This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\ytableausetup

boxsize=5pt

Annihilator of (𝔀,K)(\mathfrak{g},K)-modules of O​(p,q)\mathrm{O}(p,q) associated to the finite-dimensional representation of 𝔰​𝔩2\mathfrak{sl}_{2}

Takashi Hashimoto Center for Data Science Education, Tottori University, 4-101, Koyama-Minami, Tottori, 680-8550, Japan thashi@tottori-u.ac.jp
Abstract.

Let 𝔀\mathfrak{g} denote the complexified Lie algebra of G=O​(p,q)G=\mathrm{O}(p,q) and KK a maximal compact subgroup of GG. In the previous paper, we constructed (𝔀,K)(\mathfrak{g},K)-modules associated to the finite-dimensional representation of 𝔰​𝔩2\mathfrak{sl}_{2} of dimension m+1m+1, which we denote by M+​(m)\mathit{M}^{+}(m) and Mβˆ’β€‹(m)\mathit{M}^{-}(m). The aim of this paper is to show that the annihilator of M±​(m)\mathit{M}^{\pm}(m) is the Joseph ideal if and only if m=0m=0. We shall see that an element of the symmetric of square S2​(𝔀)S^{2}(\mathfrak{g}) that is given in terms of the Casimir elements of 𝔀\mathfrak{g} and the complexified Lie algebra of KK plays a critical role in the proof of the main result.

Key words and phrases:
indefinite orthogonal group, minimal representation, annihilator, Joseph ideal, Casimir element
2010 Mathematics Subject Classification:
Primary: 22E46, 17B20, 17B10

1. Introduction

For a complex simple Lie algebra 𝔀\mathfrak{g}, Joseph constructed the so-called Joseph ideal in [8], which is a completely prime two-sided primitive ideal in the universal enveloping algebra U​(𝔀)U(\mathfrak{g}) of 𝔀\mathfrak{g} and has the associated variety of minimal dimension. He also proved that it is unique if 𝔀\mathfrak{g} is not of type AA (see also [2]). An irreducible unitary representation of a simple Lie group is called a minimal representation if its annihilator in U​(𝔀)U(\mathfrak{g}) is equal to the Joseph ideal.

The best known example of the minimal representation is the oscillator (or Segal-Shale-Weil) representation of the metaplectic group, the double cover of the symplectic group Sp​(n,ℝ)\mathrm{Sp}(n,\mathbb{R}). It was shown in [5] that the canonical quantization of the moment map on real symplectic vector spaces gives rise to the underlying (𝔀,K)(\mathfrak{g},K)-module of the oscillator representation of real reductive Lie groups GG, where 𝔀\mathfrak{g} denotes the complexified Lie algebra of GG and KK a maximal compact subgroup of GG.

In the case of G=O​(p,q)G=\mathrm{O}(p,q), the indefinite orthogonal group, applying this method to the symplectic vector space ((β„‚p+q)ℝ,Ο‰)((\mathbb{C}^{p+q})_{\mathbb{R}},\omega) with ω​(z,w)=Im⁑(zβˆ—β€‹Ip,q​w)\omega(z,w)=\operatorname{Im}(z^{*}I_{p,q}w), on which GG acts via matrix multiplication in a Hamiltonian way with moment map (see below for details), and making use of the fact that (O​(p,q),SL2​(ℝ))(\mathrm{O}(p,q),\mathrm{SL}_{2}(\mathbb{R})) is a dual pair in Sp​(p+q,ℝ)\mathrm{Sp}(p+q,\mathbb{R}), the author constructed (𝔀,K)(\mathfrak{g},K)-modules M+​(m)\mathit{M}^{+}(m) and Mβˆ’β€‹(m)\mathit{M}^{-}(m) of O​(p,q)\mathrm{O}(p,q) associated to the finite-dimensional representation of 𝔰​𝔩2\mathfrak{sl}_{2} of dimension m+1m+1 for any non-negative integer mm in [6]. Note that M+​(0)=Mβˆ’β€‹(0)\mathit{M}^{+}(0)=\mathit{M}^{-}(0) by definition and M+​(m)\mathit{M}^{+}(m) is naturally isomorphic to Mβˆ’β€‹(m)\mathit{M}^{-}(m) in fact. Moreover, under the condition

pβ©Ύ2,qβ©Ύ2,p+q∈2​ℕandm+3β©½p+q2,p\geqslant 2,\;q\geqslant 2,\quad p+q\in 2\mathbb{N}\quad\text{and}\quad m+3\leqslant\frac{p+q}{2}, (1.1)

he obtained the KK-type formula of M±​(m)\mathit{M}^{\pm}(m), thereby showed that they are irreducible and that M±​(0)\mathit{M}^{\pm}(0) is the underlying (𝔀,K)(\mathfrak{g},K)-module of the minimal representation of O​(p,q)\mathrm{O}(p,q). Although it is well known that the Gelfand-Kirillov dimension of the minimal representation of O​(p,q)\mathrm{O}(p,q) is equal to p+qβˆ’3p+q-3 (see, e.g., [9, 12]), we remark that the KK-type formula of M±​(m)\mathit{M}^{\pm}(m) mentioned above implies that they all have the Gelfand-Kirillov dimension equal to p+qβˆ’3p+q-3, whereas they have the Bernstein degree equal to 4​(m+1)​(p+qβˆ’4pβˆ’2)4(m+1)\binom{p+q-4}{p-2}.

The original object of this project is to clarify the relation between our (𝔀,K)(\mathfrak{g},K)-modules M±​(m)\mathit{M}^{\pm}(m) and the minimal representation of O​(p,q)\mathrm{O}(p,q) more directly. In fact, we shall see that the annihilator in the universal enveloping algebra U​(𝔀)U(\mathfrak{g}) of M±​(m)\mathit{M}^{\pm}(m), denoted by ℐ±​(m)\mathscr{I}^{\pm}(m) in this paper, is the Joseph ideal if and only if m=0m=0, which is the main result of this paper (Theorem 3.6). We use a criterion due to Garfinkle [3] (see also [2]) to determine whether ℐ±​(m)\mathscr{I}^{\pm}(m) is the Joseph ideal or not. We will see that an element of the symmetric square S2​(𝔀)S^{2}(\mathfrak{g}), which we denote by Ξ\Xi below, plays a critical role in the proof of our main result. We remark that Ξ\Xi is given in terms of the Casimir elements of 𝔀\mathfrak{g} and 𝔨\mathfrak{k}, where 𝔨\mathfrak{k} is the complexified Lie algebra of the maximal compact subgroup KK.

The rest of the paper is organized as follows. In Section 2 we briefly review the construction of (𝔀,K)(\mathfrak{g},K)-modules M±​(m)\mathit{M}^{\pm}(m) of O​(p,q)\mathrm{O}(p,q) mentioned above as well as their properties needed to prove our main results. In Section 3 we prove our main result using the criterion due to Garfinkle. In order to keep the present paper self-contained, we include some standard facts about irreducible decomposition of S2​(𝔬n)S^{2}({\mathfrak{o}}_{n}) in the Appendix.

Notation

Let β„•\mathbb{N} denote the set of non-negative integers. For positive integers pp and qq, we set [p]:={1,2,…,p}[p]:=\{1,2,\dots,p\} and p+[q]:={p+1,p+2,…,p+q}p+[q]:=\{p+1,p+2,\dots,p+q\}.

2. (𝔀,K)(\mathfrak{g},K)-modules of O​(p,q)\mathrm{O}(p,q) associated to the finite-dimensional representation of 𝔰​𝔩2\mathfrak{sl}_{2}

Throughout this paper, we denote by GG the indefinite orthogonal group O​(p,q)\mathrm{O}(p,q) realized by

O(p,q)={g∈GLn(ℝ);tgIp,qg=Ip,q},\mathrm{O}(p,q)=\left\{g\in\mathrm{GL}_{n}(\mathbb{R});\hskip 1.8pt\vphantom{1}^{t}gI_{p,q}g=I_{p,q}\right\},

where n=p+qn=p+q and Ip,q=[1pβˆ’1q]I_{p,q}=\left[\begin{smallmatrix}1_{p}&\\ &-1_{q}\end{smallmatrix}\right]. Let 𝔀=𝔬​(p,q)βŠ—β„‚\mathfrak{g}={\mathfrak{o}}(p,q)\otimes\mathbb{C}, the complexified Lie algebra of GG. Thus,

𝔀={Xβˆˆπ”€π”©n(β„‚);tXIp,q+Ip,qX=O}.\mathfrak{g}=\left\{X\in\mathfrak{gl}_{n}(\mathbb{C});\hskip 1.8pt\vphantom{1}^{t}XI_{p,q}+I_{p,q}X=O\right\}.

Needless to say, our Lie algebra 𝔀\mathfrak{g} is β„‚\mathbb{C}-isomorphic to the Lie algebra 𝔬n{\mathfrak{o}}_{n} consisting of all complex nΓ—nn\times n alternating matrices:

𝔬n={Xβˆˆπ”€π”©n(β„‚);tX+X=O}.{\mathfrak{o}}_{n}=\left\{X\in\mathfrak{gl}_{n}(\mathbb{C});\hskip 1.8pt\vphantom{1}^{t}X+X=O\right\}.

Let KK be a maximal compact subgroup of GG given by

K={[a00d]∈G;a∈O​(p),d∈O​(q)}≃O​(p)Γ—O​(q).K=\left\{\begin{bmatrix}a&0\\ 0&d\end{bmatrix}\in G\,;a\in\mathrm{O}(p),d\in\mathrm{O}(q)\right\}\simeq\mathrm{O}(p)\times\mathrm{O}(q).

Denote the Lie algebra of KK and its complexification by 𝔨0\mathfrak{k}_{0} and 𝔨\mathfrak{k} respectively. Then 𝔨≃𝔬pβŠ•π”¬q\mathfrak{k}\simeq\mathfrak{o}_{p}\oplus\mathfrak{o}_{q}.

Let us fix a nondegenerate invariant bilinear form BB defined both on 𝔀\mathfrak{g} and on 𝔬n{\mathfrak{o}}_{n} as follows:

B​(X,Y)=12​tr⁑(X​Y).B(X,Y)=\frac{1}{2}\operatorname{tr}{\left(XY\right)}. (2.1)

Let {Xi,j}i,j∈[n]\{X_{i,j}\}_{i,j\in[n]} be the generators of 𝔀\mathfrak{g} given by

Xi,j\displaystyle X_{i,j} =Ο΅j​Ei,jβˆ’Ο΅i​Ej,i\displaystyle=\epsilon_{j}E_{i,j}-\epsilon_{i}E_{j,i} (2.2)

for i,j=1,2,…,ni,j=1,2,\dots,n, where Ei,jE_{i,j} stands for the matrix unit and

Ο΅i={1if​i∈[p],βˆ’1if​i∈p+[q].\epsilon_{i}=\begin{cases}1&\text{if}\;i\in[p],\\ -1&\text{if}\;i\in p+[q].\end{cases} (2.3)

Then one sees Xj,i=βˆ’Xi,jX_{j,i}=-X_{i,j} and

𝔨=⨁i,j∈[p]i<jℂ​Xi,jβŠ•β¨i,j∈p+[q]i<jℂ​Xi,j.\mathfrak{k}=\bigoplus_{\begin{subarray}{c}i,j\in[p]\\ i<j\end{subarray}}\mathbb{C}X_{i,j}\oplus\bigoplus_{\begin{subarray}{c}i,j\in p+[q]\\ i<j\end{subarray}}\mathbb{C}X_{i,j}.

