This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Another approach to get derivative of odd-power

Petro Kolosov Software Developer, DevOps Engineer kolosovp94@gmail.com https://kolosovpetro.github.io
(Date: August 14, 2025)
Abstract.

In this manuscript, we provide and discuss another approach to get derivative of odd-power such that is based on an identity in partial derivatives in terms of polynomial function fyf_{y} defined as

fy(x,z)=k=1zr=0y𝐀y,rkr(xk)rf_{y}(x,z)=\sum_{k=1}^{z}\sum_{r=0}^{y}\mathbf{A}_{y,r}k^{r}(x-k)^{r}

where x,zx,z\in\mathbb{R}, yy is fixed constant yy\in\mathbb{N} and 𝐀y,r\mathbf{A}_{y,r} are real coefficients.

Key words and phrases:
Derivative, Partial derivatives, Partial differential equations, Polynomials
2010 Mathematics Subject Classification:
32W50, 11C08

1. Introduction and Main Results

This manuscript provides another approach to get derivative of odd-power, that is an approach based on partial derivatives of the polynomial function fy(x,z)f_{y}(x,z) defined as

fy(x,z)=k=1zr=0y𝐀y,rkr(xk)rf_{y}(x,z)=\sum_{k=1}^{z}\sum_{r=0}^{y}\mathbf{A}_{y,r}k^{r}(x-k)^{r}

where x,zx,z\in\mathbb{R}, yy is fixed constant yy\in\mathbb{N} and 𝐀y,r\mathbf{A}_{y,r} are real coefficients. The essence of the approach we discuss is build on an identity in terms of sum of partial derivatives of the polynomial function fyf_{y}. The function fyf_{y} is defined by the main results of the manuscript [1] that explains an odd-power in a form as follows

n2m+1=k=1nr=0m𝐀m,rkr(nk)rn^{2m+1}=\sum_{k=1}^{n}\sum_{r=0}^{m}{\mathbf{A}}_{m,r}k^{r}(n-k)^{r} (1)

where mm is fixed constant mm\in\mathbb{N}, nn\in\mathbb{N} and 𝐀m,r{\mathbf{A}}_{m,r} are real coefficients defined recursively, see [2]. We define the function fyf_{y} such that based on the identity (1) with the only difference that values of n,mn,m in the right part of (1) appear to be parameters of the function fyf_{y}. In contrast to the equation (1), upper bound nn of the sum k=1n\sum_{k=1}^{n} turned into fixed function’s parameter yy as well. Let the function fyf_{y} be defined as follows

Definition 1.1.

(Polynomial function fyf_{y}.)

fy(x,z)=k=1zr=0y𝐀y,rkr(xk)rf_{y}(x,z)=\sum_{k=1}^{z}\sum_{r=0}^{y}{\mathbf{A}}_{y,r}k^{r}(x-k)^{r} (2)

where x,zx,z\in\mathbb{R} and yy is constant yy\in\mathbb{N}. Note that for every xx\in\mathbb{R} and constant yy\in\mathbb{N} the polynomial identity satisfies

fy(x,x)=x2y+1f_{y}(x,x)=x^{2y+1}

At first glance, the definition (2) might look complex, so in order to clarify the function fyf_{y} and polynomials it produces, let there be a few examples. Substituting the values of y=1,2,3y=1,2,3 to the function fyf_{y} we get the following polynomials in x,zx,z

f1(x,z)\displaystyle f_{1}(x,z) =3xz3z2+3xz22z3\displaystyle=3xz-3z^{2}+3xz^{2}-2z^{3}
f2(x,z)\displaystyle f_{2}(x,z) =5x2z15xz2+15x2z2+10z330xz3+10x2z3+15z415xz4+6z5\displaystyle=5x^{2}z-15xz^{2}+15x^{2}z^{2}+10z^{3}-30xz^{3}+10x^{2}z^{3}+15z^{4}-15xz^{4}+6z^{5}
f3(x,z)\displaystyle f_{3}(x,z) =7xz+14x2z+7z242xz2+35x3z2+28z3140x2z3+70x3z3+175xz4\displaystyle=-7xz+14x^{2}z+7z^{2}-42xz^{2}+35x^{3}z^{2}+28z^{3}-140x^{2}z^{3}+70x^{3}z^{3}+175xz^{4}
210x2z4+35x3z470z5+210xz584x2z570z6+70xz620z7\displaystyle-210x^{2}z^{4}+35x^{3}z^{4}-70z^{5}+210xz^{5}-84x^{2}z^{5}-70z^{6}+70xz^{6}-20z^{7}

