This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

aainstitutetext: Center for Gravitational Physics and Quantum Information, Yukawa Institute for Theoretical Physics, Kyoto University, 606-8502, Kyoto, Japanbbinstitutetext: Department of Physics and Center for Theoretical Physics, National Taiwan University, Taipei 10617, Taiwanccinstitutetext: Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan

Anomalous Thresholds for the S-matrix of Unstable Particles

Katsuki Aoki b,c    and Yu-tin Huang
Abstract

In this work, we study the analytic properties of S-matrix for unstable particles, which is defined as the residues on the unphysical sheets where unstable poles reside. We demonstrate that anomalous thresholds associated with UV physics are unavoidable for unstable particles. This is in contrast to stable particles, where the anomalous thresholds are due to IR physics, set by the scale of the external kinematics. As a result, any dispersive representation for the amplitude will involve contributions from these thresholds that are not computable from the IR theory, and thus invalidate the general positivity bound. Indeed using toy models, we explicitly demonstrate that the four-derivative couplings for unstable particles can become negative, violating positivity bounds even for non-gravitational theories. Along the way, we show that contributions from anomalous thresholds in a given channel can be captured by the double discontinuity of that channel.

YITP-23-167

1 Introduction

The S-matrix bootstrap initiated in the middle of the last century began with the hope that the observable can be fully constrained by global symmetries, crossing, unitarity and analyticity. However, as one can construct an infinite number of consistent quantum field theories (even demanding consistent coupling to gravity), each with its own S-matrix, it was quickly realized that the initial hope was somewhat misguided. On the other hand, while the S-matrix may not be unique, the region where the S-matrix is confined to can be viewed as the “theory space”, in which all theories consistent with the previous principles must reside. This motivated the program of applying the bootstrap approach to the analysis of this space, which is conveniently parameterized by the Wilson coefficients of the low energy effective field theory (EFT) description. Modern numerical methods and geometric understanding of the bootstrap equations have led to tremendous progress in delineating the boundary of this infinite dimensional space (see Kruczenski:2022lot and  Baumgart:2022yty for overview).

One of the most prominent examples is the positivity bound of the four-derivative coupling in any non-gravitational EFT Adams:2006sv . Such bounds have been applied to a wide range of phenomenological processes such as the chiral Lagrangian for pions  Pham:1985cr ; Manohar:2008tc , WW scattering Distler:2006if ; Bellazzini:2014waa , Higgs production Low:2009di ; Falkowski:2012vh , and more recently standard model effective field theory (EFT) Zhang:2020jyn ; Remmen:2020vts ; Li:2021lpe . For derivation of such bounds from superluminal arguments see CarrilloGonzalez:2022fwg . In most of these cases, the operators in question often involve states that are not stable. However, their decay widths are usually under control in the weak coupling expansion and can be attributed to higher-order effects. On the other hand, it would be interesting to understand on general grounds, how the fact that the external states are unstable affects these positivity bounds.

At first glance, the problem appears to be ill-posed as by definition asymptotic states of the S-matrix must be stable. However since the presence of unstable particles can be detected from the presence of complex poles on the unphysical sheet of the usual S-matrix, it was suggested long ago Zwanziger:1963zza ; Lvy1959OnTD ; PhysRev.119.1121 ; PhysRev.123.692 ; Landshoff:1963nzy that the S-matrix for unstable particles can be defined as the residue on these poles. Such a definition would allow one to infer the analytic properties of the unstable S-matrix by analytically continuing the unitarity equations for stable particles. Initial steps toward this direction were taken by one of the authors in Aoki:2022qbf (see also Hannesdottir:2022bmo ), where the unitarity equation for unstable particles 222\rightarrow 2 scattering was derived, taking a form very similar to that of stable-particle amplitudes. However, as unitarity equations for stable particles are only applicable to physical kinematics, there exist regions of unstable kinematics that cannot be reached from physical kinematics. The aim of this paper is to close this gap.

For the purpose of positivity bounds, which is derived from the dispersive representation of the EFT coefficient and thus depends heavily on the non-analyticity of the amplitude near the forward limit, the pressing issue is when anomalous thresholds appear Karplus:1958zz ; Karplus:1959zz ; Nambu:1958zze ; RevModPhys.33.448 . Already for stable particles that are not the lightest state, anomalous thresholds appear on the physical sheet when M>2mM>\sqrt{2}m (see Correia:2022dcu ). However since the presence of such singularities lies in the IR region defined by external kinematics, they can be computed via the EFT and safely subtracted, leaving terms that are constrained by the normal threshold in the dispersive representation.111Indeed one can even search for their presence in the collider Boudjema:2008zn ; Passarino:2018wix ; Guo:2019twa . We thank Sebastian Mizera for introducing these works. Thus we would like to see if this continues to be the case for unstable particles.

We began by deriving the unitarity equations for the two stable two unstable particle S-matrix. This follows Aoki:2022qbf where one starts with the unitarity equations of stable particle scattering, and analytically continues the kinematics to complex values. Using ±\pm to represent the decaying and growing mode of the unstable particle, we see that only for the conjugate setup 4+\mathcal{M}^{+-}_{4} do the unitarity equations agree with that of stable particles. For 4++\mathcal{M}^{++}_{4} we will have triangle singularities on the first sheet and no positivity can be established.

We use explicit one-loop scalar integrals to verify the above result. For convenience, we present the scalar triangle and box integral in its dispersive representation to analyze its analytic continuation to complex kinematics. We find that anomalous thresholds do appear on the first sheet for both 4+\mathcal{M}^{+-}_{4} and 4++\mathcal{M}^{++}_{4}! For 4+\mathcal{M}^{+-}_{4}, we see that the triangle singularity enters the first sheet while Re[t]>0[t]>0 which implies that it is reached by analytically continuing from the unphysical region, which explains why it was not observable in the previous analysis, i.e. the later utilizes unitarity equations of stable particles which only applies in the physical region. Furthermore, we find that the anomalous threshold can also occur when the internal state has a mass that is parametrically large compared to external kinematics! This is problematic since its source is associated with UV physics and this is not computable within the IR EFT, i.e. it is not subtractable. This implies that for unstable particles, on general grounds the positivity bounds should no longer be respected.

To better understand this conclusion we construct an explicit toy model where the system involves four distinct scalars π,ϕ,χL,χH\pi,\phi,\chi_{L},\chi_{H} with π\pi being the lightest state and the interaction given by:

int=gϕ2ϕχL2gππχLχH.\displaystyle\mathcal{L}_{\rm int}=-\frac{g_{\phi}}{2}\phi\chi_{L}^{2}-g_{\pi}\pi\chi_{L}\chi_{H}\,. (1)

We consider the four-point amplitude 4(π(1)ϕ(2)ϕ(3)π(4))\mathcal{M}_{4}(\pi(1)\phi(2)\phi(3)\pi(4)). By tuning the mass of ϕ\phi we can compare the situation between stable and unstable ϕ\phi. Assuming that the mass of χH\chi_{H} is parametrically large compared to all other scales, we find that the coefficient of the four-derivative coupling B~2\tilde{B}_{2}, which is normalized to be dimensionless, is given as

[Uncaptioned image].\includegraphics[width=216.81pt]{figB2.pdf}\,.

The horizontal axis is the mass ratio of the external mass to the internal mass, so the external state ϕ\phi decays to χL\chi_{L} above MR/mL=2M_{R}/m_{L}=2. We indeed find that the coefficient is negative for unstable kinematics even for the conjugate setup 4+\mathcal{M}^{+-}_{4}! The choice 4++\mathcal{M}^{++}_{4} is worse as it is not even real (the solid and dashed curves are real and imaginary parts, respectively). To see that the negativity of 4+\mathcal{M}^{+-}_{4} is indeed due to anomalous thresholds, we consider the dispersive representation of the box integral for 4+\mathcal{M}^{+-}_{4}, and use double discontinuity to isolate the triangle singularity which is the anomalous threshold:222Here the double discontinuity is with respect to the same variable, which is distinct from Mandelstam’s double-discontinuity dispersive representation PhysRev.115.1741 .

B2+=mth2ds2πi2Discs+(sMR2m2)3=n+: normal+n𝒞nds2πi2Discs2+(sMR2m2)3=a+: anomalous!.\displaystyle B_{2}^{+-}=\underbrace{\int_{m_{\rm th}^{2}}^{\infty}\frac{{\rm d}s}{2\pi i}\frac{2{\rm Disc}_{s}\mathcal{M}^{+-}}{(s-M_{R}^{2}-m^{2})^{3}}}_{\mbox{$=\,\mathcal{I}^{+-}_{n}$: normal}}+\underbrace{\sum_{n}\int_{\mathcal{C}_{n}}\frac{{\rm d}s}{2\pi i}\frac{2{\rm Disc}_{s}^{2}\mathcal{M}^{+-}}{(s-M_{R}^{2}-m^{2})^{3}}}_{\mbox{$=\,\mathcal{I}^{+-}_{a}$: anomalous!}}\,. (2)

Each contribution after appropriate normalizations is given in the following:

[Uncaptioned image].\includegraphics[width=216.81pt]{figB2I.pdf}\,.

Indeed we find that the negative contribution comes solely from the anomalous threshold.

This paper is organized as follows: We start with a brief review of unstable particles and discuss properties coming from the factorizations of S-matrix in Sec. 2. In Sec. 3, we use unitarity to see the analytic properties of unstable amplitudes. However, as is well-known, there are singularities that cannot be immediately seen from unitarity. Then, we study the analytic properties for unstable kinematics based on the explicit Feynmann diagrams in Sec. 4. We elaborate on how anomalous thresholds appear on the first sheet when we change the mass of the external state and, importantly, we find anomalous thresholds at UV if the external state is unstable. In Sec. 5, we explicitly construct a model where the four-derivative coupling, which is defined by the low-energy expansion of the amplitude, becomes negative. In Sec. 6, we derive the dispersive representation and isolate the contribution from the UV anomalous thresholds by a double discontinuity formula, showing that the violation of the positivity bound comes from the UV anomalous thresholds. In Sec. 7, we dive into a generic one-loop diagram, discussing that the double discontinuity generically connects singularities at UV and IR. We conclude in Sec. 8.

2 Unstable particles and their S-matrix

We will begin with a brief discussion of the definition of unstable particles and their S-matrix (for recent review see Hannesdottir:2022bmo ). Recall that given the 1 PI contribution to the two-point function iΣ(p2)i\Sigma(p^{2}) the resumed propagator takes the form

ip2+m2Σ(p2)=ip2+M2\frac{-i}{p^{2}+m^{2}-\Sigma(p^{2})}=\frac{-i}{p^{2}+M^{2}} (3)

where M2M^{2} is a shifted complex mass with

ReM2=m2ReΣ(p2),ImM2=iImΣ(p2).{\rm Re}M^{2}=m^{2}-{\rm Re}\,\Sigma(p^{2}),\quad{\rm Im}\,M^{2}=-i{\rm Im}\,\Sigma(p^{2})\,. (4)

The imaginary part is identified with the decay rate Γ=ImΣ(p2)/m\Gamma={\rm Im}\,\Sigma(p^{2})/m leading to the Breit-Wigner shape for the distribution. Note that in general, we have Γ>0\Gamma>0, i.e. the imaginary part of the mass is negative. Thus the on-shell condition for the unstable particle with the momentum pμp^{\mu} should be understood as p2=M2p^{2}=-M^{2}, such that in the rest frame the negative imaginary part implies that the “wavefunction” eipx=eiMte^{ip\cdot x}=e^{-iMt} decays in time so this is a decaying mode.

With the unstable particle defined, we now proceed to its S-matrix. Since resonances associated with unstable particles can be identified with poles on the unphysical sheet, see for example  Zwanziger:1963zza and Aoki:2022qbf , one can define the S-matrix with unstable external states as the residue of such poles. In the following, we will use amplitudes of identical real scalars and use their analytic properties to infer that of amplitudes for unstable particles.

Refer to caption
Figure 1: Positions of complex poles where the zigzag lines denote branch cuts.

We begin with the scattering amplitude of stable particles satisfying real analyticity, (sA)=(sA)\mathcal{M}^{*}(s_{A})=\mathcal{M}(s_{A}^{*}), where sAs_{A} is the set of independent Lorentz-invariant variables. The 2-to-2 amplitude may have a resonance of the Breit-Wigner form which can be explained by a simple pole off the real axis,

22(s,t)=Ress=M222sM2+regular part.\displaystyle\mathcal{M}_{2\to 2}(s,t)=\frac{\mathop{\mathrm{Res}}_{s=M^{2}}\mathcal{M}_{2\to 2}}{s-M^{2}}+\text{regular part}. (5)

Here, M2M^{2} is a complex number with a negative imaginary part and the position of the complex pole PP is shown by the left panel of Fig. 1, where one analytically continues along the normal threshold and crosses over the branch cut to reach the unstable pole. The Mandelstam variables are defined by s=(p1+p2)2,t=(p1+p4)2s=-(p_{1}+p_{2})^{2},t=-(p_{1}+p_{4})^{2} and u=(p1+p3)2u=-(p_{1}+p_{3})^{2}, respectively. The resonance is interpreted as a production of a virtual unstable particle as illustrated by Fig. 2 (left), or we can define unstable particles through the complex pole of the S-matrix. The position of the pole M2M^{2} is identified as the complex mass squared of the unstable particle while the spin can be read off by expanding the residue in the center of mass frame on the Gegenbauer polynomials. The factorization property for the spin-0 particle implies

Ress=M222=3(1,2,P+)3(3,4,P+)\displaystyle\mathop{\mathrm{Res}}_{s=M^{2}}\mathcal{M}_{2\to 2}=-\mathcal{M}_{3}(1,2,P^{+})\mathcal{M}_{3}(3,4,P^{+}) (6)

where 3(1,2,P+)\mathcal{M}_{3}(1,2,P^{+}) is regarded as the on-shell three-point amplitude with two stable particles and one unstable particle. Here, the superscript ++ represents the particle having a negative imaginary mass, i.e. a decaying mode.

Refer to caption
Figure 2: Factorizations of amplitudes. The solid and wavy lines are stable and unstable particles, respectively.

The pole is reached by analytically continuing under the branch cut associated with physical thresholds. The real analyticity, 22(s,t)=22(s,t)\mathcal{M}_{2\to 2}(s^{*},t)=\mathcal{M}_{2\to 2}^{*}(s,t) for a fixed small tt, requires another pole at the complex conjugate position PP^{\prime} in the complex ss-plane as shown by Fig. 1 (right). The on-shell condition reads p2=(M2)p^{2}=-(M^{2})^{*} which has a positive imaginary part in its frequency, so the particle is a growing mode rather than decaying. This growing mode can be reached only if the amplitude is analytically continued from the anti-causal iε-i\varepsilon direction. The residue at PP^{\prime} is

Ress=(M2)22=3(1,2,P)3(3,4,P)\displaystyle\mathop{\mathrm{Res}}_{s=(M^{2})^{*}}\mathcal{M}_{2\to 2}=-\mathcal{M}_{3}(1,2,P^{-})\mathcal{M}_{3}(3,4,P^{-}) (7)

with

3(1,2,P)=3(1,2,P+)\displaystyle\mathcal{M}_{3}(1,2,P^{-})=\mathcal{M}_{3}^{*}(1,2,P^{+}) (8)

Hereinafter, the superscripts ±\pm denote whether the corresponding unstable particle is decaying (++) or growing (-). If no confusion arises, we omit the particle labels and write 3a=3(1,2,Pa)\mathcal{M}_{3}^{a}=\mathcal{M}_{3}(1,2,P^{a}) with a=±a=\pm and so on.

So far we have defined the three-point amplitude with one unstable particle, where there is only one independent amplitude. The situation is different when amplitudes involve more than one unstable particle. Let us consider the 323\to 2 amplitude and extract the three-point amplitude with two unstable particles by utilizing the factorization333Throughout the paper, we use the notation sij=(pi+pj+)2s_{ij\cdots}=-(p_{i}+p_{j}+\cdots)^{2} with pip_{i} being the momentum.

32\displaystyle\mathcal{M}_{3\to 2} {3+1s23M23++1s45M23+arounds23=M2,s45=M2,31s23(M2)3+1s45M23+arounds23=(M2),s45=M2,3+1s23M23+1s45(M2)3arounds23=M2,s45=(M2),31s23(M2)31s45(M2)3arounds23=(M2),s45=(M2).\displaystyle\sim\begin{cases}\mathcal{M}_{3}^{+}\frac{1}{s_{23}-M^{2}}\mathcal{M}_{3}^{++}\frac{1}{s_{45}-M^{2}}\mathcal{M}_{3}^{+}&{\rm around}~{}s_{23}=M^{2},~{}s_{45}=M^{2}\,,\\ \mathcal{M}_{3}^{-}\frac{1}{s_{23}-(M^{2})^{*}}\mathcal{M}_{3}^{-+}\frac{1}{s_{45}-M^{2}}\mathcal{M}_{3}^{+}&{\rm around}~{}s_{23}=(M^{2})^{*},~{}s_{45}=M^{2}\,,\\ \mathcal{M}_{3}^{+}\frac{1}{s_{23}-M^{2}}\mathcal{M}_{3}^{+-}\frac{1}{s_{45}-(M^{2})^{*}}\mathcal{M}_{3}^{-}&{\rm around}~{}s_{23}=M^{2},~{}s_{45}=(M^{2})^{*}\,,\\ \mathcal{M}_{3}^{-}\frac{1}{s_{23}-(M^{2})^{*}}\mathcal{M}_{3}^{--}\frac{1}{s_{45}-(M^{2})^{*}}\mathcal{M}_{3}^{-}&{\rm around}~{}s_{23}=(M^{2})^{*},~{}s_{45}=(M^{2})^{*}\,.\end{cases} (9)

See the middle panel of Fig. 2. Using the symmetry in the replacement 234523\leftrightarrow 45 and the real analyticity 32(s23,s45,)=32(s23,s45,)\mathcal{M}_{3\to 2}^{*}(s_{23},s_{45},\cdots)=\mathcal{M}_{3\to 2}(s_{23}^{*},s_{45}^{*},\cdots) where the ellipsis stands for the variables which are irrelevant to the residue, we find

3++=(3),3+=3+=(3+)=(3+).\displaystyle\mathcal{M}_{3}^{++}=(\mathcal{M}_{3}^{--})^{*}\,,\quad\mathcal{M}_{3}^{+-}=\mathcal{M}_{3}^{-+}=(\mathcal{M}_{3}^{+-})^{*}=(\mathcal{M}_{3}^{-+})^{*}\,. (10)

There are now two independent three-point amplitudes, namely unstable particles are either the same or different. In particular, the symmetry 234523\leftrightarrow 45 requires that the on-shell three-point amplitude with different choices 3+\mathcal{M}_{3}^{+-} is a real quantity while 3++\mathcal{M}_{3}^{++} is not necessarily real.

We proceed to discuss four-point amplitudes involving two external unstable particles, which is the main focus of this paper. We will define it through the six-point diagram of Fig. 2. We regard the six-point as a function of s123,s16,s23,s45s_{123},s_{16},s_{23},s_{45} and variables that are irrelevant to the factorization. We keep the kinematics of the six-point amplitude fixed except for s23s_{23} and s45s_{45}, which are continued above/below the cut for the decaying/growing mode. Note that in principle, due to momentum conservation the variables that are irrelevant to the factorization will also be deformed, which can lead to additional non-analyticity. This can result in the ambiguity in the definition of the unstable S-matrix. We will address this ambiguity in the next section.

As in the previous case, the independent functions are 4++\mathcal{M}_{4}^{++} and 4+\mathcal{M}_{4}^{+-}, and others can be obtained by complex conjugation,

4(siε,tiε)\displaystyle\mathcal{M}_{4}^{--}(s-i\varepsilon,t-i\varepsilon) =(4++(s+iε,t+iε)),\displaystyle=\left(\mathcal{M}_{4}^{++}(s+i\varepsilon,t+i\varepsilon)\right)^{*}\,,
4+(s+iε,t+iε)=4+(s+iε,t+iε)\displaystyle\mathcal{M}_{4}^{+-}(s{+}i\varepsilon,t{+}i\varepsilon)=\mathcal{M}_{4}^{-+}(s{+}i\varepsilon,t{+}i\varepsilon) =(4+(siε,tiε))=(4+(siε,tiε)),\displaystyle=\left(\mathcal{M}_{4}^{-+}(s{-}i\varepsilon,t{-}i\varepsilon)\right)^{*}=\left(\mathcal{M}_{4}^{+-}(s{-}i\varepsilon,t{-}i\varepsilon)\right)^{*}\,, (11)

where ε+0\varepsilon\to+0 is understood, and s=s123s=s_{123} and t=s16t=s_{16} are the Mandelstam variables of the embedded four-point amplitude. We have used the real analyticity and the symmetry in exchanges of external particles, 234523\leftrightarrow 45 and 161\leftrightarrow 6. Note that due to the multitude of complex invariants, the “Im{\rm Im}” of the amplitude, defined as \mathcal{M}-\mathcal{M}^{*}, and the discontinuity in s,ts,t, defined as (s,t)(s,t)\mathcal{M}(s,t)-\mathcal{M}(s^{*},t^{*}), may be different. Indeed we have,

Disc4++(s,t)\displaystyle{\rm Disc}\mathcal{M}^{++}_{4}(s,t) =4++(s+iε,t+iε)4++(siε,tiε),\displaystyle=\mathcal{M}^{++}_{4}(s+i\varepsilon,t+i\varepsilon)-\mathcal{M}^{++}_{4}(s-i\varepsilon,t-i\varepsilon)\,,
2iIm4++(s,t)\displaystyle 2i\mathrm{Im}\mathcal{M}^{++}_{4}(s,t) =4++(s+iε,t+iε)4(siε,tiε),\displaystyle=\mathcal{M}^{++}_{4}(s+i\varepsilon,t+i\varepsilon)-\mathcal{M}^{--}_{4}(s-i\varepsilon,t-i\varepsilon)\,,
Disc4+(s,t)\displaystyle{\rm Disc}\mathcal{M}^{+-}_{4}(s,t) =2iIm4+(s,t)=4+(s+iε,t+iε)4+(siε,tiε),\displaystyle=2i\mathrm{Im}\mathcal{M}^{+-}_{4}(s,t)=\mathcal{M}^{+-}_{4}(s+i\varepsilon,t+i\varepsilon)-\mathcal{M}^{+-}_{4}(s-i\varepsilon,t-i\varepsilon)\,, (12)

where Disc{\rm Disc} is the total discontinuity. The discontinuity and the imaginary part of 4++\mathcal{M}_{4}^{++} do not agree with each other, in general, while they agree in 4+\mathcal{M}_{4}^{+-}.

It would be worth remarking that, in general, 4++\mathcal{M}_{4}^{++} and 4\mathcal{M}_{4}^{--} are different functions although they are related by complex conjugation. In other words, they are not real analytic as seen from (2). The separation of the two can be understood by the presence of the external-mass singularity, which was studied thoroughly for the triangle diagram in Ref. Hannesdottir:2022bmo .444Indeed in Ref. Hannesdottir:2022bmo , it was shown that for unstable kinematics, the triangle diagram develops a cut that completely separates the upper and lower half-plane, with the function on the upper half related to the lower half via complex conjugation as can be seen from eq. (5.82) of Hannesdottir:2022bmo . On the other hand, 4+\mathcal{M}_{4}^{+-} and 4+\mathcal{M}_{4}^{-+} are the same functions and real analytic. A path connecting upper-half and lower-half ss-planes of 4+\mathcal{M}_{4}^{+-} is briefly discussed in Aoki:2022qbf under neglecting anomalous thresholds.

Amplitudes involving unstable external states also have their own threshold singularities. The discontinuity, defined in eq. (2), admits a partial wave expansion where the expansion basis is dictated by Lorentz invariance to be Gegenbauer polynomials:

Disc4ab/2i=ρabG(D)(cosθ).\displaystyle{\rm Disc}\mathcal{M}_{4}^{ab}/2i=\sum_{\ell}\rho_{\ell}^{ab}G_{\ell}^{(D)}(\cos\theta)\,. (13)

For general complex kinematics the scattering angle θ\theta is defined by

cosθ:=1+2(tt0)λ(s,s1,s2)λ(s,s3,s4)/s2,\displaystyle\cos\theta:=1+\frac{2(t-t_{0})}{\sqrt{\lambda(s,s_{1},s_{2})\lambda(s,s_{3},s_{4})/s^{2}}}\,, (14)

with

t0=12s[(s1+s2+s3+s4)ss2+(s1s2)(s3s4)+λ(s,s1,s2)λ(s,s3,s4)]\displaystyle t_{0}=\frac{1}{2s}\left[(s_{1}+s_{2}+s_{3}+s_{4})s-s^{2}+(s_{1}-s_{2})(s_{3}-s_{4})+\sqrt{\lambda(s,s_{1},s_{2})\lambda(s,s_{3},s_{4})}\right] (15)

where λ(x,y,z):=x2+y2+z22xy2yz2zx\lambda(x,y,z):=x^{2}+y^{2}+z^{2}-2xy-2yz-2zx is the Källén function. As the singularities correspond to physical threshold production, ρab\rho_{\ell}^{ab} should have a structure of the product of two three-point amplitudes with two lines being real masses and the third line being the complex mass. We now recall (8); changing to the conjugate states yields the complex conjugate. We thus conclude that the discontinuity must be positively expandable on the Gegenbauer basis for the conjugate pair ρ+>0\rho^{+-}_{\ell}>0. The exchanged state is not necessarily a one-particle state but may be a multi-particle state with angular momentum \ell. In this case, the states are continuously distributed and the singularity should be replaced with a brunch cut rather than a simple pole. This intuition, however, may fail if the partial wave expansion does not converge, i.e., Disc+{\rm Disc}\mathcal{M}^{+-} has a singularity. Such a singularity is indeed a centrepiece of the present paper.

3 Analytic properties of unstable scattering from (stable) unitarity

In the previous section, we’ve seen that the discontinuity of the S-matrix for unstable particles associated with (unstable) threshold production is positively expandable on the Gegenbauer polynomials. However, as in stable particles, anomalous thresholds may appear and can be deduced from a repeated expansion of the unitarity equation (for example see chp.2 of  Hannesdottir:2022bmo ). In this section, we use the physical unitarity equations together with the real analyticity to see what type of singularities can be detected. To simplify, we begin by considering a simple system of two scalars with M>mM>m. For simplicity, we assume that 4m2<M2<9m24m^{2}<M^{2}<9m^{2} so that we only have two particle decays for the unstable particle.

