This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Arithmetic liftings and 22d TQFT
for dormant opers of higher level

Yasuhiro Wakabayashi
Abstract.

This manuscript represents an advance in the enumerative geometry of opers that takes the subject beyond our previous work. Motivated by a counting problem of linear differential equations in positive characteristic, we investigate the moduli space of opers from arithmetic and combinatorial points of view. We construct a compactified moduli space classifying dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers (i.e., dormant PGLn\mathrm{PGL}_{n}-opers of level NN) on pointed stable curves in characteristic p>0p>0. One of the key results is the generic étaleness of that space for n=2n=2, which is proved by obtaining a detailed understanding of relevant deformation spaces. This fact induces a certain arithmetic lifting of each dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper on a general curve to characteristic pNp^{N}; this lifting is called the canonical diagonal lifting. On the other hand, the generic étaleness also implies that the degree function for the moduli spaces in the rank 22 case satisfies factorization properties determined by various gluing morphisms of the underlying curves. That is to say, the degree function forms a 22d TQFT (= a 22-dimensional topological quantum field theory); it leads us to describe dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers in terms of edge numberings on trivalent graphs, as well as lattice points inside generalized rational polytopes. These results yield an effective way of computing the numbers of such objects and 22nd order differential equations in characteristic pNp^{N} with a full set of solutions.

footnotetext: Y. Wakabayashi: Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan;footnotetext: e-mail: wakabayashi@ist.osaka-u.ac.jp;footnotetext: 2020 Mathematical Subject Classification: Primary 14H60, Secondary 14F10;footnotetext: Key words: algebraic curve, positive characteristic, differential equations, oper, flat bundle, moduli space.

1. Introduction

1.1. Linear differential equations with a full set of solutions

Let us consider the linear differential equation Dy=0Dy=0 on a smooth complex algebraic curve XX associated to an operator DD expressed locally as

D:=dndxn+q1dn1dxn1++qn1ddx+qn\displaystyle D:=\frac{d^{n}}{dx^{n}}+q_{1}\frac{d^{n-1}}{dx^{n-1}}+\cdots+q_{n-1}\frac{d}{dx}+q_{n} (1.1)

(n>1n>1). Here, xx denotes a local coordinate in XX and q1,,qnq_{1},\cdots,q_{n} are variable coefficients. To each such differential equation, one can associate a flat connection on a vector bundle whose matrix representation is locally given by

=ddx(q1q2q3qn1qn10000010000010000010).\displaystyle\nabla=\frac{d}{dx}-\begin{pmatrix}-q_{1}&-q_{2}&-q_{3}&\cdots&-q_{n-1}&-q_{n}\\ 1&0&0&\cdots&0&0\\ 0&1&0&\cdots&0&0\\ 0&0&1&\cdots&0&0\\ \vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&0&\cdots&1&0\end{pmatrix}. (1.2)

A vector bundle equipped with such a flat connection is known as a GLn\mathrm{GL}_{n}-oper. Conversely, any flat bundle (i.e., a vector bundle equipped with a flat connection) defining a GLn\mathrm{GL}_{n}-oper becomes a flat connection of that form after possibly carrying out a suitable gauge transformation. See  [BD1] or  [BD2] for the precise definition of a GLn\mathrm{GL}_{n}-oper, or more generally a GG-oper for an algebraic group GG of a certain sort.

Note that the assignment yt(dn1ydxn1,,dydx,y)y\mapsto{{}^{t}(}\frac{d^{n-1}y}{dx^{n-1}},\cdots,\frac{dy}{dx},y) gives a bijective correspondence between solutions of the equation Dy=0Dy=0 with DD as above and horizontal sections of the associated GLn\mathrm{GL}_{n}-oper. In particular, such a differential equation has a full set of algebraic solutions (i.e., has nn linearly independent algebraic solutions) precisely when the corresponding GLn\mathrm{GL}_{n}-oper has finite monodromy.

The problem of classifying and counting linear ODE’s with a full set of algebraic solutions has long been one of the fundamental topics in mathematics. The study of them was tackled and developed from the 19th century onwards by many mathematicians: H. A. Schwarz (for the hypergeometric equations), L. I. Fuchs, P. Gordan, and C. F. Klein (for the second order equations), C. Jordan (for the nn-th order equations) et al.

Regarding the relationship with the case of characteristic pp (where pp is a prime number), there is a well-known conjecture, i.e., the so-called Grothendieck-Katz pp-curvature conjecture; it predicts the existence of a full set of algebraic solutions of a given linear differential equation in terms of its reductions modulo pp for various primes pp. See, e.g.,  [And] or  [Kat4] for detailed accounts of this topic.

1.2. Counting problem of dormant opers

We want to focus on the situation where the underlying curve has prime-power characteristic pNp^{N} (N>0N\in\mathbb{Z}_{>0}). One central theme of our study stated in the most primitive form is to answer the following natural question:

How many homogeneous linear differential equations in characteristic pNp^{N} (associated to differential operators DD as in (1.1)) have a full set of solutions?

We can find some previous studies related to this question for N=1N=1 under the correspondence with GLn\mathrm{GL}_{n}-opers (cf.  [Ihara1],  [JP],  [Jo14],    [LP],  [Mzk2],  [O4],  [Wak],  [Wak3],  [Wak2], and  [Wak8]). Here, note that one may define the notion of a GG-oper (for an arbitrary GG) on a curve in positive characteristic because of the algebraic nature of its formulation. For example, GG-opers in characteristic pp have been investigated in the context of pp-adic Teichmüller theory.

One of the common key ingredients in these developments is the study of pp-curvature. The pp-curvature of a flat connection in characteristic pp is an invariant that measures the obstruction to the compatibility of pp-power structures appearing in certain associated spaces of infinitesimal symmetries. A GG-oper is called dormant if it has vanishing pp-curvature. It follows from a classical result by Cartier (cf.  [Kal, Theorem (5.1)]) that a GLn\mathrm{GL}_{n}-oper, or a PGLn\mathrm{PGL}_{n}-oper, in characteristic pp is dormant if and only if it arises from a differential equation Dy=0Dy=0 having a full set of solutions. Thus, the above question for N=1N=1 can be reduced to asking the number of all possible dormant GLn\mathrm{GL}_{n}-opers or their projectivizations, i.e., dormant PGLn\mathrm{PGL}_{n}-opers.

In what follows, we briefly review previous results concerning the counting problem of dormant opers. Let XX be a connected proper smooth curve of genus g>1g>1 over an algebraically closed field of characteristic p>2p>2. In the case of g=2g=2, S. Mochizuki (cf.  [Mzk2, Chap. V, Corollary 3.7]), H. Lange-C. Pauly (cf.  [LP, Theorem 2]), and B. Osserman (cf.  [O4, Theorem 1.2]) computed, by applying different methods, the total number of dormant PGL2\mathrm{PGL}_{2}-opers on a general XX, as follows:

{dormant PGL2-opers on X}=p3p24.\displaystyle\sharp\left\{\begin{matrix}\text{dormant $\mathrm{PGL}_{2}$-opers on $X$}\end{matrix}\right\}=\frac{p^{3}-p}{24}. (1.3)

For example, this computation was made by using a correspondence with the base locus of the Verschiebung rational map on the moduli space of rank 22 semistable bundles (cf. § 9.3).

Moreover, by extending the relevant formulations to the case where XX admits marked points or nodal singularities, S. Mochizuki also gave an explicit description of dormant PGL2\mathrm{PGL}_{2}-opers on each totally degenerate curve in terms of radius (cf.  [Mzk2, Introduction, Theorem 1.3]). The notion of radius is an invariant determining a sort of boundary condition at a marked point to glue together dormant opers in accordance with the attachment of underlying curves at this point. Mochizuki’s description is essentially equivalent to a previous result obtained by Y. Ihara (cf.  [Ihara1, § 1.6]), who investigated the situation when a given Gauss hypergeometric differential equation in characteristic pp had a full set of solutions. As a result of this explicit description, we obtained a combinatorial procedure for explicitly computing the number of dormant PGL2\mathrm{PGL}_{2}-opers.

This description also leads to a work by F. Liu and B. Osserman (cf.  [LO, Theorem 2.1]), who have shown that the value in question may be expressed as a degree 3g33g-3 polynomial with respect to “pp”. They did so by applying Ehrhart’s theory, which concerns computing the cardinality of the set of lattice points inside a polytope.

For general rank cases, K. Joshi and C. Pauly showed that there are only finitely many dormant PGLn\mathrm{PGL}_{n}-opers on a fixed curve (cf.  [JP, Corollary 6.1.6]), and later Joshi conjectured an explicit description of their total number (cf.  [Jo14, Conjecture 8.1]). As a consequence of developing the moduli theory of dormant GG-opers on pointed stable curves, we solved affirmatively this conjecture for a general curve (cf.  [Wak8, Theorem H]), which is described as

{dormant PGLn-opers ona general stable curveof genus g in characteristic p}=p(n1)(g1)1n!.(ζ1,,ζn)×nζip=1,ζiζj(ij).(i=1nζi)(n1)(g1)ij(ζiζj)g1\displaystyle\sharp\left\{\begin{matrix}\text{dormant $\mathrm{PGL}_{n}$-opers on}\\ \text{a general stable curve}\\ \text{of genus $g$ in characteristic $p$}\end{matrix}\right\}=\frac{p^{(n-1)(g-1)-1}}{n!}\cdot\sum_{\genfrac{.}{.}{0.0pt}{}{(\zeta_{1},\cdots,\zeta_{n})\in\mathbb{C}^{\times n}}{\zeta_{i}^{p}=1,\ \zeta_{i}\neq\zeta_{j}(i\neq j)}}\frac{(\prod_{i=1}^{n}\zeta_{i})^{(n-1)(g-1)}}{\prod_{i\neq j}(\zeta_{i}-\zeta_{j})^{g-1}}\hskip 8.53581pt (1.4)

for p>nmax{g1,2}p>n\cdot\mathrm{max}\{g-1,2\}. Based on the idea of Joshi et al. (cf.  [JP],  [Jo14]) and a work by Holla (cf.  [Hol]), this formula was proved by establishing a relationship with the Gromov-Witten theory of Grassmann varieties and then applying an explicit computation of their Gromov-Witten invariants, called the Vafa-Intriligator formula.

When n=2n=2, we can extend this result to pointed stable curves by establishing the relationship with the 𝔰𝔩2()\mathfrak{s}\mathfrak{l}_{2}(\mathbb{C})-WZW (= Wess-Zumino-Witten) conformal field theory (cf.  [Wak8, Theorem 7.41]). As a result, the Verlinde formula for that CFT yields the following formula:

{dormant PGL2-opers ona general r-pointed stable curveof genus g in characteristic p}=pg122g1+rj=1p1(1(1)jcos(jπp))rsin2(g1+r)(jπp),\displaystyle\sharp\left\{\begin{matrix}\text{dormant $\mathrm{PGL}_{2}$-opers on}\\ \text{a general $r$-pointed stable curve}\\ \text{of genus $g$ in characteristic $p$}\end{matrix}\right\}=\frac{p^{g-1}}{2^{2g-1+r}}\cdot\sum_{j=1}^{p-1}\frac{\left(1-(-1)^{j}\cdot\cos\left(\frac{j\pi}{p}\right)\right)^{r}}{\sin^{2(g-1+r)}\left(\frac{j\pi}{p}\right)}, (1.5)

which is consistent with (1.4) in the case of r=0r=0 and n=2n=2.

1.3. Generalization to characteristic pNp^{N}

The purpose of this manuscript is to develop the enumerative geometry of dormant PGLn\mathrm{PGL}_{n}-opers in prime-power characteristic so that (1.4) and (1.5) are generalized. From now on, let XX be a geometrically connected, proper, and smooth curve in characteristic pNp^{N}, where NN is a positive integer. Just as in the case of characteristic pp, an oper, or more generally a flat bundle, on XX will be called dormant if it is spanned by its horizontal sections, i.e., isomorphic locally to the trivial flat bundle (cf. Definitions 3.1.4, 5.2.2, and Proposition 3.2.5, (ii)). In particular,

Our central theme posed earlier can be rephrased essentially as the issue of counting dormant opers on a (general) curve in characteristic pNp^{N}.

(Note that we also discuss, at the same time, the case where the underlying curve has nodal singularities or marked points; in such a generalized situation, the dormancy condition has to be formulated in a different and more complicated manner.)

Unfortunately, the lack of a reasonable invariant exactly like the pp-curvature for N=1N=1 makes it difficult to handle with dormant opers in characteristic pNp^{N}. To overcome this difficulty, we relate, partly on the basis of the argument of  [Mzk2, § 2.1, Chap. II], dormant opers on XX to certain objects defined on the mod pp reduction X0X_{0} of XX; we shall refer to the operation resulting from this argument as diagonal reduction/lifting.

One remarkable observation is that each dormant GLn\mathrm{GL}_{n}-oper \mathscr{E}^{\spadesuit} on XX induces, via diagonal reduction, a dormant GLn\mathrm{GL}_{n}-oper {{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{E}^{\spadesuit} on X0X_{0} equipped with a 𝒟(N1)\mathcal{D}^{(N-1)}-module structure extending its flat structure. Here, 𝒟(N1)\mathcal{D}^{(N-1)} denotes the sheaf of differential operators of level N1N-1 introduced by P. Berthelot in  [PBer1] and  [PBer2]. A dormant GLn\mathrm{GL}_{n}-oper on X0X_{0} equipped with such an additional structure is called a dormant GLn\mathrm{GL}_{n}-oper of level NN, or a dormant GLn(N)\mathrm{GL}_{n}^{(N)}-oper, for short. Similarly, we obtain the notion of a dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper such that PGLn(1)\mathrm{PGL}_{n}^{(1)}-opers are equivalent to PGLn\mathrm{PGL}_{n}-opers in the classical sense. See Definitions 5.2.1, 5.2.2, 5.3.1, and 5.3.2 for their precise definitions.

We expect that, for a general curve XX, the assignment \mathscr{E}^{\spadesuit}\mapsto{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{E}^{\spadesuit} given by taking the diagonal reductions is invertible, i.e., each dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper 0\mathscr{E}_{0}^{\spadesuit} on X0X_{0} may be lifted uniquely to a dormant PGLn\mathrm{PGL}_{n}-oper 0{{}^{\rotatebox[origin={c}]{45.0}{$\Rightarrow$}}}\!\!\mathscr{E}_{0}^{\spadesuit} on XX. One of the consequences in this manuscript shows that this is in fact true for n=2n=2. The results of the lifting 00\mathscr{E}_{0}^{\spadesuit}\mapsto{{}^{\rotatebox[origin={c}]{45.0}{$\Rightarrow$}}}\!\!\mathscr{E}_{0}^{\spadesuit} will be called the canonical diagonal liftings. The bijective correspondence given by \mathscr{E}^{\spadesuit}\mapsto{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{E}^{\spadesuit} and 00\mathscr{E}_{0}^{\spadesuit}\mapsto{{}^{\rotatebox[origin={c}]{45.0}{$\Rightarrow$}}}\!\!\mathscr{E}_{0}^{\spadesuit} enables us to obtain a detailed understanding of dormant PGL2\mathrm{PGL}_{2}-opers in characteristic pNp^{N} by applying, via diagonal reduction, various methods and perspectives inherent in characteristic-pp-geometry established in  [Wak8].

In particular, because of a factorization property on the moduli space classifying dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers in accordance with clutching morphisms, we reduce the counting problem under consideration to the cases of small gg and rr. Some explicit computations based on this argument will be made in, e.g., Corollary 10.4.7 and Example 10.5.3.

[Uncaptioned image]

1.4. Part I: 𝒟(m)\mathcal{D}^{(m)}-modules and dormant flat bundles

In the rest of this Introduction, we shall describe the contents and some (relatively important) results of this manuscript. Note that we substantially apply various results and discussions of  [Wak8], in which the author developed the theory of (dormant) opers on pointed stable curves from the viewpoint of logarithmic geometry. Our study could be placed in a higher-level generalization of that theory.

The discussions in this manuscript may be divided into three parts. The first part is devoted to a general study of flat bundles formulated in terms of logarithmic geometry. In § 2, we discuss flat bundles on a log curve. To do this, we use the logarithmic generalization of the sheaf “𝒟(m)\mathcal{D}^{(m)}” (m0m\in\mathbb{Z}_{\geq 0}) introduced by C. Montagnon (cf. [Mon]). This formulation is essential in investigating how the related moduli spaces behave when the underlying curve degenerates. Also, the Cartier operator associated to a pm+1p^{m+1}-flat 𝒟(m)\mathcal{D}^{(m)}-module (i.e., a 𝒟(m)\mathcal{D}^{(m)}-module with vanishing pm+1p^{m+1}-curvature) is defined by composing the usual Cartier operators of the flat bundles constituting that 𝒟(m)\mathcal{D}^{(m)}-module at the respective levels (cf. Definition 2.6.5).

In § 3, we generalize the classical notion of a dormant flat bundle (i.e., a flat bundle with vanishing pp-curvature) to characteristic pm+1p^{m+1} (cf. Definition 3.1.4). At the same time, we define the diagonal reduction of a dormant flat bundle, as well as a diagonal lifting of a pm+1p^{m+1}-flat 𝒟(m)\mathcal{D}^{(m)}-module. Roughly speaking, the diagonal reduction {{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{F} of a given dormant flat bundle \mathscr{F} is obtained in such a way that, for each m\ell\leq m, the reduction of \mathscr{F} modulo p+1p^{\ell+1} corresponds, via the Cartier operator, to the reduction of the level of {{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{F} to \ell. If the log structure of the underlying curve is trivial, then the dormancy condition can be characterized by the vanishing of the pp-curvature of the flat bundles appearing in the inductive procedure for constructing the diagonal reduction (cf. Proposition 3.2.5, (i)). In this sense, a dormant flat bundle in characteristic pm+1p^{m+1} may be seen as something like a successive pp-flat deformation of a pm+1p^{m+1}-flat 𝒟(m)\mathcal{D}^{(m)}-module.

In §4, we discuss the local description of a dormant flat bundle around a marked/nodal point of the underlying curve. For each scheme SS flat over /pm+1\mathbb{Z}/p^{m+1}\mathbb{Z}, we shall set

U:=𝒮pec(𝒪S[[t]])\displaystyle U_{\oslash}:=\mathcal{S}pec(\mathcal{O}_{S}[\![t]\!]) (1.6)

(cf. (4.1)), where tt denotes a formal parameter. By equipping UU_{\oslash} with the log structure determined by the divisor t=0t=0, we obtain a log scheme UlogU_{\oslash}^{\mathrm{log}}, regarded as a formal neighborhood of each marked point in a pointed curve. One of the results in § 4 generalizes  [Kin1, Proposition 1.1.12],  [O2, Corollary 2.10], and it tells us by what data a dormant flat bundle can be exactly characterized. The statement is described as follows:

Theorem A (cf. Proposition-Definition 4.5.4).

Suppose that the reduction S0S_{0} of SS modulo pp is isomorphic to Spec(R)\mathrm{Spec}(R) for a local ring (R,𝔪)(R,\mathfrak{m}) over 𝔽p\mathbb{F}_{p} whose residue field R/𝔪R/\mathfrak{m} is algebraically closed. Let =(,)\mathscr{F}=(\mathcal{F},\nabla) be a dormant flat bundle on Ulog/SU_{\oslash}^{\mathrm{log}}/S of rank n>0n>0. Then, there exists an isomorphism of flat bundles

i=1n𝒪,di\displaystyle\bigoplus_{i=1}^{n}\mathscr{O}_{\oslash,d_{i}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathscr{F} (1.7)

(cf. (4.59) for the definition of the dormant flat line bundle 𝒪,()\mathscr{O}_{\oslash,(-)}) for some d1,,dn/pNd_{1},\cdots,d_{n}\in\mathbb{Z}/p^{N}\mathbb{Z}. In particular, the monodromy operator μ()\mu(\nabla) of \nabla in the sense of Definition 4.2.1 can be transposed, via conjugation, into the diagonal matrix with diagonal entries d1,,dn-d_{1},\cdots,-d_{n}, and the resulting multiset [d1,,dn][d_{1},\cdots,d_{n}] depends only on the isomorphism class of \mathscr{F}.

We remark that another main result in that section gives an explicit description of a pm+1p^{m+1}-flat 𝒟(m)\mathcal{D}^{(m)}-module around a nodal/marked point (cf. Proposition-Definition 4.4.1); in a certain sense, that result commutes with Theorem A via diagonal reduction.

1.5. Part II: Moduli space and 22d TQFT of dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers

In §§ 5-6, we discuss dormant opers of finite level on pointed curves and their moduli space. For a pair of nonnegative integers (g,r)(g,r) with 2g2+r>02g-2+r>0, we denote by ¯g,r\overline{\mathcal{M}}_{g,r} the moduli stack classifying rr-pointed stable curves of genus gg over 𝔽p\mathbb{F}_{p}. Also, let us fix integers nn, NN with 1<n<p1<n<p and N>0N>0.