These polynomials are obtained by rearranging the sums in the definition (2) as

fy(x,z)=r=0y𝐀y,r[k=1zkr(xk)r]f_{y}(x,z)=\sum_{r=0}^{y}{\mathbf{A}}_{y,r}\left[\sum_{k=1}^{z}k^{r}(x-k)^{r}\right]

So that part k=1zkr(xk)r\sum_{k=1}^{z}k^{r}(x-k)^{r} is polynomial in x,zx,z calculated using Faulhaber’s formula [3]. According to the main topic of the current manuscript, it provides another approach to get derivative of odd-power. Therefore, we define odd-power function we work in the context of. The odd-power function gyg_{y} is a function defined as follows

Definition 1.2.

(Odd-power function gyg_{y}.)

gy(x)=x2y+1g_{y}(x)=x^{2y+1}

where xx\in\mathbb{R} and yy is constant yy\in\mathbb{N}. The Interesting part is that odd-power function gy(x)g_{y}(x) may be obtained as a partial case of the function fyf_{y} for z=xz=x. Also, the ordinary derivative of odd-power ddxgy\frac{d}{dx}g_{y} evaluate in point uu\in\mathbb{R} may be obtained as a sum of partial derivatives of fyf_{y} evaluate in point (u,u)(u,u). We explain this further in the manuscript. One more important thing remains to conclude is to define partial derivative’s notation. More precisely, the following notation for partial derivatives is used across the manuscript and remains unchanged

Notation 1.3.

(Partial derivative.) Let be a function β(x1,x2,,xn)\beta(x_{1},x_{2},\dots,x_{n}) defined over the real space n\mathbb{R}^{n}. We denote partial derivative of the function β\beta with respect to xix_{i} as follows

βxi=limΔxi0β(x1,x2,,xi+Δxi,,xn)β(x1,x2,,xn)Δxi\beta^{{}^{\prime}}_{x_{i}}=\lim_{\Delta x_{i}\to 0}\frac{\beta(x_{1},x_{2},\dots,x_{i}+\Delta x_{i},\dots,x_{n})-\beta(x_{1},x_{2},\dots,x_{n})}{\Delta x_{i}}

Partial derivative of the function βxi\beta_{x_{i}} with respect to xix_{i} evaluate in point (y1,y2,,yn)n(y_{1},y_{2},\dots,y_{n})\in\mathbb{R}^{n} is denoted as follows

βxi(y1,y2,,yn)\beta^{{}^{\prime}}_{x_{i}}(y_{1},y_{2},\dots,y_{n})

Moreover, partial derivative βxi\beta^{{}^{\prime}}_{x_{i}} evaluate in point (y1,y2,,yn)n(y_{1},y_{2},\dots,y_{n})\in\mathbb{R}^{n} plus partial derivative βxj\beta^{{}^{\prime}}_{x_{j}} evaluate in point (y1,y2,,yn)n(y_{1},y_{2},\dots,y_{n})\in\mathbb{R}^{n} is equivalent to the sum of partial derivatives βxi+βxj\beta^{{}^{\prime}}_{x_{i}}+\beta^{{}^{\prime}}_{x_{j}} evaluate in point (y1,y2,,yn)n(y_{1},y_{2},\dots,y_{n})\in\mathbb{R}^{n} and to be denoted as

βxi(y1,y2,,yn)+βxj(y1,y2,,yn)=[βxi+βxj](y1,y2,,yn)\beta^{{}^{\prime}}_{x_{i}}(y_{1},y_{2},\dots,y_{n})+\beta^{{}^{\prime}}_{x_{j}}(y_{1},y_{2},\dots,y_{n})=[\beta^{{}^{\prime}}_{x_{i}}+\beta^{{}^{\prime}}_{x_{j}}](y_{1},y_{2},\dots,y_{n})

So that now we can switch our focus back to the functions gyg_{y} and fyf_{y}. Therefore, the following theorem in terms of partial derivatives reflects the relation between the ordinary derivative of odd-power function gyg_{y} and function fyf_{y}

Theorem 1.4.