In addition, if one sets

𝔭=⨁i∈[p]j∈p+[q]ℂ​Xi,j,\mathfrak{p}=\bigoplus_{\begin{subarray}{c}i\in[p]\\ j\in p+[q]\end{subarray}}\mathbb{C}X_{i,j},

then 𝔀=π”¨βŠ•π”­\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p} is the complexified Cartan decomposition. Finally, the dual generators {Xi,j∨}i,j\{X_{i,j}^{\vee}\}_{i,j} to {Xi,j}i,j\{X_{i,j}\}_{i,j} with respect to BB, i.e., those satisfying B​(Xi,j,Xk,l∨)=Ξ΄i,k​δj,lB(X_{i,j},X_{k,l}^{\vee})=\delta_{i,k}\delta_{j,l}, are given by

Xi,j∨={βˆ’Xi,jif ​i,j∈[p],Β or if ​i,j∈p+[q],Xi,jotherwise.X_{i,j}^{\vee}=\begin{cases}-X_{i,j}&\text{if\;}i,j\in[p],\text{\;or if\;}i,j\in p+[q],\\ X_{i,j}&\text{otherwise}.\end{cases} (2.4)

Let VV denote the vector space ℝp+q\mathbb{R}^{p+q} equipped with a quadratic form Ξ·\eta defined by

η​(v)=tv​Ip,q​v(vβˆˆβ„p+q).\eta(v)=\hskip 1.8pt\vphantom{1}^{t}vI_{p,q}v\quad(v\in\mathbb{R}^{p+q}).

Then GG acts on VV by matrix multiplication, leaving Ξ·\eta invariant. It is well known that the space ℂ​[V]\mathbb{C}[V] of polynomial functions on VV decomposes as follows (see e.g.Β [4]): for v=t(x1,…,xp,y1,…,yq)∈Vv=\hskip 1.8pt\vphantom{1}^{t}(x_{1},\dots,x_{p},y_{1},\dots,y_{q})\in V, one sees that

ℂ​[V]\displaystyle\mathbb{C}[V] ≃ℂ​[x1,…,xp]βŠ—β„‚β€‹[y1,…,yq]\displaystyle\simeq\mathbb{C}[x_{1},\dots,x_{p}]\otimes\mathbb{C}[y_{1},\dots,y_{q}]
≃⨁k=0∞(ℂ​[rx2]βŠ—β„‹k​(ℝp))βŠ—β¨l=0∞(ℂ​[ry2]βŠ—β„‹l​(ℝq))\displaystyle\simeq\bigoplus_{k=0}^{\infty}\left(\mathbb{C}[r_{x}^{2}]\otimes\mathscr{H}^{k}(\mathbb{R}^{p})\right)\otimes\bigoplus_{l=0}^{\infty}\left(\mathbb{C}[r_{y}^{2}]\otimes\mathscr{H}^{l}(\mathbb{R}^{q})\right)
≃⨁k,l=0βˆžβ„‹k​(ℝp)βŠ—β„‹l​(ℝq)βŠ—β„‚β€‹[rx2,ry2],\displaystyle\simeq\bigoplus_{k,l=0}^{\infty}\mathscr{H}^{k}(\mathbb{R}^{p})\otimes\mathscr{H}^{l}(\mathbb{R}^{q})\otimes\mathbb{C}[r_{x}^{2},r_{y}^{2}], (2.5)

where rx2=x12+β‹―+xp2,ry2=y12+β‹―+yq2r_{x}^{2}=x_{1}^{2}+\cdots+x_{p}^{2},\,r_{y}^{2}=y_{1}^{2}+\cdots+y_{q}^{2} and β„‹k​(ℝp)\mathscr{H}^{k}(\mathbb{R}^{p}) denotes the space of homogeneous harmonic polynomials on ℝp\mathbb{R}^{p} of degree kk and so on.

Taking (2.5) into account, let us introduce our space β„°\mathscr{E} of functions on VV by

β„°:=⨁k,l=0βˆžβ„‹k​(ℝp)βŠ—β„‹l​(ℝq)βŠ—β„‚β€‹βŸ¦rx2,ry2⟧,\mathscr{E}:=\bigoplus_{k,l=0}^{\infty}{\mathscr{H}}^{k}(\mathbb{R}^{p})\otimes{\mathscr{H}}^{l}(\mathbb{R}^{q})\otimes\mathbb{C}\llbracket r_{x}^{2},r_{y}^{2}\rrbracket, (2.6)

where β„‚β€‹βŸ¦rx2,ry2⟧\mathbb{C}\llbracket r_{x}^{2},r_{y}^{2}\rrbracket denotes the ring of formal power series in rx2r_{x}^{2} and ry2r_{y}^{2}, and the direct sum is algebraic; we assume that the radial part should be a formal power series rather than a polynomial so that we can find a highest weight vector or a lowest weight vector with respect to the 𝔰​𝔩2\mathfrak{sl}_{2}-action (2.10) given below.

Definition 2.1.

For an element fβˆˆβ„°f\in\mathscr{E} of the form f=h1​(x)​h2​(y)​ϕ​(rx2,ry2)f=h_{1}(x)h_{2}(y)\phi(r_{x}^{2},r_{y}^{2}) with h1βˆˆβ„‹k​(ℝp),h2βˆˆβ„‹l​(ℝq)h_{1}\in\mathscr{H}^{k}(\mathbb{R}^{p}),\;h_{2}\in\mathscr{H}^{l}(\mathbb{R}^{q}) and ϕ​(rx2,ry2)βˆˆβ„‚β€‹βŸ¦rx2,ry2⟧\phi(r_{x}^{2},r_{y}^{2})\in\mathbb{C}\llbracket r_{x}^{2},r_{y}^{2}\rrbracket, we set ΞΊ+=ΞΊ+​(f)=k+p/2,ΞΊβˆ’=ΞΊβˆ’β€‹(f)=l+q/2\kappa_{+}=\kappa_{+}(f)=k+{p}/2,\;\kappa_{-}=\kappa_{-}(f)=l+{q}/2, and

κ​(f)=(ΞΊ+,ΞΊβˆ’)=(k+p2,l+q2),\kappa(f)=(\kappa_{+},\kappa_{-})=\left(k+\frac{p}{2},l+\frac{q}{2}\right), (2.7)

which we call the KK-type of f=h1​(x)​h2​(y)​ϕ​(rx2,ry2)f=h_{1}(x)h_{2}(y)\phi(r_{x}^{2},r_{y}^{2}) in this paper by abuse.

Furthermore, for non-negative integers k,lβ©Ύ0k,l\geqslant 0 given, we say that an element of β„°\mathscr{E} is KK-homogeneous with KK-type (ΞΊ+,ΞΊβˆ’)=(k+p/2,l+q/2)(\kappa_{+},\kappa_{-})=(k+p/2,l+q/2) if it is a linear combination of elements whose KK-types are all equal to (ΞΊ+,ΞΊβˆ’)(\kappa_{+},\kappa_{-}).

Denoting the ring of polynomial coefficient differential operators on VV by π’«β€‹π’Ÿβ€‹(V)\mathscr{P}\!\mathscr{D}(V), let us define a representation Ο€:U​(𝔀)β†’π’«β€‹π’Ÿβ€‹(V)\pi:U(\mathfrak{g})\to\mathscr{P}\!\mathscr{D}(V) by

π​(Xi,j)={xiβ€‹βˆ‚xjβˆ’xjβ€‹βˆ‚xiifi,j∈[p],βˆ’yiβ€²β€‹βˆ‚yjβ€²+yjβ€²β€‹βˆ‚yiβ€²ifi,j∈p+[q],βˆ’βˆ’1​(xi​yjβ€²+βˆ‚xiβˆ‚yjβ€²)ifi∈[p],j∈p+[q],βˆ’1​(xj​yiβ€²+βˆ‚xjβˆ‚yiβ€²)ifi∈p+[q],j∈[p],\pi(X_{i,j})=\begin{cases}x_{i}\partial_{x_{j}}-x_{j}\partial_{x_{i}}&\text{if}\quad i,j\in[p],\\ -y_{i^{\prime}}\partial_{y_{j^{\prime}}}+y_{j^{\prime}}\partial_{y_{i^{\prime}}}&\text{if}\quad i,j\in p+[q],\\ -\sqrt{-1}\,(x_{i}y_{j^{\prime}}+\partial_{x_{i}}\partial_{y_{j^{\prime}}})&\text{if}\quad i\in[p],j\in p+[q],\\ \sqrt{-1}\,(x_{j}y_{i^{\prime}}+\partial_{x_{j}}\partial_{y_{i^{\prime}}})&\text{if}\quad i\in p+[q],j\in[p],\end{cases} (2.8)

where we set iβ€²:=iβˆ’p,i∈p+[q]i^{\prime}:=i-p,\;i\in p+[q], for short. It is easy to verify that Ο€\pi indeed defines a representation of U​(𝔀)U(\mathfrak{g}). It is also clear that the action of 𝔨0\mathfrak{k}_{0} lifts to the one of KK, i.e., if Xβˆˆπ”¨0X\in\mathfrak{k}_{0} then

(π​(X)​f)​(v)=dd⁑t|t=0​f​(exp⁑(βˆ’t​X)​v)(fβˆˆβ„°,v∈V).\big{(}\pi(X)f\big{)}(v)=\left.\frac{\operatorname{d}\!}{\operatorname{d}\!t}\right|_{t=0}f\big{(}\exp(-tX)v\big{)}\quad(f\in\mathscr{E},v\in V). (2.9)
Remark 2.2.

It was shown in [6] that if one regards VV as a Lagrangian subspace of the symplectic vector space ((β„‚p+q)ℝ,Ο‰)((\mathbb{C}^{p+q})_{\mathbb{R}},\omega) given by

V=⟨e1,e2,…,ep,βˆ’1​ep+1,βˆ’1​ep+2,…,βˆ’1​ep+qβŸ©β„,V=\langle e_{1},e_{2},\dots,e_{p},\sqrt{-1}\,e_{p+1},\sqrt{-1}\,e_{p+2},\dots,\sqrt{-1}\,e_{p+q}\rangle_{\mathbb{R}},

where ei=t(0,…,1i​-th,…,0)βˆˆβ„‚p+qe_{i}=\hskip 1.8pt\vphantom{1}^{t}(0,\dots,\overset{i\text{-th}}{1},\dots,0)\in\mathbb{C}^{p+q} and

ω​(z,w)=Im⁑(zβˆ—β€‹Ip,q​w)(z,wβˆˆβ„‚p+q),\omega(z,w)=\operatorname{Im}({z}^{*}I_{p,q}w)\quad(z,w\in\mathbb{C}^{p+q}),

then one obtains the representation Ο€\pi given in (2.8) via the canonical quantization of the moment map on ((β„‚p+q)ℝ,Ο‰)((\mathbb{C}^{p+q})_{\mathbb{R}},\omega).

Define elements H,X+,Xβˆ’H,X^{+},X^{-} of π’«β€‹π’Ÿβ€‹(V)\mathscr{P}\!\mathscr{D}(V) by

H=βˆ’Exβˆ’p2+Ey+q2,X+=βˆ’12​(Ξ”x+ry2),Xβˆ’=12​(rx2+Ξ”y),H=-E_{x}-\frac{p}{2}+E_{y}+\frac{q}{2},\quad X^{+}=-\frac{1}{2}(\Delta_{x}+r_{y}^{2}),\quad X^{-}=\frac{1}{2}(r_{x}^{2}+\Delta_{y}), (2.10)

where

Ex\displaystyle E_{x} =βˆ‘i∈[p]xiβ€‹βˆ‚xi,\displaystyle=\sum_{i\in[p]}x_{i}\partial_{x_{i}}, rx2\displaystyle\quad r_{x}^{2} =βˆ‘i∈[p]xi2,\displaystyle=\sum_{i\in[p]}x_{i}^{2}, Ξ”x\displaystyle\quad\Delta_{x} =βˆ‘i∈[p]βˆ‚xi2,\displaystyle=\sum_{i\in[p]}\partial_{x_{i}}^{2}, (2.11)
Ey\displaystyle E_{y} =βˆ‘j∈[q]yjβ€‹βˆ‚yj,\displaystyle=\sum_{j\in[q]}y_{j}\partial_{y_{j}}, ry2\displaystyle\quad r_{y}^{2} =βˆ‘j∈[q]yj2,\displaystyle=\sum_{j\in[q]}y_{j}^{2}, Ξ”y\displaystyle\quad\Delta_{y} =βˆ‘j∈[q]βˆ‚yj2.\displaystyle=\sum_{j\in[q]}\partial_{y_{j}}^{2}.