We recall that the unstable-particle amplitudes are defined by residues of higher-point stable-particle amplitudes. Accordingly, analytic properties of the unstable-particle amplitudes can be obtained from unitarity constraints of higher-point stable-particle amplitudes. It is convenient to introduce the following diagrammatic notation olive1964exploration ; Eden:1966dnq

n{±}n=nn(±),=a=2kinematicallyallowed}a,each internal line=2πiθ(q0)δ(q2+m2),each loop=i(2π)4d4k,n lines joining two bubbles=a symmetry factor 1n!,\displaystyle\begin{split}\text{\scriptsize$n$}\Big{\{}\leavevmode\hbox to45.92pt{\vbox to28.85pt{\pgfpicture\makeatletter\hbox{\hskip 22.96228pt\lower-14.42638pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{22.76228pt}{8.5359pt}\pgfsys@lineto{-22.76228pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{22.76228pt}{2.84544pt}\pgfsys@lineto{-22.76228pt}{2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{0.4pt,2.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{22.76228pt}{-2.84544pt}\pgfsys@lineto{-22.76228pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}{}\pgfsys@moveto{22.76228pt}{-8.5359pt}\pgfsys@lineto{-22.76228pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@curveto{14.22638pt}{7.8571pt}{7.8571pt}{14.22638pt}{0.0pt}{14.22638pt}\pgfsys@curveto{-7.8571pt}{14.22638pt}{-14.22638pt}{7.8571pt}{-14.22638pt}{0.0pt}\pgfsys@curveto{-14.22638pt}{-7.8571pt}{-7.8571pt}{-14.22638pt}{0.0pt}{-14.22638pt}\pgfsys@curveto{7.8571pt}{-14.22638pt}{14.22638pt}{-7.8571pt}{14.22638pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.8889pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$\pm$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\Big{\}}\text{\scriptsize$n^{\prime}$}&=-\mathcal{M}^{(\pm)}_{n\to n^{\prime}}\,,\\ \leavevmode\hbox to33.45pt{\vbox to5pt{\pgfpicture\makeatletter\hbox{\hskip 16.72638pt\lower-2.5pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@lineto{14.22638pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&=\sum_{a=2}^{\begin{subarray}{c}\text{kinematically}\\ \text{allowed}\end{subarray}}\leavevmode\hbox to28.85pt{\vbox to17.47pt{\pgfpicture\makeatletter\hbox{\hskip 14.42638pt\lower-8.7359pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-14.22638pt}{8.5359pt}\pgfsys@lineto{14.22638pt}{8.5359pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-14.22638pt}{-8.5359pt}\pgfsys@lineto{14.22638pt}{-8.5359pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-14.22638pt}{2.84544pt}\pgfsys@lineto{14.22638pt}{2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{0.4pt,2.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{-2.84544pt}\pgfsys@lineto{14.22638pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\Big{\}}\text{\scriptsize$a$}\,,\\ \text{each internal line}&=-2\pi i\theta(q^{0})\delta(q^{2}+m^{2})\,,\\ \text{each loop}&=\frac{i}{(2\pi)^{4}}\int{\rm d}^{4}k\,,\\ \text{$n$ lines joining two bubbles}&=\text{a symmetry factor }\frac{1}{n!}\,,\\ \end{split} (16)

where nn(+)\mathcal{M}^{(+)}_{n\to n^{\prime}} is nnn\to n^{\prime} scattering amplitude for stable particles with mass mm where the iϵi\epsilon prescription is causal, and nn()\mathcal{M}^{(-)}_{n\to n^{\prime}} is the complex conjugate. Each solid line denotes a single-particle state while the bold line is the sum of multi-particle states. For instance, the 2-to-2 unitarity equation is written as

+\displaystyle\leavevmode\hbox to34.54pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 17.27182pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{4.26773pt}\pgfsys@lineto{-17.07182pt}{4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{-4.26773pt}\pgfsys@lineto{-17.07182pt}{-4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.8889pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}-\leavevmode\hbox to34.54pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 17.27182pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{4.26773pt}\pgfsys@lineto{-17.07182pt}{4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{-4.26773pt}\pgfsys@lineto{-17.07182pt}{-4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.66666pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}} =+\displaystyle=\leavevmode\hbox to57.31pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 28.65276pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{4.26773pt}\pgfsys@lineto{-14.22638pt}{4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{-4.26773pt}\pgfsys@lineto{-14.22638pt}{-4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{4.26773pt}\pgfsys@lineto{14.22638pt}{4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{-4.26773pt}\pgfsys@lineto{14.22638pt}{-4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@lineto{14.22638pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@moveto{-2.84528pt}{0.0pt}\pgfsys@curveto{-2.84528pt}{6.28569pt}{-7.94069pt}{11.3811pt}{-14.22638pt}{11.3811pt}\pgfsys@curveto{-20.51207pt}{11.3811pt}{-25.60748pt}{6.28569pt}{-25.60748pt}{0.0pt}\pgfsys@curveto{-25.60748pt}{-6.28569pt}{-20.51207pt}{-11.3811pt}{-14.22638pt}{-11.3811pt}\pgfsys@curveto{-7.94069pt}{-11.3811pt}{-2.84528pt}{-6.28569pt}{-2.84528pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.11528pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@moveto{25.60748pt}{0.0pt}\pgfsys@curveto{25.60748pt}{6.28569pt}{20.51207pt}{11.3811pt}{14.22638pt}{11.3811pt}\pgfsys@curveto{7.94069pt}{11.3811pt}{2.84528pt}{6.28569pt}{2.84528pt}{0.0pt}\pgfsys@curveto{2.84528pt}{-6.28569pt}{7.94069pt}{-11.3811pt}{14.22638pt}{-11.3811pt}\pgfsys@curveto{20.51207pt}{-11.3811pt}{25.60748pt}{-6.28569pt}{25.60748pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.55972pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}
=++++.\displaystyle=\leavevmode\hbox to57.31pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 28.65276pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{4.26773pt}\pgfsys@lineto{-14.22638pt}{4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{-4.26773pt}\pgfsys@lineto{-14.22638pt}{-4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{4.26773pt}\pgfsys@lineto{14.22638pt}{4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{-4.26773pt}\pgfsys@lineto{14.22638pt}{-4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{14.22638pt}{4.26773pt}\pgfsys@lineto{-14.22638pt}{4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{14.22638pt}{-4.26773pt}\pgfsys@lineto{-14.22638pt}{-4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@moveto{-2.84528pt}{0.0pt}\pgfsys@curveto{-2.84528pt}{6.28569pt}{-7.94069pt}{11.3811pt}{-14.22638pt}{11.3811pt}\pgfsys@curveto{-20.51207pt}{11.3811pt}{-25.60748pt}{6.28569pt}{-25.60748pt}{0.0pt}\pgfsys@curveto{-25.60748pt}{-6.28569pt}{-20.51207pt}{-11.3811pt}{-14.22638pt}{-11.3811pt}\pgfsys@curveto{-7.94069pt}{-11.3811pt}{-2.84528pt}{-6.28569pt}{-2.84528pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.11528pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@moveto{25.60748pt}{0.0pt}\pgfsys@curveto{25.60748pt}{6.28569pt}{20.51207pt}{11.3811pt}{14.22638pt}{11.3811pt}\pgfsys@curveto{7.94069pt}{11.3811pt}{2.84528pt}{6.28569pt}{2.84528pt}{0.0pt}\pgfsys@curveto{2.84528pt}{-6.28569pt}{7.94069pt}{-11.3811pt}{14.22638pt}{-11.3811pt}\pgfsys@curveto{20.51207pt}{-11.3811pt}{25.60748pt}{-6.28569pt}{25.60748pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.55972pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}+\leavevmode\hbox to57.31pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 28.65276pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{4.26773pt}\pgfsys@lineto{-14.22638pt}{4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{-4.26773pt}\pgfsys@lineto{-14.22638pt}{-4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{4.26773pt}\pgfsys@lineto{14.22638pt}{4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{-4.26773pt}\pgfsys@lineto{14.22638pt}{-4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{14.22638pt}{5.69046pt}\pgfsys@lineto{-14.22638pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@lineto{-14.22638pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{14.22638pt}{-5.69046pt}\pgfsys@lineto{-14.22638pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@moveto{-2.84528pt}{0.0pt}\pgfsys@curveto{-2.84528pt}{6.28569pt}{-7.94069pt}{11.3811pt}{-14.22638pt}{11.3811pt}\pgfsys@curveto{-20.51207pt}{11.3811pt}{-25.60748pt}{6.28569pt}{-25.60748pt}{0.0pt}\pgfsys@curveto{-25.60748pt}{-6.28569pt}{-20.51207pt}{-11.3811pt}{-14.22638pt}{-11.3811pt}\pgfsys@curveto{-7.94069pt}{-11.3811pt}{-2.84528pt}{-6.28569pt}{-2.84528pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.11528pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@moveto{25.60748pt}{0.0pt}\pgfsys@curveto{25.60748pt}{6.28569pt}{20.51207pt}{11.3811pt}{14.22638pt}{11.3811pt}\pgfsys@curveto{7.94069pt}{11.3811pt}{2.84528pt}{6.28569pt}{2.84528pt}{0.0pt}\pgfsys@curveto{2.84528pt}{-6.28569pt}{7.94069pt}{-11.3811pt}{14.22638pt}{-11.3811pt}\pgfsys@curveto{20.51207pt}{-11.3811pt}{25.60748pt}{-6.28569pt}{25.60748pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.55972pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}+\cdots\,. (17)

The real analyticity states that the (+)(+) amplitude and the ()(-) amplitude are the opposite boundary values of the same analytic function. Hence, LHS of (17) represents the discontinuity of the amplitude and the RHS tells us that it is due to the multi-particle intermediate states. Importantly, the unitarity equations are only applicable in the physical region. Thus in (17) for fixed Re ss, only a finite set of intermediate states that are kinematically allowed to be on-shell contributes.

The unitarity equation of the 3-to-3 scattering amplitude is obtained from the connected part of

=SS\displaystyle=\leavevmode\hbox to57.31pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 28.65276pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{5.69046pt}\pgfsys@lineto{-14.22638pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{-14.22638pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{-5.69046pt}\pgfsys@lineto{-14.22638pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{5.69046pt}\pgfsys@lineto{14.22638pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@lineto{14.22638pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{-5.69046pt}\pgfsys@lineto{14.22638pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@lineto{14.22638pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@moveto{-2.84528pt}{0.0pt}\pgfsys@curveto{-2.84528pt}{6.28569pt}{-7.94069pt}{11.3811pt}{-14.22638pt}{11.3811pt}\pgfsys@curveto{-20.51207pt}{11.3811pt}{-25.60748pt}{6.28569pt}{-25.60748pt}{0.0pt}\pgfsys@curveto{-25.60748pt}{-6.28569pt}{-20.51207pt}{-11.3811pt}{-14.22638pt}{-11.3811pt}\pgfsys@curveto{-7.94069pt}{-11.3811pt}{-2.84528pt}{-6.28569pt}{-2.84528pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-17.58054pt}{-3.41666pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$S$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@moveto{25.60748pt}{0.0pt}\pgfsys@curveto{25.60748pt}{6.28569pt}{20.51207pt}{11.3811pt}{14.22638pt}{11.3811pt}\pgfsys@curveto{7.94069pt}{11.3811pt}{2.84528pt}{6.28569pt}{2.84528pt}{0.0pt}\pgfsys@curveto{2.84528pt}{-6.28569pt}{7.94069pt}{-11.3811pt}{14.22638pt}{-11.3811pt}\pgfsys@curveto{20.51207pt}{-11.3811pt}{25.60748pt}{-6.28569pt}{25.60748pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.62778pt}{-4.38887pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$S^{\dagger}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}
=(++++)(),\displaystyle=\left(\leavevmode\hbox to14.63pt{\vbox to11.78pt{\pgfpicture\makeatletter\hbox{\hskip 7.31319pt\lower-5.89046pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{7.11319pt}{5.69046pt}\pgfsys@lineto{-7.11319pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{7.11319pt}{0.0pt}\pgfsys@lineto{-7.11319pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{7.11319pt}{-5.69046pt}\pgfsys@lineto{-7.11319pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}+\sum\leavevmode\hbox to25.46pt{\vbox to15.4pt{\pgfpicture\makeatletter\hbox{\hskip 11.58092pt\lower-5.89046pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{}{} {}{}{}\pgfsys@moveto{0.0pt}{5.69046pt}\pgfsys@lineto{-11.38092pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-11.38092pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-11.38092pt}{-5.69046pt}\pgfsys@lineto{11.38092pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{2.84544pt}\pgfsys@lineto{11.38092pt}{2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{2.84544pt}\pgfsys@moveto{5.69055pt}{2.84544pt}\pgfsys@curveto{5.69055pt}{5.98828pt}{3.14284pt}{8.536pt}{0.0pt}{8.536pt}\pgfsys@curveto{-3.14284pt}{8.536pt}{-5.69055pt}{5.98828pt}{-5.69055pt}{2.84544pt}\pgfsys@curveto{-5.69055pt}{-0.2974pt}{-3.14284pt}{-2.84511pt}{0.0pt}{-2.84511pt}\pgfsys@curveto{3.14284pt}{-2.84511pt}{5.69055pt}{-0.2974pt}{5.69055pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.8889pt}{0.34544pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}+\leavevmode\hbox to36.84pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 17.27182pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{}{{}}{} {}{}{}\pgfsys@moveto{-17.07182pt}{5.69046pt}\pgfsys@lineto{0.0pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{}{{}}{} {}{}{}\pgfsys@moveto{-17.07182pt}{0.0pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{}{{}}{} {}{}{}\pgfsys@moveto{-17.07182pt}{-5.69046pt}\pgfsys@lineto{0.0pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.8889pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\right)\left(\leavevmode\hbox to14.63pt{\vbox to11.78pt{\pgfpicture\makeatletter\hbox{\hskip 7.31319pt\lower-5.89046pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{7.11319pt}{5.69046pt}\pgfsys@lineto{-7.11319pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{7.11319pt}{0.0pt}\pgfsys@lineto{-7.11319pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{7.11319pt}{-5.69046pt}\pgfsys@lineto{-7.11319pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}-\sum\leavevmode\hbox to25.46pt{\vbox to14.63pt{\pgfpicture\makeatletter\hbox{\hskip 13.88092pt\lower-5.89046pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{}{} {}{}{}\pgfsys@moveto{0.0pt}{5.69046pt}\pgfsys@lineto{11.38092pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{11.38092pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-11.38092pt}{-5.69046pt}\pgfsys@lineto{11.38092pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{2.84544pt}\pgfsys@lineto{-11.38092pt}{2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{2.84544pt}\pgfsys@moveto{5.69055pt}{2.84544pt}\pgfsys@curveto{5.69055pt}{5.98828pt}{3.14284pt}{8.536pt}{0.0pt}{8.536pt}\pgfsys@curveto{-3.14284pt}{8.536pt}{-5.69055pt}{5.98828pt}{-5.69055pt}{2.84544pt}\pgfsys@curveto{-5.69055pt}{-0.2974pt}{-3.14284pt}{-2.84511pt}{0.0pt}{-2.84511pt}\pgfsys@curveto{3.14284pt}{-2.84511pt}{5.69055pt}{-0.2974pt}{5.69055pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.66666pt}{0.69267pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}-\leavevmode\hbox to36.84pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 19.57182pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{5.69046pt}\pgfsys@lineto{0.0pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{-5.69046pt}\pgfsys@lineto{0.0pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-17.07182pt}{0.0pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.66666pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\right)\,, (18)

where SS and SS^{\dagger} are the S-matrix elements which include both connected and disconnected diagrams. The summations are over possible choices of particles; for instance,

(+)()\displaystyle\left(\sum\leavevmode\hbox to25.46pt{\vbox to15.4pt{\pgfpicture\makeatletter\hbox{\hskip 11.58092pt\lower-5.89046pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{}{} {}{}{}\pgfsys@moveto{0.0pt}{5.69046pt}\pgfsys@lineto{-11.38092pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-11.38092pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-11.38092pt}{-5.69046pt}\pgfsys@lineto{11.38092pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{2.84544pt}\pgfsys@lineto{11.38092pt}{2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{2.84544pt}\pgfsys@moveto{5.69055pt}{2.84544pt}\pgfsys@curveto{5.69055pt}{5.98828pt}{3.14284pt}{8.536pt}{0.0pt}{8.536pt}\pgfsys@curveto{-3.14284pt}{8.536pt}{-5.69055pt}{5.98828pt}{-5.69055pt}{2.84544pt}\pgfsys@curveto{-5.69055pt}{-0.2974pt}{-3.14284pt}{-2.84511pt}{0.0pt}{-2.84511pt}\pgfsys@curveto{3.14284pt}{-2.84511pt}{5.69055pt}{-0.2974pt}{5.69055pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.8889pt}{0.34544pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\right)\left(\sum\leavevmode\hbox to25.46pt{\vbox to14.63pt{\pgfpicture\makeatletter\hbox{\hskip 13.88092pt\lower-5.89046pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{}{} {}{}{}\pgfsys@moveto{0.0pt}{5.69046pt}\pgfsys@lineto{11.38092pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{} {}{}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{11.38092pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-11.38092pt}{-5.69046pt}\pgfsys@lineto{11.38092pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{2.84544pt}\pgfsys@lineto{-11.38092pt}{2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{2.84544pt}\pgfsys@moveto{5.69055pt}{2.84544pt}\pgfsys@curveto{5.69055pt}{5.98828pt}{3.14284pt}{8.536pt}{0.0pt}{8.536pt}\pgfsys@curveto{-3.14284pt}{8.536pt}{-5.69055pt}{5.98828pt}{-5.69055pt}{2.84544pt}\pgfsys@curveto{-5.69055pt}{-0.2974pt}{-3.14284pt}{-2.84511pt}{0.0pt}{-2.84511pt}\pgfsys@curveto{3.14284pt}{-2.84511pt}{5.69055pt}{-0.2974pt}{5.69055pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.66666pt}{0.69267pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\right) =+disconnected++++connected,\displaystyle=\underbrace{\sum\leavevmode\hbox to37.39pt{\vbox to15.4pt{\pgfpicture\makeatletter\hbox{\hskip 18.6941pt\lower-5.89046pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.49411pt}{5.69046pt}\pgfsys@lineto{-8.5359pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.49411pt}{0.0pt}\pgfsys@lineto{-8.5359pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.49411pt}{5.69046pt}\pgfsys@lineto{8.5359pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.49411pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.49411pt}{-5.69046pt}\pgfsys@lineto{18.49411pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@lineto{8.5359pt}{2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@moveto{-2.84535pt}{2.84544pt}\pgfsys@curveto{-2.84535pt}{5.98828pt}{-5.39307pt}{8.536pt}{-8.5359pt}{8.536pt}\pgfsys@curveto{-11.67874pt}{8.536pt}{-14.22646pt}{5.98828pt}{-14.22646pt}{2.84544pt}\pgfsys@curveto{-14.22646pt}{-0.2974pt}{-11.67874pt}{-2.84511pt}{-8.5359pt}{-2.84511pt}\pgfsys@curveto{-5.39307pt}{-2.84511pt}{-2.84535pt}{-0.2974pt}{-2.84535pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.4248pt}{0.34544pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{8.5359pt}{2.84544pt}\pgfsys@moveto{14.22646pt}{2.84544pt}\pgfsys@curveto{14.22646pt}{5.98828pt}{11.67874pt}{8.536pt}{8.5359pt}{8.536pt}\pgfsys@curveto{5.39307pt}{8.536pt}{2.84535pt}{5.98828pt}{2.84535pt}{2.84544pt}\pgfsys@curveto{2.84535pt}{-0.2974pt}{5.39307pt}{-2.84511pt}{8.5359pt}{-2.84511pt}\pgfsys@curveto{11.67874pt}{-2.84511pt}{14.22646pt}{-0.2974pt}{14.22646pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.86925pt}{0.69267pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}_{\rm disconnected}+\underbrace{\sum\leavevmode\hbox to37.39pt{\vbox to18.25pt{\pgfpicture\makeatletter\hbox{\hskip 18.6941pt\lower-8.736pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.49411pt}{5.69046pt}\pgfsys@lineto{18.49411pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.49411pt}{0.0pt}\pgfsys@lineto{-8.5359pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.49411pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.49411pt}{-5.69046pt}\pgfsys@lineto{18.49411pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@lineto{8.5359pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@moveto{-2.84535pt}{2.84544pt}\pgfsys@curveto{-2.84535pt}{5.98828pt}{-5.39307pt}{8.536pt}{-8.5359pt}{8.536pt}\pgfsys@curveto{-11.67874pt}{8.536pt}{-14.22646pt}{5.98828pt}{-14.22646pt}{2.84544pt}\pgfsys@curveto{-14.22646pt}{-0.2974pt}{-11.67874pt}{-2.84511pt}{-8.5359pt}{-2.84511pt}\pgfsys@curveto{-5.39307pt}{-2.84511pt}{-2.84535pt}{-0.2974pt}{-2.84535pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.4248pt}{0.34544pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{8.5359pt}{-2.84544pt}\pgfsys@moveto{14.22646pt}{-2.84544pt}\pgfsys@curveto{14.22646pt}{0.2974pt}{11.67874pt}{2.84511pt}{8.5359pt}{2.84511pt}\pgfsys@curveto{5.39307pt}{2.84511pt}{2.84535pt}{0.2974pt}{2.84535pt}{-2.84544pt}\pgfsys@curveto{2.84535pt}{-5.98828pt}{5.39307pt}{-8.536pt}{8.5359pt}{-8.536pt}\pgfsys@curveto{11.67874pt}{-8.536pt}{14.22646pt}{-5.98828pt}{14.22646pt}{-2.84544pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{-2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.86925pt}{-4.99821pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}+\sum\leavevmode\hbox to37.39pt{\vbox to18.25pt{\pgfpicture\makeatletter\hbox{\hskip 18.6941pt\lower-8.736pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.49411pt}{5.69046pt}\pgfsys@lineto{18.49411pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.49411pt}{0.0pt}\pgfsys@lineto{-8.5359pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.49411pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.49411pt}{-5.69046pt}\pgfsys@lineto{18.49411pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@lineto{8.5359pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@moveto{-2.84535pt}{2.84544pt}\pgfsys@curveto{-2.84535pt}{5.98828pt}{-5.39307pt}{8.536pt}{-8.5359pt}{8.536pt}\pgfsys@curveto{-11.67874pt}{8.536pt}{-14.22646pt}{5.98828pt}{-14.22646pt}{2.84544pt}\pgfsys@curveto{-14.22646pt}{-0.2974pt}{-11.67874pt}{-2.84511pt}{-8.5359pt}{-2.84511pt}\pgfsys@curveto{-5.39307pt}{-2.84511pt}{-2.84535pt}{-0.2974pt}{-2.84535pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.4248pt}{0.34544pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{8.5359pt}{-2.84544pt}\pgfsys@moveto{14.22646pt}{-2.84544pt}\pgfsys@curveto{14.22646pt}{0.2974pt}{11.67874pt}{2.84511pt}{8.5359pt}{2.84511pt}\pgfsys@curveto{5.39307pt}{2.84511pt}{2.84535pt}{0.2974pt}{2.84535pt}{-2.84544pt}\pgfsys@curveto{2.84535pt}{-5.98828pt}{5.39307pt}{-8.536pt}{8.5359pt}{-8.536pt}\pgfsys@curveto{11.67874pt}{-8.536pt}{14.22646pt}{-5.98828pt}{14.22646pt}{-2.84544pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{-2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.86925pt}{-4.99821pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}_{\rm connected}\,, (19)

where the sum sums over distinct assignments of the external legs to each blob, for example, there are in total 9 diagrams with a single internal line for the connected graph. The diagrams with multiple internal lines are kinematically forbidden when 4m2<ssubenergy<9m24m^{2}<s_{\rm subenergy}<9m^{2} with ssubenergy={s12,s23,s13,s45,s56,s46}s_{\rm subenergy}=\{s_{12},s_{23},s_{13},s_{45},s_{56},s_{46}\} for the label 456321 . In the following, we will consider the scenario where 4m2<ssubenergy<9m24m^{2}<s_{\rm subenergy}<9m^{2} since we are interested in the unstable particle that has 2-body decay only. The connected part of (18) then gives

+\displaystyle\leavevmode\hbox to34.54pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 17.27182pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{5.69046pt}\pgfsys@lineto{-17.07182pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{-17.07182pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{-5.69046pt}\pgfsys@lineto{-17.07182pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.8889pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}-\leavevmode\hbox to34.54pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 17.27182pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{5.69046pt}\pgfsys@lineto{-17.07182pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{-17.07182pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{-5.69046pt}\pgfsys@lineto{-17.07182pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.66666pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}} =+++++++.\displaystyle=\leavevmode\hbox to57.31pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 28.65276pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{5.69046pt}\pgfsys@lineto{-14.22638pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{-14.22638pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{-5.69046pt}\pgfsys@lineto{-14.22638pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{5.69046pt}\pgfsys@lineto{14.22638pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@lineto{14.22638pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{-5.69046pt}\pgfsys@lineto{14.22638pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@lineto{14.22638pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@moveto{-2.84528pt}{0.0pt}\pgfsys@curveto{-2.84528pt}{6.28569pt}{-7.94069pt}{11.3811pt}{-14.22638pt}{11.3811pt}\pgfsys@curveto{-20.51207pt}{11.3811pt}{-25.60748pt}{6.28569pt}{-25.60748pt}{0.0pt}\pgfsys@curveto{-25.60748pt}{-6.28569pt}{-20.51207pt}{-11.3811pt}{-14.22638pt}{-11.3811pt}\pgfsys@curveto{-7.94069pt}{-11.3811pt}{-2.84528pt}{-6.28569pt}{-2.84528pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.11528pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@moveto{25.60748pt}{0.0pt}\pgfsys@curveto{25.60748pt}{6.28569pt}{20.51207pt}{11.3811pt}{14.22638pt}{11.3811pt}\pgfsys@curveto{7.94069pt}{11.3811pt}{2.84528pt}{6.28569pt}{2.84528pt}{0.0pt}\pgfsys@curveto{2.84528pt}{-6.28569pt}{7.94069pt}{-11.3811pt}{14.22638pt}{-11.3811pt}\pgfsys@curveto{20.51207pt}{-11.3811pt}{25.60748pt}{-6.28569pt}{25.60748pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.55972pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}+\sum\leavevmode\hbox to45.92pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 28.65276pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{}{} {}{}{}\pgfsys@moveto{-28.45276pt}{5.69046pt}\pgfsys@lineto{17.07182pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{} {}{}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{} {}{}{}\pgfsys@moveto{-28.45276pt}{-5.69046pt}\pgfsys@lineto{17.07182pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@moveto{-2.84528pt}{0.0pt}\pgfsys@curveto{-2.84528pt}{6.28569pt}{-7.94069pt}{11.3811pt}{-14.22638pt}{11.3811pt}\pgfsys@curveto{-20.51207pt}{11.3811pt}{-25.60748pt}{6.28569pt}{-25.60748pt}{0.0pt}\pgfsys@curveto{-25.60748pt}{-6.28569pt}{-20.51207pt}{-11.3811pt}{-14.22638pt}{-11.3811pt}\pgfsys@curveto{-7.94069pt}{-11.3811pt}{-2.84528pt}{-6.28569pt}{-2.84528pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.11528pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{8.5359pt}{2.84544pt}\pgfsys@moveto{14.22646pt}{2.84544pt}\pgfsys@curveto{14.22646pt}{5.98828pt}{11.67874pt}{8.536pt}{8.5359pt}{8.536pt}\pgfsys@curveto{5.39307pt}{8.536pt}{2.84535pt}{5.98828pt}{2.84535pt}{2.84544pt}\pgfsys@curveto{2.84535pt}{-0.2974pt}{5.39307pt}{-2.84511pt}{8.5359pt}{-2.84511pt}\pgfsys@curveto{11.67874pt}{-2.84511pt}{14.22646pt}{-0.2974pt}{14.22646pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.86925pt}{0.69267pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}+\sum\leavevmode\hbox to45.92pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 17.27182pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{}{} {}{}{}\pgfsys@moveto{28.45276pt}{5.69046pt}\pgfsys@lineto{-17.07182pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{} {}{}{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@lineto{-17.07182pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{} {}{}{}\pgfsys@moveto{28.45276pt}{-5.69046pt}\pgfsys@lineto{-17.07182pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@moveto{25.60748pt}{0.0pt}\pgfsys@curveto{25.60748pt}{6.28569pt}{20.51207pt}{11.3811pt}{14.22638pt}{11.3811pt}\pgfsys@curveto{7.94069pt}{11.3811pt}{2.84528pt}{6.28569pt}{2.84528pt}{0.0pt}\pgfsys@curveto{2.84528pt}{-6.28569pt}{7.94069pt}{-11.3811pt}{14.22638pt}{-11.3811pt}\pgfsys@curveto{20.51207pt}{-11.3811pt}{25.60748pt}{-6.28569pt}{25.60748pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.55972pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@moveto{-2.84535pt}{2.84544pt}\pgfsys@curveto{-2.84535pt}{5.98828pt}{-5.39307pt}{8.536pt}{-8.5359pt}{8.536pt}\pgfsys@curveto{-11.67874pt}{8.536pt}{-14.22646pt}{5.98828pt}{-14.22646pt}{2.84544pt}\pgfsys@curveto{-14.22646pt}{-0.2974pt}{-11.67874pt}{-2.84511pt}{-8.5359pt}{-2.84511pt}\pgfsys@curveto{-5.39307pt}{-2.84511pt}{-2.84535pt}{-0.2974pt}{-2.84535pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.4248pt}{0.34544pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}+\sum\leavevmode\hbox to37.39pt{\vbox to18.25pt{\pgfpicture\makeatletter\hbox{\hskip 18.6941pt\lower-8.736pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.49411pt}{5.69046pt}\pgfsys@lineto{18.49411pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.49411pt}{0.0pt}\pgfsys@lineto{-8.5359pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.49411pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.49411pt}{-5.69046pt}\pgfsys@lineto{18.49411pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@lineto{8.5359pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@moveto{-2.84535pt}{2.84544pt}\pgfsys@curveto{-2.84535pt}{5.98828pt}{-5.39307pt}{8.536pt}{-8.5359pt}{8.536pt}\pgfsys@curveto{-11.67874pt}{8.536pt}{-14.22646pt}{5.98828pt}{-14.22646pt}{2.84544pt}\pgfsys@curveto{-14.22646pt}{-0.2974pt}{-11.67874pt}{-2.84511pt}{-8.5359pt}{-2.84511pt}\pgfsys@curveto{-5.39307pt}{-2.84511pt}{-2.84535pt}{-0.2974pt}{-2.84535pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.4248pt}{0.34544pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{8.5359pt}{-2.84544pt}\pgfsys@moveto{14.22646pt}{-2.84544pt}\pgfsys@curveto{14.22646pt}{0.2974pt}{11.67874pt}{2.84511pt}{8.5359pt}{2.84511pt}\pgfsys@curveto{5.39307pt}{2.84511pt}{2.84535pt}{0.2974pt}{2.84535pt}{-2.84544pt}\pgfsys@curveto{2.84535pt}{-5.98828pt}{5.39307pt}{-8.536pt}{8.5359pt}{-8.536pt}\pgfsys@curveto{11.67874pt}{-8.536pt}{14.22646pt}{-5.98828pt}{14.22646pt}{-2.84544pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{-2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.86925pt}{-4.99821pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\,. (20)

Note that the disconnected part of (18) independently holds thanks to the 2-to-2 unitarity. Now an alternative expression of the 3-to-3 unitarity can be obtained by starting with the equation SSS=SSS^{\dagger}S=S rather than SS=1SS^{\dagger}=1:

(21)

Assuming 4m2<ssubenergy<9m24m^{2}<s_{\rm subenergy}<9m^{2} and using the 2-to-2 unitarity, we can rewrite the first term in the last line as, Hence, the disconnected part of (21) is cancelled as it should be, whereas the connect part yields

(23)

The different forms of the 3-to-3 unitarity equations (20) and (23) allow us to evaluate different discontinuities as we will see shortly.