An important achievement of our discussion is to construct a compactification of the moduli space by allowing nodal singularities on the underlying curves. This compactification enables us to investigate how the moduli space deforms when the underlying curve degenerates. Additionally, when it has actually occurred, elements of a certain finite set

Ξn,N\displaystyle\Xi_{n,N} (1.8)

(cf. (6.34)) provide a boundary condition (i.e., the coincidence of radii) for gluing dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers in accordance with an attachment of two curves along respective marked points (cf. Definition 6.3.2).

With that in mind, the moduli space we have to deal with is defined as the category classifying pairs (𝒳,)(\mathscr{X},\mathscr{E}^{\spadesuit}) consisting of an rr-pointed stable curve 𝒳\mathscr{X} of genus gg in characteristic pp (i.e., an object classified by ¯g,r\overline{\mathcal{M}}_{g,r}) and a dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper \mathscr{E}^{\spadesuit} on 𝒳\mathscr{X} of fixed radii ρΞn,N×r(=Ξn,N××Ξn,N)\rho\in\Xi_{n,N}^{\times r}\left(=\Xi_{n,N}\times\cdots\times\Xi_{n,N}\right); this category will be denoted by

𝒪pn,N,ρ,g,r,𝔽pZzz,or simply𝒪pρ,g,rZzz\displaystyle\mathcal{O}p_{n,N,\rho,g,r,\mathbb{F}_{p}}^{{}^{\mathrm{Zzz...}}},\text{or simply}\ \mathcal{O}p_{\rho,g,r}^{{}^{\mathrm{Zzz...}}} (1.9)

(cf. (6.41)). Forgetting the data of dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers yields the projection

Πn,N,ρ,g,r,𝔽p(or simplyΠρ,g,r):𝒪pρ,g,rZzz¯g,r\displaystyle\Pi_{n,N,\rho,g,r,\mathbb{F}_{p}}\ (\text{or simply}\ \Pi_{\rho,g,r}):\mathcal{O}p_{\rho,g,r}^{{}^{\mathrm{Zzz...}}}\rightarrow\overline{\mathcal{M}}_{g,r} (1.10)

(cf. (6.42)). Our results concerning the geometric structures of 𝒪pρ,g,rZzz\mathcal{O}p_{\rho,g,r}^{{}^{\mathrm{Zzz...}}} and Πρ,g,r\Pi_{\rho,g,r} are summarized as follows.

Theorem B (cf. Theorems 6.3.7 and 6.4.7).

Let ρ\rho be an element of Ξn,N×r\Xi_{n,N}^{\times r} (where ρ:=\rho:=\emptyset if r=0r=0). Then, the category 𝒪pρ,g,rZzz\mathcal{O}p_{\rho,g,r}^{{}^{\mathrm{Zzz...}}} may be represented by a proper Deligne-Mumford stack over 𝔽p\mathbb{F}_{p}, and the projection Πρ,g,r\Pi_{\rho,g,r} is finite.

Moreover, for clutching data 𝔾:=(G,{(gj,rj)}j=1J,{λj}j=1J)\mathbb{G}:=({{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G,\{(g_{j},r_{j})\}_{j=1}^{J},\{\lambda_{j}\}_{j=1}^{J}) of type (g,r)(g,r) (cf. Definition 6.2.3) and a set of 𝔾\mathbb{G}-Ξn,N\Xi_{n,N}-radii ρ𝔾:={ρj}j=1J\rho_{\mathbb{G}}:=\{\rho^{j}\}_{j=1}^{J} with ρ𝔾=ρ\rho_{\mathbb{G}\Rightarrow\emptyset}=\rho (cf. Definition 6.4.1 and (6.56)), there exists a canonical clutching morphism

Clut𝔾,ρ𝔾:j=1J𝒪pρj,gj,rjZzz𝒪pρ,g,rZzz\displaystyle\mathrm{Clut}_{\mathbb{G},\rho_{\mathbb{G}}}:\prod_{j=1}^{J}\mathcal{O}p_{\rho^{j},g_{j},r_{j}}^{{}^{\mathrm{Zzz...}}}\rightarrow\mathcal{O}p_{\rho,g,r}^{{}^{\mathrm{Zzz...}}} (1.11)

such that the square diagram

(1.16)

is commutative and Cartesian, where

  • the products “\prod” are all taken over 𝔽p\mathbb{F}_{p} and the disjoint union on the upper-left corner runs over the sets of 𝔾\mathbb{G}-Ξn,N\Xi_{n,N}-radii ρ𝔾\rho_{\mathbb{G}} with ρ𝔾=ρ\rho_{\mathbb{G}\Rightarrow\emptyset}=\rho;

  • Clut𝔾\mathrm{Clut}_{\mathbb{G}} denotes the usual clutching morphism associated to 𝔾\mathbb{G} (cf. (6.55)).

In §§ 7-8, we focus on the case of n=2n=2 and develop the deformation theory of dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers. The deformation space of a fixed dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper is described by using the hypercohomology group of a certain complex associated to that oper (cf. Theorem 8.3.5). By this description together with the local study of finite-level 𝒟\mathcal{D}-modules discussed in the first part, we can show more than the facts stated in Theorem B, as described below (cf. [Mzk2, Chap. II, Theorem 2.8] for the case of N=1N=1).

The most important of our results would be the generic étaleness of Πρ,g,r\Pi_{\rho,g,r}, since it deduces decompositions of its degree deg(Πρ,g,r)\mathrm{deg}(\Pi_{\rho,g,r}) with respect to various clutching morphisms Clut𝔾,ρ𝔾\mathrm{Clut}_{\mathbb{G},\rho_{\mathbb{G}}}. According to the discussion in § 8, these decompositions can be collectively explained by the notion of a 22d TQFT, which is by definition a symmetric monoidal functor from the category of 22-dimensional cobordisms 2-𝒞ob2\text{-}\mathcal{C}ob to the category of KK-vector spaces 𝒱ectK\mathcal{V}ect_{K} for a field KK, say, \mathbb{Q} or \mathbb{C} (cf. Definition 7.4.1). Applying a well-known generalities on 22d TQFTs, we obtain an approach to compute deg(Πρ,g,r)\mathrm{deg}(\Pi_{\rho,g,r})’s by means of the ring-theoretic structure of the corresponding Frobenius algebra, or equivalently, the fusion ring of the associated fusion rule.

Theorem C (cf. Corollary 8.4.4, Theorems 7.4.2, and 8.7.1 for the full statement).

Suppose that n=2n=2 (and p>2p>2). Then, the following assertions hold:

  • (i)

    Let ρ:=(ρi)i=1r\rho:=(\rho_{i})_{i=1}^{r} be an element of the set ((/pN)×/{±1})×r((\mathbb{Z}/p^{N}\mathbb{Z})^{\times}/\{\pm 1\})^{\times r} (which is identified with Ξ2,N×r\Xi_{2,N}^{\times r} via (6.30)), where ρ:=\rho:=\emptyset if r=0r=0. Then, the Deligne-Mumford stack 𝒪pρ,g,rZzz\mathcal{O}p_{\rho,g,r}^{{}^{\mathrm{Zzz...}}} is smooth over 𝔽p\mathbb{F}_{p} and equidimensional of dimension 3g3+r3g-3+r. Moreover, the projection Πρ,g,r\Pi_{\rho,g,r} is faithfully flat and étale over the points of ¯g,r\overline{\mathcal{M}}_{g,r} classifying totally degenerate curves. In particular, Πρ,g,r\Pi_{\rho,g,r} is generically étale.

  • (ii)

    There exists a 22d TQFT

    𝒵2,N:2-𝒞ob𝒱ect\displaystyle\mathcal{Z}_{2,N}:2\text{-}\mathcal{C}ob\rightarrow\mathcal{V}ect_{\mathbb{Q}} (1.17)

    over \mathbb{Q} satisfying the following rules:

    • If 𝕊r\mathbb{S}^{r} (for r>0r\in\mathbb{Z}_{>0}) denotes the disjoint union of rr copies of the circle 𝕊:={(x,y)2|x2+y2=1}\mathbb{S}:=\{(x,y)\in\mathbb{R}^{2}\,|\,x^{2}+y^{2}=1\}, then we have

      𝒵2,N(𝕊r)=(Ξ2,N)r,\displaystyle\mathcal{Z}_{2,N}(\mathbb{S}^{r})=(\mathbb{Q}^{\Xi_{2,N}})^{\otimes r}, (1.18)

      i.e., the rr-fold tensor product of the \mathbb{Q}-vector space Ξ2,N\mathbb{Q}^{\Xi_{2,N}} with basis Ξ2,N\Xi_{2,N};

    • If 𝕄grs\mathbb{M}_{g}^{r\Rightarrow s} (for (g,r,s)0×3(g,r,s)\in\mathbb{Z}_{\geq 0}^{\times 3} with 2g2+r+s>02g-2+r+s>0) denotes a connected, compact oriented surface whose in-boundary and out-boundary are 𝕊r\mathbb{S}^{r} and 𝕊s\mathbb{S}^{s}, respectively, then the \mathbb{Q}-linear map 𝒵2,N(𝕄grs):(Ξ2,N)r(Ξ2,N)s\mathcal{Z}_{2,N}(\mathbb{M}_{g}^{r\Rightarrow s}):(\mathbb{Q}^{\Xi_{2,N}})^{\otimes r}\rightarrow(\mathbb{Q}^{\Xi_{2,N}})^{\otimes s} is given by

      𝒵2,N(𝕄grs)(i=1rρi)=(λj)jΞ2,N×sdeg(Π((ρi)i,(λj)j),g,r+s)j=1sλj.\displaystyle\mathcal{Z}_{2,N}(\mathbb{M}_{g}^{r\Rightarrow s})(\bigotimes_{i=1}^{r}\rho_{i})=\sum_{(\lambda_{j})_{j}\in\Xi_{2,N}^{\times s}}\mathrm{deg}(\Pi_{((\rho_{i})_{i},(\lambda_{j})_{j}),g,r+s})\bigotimes_{j=1}^{s}\lambda_{j}. (1.19)

1.6. Part III: Canonical diagonal liftings and combinatorics of dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers

In § 9, the canonical diagonal lifting of a dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper is constructed by applying again the generic étaleness of Πρ,g,r\Pi_{\rho,g,r}’s. As discussed in Proposition 3.4.4, there exists a direct linkage between raising the level of a dormant PGL2\mathrm{PGL}_{2}-oper in characteristic pp to NN and lifting that oper to characteristic pNp^{N}. To be more precise, we show that the space of geometric deformations (which mean deformations classified by the moduli space 𝒪pZzzρ,g,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{\rho,g,r}) of a given dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper is, in a certain sense, dual to the space of its arithmetic deformations (which mean liftings to characteristic pNp^{N} forgetting the data of higher-level structures). See Corollary 8.3.6, (ii), Propositions 8.4.3, 8.5.5, and 9.1.1, and the picture displayed below.

In particular, when a given smooth curve is NN-ordinary in the sense of Definition 8.7.4, any dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper on it admits a canonical lifting. This construction of liftings reverses the operation of taking the diagonal reductions, and it is available to general curves because the NN-ordinary locus in ¯g,r\overline{\mathcal{M}}_{g,r} is dense.

Now, let SS be a flat scheme over /pN\mathbb{Z}/p^{N}\mathbb{Z} (with p>2p>2) and XX a geometrically connected, proper, and smooth curve over SS of genus g>1g>1. Denote by S0S_{0} and X0X_{0} the mod pp reductions of SS and XX, respectively. Also, denote by

Op1,XZzz(resp.,OpN,X0Zzz)\displaystyle\mathrm{Op}_{1,X}^{{}^{\mathrm{Zzz...}}}\left(\text{resp.,}\ \mathrm{Op}_{N,X_{0}}^{{}^{\mathrm{Zzz...}}}\right) (1.20)

(cf. (9.13)) the set of isomorphism classes of dormant PGL2\mathrm{PGL}_{2}-opers on X/SX/S (resp., dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers on X0/S0X_{0}/S_{0}). Taking the diagonal reductions induces a map of sets

:OpZzz1,XOpZzzN,X0.\displaystyle\rotatebox[origin={c}]{45.0}{$\Leftarrow$}_{\!\!\spadesuit}:\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{1,X}\rightarrow\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{N,X_{0}}. (1.21)

(cf. (9.15)). Then, we obtain the following assertion.

Theorem D (cf. Theorem-Definition 9.2.1, Remark 9.2.2, and Corollary 9.2.5).

Suppose that X0/S0X_{0}/S_{0} is general in ¯g,0\overline{\mathcal{M}}_{g,0}. Then, the map \rotatebox[origin={c}]{45.0}{$\Leftarrow$}_{\!\!\spadesuit} has an inverse map

:OpZzzN,X0OpZzz1,X.\displaystyle\rotatebox[origin={c}]{45.0}{$\Rightarrow$}_{\!\!\spadesuit}:\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{N,X_{0}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{1,X}. (1.22)

That is to say, for each dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper 0\mathscr{E}^{\spadesuit}_{0} on X0/S0X_{0}/S_{0}, there exists a unique (up to isomorphism) dormant PGL2\mathrm{PGL}_{2}-oper 0{{}^{\rotatebox[origin={c}]{45.0}{$\Rightarrow$}}}\!\!\mathscr{E}^{\spadesuit}_{0} on X/SX/S whose diagonal reduction is isomorphic to 0\mathscr{E}^{\spadesuit}_{0}. In particular, if S0=Spec(k)S_{0}=\mathrm{Spec}(k) for an algebraically closed field kk over 𝔽p\mathbb{F}_{p}, then the set OpZzz1,X\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{1,X} is finite and its cardinality (OpZzz1,X)\sharp(\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{1,X}) satisfies

(OpZzz1,X)=((OpZzzN,X0)=)deg(Π2,N,,g,0,𝔽p).\displaystyle\sharp(\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{1,X})=\left(\sharp(\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{N,X_{0}})=\right)\mathrm{deg}(\Pi_{2,N,\emptyset,g,0,\mathbb{F}_{p}}). (1.23)

For each 0\mathscr{E}_{0}^{\spadesuit} as in the above theorem, we shall refer to the resulting dormant PGL2\mathrm{PGL}_{2}-oper 0{{}^{\rotatebox[origin={c}]{45.0}{$\Rightarrow$}}}\!\!\mathscr{E}^{\spadesuit}_{0} as the canonical diagonal lifting of 0\mathscr{E}_{0}^{\spadesuit}. This fact will also be formulated as the existence of canonical liftings of Frobenius-projective structures (cf. Theorem-Definition 9.3.5), which are characteristic-pp analogues of complex projective structures***A (complex) projective structure is defined as an additional structure on a Riemann surface consisting of local coordinate charts defining its complex structure such that on any two overlapping patches, the change of coordinates may be described as a Möbius transformation. Projective structures are in bijection with PGL2\mathrm{PGL}_{2}-opers (in our sense) via the Riemann-Hilbert correspondence and the algebraization of the underlying Riemann surface. (cf.  [Hos2, Definition 2.1], or Definition 9.3.2).

We expect that canonical liftings exist even for a general rank nn (sufficiently small relative to pp). To prove it in accordance with the arguments of this manuscript, we will have to prove the generic étaleness of Πn,N,ρ,g,r\Pi_{n,N,\rho,g,r}’s. (Other constructions of liftings of PGL2\mathrm{PGL}_{2}-opers in characteristic pp can be found in  [LSYZ],  [Mzk1], and  [Mzk2]; but they differ from ours, as mentioned in Remark 9.2.4).

[Uncaptioned image]

In § 10, we translate the 22d TQFT 𝒵2,N\mathcal{Z}_{2,N} into combinatorial objects in order to solve our counting problem in a practical manner. This is possible because the factorization property of deg(Πρ,g,r)\mathrm{deg}(\Pi_{\rho,g,r})’s reduces the problem to the case where the underlying curve is totally degenerate (cf. Definition 6.5.1). In this case, the normalizations of its components are 33-pointed projective lines, so dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers are determined by purely combinatorial patterns of their radii (cf.  [LO] in the case of N=1N=1).

To make the discussion clearer, we set CN{{}^{\dagger}}C_{N} (cf. (10.34)) to be the collection of triples of nonnegative integers (s1,s2,s3)(s_{1},s_{2},s_{3}) satisfying the following conditions:

  • i=13sipN2\sum_{i=1}^{3}s_{i}\leq p^{N}-2 and |s2s3|s1s2+s3|s_{2}-s_{3}|\leq s_{1}\leq s_{2}+s_{3};

  • For every positive integer N<NN^{\prime}<N, we can choose a triple of integers (s1,s2,s3)(s^{\prime}_{1},s^{\prime}_{2},s^{\prime}_{3}) with si{[s1]N,pN1[si]N}s^{\prime}_{i}\in\{[s_{1}]_{N^{\prime}},p^{N^{\prime}}-1-[s_{i}]_{N^{\prime}}\} (i=1,2,3i=1,2,3) that satisfies i=13sipN2\sum_{i=1}^{3}s^{\prime}_{i}\leq p^{N^{\prime}}-2 and |s2s3|s1s2+s3|s^{\prime}_{2}-s^{\prime}_{3}|\leq s^{\prime}_{1}\leq s^{\prime}_{2}+s^{\prime}_{3}.

Here, for each nonnegative integer aa, we set [a]N[a]_{N^{\prime}} to be the remainder obtained by dividing aa by pNp^{N^{\prime}}. Also, fix trivalent clutching data 𝔾\mathbb{G} of type (g,0)(g,0) (cf. Definition 6.2.3, (iii)), and denote by X𝔾X_{\mathbb{G}} the totally degenerate curve corresponding to 𝔾\mathbb{G}.

A balanced (p,N)(p,N)-edge numbering on 𝔾\mathbb{G} (cf. Definition 10.5.1, (i)) is a collection of nonnegative integers (ae)eE(a_{e})_{e\in E} indexed by the set EE of edges of 𝔾\mathbb{G} such that, for each triple of edges (e1,e2,e3)(e_{1},e_{2},e_{3}) (with multiplicity) incident to a common vertex, the integers (ae1,ae2,ae3)(a_{e_{1}},a_{e_{2}},a_{e_{3}}) belongs to CN{{}^{\dagger}}C_{N}. The set of balanced (p,N)(p,N)-edge numberings on 𝔾\mathbb{G} is denoted by

Edp,N,𝔾\displaystyle\mathrm{Ed}_{p,N,\mathbb{G}} (1.24)

(cf. (10.62)). This set is finite, and it is possible to explicitly find out which combinations of nonnegative integers belong to it.

[Uncaptioned image]

The study of Gauss hypergeometric differential operators with a full set of solutions shows that dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers on a 33-pointed projective line are verified to be parametrized by CN{{}^{\dagger}}C_{N} (cf. Propositions 10.1.4, 10.3.3). Thus, dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers on X𝔾X_{\mathbb{G}} correspond bijectively to elements of Edp,N,𝔾\mathrm{Ed}_{p,N,\mathbb{G}}. Moreover, such numberings on 𝔾\mathbb{G} may be identified with lattice points inside a certain subset of a Euclidean space of dimension (3g3)N(3g-3)\cdot N (cf. Proposition 10.6.4). This subset is constructed as the union of a finite number of rational convex polytopes without boundary. It follows that we can apply Ehrhart’s theory for lattice-point counting of polytopes, and obtain a quasi-polynomial realizing its lattice-point function. The consequence of this argument is as follows.

Theorem E (cf. Theorem 10.6.5 for the full statement).

Let 𝔾\mathbb{G} be trivalent clutching data of type (g,0)(g,0). Then, there exists a canonical bijection between Edp,N,𝔾\mathrm{Ed}_{p,N,\mathbb{G}} and the set of dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers on X𝔾X_{\mathbb{G}}. In particular, one can find a quasi-polynomial HN,𝔾(t)H_{N,\mathbb{G}}(t) (independent of pp) with coefficients in \mathbb{Q} of degree (3g3)N(3g-3)\cdot N satisfying the equalities

deg(Π2,N,g,r,𝔽p)=(Edp,N,𝔾)=HN,𝔾(p).\displaystyle\mathrm{deg}(\Pi_{2,N,g,r,\mathbb{F}_{p}})=\sharp(\mathrm{Ed}_{p,N,\mathbb{G}})=H_{N,\mathbb{G}}(p). (1.25)

(Note that the odd constituents of HN,𝔾(t)H_{N,\mathbb{G}}(t) do not depend on the choice of 𝔾\mathbb{G}, i.e., depend only on the genus “gg” and the positive integer “NN”).

Finally, as a consequence of this fact, a partial answer to the question displayed at the beginning of § 1.2 can be given as follows.

Theorem F (cf. Theorem 10.7.1).