Let be a fixed point vv\in\mathbb{N}, then ordinary derivative ddxgv(u)\frac{d}{dx}g_{v}(u) of the odd-power function gv(x)=x2v+1g_{v}(x)=x^{2v+1} evaluate in point uu\in\mathbb{R} equals to partial derivative (fv)x(u,u)(f_{v})^{{}^{\prime}}_{x}(u,u) evaluate in point (u,u)(u,u) plus partial derivative (fv)z(u,u)(f_{v})^{{}^{\prime}}_{z}(u,u) evaluate in point (u,u)(u,u)

ddxgv(u)=(fv)x(u,u)+(fv)z(u,u)\frac{d}{dx}g_{v}(u)=(f_{v})^{{}^{\prime}}_{x}(u,u)+(f_{v})^{{}^{\prime}}_{z}(u,u) (3)

In particular, it follows that for every pair u,vu\in\mathbb{R},v\in\mathbb{N} an identity holds

(2v+1)u2v\displaystyle(2v+1)u^{2v} =(fv)x(u,u)+(fv)z(u,u)\displaystyle=(f_{v})^{{}^{\prime}}_{x}(u,u)+(f_{v})^{{}^{\prime}}_{z}(u,u)
=[(fv)x+(fv)z](u,u)\displaystyle=[(f_{v})^{{}^{\prime}}_{x}+(f_{v})^{{}^{\prime}}_{z}](u,u)

that is also an ordinary derivative of odd-power function t2v+1,v,v=constt^{2v+1},\;v\in\mathbb{N},\;v=\mathrm{const} evaluate in point uu\in\mathbb{R}, therefore

ddtt2v+1(u)\displaystyle\frac{d}{dt}t^{2v+1}(u) =(fv)x(u,u)+(fv)z(u,u)\displaystyle=(f_{v})^{{}^{\prime}}_{x}(u,u)+(f_{v})^{{}^{\prime}}_{z}(u,u)
=[(fv)x+(fv)z](u,u)\displaystyle=[(f_{v})^{{}^{\prime}}_{x}+(f_{v})^{{}^{\prime}}_{z}](u,u)

To summarize and clarify all about the theorem 1.4, we provide a few examples that show an application of it.

Example 1.5.

Theorem 1.4 example for x,zx\in\mathbb{R},\;z\in\mathbb{R} and y=1y=1. Consider the explicit form of the function f1(x,z)f_{1}(x,z), that is

f1(x,z)=3xz3z2+3xz22z3f_{1}(x,z)=3xz-3z^{2}+3xz^{2}-2z^{3}

Therefore, the partial derivative (f1)x(f_{1})^{{}^{\prime}}_{x} with respect to xx equals to

(f1)x=limd03dz+3dz2d=3z+3z2(f_{1})^{{}^{\prime}}_{x}=\lim_{d\to 0}\frac{3dz+3dz^{2}}{d}=3z+3z^{2}

Consider the partial derivative (f1)z(f_{1})^{{}^{\prime}}_{z} with respect to zz, that is

(f1)z\displaystyle(f_{1})^{{}^{\prime}}_{z} =limd0[3d22d3+3dx+3d2x6dz6d2z+6dxz6dz2d]\displaystyle=\lim_{d\to 0}\left[\frac{-3d^{2}-2d^{3}+3dx+3d^{2}x-6dz-6d^{2}z+6dxz-6dz^{2}}{d}\right]
=limd0[3d2d2+3x+3dx6z6dz+6xz6z2]\displaystyle=\lim_{d\to 0}\left[-3d-2d^{2}+3x+3dx-6z-6dz+6xz-6z^{2}\right]
=3x6z+6xz6z2\displaystyle=3x-6z+6xz-6z^{2}

Summing up both partial derivatives (f1)x(f_{1})^{{}^{\prime}}_{x} and (f1)z(f_{1})^{{}^{\prime}}_{z}, we get

(f1)x+(f1)z=3x3z+6xz3z2\displaystyle(f_{1})^{{}^{\prime}}_{x}+(f_{1})^{{}^{\prime}}_{z}=3x-3z+6xz-3z^{2}

Evaluating in point (u,u)(u,u) yields

ddtt3(u)=[(f1)x+(f1)z](u,u)=3u2\displaystyle\frac{d}{dt}t^{3}(u)=[(f_{1})^{{}^{\prime}}_{x}+(f_{1})^{{}^{\prime}}_{z}](u,u)=3u^{2}

That confirms the results of the theorem 1.4.