The unitarity equations (20) and (23) are composed of various terms and it is hard to see their implications. We adopt the proposal olive1965unitarity that each term of unitarity equations evaluates discontinuity across individual variables. It relies on the following postulated 2-particle discontinuity equations

+=+=+,+=+=+.\displaystyle\begin{split}\leavevmode\hbox to34.54pt{\vbox to23.94pt{\pgfpicture\makeatletter\hbox{\hskip 17.27182pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{5.69046pt}\pgfsys@lineto{-17.07182pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{-17.07182pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{-5.69046pt}\pgfsys@lineto{-17.07182pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}{{}}{}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{0.0pt}{11.38092pt}\pgfsys@curveto{0.0pt}{4.55118pt}{4.48209pt}{-0.78989pt}{11.20813pt}{-1.97583pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.80156pt}{3.19046pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}-\leavevmode\hbox to34.54pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 17.27182pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{5.69046pt}\pgfsys@lineto{-17.07182pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{-17.07182pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{-5.69046pt}\pgfsys@lineto{-17.07182pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}{{}}{}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{0.0pt}{11.38092pt}\pgfsys@curveto{0.0pt}{4.55118pt}{4.48209pt}{-0.78989pt}{11.20813pt}{-1.97583pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.0238pt}{3.53769pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&=\leavevmode\hbox to43.08pt{\vbox to23.94pt{\pgfpicture\makeatletter\hbox{\hskip 14.42638pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{5.69046pt}\pgfsys@lineto{-14.22638pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@lineto{-14.22638pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{-5.69046pt}\pgfsys@lineto{-14.22638pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}{{}}{}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{0.0pt}{11.38092pt}\pgfsys@curveto{0.0pt}{4.55118pt}{4.48209pt}{-0.78989pt}{11.20813pt}{-1.97583pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{2.84544pt}\pgfsys@moveto{25.60739pt}{2.84544pt}\pgfsys@curveto{25.60739pt}{5.98828pt}{23.05968pt}{8.536pt}{19.91684pt}{8.536pt}\pgfsys@curveto{16.774pt}{8.536pt}{14.22629pt}{5.98828pt}{14.22629pt}{2.84544pt}\pgfsys@curveto{14.22629pt}{-0.2974pt}{16.774pt}{-2.84511pt}{19.91684pt}{-2.84511pt}\pgfsys@curveto{23.05968pt}{-2.84511pt}{25.60739pt}{-0.2974pt}{25.60739pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{1.80156pt}{3.19046pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.25018pt}{0.69267pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}=\leavevmode\hbox to43.08pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 14.42638pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{5.69046pt}\pgfsys@lineto{-14.22638pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@lineto{-14.22638pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{-5.69046pt}\pgfsys@lineto{-14.22638pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}{{}}{}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{0.0pt}{11.38092pt}\pgfsys@curveto{0.0pt}{4.55118pt}{4.48209pt}{-0.78989pt}{11.20813pt}{-1.97583pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{19.91684pt}{2.84544pt}\pgfsys@moveto{25.60739pt}{2.84544pt}\pgfsys@curveto{25.60739pt}{5.98828pt}{23.05968pt}{8.536pt}{19.91684pt}{8.536pt}\pgfsys@curveto{16.774pt}{8.536pt}{14.22629pt}{5.98828pt}{14.22629pt}{2.84544pt}\pgfsys@curveto{14.22629pt}{-0.2974pt}{16.774pt}{-2.84511pt}{19.91684pt}{-2.84511pt}\pgfsys@curveto{23.05968pt}{-2.84511pt}{25.60739pt}{-0.2974pt}{25.60739pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{19.91684pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.0238pt}{3.53769pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{16.02794pt}{0.34544pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\,,\\ \leavevmode\hbox to34.54pt{\vbox to23.94pt{\pgfpicture\makeatletter\hbox{\hskip 17.27182pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{5.69046pt}\pgfsys@lineto{-17.07182pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{-17.07182pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{-5.69046pt}\pgfsys@lineto{-17.07182pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}{{}}{}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{0.0pt}{11.38092pt}\pgfsys@curveto{0.0pt}{4.55118pt}{-4.48209pt}{-0.78989pt}{-11.20813pt}{-1.97583pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.57936pt}{3.19046pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}-\leavevmode\hbox to34.54pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 17.27182pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{5.69046pt}\pgfsys@lineto{-17.07182pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{-17.07182pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{-5.69046pt}\pgfsys@lineto{-17.07182pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}{{}}{}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{0.0pt}{11.38092pt}\pgfsys@curveto{0.0pt}{4.55118pt}{-4.48209pt}{-0.78989pt}{-11.20813pt}{-1.97583pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.35712pt}{3.53769pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&=\leavevmode\hbox to43.08pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 28.65276pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{5.69046pt}\pgfsys@lineto{14.22638pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{14.22638pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{-5.69046pt}\pgfsys@lineto{14.22638pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}{{}}{}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{0.0pt}{11.38092pt}\pgfsys@curveto{0.0pt}{4.55118pt}{-4.48209pt}{-0.78989pt}{-11.20813pt}{-1.97583pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-19.91684pt}{2.84544pt}\pgfsys@moveto{-14.22629pt}{2.84544pt}\pgfsys@curveto{-14.22629pt}{5.98828pt}{-16.774pt}{8.536pt}{-19.91684pt}{8.536pt}\pgfsys@curveto{-23.05968pt}{8.536pt}{-25.60739pt}{5.98828pt}{-25.60739pt}{2.84544pt}\pgfsys@curveto{-25.60739pt}{-0.2974pt}{-23.05968pt}{-2.84511pt}{-19.91684pt}{-2.84511pt}\pgfsys@curveto{-16.774pt}{-2.84511pt}{-14.22629pt}{-0.2974pt}{-14.22629pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{-19.91684pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.35712pt}{3.53769pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-23.80574pt}{0.34544pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}=\leavevmode\hbox to43.08pt{\vbox to23.94pt{\pgfpicture\makeatletter\hbox{\hskip 28.65276pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{5.69046pt}\pgfsys@lineto{14.22638pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{14.22638pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{-5.69046pt}\pgfsys@lineto{14.22638pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}{{}}{}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{0.0pt}{11.38092pt}\pgfsys@curveto{0.0pt}{4.55118pt}{-4.48209pt}{-0.78989pt}{-11.20813pt}{-1.97583pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-19.91684pt}{2.84544pt}\pgfsys@moveto{-14.22629pt}{2.84544pt}\pgfsys@curveto{-14.22629pt}{5.98828pt}{-16.774pt}{8.536pt}{-19.91684pt}{8.536pt}\pgfsys@curveto{-23.05968pt}{8.536pt}{-25.60739pt}{5.98828pt}{-25.60739pt}{2.84544pt}\pgfsys@curveto{-25.60739pt}{-0.2974pt}{-23.05968pt}{-2.84511pt}{-19.91684pt}{-2.84511pt}\pgfsys@curveto{-16.774pt}{-2.84511pt}{-14.22629pt}{-0.2974pt}{-14.22629pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{-19.91684pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.57936pt}{3.19046pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-21.5835pt}{0.69267pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\,.\end{split} (24)

Here, the labels (±)(\pm) only refer to the ways of the approach of the specified subenergy variable, namely s23=(p2+p3)2s_{23}=-(p_{2}+p_{3})^{2} and s45=(p4+p5)2s_{45}=-(p_{4}+p_{5})^{2}. All other variables are held at fixed real values. Applying the 2-particle discontinuity equations twice and using the 2-to-2 unitarity, we find

++=++++++.\displaystyle\leavevmode\hbox to40.23pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 20.11684pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{19.91684pt}{5.69046pt}\pgfsys@lineto{-19.91684pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{19.91684pt}{0.0pt}\pgfsys@lineto{-19.91684pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{19.91684pt}{-5.69046pt}\pgfsys@lineto{-19.91684pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}{{}}{}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{0.99161pt}{11.33751pt}\pgfsys@curveto{0.99161pt}{4.7647pt}{4.63531pt}{-1.97583pt}{11.20813pt}{-1.97583pt}\pgfsys@stroke\pgfsys@invoke{ } {}{}{}{{}}{}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{-0.99161pt}{11.33751pt}\pgfsys@curveto{-0.99161pt}{4.7647pt}{-4.63531pt}{-1.97583pt}{-11.20813pt}{-1.97583pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.93991pt}{2.33691pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.71771pt}{2.33691pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.66666pt}{-4.99821pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}-\leavevmode\hbox to34.54pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 17.27182pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{5.69046pt}\pgfsys@lineto{-17.07182pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{-17.07182pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{-5.69046pt}\pgfsys@lineto{-17.07182pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.66666pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}=\leavevmode\hbox to45.92pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 28.65276pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{}{} {}{}{}\pgfsys@moveto{-28.45276pt}{5.69046pt}\pgfsys@lineto{17.07182pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{} {}{}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{} {}{}{}\pgfsys@moveto{-28.45276pt}{-5.69046pt}\pgfsys@lineto{17.07182pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@moveto{-2.84528pt}{0.0pt}\pgfsys@curveto{-2.84528pt}{6.28569pt}{-7.94069pt}{11.3811pt}{-14.22638pt}{11.3811pt}\pgfsys@curveto{-20.51207pt}{11.3811pt}{-25.60748pt}{6.28569pt}{-25.60748pt}{0.0pt}\pgfsys@curveto{-25.60748pt}{-6.28569pt}{-20.51207pt}{-11.3811pt}{-14.22638pt}{-11.3811pt}\pgfsys@curveto{-7.94069pt}{-11.3811pt}{-2.84528pt}{-6.28569pt}{-2.84528pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-15.89304pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{8.5359pt}{2.84544pt}\pgfsys@moveto{14.22646pt}{2.84544pt}\pgfsys@curveto{14.22646pt}{5.98828pt}{11.67874pt}{8.536pt}{8.5359pt}{8.536pt}\pgfsys@curveto{5.39307pt}{8.536pt}{2.84535pt}{5.98828pt}{2.84535pt}{2.84544pt}\pgfsys@curveto{2.84535pt}{-0.2974pt}{5.39307pt}{-2.84511pt}{8.5359pt}{-2.84511pt}\pgfsys@curveto{11.67874pt}{-2.84511pt}{14.22646pt}{-0.2974pt}{14.22646pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.647pt}{0.34544pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}+\leavevmode\hbox to45.92pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 17.27182pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{}{} {}{}{}\pgfsys@moveto{28.45276pt}{5.69046pt}\pgfsys@lineto{-17.07182pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{} {}{}{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@lineto{-17.07182pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{} {}{}{}\pgfsys@moveto{28.45276pt}{-5.69046pt}\pgfsys@lineto{-17.07182pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@moveto{25.60748pt}{0.0pt}\pgfsys@curveto{25.60748pt}{6.28569pt}{20.51207pt}{11.3811pt}{14.22638pt}{11.3811pt}\pgfsys@curveto{7.94069pt}{11.3811pt}{2.84528pt}{6.28569pt}{2.84528pt}{0.0pt}\pgfsys@curveto{2.84528pt}{-6.28569pt}{7.94069pt}{-11.3811pt}{14.22638pt}{-11.3811pt}\pgfsys@curveto{20.51207pt}{-11.3811pt}{25.60748pt}{-6.28569pt}{25.60748pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.55972pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@moveto{-2.84535pt}{2.84544pt}\pgfsys@curveto{-2.84535pt}{5.98828pt}{-5.39307pt}{8.536pt}{-8.5359pt}{8.536pt}\pgfsys@curveto{-11.67874pt}{8.536pt}{-14.22646pt}{5.98828pt}{-14.22646pt}{2.84544pt}\pgfsys@curveto{-14.22646pt}{-0.2974pt}{-11.67874pt}{-2.84511pt}{-8.5359pt}{-2.84511pt}\pgfsys@curveto{-5.39307pt}{-2.84511pt}{-2.84535pt}{-0.2974pt}{-2.84535pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.4248pt}{0.34544pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}+\leavevmode\hbox to63pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 17.27182pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{45.52458pt}{5.69046pt}\pgfsys@lineto{-17.07182pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{45.52458pt}{0.0pt}\pgfsys@lineto{-17.07182pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{45.52458pt}{-5.69046pt}\pgfsys@lineto{-17.07182pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@moveto{25.60748pt}{0.0pt}\pgfsys@curveto{25.60748pt}{6.28569pt}{20.51207pt}{11.3811pt}{14.22638pt}{11.3811pt}\pgfsys@curveto{7.94069pt}{11.3811pt}{2.84528pt}{6.28569pt}{2.84528pt}{0.0pt}\pgfsys@curveto{2.84528pt}{-6.28569pt}{7.94069pt}{-11.3811pt}{14.22638pt}{-11.3811pt}\pgfsys@curveto{20.51207pt}{-11.3811pt}{25.60748pt}{-6.28569pt}{25.60748pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.55972pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-7.11319pt}{2.84544pt}\pgfsys@moveto{-1.42264pt}{2.84544pt}\pgfsys@curveto{-1.42264pt}{5.98828pt}{-3.97035pt}{8.536pt}{-7.11319pt}{8.536pt}\pgfsys@curveto{-10.25603pt}{8.536pt}{-12.80374pt}{5.98828pt}{-12.80374pt}{2.84544pt}\pgfsys@curveto{-12.80374pt}{-0.2974pt}{-10.25603pt}{-2.84511pt}{-7.11319pt}{-2.84511pt}\pgfsys@curveto{-3.97035pt}{-2.84511pt}{-1.42264pt}{-0.2974pt}{-1.42264pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{-7.11319pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-11.00209pt}{0.34544pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{35.56595pt}{2.84544pt}\pgfsys@moveto{41.2565pt}{2.84544pt}\pgfsys@curveto{41.2565pt}{5.98828pt}{38.70879pt}{8.536pt}{35.56595pt}{8.536pt}\pgfsys@curveto{32.42311pt}{8.536pt}{29.8754pt}{5.98828pt}{29.8754pt}{2.84544pt}\pgfsys@curveto{29.8754pt}{-0.2974pt}{32.42311pt}{-2.84511pt}{35.56595pt}{-2.84511pt}\pgfsys@curveto{38.70879pt}{-2.84511pt}{41.2565pt}{-0.2974pt}{41.2565pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{35.56595pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{31.67705pt}{0.34544pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\,. (25)

Let us reorganise the unitarity equations (20) and (23) as

+++\displaystyle\leavevmode\hbox to34.54pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 17.27182pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{5.69046pt}\pgfsys@lineto{-17.07182pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{-17.07182pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{-5.69046pt}\pgfsys@lineto{-17.07182pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}{{}}{}{}{}{} {}{}{}\pgfsys@moveto{3.89218pt}{10.69452pt}\pgfsys@lineto{3.89218pt}{-10.69452pt}\pgfsys@stroke\pgfsys@invoke{ } {}{}{}{{}}{}{}{}{} {}{}{}\pgfsys@moveto{-3.89218pt}{10.69452pt}\pgfsys@lineto{-3.89218pt}{-10.69452pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.72223pt}{-1.75pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.80008pt}{-1.50694pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.68896pt}{-1.75pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}-\leavevmode\hbox to34.54pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 17.27182pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{5.69046pt}\pgfsys@lineto{-17.07182pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{-17.07182pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{-5.69046pt}\pgfsys@lineto{-17.07182pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}{{}}{}{}{}{} {}{}{}\pgfsys@moveto{3.89218pt}{10.69452pt}\pgfsys@lineto{3.89218pt}{-10.69452pt}\pgfsys@stroke\pgfsys@invoke{ } {}{}{}{{}}{}{}{}{} {}{}{}\pgfsys@moveto{-3.89218pt}{10.69452pt}\pgfsys@lineto{-3.89218pt}{-10.69452pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.16666pt}{-1.50694pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.80008pt}{-1.50694pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.68896pt}{-1.75pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}} =+++,\displaystyle=\leavevmode\hbox to57.31pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 28.65276pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{5.69046pt}\pgfsys@lineto{-14.22638pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{-14.22638pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-28.45276pt}{-5.69046pt}\pgfsys@lineto{-14.22638pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{5.69046pt}\pgfsys@lineto{14.22638pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@lineto{14.22638pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{28.45276pt}{-5.69046pt}\pgfsys@lineto{14.22638pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@lineto{14.22638pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@moveto{-2.84528pt}{0.0pt}\pgfsys@curveto{-2.84528pt}{6.28569pt}{-7.94069pt}{11.3811pt}{-14.22638pt}{11.3811pt}\pgfsys@curveto{-20.51207pt}{11.3811pt}{-25.60748pt}{6.28569pt}{-25.60748pt}{0.0pt}\pgfsys@curveto{-25.60748pt}{-6.28569pt}{-20.51207pt}{-11.3811pt}{-14.22638pt}{-11.3811pt}\pgfsys@curveto{-7.94069pt}{-11.3811pt}{-2.84528pt}{-6.28569pt}{-2.84528pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.11528pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@moveto{25.60748pt}{0.0pt}\pgfsys@curveto{25.60748pt}{6.28569pt}{20.51207pt}{11.3811pt}{14.22638pt}{11.3811pt}\pgfsys@curveto{7.94069pt}{11.3811pt}{2.84528pt}{6.28569pt}{2.84528pt}{0.0pt}\pgfsys@curveto{2.84528pt}{-6.28569pt}{7.94069pt}{-11.3811pt}{14.22638pt}{-11.3811pt}\pgfsys@curveto{20.51207pt}{-11.3811pt}{25.60748pt}{-6.28569pt}{25.60748pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.55972pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}+\sum\leavevmode\hbox to37.39pt{\vbox to18.25pt{\pgfpicture\makeatletter\hbox{\hskip 18.6941pt\lower-8.736pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.49411pt}{5.69046pt}\pgfsys@lineto{18.49411pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.49411pt}{0.0pt}\pgfsys@lineto{-8.5359pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.49411pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.49411pt}{-5.69046pt}\pgfsys@lineto{18.49411pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@lineto{8.5359pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@moveto{-2.84535pt}{2.84544pt}\pgfsys@curveto{-2.84535pt}{5.98828pt}{-5.39307pt}{8.536pt}{-8.5359pt}{8.536pt}\pgfsys@curveto{-11.67874pt}{8.536pt}{-14.22646pt}{5.98828pt}{-14.22646pt}{2.84544pt}\pgfsys@curveto{-14.22646pt}{-0.2974pt}{-11.67874pt}{-2.84511pt}{-8.5359pt}{-2.84511pt}\pgfsys@curveto{-5.39307pt}{-2.84511pt}{-2.84535pt}{-0.2974pt}{-2.84535pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.4248pt}{0.34544pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{8.5359pt}{-2.84544pt}\pgfsys@moveto{14.22646pt}{-2.84544pt}\pgfsys@curveto{14.22646pt}{0.2974pt}{11.67874pt}{2.84511pt}{8.5359pt}{2.84511pt}\pgfsys@curveto{5.39307pt}{2.84511pt}{2.84535pt}{0.2974pt}{2.84535pt}{-2.84544pt}\pgfsys@curveto{2.84535pt}{-5.98828pt}{5.39307pt}{-8.536pt}{8.5359pt}{-8.536pt}\pgfsys@curveto{11.67874pt}{-8.536pt}{14.22646pt}{-5.98828pt}{14.22646pt}{-2.84544pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{-2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{6.86925pt}{-4.99821pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\,, (26)
+++++\displaystyle\leavevmode\hbox to34.54pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 17.27182pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{5.69046pt}\pgfsys@lineto{-17.07182pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{-17.07182pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{-5.69046pt}\pgfsys@lineto{-17.07182pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}{{}}{}{}{}{} {}{}{}\pgfsys@moveto{3.89218pt}{10.69452pt}\pgfsys@lineto{3.89218pt}{-10.69452pt}\pgfsys@stroke\pgfsys@invoke{ } {}{}{}{{}}{}{}{}{} {}{}{}\pgfsys@moveto{-3.89218pt}{10.69452pt}\pgfsys@lineto{-3.89218pt}{-10.69452pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.72223pt}{-1.75pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.2445pt}{-1.75pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.68896pt}{-1.75pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}-\leavevmode\hbox to34.54pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 17.27182pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{5.69046pt}\pgfsys@lineto{-17.07182pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{0.0pt}\pgfsys@lineto{-17.07182pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{-5.69046pt}\pgfsys@lineto{-17.07182pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}{{}}{}{}{}{} {}{}{}\pgfsys@moveto{3.89218pt}{10.69452pt}\pgfsys@lineto{3.89218pt}{-10.69452pt}\pgfsys@stroke\pgfsys@invoke{ } {}{}{}{{}}{}{}{}{} {}{}{}\pgfsys@moveto{-3.89218pt}{10.69452pt}\pgfsys@lineto{-3.89218pt}{-10.69452pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.16666pt}{-1.50694pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{5.2445pt}{-1.75pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.68896pt}{-1.75pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\scriptsize$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}} =+S+++++++,\displaystyle=\leavevmode\hbox to85.76pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 42.87914pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-42.67914pt}{5.69046pt}\pgfsys@lineto{-28.45276pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-42.67914pt}{0.0pt}\pgfsys@lineto{-28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-42.67914pt}{-5.69046pt}\pgfsys@lineto{-28.45276pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{42.67914pt}{5.69046pt}\pgfsys@lineto{28.45276pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@lineto{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{42.67914pt}{-5.69046pt}\pgfsys@lineto{28.45276pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@lineto{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@moveto{-17.07166pt}{0.0pt}\pgfsys@curveto{-17.07166pt}{6.28569pt}{-22.16707pt}{11.3811pt}{-28.45276pt}{11.3811pt}\pgfsys@curveto{-34.73845pt}{11.3811pt}{-39.83386pt}{6.28569pt}{-39.83386pt}{0.0pt}\pgfsys@curveto{-39.83386pt}{-6.28569pt}{-34.73845pt}{-11.3811pt}{-28.45276pt}{-11.3811pt}\pgfsys@curveto{-22.16707pt}{-11.3811pt}{-17.07166pt}{-6.28569pt}{-17.07166pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-28.45276pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-32.34166pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.5986pt}{-4.38887pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$S^{\dagger}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@moveto{39.83386pt}{0.0pt}\pgfsys@curveto{39.83386pt}{6.28569pt}{34.73845pt}{11.3811pt}{28.45276pt}{11.3811pt}\pgfsys@curveto{22.16707pt}{11.3811pt}{17.07166pt}{6.28569pt}{17.07166pt}{0.0pt}\pgfsys@curveto{17.07166pt}{-6.28569pt}{22.16707pt}{-11.3811pt}{28.45276pt}{-11.3811pt}\pgfsys@curveto{34.73845pt}{-11.3811pt}{39.83386pt}{-6.28569pt}{39.83386pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{24.56386pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}+\sum\leavevmode\hbox to37.39pt{\vbox to19.02pt{\pgfpicture\makeatletter\hbox{\hskip 18.6941pt\lower-9.51178pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.49411pt}{5.69046pt}\pgfsys@lineto{18.49411pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.49411pt}{0.0pt}\pgfsys@lineto{-8.5359pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{18.49411pt}{0.0pt}\pgfsys@lineto{8.5359pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-18.49411pt}{-5.69046pt}\pgfsys@lineto{18.49411pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@lineto{8.5359pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@moveto{-2.84535pt}{2.84544pt}\pgfsys@curveto{-2.84535pt}{5.98828pt}{-5.39307pt}{8.536pt}{-8.5359pt}{8.536pt}\pgfsys@curveto{-11.67874pt}{8.536pt}{-14.22646pt}{5.98828pt}{-14.22646pt}{2.84544pt}\pgfsys@curveto{-14.22646pt}{-0.2974pt}{-11.67874pt}{-2.84511pt}{-8.5359pt}{-2.84511pt}\pgfsys@curveto{-5.39307pt}{-2.84511pt}{-2.84535pt}{-0.2974pt}{-2.84535pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{-8.5359pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.4248pt}{0.34544pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{8.5359pt}{-2.84544pt}\pgfsys@moveto{14.22646pt}{-2.84544pt}\pgfsys@curveto{14.22646pt}{0.2974pt}{11.67874pt}{2.84511pt}{8.5359pt}{2.84511pt}\pgfsys@curveto{5.39307pt}{2.84511pt}{2.84535pt}{0.2974pt}{2.84535pt}{-2.84544pt}\pgfsys@curveto{2.84535pt}{-5.98828pt}{5.39307pt}{-8.536pt}{8.5359pt}{-8.536pt}\pgfsys@curveto{11.67874pt}{-8.536pt}{14.22646pt}{-5.98828pt}{14.22646pt}{-2.84544pt}\pgfsys@closepath\pgfsys@moveto{8.5359pt}{-2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.647pt}{-5.34544pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}+\sum\leavevmode\hbox to51.61pt{\vbox to18.25pt{\pgfpicture\makeatletter\hbox{\hskip 25.8073pt\lower-8.736pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{25.6073pt}{-5.69046pt}\pgfsys@lineto{-25.6073pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{25.6073pt}{5.69046pt}\pgfsys@lineto{-25.6073pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{25.6073pt}{0.0pt}\pgfsys@lineto{17.07182pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-25.6073pt}{0.0pt}\pgfsys@lineto{-17.07182pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{-17.07182pt}{2.84544pt}\pgfsys@lineto{0.0pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{2.84544pt}\pgfsys@lineto{0.0pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-17.07182pt}{2.84544pt}\pgfsys@moveto{-11.38127pt}{2.84544pt}\pgfsys@curveto{-11.38127pt}{5.98828pt}{-13.92899pt}{8.536pt}{-17.07182pt}{8.536pt}\pgfsys@curveto{-20.21466pt}{8.536pt}{-22.76237pt}{5.98828pt}{-22.76237pt}{2.84544pt}\pgfsys@curveto{-22.76237pt}{-0.2974pt}{-20.21466pt}{-2.84511pt}{-17.07182pt}{-2.84511pt}\pgfsys@curveto{-13.92899pt}{-2.84511pt}{-11.38127pt}{-0.2974pt}{-11.38127pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{-17.07182pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-20.96072pt}{0.34544pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{-2.84544pt}\pgfsys@moveto{5.69055pt}{-2.84544pt}\pgfsys@curveto{5.69055pt}{0.2974pt}{3.14284pt}{2.84511pt}{0.0pt}{2.84511pt}\pgfsys@curveto{-3.14284pt}{2.84511pt}{-5.69055pt}{0.2974pt}{-5.69055pt}{-2.84544pt}\pgfsys@curveto{-5.69055pt}{-5.98828pt}{-3.14284pt}{-8.536pt}{0.0pt}{-8.536pt}\pgfsys@curveto{3.14284pt}{-8.536pt}{5.69055pt}{-5.98828pt}{5.69055pt}{-2.84544pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.66666pt}{-4.99821pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{17.07182pt}{2.84544pt}\pgfsys@moveto{22.76237pt}{2.84544pt}\pgfsys@curveto{22.76237pt}{5.98828pt}{20.21466pt}{8.536pt}{17.07182pt}{8.536pt}\pgfsys@curveto{13.92899pt}{8.536pt}{11.38127pt}{5.98828pt}{11.38127pt}{2.84544pt}\pgfsys@curveto{11.38127pt}{-0.2974pt}{13.92899pt}{-2.84511pt}{17.07182pt}{-2.84511pt}\pgfsys@curveto{20.21466pt}{-2.84511pt}{22.76237pt}{-0.2974pt}{22.76237pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{13.18292pt}{0.34544pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\,, (27)

where on the LHS, the left/right entries refer to the position of the upper left/right two-particle subenergy variables while the centre entry refers to the remaining variables Eden:1966dnq . More precisely, For example in the first line, while s23s_{23} is above the real axes, s45s_{45} has been brought below the real axes by subtracting the two-particle discontinuity. Now, importantly, the left and right subenergies (s23s_{23} and s45s_{45}) are aligned in (26) and (27). Therefore, (26) and (27) are understood as the discontinuities for fixed subenergy variables, which can be used to define the unitarity equation for unstable particles!