Let X/SX/S be as in Theorem D, and suppose that S=Spec(R)S=\mathrm{Spec}(R) for a flat /pN\mathbb{Z}/p^{N}\mathbb{Z}-algebra RR whose mod pp reduction R/pRR/pR is an algebraically closed field over 𝔽p\mathbb{F}_{p}. Also, let \mathcal{L} be a line bundle on XX, and denote by

Diff2,full\displaystyle\mathrm{Diff}_{2,\mathcal{L}}^{\mathrm{full}} (1.26)

(cf. (10.87)) the set of 22nd order linear differential operators on \mathcal{L} with unit principal symbol and having a full set of root functions.

  • Suppose that obs(2Ω)0\mathrm{obs}(\mathcal{L}^{\otimes 2}\otimes\Omega)\neq 0 (cf. (3.57) for the definition of obs()\mathrm{obs}(-)). Then, we have Diff2,full=\mathrm{Diff}_{2,\mathcal{L}}^{\mathrm{full}}=\emptyset.

  • Suppose obs(2Ω)=0\mathrm{obs}(\mathcal{L}^{\otimes 2}\otimes\Omega)=0 and X0X_{0} is sufficiently general in ¯g,0\overline{\mathcal{M}}_{g,0}. Then, Diff2,full\mathrm{Diff}_{2,\mathcal{L}}^{\mathrm{full}} is finite and its cardinality (Diff2,full)\sharp(\mathrm{Diff}_{2,\mathcal{L}}^{\mathrm{full}}) satisfies

    (Diff2,full)=pgN(Edp,N,𝔾)=pgNHN,𝔾(p)\displaystyle\sharp(\mathrm{Diff}_{2,\mathcal{L}}^{\mathrm{full}})=p^{gN}\cdot\sharp(\mathrm{Ed}_{p,N,\mathbb{G}})=p^{gN}\cdot H_{N,\mathbb{G}}(p) (1.27)

    for any trivalent clutching data 𝔾\mathbb{G} of type (g,0)(g,0), where HN,𝔾(t)H_{N,\mathbb{G}}(t) denotes the quasi-polynomial resulting from Theorem E. In particular, (Diff2,full)\sharp(\mathrm{Diff}_{2,\mathcal{L}}^{\mathrm{full}}) may be expressed as a rational quasi-polynomial in pp of degree (4g3)N(4g-3)\cdot N.

1.7. Notation and Conventions

Throughout this manuscript, all schemes are assumed to be locally noetherian. We fix a prime pp, and write 𝔽p:=/p\mathbb{F}_{p}:=\mathbb{Z}/p\mathbb{Z}.

Let SS be a scheme. Given a sheaf 𝒱\mathcal{V} on SS, we use the notation “ v𝒱v\in\mathcal{V} ” for a local section vv of 𝒱\mathcal{V}. If 𝒱\mathcal{V} is an 𝒪S\mathcal{O}_{S}-module, then we denote by 𝒱\mathcal{V}^{\vee} the dual of 𝒱\mathcal{V}, i.e., 𝒱:=om𝒪S(𝒱,𝒪S)\mathcal{V}^{\vee}:=\mathcal{H}om_{\mathcal{O}_{S}}(\mathcal{V},\mathcal{O}_{S}). By a vector bundle on SS, we mean a locally free 𝒪S\mathcal{O}_{S}-module of finite rank. If XX is a scheme over SS, then we shall write ΩX/S\Omega_{X/S} for the sheaf of 11-forms on XX over SS, and 𝒯X/S\mathcal{T}_{X/S} for its dual.

For the basic properties on log schemes, we refer the reader to  [KaKa],  [ILL], and  [KaFu]. Given a log scheme (or more generally, a log stack) indicated, say, by SlogS^{\mathrm{log}}, we shall write SS for the underlying scheme (stack) of SlogS^{\mathrm{log}}, and αSlog:Slog𝒪S\alpha_{S^{\mathrm{log}}}:\mathcal{M}_{S^{\mathrm{log}}}\rightarrow\mathcal{O}_{S} for the morphism of sheaves of monoids defining the log structure of SlogS^{\mathrm{log}}. For any morphism of log schemes flog:XlogSlogf^{\mathrm{log}}:X^{\mathrm{log}}\rightarrow S^{\mathrm{log}}, we write ¯Xlog/Slog:=Xlog/Im(f(Slog)Xlog)\overline{\mathcal{M}}_{X^{\mathrm{log}}/S^{\mathrm{log}}}:=\mathcal{M}_{X^{\mathrm{log}}}/\mathrm{Im}(f^{*}(\mathcal{M}_{S^{\mathrm{log}}})\rightarrow\mathcal{M}_{X^{\mathrm{log}}}) (cf.  [KaFu, Introduction]), and call it the relative characteristic of flogf^{\mathrm{log}} (or, of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}).

Let :𝒦0𝒦1\nabla:\mathcal{K}^{0}\rightarrow\mathcal{K}^{1} be a morphism of sheaves of abelian groups on a scheme SS. It may be regarded as a complex concentrated at degrees 0 and 11; we denote this complex by 𝒦[]\mathcal{K}^{\bullet}[\nabla]. Next, let f:XSf:X\rightarrow S be a morphism of schemes and ii an integer 0\geq 0. Then, one may define the sheaf if(𝒦[])\mathbb{R}^{i}f_{*}(\mathcal{K}^{\bullet}[\nabla]) on SS obtained from 𝒦[]\mathcal{K}^{\bullet}[\nabla] by applying the ii-th hyper-derived functor if()\mathbb{R}^{i}f_{*}(-) of f()f_{*}(-) (cf.  [Kal], (2.0)). In particular, 0f(𝒦[])=f(Ker())\mathbb{R}^{0}f_{*}(\mathcal{K}^{\bullet}[\nabla])=f_{*}(\mathrm{Ker}(\nabla)). If SS is affine, then H0(S,if(𝒦[]))H^{0}(S,\mathbb{R}^{i}f_{*}(\mathcal{K}^{\bullet}[\nabla])) may be identified with the ii-th hypercohomology group i(X,𝒦[])\mathbb{H}^{i}(X,\mathcal{K}^{\bullet}[\nabla]). Given an integer nn and a sheaf \mathcal{F} on SS, we define the complex [n]\mathcal{F}[n] to be \mathcal{F} (considered as a complex concentrated at degree 0) shifted down by nn, so that [n]n=\mathcal{F}[n]^{-n}=\mathcal{F} and [n]i=0\mathcal{F}[n]^{i}=0 (ini\neq-n).

Denote by 𝔾m\mathbb{G}_{m} the multiplicative group. Also, for a positive integer nn, we shall write GLn\mathrm{GL}_{n} (resp., PGLn\mathrm{PGL}_{n}) for the general (resp., projective) linear group of rank nn.

2. 𝒟\mathcal{D}-modules of finite level

In this section, we discuss some basics related to sheaves of logarithmic differential operators of finite level and higher-level flat bundles on a log curve.

2.1. Logarithmic differential operators of finite level

First, we briefly recall sheaves of logarithmic differential operators of finite level discussed in  [PBer1],  [PBer2], and  [Mon].

Let mm be a nonnegative integer. Also, let SlogS^{\mathrm{log}} be an fs log scheme over (p)\mathbb{Z}_{(p)} and XlogX^{\mathrm{log}} an fs log scheme equipped with a morphism of log schemes flog:XlogSlogf^{\mathrm{log}}:X^{\mathrm{log}}\rightarrow S^{\mathrm{log}} which is log smooth (i.e., “smooth” in the sense of  [KaKa], (3.3)). Denote by ΩXlog/Slog\Omega_{X^{\mathrm{log}}/S^{\mathrm{log}}} the sheaf of logarithmic 11-forms on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} (cf.  [KaKa], (1.7)) and by 𝒯Xlog/Slog\mathcal{T}_{X^{\mathrm{log}}/S^{\mathrm{log}}} the sheaf of logarithmic vector fields on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}, i.e., the dual of ΩXlog/Slog\Omega_{X^{\mathrm{log}}/S^{\mathrm{log}}}. For simplicity, we occasionally write Ω\Omega and 𝒯\mathcal{T} instead of ΩXlog/Slog\Omega_{X^{\mathrm{log}}/S^{\mathrm{log}}} and 𝒯Xlog/Slog\mathcal{T}_{X^{\mathrm{log}}/S^{\mathrm{log}}}, respectively. Since flogf^{\mathrm{log}} is log smooth, both Ω\Omega and 𝒯\mathcal{T} are vector bundles (cf  [KaKa], Proposition (3.10)).

Suppose that pp is locally nilpotent on SS and SS is equipped with an mm-PD structure that extends to XX via ff. Denote by P(m)logP_{(m)}^{\mathrm{log}} the log mm-PD envelope of the diagonal embedding XlogXlog×SlogXlogX^{\mathrm{log}}\rightarrow X^{\mathrm{log}}\times_{S^{\mathrm{log}}}X^{\mathrm{log}} (cf.  [Mon, Proposition 2.1.1]) and by 𝒫(m)\mathcal{P}_{(m)} the structure sheaf of P(m)logP_{(m)}^{\mathrm{log}}. The defining ideal ¯\overline{\mathcal{I}} of the strict closed immersion XlogP(m)logX^{\mathrm{log}}\hookrightarrow P_{(m)}^{\mathrm{log}} admits the mm-PD-adic filtration {¯{}}0\{\overline{\mathcal{I}}^{\{\ell\}}\}_{\ell\in\mathbb{Z}_{\geq 0}} constructed in the manner of  [PBer2, Definition A. 3]. For each 0\ell\in\mathbb{Z}_{\geq 0}, the quotient sheaf 𝒫(m)\mathcal{P}_{(m)}^{\ell} of 𝒫(m)\mathcal{P}_{(m)} by ¯{+1}\overline{\mathcal{I}}^{\{\ell+1\}} determines a strict closed subscheme P,log(m)P^{\ell,\mathrm{log}}_{(m)} of P(m)logP_{(m)}^{\mathrm{log}}. We shall write pr1\mathrm{pr}_{1}^{\ell} and pr2\mathrm{pr}_{2}^{\ell} for the morphisms P(m),logXlogP_{(m)}^{\ell,\mathrm{log}}\rightarrow X^{\mathrm{log}} induced by the first and second projections Xlog×SlogXlogXlogX^{\mathrm{log}}\times_{S^{\mathrm{log}}}X^{\mathrm{log}}\rightarrow X^{\mathrm{log}}, respectively. Note that 𝒫(m)\mathcal{P}^{\ell}_{(m)} may be regarded as a sheaf on XX. Moreover, it has an 𝒪X\mathcal{O}_{X}-module structure via pr1\mathrm{pr}_{1}^{\ell} (resp., pr2\mathrm{pr}_{2}^{\ell}); it will be applied whenever we are considering an action of 𝒪X\mathcal{O}_{X} by left (resp., right) multiplication. When there is a fear of confusion, we use the notation pr1(𝒫(m))\mathrm{pr}_{1*}^{\ell}(\mathcal{P}_{(m)}^{\ell}) (resp., pr2(𝒫(m))\mathrm{pr}_{2*}^{\ell}(\mathcal{P}_{(m)}^{\ell})) for writing the sheaf 𝒫(m)\mathcal{P}_{(m)}^{\ell} equipped with this 𝒪X\mathcal{O}_{X}-module structure.

Given an integer mmm^{\prime}\geq m, we obtain a natural morphism

ςm,m:𝒫(m)𝒫(m)\displaystyle\varsigma^{\ell}_{m^{\prime},m}:\mathcal{P}_{(m^{\prime})}^{\ell}\rightarrow\mathcal{P}_{(m)}^{\ell} (2.1)

preserving both the left and right 𝒪X\mathcal{O}_{X}-module structures. As mentioned in  [Mon, § 2.3], there exists a canonical 𝒪X\mathcal{O}_{X}-algebra morphism

δm,:𝒫(m)+𝒫(m)𝒪X𝒫(m)\displaystyle\delta_{m}^{\ell,\ell^{\prime}}:\mathcal{P}_{(m)}^{\ell+\ell^{\prime}}\rightarrow\mathcal{P}^{\ell}_{(m)}\otimes_{\mathcal{O}_{X}}\mathcal{P}^{\ell^{\prime}}_{(m)} (2.2)

for each pair of nonnegative integers (,)(\ell,\ell^{\prime}) such that if mm^{\prime} is an integer m\geq m, then the following diagram is commutative:

(2.7)

The morphism δm,\delta_{m}^{\ell,\ell^{\prime}} determines a morphism of log schemes

δm,:P(m),log×XlogP(m),logP(m)+,log.\displaystyle\delta_{m}^{\ell,\ell^{\prime}\sharp}:P_{(m)}^{\ell,\mathrm{log}}\times_{X^{\mathrm{log}}}P_{(m)}^{\ell^{\prime},\mathrm{log}}\rightarrow P_{(m)}^{\ell+\ell^{\prime},\mathrm{log}}. (2.8)

over XlogX^{\mathrm{log}}.

For each 0\ell\in\mathbb{Z}_{\geq 0}, we shall set

𝒟Xlog/Slog,(m):=om𝒪X(pr1(𝒫(m)),𝒪X)\displaystyle\mathcal{D}_{X^{\mathrm{log}}/S^{\mathrm{log}},\leq\ell}^{(m)}:=\mathcal{H}om_{\mathcal{O}_{X}}(\mathrm{pr}_{1*}^{\ell}(\mathcal{P}^{\ell}_{(m)}),\mathcal{O}_{X}) (2.9)

(cf.  [Mon, Definition 2.3.1]). In particular, we have natural identifications 𝒟Xlog/Slog,0(m)=𝒪X\mathcal{D}_{X^{\mathrm{log}}/S^{\mathrm{log}},\leq 0}^{(m)}=\mathcal{O}_{X}, 𝒟Xlog/Slog,(m)/𝒟Xlog/Slog,1(m)=𝒯\mathcal{D}_{X^{\mathrm{log}}/S^{\mathrm{log}},\leq\ell}^{(m)}/\mathcal{D}_{X^{\mathrm{log}}/S^{\mathrm{log}},\leq\ell-1}^{(m)}=\mathcal{T}^{\otimes\ell} (l1l\geq 1). The sheaf of logarithmic differential operators of level mm is defined by

𝒟Xlog/Slog(m):=0𝒟Xlog/Slog,(m).\displaystyle\mathcal{D}_{X^{\mathrm{log}}/S^{\mathrm{log}}}^{(m)}:=\bigcup_{\ell\in\mathbb{Z}_{\geq 0}}\mathcal{D}_{X^{\mathrm{log}}/S^{\mathrm{log}},\leq\ell}^{(m)}. (2.10)

For simplicity, we occasionally write 𝒟(m)\mathcal{D}_{\leq\ell}^{(m)} and 𝒟(m)\mathcal{D}^{(m)} instead of 𝒟Xlog/Slog,(m)\mathcal{D}_{X^{\mathrm{log}}/S^{\mathrm{log}},\leq\ell}^{(m)} and 𝒟Xlog/Slog(m)\mathcal{D}_{X^{\mathrm{log}}/S^{\mathrm{log}}}^{(m)}, respectively. The morphisms δm,\delta_{m}^{\ell,\ell^{\prime}} (for ,0\ell,\ell^{\prime}\in\mathbb{Z}_{\geq 0}) determine a structure of (possibly noncommutative) f1(𝒪S)f^{-1}(\mathcal{O}_{S})-algebra 𝒟(m)𝒪X𝒟(m)𝒟(m)\mathcal{D}^{(m)}\otimes_{\mathcal{O}_{X}}\mathcal{D}^{(m)}\rightarrow\mathcal{D}^{(m)} on 𝒟(m)\mathcal{D}^{(m)}. The collection of morphisms ςm,m\varsigma_{m,m^{\prime}}^{\ell} (with mmm^{\prime}\leq m) induces an inductive system of sheaves {𝒟(m)}m0\{\mathcal{D}^{(m)}_{\leq\ell}\}_{m\in\mathbb{Z}_{\geq 0}}. We shall write L𝒟(m){{}^{L}\mathcal{D}}^{(m)}_{\leq\ell} (resp., R𝒟(m){{}^{R}\mathcal{D}}^{(m)}_{\leq\ell}) for the sheaf 𝒟(m)\mathcal{D}^{(m)}_{\leq\ell} endowed with a structure of 𝒪X\mathcal{O}_{X}-module arising from left (resp., right) multiplication by sections of 𝒟0(m)(=𝒪X)\mathcal{D}_{\leq 0}^{(m)}\left(=\mathcal{O}_{X}\right).

Given an 𝒪X\mathcal{O}_{X}-module \mathcal{F}, we equip the tensor product 𝒟(m):=R𝒟(m)\mathcal{D}_{\leq\ell}^{(m)}\otimes\mathcal{F}:={{}^{R}}\mathcal{D}_{\leq\ell}^{(m)}\otimes\mathcal{F} (resp., 𝒟(m):=L𝒟(m)\mathcal{F}\otimes\mathcal{D}^{(m)}_{\leq\ell}:=\mathcal{F}\otimes{{}^{L}}\mathcal{D}^{(m)}_{\leq\ell}) with the 𝒪X\mathcal{O}_{X}-module structure given by left (resp., right) multiplication.

Note that 𝒟(0)\mathcal{D}^{(0)} coincides with the sheaf of noncommutative rings “𝒟,Ylog/Tlog<\mathscr{D}_{\hslash,Y^{\mathrm{log}}/T^{\mathrm{log}}}^{<\infty}” defined in  [Wak8, Eq. (463)] such that the triple (,Tlog,Ylog)(\hslash,T^{\mathrm{log}},Y^{\mathrm{log}}) is taken to be (1,Slog,Xlog)(1,S^{\mathrm{log}},X^{\mathrm{log}}). With this in mind, whenever we deal with the sheaf 𝒟(0)\mathcal{D}^{(0)} (as well as the sheaves 𝒟(0)\mathcal{D}_{\leq\ell}^{(0)}’s for 0\ell\in\mathbb{Z}_{\geq 0}) without choosing a (0-)PD structure on SS, we take it in the sense of  [Wak8]. On the other hand, SS is always assumed to be equipped the trivial mm-PD structure when it is defined over 𝔽p\mathbb{F}_{p}.

2.2. 𝒟(m)\mathcal{D}^{(m)}-modules on log curves

To simplify the discussion, we restrict ourselves to the case where Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} is a log curve, in the following senseFor the purposes of the various discussions to be made in  [Wak8] and this monograph, it is desirable to include the situation where a log curve admits an empty fiber. Hence, to be precise, the description of  [Wak8, Definition 1.40] needs to be modified slightly as in Definition 2.2.1. Note that our definition also differs from  [KaFu, Definition 1.1] and  [ACGH, Definition 4.5]..

Definition 2.2.1.

We say that flog:XlogSlogf^{\mathrm{log}}:X^{\mathrm{log}}\rightarrow S^{\mathrm{log}} is a log curve (over SlogS^{\mathrm{log}}) if it is a log smooth integral morphism such that each geometric fiber of the underlying morphism of schemes f:XSf:X\rightarrow S is either empty or a reduced 11-dimensional scheme. (In particular, both Ω\Omega and 𝒯\mathcal{T} are line bundles, and the underlying morphism f:XSf:X\rightarrow S is flat, according to  [KaKa, Corollary 4.5].)

Hereinafter, suppose that flog:XlogSlogf^{\mathrm{log}}:X^{\mathrm{log}}\rightarrow S^{\mathrm{log}} is a log curve. Recall from  [Mon, § 2.2.2] that there exists a short exact sequence

0Δ1(1+¯)λΔ1(P(m)log)ΔXlog0,\displaystyle 0\rightarrow\varDelta^{-1}(1+\overline{\mathcal{I}})\xrightarrow{\lambda}\varDelta^{-1}(\mathcal{M}_{P_{(m)}^{\mathrm{log}}})\xrightarrow{\varDelta^{*}}\mathcal{M}_{X^{\mathrm{log}}}\rightarrow 0, (2.11)

where Δ\varDelta denotes the natural morphism XlogP(m)logX^{\mathrm{log}}\hookrightarrow P_{(m)}^{\mathrm{log}} and λ\lambda denotes the morphism obtained by restricting Δ1(α1P(m)log):Δ1(𝒪×P(m))Δ1(×Plog(m))\varDelta^{-1}(\alpha^{-1}_{P_{(m)}^{\mathrm{log}}}):\varDelta^{-1}(\mathcal{O}^{\times}_{P_{(m)}})\hookrightarrow\varDelta^{-1}(\mathcal{M}^{\times}_{P^{\mathrm{log}}_{(m)}}).

For any local section aXloga\in\mathcal{M}_{X^{\mathrm{log}}}, pr0(a)\mathrm{pr}_{0}^{*}(a) and pr1(a)\mathrm{pr}_{1}^{*}(a) have the same image in Xlog\mathcal{M}_{X^{\mathrm{log}}}. From the above exact sequence, there exists a unique section μ(m)(a)Δ1(1+¯)\mu_{(m)}(a)\in\varDelta^{-1}(1+\overline{\mathcal{I}}) with pr1(a)=pr2(a)λ(μ(m)(a))\mathrm{pr}_{1}^{*}(a)=\mathrm{pr}_{2}^{*}(a)\cdot\lambda(\mu_{(m)}(a)). Thus, the assignment aμ(m)(a)a\mapsto\mu_{(m)}(a) defines a well-defined morphism μ(m):XlogΔ1(1+¯)\mu_{(m)}:\mathcal{M}_{X^{\mathrm{log}}}\rightarrow\varDelta^{-1}(1+\overline{\mathcal{I}}).