Then they satisfy that

[H,X+]=2​X+,[H,Xβˆ’]=βˆ’2​Xβˆ’,[X+,Xβˆ’]=H.[H,X^{+}]=2X^{+},\quad[H,X^{-}]=-2X^{-},\quad[X^{+},X^{-}]=H.

Namely, 𝔀′:=β„‚-​span⁑{H,X+,Xβˆ’}\mathfrak{g}^{\prime}:=\mbox{$\mathbb{C}$-}\!\operatorname{span}\left\{{H,X^{+},X^{-}}\right\} forms a Lie subalgebra of π’«β€‹π’Ÿβ€‹(V)\mathscr{P}\!\mathscr{D}(V) isomorphic to 𝔰​𝔩2\mathfrak{sl}_{2}. Moreover, 𝔀′\mathfrak{g}^{\prime} forms the commutant of 𝔀\mathfrak{g} in π’«β€‹π’Ÿβ€‹(V)\mathscr{P}\!\mathscr{D}(V):

[Y,Z]=0for all​YβˆˆΟ€β€‹(𝔀)​and​Zβˆˆπ”€β€².[Y,Z]=0\quad\text{for all}\;Y\in\pi(\mathfrak{g})\;\text{and}\;Z\in\mathfrak{g}^{\prime}.

In view of the fact that (O​(p,q),SL​(2,ℝ))(\mathrm{O}(p,q),\mathrm{SL}(2,\mathbb{R})) is a dual pair in Sp​(n,ℝ)\mathrm{Sp}(n,\mathbb{R}), we introduce (𝔀,K)(\mathfrak{g},K)-modules of O​(p,q)\mathrm{O}(p,q) associated to the finite-dimensional representation of 𝔰​𝔩2\mathfrak{sl}_{2} as follows.

Definition 2.3 ([6]).

Given mβˆˆβ„•m\in\mathbb{N}, we define (𝔀,K)(\mathfrak{g},K)-modules M±​(m)\mathit{M}^{\pm}(m) by

M+​(m)\displaystyle\mathit{M}^{+}(m) :={fβˆˆβ„°;H​f=m​f,X+​f=0,(Xβˆ’)m+1​f=0},\displaystyle:=\left\{f\in\mathscr{E};Hf=mf,X^{+}f=0,(X^{-})^{m+1}f=0\right\},
Mβˆ’β€‹(m)\displaystyle\mathit{M}^{-}(m) :={fβˆˆβ„°;H​f=βˆ’m​f,Xβˆ’β€‹f=0,(X+)m+1​f=0}.\displaystyle:=\left\{f\in\mathscr{E};Hf=-mf,X^{-}f=0,(X^{+})^{m+1}f=0\right\}.

Note that, by definition, each f∈M+​(m)f\in\mathit{M}^{+}(m) (resp. f∈Mβˆ’β€‹(m)f\in\mathit{M}^{-}(m) ) is a highest weight vector (resp. lowest weight vector) with respect to the 𝔀′=𝔰​𝔩2\mathfrak{g}^{\prime}=\mathfrak{sl}_{2} action. It is easy to see that M+​(m)\mathit{M}^{+}(m) is isomorphic to Mβˆ’β€‹(m)\mathit{M}^{-}(m) for any mβˆˆβ„•m\in\mathbb{N}, though M+​(0)=Mβˆ’β€‹(0)\mathit{M}^{+}(0)=\mathit{M}^{-}(0).

In order to describe elements of M±​(m)\mathit{M}^{\pm}(m) explicitly, let us introduce a convergent power series Ψα\Psi_{\alpha} on β„‚\mathbb{C} for Ξ±βˆˆβ„‚βˆ–(βˆ’β„•)\alpha\in\mathbb{C}\smallsetminus(-\mathbb{N}) by

Ψα​(u)=βˆ‘j=0∞(βˆ’1)jj!​(Ξ±)j​uj(uβˆˆβ„‚)\Psi_{\alpha}(u)=\sum_{j=0}^{\infty}\frac{(-1)^{j}}{j!\,(\alpha)_{j}}u^{j}\quad(u\in\mathbb{C})

with (Ξ±)j=Γ​(Ξ±+j)/Γ​(Ξ±)=α​(Ξ±+1)​⋯​(Ξ±+jβˆ’1)(\alpha)_{j}=\Gamma(\alpha+j)/\Gamma(\alpha)=\alpha(\alpha+1)\cdots(\alpha+j-1). Note that it is related to the Bessel function JΞ½J_{\nu} of the first kind. In fact, one has

Ψα​(u)=Γ​(Ξ±)​uβˆ’(Ξ±βˆ’1)/2​JΞ±βˆ’1​(2​u1/2).\Psi_{\alpha}(u)=\Gamma(\alpha)u^{-(\alpha-1)/2}J_{\alpha-1}(2u^{1/2}). (2.12)

Now we set

ψα:=Ψα​(rx2​ry2/4)\psi_{\alpha}:=\Psi_{\alpha}(r_{x}^{2}r_{y}^{2}/4) (2.13)

for brevity. We will find it convenient to write ρx:=rx2/2,ρy:=ry2/2\rho_{x}:=r_{x}^{2}/2,\,\rho_{y}:=r_{y}^{2}/2. Then a typical element f∈M+​(m)f\in\mathit{M}^{+}(m) is given by

f=h1​(x)​h2​(y)​ρyΞΌβˆ’β€‹ΟˆΞΊ+f=h_{1}(x)h_{2}(y)\rho_{y}^{\mu_{-}}\psi_{\kappa_{+}} (2.14)

with h1βˆˆβ„‹k​(ℝp),h2βˆˆβ„‹l​(ℝq)h_{1}\in\mathscr{H}^{k}(\mathbb{R}^{p}),\;h_{2}\in\mathscr{H}^{l}(\mathbb{R}^{q}) and ΞΌβˆ’=12​(m+ΞΊ+βˆ’ΞΊβˆ’)βˆˆβ„•\mu_{-}=\frac{1}{2}(m+\kappa_{+}-\kappa_{-})\in\mathbb{N}, while a typical one f∈Mβˆ’β€‹(m)f\in\mathit{M}^{-}(m) is given by

f=h1​(x)​h2​(y)​ρxΞΌ+β€‹ΟˆΞΊβˆ’f=h_{1}(x)h_{2}(y)\rho_{x}^{\mu_{+}}\psi_{\kappa_{-}} (2.15)

with h1βˆˆβ„‹k​(ℝp)​h2βˆˆβ„‹l​(ℝq)h_{1}\in\mathscr{H}^{k}(\mathbb{R}^{p})\;h_{2}\in\mathscr{H}^{l}(\mathbb{R}^{q}) and ΞΌ+=12​(mβˆ’ΞΊ++ΞΊβˆ’)βˆˆβ„•\mu_{+}=\frac{1}{2}(m-\kappa_{+}+\kappa_{-})\in\mathbb{N} (see [6, Proposition 3.2]). A general element of M+​(m)\mathit{M}^{+}(m) (resp. Mβˆ’β€‹(m)\mathit{M}^{-}(m)) is a linear combination of these elements given in (2.14) (resp. (2.15)).

Remark 2.4.

All KK-homogeneous elements of M+​(m)\mathit{M}^{+}(m) with KK-type (ΞΊ+,ΞΊβˆ’)(\kappa_{+},\kappa_{-}) have the same radial part ρyΞΌβˆ’β€‹ΟˆΞΊ+βˆˆβ„‚β€‹βŸ¦rx2,ry2⟧\rho_{y}^{\mu_{-}}\psi_{\kappa_{+}}\in\mathbb{C}\llbracket r_{x}^{2},r_{y}^{2}\rrbracket with ΞΌβˆ’=12​(m+ΞΊ+βˆ’ΞΊβˆ’)\mu_{-}=\frac{1}{2}(m+\kappa_{+}-\kappa_{-}). Similarly, all KK-homogeneous elements of Mβˆ’β€‹(m)\mathit{M}^{-}(m) with KK-type (ΞΊ+,ΞΊβˆ’)(\kappa_{+},\kappa_{-}) have the same radial part ρxΞΌ+β€‹ΟˆΞΊβˆ’\rho_{x}^{\mu_{+}}\psi_{\kappa_{-}} with ΞΌ+=12​(mβˆ’ΞΊ++ΞΊβˆ’)\mu_{+}=\frac{1}{2}(m-\kappa_{+}+\kappa_{-}).

Now we collect a few facts from [6] that we need in order to prove our main result.

First, we recall the action of 𝔭\mathfrak{p} on M±​(m)\mathit{M}^{\pm}(m) ([6, Lemma 4.1]). Let Xi,p+jX_{i,p+j}, i∈[p],j∈[q]i\in[p],\,j\in[q], be a basis of 𝔭\mathfrak{p} given in (2.2). Then, for f=h1​h2​ρyΞΌβˆ’β€‹ΟˆΞΊ+∈M+​(m)f=h_{1}h_{2}\rho_{y}^{\mu_{-}}\psi_{\kappa_{+}}\in\mathit{M}^{+}(m) with κ​(f)=(ΞΊ+,ΞΊβˆ’)\kappa(f)=(\kappa_{+},\kappa_{-}) and ΞΌβˆ’=12​(m+ΞΊ+βˆ’ΞΊβˆ’)\mu_{-}=\frac{1}{2}(m+\kappa_{+}-\kappa_{-}), one sees that