As mentioned in the previous section, the continuation in s23s_{23} and s45s_{45} will inevitably deform other Mandelstam variables which could encounter additional thresholds. This leads to an ambiguity, i.e. the unstable S-matrix which requires us to move off the physical sheet is ambiguous as it depends on “how” the analytic continuation is done. This is not surprising as the amplitude is multi-sheeted and a given unstable pole can appear on different sheets. As we would like to infer the property of unstable particle S-matrix from unitarity, we assume the existence of a certain region of kinematics such that a complex pole is the singularity closest to the real axis. This particularly means that the loop integral of the unitarity equations does not require contour deformation during the analytic continuation. We define the unstable-particle amplitude 4ab\mathcal{M}_{4}^{ab} in such a region and discuss its unitarity equation. We will come back to the issue of other singularities at the end of this section.

We analytically continue (26) and (27) in the variables s23s_{23} and s45s_{45} for fixed ss and tt where the variables (s,t,u)(s,t,u) are the Mandelstam variables of the embedded 2-to-2 diagram. They are related to the variables of the 3-to-3 diagram via s=s123=s456,t=s16=s2345s=s_{123}=s_{456},t=s_{16}=s_{2345} and u=s145=s236u=s_{145}=s_{236}. Note that the second term of RHS of (26) and (27) includes the uu-channel single-particle exchange diagram [see (19)]. However, the diagram is proportional to δ(m2u)\delta(m^{2}-u) so we can ignore the uu-channel diagram as long as u=2m2+s23+s45(s+t)m2u=2m^{2}+s_{23}+s_{45}-(s+t)\neq m^{2}. Then, the analytic continuations of (26) and (27) give, after divided by common factors,555The unitarity equation of 4++\mathcal{M}_{4}^{++} was briefly discussed in Aoki:2022qbf in a slightly different way. The expression in Aoki:2022qbf is not symmetrical in the in/out states while (30) has such a symmetry, but two expressions are equivalent under unitarity.

{feynhand}\propag\propag+{feynhand}\propag\propag+\displaystyle\leavevmode\hbox to40.23pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 20.11684pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand {}{{}}{} {}{}{}\pgfsys@moveto{19.91684pt}{-4.26773pt}\pgfsys@lineto{-19.91684pt}{-4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } \propag[boson] (-0.7,0.15) -- (0, 0.15) ; \propag[boson] (0.7,0.15) -- (0, 0.15) ; {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}{{}}{}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{0.0pt}{11.38092pt}\pgfsys@curveto{0.0pt}{4.55118pt}{4.48209pt}{-0.78989pt}{11.20813pt}{-1.97583pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{4.0238pt}{3.53769pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.31161pt}{-3.92271pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}-\leavevmode\hbox to40.23pt{\vbox to23.94pt{\pgfpicture\makeatletter\hbox{\hskip 20.11684pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand {}{{}}{} {}{}{}\pgfsys@moveto{19.91684pt}{-4.26773pt}\pgfsys@lineto{-19.91684pt}{-4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } \propag[boson] (-0.7,0.15) -- (0, 0.15) ; \propag[boson] (0.7,0.15) -- (0, 0.15) ; {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}{{}}{}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{0.0pt}{11.38092pt}\pgfsys@curveto{0.0pt}{4.55118pt}{-4.48209pt}{-0.78989pt}{-11.20813pt}{-1.97583pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.57936pt}{3.19046pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-0.24394pt}{-3.57549pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}} ={feynhand}\propag\propag+\displaystyle=\leavevmode\hbox to68.69pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 34.34322pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand {}{{}}{} {}{}{}\pgfsys@moveto{-34.14322pt}{-5.69046pt}\pgfsys@lineto{-14.22638pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{34.14322pt}{-5.69046pt}\pgfsys@lineto{14.22638pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@lineto{14.22638pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\propag[boson] (-1.2,0.1) -- (-0.5, 0.1) ; \propag[boson] (1.2,0.1) -- (0.5, 0.1) ; {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@moveto{-2.84528pt}{0.0pt}\pgfsys@curveto{-2.84528pt}{6.28569pt}{-7.94069pt}{11.3811pt}{-14.22638pt}{11.3811pt}\pgfsys@curveto{-20.51207pt}{11.3811pt}{-25.60748pt}{6.28569pt}{-25.60748pt}{0.0pt}\pgfsys@curveto{-25.60748pt}{-6.28569pt}{-20.51207pt}{-11.3811pt}{-14.22638pt}{-11.3811pt}\pgfsys@curveto{-7.94069pt}{-11.3811pt}{-2.84528pt}{-6.28569pt}{-2.84528pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.11528pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@moveto{25.60748pt}{0.0pt}\pgfsys@curveto{25.60748pt}{6.28569pt}{20.51207pt}{11.3811pt}{14.22638pt}{11.3811pt}\pgfsys@curveto{7.94069pt}{11.3811pt}{2.84528pt}{6.28569pt}{2.84528pt}{0.0pt}\pgfsys@curveto{2.84528pt}{-6.28569pt}{7.94069pt}{-11.3811pt}{14.22638pt}{-11.3811pt}\pgfsys@curveto{20.51207pt}{-11.3811pt}{25.60748pt}{-6.28569pt}{25.60748pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{12.55972pt}{-2.15277pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}} (29)
{feynhand}\propag\propag+{feynhand}\propag\propag++\displaystyle\leavevmode\hbox to40.23pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 20.11684pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand {}{{}}{} {}{}{}\pgfsys@moveto{19.91684pt}{-4.26773pt}\pgfsys@lineto{-19.91684pt}{-4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } \propag[boson] (-0.7,0.15) -- (0, 0.15) ; \propag[boson] (0.7,0.15) -- (0, 0.15) ; {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.8889pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}-\leavevmode\hbox to40.23pt{\vbox to23.94pt{\pgfpicture\makeatletter\hbox{\hskip 20.11684pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand \propag[boson] (-0.7,0.15) -- (0, 0.15) ; \propag[boson] (0.7,0.15) -- (0, 0.15) ; {}{{}}{} {}{}{}\pgfsys@moveto{19.91684pt}{-4.26773pt}\pgfsys@lineto{-19.91684pt}{-4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}{{}}{}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{0.99161pt}{11.33751pt}\pgfsys@curveto{0.99161pt}{5.32555pt}{5.36896pt}{0.0pt}{11.38092pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{}{}{{}}{}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{-0.99161pt}{11.33751pt}\pgfsys@curveto{-0.99161pt}{5.32555pt}{-5.36896pt}{0.0pt}{-11.38092pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.93991pt}{3.19046pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.71771pt}{3.19046pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.66666pt}{-3.57549pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}} ={feynhand}\propag\propag+S++{feynhand}\propag\propag++,\displaystyle=\leavevmode\hbox to97.14pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 34.34322pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand \propag[boson] (-1.2,0.1) -- (-0.5,0.1); {}{{}}{} {}{}{}\pgfsys@moveto{-34.14322pt}{-5.69046pt}\pgfsys@lineto{-14.22638pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{62.59598pt}{-5.69046pt}\pgfsys@lineto{42.67914pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } \propag[boson] (2.2,0.1) -- (1.5,0.1); {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@lineto{42.67914pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@moveto{-2.84528pt}{0.0pt}\pgfsys@curveto{-2.84528pt}{6.28569pt}{-7.94069pt}{11.3811pt}{-14.22638pt}{11.3811pt}\pgfsys@curveto{-20.51207pt}{11.3811pt}{-25.60748pt}{6.28569pt}{-25.60748pt}{0.0pt}\pgfsys@curveto{-25.60748pt}{-6.28569pt}{-20.51207pt}{-11.3811pt}{-14.22638pt}{-11.3811pt}\pgfsys@curveto{-7.94069pt}{-11.3811pt}{-2.84528pt}{-6.28569pt}{-2.84528pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{-14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-18.11528pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@moveto{25.60748pt}{0.0pt}\pgfsys@curveto{25.60748pt}{6.28569pt}{20.51207pt}{11.3811pt}{14.22638pt}{11.3811pt}\pgfsys@curveto{7.94069pt}{11.3811pt}{2.84528pt}{6.28569pt}{2.84528pt}{0.0pt}\pgfsys@curveto{2.84528pt}{-6.28569pt}{7.94069pt}{-11.3811pt}{14.22638pt}{-11.3811pt}\pgfsys@curveto{20.51207pt}{-11.3811pt}{25.60748pt}{-6.28569pt}{25.60748pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{14.22638pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{9.62778pt}{-4.38887pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$S^{\dagger}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@moveto{54.06024pt}{0.0pt}\pgfsys@curveto{54.06024pt}{6.28569pt}{48.96483pt}{11.3811pt}{42.67914pt}{11.3811pt}\pgfsys@curveto{36.39345pt}{11.3811pt}{31.29803pt}{6.28569pt}{31.29803pt}{0.0pt}\pgfsys@curveto{31.29803pt}{-6.28569pt}{36.39345pt}{-11.3811pt}{42.67914pt}{-11.3811pt}\pgfsys@curveto{48.96483pt}{-11.3811pt}{54.06024pt}{-6.28569pt}{54.06024pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{42.67914pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{38.79024pt}{-2.5pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}+\leavevmode\hbox to63pt{\vbox to18.25pt{\pgfpicture\makeatletter\hbox{\hskip 31.4982pt\lower-8.736pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand {}{{}}{} {}{}{}\pgfsys@moveto{31.2982pt}{-5.69046pt}\pgfsys@lineto{-31.2982pt}{-5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{5.69046pt}\pgfsys@lineto{-17.07182pt}{5.69046pt}\pgfsys@stroke\pgfsys@invoke{ } \propag[boson] (1.1,0.1) -- (0.6,0.1); \propag[boson] (-1.1,0.1) -- (-0.6,0.1); {}{{}}{} {}{}{}\pgfsys@moveto{-17.07182pt}{2.84544pt}\pgfsys@lineto{0.0pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{} {}{}{}\pgfsys@moveto{17.07182pt}{2.84544pt}\pgfsys@lineto{0.0pt}{-2.84544pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{-17.07182pt}{2.84544pt}\pgfsys@moveto{-11.38127pt}{2.84544pt}\pgfsys@curveto{-11.38127pt}{5.98828pt}{-13.92899pt}{8.536pt}{-17.07182pt}{8.536pt}\pgfsys@curveto{-20.21466pt}{8.536pt}{-22.76237pt}{5.98828pt}{-22.76237pt}{2.84544pt}\pgfsys@curveto{-22.76237pt}{-0.2974pt}{-20.21466pt}{-2.84511pt}{-17.07182pt}{-2.84511pt}\pgfsys@curveto{-13.92899pt}{-2.84511pt}{-11.38127pt}{-0.2974pt}{-11.38127pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{-17.07182pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-20.96072pt}{0.34544pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{-2.84544pt}\pgfsys@moveto{5.69055pt}{-2.84544pt}\pgfsys@curveto{5.69055pt}{0.2974pt}{3.14284pt}{2.84511pt}{0.0pt}{2.84511pt}\pgfsys@curveto{-3.14284pt}{2.84511pt}{-5.69055pt}{0.2974pt}{-5.69055pt}{-2.84544pt}\pgfsys@curveto{-5.69055pt}{-5.98828pt}{-3.14284pt}{-8.536pt}{0.0pt}{-8.536pt}\pgfsys@curveto{3.14284pt}{-8.536pt}{5.69055pt}{-5.98828pt}{5.69055pt}{-2.84544pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{-2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.66666pt}{-4.99821pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{17.07182pt}{2.84544pt}\pgfsys@moveto{22.76237pt}{2.84544pt}\pgfsys@curveto{22.76237pt}{5.98828pt}{20.21466pt}{8.536pt}{17.07182pt}{8.536pt}\pgfsys@curveto{13.92899pt}{8.536pt}{11.38127pt}{5.98828pt}{11.38127pt}{2.84544pt}\pgfsys@curveto{11.38127pt}{-0.2974pt}{13.92899pt}{-2.84511pt}{17.07182pt}{-2.84511pt}\pgfsys@curveto{20.21466pt}{-2.84511pt}{22.76237pt}{-0.2974pt}{22.76237pt}{2.84544pt}\pgfsys@closepath\pgfsys@moveto{17.07182pt}{2.84544pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{13.18292pt}{0.34544pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\,, (30)

with wavy lines being unstable particles and

{feynhand}\propag\propag-++ =4+(s+iε,t),{feynhand}\propag\propag+=4+(siε,t).\displaystyle=-\mathcal{M}_{4}^{+-}(s+i\varepsilon,t)\,,\quad\leavevmode\hbox to40.23pt{\vbox to23.94pt{\pgfpicture\makeatletter\hbox{\hskip 20.11684pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand {}{{}}{} {}{}{}\pgfsys@moveto{19.91684pt}{-4.26773pt}\pgfsys@lineto{-19.91684pt}{-4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } \propag[boson] (-0.7,0.15) -- (0, 0.15) ; \propag[boson] (0.7,0.15) -- (0, 0.15) ; {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}{{}}{}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{0.0pt}{11.38092pt}\pgfsys@curveto{0.0pt}{4.55118pt}{-4.48209pt}{-0.78989pt}{-11.20813pt}{-1.97583pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-9.57936pt}{3.19046pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-0.24394pt}{-3.57549pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}=-\mathcal{M}_{4}^{+-}(s-i\varepsilon,t)\,. (31)
{feynhand}\propag\propag++ =4++(s+iε,t+iε),{feynhand}\propag\propag++=4++(siε,tiε).\displaystyle=-\mathcal{M}_{4}^{++}(s+i\varepsilon,t+i\varepsilon)\,,\quad\leavevmode\hbox to40.23pt{\vbox to23.94pt{\pgfpicture\makeatletter\hbox{\hskip 20.11684pt\lower-11.5811pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand \propag[boson] (-0.7,0.15) -- (0, 0.15) ; \propag[boson] (0.7,0.15) -- (0, 0.15) ; {}{{}}{} {}{}{}\pgfsys@moveto{19.91684pt}{-4.26773pt}\pgfsys@lineto{-19.91684pt}{-4.26773pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@moveto{11.3811pt}{0.0pt}\pgfsys@curveto{11.3811pt}{6.28569pt}{6.28569pt}{11.3811pt}{0.0pt}{11.3811pt}\pgfsys@curveto{-6.28569pt}{11.3811pt}{-11.3811pt}{6.28569pt}{-11.3811pt}{0.0pt}\pgfsys@curveto{-11.3811pt}{-6.28569pt}{-6.28569pt}{-11.3811pt}{0.0pt}{-11.3811pt}\pgfsys@curveto{6.28569pt}{-11.3811pt}{11.3811pt}{-6.28569pt}{11.3811pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}{{}}{}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{0.99161pt}{11.33751pt}\pgfsys@curveto{0.99161pt}{5.32555pt}{5.36896pt}{0.0pt}{11.38092pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{}{}{{}}{}{}{}{} {{}{}}{{}} {{{}}{{}}}{{}}{{{}}{{}}}{}{{}}{}{}{}{}\pgfsys@moveto{-0.99161pt}{11.33751pt}\pgfsys@curveto{-0.99161pt}{5.32555pt}{-5.36896pt}{0.0pt}{-11.38092pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{2.93991pt}{3.19046pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.71771pt}{3.19046pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$+$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-1.66666pt}{-3.57549pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$-$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}=-\mathcal{M}_{4}^{++}(s-i\varepsilon,t-i\varepsilon)\,. (32)

As for 4+\mathcal{M}_{4}^{+-}, we have not added iεi\varepsilon to tt because (26) [or (29)] suggests no tt-channel type singularity in the region of our interest.

Let us compare the two discontinuities in (29) and (30). One important difference is the absence/existence of the tt-channel triangle diagram. To understand it, we should recall that the unitarity equations are applied in the physical region which requires t=s16<0t=s_{16}<0 in the case of 3-to-3 amplitude. This suggests that the absence/existence of the tt-channel triangle singularity stems from where the unstable kinematics is continued from. In the next section, we will study the analytic properties of explicit Feynman integrals to verify this analysis.

The analysis in this section should be considered as proof of existence, i.e. contributions to the discontinuities that are implied from the unitarity equations. It does not imply the absence of particular singularities. Indeed, when continuing the external kinematics into unstable regions, many new singularities might arise along the way. For example, some singularities “hidden” in a bubble on the RHS of unitarity equations may generate a new singularity of LHS through the analytic continuation. For instance, as we will see in the next section, the perturbative analysis of 4+\mathcal{M}_{4}^{+-} suggests there exist ss-channel (and uu-channel) triangle singularities at complex positions (i.e. away from the physical region) which cannot be immediately seen from (29) and (30).

Let us be a little more concrete. So far, we are considering a continuation such that other singularities are away from the path (the left panel of Fig. 3). It is easy to imagine other continuations where additional singularities move closer to the real axes (the middle and right panels of Fig. 3). Depending on the continuation, the branch point of the new singularity can approach the real axis by moving above the complex pole (the middle) or below it (the right). For the former, one simply deforms the original continuation path, while for the latter one inevitably crosses the branch cut of the new singularity. Thus the ambiguity of the definition of unstable pole PP reflects the multi-valuedness of the amplitude with respect to multiple invariants. The middle and right figures actually talk about the same complex pole but for different sheets of kinematic invariants. Due to the extra singularity, one cannot directly infer properties of the residue for the complex pole from continuing from unitarity equations alone. We need a knowledge of positions of such extra singularities.

Refer to caption
Figure 3: Paths to reach the complex pole in the presence of additional singularities denoted by the blue zigzag lines. The blue arrows represent how the branch point moved from its original position (dashed zigzag lines) by changing the kinematics.

4 Explicit Feynman diagram analysis

Let us discuss the analytic structure of the 2-to-2 unstable-particle amplitudes at the one-loop level. The relevant one-loop diagrams for the 2-to-2 amplitudes are the bubble diagram (2-point diagram), the triangle diagram (3-point diagram), and the box diagram (4-point diagram). Since the bubble diagram has no anomalous threshold, we shall focus on the triangle and box diagrams with the internal mass and the momenta shown by Fig. 4.

Using the Feynman parameters, we have

tri(si,mi2)\displaystyle{\cal I}_{\rm tri}(s_{i},m_{i}^{2}) =01[i=13dαi]δ(1i=13αi)1Dtri,\displaystyle=\int^{1}_{0}\left[\prod_{i=1}^{3}{\rm d}\alpha_{i}\right]\delta(1-\sum_{i=1}^{3}\alpha_{i})\frac{1}{D_{\rm tri}}\,, (33)
box(s12,s23,si,mi2)\displaystyle{\cal I}_{\rm box}(s_{12},s_{23},s_{i},m_{i}^{2}) =01[i=14dαi]δ(1i=14αi)1Dbox2,\displaystyle=\int^{1}_{0}\left[\prod_{i=1}^{4}{\rm d}\alpha_{i}\right]\delta(1-\sum_{i=1}^{4}\alpha_{i})\frac{1}{D_{\rm box}^{2}}\,, (34)

where

si\displaystyle s_{i} :=pi2,sij:=(pi+pj)2\displaystyle:=-p_{i}^{2}\,,\quad s_{ij}:=-(p_{i}+p_{j})^{2}\, (35)

and

Dtri\displaystyle D_{\rm tri} =α2α3s1+α3α1s2+α1α2s3(i=13αimi2)(α1+α2+α3),\displaystyle=\alpha_{2}\alpha_{3}s_{1}+\alpha_{3}\alpha_{1}s_{2}+\alpha_{1}\alpha_{2}s_{3}-\left(\sum_{i=1}^{3}\alpha_{i}m_{i}^{2}\right)(\alpha_{1}+\alpha_{2}+\alpha_{3})\,, (36)
Dbox\displaystyle D_{\rm box} =α2α4s12+α1α3s23+α4α1s1+α1α2s2+α2α3s3+α3α4s4\displaystyle=\alpha_{2}\alpha_{4}s_{12}+\alpha_{1}\alpha_{3}s_{23}+\alpha_{4}\alpha_{1}s_{1}+\alpha_{1}\alpha_{2}s_{2}+\alpha_{2}\alpha_{3}s_{3}+\alpha_{3}\alpha_{4}s_{4}
(i=14αimi2)(α1+α2+α3+α4).\displaystyle-\left(\sum_{i=1}^{4}\alpha_{i}m_{i}^{2}\right)(\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4})\,. (37)

Here, we focus on four dimensions for simplicity. For unstable particles, pip_{i} can be interpreted as the internal momentum of a higher-point amplitude, but analytic continued to complex values.

Refer to caption
Figure 4: The triangle diagram and the box diagram. The dashed lines denote the cuts relevant to discontinuities.

In principle, the locations of the singularities can be analysed by the Landau equations. However, this will not be suitable for our purpose since the Landau equations only give necessary conditions, and furthermore, we will be considering complex external kinematics. Instead, we use the dispersive representation starting with a region where analyticity is known and then analytically continue. Since we will be interested in the two unstable two stable particle scattering, we will analytically continue two of the external kinematics, one after the other, to complex values.

4.1 Anomalous thresholds for stable particles

It is well known that anomalous thresholds can appear on the physical sheet for stable particles that are not the lightest state in the spectrum. Indeed this can be seen from the analysis of Landau equations. In this section, we will instead proceed with the dispersive representation of Feynman integrals, demonstrating the presence of anomalous thresholds. The advantage is that we can analytically continue the external kinematics in the representation, and detect when the triangle singularity enters the first sheet.