Example 1.6.

Theorem 1.4 example for x,zx\in\mathbb{R},\;z\in\mathbb{R} and y=2y=2. Consider the explicit form of the function f2(x,z)f_{2}(x,z), that is

f2(x,z)=5x2z15xz2+15x2z2+10z330xz3+10x2z3+15z415xz4+6z5f_{2}(x,z)=5x^{2}z-15xz^{2}+15x^{2}z^{2}+10z^{3}-30xz^{3}+10x^{2}z^{3}+15z^{4}-15xz^{4}+6z^{5}

Therefore, the partial derivative (f2)x(f_{2})^{{}^{\prime}}_{x} with respect to xx equals to

(f2)x\displaystyle(f_{2})^{{}^{\prime}}_{x} =limd0[5dz+10xz15z2+15dz2+30xz230z3+10dz3+20xz315z4]\displaystyle=\lim_{d\to 0}\left[5dz+10xz-15z^{2}+15dz^{2}+30xz^{2}-30z^{3}+10dz^{3}+20xz^{3}-15z^{4}\right]
=10xz15z2+30xz230z3+20xz315z4\displaystyle=10xz-15z^{2}+30xz^{2}-30z^{3}+20xz^{3}-15z^{4}

Consider the partial derivative (f2)z(f_{2})^{{}^{\prime}}_{z} with respect to zz, that is

(f2)z\displaystyle(f_{2})^{{}^{\prime}}_{z} =5x230xz+30x2z+30z290xz2+30x2z2+60z360xz3+30z4\displaystyle=5x^{2}-30xz+30x^{2}z+30z^{2}-90xz^{2}+30x^{2}z^{2}+60z^{3}-60xz^{3}+30z^{4}

Summing up both partial derivatives (f2)x(f_{2})^{{}^{\prime}}_{x} and (f2)z(f_{2})^{{}^{\prime}}_{z}, we get

(f2)x+(f2)z\displaystyle(f_{2})^{{}^{\prime}}_{x}+(f_{2})^{{}^{\prime}}_{z} =5x220xz+30x2z+15z260xz2+30x2z2+30z340xz3+15z4\displaystyle=5x^{2}-20xz+30x^{2}z+15z^{2}-60xz^{2}+30x^{2}z^{2}+30z^{3}-40xz^{3}+15z^{4}

Evaluate in point (u,u)(u,u) yields

ddtt5(u)=[(f2)x+(f2)z](u,u)=5u4\frac{d}{dt}t^{5}(u)=[(f_{2})^{{}^{\prime}}_{x}+(f_{2})^{{}^{\prime}}_{z}](u,u)=5u^{4}

That confirms the results of the theorem 1.4.

Example 1.7.

Theorem 1.4 example for x,zx\in\mathbb{R},\;z\in\mathbb{R} and y=3y=3. Consider the explicit form of the function f3(x,z)f_{3}(x,z), that is

f3(x,z)\displaystyle f_{3}(x,z) =7xz+14x2z+7z242xz2+35x3z2+28z3140x2z3+70x3z3+175xz4\displaystyle=-7xz+14x^{2}z+7z^{2}-42xz^{2}+35x^{3}z^{2}+28z^{3}-140x^{2}z^{3}+70x^{3}z^{3}+175xz^{4}
210x2z4+35x3z470z5+210xz584x2z570z6+70xz620z7\displaystyle-210x^{2}z^{4}+35x^{3}z^{4}-70z^{5}+210xz^{5}-84x^{2}z^{5}-70z^{6}+70xz^{6}-20z^{7}

Therefore, the partial derivative of (f3)x(f_{3})^{{}^{\prime}}_{x} with respect to xx equals to

(f3)x\displaystyle(f_{3})^{{}^{\prime}}_{x} =7z+28xz42z2+105x2z2280xz3+210x2z3+175z4420xz4\displaystyle=-7z+28xz-42z^{2}+105x^{2}z^{2}-280xz^{3}+210x^{2}z^{3}+175z^{4}-420xz^{4}
+105x2z4+210z5168xz5+70z6\displaystyle+105x^{2}z^{4}+210z^{5}-168xz^{5}+70z^{6}

Consider the partial derivative (f3)z(f_{3})^{{}^{\prime}}_{z} with respect to zz, that is