Now, let us take a (locally defined) logarithmic coordinate xXloggrx\in\mathcal{M}_{X^{\mathrm{log}}}^{\mathrm{gr}}, i.e., the section dlog(x)d\mathrm{log}(x) forms a local generator of Ω\Omega. We shall set η:=μ(m)(x)1\eta:=\mu_{(m)}(x)-1. For each 0\ell\in\mathbb{Z}_{\geq 0}, the collection {η{j}|j}\{\eta^{\{j\}}\,|\,j\leq\ell\} (cf.  [Mon, § 1.2.3] for the definition of (){j}(-)^{\{j\}}) forms a local basis of 𝒫(m)\mathcal{P}^{\ell}_{(m)}. Hence, by setting j\partial^{\langle j\rangle} as the dual of η{j}\eta^{\{j\}}, we obtain a local basis {j}j\{\partial^{\langle j\rangle}\}_{j\leq\ell} of 𝒟(m)\mathcal{D}_{\leq\ell}^{(m)}. For any nonnegative integers jj^{\prime} and jj^{\prime\prime}, the following equality holds:

jj=j=max{j,j}j+jj!(j+jj)!(jj)!(jj)!qj!qj!qj!j\displaystyle\partial^{\langle j^{\prime}\rangle}\cdot\partial^{\langle j^{\prime\prime}\rangle}=\sum_{j=\mathrm{max}\{j^{\prime},j^{\prime\prime}\}}^{j^{\prime}+j^{\prime\prime}}\frac{j!}{(j^{\prime}+j^{\prime\prime}-j)!\cdot(j-j^{\prime})!\cdot(j-j^{\prime\prime})!}\cdot\frac{q_{j^{\prime}}!\cdot q_{j^{\prime\prime}}!}{q_{j}!}\cdot\partial^{\langle j\rangle} (2.12)

(cf.  [Mon, Lemme 2.3.4]), where, for each j0j\in\mathbb{Z}_{\geq 0}, let (qj,rj)(q_{j},r_{j}) be the pair of nonnegative integers uniquely determined by the condition that j=pmqj+rjj=p^{m}\cdot q_{j}+r_{j} and 0rj<pm0\leq r_{j}<p^{m}. In particular, we have jj=jj\partial^{\langle j^{\prime}\rangle}\cdot\partial^{\langle j^{\prime\prime}\rangle}=\partial^{\langle j^{\prime\prime}\rangle}\cdot\partial^{\langle j^{\prime}\rangle}.

The following assertion will be applied in the subsequent discussion (cf. Lemma 4.1.1).

Lemma 2.2.2.

Let us keep the above notation. Moreover, suppose that SS is a scheme over 𝔽p\mathbb{F}_{p}. Then, for each nonnegative integer m\ell\leq m, the following equality holds:

j=0p1(1)jj=s=01(1(ps)p1),\displaystyle\sum_{j=0}^{p^{\ell}-1}(-1)^{j}\cdot\partial^{\langle j\rangle}=\prod_{s=0}^{\ell-1}(1-(\partial^{\langle p^{s}\rangle})^{p-1}), (2.13)

where we set s=01():=1\prod_{s=0}^{-1}(-):=1.

Proof.

Let aa, bb, and dd be nonnegative integers with 1ap11\leq a\leq p-1 and pd(p1+pb)<pmp^{d}(p-1+pb)<p^{m} (which implies qj=0q_{j}=0 for any jpd(a1)+pd+1bj\leq p^{d}(a-1)+p^{d+1}b). Since SS is a scheme over 𝔽p\mathbb{F}_{p}, we have

pd(a1)+pd+1bpd\displaystyle\hskip 22.76219pt\partial^{\langle p^{d}(a-1)+p^{d+1}b\rangle}\cdot\partial^{\langle p^{d}\rangle} (2.14)
=j=pd(a1)+pd+1bpda+pd+1bj!(pda+pd+1bj)!(jpd(a1)pd+1b)!(jpd)!j\displaystyle=\sum_{j=p^{d}(a-1)+p^{d+1}b}^{p^{d}a+p^{d+1}b}\frac{j!}{(p^{d}a+p^{d+1}b-j)!\cdot(j-p^{d}(a-1)-p^{d+1}b)!\cdot(j-p^{d})!}\cdot\partial^{\langle j\rangle}
=(a1)pd(a1)+pd+1b+apda+pd+1b,\displaystyle\,=(a-1)\cdot\partial^{\langle p^{d}(a-1)+p^{d+1}b\rangle}+a\cdot\partial^{\langle p^{d}a+p^{d+1}b\rangle},

where the first equality follows from (2.12). By using this, we have

pda+pd+1b\displaystyle\partial^{\langle p^{d}a+p^{d+1}b\rangle} =1a(pd(a1))pd(a1)+pd+1b\displaystyle=\frac{1}{a}\cdot\left(\partial^{\langle p^{d}\rangle}-(a-1)\right)\cdot\partial^{\langle p^{d}(a-1)+p^{d+1}b\rangle} (2.15)
=1a(pd(a1))(1a1(pd(a2))pd(a2)+pd+1b)\displaystyle=\frac{1}{a}\cdot\left(\partial^{\langle p^{d}\rangle}-(a-1)\right)\cdot\left(\frac{1}{a-1}\cdot\left(\partial^{\langle p^{d}\rangle}-(a-2)\right)\cdot\partial^{\langle p^{d}(a-2)+p^{d+1}b\rangle}\right)
\displaystyle\ \ \vdots
=1a!pd+1bj=1a(pd(aj)).\displaystyle=\frac{1}{a!}\cdot\partial^{\langle p^{d+1}b\rangle}\cdot\prod_{j=1}^{a}(\partial^{\langle p^{d}\rangle}-(a-j)).

Here, note that the equality

1xp1=a=0p1(1)aa!j=1a(x(aj))\displaystyle 1-x^{p-1}=\sum_{a=0}^{p-1}\frac{(-1)^{a}}{a!}\cdot\prod_{j=1}^{a}(x-(a-j)) (2.16)

holds in 𝔽p[x]\mathbb{F}_{p}[x]. Indeed, if h(x)h(x) denotes the right-hand side of (2.16), then, for each n=1,,p1n=1,\cdots,p-1, we have

h(n)=a=0n(1)aa!j=1a(x(aj))|x=n=a=0n(1)a(na)=(11)n=0.\displaystyle h(n)=\sum_{a=0}^{n}\frac{(-1)^{a}}{a!}\cdot\prod_{j=1}^{a}(x-(a-j))\Bigl{|}_{x=n}=\sum_{a=0}^{n}(-1)^{a}\cdot\binom{n}{a}=(1-1)^{n}=0. (2.17)

Moreover, since the equality h(0)=1h(0)=1 is immediately verified, we obtain (2.16), as desired.

The equalities (2.15) and (2.16) together imply

a=0p1(1)pda+pd+1bpda+pd+1b\displaystyle\sum_{a=0}^{p-1}(-1)^{p^{d}a+p^{d+1}b}\cdot\partial^{\langle p^{d}a+p^{d+1}b\rangle} =pd+1b(a=0p1(1)pda+pd+1ba!j=1a(pd(aj)))\displaystyle=\partial^{\langle p^{d+1}b\rangle}\cdot\left(\sum_{a=0}^{p-1}\frac{(-1)^{p^{d}a+p^{d+1}b}}{a!}\cdot\prod_{j=1}^{a}(\partial^{\langle p^{d}\rangle}-(a-j))\right) (2.18)
=(1)pd+1bpd+1b(a=0p1(1)aa!j=1a(pd(aj)))\displaystyle=(-1)^{p^{d+1}b}\cdot\partial^{\langle p^{d+1}b\rangle}\cdot\left(\sum_{a=0}^{p-1}\frac{(-1)^{a}}{a!}\cdot\prod_{j=1}^{a}(\partial^{\langle p^{d}\rangle}-(a-j))\right)
=(1)pd+1bpd+1b(1(pd)p1).\displaystyle=(-1)^{p^{d+1}b}\cdot\partial^{\langle p^{d+1}b\rangle}\cdot(1-(\partial^{\langle p^{d}\rangle})^{p-1}).

By applying (2.18) for various bb’s and dd’s, we obtain the following sequence of equalities:

j=0pl1(1)jj\displaystyle\sum_{j=0}^{p^{l}-1}(-1)^{j}\cdot\partial^{\langle j\rangle} =b=0pl11a=0p1(1)a+pba+pb\displaystyle=\sum_{b=0}^{p^{l-1}-1}\sum_{a=0}^{p-1}(-1)^{a+pb}\cdot\partial^{\langle a+pb\rangle} (2.19)
=(2.18)(1(1)p1)b=0pl11(1)pbpb\displaystyle\stackrel{{\scriptstyle\eqref{dGG1}}}{{=}}(1-(\partial^{\langle 1\rangle})^{p-1})\cdot\sum_{b=0}^{p^{l-1}-1}(-1)^{pb}\cdot\partial^{\langle pb\rangle}
=(1(1)p1)b=0pl21a=0p1(1)pa+p2bpa+p2b\displaystyle=(1-(\partial^{\langle 1\rangle})^{p-1})\cdot\sum_{b=0}^{p^{l-2}-1}\sum_{a=0}^{p-1}(-1)^{pa+p^{2}b}\cdot\partial^{\langle pa+p^{2}b\rangle}
=(2.18)(1(1)p1)(1(p)p1)b=0pl21(1)p2bp2b\displaystyle\stackrel{{\scriptstyle\eqref{dGG1}}}{{=}}(1-(\partial^{\langle 1\rangle})^{p-1})(1-(\partial^{\langle p\rangle})^{p-1})\cdot\sum_{b=0}^{p^{l-2}-1}(-1)^{p^{2}b}\cdot\partial^{\langle p^{2}b\rangle}
\displaystyle\ \,\vdots
=s=0l1(1(ps)p1).\displaystyle=\prod_{s=0}^{l-1}(1-(\partial^{\langle p^{s}\rangle})^{p-1}).

This completes the proof of this assertion. ∎

By a (left) 𝒟(m)\mathcal{D}^{(m)}-module, we shall mean a pair (,)(\mathcal{F},\nabla) consisting of an 𝒪X\mathcal{O}_{X}-module \mathcal{F} and an 𝒪X\mathcal{O}_{X}-linear morphism of f1(𝒪S)f^{-1}(\mathcal{O}_{S})-algebras :L𝒟(m)nd𝒪S()(:=ndf1(𝒪S)())\nabla:{{}^{L}\mathcal{D}}^{(m)}\rightarrow\mathcal{E}nd_{\mathcal{O}_{S}}(\mathcal{F})\left(:=\mathcal{E}nd_{f^{-1}(\mathcal{O}_{S})}(\mathcal{F})\right). We refer to \nabla as a 𝒟(m)\mathcal{D}^{(m)}-module structure on \mathcal{F}. When we want to clarify the level “mm”, we write (m)\nabla^{(m)} instead of \nabla. Also, an invertible 𝒟(m)\mathcal{D}^{(m)}-module is a 𝒟(m)\mathcal{D}^{(m)}-module (,)(\mathcal{L},\nabla) such that \mathcal{L} is a line bundle. Given a 𝒟(m)\mathcal{D}^{(m)}-module (,)(\mathcal{F},\nabla), we shall write

𝒮ol()\displaystyle\mathcal{S}ol(\nabla) (2.20)

for the subsheaf of \mathcal{F} on which 𝒟+(m)\mathcal{D}_{+}^{(m)} acts as zero via \nabla, where 𝒟+(m)\mathcal{D}_{+}^{(m)} denotes the kernel of the canonical projection 𝒟(m)𝒪X\mathcal{D}^{(m)}\twoheadrightarrow\mathcal{O}_{X}.

Recall from  [Wak8, Definition 4.1] that an SlogS^{\mathrm{log}}-connection on an 𝒪X\mathcal{O}_{X}-module \mathcal{F} is an f1(𝒪S)f^{-1}(\mathcal{O}_{S})-linear morphism :Ω\nabla:\mathcal{F}\rightarrow\Omega\otimes\mathcal{F} satisfying (av)=dav+a(v)\nabla(a\cdot v)=da\otimes v+a\cdot\nabla(v) for any local sections a𝒪Xa\in\mathcal{O}_{X} and vv\in\mathcal{F}. (Since we have assumed that Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} is a log curve, any SlogS^{\mathrm{log}}-connection is automatically flat, in the sense of  [Wak8, Definition 4.3].) Under the bijective correspondence mentioned in  [Wak8, Eq. (468)], we will not distinguish between a 𝒟(0)\mathcal{D}^{(0)}-module structure on \mathcal{F} and an SlogS^{\mathrm{log}}-connection on \mathcal{F}. In particular, if \nabla is an SlogS^{\mathrm{log}}-connection on \mathcal{F}, then we have 𝒮ol()=Ker(Ω)\mathcal{S}ol(\nabla)=\mathrm{Ker}(\mathcal{F}\xrightarrow{\nabla}\Omega\otimes\mathcal{F}); each local section of 𝒮ol()\mathcal{S}ol(\nabla) is called horizontal.

By a flat module (resp., a flat bundle) on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}, we mean an 𝒪X\mathcal{O}_{X}-module (resp., a vector bundle on XX) together with an SlogS^{\mathrm{log}}-connection on it. (Note that flat modules/bundles can be discussed without choosing a PD structure on SS.)

Let (,)(\mathcal{F}_{\circ},\nabla_{\circ}) and (,)(\mathcal{F}_{\bullet},\nabla_{\bullet}) be 𝒟(m)\mathcal{D}^{(m)}-modules. Then, a morphism from (,)(\mathcal{F}_{\circ},\nabla_{\circ}) to (,)(\mathcal{F}_{\bullet},\nabla_{\bullet}) is defined as an 𝒪X\mathcal{O}_{X}-linear morphism \mathcal{F}_{\circ}\rightarrow\mathcal{F}_{\bullet} compatible with the respective 𝒟(m)\mathcal{D}^{(m)}-module structures \nabla_{\circ}, \nabla_{\bullet}.

The structure sheaf 𝒪X\mathcal{O}_{X} admits the trivial 𝒟(m)\mathcal{D}^{(m)}-module structure

X,triv(m):L𝒟(m)nd𝒪S(𝒪X)\displaystyle\nabla_{X,\mathrm{triv}}^{(m)}:{{}^{L}}\mathcal{D}^{(m)}\rightarrow\mathcal{E}nd_{\mathcal{O}_{S}}(\mathcal{O}_{X}) (2.21)

determined uniquely by the condition that if we write t:=αXlog(x)t:=\alpha_{X^{\mathrm{log}}}(x), where xx denotes a logarithmic coordinate as introduced in the discussion preceding Lemma 2.2.2, then

X,triv(m)(j)(tn)=qj!(nj)tn\displaystyle\nabla_{X,\mathrm{triv}}^{(m)}(\partial^{\langle j\rangle})(t^{n})=q_{j}!\cdot\binom{n}{j}\cdot t^{n} (2.22)

for every j0j\in\mathbb{Z}_{\geq 0} (cf.  [Mon, Lemme 2.3.3]). Thus, we obtain the trivial (invertible) 𝒟(m)\mathcal{D}^{(m)}-module (𝒪X,X,triv(m))(\mathcal{O}_{X},\nabla_{X,\mathrm{triv}}^{(m)}).

Let mm^{\prime} be an integer m\geq m. Each 𝒟(m)\mathcal{D}^{(m^{\prime})}-module (,(m))(\mathcal{F},\nabla^{(m^{\prime})}) induces a 𝒟(m)\mathcal{D}^{(m^{\prime})}-module structure

(m)(m):L𝒟(m)nd𝒪S()\displaystyle\nabla^{(m^{\prime})\Rightarrow(m)}:{{}^{L}}\mathcal{D}^{(m)}\rightarrow\mathcal{E}nd_{\mathcal{O}_{S}}(\mathcal{F}) (2.23)

on \mathcal{F}, i.e., the composite of (m)\nabla^{(m^{\prime})} and the natural morphism L𝒟(m)L𝒟(m){{}^{L}}\mathcal{D}^{(m)}\rightarrow{{}^{L}}\mathcal{D}^{(m^{\prime})}. In particular, we obtain a 𝒟(m)\mathcal{D}^{(m)}-module (,(m)(m))(\mathcal{F},\nabla^{(m^{\prime})\Rightarrow(m)}).

2.3. mm-PD stratifications on GG-bundles

Let us fix a smooth affine algebraic group GG over SS. Denote by 𝒪G\mathcal{O}_{G} the 𝒪S\mathcal{O}_{S}-algebra defined as the coordinate ring of GG. Also, let us fix m0m\in\mathbb{Z}_{\geq 0}.

Definition 2.3.1.
  • (i)

    Let \mathcal{E} be a GG-bundle on XX. An mm-PD stratification on /Xlog/Slog\mathcal{E}/X^{\mathrm{log}}/S^{\mathrm{log}} (or simply, an mm-PD stratification on \mathcal{E}) is a collection

    ϕ:={ϕ}0,\displaystyle\phi:=\{\phi_{\ell}\}_{\ell\in\mathbb{Z}_{\geq 0}}, (2.24)

    where each ϕ\phi_{\ell} denotes an isomorphism P(m)×X(=pr2())×XP(m)(=pr1())P_{(m)}^{\ell}\times_{X}\mathcal{E}\left(=\mathrm{pr}_{2}^{\ell*}(\mathcal{E})\right)\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{E}\times_{X}P^{\ell}_{(m)}\left(=\mathrm{pr}^{\ell*}_{1}(\mathcal{E})\right) of GG-bundles on P(m)P_{(m)}^{\ell} satisfying the following conditions:

    • ϕ0\phi_{0} coincides with the identity morphism id\mathrm{id}_{\mathcal{E}} of (=pr10()=pr20())\mathcal{E}\left(=\mathrm{pr}_{1}^{0*}(\mathcal{E})=\mathrm{pr}_{2}^{0*}(\mathcal{E})\right), and the equality ϕ|P(m)=ϕ\phi_{\ell^{\prime}}|_{P_{(m)}^{\ell}}=\phi_{\ell} holds for any pair of integers (,)(\ell,\ell^{\prime}) with \ell\leq\ell^{\prime};

    • The cocycle condition holds: to be precise, for any pair of nonnegative integers (,)(\ell,\ell^{\prime}), the following diagram is commutative:

      (2.29)

      where q1,q_{1}^{\ell,\ell^{\prime}} and q2,q_{2}^{\ell,\ell^{\prime}} denote the morphisms defined as

      q1,:P(m)×XP(m)pr1P(m)P(m)+andq2,:P(m)×XP(m)pr2P(m)P(m)+,\displaystyle q_{1}^{\ell,\ell^{\prime}}:P_{(m)}^{\ell}\times_{X}P_{(m)}^{\ell^{\prime}}\xrightarrow{\mathrm{pr}_{1}}P_{(m)}^{\ell}\hookrightarrow P_{(m)}^{\ell+\ell^{\prime}}\ \ \text{and}\ \ q_{2}^{\ell,\ell^{\prime}}:P_{(m)}^{\ell}\times_{X}P_{(m)}^{\ell^{\prime}}\xrightarrow{\mathrm{pr}_{2}}P_{(m)}^{\ell^{\prime}}\hookrightarrow P_{(m)}^{\ell+\ell^{\prime}}, (2.30)

      respectively.

    Also, by an mm-PD stratified GG-bundle on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}, we mean a pair

    (,ϕ)\displaystyle(\mathcal{E},\phi) (2.31)

    consisting of a GG-bundle \mathcal{E} on XX and an mm-PD stratification ϕ\phi on \mathcal{E}.

  • (ii)

    Let (,ϕ)(\mathcal{E}_{\circ},\phi_{\circ}) and (,ϕ)(\mathcal{E}_{\bullet},\phi_{\bullet}) be mm-PD stratified GG-bundles on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}, where ϕ:={ϕ,}\phi_{\circ}:=\{\phi_{\circ,\ell}\}_{\ell}, ϕ:={ϕ,}\phi_{\bullet}:=\{\phi_{\bullet,\ell}\}_{\ell}. An isomorphism of mm-PD stratified GG-bundles from (,ϕ)(\mathcal{E}_{\circ},\phi_{\circ}) to (,ϕ)(\mathcal{E}_{\bullet},\phi_{\bullet}) is defined as an isomorphism of GG-bundles h:h:\mathcal{E}_{\circ}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{E}_{\bullet} such that, for each 0\ell\in\mathbb{Z}_{\geq 0}, the following square diagram is commutative:

    (2.36)
Example 2.3.2 (Trivial mm-PD stratified GG-bundle).