Let’s begin with the dispersive representation for the triangle and box integrals, which do not require subtraction terms in four-dimensions. Fixing all the Mandelstam variables except for s1s_{1} for the triangle and s12s_{12} for the box diagram, we will consider the physical scattering process in the s1s_{1}-channel and the s12s_{12}-channel respectively. For instance, in the case of the triangle diagram, as long as s2s_{2} and s3s_{3} are small enough (for example, one can consider the case s2s3m12m22m32s_{2}\simeq s_{3}\simeq m_{1}^{2}\simeq m_{2}^{2}\simeq m_{3}^{2}), the only singularities of tri\mathcal{I}_{\rm tri} on the first sheet is the normal threshold starting at s1=(m2+m3)2s_{1}=(m_{2}+m_{3})^{2}. Similarly, the box integral only has the normal threshold if s23s_{23} and sis_{i} are fixed in sufficiently small values. Then, the integrals may be written as

tri\displaystyle\mathcal{I}_{\rm tri} =12πi(m2+m3)2ds1Discs1tri(s1)s1s1=(m2+m3)2ds1ρtri(s1)s1s1,\displaystyle=\frac{1}{2\pi i}\int_{(m_{2}+m_{3})^{2}}^{\infty}{\rm d}s_{1}^{\prime}\frac{{\rm Disc}_{s_{1}}\mathcal{I}_{\rm tri}(s^{\prime}_{1})}{s^{\prime}_{1}-s_{1}}=\int_{(m_{2}+m_{3})^{2}}^{\infty}{\rm d}s_{1}^{\prime}\frac{\rho_{\rm tri}(s^{\prime}_{1})}{s^{\prime}_{1}-s_{1}}\,, (38)
box\displaystyle\mathcal{I}_{\rm box} =12πi(m2+m4)2ds12Discs12box(s12)s12s12=(m2+m4)2ds12ρbox(s12)s12s12,\displaystyle=\frac{1}{2\pi i}\int_{(m_{2}+m_{4})^{2}}^{\infty}{\rm d}s_{12}^{\prime}\frac{{\rm Disc}_{s_{12}}\mathcal{I}_{\rm box}(s^{\prime}_{12})}{s^{\prime}_{12}-s_{12}}=\int_{(m_{2}+m_{4})^{2}}^{\infty}{\rm d}s_{12}^{\prime}\frac{\rho_{\rm box}(s^{\prime}_{12})}{s^{\prime}_{12}-s_{12}}\,, (39)

with

ρtri\displaystyle\rho_{\rm tri} =1λ1/2(s1,s2,s3)ln[2s1Stri+λ(s1,m22,m32)λ(s1,s2,s3)λ(s1,m22,m32)λ(s1,s2,s3)2s1Stri+λ(s1,m22,m32)λ(s1,s2,s3)+λ(s1,m22,m32)λ(s1,s2,s3)]\displaystyle=\frac{1}{\lambda^{1/2}(s_{1},s_{2},s_{3})}\ln\left[\frac{\sqrt{2s_{1}S_{\rm tri}+\lambda(s_{1},m_{2}^{2},m_{3}^{2})\lambda(s_{1},s_{2},s_{3})}-\sqrt{\lambda(s_{1},m_{2}^{2},m_{3}^{2})\lambda(s_{1},s_{2},s_{3})}}{\sqrt{2s_{1}S_{\rm tri}+\lambda(s_{1},m_{2}^{2},m_{3}^{2})\lambda(s_{1},s_{2},s_{3})}+\sqrt{\lambda(s_{1},m_{2}^{2},m_{3}^{2})\lambda(s_{1},s_{2},s_{3})}}\right] (40)
ρbox\displaystyle\rho_{\rm box} =1Sbox1/2ln[StriLStriR+λ(s12,m22,m42)Sbox+λ(s12,m22,m42)SboxStriLStriR+λ(s12,m22,m42)Sboxλ(s12,m22,m42)Sbox].\displaystyle=\frac{1}{S_{\rm box}^{1/2}}\ln\left[\frac{\sqrt{S_{\rm tri}^{L}S_{\rm tri}^{R}+\lambda(s_{12},m_{2}^{2},m_{4}^{2})S_{\rm box}}+\sqrt{\lambda(s_{12},m_{2}^{2},m_{4}^{2})S_{\rm box}}}{\sqrt{S_{\rm tri}^{L}S_{\rm tri}^{R}+\lambda(s_{12},m_{2}^{2},m_{4}^{2})S_{\rm box}}-\sqrt{\lambda(s_{12},m_{2}^{2},m_{4}^{2})S_{\rm box}}}\right]. (41)

Here, we have introduced λ(x,y,z):=x2+y2+z22xy2yz2zx\lambda(x,y,z):=x^{2}+y^{2}+z^{2}-2xy-2yz-2zx,

Stri\displaystyle S_{\rm tri} :=detDtriαiαj(i,j=1,2,3),\displaystyle:={\rm det}\frac{\partial D_{\rm tri}}{\partial\alpha_{i}\partial\alpha_{j}}\quad(i,j=1,2,3)\,, (42)
Sbox\displaystyle S_{\rm box} :=detDboxαiαj(i,j=1,2,3,4),\displaystyle:={\rm det}\frac{\partial D_{\rm box}}{\partial\alpha_{i}\partial\alpha_{j}}\quad(i,j=1,2,3,4)\,, (43)

and

StriL\displaystyle S_{\rm tri}^{L} :=detDboxαiαj(i,j=1,2,4),\displaystyle:={\rm det}\frac{\partial D_{\rm box}}{\partial\alpha_{i}\partial\alpha_{j}}\quad(i,j=1,2,4)\,, (44)
StriR\displaystyle S_{\rm tri}^{R} :=detDboxαiαj(i,j=2,3,4).\displaystyle:={\rm det}\frac{\partial D_{\rm box}}{\partial\alpha_{i}\partial\alpha_{j}}\quad(i,j=2,3,4)\,. (45)

which should satisfy

λ(s1,m22,m32)>0,Stri\displaystyle\lambda(s_{1},m_{2}^{2},m_{3}^{2})>0\,,\quad S_{\rm tri} >0,λ(s1,s2,s3)>0,\displaystyle>0\,,\quad\lambda(s_{1},s_{2},s_{3})>0\,, (46)
λ(s12,m22,m42)>0,Sbox\displaystyle\lambda(s_{12},m_{2}^{2},m_{4}^{2})>0\,,\quad S_{\rm box} >0,StriL>0,StriR>0,\displaystyle>0\,,\quad S_{\rm tri}^{L}>0\,,\quad S_{\rm tri}^{R}>0\,, (47)

along the dispersive integral, i.e. (m2+m3)2<s1<(m_{2}+m_{3})^{2}<s_{1}<\infty and (m2+m4)2<s12<(m_{2}+m_{4})^{2}<s_{12}<\infty. Hence, ρtri\rho_{\rm tri} and ρbox\rho_{\rm box} are real and finite along the contour in eq.(38) and eq.(39)

Let us now analytically continue tri\mathcal{I}_{\rm tri} or boxi\mathcal{I}_{\rm boxi} from the original domain. A singularity of the integral A\mathcal{I}_{A} arises when the integration contour is pinched between a singularity of ρA(A=tri,box)\rho_{A}~{}(A={\rm tri},{\rm box}) and the singularity due to the denominator of (38) or (39).666This is the singularity on the ss-plane. Singularities of the integral A\mathcal{I}_{A} in other variables are found when singularities of ρA\rho_{A} pinch the integration contour or a singularity of ρA\rho_{A} touches the endpoint of the integral. They will be studied in Sec. 7. The conditions Stri=0S_{\rm tri}=0 and Sbox=0S_{\rm box}=0 are the conditions for the leading singularities of the triangle and box diagram while StriL=0S_{\rm tri}^{L}=0 and StriR=0S_{\rm tri}^{R}=0 are the lower-order singularities associated with the reduced diagrams shown in Fig. 5.

Refer to caption
Figure 5: The relevant reduced diagrams for the s12s_{12} cut of the box diagram.

Notice that since the ρA\rho_{A}s are multi-valued functions, the singularities of ρA\rho_{A} are only relevant if they appear on the first sheet. For example, ρtri\rho_{\rm tri} may be singular at λ(s1,s2,s3)=0\lambda(s_{1},s_{2},s_{3})=0 but it is not the case when the logarithm takes the principal value. The triangle singularities Stri=0,StriL=0,StriR=0S_{\rm tri}=0,S_{\rm tri}^{L}=0,S_{\rm tri}^{R}=0 are always singularities of ρA\rho_{A} at which the argument of the logarithm is either 0 or complex infinity. For simplicity, we will consider Stri=0S_{\rm tri}=0 in the following.

The equation Stri=0S_{\rm tri}=0 is quadratic in s1s_{1} and there are two independent roots:

s1=s±:=s2+s3+(s3+m12m22)(s2+m12m32)±λ(s2,m12,m32)λ(s3,m12,m22)2m12.\displaystyle s_{1}=s_{\pm}:=s_{2}+s_{3}+\frac{-(s_{3}+m_{1}^{2}-m_{2}^{2})(s_{2}+m_{1}^{2}-m_{3}^{2})\pm\sqrt{\lambda(s_{2},m_{1}^{2},m_{3}^{2})\lambda(s_{3},m_{1}^{2},m_{2}^{2})}}{2m_{1}^{2}}\,. (48)

The question is now when does this singularity pinch the contour on the first sheet. Since the contour is along (m2+m3)2<s1<(m_{2}{+}m_{3})^{2}<s_{1}<\infty, in order for the contour to be pinched, the triangle singularity s1=s±s_{1}=s_{\pm} must first come to the vicinity of the branch point s1=(m2+m3)2s_{1}=(m_{2}{+}m_{3})^{2}. As s±s_{\pm} is a function of s2,s3s_{2},s_{3} and internal masses, the detail of when a pinch occurs depends heavily on the regions of these parameters.

Let us begin with the degenerate case where we set both external kinematics to be the same s2=s3=M2s_{2}=s_{3}=M^{2} and the internal mass to be identical mi=mm_{i}=m. Then the solution to Stri=0S_{\rm tri}=0 becomes s1=(0,M2(4m2M2)m2)s_{1}=(0,\frac{M^{2}(4m^{2}-M^{2})}{m^{2}}). As we increase M2M^{2} the second triangle singularity moves closer to the branch point s1=4m2s_{1}=4m^{2}. At M=2mM=\sqrt{2}m it reaches the branch point and can move onto the physical sheet, leading to the famous anomalous threshold.

Similar results can be obtained for general mass distribution. We begin with s2=(m1m3)2+ϵs_{2}=(m_{1}-m_{3})^{2}+\epsilon, s3=(m1m2)2+ϵs_{3}=(m_{1}-m_{2})^{2}+\epsilon with a small positive ϵ\epsilon at which the roots are real and s±(m2m3)2s_{\pm}\simeq(m_{2}-m_{3})^{2}. The singularities s1=s±(m2m3)2s_{1}^{\prime}=s_{\pm}\simeq(m_{2}-m_{3})^{2} are outside of the integration contour (m2+m3)2<s1<(m_{2}+m_{3})^{2}<s_{1}^{\prime}<\infty as displayed in the left of Fig. 6. For this to become a singularity of the integral, we need to move s1s_{1} across the branch cut in order to pinch the integration contour as shown in the center of Fig. 6, and thus the singularity lives on the second sheet. As s2s_{2} and/or s3s_{3} increase, the singularities s±s_{\pm} move along the real s1s_{1}^{\prime} axis and s+s_{+} will touch the end point of the integration s1=(m2+m3)2s_{1}^{\prime}=(m_{2}+m_{3})^{2} when m2s2+m3s3(m12+m2m3)(m2+m3)=0m_{2}s_{2}+m_{3}s_{3}-(m_{1}^{2}+m_{2}m_{3})(m_{2}+m_{3})=0. We add a small imaginary part to bypass the endpoint singularity,

m2s2+m3s3>(m12+m2m3)(m2+m3).\displaystyle m_{2}s_{2}+m_{3}s_{3}>(m_{1}^{2}+m_{2}m_{3})(m_{2}+m_{3})\,. (49)

In such case, the integration contour will be deformed in such a way that it can be pinched at s1=s+s_{1}=s_{+} without s1s_{1} passing through the branch cut as illustrated on the right of Fig. 6. Thus the triangle singularity of tri(s1)\mathcal{I}_{\rm tri}(s_{1}) arises on the first sheet at s1=s+s_{1}=s_{+}. Importantly, note that if any of the internal mass is parametrically large compared to the external kinematics, the inequality cannot be satisfied. Thus the anomalous threshold here is strictly IR, and can be reliably computed and subtracted.

Refer to caption
Figure 6: Generations of triangle singularities. The ×\times are the singularities of the integrand and the thick curves are the integration contour. Left: s±s_{\pm} and s1s_{1} do not pinch the contour, showing no triangle singularity on the first sheet. Middle: As s1s_{1} moves through the branch cut associated with the normal threshold, the contour is distorted and a pinch occurs, that is, tri\mathcal{I}_{\rm tri} has a triangle singularity at s1=s±s_{1}=s_{\pm} on the second sheet. Right: s+s_{+} moves and go round (m2+m3)2(m_{2}+m_{3})^{2} as s2s_{2} and/or s3s_{3} increase. Then, a singularity is found at s1=s+s_{1}=s_{+} on the first sheet while s1=ss_{1}=s_{-} remains regular. This is the usual anomalous threshold for stable particles. Note that the figures are drawn to understand qualitative behaviours and not drawn by using (48).

4.2 Anomalous thresholds for unstable particles: IR

With the anomalous threshold on the first sheet, we further increase s2s_{2} and/or s3s_{3} and eventually, we will obtain the anomalous threshold for unstable configurations. We will follow the migration of the roots to track the kinematic region where the threshold resides for different unstable configurations. This will help us elucidate how from the unitarity equations, the triangle singularity only appeared in one particular unstable kinematics (+,++,+) and not the other (+,+,-). The two roots s±s_{\pm} will eventually become degenerate at either s2=(m1+m3)2s_{2}=(m_{1}+m_{3})^{2} or s3=(m1+m2)2s_{3}=(m_{1}+m_{2})^{2}, i.e., at the decay threshold. We can go round the threshold by adding a small imaginary part (cf. Fig 1) to avoid the pinch between s±s_{\pm} and then reach the region where s2s_{2} and/or s3s_{3} are unstable.

Keeping s3s_{3} stable, i.e., λ(s3,m12,m32)=(s3(m1m2)2)(s3(m1+m2)2)<0\lambda(s_{3},m_{1}^{2},m_{3}^{2})=(s_{3}{-}(m_{1}{-}m_{2})^{2})(s_{3}{-}(m_{1}{+}m_{2})^{2})<0, we study the neighbourhood of the decaying threshold, s2=(m1+m3)2+δs2s_{2}=(m_{1}+m_{3})^{2}+\delta s_{2}, in which the Källén function takes

λ(s2,m12,m32)=4m1m3δs2+𝒪(δs22).\displaystyle\lambda(s_{2},m_{1}^{2},m_{3}^{2})=4m_{1}m_{3}\delta s_{2}+\mathcal{O}(\delta s_{2}^{2})\,. (50)

To bypass the decaying threshold, s2s_{2} needs to be rotated more than π\pi but less than 3π/23\pi/2 (see Fig. 1) and thus s±s_{\pm} after the continuation are given by

s±s2+s3+(s3+m12m22)(s2+m12m32)λ(s2,m12,m32)λ(s3,m12,m22)2m12.\displaystyle s_{\pm}\to s_{2}+s_{3}+\frac{-(s_{3}+m_{1}^{2}-m_{2}^{2})(s_{2}+m_{1}^{2}-m_{3}^{2})\mp\sqrt{\lambda(s_{2},m_{1}^{2},m_{3}^{2})\lambda(s_{3},m_{1}^{2},m_{2}^{2})}}{2m_{1}^{2}}\,. (51)

where the square root is understood as the principal square root. The root s+s_{+} is complex even if s2s_{2} is almost real, namely the narrow width approximation for s2s_{2}. For s2=Ps_{2}=P (decaying mode), the triangle singularity s1=s+s_{1}=s_{+} appears in the lower-half plane and it exists in the upper-half plane for s2=Ps_{2}=P^{\prime} (growing mode).

The expression (51) remains valid even after s3s_{3} also goes beyond the decaying threshold if both s2s_{2} and s3s_{3} bypass the thresholds from the same complex direction, i.e., both s2s_{2} and s3s_{3} follow the same path of Fig. 1. On the other hand, if s2s_{2} and s3s_{3} bypass the thresholds from opposite directions (one is the +iε+i\varepsilon path while the other is the iε-i\varepsilon path), the analytic continuation of s±s_{\pm} is given by

s±s2+s3+(s3+m12m22)(s2+m12m32)±λ(s2,m12,m32)λ(s3,m12,m22)2m12.\displaystyle s_{\pm}\to s_{2}+s_{3}+\frac{-(s_{3}+m_{1}^{2}-m_{2}^{2})(s_{2}+m_{1}^{2}-m_{3}^{2})\pm\sqrt{\lambda(s_{2},m_{1}^{2},m_{3}^{2})\lambda(s_{3},m_{1}^{2},m_{2}^{2})}}{2m_{1}^{2}}\,. (52)

As shown in Fig. 6 (right), s1=s+s_{1}=s_{+} is the singularity on the first sheet while s1=ss_{1}=s_{-} may not be. Therefore, the position of the triangle singularity depends on whether the s2s_{2} and s3s_{3} are decaying modes PP or growing modes PP^{\prime}.

Let us see this difference in the equal mass case m1=m2=m3=mm_{1}=m_{2}=m_{3}=m. For s2=s3=M2s_{2}=s_{3}=M^{2}, the plus branch is given by

s+|s2=s3=M2m2(M24m2),\displaystyle s_{+}|_{s_{2}=s_{3}}=-\frac{M^{2}}{m^{2}}(M^{2}-4m^{2})\,, (53)

whereas in the conjugate case s2=M2,s3=(M2)s_{2}=M^{2},s_{3}=(M^{2})^{*}, it is given by

s+|s2=s3\displaystyle s_{+}|_{s_{2}=s_{3}^{*}} =12m2[|M2|(ReM24m2)2+(ImM2)2ReM2(ReM24m2)(ImM2)2].\displaystyle=\frac{1}{2m^{2}}\left[|M^{2}|\sqrt{(\mathrm{Re}M^{2}-4m^{2})^{2}+(\mathrm{Im}M^{2})^{2}}-\mathrm{Re}M^{2}(\mathrm{Re}M^{2}-4m^{2})-(\mathrm{Im}M^{2})^{2}\right]\,. (54)

The expressions are valid in both ReM2<4m2\mathrm{Re}M^{2}<4m^{2} and ReM2>4m2\mathrm{Re}M^{2}>4m^{2}. They agree with each other in the stable region M2<4m2M^{2}<4m^{2} with ImM20\mathrm{Im}M^{2}\to 0. However, one can see

s+|s2=s3\displaystyle s_{+}|_{s_{2}=s_{3}^{*}} =4m2(ImM2)2ReM2(ReM24m2)+𝒪((ImM2)4),\displaystyle=\frac{4m^{2}(\mathrm{Im}M^{2})^{2}}{\mathrm{Re}M^{2}(\mathrm{Re}M^{2}-4m^{2})}+\mathcal{O}((\mathrm{Im}M^{2})^{4})\,, (55)

in the unstable region ReM2>4m2\mathrm{Re}M^{2}>4m^{2} with the limit ImM20\mathrm{Im}M^{2}\to 0, which does not agree with s+|s2=s3s_{+}|_{s_{2}=s_{3}} with the same limit ImM20\mathrm{Im}M^{2}\to 0.

Using the above analysis, we discuss analytic structures of 2-to-2 amplitudes by fixing the external states. For simplicity, we consider the system with one stable particle of the mass mm and one unstable particle of the complex mass MM. We then consider the following amplitudes:

4++\displaystyle\mathcal{M}_{4}^{++} ={feynhand}\vertex1\vertex2+\vertex3+\vertex4\vertex\propag\propag,4+={feynhand}\vertex1\vertex2+\vertex3\vertex4\vertex\propag\propag,\displaystyle=\leavevmode\hbox to0pt{\vbox to0pt{\pgfpicture\makeatletter\hbox{\hskip 0.0pt\lower 0.0pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand \vertex[particle] (1) at (-1,-0.6) {$1~{}$}; \vertex[particle] (2) at (-1,0.6) {$2^{+}$}; \vertex[particle] (3) at (1,0.6) {$3^{+}$}; \vertex[particle] (4) at (1,-0.6) {$4~{}$}; \vertex[grayblob] (a) at (0,0) {}; \propag(4) -- (a) -- (1); \propag[boson] (2) -- (a) -- (3); \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\,,\qquad\mathcal{M}_{4}^{+-}=\leavevmode\hbox to0pt{\vbox to0pt{\pgfpicture\makeatletter\hbox{\hskip 0.0pt\lower 0.0pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand \vertex[particle] (1) at (-1,-0.6) {$1~{}$}; \vertex[particle] (2) at (-1,0.6) {$2^{+}$}; \vertex[particle] (3) at (1,0.6) {$3^{-}$}; \vertex[particle] (4) at (1,-0.6) {$4~{}$}; \vertex[grayblob] (a) at (0,0) {}; \propag(4) -- (a) -- (1); \propag[boson] (2) -- (a) -- (3); \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\,, (56)

where the solid and wavy lines represent stable and unstable particles, respectively. The amplitudes 4+±\mathcal{M}_{4}^{+\pm} can have the following triangle singularities:

4+±{feynhand}\vertex\vertex+\vertex±\vertex\vertex\vertex\vertex\propag\propag\propag\propag\propag+{feynhand}\vertex\vertex+\vertex±\vertex\vertex\vertex\vertex\propag\propag\propag\propag\propags,u-channels+{feynhand}\vertex\vertex+\vertex±\vertex\vertex\vertex\vertex\propag\propag\propag\propag\propagt-channel,\displaystyle\mathcal{M}_{4}^{+\pm}\sim\underbrace{\leavevmode\hbox to0pt{\vbox to0pt{\pgfpicture\makeatletter\hbox{\hskip 0.0pt\lower 0.0pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand \vertex[particle] (1) at (-1.25,-0.6) {}; \vertex[particle] (2) at (-1.25,0.6) {$+$}; \vertex[particle] (3) at (1.25,0.6) {$\pm$}; \vertex[particle] (4) at (1.25,-0.6) {}; \vertex(a) at (-0.4, -0.6) ; \vertex(b) at (-0.4, 0.6) ; \vertex(c) at (0.4, 0 ) ; \propag(a) -- (b) -- (c) -- (a); \propag(a) -- (-1,-0.6); \propag[boson] (b) -- (-1,0.6); \propag[boson] (c) -- (1,0.6); \propag(c) -- (1,-0.6); \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}+\leavevmode\hbox to0pt{\vbox to0pt{\pgfpicture\makeatletter\hbox{\hskip 0.0pt\lower 0.0pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand \vertex[particle] (1) at (-1.25,-0.6) {}; \vertex[particle] (2) at (-1.25,0.6) {$+$}; \vertex[particle] (3) at (1.25,0.6) {$\pm$}; \vertex[particle] (4) at (1.25,-0.6) {}; \vertex(a) at (0.4, -0.6) ; \vertex(b) at (0.4, 0.6) ; \vertex(c) at (-0.4, 0 ) ; \propag(a) -- (b) -- (c) -- (a); \propag(c) -- (-1,-0.6); \propag[boson] (c) -- (-1,0.6); \propag[boson] (b) -- (1,0.6); \propag(a) -- (1,-0.6); \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}_{s,u\text{-channels}}+\underbrace{\leavevmode\hbox to0pt{\vbox to0pt{\pgfpicture\makeatletter\hbox{\hskip 0.0pt\lower 0.0pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand \vertex[particle] (1) at (-1.25,-0.6) {}; \vertex[particle] (2) at (-1.25,0.6) {$+$}; \vertex[particle] (3) at (1.25,0.6) {$\pm$}; \vertex[particle] (4) at (1.25,-0.6) {}; \vertex(a) at (-0.6, 0.4) ; \vertex(b) at (0.6, 0.4) ; \vertex(c) at (0, -0.4 ) ; \propag(a) -- (b) -- (c) -- (a); \propag(c) -- (-1,-0.6); \propag[boson] (a) -- (-1,0.6); \propag[boson] (b) -- (1,0.6); \propag(c) -- (1,-0.6); \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}}_{t\text{-channel}}, (57)

where the diagrams on the RHS show possible kinematic configurations of triangle singularities with specified external states. The all-(+)(+) amplitude 4++\mathcal{M}_{4}^{++} have triangle singularities at

s,u\displaystyle s,u =m2+12[M23M2(4m2M2)],\displaystyle=m^{2}+\frac{1}{2}\left[M^{2}-\sqrt{3M^{2}(4m^{2}-M^{2})}\right]\,,
t\displaystyle t =M2m2(M24m2),\displaystyle=-\frac{M^{2}}{m^{2}}(M^{2}-4m^{2})\,, (58)

whereas the positions of the triangle singularities of the mixed amplitude 4+\mathcal{M}_{4}^{+-} are

s,u\displaystyle s,u =m2+12[M23M2(4m2M2)],m2+12[M23M2(4m2M2)],\displaystyle=m^{2}+\frac{1}{2}\left[M^{2}-\sqrt{3M^{2}(4m^{2}-M^{2})}\right],~{}m^{2}+\frac{1}{2}\left[M^{2}-\sqrt{3M^{2}(4m^{2}-M^{2})}\right]^{*}\,, (59)

and the tt-channel triangle is given in eq.(54). To simplify the discussion, we assume a small decay width and approximate M2M^{2} by a real number. Then, the tt-channel triangle singularity of 4++\mathcal{M}_{4}^{++} exists at a negative tt region while that of 4+\mathcal{M}_{4}^{+-} is t4m2(ImM2)2/[ReM2(ReM24m2)]+0t\simeq 4m^{2}(\mathrm{Im}M^{2})^{2}/[\mathrm{Re}M^{2}(\mathrm{Re}M^{2}-4m^{2})]\to+0. Thus the triangle singularity for the 4++\mathcal{M}_{4}^{++} amplitude exits from the analytic continuation of the physical region, while the 4+\mathcal{M}_{4}^{+-} stems from the unphysical regime. This is precisely why we did not see the tt-channel triangle singularity for 4+\mathcal{M}_{4}^{+-} in our analysis from unitarity equations of stable particles in the previous section. Indeed information extracted from the unitarity equations is only applicable for physical kinematics, or analytic continuation thereof. Thus we see that contrary to the conclusion from the unitarity analysis, anomalous thresholds appear on the first sheet for both unstable particle scattering 4++\mathcal{M}_{4}^{++} and 4+\mathcal{M}_{4}^{+-}.

4.3 Anomalous thresholds for unstable particles: UV

In the previous discussion, we have assumed that the external kinematics are comparable to the internal masses, and thus the triangle is essentially an “IR”-loop, i.e. contributions that are computable within the IR theory and thus can be subtracted from any dispersive representation. We now move on to consider UV-loops where one or more heavy (unstable) particles are in the loop. These are not calculable from the IR theory, it is important to know when do the triangle singularities of these integrals enter the first sheet.

In the event of a UV state in the loop, one can easily have s3<(m1m2)2s_{3}<(m_{1}-m_{2})^{2}, where m2m_{2} is the UV state. To track things, first consider the case s3=(m1m2)2s_{3}=(m_{1}-m_{2})^{2} where the roots (48) are degenerate s±=(m2+m3)2+m2m1[s2(m1+m3)2]s_{\pm}=(m_{2}+m_{3})^{2}+\frac{m_{2}}{m_{1}}[s_{2}-(m_{1}+m_{3})^{2}] and outside of the integration region. The roots monotonically increase as s2s_{2} increases and touch the endpoint s1=(m2+m3)2s_{1}^{\prime}=(m_{2}+m_{3})^{2} at the decay threshold s2=(m1+m3)2s_{2}=(m_{1}+m_{3})^{2}. Analytically continuing across the decay threshold brings the triangle singularity onto the first sheet. A similar analysis applies for the case where s3<(m1m2)2s_{3}<(m_{1}-m_{2})^{2}. In summary, for s3(m1m2)2s_{3}\leq(m_{1}-m_{2})^{2}, the UV triangle singularity enters the first sheet only if s2s_{2} crosses the decay threshold! This is very different from the previous IR discussion, where s±s_{\pm} can pinch the contour within a parameter range including both stable and unstable kinematics, i.e. eq.(49).