βˆ’βˆ’1​π​(Xi,p+j)​f=\displaystyle-\sqrt{-1}\,\pi(X_{i,p+j})f= ΞΊβˆ’+ΞΌβˆ’βˆ’1ΞΊβˆ’βˆ’1​(βˆ‚xih1)​(βˆ‚yjh2)​ρyΞΌβˆ’β€‹ΟˆΞΊ+βˆ’1\displaystyle\,\frac{\kappa_{-}+\mu_{-}-1}{\kappa_{-}-1}(\partial_{x_{i}}h_{1})(\partial_{y_{j}}h_{2})\rho_{y}^{\mu_{-}}\psi_{\kappa_{+}-1} (2.16a)
+ΞΌβˆ’β€‹(βˆ‚xih1)​(yj​h2)†​ρyΞΌβˆ’βˆ’1β€‹ΟˆΞΊ+βˆ’1\displaystyle+\mu_{-}(\partial_{x_{i}}h_{1})(y_{j}h_{2})^{\dagger}\rho_{y}^{\mu_{-}-1}\psi_{\kappa_{+}-1}
+ΞΊ+βˆ’ΞΊβˆ’βˆ’ΞΌβˆ’ΞΊ+​(ΞΊβˆ’βˆ’1)​(xi​h1)†​(βˆ‚yjh2)​ρyΞΌβˆ’+1β€‹ΟˆΞΊ++1\displaystyle+\frac{\kappa_{+}-\kappa_{-}-\mu_{-}}{\kappa_{+}(\kappa_{-}-1)}(x_{i}h_{1})^{\dagger}(\partial_{y_{j}}h_{2})\rho_{y}^{\mu_{-}+1}\psi_{\kappa_{+}+1}
+ΞΊ+βˆ’ΞΌβˆ’βˆ’1ΞΊ+​(xi​h1)†​(yj​h2)†​ρyΞΌβˆ’β€‹ΟˆΞΊ++1,\displaystyle+\frac{\kappa_{+}-\mu_{-}-1}{\kappa_{+}}(x_{i}h_{1})^{\dagger}(y_{j}h_{2})^{\dagger}\rho_{y}^{\mu_{-}}\psi_{\kappa_{+}+1},
and, for f=h1​h2​ρxΞΌ+β€‹ΟˆΞΊβˆ’βˆˆMβˆ’β€‹(m)f=h_{1}h_{2}\rho_{x}^{\mu_{+}}\psi_{\kappa_{-}}\in\mathit{M}^{-}(m) with κ​(f)=(ΞΊ+,ΞΊβˆ’)\kappa(f)=(\kappa_{+},\kappa_{-}) and ΞΌ+=12​(mβˆ’ΞΊ++ΞΊβˆ’)\mu_{+}=\frac{1}{2}(m-\kappa_{+}+\kappa_{-}),
βˆ’βˆ’1​π​(Xi,p+j)​f=\displaystyle-\sqrt{-1}\,\pi(X_{i,p+j})f= ΞΊ++ΞΌ+βˆ’1ΞΊ+βˆ’1​(βˆ‚xih1)​(βˆ‚yjh2)​ρxΞΌ+β€‹ΟˆΞΊβˆ’βˆ’1\displaystyle\,\frac{\kappa_{+}+\mu_{+}-1}{\kappa_{+}-1}(\partial_{x_{i}}h_{1})(\partial_{y_{j}}h_{2})\rho_{x}^{\mu_{+}}\psi_{\kappa_{-}-1} (2.16b)
+ΞΊβˆ’βˆ’ΞΊ+βˆ’ΞΌ+ΞΊβˆ’β€‹(ΞΊ+βˆ’1)​(βˆ‚xih1)​(yj​h2)†​ρxΞΌ++1β€‹ΟˆΞΊβˆ’+1\displaystyle+\frac{\kappa_{-}-\kappa_{+}-\mu_{+}}{\kappa_{-}(\kappa_{+}-1)}(\partial_{x_{i}}h_{1})(y_{j}h_{2})^{\dagger}\rho_{x}^{\mu_{+}+1}\psi_{\kappa_{-}+1}
+ΞΌ+​(xi​h1)†​(βˆ‚yjh2)​ρxΞΌ+βˆ’1β€‹ΟˆΞΊβˆ’βˆ’1\displaystyle+\mu_{+}(x_{i}h_{1})^{\dagger}(\partial_{y_{j}}h_{2})\rho_{x}^{\mu_{+}-1}\psi_{\kappa_{-}-1}
+ΞΊβˆ’βˆ’ΞΌ+βˆ’1ΞΊβˆ’β€‹(xi​h1)†​(yj​h2)†​ρxΞΌ+β€‹ΟˆΞΊβˆ’+1.\displaystyle+\frac{\kappa_{-}-\mu_{+}-1}{\kappa_{-}}(x_{i}h_{1})^{\dagger}(y_{j}h_{2})^{\dagger}\rho_{x}^{\mu_{+}}\psi_{\kappa_{-}+1}.

Here, in general, for a homogeneous polynomial P=P​(x1,…,x𝗇)P=P(x_{1},\dots,x_{\mathsf{n}}) on ℝ𝗇\mathbb{R}^{\mathsf{n}} of degree dd, we set

P†:=Pβˆ’Ο2​d+π—‡βˆ’4​Δ​P,P^{{\dagger}}:=P-\frac{\rho}{2d+\mathsf{n}-4}\Delta P,

with Ξ”=βˆ‘i=1π—‡βˆ‚xi2\Delta=\sum_{i=1}^{\mathsf{n}}\partial_{x_{i}}^{2} and ρ=(1/2)β€‹βˆ‘i=1𝗇xi2\rho=(1/2)\sum_{i=1}^{\mathsf{n}}x_{i}^{2}. Note that if Ξ”2​P=0\Delta^{2}P=0 then P†P^{\dagger} is harmonic and that if h=h​(x1,…,x𝗇)h=h(x_{1},\dots,x_{\mathsf{n}}) is harmonic then Δ​(xi​h)=2β€‹βˆ‚xih\Delta(x_{i}h)=2\partial_{x_{i}}h and Ξ”2​(xi​h)=0\Delta^{2}(x_{i}h)=0.

Next, the following facts describe the KK-types of M±​(m)\mathit{M}^{\pm}(m) and when they are irreducibile ([6, Theorem 4.6]).

Facts 2.5.

Assume that pβ©Ύ1p\geqslant 1, qβ©Ύ1q\geqslant 1 and p+q∈2​ℕp+q\in 2\mathbb{N}. Let mβˆˆβ„•m\in\mathbb{N} be a non-negative integer satisfying m+3β©½(p+q)/2m+3\leqslant(p+q)/2. Then one has the following.

  1. (1)

    The KK-type formula of M±​(m)\mathit{M}^{\pm}(m) is given by

    M±​(m)|K≃⨁k,lβ©Ύ0k+p2βˆ’(l+q2)βˆˆΞ›mβ„‹k​(ℝp)βŠ—β„‹l​(ℝq),\left.\mathit{M}^{\pm}(m)\right|_{K}\simeq\bigoplus_{\begin{subarray}{c}k,l\geqslant 0\\ k+\frac{p}{2}-(l+\frac{q}{2})\in\Lambda_{m}\end{subarray}}\mathscr{H}^{k}(\mathbb{R}^{p})\otimes\mathscr{H}^{l}(\mathbb{R}^{q}), (2.17)

    where Ξ›m={βˆ’m,βˆ’m+2,βˆ’m+4,…,mβˆ’2,m}\Lambda_{m}=\{-m,-m+2,-m+4,\dots,m-2,m\}.

  2. (2)

    Suppose further that p,qβ©Ύ2p,q\geqslant 2. Then M±​(m)\mathit{M}^{\pm}(m) are irreducible (𝔀,K)(\mathfrak{g},K)-modules.

Note in particular that if the KK-type of f∈M±​(m)f\in\mathit{M}^{\pm}(m) is κ​(f)=(ΞΊ+,ΞΊβˆ’)\kappa(f)=(\kappa_{+},\kappa_{-}), then it follows from (2.17) that

|ΞΊ+βˆ’ΞΊβˆ’|β©½m.\left|\,\kappa_{+}-\kappa_{-}\,\right|\leqslant m. (2.18)

Henceforth in the rest of the paper, we assume that

pβ©Ύ2,qβ©Ύ2,p+q∈2​ℕandm+3β©½p+q2p\geqslant 2,\;q\geqslant 2,\quad p+q\in 2\mathbb{N}\quad\text{and}\quad m+3\leqslant\frac{p+q}{2} (2.19)

so that M±​(m)\mathit{M}^{\pm}(m) is irreducible.

3. Annihilator of M±​(m)\mathit{M}^{\pm}(m)

In order to translate objects in terms of 𝔬n{\mathfrak{o}}_{n} into ones in terms of 𝔀\mathfrak{g}, and vice versa, let us fix an isomorphism Ξ¦\Phi between 𝔀\mathfrak{g} and 𝔬n{\mathfrak{o}}_{n} given by

Ξ¦:π”€β†’βˆΌπ”¬n,X↦Ip,q1/2​X​Ip,qβˆ’1/2,\Phi:\mathfrak{g}\xrightarrow{\sim}{\mathfrak{o}}_{n},\quad X\mapsto I_{p,q}^{1/2}\,X\,I_{p,q}^{\,-1/2}, (3.1)

where Ip,q1/2=diag⁑(1,…,1,βˆ’1,…,βˆ’1)I_{p,q}^{1/2}=\operatorname{diag}(1,\dots,1,\sqrt{-1}\,,\dots,\sqrt{-1}\,) and Ip,qβˆ’1/2I_{p,q}^{-1/2} is its inverse.

Let {Mi,j}\{M_{i,j}\} be generators of 𝔬n{\mathfrak{o}}_{n} given by

Mi,j\displaystyle M_{i,j} =Ei,jβˆ’Ej,i\displaystyle=E_{i,j}-E_{j,i} (3.2)

for i,j=1,2,…,ni,j=1,2,\dots,n. Then, one has

Φ​(Xi,j)={Mi,jif​i,j∈[p],βˆ’Mi,jif​i,j∈p+[q],βˆ’1​Mi,jotherwise.\Phi(X_{i,j})=\begin{cases}M_{i,j}&\text{if}\;i,j\in[p],\\ -M_{i,j}&\text{if}\;i,j\in p+[q],\\ \sqrt{-1}\,M_{i,j}&\text{otherwise}.\end{cases} (3.3)

We extend Ξ¦\Phi to the isomorphism from ⨁j=0∞Tj​(𝔀)\bigoplus_{j=0}^{\infty}T^{j}(\mathfrak{g}) onto ⨁j=0∞Tj​(𝔬n)\bigoplus_{j=0}^{\infty}T^{j}({\mathfrak{o}}_{n}), where Tj​(𝔀):=π”€βŠ—β‹―βŠ—π”€T^{j}(\mathfrak{g}):=\mathfrak{g}\otimes\cdots\otimes\mathfrak{g} (jj factors) etc..

Let U​(𝔀)U(\mathfrak{g}) denote the universal enveloping algebra of 𝔀\mathfrak{g}, and Uj​(𝔀)U_{j}(\mathfrak{g}) its subspace spanned by products of at most jj elements of 𝔀\mathfrak{g}, with Uβˆ’1​(𝔀)=0U_{-1}(\mathfrak{g})=0. It is well known that the associated graded algebra gr⁑U​(𝔀)=⨁j=0∞Uj​(𝔀)/Ujβˆ’1​(𝔀)\operatorname{gr}U(\mathfrak{g})=\bigoplus_{j=0}^{\infty}U_{j}(\mathfrak{g})/U_{j-1}(\mathfrak{g}) is isomorphic to the symmetric algebra S​(𝔀)=⨁j=0∞Sj​(𝔀)S(\mathfrak{g})=\bigoplus_{j=0}^{\infty}S^{j}(\mathfrak{g}). Let Οƒ:gr⁑U​(𝔀)β†’S​(𝔀)\sigma:\operatorname{gr}U(\mathfrak{g})\to S(\mathfrak{g}) be the algebra isomorphism, and Οƒj\sigma_{j} its jj-th piece:

Οƒj:Uj​(𝔀)/Ujβˆ’1​(𝔀)β†’βˆΌSj​(𝔀).\sigma_{j}:U_{j}(\mathfrak{g})/U_{j-1}(\mathfrak{g})\xrightarrow{\sim}S^{j}(\mathfrak{g}). (3.4)

Let Ξ³:S​(𝔀)β†’U​(𝔀)\gamma:S(\mathfrak{g})\to U(\mathfrak{g}) be the linear isomorphism called symmetrization, and Ξ³j\gamma_{j} its jj-th piece

Ξ³j:Sj​(𝔀)β†’U​(𝔀),\gamma_{j}:S^{j}(\mathfrak{g})\to U(\mathfrak{g}), (3.5)

which is an injective linear map onto a vector-space complement to Ujβˆ’1​(𝔀)U_{j-1}(\mathfrak{g}) in Uj​(𝔀)U_{j}(\mathfrak{g}). Then the following diagram is commutative:

Uj​(𝔀){U_{j}(\mathfrak{g})}Sj​(𝔀){S^{j}(\mathfrak{g})}Uj​(𝔀)/Ujβˆ’1​(𝔀),{U_{j}(\mathfrak{g})/U_{j-1}(\mathfrak{g}),}pj\scriptstyle{p_{j}}Ξ³j\scriptstyle{\gamma_{j}}1:1\scriptstyle{1:1}∼\scriptstyle{\sim}Οƒj\scriptstyle{\sigma_{j}}

where pjp_{j} is the canonical projection. In particular, (Οƒj∘pj∘γj)​(v)=v(\sigma_{j}\circ p_{j}\circ\gamma_{j})(v)=v for all v∈Sj​(𝔀)v\in S^{j}(\mathfrak{g}).

In what follows, given a finite-dimensinal vector space UU over β„‚\mathbb{C}, we will identify Sj​(U)S^{j}(U) (resp. β‹€j​U\mbox{$\bigwedge^{\!j}$}U) with the subspace of symmetric (resp. alternating) tensors in UβŠ—jU^{\otimes j}.