The trivial GG-bundle X×SGX\times_{S}G on XX admits an mm-PD stratification. Indeed, for each 0\ell\in\mathbb{Z}_{\geq 0}, let ϕ,triv\phi_{\ell,\mathrm{triv}} denote the composite of natural morphisms

P(m)×X(X×SG)P(m)×SG(a,b)(b,a)G×SP(m)(X×SG)×XP(m).\displaystyle P^{\ell}_{(m)}\times_{X}(X\times_{S}G)\stackrel{{\scriptstyle\sim}}{{\rightarrow}}P^{\ell}_{(m)}\times_{S}G\xrightarrow{(a,b)\mapsto(b,a)}G\times_{S}P^{\ell}_{(m)}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}(X\times_{S}G)\times_{X}P^{\ell}_{(m)}. (2.37)

Then, the resulting collection

ϕtriv:={ϕ,triv}0\displaystyle\phi_{\mathrm{triv}}:=\{\phi_{\ell,\mathrm{triv}}\}_{\ell\in\mathbb{Z}_{\geq 0}} (2.38)

forms an mm-PD stratification on X×SGX\times_{S}G, which will be called the trivial mm-PD stratification.

Remark 2.3.3 (Case of G=GLnG=\mathrm{GL}_{n}).

Let \mathcal{F} be a rank n(>0)n\left(\in\mathbb{Z}_{>0}\right) vector bundle on XX, and denote by \mathcal{E} the GLn\mathrm{GL}_{n}-bundle corresponding to \mathcal{F}. Suppose that we are given an mm-PD stratification ϕ:={ϕ}\phi:=\{\phi_{\ell}\}_{\ell} on \mathcal{E}. Since \mathcal{E} represents the sheaf of isomorphisms som(𝒪Xn,)\mathcal{I}som(\mathcal{O}_{X}^{\oplus n},\mathcal{F}), each ϕ\phi_{\ell} (0\ell\in\mathbb{Z}_{\geq 0}) may be regarded as an isomorphism

som(𝒪P(m)n,pr2())som(𝒪P(m)n,pr1()),\displaystyle\mathcal{I}som(\mathcal{O}_{P_{(m)}^{\ell}}^{\oplus n},\mathrm{pr}_{2}^{\ell*}(\mathcal{F}))\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{I}som(\mathcal{O}_{P_{(m)}^{\ell}}^{\oplus n},\mathrm{pr}_{1}^{\ell*}(\mathcal{F})), (2.39)

which is given by composition with some isomorphism ϕ:pr2()pr1()\phi^{\natural}_{\ell}:\mathrm{pr}_{2}^{\ell*}(\mathcal{F})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathrm{pr}_{1}^{\ell*}(\mathcal{F}). The resulting collection ϕ:={ϕ}\phi^{\natural}:=\{\phi^{\natural}_{\ell}\}_{\ell} defines an mm-PD stratification on \mathcal{F} in the classical sense. Moreover, it determines a 𝒟(m)\mathcal{D}^{(m)}-module structure on \mathcal{F} (cf.  [Mon, Proposition 2.6.1]). The assignment ϕϕ\phi\mapsto\phi^{\natural} gives an equivalence between mm-PD stratifications on \mathcal{E} and 𝒟(m)\mathcal{D}^{(m)}-module structures on \mathcal{F}.

In what follows, we describe an mm-PD stratification on a GG-bundle not only a GLn\mathrm{GL}_{n}-bundle (cf. Remark 2.3.3 above) by using the classical notion of an mm-PD stratification defined for an 𝒪X\mathcal{O}_{X}-module.

Let \mathcal{E} be a GG-bundle on XX. Since \mathcal{E} is affine over XX because of the affineness assumption on GG, it determines an 𝒪X\mathcal{O}_{X}-algebra; we shall write 𝒪\mathcal{O}_{\mathcal{E}} for this 𝒪X\mathcal{O}_{X}-algebra by abuse of notation (hence, 𝒮pec(𝒪)=\mathcal{S}pec(\mathcal{O}_{\mathcal{E}})=\mathcal{E}). If R:×SGG\mathrm{R}_{\mathcal{E}}:\mathcal{E}\times_{S}G\rightarrow G denotes the GG-action on \mathcal{E}, then it corresponds to an 𝒪X\mathcal{O}_{X}-algebra morphism R:𝒪𝒪𝒪S𝒪G\mathrm{R}_{\mathcal{E}}^{\sharp}:\mathcal{O}_{\mathcal{E}}\rightarrow\mathcal{O}_{\mathcal{E}}\otimes_{\mathcal{O}_{S}}\mathcal{O}_{G}. (We shall refer to R\mathrm{R}_{\mathcal{E}}^{\sharp} as the GG-coaction on 𝒪\mathcal{O}_{\mathcal{E}}.)

Now, let ϕ:={ϕ}\phi:=\{\phi_{\ell}\}_{\ell} be an mm-PD stratification on \mathcal{E}. For each 0\ell\in\mathbb{Z}_{\geq 0}, the isomorphism ϕ\phi_{\ell} defines a 𝒫(m)\mathcal{P}_{(m)}^{\ell}-algebra isomorphism

ϕ:𝒫(m)𝒪X𝒪𝒪𝒪X𝒫(m).\displaystyle\phi^{\natural}_{\ell}:\mathcal{P}_{(m)}^{\ell}\otimes_{\mathcal{O}_{X}}\mathcal{O}_{\mathcal{E}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{O}_{\mathcal{E}}\otimes_{\mathcal{O}_{X}}\mathcal{P}_{(m)}^{\ell}. (2.40)

The GG-equivariance condition on ϕ\phi_{\ell} can be interpreted as the commutativity of the following square diagram:

(2.45)

Moreover, the commutativity of (2.29) reads the commutativity of the following diagram:

(2.50)

Thus, the resulting collection

ϕ:={ϕ}0\displaystyle\phi^{\natural}:=\{\phi^{\natural}_{\ell}\}_{\ell\in\mathbb{Z}_{\geq 0}} (2.51)

forms an mm-PD stratification on 𝒪\mathcal{O}_{\mathcal{E}} in the usual sense (cf.  [PBer1, Definition 2.3.1]).

Conversely, suppose that we are given an mm-PD stratification ϕ:={ϕ}0\phi^{\natural}:=\{\phi_{\ell}^{\natural}\}_{\ell\geq 0} on 𝒪\mathcal{O}_{\mathcal{E}} such that each ϕ\phi^{\natural}_{\ell} is a 𝒫(m)\mathcal{P}_{(m)}^{\ell}-algebra isomorphism 𝒫(m)𝒪X𝒪𝒪𝒪X𝒫(m)\mathcal{P}_{(m)}^{\ell}\otimes_{\mathcal{O}_{X}}\mathcal{O}_{\mathcal{E}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{O}_{\mathcal{E}}\otimes_{\mathcal{O}_{X}}\mathcal{P}_{(m)}^{\ell} and the square diagram (2.45) for this collection is commutative. By applying the functor 𝒮pec()\mathcal{S}pec(-) to various ϕ\phi_{\ell}^{\natural}’s, we obtain a collection of isomorphisms P(m)×X×XP(m)P_{(m)}^{\ell}\times_{X}\mathcal{E}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{E}\times_{X}P_{(m)}^{\ell} (0\ell\in\mathbb{Z}_{\geq 0}), forming an mm-PD stratification on \mathcal{E}.

Remark 2.3.4 (𝒟(m)\mathcal{D}^{(m)}-module associated to an mm-PD stratification).

One may verify that giving a collection as in (2.51) is equivalent to giving a compatible collection

ϕ:={ϕ}0,\displaystyle\phi^{\natural\natural}:=\{\phi_{\ell}^{\natural\natural}\}_{\ell\in\mathbb{Z}_{\geq 0}}, (2.52)

where each ϕ\phi_{\ell}^{\natural\natural} denotes an 𝒪X\mathcal{O}_{X}-algebra morphism 𝒪𝒪𝒪X𝒫(m)\mathcal{O}_{\mathcal{E}}\rightarrow\mathcal{O}_{\mathcal{E}}\otimes_{\mathcal{O}_{X}}\mathcal{P}_{(m)}^{\ell}, satisfying the following two conditions:

  • For each 0\ell\in\mathbb{Z}_{\geq 0}, the following square diagram is commutative:

    (2.57)
  • The equality ϕ0=id𝒪\phi_{0}^{\natural\natural}=\mathrm{id}_{\mathcal{O}_{\mathcal{E}}} holds, and for each pair of nonnegative integers (,)(\ell,\ell^{\prime}), the following square diagram is commutative:

    (2.62)

In particular, the collection ϕ\phi^{\natural\natural} may be regarded as a left 𝒟(m)\mathcal{D}^{(m)}-module structure on 𝒪\mathcal{O}_{\mathcal{E}} (cf.  [PBer1, Proposition 2.3.2]).

Remark 2.3.5 (Case of m=0m=0).

Recall from  [Wak8, Definition 1.28] the notion of a flat GG-bundle on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. (Although all the schemes and algebraic groups appearing in  [Wak8] are defined over a field, the various formulations related to flat GG-bundles can be generalized to our situation here.) By an argument similar to the proof of  [Wak7, Proposition 7.8.1] (which deals with the non-logarithmic case), there exists an equivalence of categories

( the groupoid of 0-PD stratified G-bundles on Xlog/Slog)( the groupoid of flat G-bundles on Xlog/Slog).\displaystyle\begin{pmatrix}\text{ the groupoid of }\\ \text{$0$-PD stratified $G$-bundles on $X^{\mathrm{log}}/S^{\mathrm{log}}$}\end{pmatrix}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\begin{pmatrix}\text{ the groupoid of }\\ \text{flat $G$-bundles on $X^{\mathrm{log}}/S^{\mathrm{log}}$}\\ \end{pmatrix}. (2.63)

With this in mind, whenever we deal with a 0-PD stratification without fixing a (0-)PD structure on SS, it is assumed to mean a flat connection.

Let (,ϕ)(\mathcal{E},\phi) (where ϕ:={ϕ}\phi:=\{\phi_{\ell}\}_{\ell}) be an mm-PD stratified GG-bundle on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. Also, let GG^{\prime} be another smooth affine algebraic group over SS and w:GGw:G\rightarrow G^{\prime} a morphism of SS-groups. Denote by ×G,wG\mathcal{E}\times^{G,w}G^{\prime}, or simply by ×GG\mathcal{E}\times^{G}G^{\prime}, the GG^{\prime}-bundle induced from \mathcal{E} via change of structure group along ww. Then, the isomorphism ϕ\phi_{\ell} (for each 0\ell\in\mathbb{Z}_{\geq 0}) induces a GG^{\prime}-equivariant isomorphism

ϕ×GG:P(m)×X(×GG)(×GG)×XP(m),\displaystyle\phi_{\ell}\times^{G}G^{\prime}:P_{(m)}^{\ell}\times_{X}(\mathcal{E}\times^{G}G^{\prime})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}(\mathcal{E}\times^{G}G^{\prime})\times_{X}P_{(m)}^{\ell}, (2.64)

and the collection

ϕ×GG:={ϕ×GG}0\displaystyle\phi\times^{G}G^{\prime}:=\{\phi_{\ell}\times^{G}G^{\prime}\}_{\ell\in\mathbb{Z}_{\geq 0}} (2.65)

forms an mm-PD stratified GG^{\prime}-bundle on ×GG\mathcal{E}\times^{G}G^{\prime}.

2.4. Relative Frobenius morphisms

In the rest of this section, we suppose that SS is a scheme over 𝔽p\mathbb{F}_{p} (equipped with the trivial mm-PD structure). We shall write FXF_{X} and FSF_{S} for the absolute Frobenius (i.e., pp-power) endomorphisms of XX and SS, respectively. Also, let us fix a nonnegative integer mm.

The (m+1)(m+1)-st Frobenius twist of XX over SS is, by definition, the base-change X(m+1)X^{(m+1)} (:=X×S,FSm+1S)\left(:=X\times_{S,F_{S}^{m+1}}S\right) of XX along the (m+1)(m+1)-st iterate FSm+1F_{S}^{m+1} of FSF_{S}. Denote by f(m+1):X(m+1)Sf^{(m+1)}:X^{(m+1)}\rightarrow S the structure morphism of X(m+1)X^{(m+1)}, which defines a log curve X(m+1)log:=X(m+1)×XXlogX^{(m+1)\mathrm{log}}:=X^{(m+1)}\times_{X}X^{\mathrm{log}} over SlogS^{\mathrm{log}}.

The (m+1)(m+1)-st relative Frobenius morphism of XX over SS is the unique morphism FX/S(m+1):XX(m+1)F_{X/S}^{(m+1)}:X\rightarrow X^{(m+1)} over SS that makes the following diagram commute:

(2.72)

To simplify the notation, we write FX/S:=FX/S(1)F_{X/S}:=F_{X/S}^{(1)}, and write Ω(m+1):=ΩX(m+1)log/Slog\Omega^{(m+1)}:=\Omega_{X^{(m+1)\mathrm{log}}/S^{\mathrm{log}}}, 𝒯(m+1):=𝒯X(m+1)log/Slog\mathcal{T}^{(m+1)}:=\mathcal{T}_{X^{(m+1)\mathrm{log}}/S^{\mathrm{log}}}. Also, for convenience, we occasionally write X(0)X^{(0)}, f(0)f^{(0)}, Ω(0)\Omega^{(0)}, and 𝒯(0)\mathcal{T}^{(0)} instead of XX, ff, Ω\Omega, and 𝒯\mathcal{T}, respectively.

Remark 2.4.1 (Cartier type).

Recall from  [KaFu, Theorem 1.1] and  [Og, Remark 1.2.3] (or the comment following  [KaKa, Definition (4.8)]) that the log curve Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} is of Cartier type. Hence, the exact relative Frobenius map in the statement of  [Og3, Theorem 3.1.1] coincides with the usual relative Frobenius morphism FX/SF_{X/S}.

Proposition 2.4.2.

Let \mathcal{F} be a relatively torsion-free sheaf on XX of rank n>0n\in\mathbb{Z}_{>0} (cf.  [Ses, Chap. 7, Définition 1] or  [Wak8, Definition 3.1] for the definition of a relatively torsion-free sheaf). Then, the 𝒪X(m+1)\mathcal{O}_{X^{(m+1)}}-module FX/S(m+1)()F_{X/S*}^{(m+1)}(\mathcal{F}) is a relatively torsion-free sheaf of rank npm+1n\cdot p^{m+1}.

Proof.

First, let us consider the case of m=0m=0. Since FX/S()F_{X/S*}(\mathcal{F}) is flat over SS, we may assume, after restricting to the fiber over each geometric point of SS, that S=Spec(k)S=\mathrm{Spec}(k) for an algebraically closed field kk over 𝔽p\mathbb{F}_{p}. Recall from  [KaFu, Theorem 1.1] that XX has at most nodal singularities. When restricted to the smooth locus XsmX^{\mathrm{sm}} of XX, \mathcal{F} becomes locally free and FX/kF_{X/k} becomes finite and flat of degree pp. This implies that FX/k()|Xsm(1)F_{X/k*}(\mathcal{F})|_{X^{\mathrm{sm}(1)}} is locally free (and hence, relatively torsion-free) of rank npn\cdot p. Hence, the problem is reduced to proving that FX/k()F_{X/k*}(\mathcal{F}) is (relatively) torsion-free of rank npn\cdot p at each nodal point of XX.

Let us take a nodal point qq of XX, and write q(1):=FX/k(q)X(1)(k)q^{(1)}:=F_{X/k}(q)\in X^{(1)}(k). Denote by ^q\widehat{\mathcal{F}}_{q} (resp., 𝒪^X,q\widehat{\mathcal{O}}_{X,q}; resp., 𝒪^X(1),q(1)\widehat{\mathcal{O}}_{X^{(1)},q^{(1)}}) the completion of the stalk of \mathcal{F} (resp., 𝒪X\mathcal{O}_{X}; resp., 𝒪X(1)\mathcal{O}_{X^{(1)}}) at qq (resp., qq; resp., q(1)q^{(1)}) with respect to its maximal ideal and by 𝔪^X,q\widehat{\mathfrak{m}}_{X,q} (resp., 𝔪^X(1),q(1)\widehat{\mathfrak{m}}_{X^{(1)},q^{(1)}}) the maximal ideal of 𝒪^X,q\widehat{\mathcal{O}}_{X,q} (resp., 𝒪^X(1),q(1)\widehat{\mathcal{O}}_{X^{(1)},q^{(1)}}). It follows from  [Ses, Chap. 8, Proposition 2] that ^q𝒪^X,qa𝔪^X,q(na)\widehat{\mathcal{F}}_{q}\cong\widehat{\mathcal{O}}_{X,q}^{\oplus a}\oplus\widehat{\mathfrak{m}}_{X,q}^{\oplus(n-a)} for some a{0,,n}a\in\{0,\cdots,n\}. Hence, it suffices to consider the cases where ^q𝒪^X,q\widehat{\mathcal{F}}_{q}\cong\widehat{\mathcal{O}}_{X,q} and ^q𝔪^X,q\widehat{\mathcal{F}}_{q}\cong\widehat{\mathfrak{m}}_{X,q}. Since the first case was essentially proved in  [Wak8, Proposition 3.2], we only consider the second case, i.e., ^q𝔪^X,q\widehat{\mathcal{F}}_{q}\cong\widehat{\mathfrak{m}}_{X,q}.

Recall that 𝒪^X,qk[[x,y]]/(xy)\widehat{\mathcal{O}}_{X,q}\cong k[\![x,y]\!]/(xy) and 𝔪^X,q=xk[[x]]yk[[y]]\widehat{\mathfrak{m}}_{X,q}=x\cdot k[\![x]\!]\oplus y\cdot k[\![y]\!]. By using the injection FX/k:𝒪^X(1),q(1)𝒪^X,qF_{X/k}^{*}:\widehat{\mathcal{O}}_{X^{(1)},q^{(1)}}\rightarrow\widehat{\mathcal{O}}_{X,q} induced by FX/kF_{X/k}, we shall identify 𝒪^X(1),q(1)\widehat{\mathcal{O}}_{X^{(1)},q^{(1)}} with the subring k[[xp,yp]]/(xpyp)k[\![x^{p},y^{p}]\!]/(x^{p}y^{p}) of k[[x,y]]/(xy)k[\![x,y]\!]/(xy). In particular, we have 𝔪^X(1),q(1)xpk[[xp]]ypk[[yp]]\widehat{\mathfrak{m}}_{X^{(1)},q^{(1)}}\cong x^{p}\cdot k[\![x^{p}]\!]\oplus y^{p}\cdot k[\![y^{p}]\!]. Let us consider the k[[xp,yp]]/(xpyp)k[\![x^{p},y^{p}]\!]/(x^{p}y^{p})-linear morphism

(xpk[[xp]]ypk[[yp]])pxk[[x]]yk[[y]](x^{p}\cdot k[\![x^{p}]\!]\oplus y^{p}\cdot k[\![y^{p}]\!])^{\oplus p}\rightarrow x\cdot k[\![x]\!]\oplus y\cdot k[\![y]\!] (2.73)

given by

(xpAi+ypBi)i=1pi=1p(xiAi+yiBi)(x^{p}\cdot A_{i}+y^{p}\cdot B_{i})_{i=1}^{p}\mapsto\sum_{i=1}^{p}(x^{i}\cdot A_{i}+y^{i}\cdot B_{i}) (2.74)

for any Aik[[xp]]A_{i}\in k[\![x^{p}]\!] and Bik[[yp]]B_{i}\in k[\![y^{p}]\!] (i=1,,pi=1,\cdots,p). This morphism is verified to be bijective. It follows that 𝔪^X,q\widehat{\mathfrak{m}}_{X,q} is isomorphic to 𝔪^X(1),q(1)p\widehat{\mathfrak{m}}_{X^{(1)},q^{(1)}}^{\oplus p}, which is relatively torsion-free. This completes the proof of the assertion for m=0m=0.