Let us discuss the appearance of such singularities more concretely. For the sake of simplicity, we assign the same light particle to m1m_{1}, m3m_{3}, and s3s_{3}, and assume m2m_{2} is much heavier than the light particle:

m22m2=m12=m32=s3.\displaystyle m_{2}^{2}\gg m^{2}=m_{1}^{2}=m_{3}^{2}=s_{3}\,. (60)

The positions of the triangle singularities in the s1s_{1} plane are

s±\displaystyle s_{\pm} =m2+m22s22m2±m22(m224m2)s2(s24m2)2m2\displaystyle=m^{2}+m_{2}^{2}\frac{s_{2}}{2m^{2}}\pm\frac{\sqrt{m_{2}^{2}(m_{2}^{2}-4m^{2})s_{2}(s_{2}-4m^{2})}}{2m^{2}}
=m22[s22m2±s2(s24m2)2m2]+𝒪(m2m22).\displaystyle=m_{2}^{2}\left[\frac{s_{2}}{2m^{2}}\pm\frac{\sqrt{s_{2}(s_{2}-4m^{2})}}{2m^{2}}\right]+\mathcal{O}\left(\frac{m^{2}}{m^{2}_{2}}\right). (61)

The singularities are on the second sheet when s2s_{2} is stable, s2<4m2s_{2}<4m^{2}. We then move s2s_{2} along the path as shown in the left panel of Fig. 7. The corresponding paths of s±(s2)s_{\pm}(s_{2}) are shown in the right panel. The roots s±s_{\pm} are complex during s2<4m2s_{2}<4m^{2} and then collide and become degenerate at s2=4m2s_{2}=4m^{2}, for which s±=2m22s_{\pm}=2m^{2}_{2} and thus far beyond the branch point s1=(m+m2)2s_{1}=(m+m_{2})^{2}. We continue by adding a positive imaginary part to s2s_{2}. The square root remains the same form s2(s24m2)s2(s24m2)\sqrt{s_{2}(s_{2}-4m^{2})}\to\sqrt{s_{2}(s_{2}-4m^{2})} around s2=4m2s_{2}=4m^{2} by using the principal square root, so s±s_{\pm} moves to the right/left with a positive/negative imaginary part as Res2\mathrm{Re}\,s_{2} increases. Then, as s2s_{2} is continued to the lower-half plane, s±s_{\pm} passes through the real axis and shows up on the first sheet of the complex s1s_{1} plane.

Refer to caption
Figure 7: The path of s2s_{2} and the corresponding paths of s±(s2)s_{\pm}(s_{2}) in the complex s1s_{1} plane. As in Fig. 6, the figures are drawn for illustrative purposes and the curves are not accurate.

One may suspect that the appearance of such singularities is an artifact of our one-loop truncation. In principle, the UV mass m2m_{2} should be complexified and the branch cut running from (m+m2)2(m+m_{2})^{2} is not a normal-threshold cut on the real axes, but on the complex plane on an unphysical sheet Zwanziger:1963zza ; Lvy1959OnTD ; PhysRev.119.1121 ; PhysRev.123.692 ; Landshoff:1963nzy ; Eden:1966dnq . In particular, as the decay of m2m_{2} particle is a 2-loop effect, it is at the same order as the the three-particle threshold. In such case, whether the triangle singularities appear on the physical sheet or not depends on the decay widths of the external unstable particle and the internal heavy particle as illustrated in Fig. 8.

Refer to caption
Figure 8: The expected positions of the triangle singularities from the loop with a UV state. Left: the triangle singularities are in the unphysical sheet when m2m_{2} has a sufficiently large decay width. Right: the triangle singularities can show up on the physical sheet if the heavy particle is long-lived.

While we need a higher-loop analysis for precise treatment, we suppose that the positions of the triangle singularities are still given by (61) but now with complexified m22m_{2}^{2}. We discuss when ss_{-} shows up on the physical sheet where ss_{-} is the singularity appearing above the complex normal threshold. For simplicity, we assume m2|M2|(|m22|)m^{2}\ll|M^{2}|(\ll|m_{2}^{2}|) and find

s(+iε)\displaystyle s^{(+i\varepsilon)}_{-} m22(1+m2M2),\displaystyle\simeq m_{2}^{2}\left(1+\frac{m^{2}}{M^{2}}\right)\,,
s(iε)\displaystyle s^{(-i\varepsilon)}_{-} m22(M2)m2,\displaystyle\simeq m_{2}^{2}\frac{(M^{2})^{*}}{m^{2}}\,, (62)

where the superscripts denote which path we chose. The imaginary parts are

Ims(+iε)\displaystyle\mathrm{Im}\,s^{(+i\varepsilon)}_{-} mR(m2mRMR3Γγ),\displaystyle\simeq m_{R}\left(\frac{m^{2}m_{R}}{M_{R}^{3}}\Gamma-\gamma\right)\,,
Ims(iε)\displaystyle\mathrm{Im}\,s^{(-i\varepsilon)}_{-} mRMRm2(mRΓMRγ),\displaystyle\simeq\frac{m_{R}M_{R}}{m^{2}}\left(m_{R}\Gamma-M_{R}\gamma\right)\,, (63)

where m22=mR2imRγm_{2}^{2}=m_{R}^{2}-im_{R}\gamma and M2=MR2iMRΓM^{2}=M_{R}^{2}-iM_{R}\Gamma with 0<γmR0<\gamma\ll m_{R} and 0<ΓMR0<\Gamma\ll M_{R}. Therefore, the triangle singularity from the loop with a UV state may appear on the upper-half plane when

γ<m2mRMR3Γ\displaystyle\gamma<\frac{m^{2}m_{R}}{M_{R}^{3}}\Gamma\qquad for the +iε+i\varepsilon path,
γ<mRMRΓ\displaystyle\gamma<\frac{m_{R}}{M_{R}}\Gamma\qquad for the iε-i\varepsilon path. (64)

Hence, the analytic structure is similar to the one-loop as long as the decay of the UV state is sufficiently small.

5 A violation of positivity bounds: toy example

In non-gravitational EFTs, one can in general derive positivity bounds for the four-derivative operator based on the optical theorem for the a,ba,ba,b\rightarrow a,b four-point amplitude, where a,ba,b labels the potential distinct particle species. As discussed in the previous sections, when there are unstable particles, we have anomalous thresholds from the UV which are not subtractable and thus contribute to the dispersive representation. Such contributions would violate the positivity bounds. In this section, we consider a simple toy example to illustrate such a phenomenon.

Consider a theory with four scalars, π,ϕ,χL\pi,\phi,\chi_{L} and χH\chi_{H}, where the mass scales are such that π\pi is the lightest state and consider the following interactions:

int=gϕ2ϕχL2gππχLχH.\displaystyle\mathcal{L}_{\rm int}=-\frac{g_{\phi}}{2}\phi\chi_{L}^{2}-g_{\pi}\pi\chi_{L}\chi_{H}\,. (65)

As a result the leading contribution to the four-point (π(1)ϕ(2)ϕ(3)π(4))\mathcal{M}\left(\pi(1)\phi(2)\phi(3)\pi(4)\right) is the sum of the scalar box integral:

(s,t;s2,s3)\displaystyle\mathcal{M}(s,t;s_{2},s_{3}) ={feynhand}\propagp1\propagp2\propagp3\propagp4\propagmL\propagmL\propagmL\propagmH+{feynhand}\propagp1\propagp2\propagp3\propagp4\propagmL\propagmL\propagmL\propagmH\displaystyle=\leavevmode\hbox to0pt{\vbox to0pt{\pgfpicture\makeatletter\hbox{\hskip 0.0pt\lower 0.0pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand \propag(-1.2, -0.8) node [left] {$p_{1}$} -- (-0.6, -0.6) ; \propag[photon] (-1.2, 0.8) node [left] {$p_{2}$} -- (-0.6, 0.6) ; \propag[photon] (1.2, 0.8) node [right] {$p_{3}$} -- (0.6, 0.6) ; \propag(1.2, -0.8) node [right] {$p_{4}$} -- (0.6, -0.6) ; \propag[dashed] (-0.6, -0.6) -- (-0.6, 0.6) node [midway, left=0.05] {$m_{L}$}; \propag[dashed] (-0.6, 0.6) -- (0.6, 0.6) node [midway, above=0.05] {$m_{L}$}; \propag[dashed] (0.6, 0.6) -- (0.6, -0.6) node [midway, right=0.05] {$m_{L}$}; \propag[ultra thick] (0.6, -0.6) -- (-0.6, -0.6) node [midway, above=0.05] {$m_{H}$}; \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}+\leavevmode\hbox to0pt{\vbox to0pt{\pgfpicture\makeatletter\hbox{\hskip 0.0pt\lower 0.0pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand \propag(-1.2, -0.8) node [left] {$p_{1}$} -- (0.6, -0.6) ; \propag[photon] (-1.2, 0.8) node [left] {$p_{2}$} -- (-0.6, 0.6) ; \propag[photon] (1.2, 0.8) node [right] {$p_{3}$} -- (0.6, 0.6) ; \propag(1.2, -0.8) node [right] {$p_{4}$} -- (-0.6, -0.6) ; \propag[dashed] (-0.6, -0.6) -- (-0.6, 0.6) node [midway, left=0.05] {$m_{L}$}; \propag[dashed] (-0.6, 0.6) -- (0.6, 0.6) node [midway, above=0.05] {$m_{L}$}; \propag[dashed] (0.6, 0.6) -- (0.6, -0.6) node [midway, right=0.05] {$m_{L}$}; \propag[ultra thick] (0.6, -0.6) -- (-0.6, -0.6) node [midway, above=0.05] {$m_{H}$}; \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}
=gϕ2gπ2(4π)2[box(s,t;s2,s3)+box(u,t;s2,s3)],\displaystyle=\frac{g_{\phi}^{2}g_{\pi}^{2}}{(4\pi)^{2}}\left[\mathcal{I}_{\rm box}(s,t;s_{2},s_{3})+\mathcal{I}_{\rm box}(u,t;s_{2},s_{3})\right]\,, (66)
box(s,t;s2,s3)\displaystyle\mathcal{I}_{\rm box}(s,t;s_{2},s_{3}) =d4iπ21(q12+mL2)(q22+mL2)(q32+mL2)(2+mH2).\displaystyle=\int\frac{{\rm d}^{4}\ell}{i\pi^{2}}\frac{1}{(q_{1}^{2}+m_{L}^{2})(q_{2}^{2}+m_{L}^{2})(q_{3}^{2}+m_{L}^{2})(\ell^{2}+m_{H}^{2})}\,. (67)

Here, s=(p1+p2)2,t=(p1+p4)2,u=(p1+p3)2,si=pi2s=-(p_{1}+p_{2})^{2},t=-(p_{1}+p_{4})^{2},u=-(p_{1}+p_{3})^{2},s_{i}=-p_{i}^{2} and qiq_{i} are

q1=+p1,q2=+p1+p2,q3=+p1+p2+p3,\displaystyle q_{1}=\ell+p_{1}\,,\quad q_{2}=\ell+p_{1}+p_{2}\,,\quad q_{3}=\ell+p_{1}+p_{2}+p_{3}\,, (68)

where ϕ,π,χL\phi,\pi,\chi_{L} and χH\chi_{H} correspond to the wavy, solid, dashed, and thick lines in the Feynman diagrams, respectively. The particle χH\chi_{H} is supposed to be heavy so that we can separate the physics of the IR particles (ϕ,π,χL)(\phi,\pi,\chi_{L}) and the UV particle χH\chi_{H}. The low-energy part of \mathcal{M} can be described by a low-energy EFT composed of the particles (ϕ,π,χL)(\phi,\pi,\chi_{L}). We shall discuss how the low-energy part of \mathcal{M} changes when we change the mass spectrum of the IR particles (ϕ,π,χL)(\phi,\pi,\chi_{L}). The masses of (ϕ,π,χL)(\phi,\pi,\chi_{L}) are denoted by (M,m,mL)(M,m,m_{L}), respectively.

When the decay ϕχLχL\phi\to\chi_{L}\chi_{L} is kinematically allowed, the mass of ϕ\phi is complexified. We use MR2M_{R}^{2} to denote the real part of M2M^{2}. The leading order result of the decay width is

Γ=gϕ232πMR14mL2/MR2θ(MR24mL2),\displaystyle\Gamma=\frac{g_{\phi}^{2}}{32\pi M_{R}}\sqrt{1-4m_{L}^{2}/M_{R}^{2}}\,\theta(M_{R}^{2}-4m_{L}^{2})\,, (69)

and then the mass squared is

M2=MR2iMRΓ,\displaystyle M^{2}=M_{R}^{2}-iM_{R}\Gamma\,, (70)

where θ(x)\theta(x) is the step function. To deal with the external unstable particles, we first regard s2s_{2} and s3s_{3} as complex variables and analytically continue the box integrals. On the other hand, we set s2=s3=MR2s_{2}=s_{3}=M_{R}^{2} for the stable kinematic of ϕ(MR<2mL)\phi~{}(M_{R}<2m_{L}). Note that the decay width for χHπ,χL\chi_{H}\rightarrow\pi,\chi_{L} pair is controlled by gπg_{\pi}, which can be taken to be small in a controlled fashion and thus neglected in the remaining discussion.

For a small fixed tt, |t|4mL2|t|\ll 4m_{L}^{2}, the amplitude (s)\mathcal{M}(s) must be analytic in a small-|s||s| region because the ss and uu channel cuts run from the heavy mass scale mH2m_{H}^{2} (see also below). The Taylor expansion around the sus\leftrightarrow u symmetric point is then

=B0(t;s2,s3)+B2(t;s2,s3)[sm2(s2+s3)/2+t/2]2+𝒪(s4).\displaystyle\mathcal{M}=B_{0}(t;s_{2},s_{3})+B_{2}(t;s_{2},s_{3})[s-m^{2}-(s_{2}+s_{3})/2+t/2]^{2}+\mathcal{O}(s^{4})\,. (71)

The s2s^{2} coefficient B2B_{2} can be directly read off by the low-energy expansion of the amplitude. On the other hand, as is well-known, when ϕ\phi is stable and no anomalous threshold exists, the low-energy coefficients admit representations by the use of the high-energy integral

B2=(mL+mH)2ds2πi2Discs[sm2(s2+s3)/2+t/2]3.\displaystyle B_{2}=\int_{(m_{L}+m_{H})^{2}}^{\infty}\frac{{\rm d}s}{2\pi i}\frac{2{\rm Disc}_{s}\mathcal{M}}{[s-m^{2}-(s_{2}+s_{3})/2+t/2]^{3}}\,. (72)

Unitarity ensures the positivity of the discontinuity Im=Discs/2i>0\mathrm{Im}\,\mathcal{M}={\rm Disc}_{s}\mathcal{M}/2i>0 in the forward limit t0t\to 0. We thus find the inequality B2|t=0>0B_{2}|_{t=0}>0 which is known as the positivity bound Adams:2006sv .

One may expect that the same inequality holds even in the unstable ϕ\phi particle if we choose the conjugate pair s2=s3=M2s_{2}=s_{3}^{*}=M^{2}. Unitarity then leads to the positivity of the discontinuity with s2=s3=M2s_{2}=s_{3}^{*}=M^{2} at the forward limit t=t0t=t_{0}. We can practically take t00t_{0}\to 0 because t0t_{0} scales as t04m2(ImM2)2/s2t_{0}\simeq 4m^{2}(\mathrm{Im}M^{2})^{2}/s^{2} with s>mH2s>m_{H}^{2}. So we end up with B2|t=0>0B_{2}|_{t=0}>0 if the dispersion relation (72) remains to be true in unstable particles. As we’ve seen in the previous discussion, the presence of anomalous thresholds can potentially spoil eq.(72). For stable particles, due to the UV scale of mH2m_{H}^{2} the triangle singularity is never on the first sheet, as can be seen in eq.(49). For unstable particles, triangle singularities in the UV can contribute, and thus B2B_{2} might become negative.

Consider the low-energy expansion of the box integral

box(s,t;s2,s3)=d4iπ21(q12+mL2)(q22+mL2)(q32+mL2)(2+mH2)\displaystyle\mathcal{I}_{\rm box}(s,t;s_{2},s_{3})=\int\frac{{\rm d}^{4}\ell}{i\pi^{2}}\frac{1}{(q_{1}^{2}+m_{L}^{2})(q_{2}^{2}+m_{L}^{2})(q_{3}^{2}+m_{L}^{2})(\ell^{2}+m_{H}^{2})} (73)

under the hierarchy mL,|pi|mHm_{L},\,|p_{i}|\ll m_{H}. We wish to compute the coefficient for s2s^{2} in the low energy expansion. To track the expansion more concretely, we separate the loop momentum into two regions based on an intermediate scale Λ\Lambda such that mL,|pi|ΛmHm_{L},\,|p_{i}|\ll\Lambda\ll m_{H} and divide the integral into small and large regions Smirnov:2002pj :

box=small+large=(||<Λ+||>Λ)1(q12+mL2)(q22+mL2)(q32+mL2)(2+mH2),\displaystyle\mathcal{I}_{\rm box}=\mathcal{I}_{\rm small}+\mathcal{I}_{\rm large}=\left(\int_{|\ell|<\Lambda}{+}\int_{|\ell|>\Lambda}\right)\frac{1}{(q_{1}^{2}+m_{L}^{2})(q_{2}^{2}+m_{L}^{2})(q_{3}^{2}+m_{L}^{2})(\ell^{2}+m_{H}^{2})}\,, (74)

For small\mathcal{I}_{\rm small}, all kinematics are parametrically smaller than mHm_{H} and one can Taylor expand the integrand in 1/mH21/m_{H}^{2}. For large\mathcal{I}_{\rm large} since mL,|pi|\ell\gg m_{L},\,|p_{i}| we can expand the propagators that does not contain mHm_{H} in 1/21/\ell^{2}. This amounts to the following expansion in the two regions respectively,

small:\displaystyle\mathcal{I}_{\rm small}:\quad 12+mH2=1mH22mH4+(2)2mH6+,\displaystyle\frac{1}{\ell^{2}+m_{H}^{2}}=\frac{1}{m_{H}^{2}}-\frac{\ell^{2}}{m_{H}^{4}}+\frac{(\ell^{2})^{2}}{m_{H}^{6}}+\cdots\,,
large:\displaystyle\mathcal{I}_{\rm large}:\quad 1(+Pi)+mL2=122Pi+Pi2+mL2(2)2+(2Pi+Pi2+mL2)2(2)3+,\displaystyle\frac{1}{(\ell+P_{i})+m_{L}^{2}}=\frac{1}{\ell^{2}}-\frac{2\ell\cdot P_{i}+P_{i}^{2}+m_{L}^{2}}{(\ell^{2})^{2}}+\frac{(2\ell\cdot P_{i}+P_{i}^{2}+m_{L}^{2})^{2}}{(\ell^{2})^{3}}+\cdots\,, (75)

with Pi=j=1ipjP_{i}=\sum_{j=1}^{i}p_{j}. For small\mathcal{I}_{\rm small} we will be working with the tt-channel triangle integral with loop momentum dependent numerators:

1mH2n+2d4iπ2(2)n(q12+mL2)(q22+mL2)(q32+mL2).\displaystyle\frac{1}{m_{H}^{2n{+}2}}\int\frac{{\rm d}^{4}\ell}{i\pi^{2}}\frac{(\ell^{2})^{n}}{(q_{1}^{2}+m_{L}^{2})(q_{2}^{2}+m_{L}^{2})(q_{3}^{2}+m_{L}^{2})}\,. (76)

Since after integral reduction, this only generates tt-channel scalar triangle and bubbles, ss-dependence can only come from the numerator in the process of reduction. Since we are interested in the s2s^{2} coefficient, only n=2n=2 is relevant, giving a coefficient that scales as 𝒪(mH6)\mathcal{O}(m_{H}^{-6}). On the other hand for large\mathcal{I}_{\rm large}, since

d4(2P)j(2)i(2+mH2)\displaystyle\int{\rm d}^{4}\ell\frac{(2\ell\cdot P)^{j}}{(\ell^{2})^{i}(\ell^{2}+m_{H}^{2})} {0forj=odd(P2)j/2mH2(i1j/2)forj=even,\displaystyle\propto\begin{cases}0&{\rm for}~{}~{}j={\rm odd}\\ \frac{(P^{2})^{j/2}}{m_{H}^{2(i-1-j/2)}}&{\rm for}~{}~{}j={\rm even}\,,\end{cases} (77)

we see that contributions to the s2s^{2} coefficient starts at 𝒪(mH8)\mathcal{O}(m_{H}^{-8}). Thus in conclusion, small\mathcal{I}_{\rm small} yields the leading order contribution to B2B_{2} in the large mH2m_{H}^{2} expansion.

Integrating eq.(76) with n=2n=2, we find

B2\displaystyle B_{2} =gϕ2gπ2(4π)2mH6λ^2\displaystyle=\frac{g_{\phi}^{2}g_{\pi}^{2}}{(4\pi)^{2}m_{H}^{6}\hat{\lambda}^{2}}
×[{(s2s3)λ^+3t(s3t)23ts22}Λ(s2)+{(s3s2)λ^+3t(s2t)23ts32}Λ(s3)\displaystyle\quad\times\Biggl{[}\left\{(s_{2}-s_{3})\hat{\lambda}+3t(s_{3}-t)^{2}-3ts_{2}^{2}\right\}\Lambda(s_{2})+\left\{(s_{3}-s_{2})\hat{\lambda}+3t(s_{2}-t)^{2}-3ts_{3}^{2}\right\}\Lambda(s_{3})
+6t2(s2+s3t)Λ(t)+2t{(2mL2+t)λ^+6ts2s3}tri(t,s2,s3)2tλ^]+𝒪(mH8)\displaystyle\qquad+6t^{2}(s_{2}+s_{3}-t)\Lambda(t)+2t\left\{(2m_{L}^{2}+t)\hat{\lambda}+6ts_{2}s_{3}\right\}\mathcal{I}_{\rm tri}(t,s_{2},s_{3})-2t\hat{\lambda}\Biggl{]}+\mathcal{O}(m_{H}^{-8}) (78)

where λ^:=λ(s2,s3,t)=(s2s3)2+𝒪(t)\hat{\lambda}:=\lambda(s_{2},s_{3},t)=(s_{2}-s_{3})^{2}+\mathcal{O}(t), tri\mathcal{I}_{\rm tri} is the triangle integral with all internal masses being mLm_{L}, and

Λ(z)=14mL2zln[114mL2z1+14mL2z],\displaystyle\Lambda(z)=\sqrt{1-\frac{4m_{L}^{2}}{z}}\ln\left[-\frac{1-\sqrt{1-\frac{4m_{L}^{2}}{z}}}{1+\sqrt{1-\frac{4m_{L}^{2}}{z}}}\right]\,, (79)

is the discontinuous part of the bubble integral; Λ(z)\Lambda(z) has a branch cut along z>4mL2z>4m_{L}^{2} and analytic elsewhere on the first sheet.

We would like to evaluate B2B_{2} at s2=s3=M2s_{2}=s_{3}^{*}=M^{2} and t+0t\to+0. However, we should carefully take the limit t+0t\to+0 since tri\mathcal{I}_{\rm tri} can be singular at t=0t=0 when s2s_{2} and s3s_{3} are analytically continued to the second sheet. Nevertheless, we can make sure limt+0ttri=0\lim_{t\to+0}t\mathcal{I}_{\rm tri}=0 independently from the details of analytic continuation as follows. For general kinematics, the triangle integral is expressed by 12 Spence’s functions tHooft:1978jhc ; Patel:2015tea ; Patel:2016fam :

tri=1λ1/2(s2,s3,t)a=±1[Li2ξa+1(s2,s3,t)Li2ξa1(s2,s3,t)]+(s2s3)+(s2t),\displaystyle\mathcal{I}_{\rm tri}=\frac{1}{\lambda^{1/2}(s_{2},s_{3},t)}\sum_{a=\pm 1}\left[{\rm Li}_{2}\xi^{+1}_{a}(s_{2},s_{3},t)-{\rm Li}_{2}\xi^{-1}_{a}(s_{2},s_{3},t)\right]+(s_{2}\leftrightarrow s_{3})+(s_{2}\leftrightarrow t)\,, (80)

with

ξab(s2,s3,t)=s2(s2s3t)+bs2λ(s2,s3,t)s2(s2s3t)+aλ(s2,mL2,mL2)λ(s2,s3,t).\displaystyle\xi^{b}_{a}(s_{2},s_{3},t)=\frac{s_{2}(s_{2}-s_{3}-t)+bs_{2}\sqrt{\lambda(s_{2},s_{3},t)}}{s_{2}(s_{2}-s_{3}-t)+a\sqrt{\lambda(s_{2},m_{L}^{2},m_{L}^{2})\lambda(s_{2},s_{3},t)}}\,. (81)

Spence’s function Li2(z){\rm Li}_{2}(z) has a logarithmic branch point at z=1z=1 and we have to choose an appropriate branch to evaluate the concrete value of tri\mathcal{I}_{\rm tri}. In the present purpose, on the other hand, we do not choose the branch and use the expression on a general branch

Li2(z)=pvLi2(z)+2πnilnz+4π2m(n,m=0,±1,±2,),\displaystyle{\rm Li}_{2}(z)={\rm pv\,Li}_{2}(z)+2\pi ni\ln z+4\pi^{2}m\quad(n,m=0,\pm 1,\pm 2,\cdots)\,, (82)

where pv{\rm pv} denotes the principal value. It is easy to show that tri\mathcal{I}_{\rm tri} can diverge as t0t\to 0 on a general branch but is a logarithmic divergence. Therefore, we conclude limt+0ttri=0\lim_{t\to+0}t\mathcal{I}_{\rm tri}=0 and ignore the second line of (78) in the limit t+0t\to+0 as long as s2s3s_{2}\neq s_{3}. We then obtain the following expressions at the leading order in the large mHm_{H} expansion:

B2gϕ2gπ2(4π)2mH6×{1s22mL2Λ(s2)s2(4mL2s2)(s2=s3),Λ(s2)Λ(s3)s2s3(s2s3),\displaystyle B_{2}\approx\frac{g_{\phi}^{2}g_{\pi}^{2}}{(4\pi)^{2}m_{H}^{6}}\times\begin{cases}-\frac{1}{s_{2}}-\frac{2m_{L}^{2}\Lambda(s_{2})}{s_{2}(4m_{L}^{2}-s_{2})}&(s_{2}=s_{3})\,,\\ \frac{\Lambda(s_{2})-\Lambda(s_{3})}{s_{2}-s_{3}}&(s_{2}\neq s_{3})\,,\end{cases} (83)

where “\approx” is used to denote the equality at the leading order in the large mass expansion of mHm_{H}. For the sake of comparison, we computed B2B_{2} in which s2=s3s_{2}=s_{3} and t=0t=0 are assumed on the physical sheet. The former one of (83) agrees with the latter one with the limit s3s2s_{3}\to s_{2}.