For u∈U​(𝔀)u\in U(\mathfrak{g}), we sometimes denote π​(u)\pi(u) by u^\hat{u} for brevity. Let Ω𝔀,Ω𝔬p\Omega_{\mathfrak{g}},\,\Omega_{\mathfrak{o}_{p}} and Ω𝔬q\Omega_{\mathfrak{o}_{q}} be the Casimir elements of 𝔀,𝔬p\mathfrak{g},\,\mathfrak{o}_{p} and 𝔬q\mathfrak{o}_{q} respectively111We regard 𝔬p\mathfrak{o}_{p} and 𝔬q\mathfrak{o}_{q} as subalgebras of 𝔨≃𝔬pβŠ•π”¬q\mathfrak{k}\simeq\mathfrak{o}_{p}\oplus\mathfrak{o}_{q} canonically., which are given by

Ω𝔀=βˆ‘i,j∈[n]i<jXi,j​Xi,j∨,Ω𝔬p=βˆ‘i,j∈[p]i<jXi,j​Xj,i,Ω𝔬q=βˆ‘i,j∈[q]i<jXi,j​Xj,i.\Omega_{\mathfrak{g}}=\sum_{\begin{subarray}{c}i,j\in[n]\\ i<j\end{subarray}}X_{i,j}X_{i,j}^{\vee},\quad\Omega_{\mathfrak{o}_{p}}=\sum_{\begin{subarray}{c}i,j\in[p]\\ i<j\end{subarray}}X_{i,j}X_{j,i},\quad\Omega_{\mathfrak{o}_{q}}=\sum_{\begin{subarray}{c}i,j\in[q]\\ i<j\end{subarray}}X_{i,j}X_{j,i}. (3.6)

Then the corresponding operators represented in π’«β€‹π’Ÿβ€‹(V)\mathscr{P}\!\mathscr{D}(V) are given by

Ξ©^𝔀\displaystyle\hat{\Omega}_{\mathfrak{g}} =(Exβˆ’Ey)2+(pβˆ’q)​(Exβˆ’Ey)βˆ’2​(Ex+Ey)\displaystyle=(E_{x}-E_{y})^{2}+(p-q)(E_{x}-E_{y})-2(E_{x}+E_{y})
βˆ’(rx2​ry2+rx2​Δx+ry2​Δy+Ξ”x​Δy)βˆ’p​q,\displaystyle\hskip 20.00003pt-\left(r_{x}^{2}\,r_{y}^{2}+r_{x}^{2}\,\Delta_{x}+r_{y}^{2}\,\Delta_{y}+\Delta_{x}\,\Delta_{y}\right)-pq, (3.7a)
Ξ©^𝔬p\displaystyle\hat{\Omega}_{\mathfrak{o}_{p}} =Ex2+(pβˆ’2)​Exβˆ’rx2​Δx,\displaystyle=E_{x}^{2}+(p-2)E_{x}-r_{x}^{2}\,\Delta_{x}, (3.7b)
Ξ©^𝔬q\displaystyle\hat{\Omega}_{\mathfrak{o}_{q}} =Ey2+(qβˆ’2)​Eyβˆ’ry2​Δy.\displaystyle=E_{y}^{2}+(q-2)E_{y}-r_{y}^{2}\,\Delta_{y}. (3.7c)

It is well known that the Casimir operator Ξ©^𝔀′\hat{\Omega}_{\mathfrak{g}^{\prime}} of 𝔀′=𝔰​𝔩2\mathfrak{g}^{\prime}=\mathfrak{sl}_{2} given by

Ξ©^𝔀′=H2+2​(X+​Xβˆ’+X+​Xβˆ’)\hat{\Omega}_{\mathfrak{g}^{\prime}}=H^{2}+2(X^{+}X^{-}+X^{+}X^{-})

satisfies the relation

Ξ©^𝔀=Ξ©^π”€β€²βˆ’14​(p+q)2+(p+q)\hat{\Omega}_{\mathfrak{g}}=\hat{\Omega}_{\mathfrak{g}^{\prime}}-\frac{1}{4}(p+q)^{2}+(p+q)

(see [7, 11]), which implies that

Ξ©^𝔀|M±​(m)=m​(m+2)βˆ’14​(p+q)2+(p+q)\hat{\Omega}_{\mathfrak{g}}|_{\mathit{M}^{\pm}(m)}=m(m+2)-\frac{1}{4}(p+q)^{2}+(p+q) (3.8)

since Ξ©^𝔀′\hat{\Omega}_{\mathfrak{g}^{\prime}} acts on M±​(m){\mathit{M}^{\pm}(m)} by the scalar m​(m+2)m(m+2).

Let Ξ±\alpha denote the highest root of 𝔀\mathfrak{g} relative to any positive root system. Then S2​(𝔀)S^{2}(\mathfrak{g}) decomposes as S2​(𝔀)≃V2β€‹Ξ±βŠ•WS^{2}(\mathfrak{g})\simeq V_{2\alpha}\oplus W, where V2​αV_{2\alpha} is the irreducible 𝔀\mathfrak{g}-module with highest weight 2​α2\alpha and WW is the 𝔀\mathfrak{g}-invariant complement of V2​αV_{2\alpha} (see (A.8) below).

Theorem 3.1 (Garfinkle).

Let ℐ\mathscr{I} be an ideal of infinite codimension in U​(𝔀)U(\mathfrak{g}) and set I=⨁j=0∞(β„βˆ©Uj​(𝔀))/(β„βˆ©Ujβˆ’1​(𝔀))βŠ‚gr⁑U​(𝔀)I=\bigoplus_{j=0}^{\infty}(\mathscr{I}\cap U_{j}(\mathfrak{g}))/(\mathscr{I}\cap U_{j-1}(\mathfrak{g}))\subset\operatorname{gr}U(\mathfrak{g}). Then ℐ\mathscr{I} is the Joseph ideal if and only if σ​(I)∩S2​(𝔀)=W\sigma(I)\cap S^{2}(\mathfrak{g})=W.

In fact, it is shown that Theorem 3.1 holds true for all complex simple Lie algebras not of type AA in [3, 2].

Using the notation in Appendix A below, the 𝔀\mathfrak{g}-invariant complement WW is given by

W=Eβˆ…π”€βŠ•E\ydiagram​1,1,1,1π”€βŠ•E\ydiagram​2𝔀,W={E}^{\mathfrak{g}}_{\varnothing}\oplus{E}^{\mathfrak{g}}_{\ydiagram{1,1,1,1}}\oplus{E}^{\mathfrak{g}}_{\ydiagram{2}}, (3.9)

where

Eλ𝔀=Ξ¦βˆ’1​(Eλ𝔬n)(λ∈{βˆ…,\ydiagram​1,1,1,1,\ydiagram​2}).E^{\mathfrak{g}}_{\lambda}=\Phi^{-1}({E}^{{\mathfrak{o}}_{n}}_{\lambda})\qquad(\lambda\in\{\varnothing\,,\ydiagram{1,1,1,1}\,,\ydiagram{2}\}). (3.10)

The following lemma is trivial, and its proof is left to the reader.

Lemma 3.2.

Define an element Q∈T2​(𝔀)Q\in T^{2}(\mathfrak{g}) by Q=βˆ‘i,jXi,jβŠ—Xi,j∨Q=\sum_{i,j}X_{i,j}\otimes X_{i,j}^{\vee}. Then QQ is a symmetric tensor and satisfies Q=Ξ¦βˆ’1​(Q𝔬n)Q=\Phi^{-1}({Q}^{{\mathfrak{o}}_{n}}) and Ξ³2​(Q)=2​Ω𝔀\gamma_{2}(Q)=2\Omega_{\mathfrak{g}}.

Following [1], let us introduce an element Ξžπ”¬n∈S2​(𝔬n){\Xi}^{{\mathfrak{o}}_{n}}\in S^{2}({\mathfrak{o}}_{n}), or Ξ∈S2​(𝔀)\Xi\in S^{2}(\mathfrak{g}), that plays a critical role in the proof of our main result:

Ξžπ”¬n:=12β€‹βˆ‘i,jΞ·i​j​Si​j𝔬n=12​(βˆ‘i∈[p]Si​i𝔬nβˆ’βˆ‘i∈p+[q]Si​i𝔬n),{\Xi}^{{\mathfrak{o}}_{n}}:=\frac{1}{2}\sum_{i,j}\eta^{ij}{S}^{{\mathfrak{o}}_{n}}_{ij}=\frac{1}{2}\Big{(}\sum_{i\in[p]}{S}^{{\mathfrak{o}}_{n}}_{ii}-\sum_{i\in p+[q]}{S}^{{\mathfrak{o}}_{n}}_{ii}\Big{)}, (3.11)

where Ξ·i​j\eta^{ij} denotes the (i,j)(i,j)-th entry of Ip,qβˆ’1=Ip,qI_{p,q}^{-1}=I_{p,q}.

Lemma 3.3.

Set Ξ:=Ξ¦βˆ’1​(Ξžπ”¬n)∈S2​(𝔀)\Xi:=\Phi^{-1}({\Xi}^{{\mathfrak{o}}_{n}})\in S^{2}(\mathfrak{g}). Then it satisfies that

Ξ³2​(Ξ)=Ω𝔬pβˆ’Ξ©π”¬qβˆ’pβˆ’qp+q​Ω𝔀.\gamma_{2}(\Xi)=\Omega_{\mathfrak{o}_{p}}-\Omega_{\mathfrak{o}_{q}}-\frac{p-q}{p+q}\Omega_{\mathfrak{g}}. (3.12)
Proof.

Since Si​i𝔬n=βˆ‘kMi,kβŠ—Mk,iβˆ’1n​Q𝔬n{S}^{{\mathfrak{o}}_{n}}_{ii}=\sum_{k}M_{i,k}\otimes M_{k,i}-\frac{1}{n}{Q}^{{\mathfrak{o}}_{n}}, one sees

Ξžπ”¬n\displaystyle{\Xi}^{{\mathfrak{o}}_{n}} =12β€‹βˆ‘k(βˆ‘i∈[p]βˆ’βˆ‘i∈p+[q])​Mi,kβŠ—Mk,iβˆ’pβˆ’q2​n​Q𝔬n\displaystyle=\frac{1}{2}\sum_{k}\Big{(}\sum_{i\in[p]}-\sum_{i\in p+[q]}\Big{)}M_{i,k}\otimes M_{k,i}-\frac{p-q}{2n}{Q}^{{\mathfrak{o}}_{n}}
=12​(βˆ‘i,k∈[p]+βˆ‘i∈[p]k∈p+[q])​Mi,kβŠ—Mk,iβˆ’12​(βˆ‘i∈p+[q]k∈[p]+βˆ‘i,k∈p+[q])​Mi,kβŠ—Mk,iβˆ’pβˆ’q2​n​Q𝔬n\displaystyle=\frac{1}{2}\Big{(}\sum_{i,k\in[p]}+\sum_{\begin{subarray}{c}i\in[p]\\ k\in p+[q]\end{subarray}}\Big{)}M_{i,k}\otimes M_{k,i}-\frac{1}{2}\Big{(}\sum_{\begin{subarray}{c}i\in p+[q]\\ k\in[p]\end{subarray}}+\sum_{i,k\in p+[q]}\Big{)}M_{i,k}\otimes M_{k,i}-\frac{p-q}{2n}{Q}^{{\mathfrak{o}}_{n}}
=12​(βˆ‘i,k∈[p]βˆ’βˆ‘i,k∈p+[q])​Mi,kβŠ—Mk,iβˆ’pβˆ’q2​n​Q𝔬n.\displaystyle=\frac{1}{2}\Big{(}\sum_{i,k\in[p]}-\sum_{i,k\in p+[q]}\Big{)}M_{i,k}\otimes M_{k,i}-\frac{p-q}{2n}{Q}^{{\mathfrak{o}}_{n}}.