Moreover, since FX/S(m+1)=FX(m)/SFX(1)/SFX/SF_{X/S}^{(m+1)}=F_{X^{(m)}/S}\circ\cdots\circ F_{X^{(1)}/S}\circ F_{X/S}, the assertion for m>0m\in\mathbb{Z}_{>0} can be proved by successively applying the assertion just proved. Thus, we have finished the proof of this proposition. ∎

2.5. pm+1p^{m+1}-curvature

The image of the natural morphism 𝒟(m)pm+1𝒟(m+1)pm+1\mathcal{D}^{(m)}_{\leq p^{m+1}}\rightarrow\mathcal{D}^{(m+1)}_{\leq p^{m+1}} coincides with 𝒟(m+1)pm+11\mathcal{D}^{(m+1)}_{\leq p^{m+1}-1}. If ϖ:𝒟(m)pm+1𝒟(m+1)pm+11\varpi:\mathcal{D}^{(m)}_{\leq p^{m+1}}\rightarrow\mathcal{D}^{(m+1)}_{\leq p^{m+1}-1} denotes the resulting surjection, then the composite

𝒟(m)pm+11inclusion𝒟(m)pm+1ϖ𝒟(m+1)pm+11\displaystyle\mathcal{D}^{(m)}_{\leq p^{m+1}-1}\xrightarrow{\mathrm{inclusion}}\mathcal{D}^{(m)}_{\leq p^{m+1}}\xrightarrow{\varpi}\mathcal{D}^{(m+1)}_{\leq p^{m+1}-1} (2.75)

is an isomorphism. The composite ϖ:𝒟(m)pm+1𝒟(m)pm+11\varpi^{\prime}:\mathcal{D}^{(m)}_{\leq p^{m+1}}\rightarrow\mathcal{D}^{(m)}_{\leq p^{m+1}-1} of ϖ\varpi and the inverse of (2.75) defines a split surjection of the short exact sequence

0𝒟pm+11(m)𝒟pm+1(m)(𝒟pm+1(m)/𝒟pm+11(m)=)𝒯pm+10.\displaystyle 0\rightarrow\mathcal{D}_{\leq p^{m+1}-1}^{(m)}\rightarrow\mathcal{D}_{\leq p^{m+1}}^{(m)}\rightarrow\left(\mathcal{D}_{\leq p^{m+1}}^{(m)}/\mathcal{D}_{\leq p^{m+1}-1}^{(m)}=\right)\mathcal{T}^{\otimes p^{m+1}}\rightarrow 0. (2.76)

Thus, we obtain the 𝒪X\mathcal{O}_{X}-linear composite

ψXlog/Slog:FX/S(m+1)(𝒯(m+1))(=𝒯pm+1)𝒟pm+1(m)inclusion𝒟(m),\displaystyle\psi_{X^{\mathrm{log}}/S^{\mathrm{log}}}:F_{X/S}^{(m+1)*}(\mathcal{T}^{(m+1)})\left(=\mathcal{T}^{\otimes p^{m+1}}\right)\hookrightarrow\mathcal{D}_{\leq p^{m+1}}^{(m)}\xrightarrow{\mathrm{inclusion}}\mathcal{D}^{(m)}, (2.77)

where the first arrow denotes the split injection of (2.76) corresponding to ϖ\varpi^{\prime}. Note that this morphism coincides, via the adjunction relation FX/S(m+1)()FX/S(m+1)()F_{X/S}^{(m+1)*}(-)\dashv F_{X/S*}^{(m+1)}(-), with the pm+1p^{m+1}-curvature map 𝒯(m+1)FX/S(m+1)(𝒟(m))\mathcal{T}^{(m+1)}\rightarrow F_{X/S*}^{(m+1)}(\mathcal{D}^{(m)}) discussed in  [Ohk, Definition 3.10].

If xx is a logarithmic coordinate as in § 2.2 and \partial denotes the dual base of dlog(x)d\mathrm{log}(x), then ψXlog/Slog\psi_{X^{\mathrm{log}}/S^{\mathrm{log}}} sends pm+1\partial^{\otimes p^{m+1}} to pm+1\partial^{\langle p^{m+1}\rangle} (cf.  [Ohk, Proposition 3.11]).

Definition 2.5.1.
  • (i)

    Let (,)(\mathcal{F},\nabla) be a 𝒟(m)\mathcal{D}^{(m)}-module. The composite

    ψ():FX/S(m+1)(𝒯(m+1))(=𝒯pm+1)ψXlog/Slog𝒟(m)nd𝒪S()\displaystyle\psi(\nabla):F_{X/S}^{(m+1)*}(\mathcal{T}^{(m+1)})\left(=\mathcal{T}^{\otimes p^{m+1}}\right)\xrightarrow{\psi_{X^{\mathrm{log}}/S^{\mathrm{log}}}}\mathcal{D}^{(m)}\xrightarrow{\nabla}\mathcal{E}nd_{\mathcal{O}_{S}}(\mathcal{F}) (2.78)

    is called the pm+1p^{m+1}-curvature (map) of \nabla. Also, we shall say that (,)(\mathcal{F},\nabla) is pm+1p^{m+1}-flat, or dormant, if ψ()=0\psi(\nabla)=0.

  • (ii)

    Let (,ϕ)(\mathcal{E},\phi) be an mm-stratified GG-bundle on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. The pm+1p^{m+1}-curvature (map) of ϕ\phi is defined to be the pm+1p^{m+1}-curvature

    ψ(ϕ):=ψ(ϕ):FX/S(m+1)(𝒯(m+1))(=𝒯pm+1)nd𝒪S(𝒪)\displaystyle\psi(\phi):=\psi(\phi^{\natural\natural}):F_{X/S}^{(m+1)*}(\mathcal{T}^{(m+1)})\left(=\mathcal{T}^{\otimes p^{m+1}}\right)\rightarrow\mathcal{E}nd_{\mathcal{O}_{S}}(\mathcal{O}_{\mathcal{E}}) (2.79)

    of the 𝒟(m)\mathcal{D}^{(m)}-module structure ϕ\phi^{\natural\natural} on 𝒪\mathcal{O}_{\mathcal{E}} corresponding to ϕ\phi (cf. Remark 2.3.4). Also, we shall say that (,ϕ)(\mathcal{E},\phi) is pm+1p^{m+1}-flat, or dormant, if ψ(ϕ)=0\psi(\phi)=0 (cf.  [Wak8, Definition 3.8] for the case of m=0m=0).

Remark 2.5.2 (The pm+1p^{m+1}-curvature of a GLn\mathrm{GL}_{n}-bundle).

Let \mathcal{F} and \mathcal{E} be as in Remark 2.3.3. Also, let \nabla be a 𝒟(m)\mathcal{D}^{(m)}-module structure on \mathcal{F}, and denote by ϕ\phi the mm-PD stratification on \mathcal{E} corresponding to \nabla via the equivalence mentioned in Remark 2.3.3. Then, it is immediately verified that \nabla has vanishing pm+1p^{m+1}-curvature if and only if ϕ\phi has vanishing pm+1p^{m+1}-curvature. In the case where m=0m=0 and GG is an algebraic group as before, (2.63) restricts to an equivalence of categories

( the groupoid of p-flat 0-PD stratifiedG-bundles on Xlog/Slog)( the groupoid of p-flat G-bundles on Xlog/Slog).\displaystyle\begin{pmatrix}\text{ the groupoid of $p$-flat $0$-PD stratified}\\ \text{$G$-bundles on $X^{\mathrm{log}}/S^{\mathrm{log}}$}\end{pmatrix}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\begin{pmatrix}\text{ the groupoid of }\\ \text{$p$-flat $G$-bundles on $X^{\mathrm{log}}/S^{\mathrm{log}}$}\\ \end{pmatrix}. (2.80)
Remark 2.5.3 (Classical definition).

When the log structures of SS and XX are trivial, the notion of pm+1p^{m+1}-curvature defined above is essentially the same as the notion of pp-mm-curvature introduced in  [LSQ, Definition 3.1.1] (for 𝒟(m)\mathcal{D}^{(m)}-modules) and  [Wak7, Definition 7.7.1] (for mm-PD stratified GG-bundles). In particular, a 𝒟(m)\mathcal{D}^{(m)}-module or an mm-PD stratified GG-bundle is pm+1p^{m+1}-flat in the sense of Definition 2.5.1 if and only if it has vanishing pp-mm-curvature in the classical sense.

Let 𝒢\mathcal{G} be an 𝒪X(m+1)\mathcal{O}_{X^{(m+1)}}-module. The comment at the beginning of  [Wak8, § 4.10.3] says that there exists a canonical 𝒟X(m)log/Slog(0)\mathcal{D}_{X^{(m)\mathrm{log}}/S^{\mathrm{log}}}^{(0)}-module structure on FX(m)/S(𝒢)F_{X^{(m)}/S}^{*}(\mathcal{G}). By applying  [Mon, Corollaire 3.3.1] to this, we obtain a 𝒟(m)\mathcal{D}^{(m)}-module structure

𝒢,can(m):L𝒟(m)nd𝒪S(FX/S(m+1)(𝒢))\displaystyle\nabla_{\mathcal{G},\mathrm{can}}^{(m)}:{{}^{L}}\mathcal{D}^{(m)}\rightarrow\mathcal{E}nd_{\mathcal{O}_{S}}(F_{X/S}^{(m+1)*}(\mathcal{G})) (2.81)

on the pull-back F(m+1)X/S(𝒢)(=F(m)X/S(FX(m)/S(𝒢)))F^{(m+1)*}_{X/S}(\mathcal{G})\left(=F^{(m)*}_{X/S}(F_{X^{(m)}/S}^{*}(\mathcal{G}))\right). It is immediately verified that 𝒢,can(m)\nabla_{\mathcal{G},\mathrm{can}}^{(m)} has vanishing pm+1p^{m+1}-curvature.

Definition 2.5.4.

We shall refer to 𝒢,can(m)\nabla_{\mathcal{G},\mathrm{can}}^{(m)} as the canonical 𝒟(m)\mathcal{D}^{(m)}-module structure on F(m+1)X/S(𝒢)F^{(m+1)*}_{X/S}(\mathcal{G}).

Note that, for a 𝒟(m)\mathcal{D}^{(m)}-module (,)(\mathcal{F},\nabla), the subsheaf 𝒮ol()\mathcal{S}ol(\nabla) of \mathcal{F} (cf. (2.20)) may be regarded as an 𝒪X(m+1)\mathcal{O}_{X^{(m+1)}}-module via the underlying homeomorphism of FX/S(m+1)F_{X/S}^{(m+1)}. Here, suppose that the relative characteristic of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} is trivial, which implies that X/SX/S is smooth and 𝒟(m)=𝒟X/S(m)\mathcal{D}^{(m)}=\mathcal{D}_{X/S}^{(m)}. Then, the assignments 𝒢(FX/S(m+1)(𝒢),𝒢,can(m))\mathcal{G}\mapsto(F_{X/S}^{(m+1)*}(\mathcal{G}),\nabla_{\mathcal{G},\mathrm{can}}^{(m)}) and (,)𝒮ol()(\mathcal{F},\nabla)\mapsto\mathcal{S}ol(\nabla) determine an equivalence of categories

( the category of 𝒪X(m+1)-modules)( the category of 𝒟(m)-modules with vanishing pm+1-curvature)\displaystyle\begin{pmatrix}\text{ the category of }\\ \text{$\mathcal{O}_{X^{(m+1)}}$-modules}\end{pmatrix}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\begin{pmatrix}\text{ the category of $\mathcal{D}^{(m)}$-modules}\\ \text{ with vanishing $p^{m+1}$-curvature}\\ \end{pmatrix} (2.82)

(cf.  [LSQ, Corollary 3.2.4]).

2.6. Cartier operator of a pm+1p^{m+1}-flat 𝒟(m)\mathcal{D}^{(m)}-module

Let (,(m))(\mathcal{F},\nabla^{(m)}) be a 𝒟(m)\mathcal{D}^{(m)}-module. For an integer aa with 0am+10\leq a\leq m+1, we set

[a]:={if a=0;𝒮ol((m)(a1))if a>0.\displaystyle\mathcal{F}^{[a]}:=\begin{cases}\mathcal{F}&\text{if $a=0$};\\ \mathcal{S}ol(\nabla^{(m)\Rightarrow(a-1)})&\text{if $a>0$}.\end{cases} (2.83)

In particular, [a]\mathcal{F}^{[a]} is an 𝒪X(a)\mathcal{O}_{X^{(a)}}-module.

In what follows, let us define an SlogS^{\mathrm{log}}-connection on the 𝒪X(a)\mathcal{O}_{X^{(a)}}-module [a]\mathcal{F}^{[a]} for a=0,,ma=0,\cdots,m. First, we shall set [0]\nabla^{[0]} (or ((m))[0](\nabla^{(m)})^{[0]}) :=(m)(0):=\nabla^{(m)\Rightarrow(0)}.

Next, let us choose a{1,,m}a\in\{1,\cdots,m\}. Since 𝒟pa1(a)=Im(𝒟(a1)pa𝒟(a)pa)\mathcal{D}_{\leq p^{a}-1}^{(a)}=\mathrm{Im}\left(\mathcal{D}^{(a-1)}_{\leq p^{a}}\rightarrow\mathcal{D}^{(a)}_{\leq p^{a}}\right) and 𝒟pa(a)/𝒟pa1(a)=𝒯pa\mathcal{D}_{\leq p^{a}}^{(a)}/\mathcal{D}_{\leq p^{a}-1}^{(a)}=\mathcal{T}^{\otimes p^{a}}, we obtain an exact sequence

𝒟(a1)pa𝒟(a1)+𝒟(a)pa𝒟(a)+δ𝒯pa(=FX/S(a)(𝒯(a)))0,\displaystyle\mathcal{D}^{(a-1)}_{\leq p^{a}}\cap\mathcal{D}^{(a-1)}_{+}\rightarrow\mathcal{D}^{(a)}_{\leq p^{a}}\cap\mathcal{D}^{(a)}_{+}\xrightarrow{\delta}\mathcal{T}^{\otimes p^{a}}\left(=F_{X/S}^{(a)*}(\mathcal{T}^{(a)})\right)\rightarrow 0, (2.84)

where the first arrow is the morphism obtained by restricting the morphism 𝒟(a1)𝒟(a)\mathcal{D}^{(a-1)}\rightarrow\mathcal{D}^{(a)}. Let us take a local section \partial of 𝒯(a)\mathcal{T}^{(a)}. There exists locally a section ~\widetilde{\partial} in δ1((FX/S(a))1())(𝒟(a)pa𝒟(a)+)\delta^{-1}((F_{X/S}^{(a)})^{-1}(\partial))\left(\subseteq\mathcal{D}^{(a)}_{\leq p^{a}}\cap\mathcal{D}^{(a)}_{+}\right). The exactness of (2.84) and the definition of [a]\mathcal{F}^{[a]} imply that the f1(𝒪S)f^{-1}(\mathcal{O}_{S})-linear endomorphism [a]:=(m)(a)(~)\nabla_{\partial}^{[a]}:=\nabla^{(m)\Rightarrow{(a)}}(\widetilde{\partial}) of [a]\mathcal{F}^{[a]} does not depend on the choice of ~\widetilde{\partial} (i.e., depends only on \partial). Hence, the morphism

[a](or((m))[a]):[a]Ω(a)[a]\displaystyle\nabla^{[a]}\left(\text{or}\ (\nabla^{(m)})^{[a]}\right):\mathcal{F}^{[a]}\rightarrow\Omega^{(a)}\otimes\mathcal{F}^{[a]} (2.85)

determined by assigning [a]\partial\mapsto\nabla_{\partial}^{[a]} is well-defined, and this is verified to form an SlogS^{\mathrm{log}}-connection.

Thus, we obtain a flat module

([a],[a])\displaystyle(\mathcal{F}^{[a]},\nabla^{[a]}) (2.86)

on the log curve X(a)log/SlogX^{(a)\mathrm{log}}/S^{\mathrm{log}}. The collection {[a]}0am+1\{\mathcal{F}^{[a]}\}_{0\leq a\leq m+1} defines a decreasing filtration on \mathcal{F} such that Ker([a])=[a+1]\mathrm{Ker}(\nabla^{[a]})=\mathcal{F}^{[a+1]} for every a=0,1,,ma=0,1,\cdots,m.

Proposition 2.6.1.

Let us keep the above notation.

  • (i)

    If (m)\nabla^{(m)} has vanishing pm+1p^{m+1}-curvature, then [m]\nabla^{[m]} has vanishing pp-curvature.

  • (ii)

    For every a=0,,m1a=0,\cdots,m-1, the SlogS^{\mathrm{log}}-connection [a]\nabla^{[a]} has vanishing pp-curvature.

Proof.

First, we shall prove assertion (i). Denote by nd(,(m))\mathcal{E}nd(\mathcal{F},\nabla^{(m)}) (resp., nd([m],[m])\mathcal{E}nd(\mathcal{F}^{[m]},\nabla^{[m]})) the subsheaf of nd𝒪S()\mathcal{E}nd_{\mathcal{O}_{S}}(\mathcal{F}) (resp., nd𝒪S([m])\mathcal{E}nd_{\mathcal{O}_{S}}(\mathcal{F}^{[m]})) consisting of endomorphisms preserving the 𝒟(m)\mathcal{D}^{(m)}-module structure (m)\nabla^{(m)} (resp., the SlogS^{\mathrm{log}}-connection [m]\nabla^{[m]}). The sheaf nd(,(m))\mathcal{E}nd(\mathcal{F},\nabla^{(m)}) (resp., nd([m],[m])\mathcal{E}nd(\mathcal{F}^{[m]},\nabla^{[m]})) is equipped with an 𝒪X(m+1)\mathcal{O}_{X^{(m+1)}}-module structure in a natural manner. The pm+1p^{m+1}-curvature ψ((m)):FX/S(m+1)(𝒯(m+1))nd𝒪S()\psi(\nabla^{(m)}):F_{X/S}^{(m+1)*}(\mathcal{T}^{(m+1)})\rightarrow\mathcal{E}nd_{\mathcal{O}_{S}}(\mathcal{F}) of (m)\nabla^{(m)} (resp., the pp-curvature ψ([m]):FX(m)/S(𝒯(m+1))nd𝒪S([m])\psi(\nabla^{[m]}):F_{X^{(m)}/S}^{*}(\mathcal{T}^{(m+1)})\rightarrow\mathcal{E}nd_{\mathcal{O}_{S}}(\mathcal{F}^{[m]}) of [m]\nabla^{[m]}) restricts to an 𝒪X(m+1)\mathcal{O}_{X^{(m+1)}}-linear morphism

ψ((m)):𝒯(m+1)nd(,(m))(resp.,ψ([m]):𝒯(m+1)nd([m],[m])).\displaystyle\psi(\nabla^{(m)})^{\nabla}:\mathcal{T}^{(m+1)}\rightarrow\mathcal{E}nd(\mathcal{F},\nabla^{(m)})\ \left(\text{resp.,}\ \psi(\nabla^{[m]})^{\nabla}:\mathcal{T}^{(m+1)}\rightarrow\mathcal{E}nd(\mathcal{F}^{[m]},\nabla^{[m]})\right). (2.87)

We obtain an equivalence

ψ((m))=0ψ((m))=0(resp.,ψ([m])=0ψ([m])=0).\displaystyle\psi(\nabla^{(m)})=0\ \Longleftrightarrow\ \psi(\nabla^{(m)})^{\nabla}=0\ \left(\text{resp.,}\ \psi(\nabla^{[m]})=0\ \Longleftrightarrow\ \psi(\nabla^{[m]})^{\nabla}=0\right). (2.88)

Hence, the assertion follows from (2.88) and the commutativity of the following diagram:

(2.93)

where the lower horizontal arrow Res\mathrm{Res} denotes the morphism given by hh|[m]h\mapsto h|_{\mathcal{F}^{[m]}} for any hnd(,(m))h\in\mathcal{E}nd(\mathcal{F},\nabla^{(m)}).

To prove assertion (ii), we note that the 𝒟(a)\mathcal{D}^{(a)}-module structure (m)(a)\nabla^{(m)\Rightarrow(a)} has vanishing p(a+1)p^{(a+1)}-curvature. Hence, the assertion can be proved by the same argument as the proof of the first assertion of (i), where (m)\nabla^{(m)} and [m]\nabla^{[m]} are replaced by (m)(a)\nabla^{(m)\Rightarrow(a)} and (a)\nabla^{(a)}, respectively. ∎

The following assertion is a slight generalization of  [Wak8, Proposition 3.2].

Proposition 2.6.2.

Let us keep the above notation. Suppose further that ψ((m))=0\psi(\nabla^{(m)})=0 and that \mathcal{F} is a relatively torsion-free sheaf of rank n>0n\in\mathbb{Z}_{>0}. Also, let us fix an integer aa with 0am+10\leq a\leq m+1.

  • (i)

    The 𝒪X(a)\mathcal{O}_{X^{(a)}}-module [a]\mathcal{F}^{[a]} is relatively torsion-free of rank nn. In particular, the 𝒪X(m+1)\mathcal{O}_{X^{(m+1)}}-module 𝒮ol((m))\mathcal{S}ol(\nabla^{(m)}) is a relatively torision-free sheaf of rank nn.

  • (ii)

    The formation of ([a],[a])(\mathcal{F}^{[a]},\nabla^{[a]}) commutes with base-change over SS-schemes. To be precise, let s:SSs:S^{\prime}\rightarrow S be a morphism of 𝔽p\mathbb{F}_{p}-schemes, and use the notation “s()s^{*}(-)” to denote the result of base-changing along ss. (In particular, we obtain a 𝒟Xlog/Slog(m)\mathcal{D}_{X^{\prime\mathrm{log}}/S^{\prime\mathrm{log}}}^{(m)}-module (s(),s((m)))(s^{*}(\mathcal{F}),s^{*}(\nabla^{(m)})), where Xlog:=S×SlogXlogX^{\prime\mathrm{log}}:=S^{\prime}\times_{S^{\mathrm{log}}}X^{\mathrm{log}}.) Then, the natural morphism of flat modules

    (s([a]),s([a]))((s())[a],(s((m)))[a])\displaystyle(s^{*}(\mathcal{F}^{[a]}),s^{*}(\nabla^{[a]}))\rightarrow((s^{*}(\mathcal{F}))^{[a]},(s^{*}(\nabla^{(m)}))^{[a]}) (2.94)

    constructed inductively on aa is an isomorphism. In particular, the natural morphism s(𝒮ol((m)))𝒮ol(s((m)))s^{*}(\mathcal{S}ol(\nabla^{(m)}))\rightarrow\mathcal{S}ol(s^{*}(\nabla^{(m)})) is an isomorphism.