We now discuss B2B_{2} in the stable case (s2=s3<4mL2)(s_{2}=s_{3}<4m_{L}^{2}), the unstable case with the same choice (s2=s3=M2)(s_{2}=s_{3}=M^{2}), and the unstable case with the conjugate choice (s2=s3=M2)(s_{2}=s_{3}^{*}=M^{2}), respectively. The function Λ(z)\Lambda(z) has a branch cut in z>4mL2z>4m_{L}^{2} and the analytically continued Λ\Lambda on the unphysical sheet is given by

Λ±(z)\displaystyle\Lambda^{\pm}(z) =pvΛ(z)±2πiz(z4mL2)z\displaystyle={\rm pv}\,\Lambda(z)\pm 2\pi i\frac{\sqrt{z(z-4m_{L}^{2})}}{z} (Rez>4mL2,sgn(Imz)=),\displaystyle(\mathrm{Re}z>4m_{L}^{2},~{}{\rm sgn}(\mathrm{Im}z)=\mp)\,, (84)

with Λ(z)=[Λ+(z)]\Lambda^{-}(z^{*})=[\Lambda^{+}(z)]^{*}. As a result, we obtain

B2stable\displaystyle B_{2}^{\rm stable} gϕ2gπ2(4π)2mH6[1MR2+2mL2Λ(MR2)MR2(4mL2MR2)]\displaystyle\approx-\frac{g_{\phi}^{2}g_{\pi}^{2}}{(4\pi)^{2}m_{H}^{6}}\left[\frac{1}{M_{R}^{2}}+\frac{2m_{L}^{2}\Lambda(M_{R}^{2})}{M_{R}^{2}(4m_{L}^{2}-M_{R}^{2})}\right] (MR<2mL),\displaystyle(M_{R}<2m_{L})\,,
B2++\displaystyle B_{2}^{++} gϕ2gπ2(4π)2mH6[1M2+2mL2Λ+(M2)M2(4mL2M2)]\displaystyle\approx-\frac{g_{\phi}^{2}g_{\pi}^{2}}{(4\pi)^{2}m_{H}^{6}}\left[\frac{1}{M^{2}}+\frac{2m_{L}^{2}\Lambda^{+}(M^{2})}{M^{2}(4m_{L}^{2}-M^{2})}\right] (MR>2mL),\displaystyle(M_{R}>2m_{L})\,,
B2+\displaystyle B_{2}^{+-} gϕ2gπ2(4π)2mH6ImΛ+(M2)MRΓ\displaystyle\approx-\frac{g_{\phi}^{2}g_{\pi}^{2}}{(4\pi)^{2}m_{H}^{6}}\frac{\mathrm{Im}\Lambda^{+}(M^{2})}{M_{R}\Gamma} (MR>2mL).\displaystyle(M_{R}>2m_{L})\,. (85)

The sign symbol denotes whether the unstable particle is decaying (+)(+) or growing ()(-). The behaviours of B2B_{2} are shown in Fig. 9. Thus we see in this explicit toy model, the standard positivity bound B2>0B_{2}>0 is violated for the unstable particles. Again this result is not surprising given for unstable particles, anomalous thresholds from UV massive state do contribute. In the next section, we will show that the source of the negativity indeed arises from the anomalous threshold. As we have mentioned, the violation of B2>0B_{2}>0 would imply that the dispersion relation (72) no longer holds in unstable particles.

Refer to caption
Figure 9: Normalized s2s^{2} coefficient as B~2=(4π)2mH6gϕ2gπ2mL2B2\tilde{B}_{2}=\frac{(4\pi)^{2}m_{H}^{6}}{g_{\phi}^{2}g_{\pi}^{2}m_{L}^{2}}B_{2}: stable external particles B2stableB_{2}^{\rm stable} (red), decaying-decaying external particles B2++B_{2}^{++} (green), and decaying-growing external particles B2+B_{2}^{+-} (blue). While B2stableB_{2}^{\rm stable} and B2+B_{2}^{+-} are real numbers, B2++B_{2}^{++} is a complex number; the real and imaginary parts are represented by solid and dashed curves, respectively. We set gϕ2/4π=MR2g_{\phi}^{2}/4\pi=M_{R}^{2} for illustrative purpose. Note that the divergence at MR=2mLM_{R}=2m_{L} is caused by a tt-channel triangle singularity of \mathcal{M}.

6 Anomalous thresholds from double discontinuity

In this section, we will find a dispersion relation of B2+B_{2}^{+-} with a special emphasis on delineating contributions from the normal and anomalous thresholds, and see that the anomalous thresholds are indeed the origin of the negative sign.

We start with the standard dispersive representation in the stable kinematics (0<s2,s3<4mL2)(0<s_{2},s_{3}<4m_{L}^{2}): the low-energy coefficient of the amplitude is given by the integral along the normal threshold cuts as

B~2\displaystyle\tilde{B}_{2} =mH6mL2mth2ds2ρbox|t=0[sm2(s2+s3)/2]3\displaystyle=\frac{m_{H}^{6}}{m_{L}^{2}}\int_{m_{\rm th}^{2}}^{\infty}{\rm d}s\frac{2\rho_{\rm box}|_{t=0}}{[s-m^{2}-(s_{2}+s_{3})/2]^{3}}
21dzmL2s3s2ln[zz+(s2)][zz(s2)]z3+(s2s3)\displaystyle\approx 2\int^{\infty}_{1}{\rm d}z\frac{m_{L}^{2}}{s_{3}-s_{2}}\frac{\ln[z-z_{+}(s_{2})][z-z_{-}(s_{2})]}{z^{3}}+(s_{2}\leftrightarrow s_{3}) (86)

where B~2=(4π)2mH6gϕ2gπ2mL2B2,z=s/mth2,mth2=(mL+mH)2\tilde{B}_{2}=\frac{(4\pi)^{2}m_{H}^{6}}{g_{\phi}^{2}g_{\pi}^{2}m_{L}^{2}}B_{2},z=s/m^{2}_{\rm th},m_{\rm th}^{2}=(m_{L}+m_{H})^{2} is the threshold energy and

z±(s)=12mL2[s±s(s4mL2)],\displaystyle z_{\pm}(s)=\frac{1}{2m_{L}^{2}}\left[s\pm\sqrt{s(s-4m_{L}^{2})}\right]\,, (87)

are (the rescaled values of) the positions of the triangle singularities studied in Sec. 4.3. The integrand has singularities at z=z±(s2)z=z_{\pm}(s_{2}) and z=z±(s3)z=z_{\pm}(s_{3}) which are away from the real zz-axis when 0<s2,s3<4mL20<s_{2},s_{3}<4m_{L}^{2} [see Fig. 7 and Fig. 10 (left)].

\to     ==  

Figure 10: Integration contours before (left) and after (middle and right) the analytic continuation. The red curves represent the branch cuts of the logarithmic function of (86). The black solid curves are the contours on the first sheet while the black dashed curve is the path on the second sheet. The branch cuts are deformed in the middle and right figures; in the right panel, the first sheet agrees with the principal sheet of the logarithm while it does not in the middle panel. The contours always run above z=zz=z_{-} and below z=z+z=z_{+}.

We then increase s2s_{2} along the +iε+i\varepsilon path and s3s_{3} along the iε-i\varepsilon path respectively. Since the logarithm in the integrand of (86) can be separated into pure s2s_{2}- and pure s3s_{3}-dependent pieces, we can discuss their analytic continuation separately. As long as Ims2>0\mathrm{Im}\,s_{2}>0, i.e., s2s_{2} does not cross the real axis, the singularities z=z±(s2)z=z_{\pm}(s_{2}) do not touch the integration contour and the contour deformation is not needed. Eq. (86) is simply given by the integral of the principal value of the logarithm (multiplied by z3z^{-3}). Again, as s2=4mL2s_{2}=4m_{L}^{2} we enter unstable kinematics and we continue to the lower-half plane as in the left of Fig. 7, the singularities z=z±(s2)z=z_{\pm}(s_{2}) cross the real axis and then the contour needs to be distorted (the middle of Fig. 10). The contour remains to run above z=zz=z_{-} and below z=z+z=z_{+}. Note that since Ims2<0\mathrm{Im}\,s_{2}<0, the branch cut for the principle branch of logarithm should run upward from z=zz=z_{-} and downward from z=z+z=z_{+}, as the integrand with Ims2<0\mathrm{Im}\,s_{2}<0 is conjugate to that with Ims2>0\mathrm{Im}\,s_{2}>0. We can redefine the branch cuts so that they align with the principal branch. The price we pay is that the contour will now pass through one branch cut onto the second sheet and come back through the second branch cut, as shown in the right of Fig. 10. Thus we see that the analytically-continued B~2\tilde{B}_{2} is no longer given by a contour integral of the principal value of the logarithm.

It is convenient to divide the contour integral as follows:

=+.\displaystyle\scalebox{0.5}[0.5]{\leavevmode\hbox{$\vbox{\hbox{\resizebox{}{}{{\leavevmode\hbox{\set@color{}}}}}}$}}=~{}\scalebox{0.5}[0.5]{\leavevmode\hbox{$\vbox{\hbox{\resizebox{}{}{{\leavevmode\hbox{\set@color{}}}}}}$}}+~{}\scalebox{0.5}[0.5]{\leavevmode\hbox{$\vbox{\hbox{\resizebox{}{}{{\leavevmode\hbox{\set@color{}}}}}}$}}\,. (88)

The first term is nothing but the integral of the principal logarithm while the second term is the integral of the difference between the different sheets, namely the discontinuity. Therefore, the analytically-continued dispersive representation is

B~221dzmL2s3s2ln[zz+(s2)][zz(s2)]z3+2z+(s2)z(s2)dzmL2s3s22πiz3+(s2s3),\displaystyle\tilde{B}_{2}\approx 2\int^{\infty}_{1}{\rm d}z\frac{m_{L}^{2}}{s_{3}-s_{2}}\frac{\ln[z-z_{+}(s_{2})][z-z_{-}(s_{2})]}{z^{3}}+2\int_{z_{+}(s_{2})}^{z_{-}(s_{2})}{\rm d}z\frac{m_{L}^{2}}{s_{3}-s_{2}}\frac{2\pi i}{z^{3}}+(s_{2}\leftrightarrow s_{3})\,, (89)

where ln\ln is understood as the principal logarithm. The integrations yield

21dzmL2s3s2ln[zz+(s2)][zz(s2)]z3\displaystyle 2\int^{\infty}_{1}{\rm d}z\frac{m_{L}^{2}}{s_{3}-s_{2}}\frac{\ln[z-z_{+}(s_{2})][z-z_{-}(s_{2})]}{z^{3}} =pvΛ(s2)s2s3+1s2s3,\displaystyle=\frac{{\rm pv}\,\Lambda(s_{2})}{s_{2}-s_{3}}+\frac{1}{s_{2}-s_{3}}\,, (90)
2z+(s2)z(s2)dzmL2s3s22πiz3\displaystyle 2\int_{z_{+}(s_{2})}^{z_{-}(s_{2})}{\rm d}z\frac{m_{L}^{2}}{s_{3}-s_{2}}\frac{2\pi i}{z^{3}} =2πis2(s24mL2)s2(s2s3).\displaystyle=2\pi i\frac{\sqrt{s_{2}(s_{2}-4m_{L}^{2})}}{s_{2}(s_{2}-s_{3})}\,. (91)

The second term of the first integral is cancelled with the (s2s3)(s_{2}\leftrightarrow s_{3}) term in (89). Hence, (89) indeed reproduces (85) by setting s2=s3=M2s_{2}=s_{3}^{*}=M^{2}.

All the calculations have been so far made explicit but the essential ingredients are (i) pairs of new singularities enter the first sheet and (ii) the integration contour is deformed like (88). The second term of (88) is the evaluation of the discontinuity of the integrand. Since the later is the discontinuity of the amplitude in s1s_{1}, the second term is a double discontinuity. Hence, the dispersive representation of the s2s^{2} coefficient at t=0t=0 takes a more illustrative form:

B~2+=mth2ds2πi2Discs~+(sReM2m2)3+n𝒞nds2πi2Discs2~+(sReM2m2)3.\displaystyle\tilde{B}_{2}^{+-}=\int_{m_{\rm th}^{2}}^{\infty}\frac{{\rm d}s}{2\pi i}\frac{2{\rm Disc}_{s}\tilde{\mathcal{M}}^{+-}}{(s-\mathrm{Re}M^{2}-m^{2})^{3}}+\sum_{n}\int_{\mathcal{C}_{n}}\frac{{\rm d}s}{2\pi i}\frac{2{\rm Disc}_{s}^{2}\tilde{\mathcal{M}}^{+-}}{(s-\mathrm{Re}M^{2}-m^{2})^{3}}\,. (92)

Here, Discs2+{\rm Disc}_{s}^{2}\mathcal{M}^{+-} refers to the double discontinuity of the same channel. The contour 𝒞n\mathcal{C}_{n} is a path connecting the pair of singularities and the summation is over all the pairs.777If Discs2+{\rm Disc}_{s}^{2}\mathcal{M}^{+-} has singularities and they require to deform the contour 𝒞n\mathcal{C}_{n}, we can again separate the integral into that of Discs2+{\rm Disc}_{s}^{2}\mathcal{M}^{+-} and Discs3+{\rm Disc}_{s}^{3}\mathcal{M}^{+-}, which may continue to even higher orders. In our one-loop example, however, it is enough to include up to the double discontinuity. In the example above, the discontinuity Discs~+{\rm Disc}_{s}\tilde{\mathcal{M}}^{+-} has two pairs of the triangle singularities associated with the contact diagrams

{feynhand}\propag\propag\propag\propag\propag\propag\propagand{feynhand}\propag\propag\propag\propag\propag\propag\propag.\displaystyle\leavevmode\hbox to0pt{\vbox to0pt{\pgfpicture\makeatletter\hbox{\hskip 0.0pt\lower 0.0pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand \propag[boson] (0.6,1) -- (0, 0) ; \propag(0.6,-1) -- (0, 0) ; \propag(-2, -1) -- (-1.2, -0.6); \propag[ultra thick] (-1.2, -0.6) -- (0, 0) ; \propag[boson] (-2, 1) -- (-1.2 , 0.6) ; \propag[dashed] (-1.2, 0.6) -- (0, 0); \propag[dashed] (-1.2,-0.6) -- (-1.2,0.6) ; \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\qquad\text{and}\qquad\leavevmode\hbox to0pt{\vbox to0pt{\pgfpicture\makeatletter\hbox{\hskip 0.0pt\lower 0.0pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand \propag[boson] (-0.6,1) -- (0, 0) ; \propag(-0.6,-1) -- (0, 0) ; \propag(2, -1) -- (1.2, -0.6); \propag[ultra thick] (1.2, -0.6) -- (0, 0) ; \propag[boson] (2, 1) -- (1.2 , 0.6) ; \propag[dashed] (1.2, 0.6) -- (0, 0); \propag[dashed] (1.2,-0.6) -- (1.2,0.6) ; \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\,.

Since the second term in (92) occurs only when the triangle singularity crosses onto the physical sheet, we can identify it with the anomalous threshold. Thus the normal and anomalous contributions have been identified with

I~n+\displaystyle\tilde{I}_{n}^{+-} :=mth2ds2πi2Discs~+(sReM2m2)34Im1dzmL22MRΓln[zz+(M2)][zz(M2)]z3,\displaystyle:=\int_{m_{\rm th}^{2}}^{\infty}\frac{{\rm d}s}{2\pi i}\frac{2{\rm Disc}_{s}\tilde{\mathcal{M}}^{+-}}{(s-\mathrm{Re}M^{2}-m^{2})^{3}}\approx 4\mathrm{Im}\int^{\infty}_{1}{\rm d}z\frac{m_{L}^{2}}{2M_{R}\Gamma}\frac{\ln[z-z_{+}(M^{2})][z-z_{-}(M^{2})]}{z^{3}}\,,
I~a+\displaystyle\tilde{I}_{a}^{+-} :=n𝒞nds2πi2Discs2~+(sReM2m2)34Rez+(M2)z(M2)dzmL2MRΓπz3.\displaystyle:=\sum_{n}\int_{\mathcal{C}_{n}}\frac{{\rm d}s}{2\pi i}\frac{2{\rm Disc}_{s}^{2}\tilde{\mathcal{M}}^{+-}}{(s-\mathrm{Re}M^{2}-m^{2})^{3}}\approx 4\mathrm{Re}\int_{z_{+}(M^{2})}^{z_{-}(M^{2})}{\rm d}z\frac{m_{L}^{2}}{M_{R}\Gamma}\frac{\pi}{z^{3}}\,. (93)
Refer to caption
Figure 11: Normalized s2s^{2} coefficient B~2+\tilde{B}_{2}^{+-} (blue), the normal threshold contribution I~n+\tilde{I}_{n}^{+-} (red), and the anomalous threshold contribution I~a+\tilde{I}_{a}^{+-} (magenta).

The dispersion relation (92) disentangles the contributions from normal and anomalous thresholds to B~2+\tilde{B}_{2}^{+-}. We have numerically computed their individual contribution as in Fig. 11. As one can see the normal threshold I~n+\tilde{I}_{n}^{+-} still satisfies the positivity Discs~+/(2i)>0{\rm Disc}_{s}\tilde{\mathcal{M}}^{+-}/(2i)>0 in the unstable kinematics (MR>2mL)(M_{R}>2m_{L}) as predicted by unitarity, while the anomalous part I~a+\tilde{I}_{a}^{+-} yields a large negative value. The anomalous sign of the s2s^{2} coefficient comes from the anomalous thresholds!

7 Integral formula for discontinuities

In the previous section, we’ve seen that the anomalous threshold can be isolated in a dispersive representation by identifying it as the double discontinuity of the amplitude for the same variable. In this section, we derive this in a more general setup to get more insights into the double-discontinuity formula.

As we’ve seen the anomalous threshold enters the physical sheet when one of the external kinematics become unstable. At this point the two roots of the triangle singularity becomes degenerate. Such kinematic configuration can be analyzed utilizing Landau equations. We start with the nn-point one-loop diagram

which is proportional to

n=ddiπd/2i=1n1qi2+mi2=Γ(nd2)01[i=1ndαi]δ(1iαi)[12i,jαiYijαj]nd/2\displaystyle\mathcal{I}_{n}=\int\frac{{\rm d}^{d}\ell}{i\pi^{d/2}}\prod_{i=1}^{n}\frac{-1}{q_{i}^{2}+m_{i}^{2}}=\Gamma(n{-}\frac{d}{2})\int^{1}_{0}\left[\prod_{i=1}^{n}{\rm d}\alpha_{i}\right]\frac{\delta(1-\sum_{i}\alpha_{i})}{[\frac{1}{2}\sum_{i,j}\alpha_{i}Y_{ij}\alpha_{j}]^{n-d/2}} (94)

with Pi=j=1ipiP_{i}=\sum_{j=1}^{i}p_{i} and

Yij=(PiPj)2mi2mj2.\displaystyle Y_{ij}=-(P_{i}-P_{j})^{2}-m_{i}^{2}-m_{j}^{2}\,. (95)

The final form of (94) manifests that n\mathcal{I}_{n} is a function of zij=(PjPi)2z_{ij}=-(P_{j}-P_{i})^{2} with (j>i)(j>i).

The singularities of n(zij)\mathcal{I}_{n}(z_{ij}) are governed by Landau equations

i,jαiYijαj=0,\displaystyle\sum_{i,j}\alpha_{i}Y_{ij}\alpha_{j}=0\,, (96)
either\displaystyle{\rm either}\quad αi=0orjYijαj=0for each i.\displaystyle\alpha_{i}=0\quad{\rm or}\quad\sum_{j}Y_{ij}\alpha_{j}=0\quad\text{for each $i$}\,. (97)

The singularities with αi0\alpha_{i}\neq 0 for all ii are called leading singularities while those with αi=0\alpha_{i}=0 are called lower-order singularities. The lower-order singularities are the leading singularities for the diagram where lines ii corresponding to αi=0\alpha_{i}=0 are contracted. Let |𝒀i1i2ip|,(0pn1)|{\bm{Y}}_{i_{1}i_{2}\cdots i_{p}}|,~{}(0\leq p\leq n-1) be the principal minor of order pp of 𝒀=(Yij){\bm{Y}}=(Y_{ij}) with removing the i1i_{1}th, i2i_{2}th, \cdots, and ipi_{p}th rows and columns. The equation

|𝒀i1i2ip|=0\displaystyle|{\bm{Y}}_{i_{1}i_{2}\cdots i_{p}}|=0 (98)

solves the Landau equation (97) with αi1=αi2=αip=0\alpha_{i_{1}}=\alpha_{i_{2}}=\alpha_{i_{p}}=0. Hence, (98) determine would-be singularity hypersurfaces in the complex zijz_{ij}-space which we call Landau surfaces. The singularities determined by (98) are understood as the singularities where all internal lines except qi1,qi2,,qipq_{i_{1}},q_{i_{2}},\cdots,q_{i_{p}} are on-shell. Note that not all parts of the Landau surfaces are necessarily singularities of n\mathcal{I}_{n}. We shall particularly refer to surfaces/singularities with pp αi\alpha_{i}s zero as Landau surfaces/singularities of order npn{-}p corresponding to singularities where (np)(n{-}p)-propagators are on-shell. Thus the leading order Landau surface corresponds to all propagators on-shell, which in fixed dimensions implies a non-trivial constraint on the external kinematics.

Let us consider intersections of two Landau surfaces. The equations of the Landau surfaces are all given by the principal minors. Hence, without loss of generality, we can consider intersections between the leading-order Landau surface (nn-propagators on-shell) and a lower-order Landau surface. The equation |𝒀|=0|{\bm{Y}}|=0 is generically quadratic for one variable in {zij}\{z_{ij}\}. We bring this specified variable into the leading position without loss of generality, so we call it z12z_{12}. The set of variables other than z12z_{12} is denoted by 𝒛{\bm{z}}. The Laplace expansion of the determinant gives

|𝒀|=z122|𝒀12|+𝒪(z12).\displaystyle|{\bm{Y}}|=-z_{12}^{2}|{\bm{Y}}_{12}|+\mathcal{O}(z_{12})\,. (99)

The coefficient of the highest degree term vanishes at the intersection with the Landau surface of order n2n-2, implying that one branch of the Landau surface of order nn reaches infinity at the intersection. Next, we consider the intersection between the Landau surfaces of order nn and order n1n{-}1 under the assumption |𝒀12|0|{\bm{Y}}_{12}|\neq 0 where the roots of |𝒀|=0|{\bm{Y}}|=0 are denoted by z12=z±(𝒛)z_{12}=z_{\pm}({\bm{z}}). By Jacobi’s theorem (for example, see aitken2017determinants ; Eden:1966dnq ), we obtain the identity

|𝒀1||𝒀2||𝒀21||𝒀12|=|𝒀||𝒀12|,\displaystyle|{\bm{Y}}_{1}||{\bm{Y}}_{2}|-|{\bm{Y}}^{1}_{2}||{\bm{Y}}^{2}_{1}|=|{\bm{Y}}||{\bm{Y}}_{12}|\,, (100)

where |𝒀ji||{\bm{Y}}^{i}_{j}| denotes the (i,j)(i,j) algebraic minor of 𝒀{\bm{Y}}. Note that |𝒀ji|=|𝒀ij||{\bm{Y}}^{i}_{j}|=|{\bm{Y}}^{j}_{i}| because 𝒀{\bm{Y}} is symmetric. In particular, from eq.(100) if |𝒀12|0|{\bm{Y}}_{12}|\neq 0 and |𝒀1|=0|{\bm{Y}}_{1}|=0 or |𝒀2|=0|{\bm{Y}}_{2}|=0, i.e. if we are considering the intersection with one lower-dimensional Landau surface, then equation |𝒀|=0|{\bm{Y}}|=0 is reduced to |𝒀21|=0|{\bm{Y}}^{1}_{2}|=0. This implies that the different roots of |𝒀|=0|{\bm{Y}}|=0 are multiple roots z+=zz_{+}=z_{-} at the intersection. In other words, a Landau surface is tangent to one lower-order Landau surface [see Fig. 12 (left)]. The converse is also true: the equation |𝒀|=0|{\bm{Y}}|=0 is reduced to

|𝒀1||𝒀2||𝒀21|2=0,\displaystyle|{\bm{Y}}_{1}||{\bm{Y}}_{2}|-|{\bm{Y}}^{1}_{2}|^{2}=0\,, (101)

according to (100). Since |𝒀1||{\bm{Y}}_{1}| and |𝒀2||{\bm{Y}}_{2}| are independent of z12z_{12}, while |𝒀21|=z12|𝒀12|+𝒪(z120)|{\bm{Y}}^{1}_{2}|=z_{12}|{\bm{Y}}_{12}|+\mathcal{O}(z_{12}^{0}), the roots z12=z±z_{12}=z_{\pm} are degenerate only if |𝒀1|=0|{\bm{Y}}_{1}|=0 or |𝒀2|=0|{\bm{Y}}_{2}|=0. All in all, we conclude

z+(𝒛)=z(𝒛)|𝒀1||𝒀2|=0.\displaystyle z_{+}({\bm{z}})=z_{-}({\bm{z}})\iff|{\bm{Y}}_{1}||{\bm{Y}}_{2}|=0\,. (102)

That is, when the order nn Landau singularity becomes degenerate, one in fact has an order n1n{-}1 Landau singularity.

Refer to caption
Figure 12: Left: the roots of |𝒀|=0|{\bm{Y}}|=0, denoted by z12=z±z_{12}=z_{\pm} are multiple roots if and only if |𝒀1|=0|{\bm{Y}}_{1}|=0 or |𝒀2|=0|{\bm{Y}}_{2}|=0, showing these surfaces are tangent to each other. Right: the singularities of integrand z12=z±z_{12}^{\prime}=z_{\pm} in the dispersive representation may pinch the integration contour 𝒞\mathcal{C} described by the thick line, generating a singularity of the integral at z+(𝒛)=z(𝒛)z_{+}({\bm{z}})=z_{-}({\bm{z}}). Note that z+=zz_{+}=z_{-}^{*} if 𝒛,mi2{\bm{z}},m_{i}^{2}\in\mathbb{R} and |𝒀1||𝒀2|<0|{\bm{Y}}_{1}||{\bm{Y}}_{2}|<0 because z±z_{\pm} are the roots of the quadratic equation (101).

The relation (102) helps us to understand generations of singularities through the dispersive representation. Let us assume that the nn-point one-loop function, with n>2n>2, can be written as

n(z12,𝒛)=mth2dz122πiDiscz12n(z12,𝒛)z12z12,\displaystyle\mathcal{I}_{n}(z_{12},{\bm{z}})=\int_{m_{\rm th}^{2}}^{\infty}\frac{{\rm d}z_{12}^{\prime}}{2\pi i}\frac{{\rm Disc}_{z_{12}^{\prime}}\mathcal{I}_{n}(z_{12}^{\prime},{\bm{z}})}{z_{12}^{\prime}-z_{12}}\,, (103)

for a certain region of 𝒛{\bm{z}}.888Here, we consider the dispersive representation with zero subtraction, which should hold for triangle, box, and any higher nn-gon in four dimensions. If subtractions are needed, a similar discussion can be made by replacing (103) with a dispersive representation of derivatives of n\mathcal{I}_{n}. Here we treat the external kinematic variables to be independent and below two-particle normal thresholds. Suppose that Discz12n{\rm Disc}_{z_{12}}\mathcal{I}_{n} has a singularity that can be identified as a Landau singularity of order pp at z12=z±(𝒛)z_{12}^{\prime}=z_{\pm}({\bm{z}}). The nn-point function n\mathcal{I}_{n} may possess the following types of pinch singularities: (i) one of z±z_{\pm} coincides with the singularity coming from the denominator z12=z12z_{12}^{\prime}=z_{12}, trapping the integration contour (see Fig. 6) and (ii) the singularities z12=z±z_{12}^{\prime}=z_{\pm} pinch the integration contour [see Fig. 12 (right)]. They occur at z12=z±(𝒛)z_{12}=z_{\pm}({\bm{z}}) for the first case and at z+(𝒛)=z(𝒛)z_{+}({\bm{z}})=z_{-}({\bm{z}}) for the second case, respectively. The first, which is z12z_{12}-dependent is the condition for the Landau surface of order pp while the second, whose position is independent of z12z_{12}, is the condition for the surface of order p1p-1. Said in another way, for the z12z_{12} dispersive representation, z12z_{12} independent singularities arise from lower order Landau surfaces.999Note that this is sufficient for the generations of singularities of n\mathcal{I}_{n} but not necessary. The function n\mathcal{I}_{n} may also be singular due to a pinch between Landau surfaces of different orders or an end-point singularity.