Therefore, it follows from (3.3) that

Ξ\displaystyle\Xi =12​(βˆ‘i,k∈[p]Xi,kβŠ—Xk,iβˆ’βˆ‘i,k∈p+[q](βˆ’Xi,k)βŠ—(βˆ’Xk,i))βˆ’pβˆ’q2​nβ€‹Ξ¦βˆ’1​(Q𝔬n)\displaystyle=\frac{1}{2}\Big{(}\sum_{i,k\in[p]}X_{i,k}\otimes X_{k,i}-\sum_{i,k\in p+[q]}(-X_{i,k})\otimes(-X_{k,i})\Big{)}-\frac{p-q}{2n}\Phi^{-1}({Q}^{{\mathfrak{o}}_{n}})
=βˆ‘i,k∈[p]i<kXi,kβŠ—Xk,iβˆ’βˆ‘i,k∈p+[q]i<kXi,kβŠ—Xk,iβˆ’pβˆ’q2​n​Q.\displaystyle=\sum_{\begin{subarray}{c}i,k\in[p]\\ i<k\end{subarray}}X_{i,k}\otimes X_{k,i}-\sum_{\begin{subarray}{c}i,k\in p+[q]\\ i<k\end{subarray}}X_{i,k}\otimes X_{k,i}-\frac{p-q}{2n}Q. (3.13)

Now, the result immediately follows from Lemma 3.2.∎

Proposition 3.4.

For a KK-homogeneous f∈M±​(m)f\in\mathit{M}^{\pm}(m) with κ​(f)=(ΞΊ+,ΞΊβˆ’)\kappa(f)=(\kappa_{+},\kappa_{-}), one has

Ξ©^𝔬p​f\displaystyle\hat{\Omega}_{\mathfrak{o}_{p}}f =((ΞΊ+βˆ’1)2βˆ’(pβˆ’2)24)​f,\displaystyle=\Big{(}(\kappa_{+}-1)^{2}-\frac{(p-2)^{2}}{4}\Big{)}f, (3.14)
Ξ©^𝔬q​f\displaystyle\hat{\Omega}_{\mathfrak{o}_{q}}f =((ΞΊβˆ’βˆ’1)2βˆ’(qβˆ’2)24)​f.\displaystyle=\Big{(}(\kappa_{-}-1)^{2}-\frac{(q-2)^{2}}{4}\Big{)}f. (3.15)
Proof.

We only show the case of M+​(m)\mathit{M}^{+}(m) here. The other case can be proved exactly in the same manner.

First, we show (3.14). It suffices to prove it for a typical element f=h1​h2​ρyΞΌβˆ’β€‹ΟˆΞΊ+∈M+​(m)f=h_{1}h_{2}\rho_{y}^{\mu_{-}}\psi_{\kappa_{+}}\in\mathit{M}^{+}(m) with h1βˆˆβ„‹k​(ℝp),h2βˆˆβ„‹l​(ℝq)h_{1}\in\mathscr{H}^{k}(\mathbb{R}^{p}),\,h_{2}\in\mathscr{H}^{l}(\mathbb{R}^{q}) and ΞΌβˆ’=(1/2)​(m+ΞΊ+βˆ’ΞΊβˆ’)\mu_{-}=(1/2)(m+\kappa_{+}-\kappa_{-}), where (ΞΊ+,ΞΊβˆ’)=(k+p2,l+q2)(\kappa_{+},\kappa_{-})=(k+\frac{p}{2},l+\frac{q}{2}). Recall that for a homogeneous polynomial h=h​(x1,…,x𝗇)h=h(x_{1},\dots,x_{\mathsf{n}}) on ℝ𝗇\mathbb{R}^{\mathsf{n}} of degree dd and for a smooth function ϕ​(u)\phi(u) in a single variable uu, we have

Δ​(h​ϕ​(ρ))=(2​d+n)​h​ϕ′​(ρ)+2​h​ρ​ϕ′′​(ρ),\Delta(h\phi(\rho))=\left(2d+n\right)h\phi^{\prime}(\rho)+2h\rho\phi^{\prime\prime}(\rho), (3.16)

where Ξ”=βˆ‘i=1π—‡βˆ‚xi2\Delta=\sum_{i=1}^{\mathsf{n}}\partial_{x_{i}}^{2} and ρ=(1/2)β€‹βˆ‘i=1𝗇xi2\rho=(1/2)\sum_{i=1}^{\mathsf{n}}x_{i}^{2} (cf.Β [6, Lemma 3.2]). Thus, for f=h1​h2​ρyΞΌβˆ’β€‹ΟˆΞΊ+f=h_{1}h_{2}\rho_{y}^{\mu_{-}}\psi_{\kappa_{+}}, we have

Ξ”x​f\displaystyle\Delta_{x}f =h2​ρyΞΌβˆ’β€‹Ξ”x​(h1​Ψκ+​(ρx​ρy))\displaystyle=h_{2}\rho_{y}^{\mu_{-}}\Delta_{x}(h_{1}\Psi_{\kappa_{+}}(\rho_{x}\rho_{y}))
=(2​k+p)​h1​h2​ρyΞΌβˆ’+1β€‹ΟˆΞΊ+β€²+2​h1​h2​ρx​ρyΞΌβˆ’+2β€‹ΟˆΞΊ+β€²β€²,\displaystyle=(2k+p)h_{1}h_{2}\rho_{y}^{\mu_{-}+1}\psi^{\prime}_{\kappa_{+}}+2h_{1}h_{2}\rho_{x}\rho_{y}^{\mu_{-}+2}\psi^{\prime\prime}_{\kappa+},
where we set ψκ+β€²=Ψ′​(ρx​ρy),ψκ+β€²β€²=Ψκ+′′​(ρx​ρy)\psi^{\prime}_{\kappa_{+}}=\Psi^{\prime}(\rho_{x}\rho_{y}),\,\psi^{\prime\prime}_{\kappa_{+}}=\Psi^{\prime\prime}_{\kappa_{+}}(\rho_{x}\rho_{y}). Similarly, one sees that
Ex​f\displaystyle E_{x}f =k​h1​h2​ρyΞΌβˆ’β€‹ΟˆΞΊ++2​h1​h2​ρx​ρyΞΌβˆ’+1β€‹ΟˆΞΊ+β€²,\displaystyle=kh_{1}h_{2}\rho_{y}^{\mu_{-}}\psi_{\kappa_{+}}+2h_{1}h_{2}\rho_{x}\rho_{y}^{\mu_{-}+1}\psi^{\prime}_{\kappa_{+}},
Ex2​f\displaystyle E_{x}^{2}f =k2​h1​h2​ρyΞΌβˆ’β€‹ΟˆΞΊ++4​(k+1)​h1​h2​ρx​ρyΞΌβˆ’+1β€‹ΟˆΞΊ+β€²\displaystyle=k^{2}h_{1}h_{2}\rho_{y}^{\mu_{-}}\psi_{\kappa_{+}}+4(k+1)h_{1}h_{2}\rho_{x}\rho_{y}^{\mu_{-}+1}\psi^{\prime}_{\kappa_{+}}
+4​h1​h2​ρx2​ρyΞΌβˆ’+2β€‹ΟˆΞΊ+β€²β€².\displaystyle\hskip 10.00002pt+4h_{1}h_{2}\rho_{x}^{2}\rho_{y}^{\mu_{-}+2}\psi^{\prime\prime}_{\kappa_{+}}.
Therefore,
Ξ©^𝔬p​f\displaystyle\hat{\Omega}_{\mathfrak{o}_{p}}f =(Ex2+(pβˆ’2)​Exβˆ’2​ρx​Δx)​h1​h2​ρyΞΌβˆ’β€‹ΟˆΞΊ+\displaystyle=\big{(}E_{x}^{2}+(p-2)E_{x}-2\rho_{x}\Delta_{x}\big{)}\,h_{1}h_{2}\rho_{y}^{\mu_{-}}\psi_{\kappa_{+}}
=(k2+(pβˆ’2)​k)​h1​h2​ρyΞΌβˆ’β€‹ΟˆΞΊ+\displaystyle=\big{(}k^{2}+(p-2)k\big{)}\,h_{1}h_{2}\rho_{y}^{\mu_{-}}\psi_{\kappa_{+}}
=((k+pβˆ’22)2βˆ’(pβˆ’2)24)​f.\displaystyle=\Big{(}\big{(}k+\frac{p-2}{2}\big{)}^{2}-\frac{(p-2)^{2}}{4}\Big{)}f.

Now, substituting ΞΊ+=k+p/2\kappa_{+}=k+p/2, one obtains (3.14).

Next, we turn to (3.15). Similar calculations yield

Ξ”y​f\displaystyle\Delta_{y}f =h1​Δx​(h2​ρyΞΌβˆ’β€‹Ξ¨ΞΊ+​(ρx​ρy))\displaystyle=h_{1}\Delta_{x}(h_{2}\rho_{y}^{\mu_{-}}\Psi_{\kappa_{+}}(\rho_{x}\rho_{y}))
=((2​l+q)β€‹ΞΌβˆ’+2β€‹ΞΌβˆ’β€‹(ΞΌβˆ’βˆ’1))​h1​h2​ρyΞΌβˆ’βˆ’1β€‹ΟˆΞΊ+\displaystyle=\big{(}(2l+q)\mu_{-}+2\mu_{-}(\mu_{-}-1)\big{)}h_{1}h_{2}\rho_{y}^{\mu_{-}-1}\psi_{\kappa_{+}}
+((2​l+q)+4β€‹ΞΌβˆ’)​h1​h2​ρx​ρyΞΌβˆ’β€‹ΟˆΞΊ+β€²+2​h1​h2​ρx2​ρyΞΌβˆ’+1β€‹ΟˆΞΊ+β€²β€²,\displaystyle\hskip 10.00002pt+\big{(}(2l+q)+4\mu_{-}\big{)}h_{1}h_{2}\rho_{x}\rho_{y}^{\mu_{-}}\psi^{\prime}_{\kappa_{+}}+2h_{1}h_{2}\rho_{x}^{2}\rho_{y}^{\mu_{-}+1}\psi^{\prime\prime}_{\kappa+},
Ey​f\displaystyle E_{y}f =(l+2β€‹ΞΌβˆ’)​h1​h2​ρyΞΌβˆ’β€‹ΟˆΞΊ++2​h1​h2​ρx​ρyΞΌβˆ’+1β€‹ΟˆΞΊ+β€²,\displaystyle=(l+2\mu_{-})h_{1}h_{2}\rho_{y}^{\mu_{-}}\psi_{\kappa_{+}}+2h_{1}h_{2}\rho_{x}\rho_{y}^{\mu_{-}+1}\psi^{\prime}_{\kappa_{+}},
Ey2​f\displaystyle E_{y}^{2}f =(l+2β€‹ΞΌβˆ’)2​h1​h2​ρyΞΌβˆ’β€‹ΟˆΞΊ++4​(l+2β€‹ΞΌβˆ’+1)​h1​h2​ρx​ρyΞΌβˆ’+1β€‹ΟˆΞΊ+β€²\displaystyle=(l+2\mu_{-})^{2}h_{1}h_{2}\rho_{y}^{\mu_{-}}\psi_{\kappa_{+}}+4(l+2\mu_{-}+1)h_{1}h_{2}\rho_{x}\rho_{y}^{\mu_{-}+1}\psi^{\prime}_{\kappa_{+}}
+4​h1​h2​ρx2​ρyΞΌβˆ’+2β€‹ΟˆΞΊ+β€²β€²,\displaystyle\hskip 10.00002pt+4h_{1}h_{2}\rho_{x}^{2}\rho_{y}^{\mu_{-}+2}\psi^{\prime\prime}_{\kappa_{+}},
and
Ξ©^𝔬q​f\displaystyle\hat{\Omega}_{\mathfrak{o}_{q}}f =((l+2β€‹ΞΌβˆ’)2+(qβˆ’2)​(l+2β€‹ΞΌβˆ’)βˆ’2β€‹ΞΌβˆ’β€‹(2​l+q+2β€‹ΞΌβˆ’βˆ’2))​f\displaystyle=\big{(}(l+2\mu_{-})^{2}+(q-2)(l+2\mu_{-})-2\mu_{-}(2l+q+2\mu_{-}-2)\big{)}f

for f=h1​h2​ρyΞΌβˆ’β€‹ΟˆΞΊ+f=h_{1}h_{2}\rho_{y}^{\mu_{-}}\psi_{\kappa_{+}}. Substituting ΞΊβˆ’=l+q/2,ΞΌβˆ’=(1/2)​(m+ΞΊ+βˆ’ΞΊβˆ’)\kappa_{-}=l+q/2,\,\mu_{-}=(1/2)(m+\kappa_{+}-\kappa_{-}), one obtains (3.15). ∎

Corollary 3.5.