(f3)z\displaystyle(f_{3})^{{}^{\prime}}_{z} =7x+14x2+14z84xz+70x3z+84z2420x2z2+210x3z2+700xz3\displaystyle=-7x+14x^{2}+14z-84xz+70x^{3}z+84z^{2}-420x^{2}z^{2}+210x^{3}z^{2}+700xz^{3}
840x2z3+140x3z3350z4+1050xz4420x2z4420z5+420xz5140z6\displaystyle-840x^{2}z^{3}+140x^{3}z^{3}-350z^{4}+1050xz^{4}-420x^{2}z^{4}-420z^{5}+420xz^{5}-140z^{6}

Summing up both partial derivatives (f3)x(x,z)(f_{3})^{{}^{\prime}}_{x}(x,z) and (f3)z(x,z)(f_{3})^{{}^{\prime}}_{z}(x,z), we get

(f3)x+(f3)z\displaystyle(f_{3})^{{}^{\prime}}_{x}+(f_{3})^{{}^{\prime}}_{z} =7x+14x2+7z56xz+70x3z+42z2315x2z2+210x3z2\displaystyle=-7x+14x^{2}+7z-56xz+70x^{3}z+42z^{2}-315x^{2}z^{2}+210x^{3}z^{2}
+420xz3630x2z3+140x3z3175z4+630xz4315x2z4210z5\displaystyle+420xz^{3}-630x^{2}z^{3}+140x^{3}z^{3}-175z^{4}+630xz^{4}-315x^{2}z^{4}-210z^{5}
+252xz570z6\displaystyle+252xz^{5}-70z^{6}

Evaluate in point (u,u)(u,u) yields

ddtt3(u)=[(f3)x+(f3)z](u,u)=7u6\frac{d}{dt}t^{3}(u)=[(f_{3})^{{}^{\prime}}_{x}+(f_{3})^{{}^{\prime}}_{z}](u,u)=7u^{6}

That confirms the results of the theorem 1.4.

2. Conclusions

In this manuscript, we have reviewed an approach to get ordinary derivative of odd-power using an identity in partial derivatives of the function fyf_{y} evaluate in fixed point (u,u)2.(u,u)\in\mathbb{R}^{2}., that is described by the theorem 1.4. The main results of the manuscript can be validated using Mathematica programs available online at [4].

3. Verification of the results

As it is stated in conclusions, there is a possibility to validate the main results of this manuscript using Wolfram Mathematica. Therefore, a complete guide to validate the main results and formulae is attached as well. Mathematica package source file is available online under the folder mathematica, see [4]. The following expressions could be verified:

  • The function fy(x,z)f_{y}(x,z) for any constant argument yy\in\mathbb{N} using mathematica method f[x, y, z] e.g.

    f[x, 1, z]=3xz3z2+3xz22z3\texttt{f[x, 1, z]}=3xz-3z^{2}+3xz^{2}-2z^{3}
  • Partial derivative (fy)x(f_{y})^{{}^{\prime}}_{x} for any constant argument yy\in\mathbb{N} using mathematica method DerivativeFByX[x, y, z]

    DerivativeFByX[x, 1, z]=3z+3z2\texttt{DerivativeFByX[x, 1, z]}=3z+3z^{2}
  • Partial derivative (fy)z(f_{y})^{{}^{\prime}}_{z} for any constant argument yy\in\mathbb{N} using mathematica method DerivativeFByZ[x, y, z]

    DerivativeFByZ[x, 1, z]=3x6z+6xz6z2\texttt{DerivativeFByZ[x, 1, z]}=3x-6z+6xz-6z^{2}
  • Theorem 1.4 for any constant argument yy\in\mathbb{N}

    DerivativeFByX[x, 1, z]+DerivativeFByZ[x, 1, z]\displaystyle\texttt{DerivativeFByX[x, 1, z]}+\texttt{DerivativeFByZ[x, 1, z]} =3x3z+6xz3z2\displaystyle=3x-3z+6xz-3z^{2}
    DerivativeFByX[u, 1, u]+DerivativeFByZ[u, 1, u]\displaystyle\texttt{DerivativeFByX[u, 1, u]}+\texttt{DerivativeFByZ[u, 1, u]} =3u2\displaystyle=3u^{2}

References

Version: 0.2.4-tags-v0-2-3.1+tags/v0.2.3.8e0e8a3