rev. B 97, 125427 (2018).
  • (14) Sh. Niu, G. Joe, H. Zhao, Y. Zhou, T. Orvis, H. Huyan, J. Salman, K. Mahalingam, B. Urwin, J. Wu, Y. Liu, T. E. Tiwald, S. B. Cronin, B. M. Howe, M. Mecklenburg, R. Haiges, D. J. Singh, H. Wang, M. A. Kats and J. Ravichandran, “Giant optical anisotropy in a quasi-one-dimensional crystal,” Nature Photonics 12, 392 (2018).
  • (15) Sh. Niu, H. Zhao, Y. Zhou, H. Huyan, B. Zhao, J. Wu, S. B. Cronin , H. Wang, and J. Ravichandran, “Mid-wave and Long-Wave Infrared Linear Dichroism in a Hexagonal Perovskite Chalcogenide,” Chem. Mater. 30 (15), 4897 (2018).
  • (16) N. S. Rytova, “Screened potential of a point charge in a thin film,” Vestn. Mosk. Univ. Fiz. Astron. 3, 30 (1967).
  • (17) L. V. Keldysh, “Coulomb interaction in thin semiconductor and semimetal films,” Pis’ma Zh. Eksp. Teor. Fiz. 29, 716 (1979) [JETP Lett., 29, 658 (1979)].
  • (18) L. V. Keldysh, “Excitons in Semiconductor-Dielectric Nanostructures,” Phys. Stat. Sol. (a) 164, 3 (1997).
  • (19) T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman, “Theory of neutral and charged excitons in monolayer transition metal dichalcogenides,” Phys. Rev. B 88, 045318 (2013).
  • (20) S. G. Mikhlin, Integral Equations, Second Revised Edition (Pergamon Press, 1964).