Set Ξ^:=π​(Ξ³2​(Ξ))βˆˆπ’«β€‹π’Ÿβ€‹(V)\hat{\Xi}:=\pi(\gamma_{2}(\Xi))\in\mathscr{P}\!\mathscr{D}(V). Then, for a KK-homogeneous f∈M±​(m)f\in\mathit{M}^{\pm}(m) with κ​(f)=(ΞΊ+,ΞΊβˆ’)\kappa(f)=(\kappa_{+},\kappa_{-}), one has Ξ^​f=λκ​(f)​f\hat{\Xi}f=\lambda_{\kappa(f)}f, where λκ​(f)\lambda_{\kappa(f)} is a scalar given by

λκ​(f)=(ΞΊ+βˆ’ΞΊβˆ’)​(ΞΊ++ΞΊβˆ’βˆ’2)βˆ’pβˆ’qp+q​m​(m+2).\lambda_{\kappa(f)}=(\kappa_{+}-\kappa_{-})(\kappa_{+}+\kappa_{-}-2)-\frac{p-q}{p+q}m(m+2). (3.17)

In particular, λκ​(f)=0\lambda_{\kappa(f)}=0 if m=0m=0.

Proof.

The first statement immediately follows from Lemma 3.3 and Proposition 3.4. As for the second, we note that if m=0m=0 then ΞΊ+=ΞΊβˆ’\kappa_{+}=\kappa_{-} by (2.18). ∎

In what follows, let ℐ±​(m)\mathscr{I}^{\pm}(m) denote the annihilator in U​(𝔀)U(\mathfrak{g}) of our (𝔀,K)(\mathfrak{g},K)-module M±​(m)\mathit{M}^{\pm}(m) for short:

ℐ±​(m):=AnnU​(𝔀)⁑M±​(m).\mathscr{I}^{\pm}(m):=\operatorname{Ann}_{U(\mathfrak{g})}\mathit{M}^{\pm}(m).

Correspondingly, set I±​(m):=⨁j=0∞(ℐ±​(m)∩Uj​(𝔀))/(ℐ±​(m)∩Ujβˆ’1​(𝔀))I^{\pm}(m):=\bigoplus_{j=0}^{\infty}(\mathscr{I}^{\pm}(m)\cap U_{j}(\mathfrak{g}))/(\mathscr{I}^{\pm}(m)\cap U_{j-1}(\mathfrak{g})).

Theorem 3.6.

The annihilator ℐ±​(m)\mathscr{I}^{\pm}(m) is the Joseph ideal if ond only if m=0m=0.

Proof.

Recall that our 𝔀\mathfrak{g}-invariant complement WβŠ‚S2​(𝔀)W\subset S^{2}(\mathfrak{g}) is given by

W=Eβˆ…π”€βŠ•E\ydiagram​1,1,1,1π”€βŠ•E\ydiagram​2𝔀.W={E}^{\mathfrak{g}}_{\varnothing}\oplus{E}^{\mathfrak{g}}_{\ydiagram{1,1,1,1}}\oplus{E}^{\mathfrak{g}}_{\ydiagram{2}}.

We must show that W=σ​(I±​(m))∩S2​(𝔀)W=\sigma(I^{\pm}(m))\cap S^{2}(\mathfrak{g}) if and only if m=0m=0 by Theorem 3.1. However, the 𝔀\mathfrak{g}-invariance of both sides reduces the problem to showing that WβŠ‚Οƒβ€‹(I±​(m))∩S2​(𝔀)W\subset\sigma(I^{\pm}(m))\cap S^{2}(\mathfrak{g}) if and only if m=0m=0.

Since Ξ©π”€βˆˆU2​(𝔀)\Omega_{\mathfrak{g}}\in U_{2}(\mathfrak{g}) acts on M±​(m)\mathit{M}^{\pm}(m) by the scalar given by (3.8), say Ξ»0\lambda_{0},

Q=Οƒ2​(p2​(2​(Ξ©π”€βˆ’Ξ»0)))βˆˆΟƒβ€‹(I±​(m)),Q=\sigma_{2}(p_{2}(2(\Omega_{\mathfrak{g}}-\lambda_{0})))\in\sigma(I^{\pm}(m)),

and hence we have

Eβˆ…π”€βŠ‚Οƒβ€‹(I±​(m))∩S2​(𝔀).{E}^{\mathfrak{g}}_{\varnothing}\subset\sigma(I^{\pm}(m))\cap S^{2}(\mathfrak{g}). (3.18)

Next, a simple calculation shows that π​(Ξ¦βˆ’1​(Si​j​k​l𝔬n))=0\pi(\Phi^{-1}({S}^{{\mathfrak{o}}_{n}}_{ijkl}))=0 in π’«β€‹π’Ÿβ€‹(V)\mathscr{P}\!\mathscr{D}(V) for all i<j<k<li<j<k<l. Namely, we have

E\ydiagram​1,1,1,1π”€βŠ‚Οƒβ€‹(I±​(m))∩S2​(𝔀).{E}^{\mathfrak{g}}_{\ydiagram{1,1,1,1}}\subset\sigma(I^{\pm}(m))\cap S^{2}(\mathfrak{g}). (3.19)

Finally, we show that

E\ydiagram​2π”€βŠ‚Οƒβ€‹(I±​(m))∩S2​(𝔀)if and only ifm=0.{E}^{\mathfrak{g}}_{\ydiagram{2}}\subset\sigma(I^{\pm}(m))\cap S^{2}(\mathfrak{g})\quad\text{if and only if}\quad m=0. (3.20)

Since E\ydiagram​2𝔀E^{\mathfrak{g}}_{\ydiagram{2}} is irreducible, in order that (3.20) holds, it suffices to show

ΞžβˆˆΟƒβ€‹(I±​(m))∩S2​(𝔀)if and only ifm=0.\Xi\in\sigma(I^{\pm}(m))\cap S^{2}(\mathfrak{g})\quad\text{if and only if}\quad m=0. (3.21)

Assume that Ξ\Xi is in σ​(I±​(m))∩S2​(𝔀)\sigma(I^{\pm}(m))\cap S^{2}(\mathfrak{g}). Then there exists an element uβˆˆβ„Β±β€‹(m)∩U2​(𝔀)u\in\mathscr{I}^{\pm}(m)\cap U_{2}(\mathfrak{g}) satisfying Ξ=Οƒ2​(p2​(u))\Xi=\sigma_{2}(p_{2}(u)) and

π​(u)​f=0for all​f∈M±​(m).\pi(u)f=0\quad\text{for all}\;f\in\mathit{M}^{\pm}(m). (3.22)

Since Ξ=Οƒ2​(p2​(Ξ³2​(Ξ)))\Xi=\sigma_{2}(p_{2}(\gamma_{2}(\Xi))), there exists an element u1∈U1​(𝔀)u_{1}\in U_{1}(\mathfrak{g}) such that Ξ³2​(Ξ)=u+u1\gamma_{2}(\Xi)=u+u_{1}. Moreover, u1u_{1} can be written as u1=Ξ»+Yu_{1}=\lambda+Y with Ξ»βˆˆβ„‚\lambda\in\mathbb{C} and Yβˆˆπ”€Y\in\mathfrak{g} since U1​(𝔀)=β„‚βŠ•π”€U_{1}(\mathfrak{g})=\mathbb{C}\oplus\mathfrak{g}. Now, it follows from (3.22) and Corollary 3.5 that

π​(Y)​f\displaystyle\pi(Y)f =(λκ​(f)βˆ’Ξ»)​f\displaystyle=(\lambda_{\kappa(f)}-\lambda)f (3.23)
=((ΞΊ+βˆ’ΞΊβˆ’)​(ΞΊ++ΞΊβˆ’+2)βˆ’pβˆ’qp+q​m​(m+2)βˆ’Ξ»)​f\displaystyle=\Big{(}(\kappa_{+}-\kappa_{-})(\kappa_{+}+\kappa_{-}+2)-\frac{p-q}{p+q}m(m+2)-\lambda\Big{)}f

for all KK-homogeneous f∈M±​(m)f\in\mathit{M}^{\pm}(m) with κ​(f)=(ΞΊ+,ΞΊβˆ’)\kappa(f)=(\kappa_{+},\kappa_{-}). In view of the right-hand side of (3.23), the 𝔭\mathfrak{p}-part action given in (2.16) forces this YY to be in 𝔨\mathfrak{k}. Thus, letting Y=Y1+Y2Y=Y_{1}+Y_{2}, Y1βˆˆπ”¬p,Y2βˆˆπ”¬qY_{1}\in\mathfrak{o}_{p},\,Y_{2}\in\mathfrak{o}_{q}, be the decomposition corresponding to 𝔨=𝔬pβŠ•π”¬q\mathfrak{k}=\mathfrak{o}_{p}\oplus\mathfrak{o}_{q}, one sees that (3.23) is equivalent to the fact that π​(Y1)\pi(Y_{1}) acts on β„‹k​(ℝp)\mathscr{H}^{k}(\mathbb{R}^{p}) by a scalar and π​(Y2)\pi(Y_{2}) acts on β„‹l​(ℝq)\mathscr{H}^{l}(\mathbb{R}^{q}) by a scalar, where ΞΊ+=k+p2\kappa_{+}=k+\frac{p}{2} and ΞΊβˆ’=l+q2\kappa_{-}=l+\frac{q}{2}. If m=0m=0 then ΞžβˆˆΟƒβ€‹(I±​(m))\Xi\in\sigma(I^{\pm}(m)); in fact, one can take Y=0Y=0 and Ξ»=0\lambda=0 since λκ​(f)=0\lambda_{\kappa(f)}=0. On the other hand, if mβ‰ 0m\neq 0, this is impossible, and hence Ξžβˆ‰Οƒβ€‹(I±​(m))\Xi\notin\sigma(I^{\pm}(m)). Therefore, (3.21) holds. ∎

Appendix A Irreducible decomposition of S2​(𝔬n)S^{2}(\mathfrak{o}_{n})

Let EE denote the natural representation of 𝔬n{\mathfrak{o}}_{n}, i.e., E=β„‚nE=\mathbb{C}^{n} equipped with the standard bilinear form Ξ²0\beta_{0}, where Ξ²0​(u,v)=tu​v\beta_{0}(u,v)=\hskip 1.8pt\vphantom{1}^{t}uv (u,v∈Eu,v\in E). Then,

Ο†:β‹€2​E→𝔬n,v∧wβ†¦βˆ’ΞΉβ€‹(β‹…)​(v∧w)\varphi:\mbox{$\bigwedge^{\!2}$}E\to{\mathfrak{o}}_{n},\;v\wedge w\mapsto-\iota(\cdot)(v\wedge w)

provides an isomorphism between 𝔬n{\mathfrak{o}}_{n}-modules, where ΞΉ\iota denotes the contraction with respect to Ξ²0\beta_{0}. Hence, we have S2​(β‹€2​E)≃S2​(𝔬n)S^{2}(\mbox{$\bigwedge^{\!2}$}E)\simeq S^{2}(\mathfrak{o}_{n}).