We can derive an integral formula for the discontinuity by using the above discussion. Here, in addition to the variable z12z_{12}, we only vary an additional variable denoted as zz. The other variables are supposed to be fixed so that the nn-point function n\mathcal{I}_{n} is real analytic in the variables of interest {z12,z}\{z_{12},z\}. Let z=zsz=z_{s}\in\mathbb{R} be the singularity of order p1p{-}1 of n(z12,z)\mathcal{I}_{n}(z_{12},z) and let the dispersion relation

n(z12,z)=mth2dz122πiDiscz12n(z12,z)z12z12\displaystyle\mathcal{I}_{n}(z_{12},z)=\int_{m_{\rm th}^{2}}^{\infty}\frac{{\rm d}z_{12}^{\prime}}{2\pi i}\frac{{\rm Disc}_{z_{12}^{\prime}}\mathcal{I}_{n}(z_{12}^{\prime},z)}{z_{12}^{\prime}-z_{12}} (104)

holds in z<zsz<z_{s} corresponding to |𝒀1||𝒀2|<0|{\bm{Y}}_{1}||{\bm{Y}}_{2}|<0. We consider the analytic continuation into the region z>zsz>z_{s} corresponding to |𝒀1||𝒀2|>0|{\bm{Y}}_{1}||{\bm{Y}}_{2}|>0. As discussed, a singularity of order p1p-1 of n\mathcal{I}_{n} in the zz-plane is generated by the pinch of a pair of singularities of order pp of Discz12n{\rm Disc}_{z_{12}^{\prime}}\mathcal{I}_{n} in the z12z_{12}^{\prime}-plane. We need to add a small imaginary part ±iε\pm i\varepsilon to zz to avoid the pinch and shift the positions of singularities z12=z±(z)z_{12}=z_{\pm}(z) away from the real axis in z>zsz>z_{s}. Depending on the sign of the imaginary part, the positions of the singularities z12=z±z_{12}^{\prime}=z_{\pm} will be different. According to the real analyticity, the singularities are found in the complex conjugate positions for the opposite sign of the imaginary part, z±(z+iε)=[z(ziε)]z_{\pm}(z+i\varepsilon)=[z_{\mp}(z-i\varepsilon)]^{*}, implying that

mth2dz122πiDiscz12n(z12,z+iε)z12z12\displaystyle\int_{m_{\rm th}^{2}}^{\infty}\frac{{\rm d}z_{12}^{\prime}}{2\pi i}\frac{{\rm Disc}_{z_{12}^{\prime}}\mathcal{I}_{n}(z_{12}^{\prime},z+i\varepsilon)}{z_{12}^{\prime}-z_{12}} =\displaystyle=\scalebox{0.5}[0.5]{\leavevmode\hbox{$\vbox{\hbox{\resizebox{}{}{{\leavevmode\hbox{\set@color{}}}}}}$}} (105)
mth2dz122πiDiscz12n(z12,ziε)z12z12\displaystyle\int_{m_{\rm th}^{2}}^{\infty}\frac{{\rm d}z_{12}^{\prime}}{2\pi i}\frac{{\rm Disc}_{z_{12}^{\prime}}\mathcal{I}_{n}(z_{12}^{\prime},z-i\varepsilon)}{z_{12}^{\prime}-z_{12}} =\displaystyle=\scalebox{0.5}[0.5]{\leavevmode\hbox{$\vbox{\hbox{\resizebox{}{}{{\leavevmode\hbox{\set@color{}}}}}}$}} (106)

where RHS represents the integration contour and the singularities of the integrand. The singularities z12=z±z_{12}^{\prime}=z_{\pm} can be branch points of the integrated answer so we introduce branch cuts denoted by red curves.101010If they are poles, the discussion is straightforward. They should also be symmetrical for the opposite sign of imaginary parts z±iεz\pm i\varepsilon. Note that z+z_{+} is the singularity above the integration contour before the analytic continuation (z<zs)(z<z_{s}) and it remains above it in z>zsz>z_{s}. We further analytically continue the first equation into the lower-half zz-plane, which is the same problem as we have done in Sec. 6:

\displaystyle\to\scalebox{0.5}[0.5]{\leavevmode\hbox{$\vbox{\hbox{\resizebox{}{}{{\leavevmode\hbox{\set@color{}}}}}}$}}
=\displaystyle=\scalebox{0.5}[0.5]{\leavevmode\hbox{$\vbox{\hbox{\resizebox{}{}{{\leavevmode\hbox{\set@color{}}}}}}$}}
=+.\displaystyle=\scalebox{0.5}[0.5]{\leavevmode\hbox{$\vbox{\hbox{\resizebox{}{}{{\leavevmode\hbox{\set@color{}}}}}}$}}+\scalebox{0.5}[0.5]{\leavevmode\hbox{$\vbox{\hbox{\resizebox{}{}{{\leavevmode\hbox{\set@color{}}}}}}$}}\,. (107)

As in Sec. 6, the branch cuts are deformed so that the direction of the cuts agree with those of (106) . Then the contour integral is split into the real axis and the closed contour. The first term on the third line is exactly the same as (106) after relabelling z±z_{\pm} and the second term is replaced with the integral of the double discontinuity of the z12z_{12}-channel. Thus taking the difference between (105) and (106), we obtain a new formula for discontinuities:

Disczn(z12,z)=z+zdz122πiDiscz122n(z12,z)z12z12.\displaystyle{\rm Disc}_{z}\mathcal{I}_{n}(z_{12},z)=\int_{z_{+}}^{z_{-}}\frac{{\rm d}z_{12}^{\prime}}{2\pi i}\frac{{\rm Disc}_{z_{12}^{\prime}}^{2}\mathcal{I}_{n}(z_{12}^{\prime},z)}{z_{12}^{\prime}-z_{12}}\,. (108)

The LHS is the discontinuity associated with the singularity of order p1p-1 in the zz-plane whereas the RHS comes from the singularities of order pp in the z12z_{12}-plane. The information about different singularities in different channels is related through (108).

A key feature of (108) is to relate singularities associated with different numbers of cuts. To illustrate it, let us consider the already-accustomed triangle diagram (p=3)(p=3). We apply the two-particle cut to the LHS and the three-particle cut to the RHS:

LHS={feynhand}\propag\propag\propag\propag\propag\propag,RHS={feynhand}\propag\propag\propag\propag\propag\propag.\displaystyle{\rm LHS}=\leavevmode\hbox to31.7pt{\vbox to17.47pt{\pgfpicture\makeatletter\hbox{\hskip 42.87914pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand \propag(0.8,0) -- (0, 0) ; \propag(-2, -1) -- (-1.2, -0.6); \propag[ultra thick] (-1.2, -0.6) -- (0, 0) ; \propag(-2, 1) -- (-1.2 , 0.6) ; \propag(-1.2, 0.6) -- (0, 0); \propag(-1.2,-0.6) -- (-1.2,0.6) ; {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-42.67914pt}{0.0pt}\pgfsys@lineto{-25.6073pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-19.91684pt}{2.84544pt}\pgfsys@lineto{-11.38092pt}{17.07182pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\,,\qquad\qquad{\rm RHS}=\leavevmode\hbox to31.7pt{\vbox to34.54pt{\pgfpicture\makeatletter\hbox{\hskip 42.87914pt\lower-17.27182pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand \propag(0.8,0) -- (0, 0) ; \propag(-2, -1) -- (-1.2, -0.6); \propag[ultra thick] (-1.2, -0.6) -- (0, 0) ; \propag(-2, 1) -- (-1.2 , 0.6) ; \propag(-1.2, 0.6) -- (0, 0); \propag(-1.2,-0.6) -- (-1.2,0.6) ; {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-42.67914pt}{0.0pt}\pgfsys@lineto{-25.6073pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-19.91684pt}{2.84544pt}\pgfsys@lineto{-11.38092pt}{17.07182pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-19.91684pt}{-2.84544pt}\pgfsys@lineto{-11.38092pt}{-17.07182pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\,. (109)

Suppose that the thin internal lines correspond to IR states and the thick line is a UV state. Then, the two-particle cut is possible at IR while the three particles can be on-shell only at UV. In this way, the formula (108) can connect singularities at different energies through the integration. This is precisely what we have seen in (92), the triangle cut arises from the double discontinuity in z12z_{12}. The UV double discontinuity arises because we have crossed the IR branch cut of the external mass variable. Further checks of (108) for n=3,4n=3,4 are given in Appendix A.

8 Conclusions

Unstable particles have been largely unexplored in studies of S-matrix. The obvious difficulty comes from the fact that unstable particles do not appear in the asymptotic states so the definition of scattering amplitudes is obscure. Precisely, scattering amplitudes of unstable particles can be defined by the analytic continuation of higher-point amplitudes into an unphysical sheet where the pole associated with the unstable particle exists. The difficulty then traces back to the lack of precise knowledge of amplitudes away from the physical sheet.

In this work, we have studied the analytic properties of scattering amplitudes in unstable kinematics. The main results are twofold: there exist anomalous thresholds in a UV region of the energy variable and such anomalous thresholds can yield negative contribution to the dispersion relation. Both properties are quite different from what we have learned from stable particles. The appearance of anomalous thresholds in scatterings of heavy particles has been well known (see e.g. Hannesdottir:2022bmo ; Correia:2022dcu for recent papers). When an external mass is analytically continued to a heavy value, singularities which are originally situated on the second sheet, enter the first sheet through the IR side of the branch cut. These IR singularities associated with light loops appear in both stable and unstable kinematics and can be traced by low-energy EFTs. On the other hand, if the external mass is analytically continued beyond the decay threshold, singularities associated with loops involving particle(s) whose mass is much heavier than the external masses also enter the first sheet through the UV side of the branch cut. The UV singularities give rise to an unsubtractable “anomalous” contribution to the dispersion relation in the form of double discontinuity. At least in the example, we have found that this anomalous contribution is negative, violating the positivity bounds known in stable-particle scatterings.

Our results can be phrased in another way. For the scattering of stable particles, the anomalous threshold can only enter to the physical sheet by passing through the physical threshold at 4m24m^{2}, and thus strictly within the realm of IR kinematics. In defining our unstable particle S-matrix by analytically continuing through the decay threshold to a complex mass, we introduce a new avenue where the anomalous threshold can enter the physical sheet. In such case, “UV” anomalous thresholds, which for us are triangle singularities associated with UV states, can also enter the physical sheet. Note that not all is lost. As seen in our toy model analysis, the leading contribution to B2B_{2} comes from small\mathcal{I}_{\rm small} in eq. (74), i.e. where the loop momentum is small compared to mH2m^{2}_{H}. In this region, the four-point amplitude (ππχLχL)\mathcal{M}(\pi\pi\chi_{L}\chi_{L}) is well approximated by an EFT description with local operators suppressed by mH2m^{2}_{H} and B2B_{2} is calculable by EFT loops with such local vertices. Thus such UV anomalous threshold is well computable in terms of a handful of EFT Wilson coefficients. It will be interesting to systematically study such effects in the future.

At first glance this conclusion might seem contradictory. On the one-hand the anomalous threshold is of “UV” origin as it is associated with a triangle singularity that has a UV massive propagator. On the other, in the explicit computation, the leading contributions came from small\mathcal{I}_{\rm small} in eq. (74), which is computable directly using low energy EFT, i.e. in the IR. The resolution is of course (108), where the discontinuity of the variable zz in the IR (LHS), knows about the singularities in the UV in the variable z12z_{12} (RHS). The essential ingredients for the derivation of the formula (108) are real analyticity, the dispersion relation, and its analytic continuation. The analysis of Landau equations that led to the relations between different singularities (102) are specialized to one-loop, while other parts of the discussion, e.g. the contour deformation (107), are expected to be generic. Thus if we have control over the position of the singularities, similar formulae may be derived beyond the one-loop level or even non-perturbatively by starting with the (twice-subtracted) dispersion relation. The precise analysis is left for future investigation. Also, the formula is applicable not only for unstable particles but also for stable-particle scatterings. In this case, one can think of the LHS as the EFT-calculable tt-channel discontinuity of the 2-to-2 amplitude. The RHS corresponds to the ss- and uu-channel double discontinuity associated with one cut added to the LHS, which can be a UV state. One such example is a box integral like (67) where it can have an IR tt-channel triangle singularity and a UV ss-channel box singularity. We can then obtain a new type of UV-IR relation of the 2-to-2 scattering amplitude. However, we need more knowledge about the anomalous thresholds and the double discontinuity to understand such a UV-IR relation, which we leave for future work.

In summary, our results pose new challenges for the S-matrix bootstrap. On the one hand, our analysis indicates that the standard dispersive formulae cannot be immediately applied to unstable particles except in the absence of anomalous thresholds, e.g. the tree-level approximation, or assuming a model that the interaction is dominated by a non-decay process. Since most particles have finite decay width, to be agnostic about models, one needs to find an appropriate prescription for phenomenological applications such as the standard model effective field theory and strongly coupled systems. On the other hand, it is evident that our knowledge is only the tip of the iceberg of the S-matrix. We have found that singularities of different channels at different energies are related, which would be a portion of the hidden structure of the S-matrix. Scattering amplitudes should be even more restricted than what we currently know and studying unstable particles, or more generically speaking, singularities other than normal thresholds (resonance poles, antibound state poles, anomalous thresholds, etc) will help us expose the entire structure of the S-matrix.

Acknowledgements

We would like to thank Holmfridur Hannesdottir and Sebastian Mizera for discussions and comments on the draft. The Feynman diagrams in this paper were drawn with the help of TikZ-FeynHandEllis:2016jkw . K.A. is grateful to the organizers of the workshop “14th Taiwan String Workshop” and the hospitality of NTU where part of this work was carried out. Y-t H would like to thank the hospitality and support of YITP, during which a majority of this work was completed. The work of K.A. was supported by JSPS Grants-in-Aid for Scientific Research, No. 20K14468 and No. 24K17046. The work of Y-t H is supported by NSTC grant no. 112-2811-M-002 -054 -MY2.

Appendix A Explicit check of discontinuity formula

In this appendix, we compute the LHS and RHS of (108) and confirm the agreement. We focus on the triangle and box diagrams in four dimensions. The explicit forms of the discontinuities are given in (40) for s1s_{1} and (41) for s12s_{12}, which are worth rewriting here as a reference:

ρtri\displaystyle\rho_{\rm tri} =1λ1/2(s1,s2,s3)ln[2s1Stri+λ(s1,m22,m32)λ(s1,s2,s3)λ(s1,m22,m32)λ(s1,s2,s3)2s1Stri+λ(s1,m22,m32)λ(s1,s2,s3)+λ(s1,m22,m32)λ(s1,s2,s3)]\displaystyle=\frac{1}{\lambda^{1/2}(s_{1},s_{2},s_{3})}\ln\left[\frac{\sqrt{2s_{1}S_{\rm tri}+\lambda(s_{1},m_{2}^{2},m_{3}^{2})\lambda(s_{1},s_{2},s_{3})}-\sqrt{\lambda(s_{1},m_{2}^{2},m_{3}^{2})\lambda(s_{1},s_{2},s_{3})}}{\sqrt{2s_{1}S_{\rm tri}+\lambda(s_{1},m_{2}^{2},m_{3}^{2})\lambda(s_{1},s_{2},s_{3})}+\sqrt{\lambda(s_{1},m_{2}^{2},m_{3}^{2})\lambda(s_{1},s_{2},s_{3})}}\right] (40)
ρbox\displaystyle\rho_{\rm box} =1Sbox1/2ln[StriLStriR+λ(s12,m22,m42)Sbox+λ(s12,m22,m42)SboxStriLStriR+λ(s12,m22,m42)Sboxλ(s12,m22,m42)Sbox].\displaystyle=\frac{1}{S_{\rm box}^{1/2}}\ln\left[\frac{\sqrt{S_{\rm tri}^{L}S_{\rm tri}^{R}+\lambda(s_{12},m_{2}^{2},m_{4}^{2})S_{\rm box}}+\sqrt{\lambda(s_{12},m_{2}^{2},m_{4}^{2})S_{\rm box}}}{\sqrt{S_{\rm tri}^{L}S_{\rm tri}^{R}+\lambda(s_{12},m_{2}^{2},m_{4}^{2})S_{\rm box}}-\sqrt{\lambda(s_{12},m_{2}^{2},m_{4}^{2})S_{\rm box}}}\right]. (41)

We first consider the triangle diagram and see the relation between the two-particle and three-particle cuts:

{feynhand}\propag\propag\propag\propag\propag\propag332211 =Discs3tri=2πiρtri|13,\displaystyle={\rm Disc}_{s_{3}}\mathcal{I}_{\rm tri}=2\pi i\rho_{\rm tri}|_{1\leftrightarrow 3}\,, (110)
{feynhand}\propag\propag\propag\propag\propag\propag332211 =Discs12tri=(2πi)2λ1/2(s1,s2,s3),\displaystyle={\rm Disc}_{s_{1}}^{2}\mathcal{I}_{\rm tri}=\frac{(2\pi i)^{2}}{\lambda^{1/2}(s_{1},s_{2},s_{3})}\,, (111)

where the thick line is supposed to be heavy so that the triangle singularities appear in the first sheet of the s1s_{1} plane (See Sec. 4.3). The (single) discontinuity in s3s_{3} is given by (40) with the replacement 131\leftrightarrow 3. The double discontinuity is computed from the discontinuity (40) for the logarithmic singularity Stri=0S_{\rm tri}=0. Then, the formula (108) yields

2πiρtri|13=s+sds12πi(2πi)2λ1/2(s1,s2,s3)1s1s1,\displaystyle 2\pi i\rho_{\rm tri}|_{1\leftrightarrow 3}=\int_{s_{+}}^{s_{-}}\frac{{\rm d}s_{1}^{\prime}}{2\pi i}\frac{(2\pi i)^{2}}{\lambda^{1/2}(s_{1}^{\prime},s_{2},s_{3})}\frac{1}{s_{1}^{\prime}-s_{1}}\,, (112)

where s1=s±s_{1}=s_{\pm} are the roots of Stri=0S_{\rm tri}=0, which are explicitly given by (48). Here, we should make sure that only the triangle singularities Stri=0S_{\rm tri}=0 deform the contour, in particular, λ(s1,s2,s3)>0\lambda(s_{1}^{\prime},s_{2},s_{3})>0 in the interval of integration. As demonstrated in Fig. 13, one can confirm that the equality (112) indeed holds.

Refer to caption
Refer to caption
Figure 13: Comparisons between the LHS and the RHS of (112) (left) and (117) (right). The red curves and the black dashed curves respectively represent the LHS and the RHS divided by 2πi2\pi i. Here, we set s1=s2=m12=m22=1,m3=4s_{1}=s_{2}=m_{1}^{2}=m_{2}^{2}=1,m_{3}=4 (left) and s=mL2=1,M=1.9,mH=4s=m_{L}^{2}=1,M=1.9,m_{H}=4 (right).

Next, we discuss the box integral box\mathcal{I}_{\rm box} to relate the ss and tt channel singularities. For a sufficiently large external mass (which can be stable), the triangle singularity appears below the normal threshold. In such a case, the analytic continuation of the ss-channel dispersion relation in tt first touches the triangle singularity. We can thus apply (108) to the three- and four-particle cuts of the box diagram:

LHS={feynhand}\propag1\propag2\propag3\propag4\propagmL\propagmL\propagmL\propagmH,RHS={feynhand}\propag1\propag2\propag3\propag4\propagmL\propagmL\propagmL\propagmH.\displaystyle{\rm LHS}=\leavevmode\hbox to45.92pt{\vbox to23.16pt{\pgfpicture\makeatletter\hbox{\hskip 22.96228pt\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand \propag(-1.2, -0.8) node [left] {$1$} -- (-0.6, -0.6) ; \propag(-1.2, 0.8) node [left] {$2$} -- (-0.6, 0.6) ; \propag(1.2, 0.8) node [right] {$3$} -- (0.6, 0.6) ; \propag(1.2, -0.8) node [right] {$4$} -- (0.6, -0.6) ; \propag(-0.6, -0.6) -- (-0.6, 0.6) node [midway, left=0.1] {$m_{L}$}; \propag(-0.6, 0.6) -- (0.6, 0.6) node [midway, above=0.1] {$m_{L}$}; \propag(0.6, 0.6) -- (0.6, -0.6) node [midway, right=0.1] {$m_{L}$}; \propag[ultra thick] (0.6, -0.6) -- (-0.6, -0.6) node [midway, above=0.1] {$m_{H}$}; {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-22.76228pt}{0.0pt}\pgfsys@lineto{-11.38092pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@lineto{11.38092pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{22.76228pt}\pgfsys@lineto{0.0pt}{11.38092pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\,,\qquad{\rm RHS}=\leavevmode\hbox to45.92pt{\vbox to45.92pt{\pgfpicture\makeatletter\hbox{\hskip 22.96228pt\lower-22.96228pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ } \feynhand \propag(-1.2, -0.8) node [left] {$1$} -- (-0.6, -0.6) ; \propag(-1.2, 0.8) node [left] {$2$} -- (-0.6, 0.6) ; \propag(1.2, 0.8) node [right] {$3$} -- (0.6, 0.6) ; \propag(1.2, -0.8) node [right] {$4$} -- (0.6, -0.6) ; \propag(-0.6, -0.6) -- (-0.6, 0.6) node [midway, left=0.1] {$m_{L}$}; \propag(-0.6, 0.6) -- (0.6, 0.6) node [midway, above=0.1] {$m_{L}$}; \propag(0.6, 0.6) -- (0.6, -0.6) node [midway, right=0.1] {$m_{L}$}; \propag[ultra thick] (0.6, -0.6) -- (-0.6, -0.6) node [midway, above=0.1] {$m_{H}$}; {}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{-22.76228pt}{0.0pt}\pgfsys@lineto{-11.38092pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{22.76228pt}{0.0pt}\pgfsys@lineto{11.38092pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{22.76228pt}\pgfsys@lineto{0.0pt}{11.38092pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,3.0pt}{0.0pt}\pgfsys@invoke{ }\color[rgb]{1,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{1,0,0}\pgfsys@color@rgb@stroke{1}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{1}{0}{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,0,0}{}\pgfsys@moveto{0.0pt}{-22.76228pt}\pgfsys@lineto{0.0pt}{-11.38092pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\,. (113)

For simplicity, we assume the same external masses pi2=M2p_{i}^{2}=-M^{2} and the internal masses specified by the diagrams. Note that (41) is the discontinuity across the normal threshold cut. It cannot be directly applied to evaluate the discontinuity across the triangle cut. However, we can find the triangle discontinuity as follows. In 2mL2<t<4mL22m_{L}^{2}<t<4m_{L}^{2}, with a small fixed ss, the tt-channel dispersion relation should take the form

box\displaystyle\mathcal{I}_{\rm box} =ttridt2πiDisctboxtt\displaystyle=\int_{t_{\rm tri}}^{\infty}\frac{{\rm d}t^{\prime}}{2\pi i}\frac{{\rm Disc}_{t}\mathcal{I}_{\rm box}}{t^{\prime}-t}
=(ttri4mL2+4mL2)dt2πiDisctboxtt,\displaystyle=\left(\int_{t_{\rm tri}}^{4m_{L}^{2}}+\int_{4m_{L}^{2}}^{\infty}\right)\frac{{\rm d}t^{\prime}}{2\pi i}\frac{{\rm Disc}_{t}\mathcal{I}_{\rm box}}{t^{\prime}-t}\,, (114)

with ttri=4M2M4/mL2t_{\rm tri}=4M^{2}-M^{4}/m_{L}^{2}. This dispersion relation should agree with the analytic continuation of (39) in the external mass after appropriately relabelling variables. As shown in Fig. 6 (right), the analytic continuation generates the additional integral below the normal threshold, which should be identified with the first integral of the second line of (114). The contour integral of Fig. 6 (right) is nothing but the integral of the discontinuity of ρbox\rho_{\rm box} for the triangle singularity which is logarithmic. Hence, the triangle cut is

Disctbox\displaystyle{\rm Disc}_{t}\mathcal{I}_{\rm box} =(2πi)2Sbox1/2(ttri<t<4mL2).\displaystyle=\frac{(2\pi i)^{2}}{S_{\rm box}^{1/2}}\qquad(t_{\rm tri}<t<4m_{L}^{2})\,. (115)

On the other hand, the ss-channel double discontinuity is computed by the discontinuity (41) for the box singularity Sbox=0S_{\rm box}=0. The singularity arises from the denominator of (41). Note that Sbox=0S_{\rm box}=0 is a singularity of ρbox\rho_{\rm box} only if the logarithm does not take a principal value. Therefore, the double discontinuity should be111111To determine the overall sign, we need a precise analysis of the analytic continuation. We, however, simply determine it to require the agreement with (115) through (108).

Discs2box\displaystyle{\rm Disc}^{2}_{s}\mathcal{I}_{\rm box} =2×(2πi)2Sbox1/2.\displaystyle=-2\times\frac{(2\pi i)^{2}}{S_{\rm box}^{1/2}}\,. (116)

The integral formula (108) then gives

(2πi)2Sbox1/2=s+bsbds2πi(2)×(2πi)2Sbox1/21ss,\displaystyle\frac{(2\pi i)^{2}}{S_{\rm box}^{1/2}}=\int_{s^{b}_{+}}^{s^{b}_{-}}\frac{{\rm d}s^{\prime}}{2\pi i}\frac{(-2)\times(2\pi i)^{2}}{S_{\rm box}^{1/2}}\frac{1}{s^{\prime}-s}\,, (117)

where s=s±bs=s_{\pm}^{b} are the roots of Sbox=0S_{\rm box}=0, satisfying sb<s+bs_{-}^{b}<s_{+}^{b}. One can confirm the agreement as shown in Fig. 13.

One can notice that (112) and (117) are the same as the dispersion relations of the discontinuities. For instance, Disctbox=(2πi)2/Sbox1/2{\rm Disc}_{t}\mathcal{I}_{\rm box}=(2\pi i)^{2}/S_{\rm box}^{1/2} has a branch cut in sb<s<s+bs_{-}^{b}<s<s_{+}^{b} in the complex ss plane, corresponding to the change of the sign of SboxS_{\rm box}. Hence, we obtain

Disctbox\displaystyle{\rm Disc}_{t}\mathcal{I}_{\rm box} =sbs+bds2πiDiscsDisctboxss\displaystyle=\int_{s_{-}^{b}}^{s_{+}^{b}}\frac{{\rm d}s^{\prime}}{2\pi i}\frac{{\rm Disc}_{s}{\rm Disc}_{t}\mathcal{I}_{\rm box}}{s^{\prime}-s}
=sbs+bds2πi2×(2πi)2Sbox1/21ss\displaystyle=\int_{s_{-}^{b}}^{s_{+}^{b}}\frac{{\rm d}s^{\prime}}{2\pi i}\frac{2\times(2\pi i)^{2}}{S_{\rm box}^{1/2}}\frac{1}{s^{\prime}-s} (118)

which exactly agrees with (117). However, we emphasise that the integrand of (117) is the double discontinuity in the same variable, rather than ss and tt, because it is derived by the analytic continuation of the ss-channel dispersion relation. In other words, the double discontinuities are the same

DiscsDisctbox=Discs2box\displaystyle{\rm Disc}_{s}{\rm Disc}_{t}\mathcal{I}_{\rm box}=-{\rm Disc}_{s}^{2}\mathcal{I}_{\rm box} (119)

for the box singularity Sbox=0S_{\rm box}=0. Here, we recall that Discs2{\rm Disc}_{s}^{2} is defined by (the first sheet value of Discs{\rm Disc}_{s}) - (the second sheet value of Discs{\rm Disc}_{s}) while DiscsDisct={\rm Disc}_{s}{\rm Disc}_{t}= (the upper-half plane of Disct{\rm Disc}_{t}) - (the lower-half plane of Disct{\rm Disc}_{t}).

References