Proof.

There is nothing to prove when a=0a=0. Assertions (i) and (ii) for a=1a=1 can be proved by arguments entirely similar to the proof of  [Wak8, Proposition 6.13] together with Proposition 2.4.2 for m=0m=0. Moreover, the remaining cases, i.e., the assertions for a>1a>1, can be proved by successively applying the assertions for a=1a=1 and Proposition 2.6.1. ∎

Remark 2.6.3 (Local case).

Assertion (ii) of Proposition 2.6.2 remains true (for the same reason) even if we replace Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} with Ulog/SU_{\oslash}^{\mathrm{log}}/S or Ulog/SlogU_{\otimes}^{\mathrm{log}}/S^{\mathrm{log}} introduced in § 4.1 later. The assertion for these situations will be used in the proof of Proposition-Definition 4.4.1.

Corollary 2.6.4.

Let us keep the above notation. Suppose that either \mathcal{F} is relatively torsion-free or the relative characteristic of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} is trivial. Then, the converse of Proposition 2.6.1, (i), is true. To be precise, (m)\nabla^{(m)} has vanishing pm+1p^{m+1}-curvature if [m]\nabla^{[m]} has vanishing pp-curvature.

Proof.

Denote by ι:UX(m+1)\iota:U\hookrightarrow X^{(m+1)} the open subscheme of X(m+1)X^{(m+1)} where the relative characteristic of X(m+1)log/SlogX^{(m+1)\mathrm{log}}/S^{\mathrm{log}} is trivial. Since UU is scheme-theoretically dense (cf.  [KaFu, Lemma 1.4]), the assumption imposed above and Propositions 2.4.2 and 2.6.2 together imply that the natural morphisms

nd(,(m))ι(ι(nd(,(m)))),nd([m],[m])ι(ι(nd([m],[m])))\displaystyle\mathcal{E}nd(\mathcal{F},\nabla^{(m)})\rightarrow\iota_{*}(\iota^{*}(\mathcal{E}nd(\mathcal{F},\nabla^{(m)}))),\hskip 8.53581pt\mathcal{E}nd(\mathcal{F}^{[m]},\nabla^{[m]})\rightarrow\iota_{*}(\iota^{*}(\mathcal{E}nd(\mathcal{F}^{[m]},\nabla^{[m]})))\hskip 14.22636pt (2.95)

are injective. By the equivalence of categories (2.82), there exists a canonical isomorphism

ι(ι(nd(,(m))))ι(ι(nd([m],[m]))),\displaystyle\iota_{*}(\iota^{*}(\mathcal{E}nd(\mathcal{F},\nabla^{(m)})))\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\iota_{*}(\iota^{*}(\mathcal{E}nd(\mathcal{F}^{[m]},\nabla^{[m]}))), (2.96)

which is compatible with Res\mathrm{Res} (in (2.93)) via the morphisms (2.95). It follows that the morphism Res\mathrm{Res} is injective. Hence, the assertion follows from this fact together with (2.88) and the commutativity of (2.93). ∎

Next, suppose further that (,(m))(\mathcal{F},\nabla^{(m)}) is pm+1p^{m+1}-flat. Let us take an integer aa with 0am0\leq a\leq m. Recall from  [Og, Proposition 1.2.4] that the Cartier operator associated to ([a],[a])(\mathcal{F}^{[a]},\nabla^{[a]}) is, by definition, an 𝒪X(a+1)\mathcal{O}_{X^{(a+1)}}-linear morphism

Ω(a)[a]Ω(a+1)FX(a)/S([a])\displaystyle\Omega^{(a)}\otimes\mathcal{F}^{[a]}\rightarrow\Omega^{(a+1)}\otimes F_{X^{(a)}/S*}(\mathcal{F}^{[a]}) (2.97)

satisfying a certain condition, where the domain of this morphism is regarded as an 𝒪X(a+1)\mathcal{O}_{X^{(a+1)}}-module via FX(a)/SF_{X^{(a)}/S}. Since ([a],[a])(\mathcal{F}^{[a]},\nabla^{[a]}) has vanishing pp-curvature, the image of this morphism lies in Ω(a+1)[a+1](=Ω(a+1)Ker([a]))\Omega^{(a+1)}\otimes\mathcal{F}^{[a+1]}\left(=\Omega^{(a+1)}\otimes\mathrm{Ker}(\nabla^{[a]})\right) (cf. the comment following  [Og, Proposition 1.2.4]). Hence, by restricting the codomain of (2.97), we obtain an 𝒪X(a+1)\mathcal{O}_{X^{(a+1)}}-linear morphism

C([a],[a]):Ω(a)[a]Ω(a+1)[a+1].\displaystyle C_{(\mathcal{F}^{[a]},\nabla^{[a]})}:\Omega^{(a)}\otimes\mathcal{F}^{[a]}\rightarrow\Omega^{(a+1)}\otimes\mathcal{F}^{[a+1]}. (2.98)

Moreover, the composite C([m],[m])C([1],[1])C([0],[0])C_{(\mathcal{F}^{[m]},\nabla^{[m]})}\circ\cdots\circ C_{(\mathcal{F}^{[1]},\nabla^{[1]})}\circ C_{(\mathcal{F}^{[0]},\nabla^{[0]})} determines an 𝒪X(m+1)\mathcal{O}_{X^{(m+1)}}-linear morphism

C(,(m)):ΩΩ(m+1)𝒮ol((m)).\displaystyle C_{(\mathcal{F},\nabla^{(m)})}:\Omega\otimes\mathcal{F}\rightarrow\Omega^{(m+1)}\otimes\mathcal{S}ol(\nabla^{(m)}). (2.99)
Definition 2.6.5.

We shall refer to C(,(m))C_{(\mathcal{F},\nabla^{(m)})} as the Cartier operator of (,(m))(\mathcal{F},\nabla^{(m)}).

Remark 2.6.6 (Functoriality of the Cartier operator).

The formation of the Cartier operators is functorial in the following sense: Let h:(,)(,)h:(\mathcal{F}_{\circ},\nabla_{\circ})\rightarrow(\mathcal{F}_{\bullet},\nabla_{\bullet}) be a morphism of pm+1p^{m+1}-flat 𝒟(m)\mathcal{D}^{(m)}-modules. Then, this morphism restricts to an 𝒪X(m+1)\mathcal{O}_{X^{(m+1)}}-linear morphism 𝒮ol(h):𝒮ol()𝒮ol()\mathcal{S}ol(h):\mathcal{S}ol(\nabla_{\circ})\rightarrow\mathcal{S}ol(\nabla_{\bullet}), and the following square diagram is commutative:

(2.104)

2.7. Dual of the Cartier operator

Suppose that the relative characteristic of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} is trivial (which implies that X/SX/S is smooth). Let (,)(\mathcal{F},\nabla) be a pm+1p^{m+1}-flat 𝒟(m)\mathcal{D}^{(m)}-module with \mathcal{F} locally free. By Grothendieck-Serre duality, there exists a canonical isomorphism of 𝒪S\mathcal{O}_{S}-modules

(,)(a):f(a)(Ω(a)[a])1f(a)([a])\displaystyle\int_{(\mathcal{F},\nabla)}^{(a)}:f_{*}^{(a)}(\Omega^{(a)}\otimes\mathcal{F}^{[a]\vee})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathbb{R}^{1}f_{*}^{(a)}(\mathcal{F}^{[a]})^{\vee} (2.105)

for each a=0,,m+1a=0,\cdots,m+1. Also, the inclusion [a+1][a]\mathcal{F}^{[a+1]}\hookrightarrow\mathcal{F}^{[a]} (a=0,ma=0,\cdots m) induces an 𝒪S\mathcal{O}_{S}-linear morphism

CKer(a):1f(a)([a])1f(a+1)([a+1]).\displaystyle\rotatebox[origin={c}]{180.0}{$C$}_{\mathrm{Ker}}^{\,(a)}:\mathbb{R}^{1}f_{*}^{(a)}(\mathcal{F}^{[a]})^{\vee}\rightarrow\mathbb{R}^{1}f_{*}^{(a+1)}(\mathcal{F}^{[a+1]})^{\vee}. (2.106)

On the other hand, we obtain the composite isomorphism

Ker([a])\displaystyle\mathrm{Ker}(\nabla^{[a]\vee}) om(Coker([a]),Ω(a+1))\displaystyle\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{H}om(\mathrm{Coker}(\nabla^{[a]}),\Omega^{(a+1)}) (2.107)
om(Ω(a+1)Ker([a]),Ω(a+1))\displaystyle\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{H}om(\Omega^{(a+1)}\otimes\mathrm{Ker}(\nabla^{[a]}),\Omega^{(a+1)})
Ker([a])(=[a+1]),\displaystyle\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathrm{Ker}(\nabla^{[a]})^{\vee}\left(=\mathcal{F}^{[a+1]\vee}\right),

where the first arrow follows from  [Wak8, Proposition 6.15] and the second arrow denotes the isomorphism induced by C([a],[a])C_{(\mathcal{F}^{[a]},\nabla^{[a]})}. Under the identification Ker([a])=[a+1]\mathrm{Ker}(\nabla^{[a]\vee})=\mathcal{F}^{[a+1]\vee} given by (2.107), the Cartier operator C([a],[a])C_{(\mathcal{F}^{[a]\vee},\nabla^{[a]\vee})} determines a morphism

CCoker(a):f(a)(Ω(a)[a])f(a+1)(Ω(a+1)[a+1]).\displaystyle\rotatebox[origin={c}]{180.0}{$C$}_{\mathrm{Coker}}^{\,(a)}:f_{*}^{(a)}(\Omega^{(a)}\otimes\mathcal{F}^{[a]\vee})\rightarrow f_{*}^{(a+1)}(\Omega^{(a+1)}\otimes\mathcal{F}^{[a+1]\vee}). (2.108)

The following square diagram is verified to be commutative:

(2.113)

By composing the diagrams (2.113) for various aa’s, we obtain a commutative square diagram

(2.118)

3. Diagonal reductions/liftings of flat modules

This section discusses the constructive definition of a dormant flat module in prime-power characteristic, partly on the basis of the argument in  [Mzk2, § 2.1, Chap. II]. At the same time, both the diagonal reduction of a dormant flat bundle and a diagonal lifting of a pm+1p^{m+1}-flat 𝒟(m)\mathcal{D}^{(m)}-module are defined. Also, we describe a map between certain deformation spaces induced by the operation of taking the diagonal reductions in terms of Cartier operator (cf. Proposition 3.4.4).

Throughout this section, we fix a nonnegative integer \ell.

3.1. Dormant flat modules

Let SlogS^{\mathrm{log}} be an fs log scheme whose underlying scheme SS is flat over /p+1\mathbb{Z}/p^{\ell+1}\mathbb{Z}. Also, let flog:XlogSlogf^{\mathrm{log}}:X^{\mathrm{log}}\rightarrow S^{\mathrm{log}} be a log curve over SlogS^{\mathrm{log}}. For each integer mm with 0m0\leq m\leq\ell, we will denote by a subscript mm the result of reducing an object over /p+1\mathbb{Z}/p^{\ell+1}\mathbb{Z} modulo pm+1p^{m+1}. In particular, we obtain a log curve Xmlog/SmlogX_{m}^{\mathrm{log}}/S_{m}^{\mathrm{log}}.

Let us fix an integer mm with 0m0\leq m\leq\ell. For simplicity, we write 𝒟(m)0:=𝒟(m)X0log/Slog0\mathcal{D}^{(m)}_{0}:=\mathcal{D}^{(m)}_{X_{0}^{\mathrm{log}}/S^{\mathrm{log}}_{0}}, 𝒟(0):=𝒟(0)Xlog/Slog\mathcal{D}^{(0)}:=\mathcal{D}^{(0)}_{X^{\mathrm{log}}/S^{\mathrm{log}}} (cf. the comment at the end of § 2.1), and Ω(m):=ΩX(m)log/Slog\Omega^{(m)}:=\Omega_{X^{(m)\mathrm{log}}/S^{\mathrm{log}}}.

Denote by Diagm\mathrm{Diag}^{\prime}_{m} the set of pairs

(,0(m))\displaystyle(\mathscr{F},\nabla_{0}^{(m)}) (3.1)

where

  • :=(,)\mathscr{F}:=(\mathcal{F},\nabla) is a flat module on Xmlog/SmlogX_{m}^{\mathrm{log}}/S_{m}^{\mathrm{log}} such that \mathcal{F} is relatively torsion-free;

  • 0(m)\nabla_{0}^{(m)} denotes a 𝒟0(m)\mathcal{D}_{0}^{(m)}-module structure on 0\mathcal{F}_{0} (= the reduction modulo pp of \mathcal{F}).

In what follows, we shall define a subset Diagm\mathrm{Diag}_{m} of Diagm\mathrm{Diag}^{\prime}_{m} inductively on mm.

First, we set Diag0\mathrm{Diag}_{0} to be the subset of Diag0\mathrm{Diag}^{\prime}_{0} consisting of pairs (,0(0))(\mathscr{F},\nabla_{0}^{(0)}), where :=(,)\mathscr{F}:=(\mathcal{F},\nabla), such that 0(0)\nabla_{0}^{(0)} coincides with \nabla and has vanishing pp-curvature.

Next, suppose that we have defined a subset Diagm1\mathrm{Diag}_{m-1} of Diagm1\mathrm{Diag}^{\prime}_{m-1} for m1m\geq 1. Let us take an element (,0(m))(\mathscr{F},\nabla_{0}^{(m)}) of Diagm\mathrm{Diag}^{\prime}_{m}, where :=(,)\mathscr{F}:=(\mathcal{F},\nabla), such that (m1,0(m)(m1))Diagm1(\mathscr{F}_{m-1},\nabla_{0}^{(m)\Rightarrow(m-1)})\in\mathrm{Diag}_{m-1}. We shall set

𝒱:=𝒮ol(0(m)(m1))(=0[m]),\displaystyle\mathcal{V}_{\mathscr{F}}:=\mathcal{S}ol(\nabla_{0}^{(m)\Rightarrow(m-1)})\left(=\mathcal{F}_{0}^{[m]}\right), (3.2)

which may be regarded as an 𝒪X(m)\mathcal{O}_{X^{(m)}}-module. As we will prove below (cf. Proposition 3.1.1, (i)), the pair (,0(m))(\mathscr{F},\nabla_{0}^{(m)}) and 𝒱\mathcal{V}_{\mathscr{F}} satisfy the following properties:

    • (α)m1(\alpha)_{m-1}

      : 0(m)(m1)\nabla_{0}^{(m)\Rightarrow(m-1)} has vanishing pmp^{m}-curvature;

    • (β)m1(\beta)_{m-1}

      : Every local section of 𝒱(0)\mathcal{V}_{\mathscr{F}}\left(\subseteq\mathcal{F}_{0}\right) can be lifted, locally on XX, to a horizontal section in m1\mathcal{F}_{m-1} with respect to the Sm1logS_{m-1}^{\mathrm{log}}-connection m1\nabla_{m-1}.

Now, let us choose a local section vv of 𝒱\mathcal{V}_{\mathscr{F}} defined over an open subscheme UU of XX. By the property (β)m1(\beta)_{m-1} described above, there exists, after possibly shrinking UU, a section v~\widetilde{v} of \mathcal{F} which is a lifting of vv and horizontal modulo pmp^{m} with respect to \nabla. Then, (v~)\nabla(\widetilde{v}) lies in pmΩmp^{m}\cdot\Omega_{m}\otimes\mathcal{F}. By the flatness of XmX_{m} over /pm+1\mathbb{Z}/p^{m+1}\mathbb{Z}, we can divide it by pmp^{m} to obtain a local section of Ω00\Omega_{0}\otimes\mathcal{F}_{0}; we denote this section by 1pm(v~)\frac{1}{p^{m}}\cdot\nabla(\widetilde{v}). Because of the property (α)m1(\alpha)_{m-1}, the 𝒟0(m1)\mathcal{D}_{0}^{(m-1)}-module (0,0(m)(m1))(\mathcal{F}_{0},\nabla_{0}^{(m)\Rightarrow(m-1)}) associates the Cartier operator

C(0,0(m)(m1)):Ω00Ω(m)0𝒱\displaystyle C_{(\mathcal{F}_{0},\nabla_{0}^{(m)\Rightarrow(m-1)})}:\Omega_{0}\otimes\mathcal{F}_{0}\rightarrow\Omega^{(m)}_{0}\otimes\mathcal{V}_{\mathscr{F}} (3.3)

(cf. (2.99)). The image of 1pm(v~)\frac{1}{p^{m}}\cdot\nabla(\widetilde{v}) via this morphism specifies a local section ww of Ω(m)0𝒱\Omega^{(m)}_{0}\otimes\mathcal{V}_{\mathscr{F}}. The section ww does not depend on the choice of the lifting v~\widetilde{v}, and the resulting assignment vwv\mapsto w determines a well-defined S0logS_{0}^{\mathrm{log}}-connection

:𝒱Ω(m)0𝒱\displaystyle\nabla_{\mathscr{F}}:\mathcal{V}_{\mathscr{F}}\rightarrow\Omega^{(m)}_{0}\otimes\mathcal{V}_{\mathscr{F}} (3.4)

on the 𝒪X0(m)\mathcal{O}_{X_{0}^{(m)}}-module 𝒱\mathcal{V}_{\mathscr{F}}. In particular, we obtain a flat module

(𝒱,)\displaystyle(\mathcal{V}_{\mathscr{F}},\nabla_{\mathscr{F}}) (3.5)

on the log curve X0(m)log/S0logX_{0}^{(m)\mathrm{log}}/S_{0}^{\mathrm{log}}.

Then, we shall define

Diagm\displaystyle\mathrm{Diag}_{m} (3.6)

to be the set of pairs (,0(m))(\mathscr{F},\nabla_{0}^{(m)}) as above satisfying that [m]0=\nabla^{[m]}_{0}=\nabla_{\mathscr{F}} and ψ()=0\psi(\nabla_{\mathscr{F}})=0. The assignments (,0(m))(m1,0(m)(m1))(\mathscr{F},\nabla_{0}^{(m)})\mapsto(\mathscr{F}_{m-1},\nabla_{0}^{(m)\Rightarrow(m-1)}) (m=1,2,,m=1,2,\cdots,\ell) yields a sequence of maps

DiagDiagmDiag1Diag0.\displaystyle\mathrm{Diag}_{\ell}\rightarrow\cdots\rightarrow\mathrm{Diag}_{m}\rightarrow\cdots\rightarrow\mathrm{Diag}_{1}\rightarrow\mathrm{Diag}_{0}. (3.7)

The following assertion was used in the inductive construction of Diagm\mathrm{Diag}_{m} just discussed.

Proposition 3.1.1.

Let mm be an integer with 0m0\leq m\leq\ell.

  • (i)

    Each element (,0(m))(\mathscr{F},\nabla_{0}^{(m)}) (where :=(,)\mathscr{F}:=(\mathcal{F},\nabla)) of Diagm\mathrm{Diag}_{m} satisfies the following three properties:

    • (α)m(\alpha)_{m}

      : 0(m)\nabla_{0}^{(m)} has vanishing pm+1p^{m+1}-curvature;

    • (β)m(\beta)_{m}

      : Every local section of 𝒮ol(0(m))(=0[m+1])\mathcal{S}ol(\nabla_{0}^{(m)})\left(=\mathcal{F}_{0}^{[m+1]}\right) can be lifted, locally on XX, to a horizontal section in \mathcal{F} with respect to the SmlogS_{m}^{\mathrm{log}}-connection \nabla;

    • (γ)m(\gamma)_{m}

      : For every a=0,,ma=0,\cdots,m, we have (𝒱a,a)=(0[a],(0(m))[a])(\mathcal{V}_{\mathscr{F}_{a}},\nabla_{\mathscr{F}_{a}})=(\mathcal{F}_{0}^{[a]},(\nabla_{0}^{(m)})^{[a]});

  • (ii)

    Let (,,0(m))(\mathscr{F}_{\circ},\nabla_{\circ,0}^{(m)}) and (,,0(m))(\mathscr{F}_{\bullet},\nabla_{\bullet,0}^{(m)}) (where :=(,)\mathscr{F}_{\circ}:=(\mathcal{F}_{\circ},\nabla_{\circ}) and :=(,)\mathscr{F}_{\bullet}:=(\mathcal{F}_{\bullet},\nabla_{\bullet})) be elements of Diagm\mathrm{Diag}_{m} such that =\mathscr{F}_{\circ}=\mathscr{F}_{\bullet}. Then, the equality ,0(m)=,0(m)\nabla_{\circ,0}^{(m)}=\nabla_{\bullet,0}^{(m)} holds.