It is well known that any irreducible representation of 𝔬n{\mathfrak{o}}_{n} is realized in the subspace of traceless tensors of EβŠ—kE^{\otimes k} for some kβˆˆβ„•k\in\mathbb{N} and is parameterized by Young diagram. Noting that β‹€2​E=E\ydiagram​1,1\mbox{$\bigwedge^{\!2}$}E=E_{\ydiagram{1,1}}, it follows that β‹€2​EβŠ—β‹€2​E\mbox{$\bigwedge^{\!2}$}E\otimes\mbox{$\bigwedge^{\!2}$}E decomposes as

β‹€2​EβŠ—β‹€2​E=Eβˆ…βŠ•E\ydiagram​1,1,1,1βŠ•E\ydiagram​2βŠ•E\ydiagram​2,2βŠ•E\ydiagram​2,1,1βŠ•E\ydiagram​1,1,\mbox{$\bigwedge^{\!2}$}E\otimes\mbox{$\bigwedge^{\!2}$}E=E_{\varnothing}\oplus E_{\ydiagram{1,1,1,1}}\oplus E_{\ydiagram{2}}\oplus E_{\ydiagram{2,2}}\oplus E_{\ydiagram{2,1,1}}\oplus E_{\ydiagram{1,1}}, (A.1)

which can be verified by calculating Littlewood-Richardson coefficients in terms of universal characters (see e.g.Β [10]). Note also that S2​(β‹€2​E)S^{2}(\mbox{$\bigwedge^{\!2}$}E) is equal to the direct sum of the first four factors in (A.1):

Eβˆ…,E\ydiagram​1,1,1,1,E\ydiagram​2,E\ydiagram​2,2.E_{\varnothing},\quad E_{\ydiagram{1,1,1,1}},\quad E_{\ydiagram{2}},\quad E_{\ydiagram{2,2}}. (A.2)

One can easy verify that E\ydiagram​2,2E_{\ydiagram{2,2}} is the highest weight module with highest weight 2​α2\alpha, where Ξ±\alpha is the highest root of 𝔬n{\mathfrak{o}}_{n}.

Next, let us describe the first three irreducible summands in (A.2) concretely. Let {ei;i=1,…,n}\{e_{i};i=1,\dots,n\} denote the standard basis of β„‚n\mathbb{C}^{n}, i.e., ei=t(0,…,1i​-th,…,0)e_{i}=\hskip 1.8pt\vphantom{1}^{t}(0,\dots,\overset{i\text{-th}}{1},\dots,0). Then, one has

Eβˆ…\displaystyle E_{\varnothing} =βŸ¨βˆ‘i=1nei2βŸ©β„‚,\displaystyle=\Big{\langle}\sum_{i=1}^{n}{e_{i}}^{2}\Big{\rangle}_{\mathbb{C}}\,, (A.3)
E\ydiagram​1,1,1,1\displaystyle E_{\ydiagram{1,1,1,1}} =⟨ei∧ej∧ek∧el;1β©½i<j<k<lβ©½nβŸ©β„‚,\displaystyle=\big{\langle}e_{i}\wedge e_{j}\wedge e_{k}\wedge e_{l};1\leqslant i<j<k<l\leqslant n\big{\rangle}_{\mathbb{C}}\,,
E\ydiagram​2\displaystyle E_{\ydiagram{2}} =⟨ei​ejβˆ’1n​δi,jβ€‹βˆ‘k=1nek2;i,j∈[n]βŸ©β„‚.\displaystyle=\Big{\langle}e_{i}e_{j}-\frac{1}{n}\delta_{i,j}\sum_{k=1}^{n}{e_{k}}^{2};i,j\in[n]\Big{\rangle}_{\mathbb{C}}\,.

Thus, if one defines injective On\mathrm{O}_{n}-equivariant linear maps by

Ο†βˆ…\displaystyle\varphi_{\varnothing} :Eβˆ…β†’S2​(𝔬n),\displaystyle:E_{\varnothing}\to S^{2}({\mathfrak{o}}_{n}), βˆ‘i=1nei2↦Q𝔬n,\displaystyle\quad\sum_{i=1}^{n}{e_{i}}^{2}\mapsto{Q}^{{\mathfrak{o}}_{n}}, (A.4)
Ο†\ydiagram​1,1,1,1\displaystyle\varphi_{\ydiagram{1,1,1,1}} :E\ydiagram​1,1,1,1β†’S2​(𝔬n),\displaystyle:E_{\ydiagram{1,1,1,1}}\to S^{2}({\mathfrak{o}}_{n}), ei∧ej∧ek∧el↦Si​j​k​l𝔬n,\displaystyle\quad e_{i}\wedge e_{j}\wedge e_{k}\wedge e_{l}\mapsto{S}^{{\mathfrak{o}}_{n}}_{ijkl},
Ο†\ydiagram​2\displaystyle\varphi_{\ydiagram{2}} :E\ydiagram​2β†’S2​(𝔬n),\displaystyle:E_{\ydiagram{2}}\to S^{2}({\mathfrak{o}}_{n}), ei​ejβˆ’1n​δi​jβ€‹βˆ‘k=1nek2↦Si​j𝔬n,\displaystyle\quad e_{i}e_{j}-\frac{1}{n}\delta_{ij}\sum_{k=1}^{n}{e_{k}}^{2}\mapsto{S}^{{\mathfrak{o}}_{n}}_{ij},

with

Q𝔬n\displaystyle{Q}^{{\mathfrak{o}}_{n}} =βˆ‘i,k∈[n]Mi,kβŠ—Mk,i=βˆ’βˆ‘i,k∈[n]Mi,kβŠ—Mi,k,\displaystyle=\sum_{i,k\in[n]}M_{i,k}\otimes M_{k,i}=-\sum_{i,k\in[n]}M_{i,k}\otimes M_{i,k}, (A.5)
Si​j​k​l𝔬n\displaystyle{S}^{{\mathfrak{o}}_{n}}_{ijkl} =12(Mi,jβŠ—Mk,lβˆ’Mi,kβŠ—Mj,l+Mi,lβŠ—Mj,k\displaystyle=\frac{1}{2}\big{(}M_{i,j}\otimes M_{k,l}-M_{i,k}\otimes M_{j,l}+M_{i,l}\otimes M_{j,k}
+Mk,lβŠ—Mi,jβˆ’Mj,lβŠ—Mi,k+Mj,kβŠ—Mi,l),\displaystyle\hskip 20.00003pt+M_{k,l}\otimes M_{i,j}-M_{j,l}\otimes M_{i,k}+M_{j,k}\otimes M_{i,l}\big{)}, (A.6)
Si​j𝔬n\displaystyle{S}^{{\mathfrak{o}}_{n}}_{ij} =12β€‹βˆ‘k∈[n](Mi,kβŠ—Mk,j+Mk,jβŠ—Mi,k)βˆ’1n​δi,j​Q𝔬n,\displaystyle=\frac{1}{2}\sum_{k\in[n]}(M_{i,k}\otimes M_{k,j}+M_{k,j}\otimes M_{i,k})-\frac{1}{n}\delta_{i,j}{Q}^{{\mathfrak{o}}_{n}}, (A.7)

then one sees that the irreducible decomposition of S2​(𝔬n)S^{2}({\mathfrak{o}}_{n}) is given by

S2​(𝔬n)=Eβˆ…π”¬nβŠ•E\ydiagram​1,1,1,1𝔬nβŠ•E\ydiagram​2𝔬nβŠ•E\ydiagram​2,2𝔬n,S^{2}({\mathfrak{o}}_{n})={E}^{{\mathfrak{o}}_{n}}_{\varnothing}\oplus{E}^{{\mathfrak{o}}_{n}}_{\ydiagram{1,1,1,1}}\oplus{E}^{{\mathfrak{o}}_{n}}_{\ydiagram{2}}\oplus{E}^{{\mathfrak{o}}_{n}}_{\ydiagram{2,2}}, (A.8)

where

Eβˆ…π”¬n\displaystyle{E}^{{\mathfrak{o}}_{n}}_{\varnothing} =⟨Q𝔬nβŸ©β„‚,\displaystyle=\langle{Q}^{{\mathfrak{o}}_{n}}\rangle_{\mathbb{C}}, (A.9)
E\ydiagram​1,1,1,1𝔬n\displaystyle{E}^{{\mathfrak{o}}_{n}}_{\ydiagram{1,1,1,1}} =⟨Si​j​k​l𝔬n;1β©½i<j<k<lβ©½nβŸ©β„‚,\displaystyle=\langle{S}^{{\mathfrak{o}}_{n}}_{ijkl};1\leqslant i<j<k<l\leqslant n\rangle_{\mathbb{C}},
E\ydiagram​2𝔬n\displaystyle{E}^{{\mathfrak{o}}_{n}}_{\ydiagram{2}} =⟨Si​j𝔬n;i,j∈[n]βŸ©β„‚,\displaystyle=\langle{S}^{{\mathfrak{o}}_{n}}_{ij};i,j\in[n]\rangle_{\mathbb{C}},

and E\ydiagram​2,2𝔬n{E}^{{\mathfrak{o}}_{n}}_{\ydiagram{2,2}} is the image of E\ydiagram​2,2E_{\ydiagram{2,2}} under the isomorphism S2​(β‹€2​E)≃S2​(𝔬n)S^{2}(\mbox{$\bigwedge^{\!2}$}E)\simeq S^{2}(\mathfrak{o}_{n}).

References

  • [1] B.Β Binegar and R.Β Zierau, Unitarization of a singular representation of  SO​(p,q){\rm SO}(p,q), Comm. Math. Phys. 138 (1991), no.Β 2, 245–258. MR 1108044
  • [2] W.-T.Β Gan and G.Β Savin, Uniqueness of Joseph ideal, Math. Res. Lett. 11 (2004), no.Β 5-6, 589–597. MR 2106228
  • [3] D.Β Garfinkle, A new construction of the joseph ideal, (1982), Thesis (Ph.D.), Massachusetts Institute of Technology. MR 2941017
  • [4] R.Β Goodman and N.Β Wallach, Representations and invariants of the classical groups, Encyclopedia of Mathematics and its Applications, vol.Β 68, Cambridge University Press, Cambridge, 1998. MR 1606831
  • [5] T.Β Hashimoto, The moment map on symplectic vector space and oscillator representation, Kyoto J. Math. 57 (2017), no.Β 3, 553–583. MR 3685055
  • [6] by same author, (𝔀,K)({\mathfrak{g}},K)-module of  O​(p,q)\mathrm{O}(p,q) associated with the finite-dimensional representation of 𝔰​𝔩2\mathfrak{sl}_{2}, Internat. J. Math. 32 (2021), no.Β 2, Paper No. 2150009, 23. MR 4223528
  • [7] R.Β Howe, On some results of Strichartz and of Rallis and Schiffman, J. Funct. Anal. 32 (1979), no.Β 3, 297–303. MR 538856 (80f:22014)
  • [8] A.Β Joseph, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sci. Γ‰cole Norm. Sup. (4) 9 (1976), no.Β 1, 1–29. MR 404366
  • [9] T.Β Kobayashi and B. Ørsted, Analysis on the minimal representation of O​(p,q)\mathrm{O}(p,q). II. Branching laws, Adv. Math. 180 (2003), no.Β 2, 513–550. MR 2020551 (2004k:22018b)
  • [10] S.Β Okada, Representation theory of the classical groups and combinatorics II, Baihukan, 2006, (in japanese).
  • [11] S.Β Rallis and G.Β Schiffmann, Weil representation. I. Intertwining distributions and discrete spectrum, Mem. Amer. Math. Soc. 25 (1980), no.Β 231, iii+203. MR 567800 (81j:22007)
  • [12] C.-B.Β Zhu and J.-S.Β Huang, On certain small representations of indefinite orthogonal groups, Represent. Theory 1 (1997), 190–206 (electronic). MR 1457244