Proof.

First, we shall prove assertion (i) inductively on mm. There is nothing to prove for the base step, i.e., the case of m=0m=0. In order to discuss the induction step, suppose that we have proved the three properties (α)m(\alpha)_{m^{\prime}}, (β)m(\beta)_{m^{\prime}}, and (γ)m(\gamma)_{m^{\prime}} (0m<m0\leq m^{\prime}<m) for any element of Diagm\mathrm{Diag}_{m^{\prime}}, in particular, for (m,0(m)(m))(\mathscr{F}_{m^{\prime}},\nabla_{0}^{(m)\Rightarrow(m^{\prime})}). Since the equality

(𝒱,)=(0[m],(0(m))[m])\displaystyle(\mathcal{V}_{\mathscr{F}},\nabla_{\mathscr{F}})=(\mathcal{F}_{0}^{[m]},(\nabla_{0}^{(m)})^{[m]}) (3.8)

holds, the property (γ)m1(\gamma)_{m-1} for (m1,0(m)(m1))(\mathscr{F}_{m-1},\nabla_{0}^{(m)\Rightarrow(m-1)}) implies that (γ)m(\gamma)_{m} is satisfied for (,0(m))(\mathscr{F},\nabla_{0}^{(m)}). Moreover, by (3.8), the assertion (α)m(\alpha)_{m} follows from Corollary 2.6.4 and the assumption ψ()=0\psi(\nabla_{\mathscr{F}})=0. To consider the property (β)m(\beta)_{m}, let us take a local section vv of 𝒮ol(0(m))(𝒱)\mathcal{S}ol(\nabla_{0}^{(m)})\left(\subseteq\mathcal{V}_{\mathscr{F}}\right). Just as in the discussion at the beginning of this subsection, we can choose (locally on XX) local sections v~\widetilde{v} and 1pm(v~)\frac{1}{p^{m}}\cdot\nabla(\widetilde{v}) associated to vv. The following sequence of equalities holds:

C(0,0(m))(1pm(v~))\displaystyle C_{(\mathcal{F}_{0},\nabla_{0}^{(m)})}\left(\frac{1}{p^{m}}\cdot\nabla(\widetilde{v})\right) =C(0[m],(0(m))[m])(C(0,0(m)(m1))(1pm(v~)))\displaystyle=C_{(\mathcal{F}_{0}^{[m]},(\nabla_{0}^{(m)})^{[m]})}\left(C_{(\mathcal{F}_{0},\nabla_{0}^{(m)\Rightarrow(m-1)})}\left(\frac{1}{p^{m}}\cdot\nabla(\widetilde{v})\right)\right) (3.9)
=C(0[m],(0(m))[m])((v))\displaystyle=C_{(\mathcal{F}_{0}^{[m]},(\nabla_{0}^{(m)})^{[m]})}(\nabla_{\mathscr{F}}(v))
=C(𝒱,)((v))\displaystyle=C_{(\mathcal{V}_{\mathscr{F}},\nabla_{\mathscr{F}})}(\nabla_{\mathscr{F}}(v))
=0.\displaystyle=0.

It follows that the integer

a(v~):=min{a|1am,C(0,0(m)(a))(1pm(v~))=0}\displaystyle a(\widetilde{v}):=\mathrm{min}\left\{a\,\Biggl{|}\,-1\leq a\leq m,\ C_{(\mathcal{F}_{0},\nabla_{0}^{(m)\Rightarrow(a)})}\left(\frac{1}{p^{m}}\cdot\nabla(\widetilde{v})\right)=0\right\} (3.10)

is well-defined, where C(0,0(m)(1)):=idC_{(\mathcal{F}_{0},\nabla_{0}^{(m)\Rightarrow(-1)})}:=\mathrm{id}. Now, suppose that a(v~)0a(\widetilde{v})\geq 0. We shall set u:=C(0,0(m)(a(v~)1))(1pm(v~))u:=C_{(\mathcal{F}_{0},\nabla_{0}^{(m)\Rightarrow(a(\widetilde{v})-1)})}\left(\frac{1}{p^{m}}\cdot\nabla(\widetilde{v})\right), which is nonzero by the definition of a(v~)a(\widetilde{v}). Observe that

C(0[a(v~)],(0(m))[a(v~)])(u)=C(0,0(m)(a(v~)))(1pm(v~))=0.\displaystyle C_{(\mathcal{F}_{0}^{[a(\widetilde{v})]},(\nabla_{0}^{(m)})^{[a(\widetilde{v})]})}(u)=C_{(\mathcal{F}_{0},\nabla_{0}^{(m)\Rightarrow(a(\widetilde{v}))})}\left(\frac{1}{p^{m}}\cdot\nabla(\widetilde{v})\right)=0. (3.11)

Hence, by the comment following  [Og, Proposition 1.2.4], there exists (locally on XX) a local section uu^{\prime} of 0[a(v~)]\mathcal{F}_{0}^{[a(\widetilde{v})]} satisfying (0(m))[a(v~)](u)=u(\nabla_{0}^{(m)})^{[a(\widetilde{v})]}(u^{\prime})=u. Let us choose a section u~\widetilde{u}^{\prime} of a(v~)\mathcal{F}_{a(\widetilde{v})} which is a lifting of uu^{\prime} and horizontal modulo pa(v~)p^{a(\widetilde{v})} with respect to a(v~)\nabla_{a(\widetilde{v})}. (Even if a(v~)>0a(\widetilde{v})>0, such a section always exists locally on XX because of the equality 0[a(v~)]=𝒮ol(0(m)(a(v~)1))\mathcal{F}_{0}^{[a(\widetilde{v})]}=\mathcal{S}ol(\nabla_{0}^{(m)\Rightarrow(a(\widetilde{v})-1)}) and the induction hypothesis, i.e., the property (β)a(v~)1(\beta)_{a(\widetilde{v})-1} for (a(v~)1,0(m)(a(v~)1))(\mathscr{F}_{a(\widetilde{v})-1},\nabla_{0}^{(m)\Rightarrow(a(\widetilde{v})-1)}).) By the flatness of XmX_{m} over /pm+1\mathbb{Z}/p^{m+1}\mathbb{Z}, we obtain a well-defined element pma(v~)u~p^{m-a(\widetilde{v})}\cdot\widetilde{u}^{\prime} of \mathcal{F}. If we write v~:=v~pma(v~)u~\widetilde{v}^{\prime}:=\widetilde{v}-p^{m-a(\widetilde{v})}\cdot\widetilde{u}^{\prime}, then the following sequence of equalities holds:

C(0,0(m)(a(v~)1))(1pm(v~))\displaystyle\ \ \ \ C_{(\mathcal{F}_{0},\nabla_{0}^{(m)\Rightarrow(a(\widetilde{v})-1)})}\left(\frac{1}{p^{m}}\cdot\nabla(\widetilde{v}^{\prime})\right) (3.12)
=C(0,0(m)(a(v~)1))(1pm(v~))C(0,0(m)(a(v~)1))(1pm(pma(v~)u~))\displaystyle=C_{(\mathcal{F}_{0},\nabla_{0}^{(m)\Rightarrow(a(\widetilde{v})-1)})}\left(\frac{1}{p^{m}}\cdot\nabla(\widetilde{v})\right)-C_{(\mathcal{F}_{0},\nabla_{0}^{(m)\Rightarrow(a(\widetilde{v})-1)})}\left(\frac{1}{p^{m}}\cdot\nabla(p^{m-a(\widetilde{v})}\cdot\widetilde{u}^{\prime})\right)
=uC(0,0(m)(a(v~)1))(1pa(v~)(u~))\displaystyle=u-C_{(\mathcal{F}_{0},\nabla_{0}^{(m)\Rightarrow(a(\widetilde{v})-1)})}\left(\frac{1}{p^{a(\widetilde{v})}}\cdot\nabla(\widetilde{u}^{\prime})\right)
=ua(v~)(u)\displaystyle=u-\nabla_{\mathscr{F}_{a(\widetilde{v})}}(u^{\prime})
=u(0(m))[a(v~)](u)\displaystyle=u-(\nabla_{0}^{(m)})^{[a(\widetilde{v})]}(u^{\prime})
=uu\displaystyle=u-u
=0.\displaystyle=0.

This implies a(v~)>a(v~)a(\widetilde{v})>a(\widetilde{v}^{\prime}). By repeating the procedure for constructing v~\widetilde{v}^{\prime} from v~\widetilde{v} just discussed, we can find a lifting v~\widetilde{v}^{\circledcirc}\in\mathcal{F} of vv with a(v~)=1a(\widetilde{v}^{\circledcirc})=-1, i.e., (v~)=0\nabla(\widetilde{v}^{\circledcirc})=0. This proves the property (β)m(\beta)_{m}, thus completing the proof of assertion (i).

Moreover, we again use induction on mm to prove assertion (ii). Since the base step is trivial, it suffices to consider the induction step. Suppose that the assertion with mm replaced by m1m-1 (m1m\geq 1) has been proved. Now, let (,,0(m))(\mathscr{F}_{\circ},\nabla_{\circ,0}^{(m)}) and (,,0(m))(\mathscr{F}_{\bullet},\nabla_{\bullet,0}^{(m)}) (where :=(,)\mathscr{F}_{\circ}:=(\mathcal{F}_{\circ},\nabla_{\circ}) and :=(,)\mathscr{F}_{\bullet}:=(\mathcal{F}_{\bullet},\nabla_{\bullet})) be elements of Diagm\mathrm{Diag}_{m} with =\mathscr{F}_{\circ}=\mathscr{F}_{\bullet}. By the induction hypothesis, the equality ,0(m)(m1)=,0(m)(m1)\nabla_{\circ,0}^{(m)\Rightarrow(m-1)}=\nabla_{\bullet,0}^{(m)\Rightarrow(m-1)} holds via the equality ,0=,0\mathcal{F}_{\circ,0}=\mathcal{F}_{\bullet,0}. This implies 𝒱=𝒱\mathcal{V}_{\mathscr{F}_{\circ}}=\mathcal{V}_{\mathscr{F}_{\bullet}}. Under this equality, the SlogS^{\mathrm{log}}-connection \nabla_{\mathscr{F}_{\circ}} coincides with \nabla_{\mathscr{F}_{\bullet}} because of the assumption =\mathscr{F}_{\circ}=\mathscr{F}_{\bullet}. Hence, it follows from Lemma 3.1.2 proved below that ,0(m)=,0(m)\nabla_{\circ,0}^{(m)}=\nabla_{\bullet,0}^{(m)}. We have finished the proof of this proposition. ∎

The following lemma was applied in the proof of the above proposition.

Lemma 3.1.2.

Suppose that SlogS^{\mathrm{log}} is an fs log scheme over 𝔽p\mathbb{F}_{p} and that XlogX^{\mathrm{log}} is a log curve over SlogS^{\mathrm{log}}. Let mm be a positive integer, and let (,(m))(\mathcal{F}_{\circ},\nabla_{\circ}^{(m)}), (,(m))(\mathcal{F}_{\bullet},\nabla_{\bullet}^{(m)}) be pm+1p^{m+1}-flat 𝒟(m)0\mathcal{D}^{(m)}_{0}-modules. We shall assume the following conditions:

  • (a)

    The equality (,(m)(m1))=(,(m)(m1))(\mathcal{F}_{\circ},\nabla_{\circ}^{(m)\Rightarrow(m-1)})=(\mathcal{F}_{\bullet},\nabla_{\bullet}^{(m)\Rightarrow(m-1)}) holds;

  • (b)

    The SlogS^{\mathrm{log}}-connection ((m))[m](\nabla_{\circ}^{(m)})^{[m]} corresponds to ((m))[m](\nabla_{\bullet}^{(m)})^{[m]} via the equality [m]=[m]\mathcal{F}_{\circ}^{[m]}=\mathcal{F}_{\bullet}^{[m]} resulting from the condition (a);

  • (c)

    (=)\mathcal{F}_{\circ}\left(=\mathcal{F}_{\bullet}\right) is relatively torsion-free.

Then, we have (m)=(m)\nabla_{\circ}^{(m)}=\nabla_{\bullet}^{(m)}.

Proof.

We shall set 𝒲:=Ker(((m))[m])=Ker(((m))[m])\mathcal{W}:=\mathrm{Ker}((\nabla_{\circ}^{(m)})^{[m]})=\mathrm{Ker}((\nabla_{\bullet}^{(m)})^{[m]}). Denote by UU the open subscheme of X0X_{0} where the relative characteristic of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} is trivial. The 𝒪X(m+1)\mathcal{O}_{X^{(m+1)}}-linear inclusion (𝒲=)Ker(((m))[m])\left(\mathcal{W}=\right)\mathrm{Ker}((\nabla_{\circ}^{(m)})^{[m]})\hookrightarrow\mathcal{F}_{\circ} (resp., (𝒲=)Ker(((m))[m])\left(\mathcal{W}=\right)\mathrm{Ker}((\nabla_{\bullet}^{(m)})^{[m]})\hookrightarrow\mathcal{F}_{\bullet}) extends to a morphism of 𝒟(m)\mathcal{D}^{(m)}-modules

(FX/S(m+1)(𝒲),𝒲,can(m))(,(m))(resp.,(FX/S(m+1)(𝒲),𝒲,can(m))(,(m))).\displaystyle(F_{X/S}^{(m+1)*}(\mathcal{W}),\nabla_{\mathcal{W},\mathrm{can}}^{(m)})\rightarrow(\mathcal{F}_{\circ},\nabla_{\circ}^{(m)})\ \left(\text{resp.,}\ (F_{X/S}^{(m+1)*}(\mathcal{W}),\nabla_{\mathcal{W},\mathrm{can}}^{(m)})\rightarrow(\mathcal{F}_{\bullet},\nabla_{\bullet}^{(m)})\right). (3.13)

By the equivalence of categories (2.82), this morphism becomes an isomorphism when restricted to UU. This means that (m)\nabla_{\circ}^{(m)} coincides with (m)\nabla_{\bullet}^{(m)} over UU. Since UU is a scheme-theoretically dense in X0X_{0} (cf.  [KaFu, Lemma 1.4]) and (=)\mathcal{F}_{\circ}\left(=\mathcal{F}_{\bullet}\right) is relatively torsion-free by assumption, we obtain the equality (m)=(m)\nabla_{\circ}^{(m)}=\nabla_{\bullet}^{(m)}, as desired. ∎

Corollary 3.1.3.

Let (,0(m))(\mathscr{F},\nabla_{0}^{(m)}) (where :=(,)\mathscr{F}:=(\mathcal{F},\nabla)) be an element of Diagm\mathrm{Diag}_{m}. Then, each horizontal local section of \mathcal{F} specifies a section of 𝒮ol(0(m))\mathcal{S}ol(\nabla_{0}^{(m)}) via reduction modulo pp. Moreover, the resulting morphism of sheaves

(Ker()0=)𝒮ol()0𝒮ol(0(m))\displaystyle\left(\mathrm{Ker}(\nabla)_{0}=\right)\mathcal{S}ol(\nabla)_{0}\rightarrow\mathcal{S}ol(\nabla_{0}^{(m)}) (3.14)

is surjective.

Proof.

We shall prove the first assertion by induction on mm. The base step, i.e., the case of m=0m=0, is trivial because 𝒮ol()=𝒮ol(0(m))\mathcal{S}ol(\nabla)=\mathcal{S}ol(\nabla_{0}^{(m)}). To consider the induction step, suppose that we have proved the assertion with mm replaced by m1m-1 (m1m\geq 1). Let us take an arbitrary local section vv in 𝒮ol()\mathcal{S}ol(\nabla). By the induction hypothesis, the reduction modulo pp of vv, i.e., v0(=(vm1)0)v_{0}\left(=(v_{m-1})_{0}\right), belongs to 𝒱(=𝒮ol(0(m)(m1)))\mathcal{V}_{\mathscr{F}}\left(=\mathcal{S}ol(\nabla_{0}^{(m)\Rightarrow(m-1)})\right). Since the reduction modulo pmp^{m} of vv is horizontal with respect to m1\nabla_{m-1}, it follows from the definition of \nabla_{\mathscr{F}} that (v0)=(v)=0\nabla_{\mathscr{F}}(v_{0})=\nabla(v)=0. Thus, we have v0𝒮ol()=𝒮ol(0(m))v_{0}\in\mathcal{S}ol(\nabla_{\mathscr{F}})=\mathcal{S}ol(\nabla_{0}^{(m)}). This completes the proof of the first assertion. The second assertion, i.e., the surjectivity of (3.14), follows from the property (β)m(\beta)_{m} asserted in Proposition 3.1.1, (i). ∎

Definition 3.1.4.
  • (i)

    Let :=(,)\mathscr{F}:=(\mathcal{F},\nabla) be a flat module on Xlogm/SlogmX^{\mathrm{log}}_{m}/S^{\mathrm{log}}_{m}. We shall say that \mathscr{F} (or \nabla) is dormant if there exists a 𝒟0(m)\mathcal{D}_{0}^{(m)}-module structure 0(m)\nabla_{0}^{(m)} on 0\mathcal{F}_{0} satisfying (,0(m))Diagm(\mathscr{F},\nabla_{0}^{(m)})\in\mathrm{Diag}_{m}.

  • (ii)

    Let (,)(\mathcal{E},\nabla) be a flat PGLn\mathrm{PGL}_{n}-bundle (where n>1n>1) on Xlogm/SlogmX^{\mathrm{log}}_{m}/S^{\mathrm{log}}_{m} in the sense of  [Wak8, Definition 1.28]. We shall say that (,)(\mathcal{E},\nabla) is dormant if, after possibly replacing XX with its étale covering, it may be described as the projectivization of a rank nn dormant flat bundle on Xlogm/SlogmX^{\mathrm{log}}_{m}/S^{\mathrm{log}}_{m}.

Remark 3.1.5 (Some properties on dormant flat bundles).

Whether a flat module (,)(\mathcal{F},\nabla) (or a flat PGLn\mathrm{PGL}_{n}-bundle (,)(\mathcal{E},\nabla)) as in the above definition is dormant or not does not depend on the integer “\ell”. Also, the property of being dormant is of local nature with respect to the étale topology on XX. In the case of m=0m=0, a flat module (or a flat PGLn\mathrm{PGL}_{n}-bundle) on X0log/S0logX_{0}^{\mathrm{log}}/S_{0}^{\mathrm{log}} is dormant if and only if it has vanishing pp-curvature.

Remark 3.1.6 (Well-definedness of (𝒱,)(\mathcal{V}_{\mathscr{F}},\nabla_{\mathscr{F}})).

Let \mathscr{F} be a flat module on Xmlog/SlogmX_{m}^{\mathrm{log}}/S^{\mathrm{log}}_{m} whose reduction modulo pmp^{m} is dormant. Then, by Proposition 3.1.1, (ii), the flat module (𝒱,)(\mathcal{V}_{\mathscr{F}},\nabla_{\mathscr{F}}) is well-defined in the sense that it does not depend on the choice of a 𝒟0(m)\mathcal{D}_{0}^{(m)}-module structure 0(m)\nabla_{0}^{(m)} with (,0(m))Diagm(\mathscr{F},\nabla_{0}^{(m)})\in\mathrm{Diag}_{m} (because such a choice 0(m)\nabla_{0}^{(m)} is, if it exists, uniquely determined).

3.2. Diagonal reductions/liftings

Let :=(,)\mathscr{F}:=(\mathcal{F},\nabla) be a dormant flat module on Xlogm/SlogmX^{\mathrm{log}}_{m}/S^{\mathrm{log}}_{m}. According to Proposition 3.1.1, (ii), there exists a unique 𝒟0(m)\mathcal{D}_{0}^{(m)}-module structure

:L𝒟0(m)nd𝒪S0(0)\displaystyle{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\nabla:{{}^{L}}\mathcal{D}_{0}^{(m)}\rightarrow\mathcal{E}nd_{\mathcal{O}_{S_{0}}}(\mathcal{F}_{0}) (3.15)

on 0\mathcal{F}_{0} with (,)Diagm(\mathscr{F},{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\nabla)\in\mathrm{Diag}_{m}. In particular, we obtain a 𝒟0(m)\mathcal{D}_{0}^{(m)}-module

:=(0,),\displaystyle{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{F}:=(\mathcal{F}_{0},{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\nabla), (3.16)

which has vanishing pm+1p^{m+1}-curvature (cf. Corollary 2.6.4).

Also, let :=(,)\mathscr{E}:=(\mathcal{E},\nabla) be a dormant flat PGLn\mathrm{PGL}_{n}-bundle on Xmlog/SmlogX_{m}^{\mathrm{log}}/S_{m}^{\mathrm{log}}. Then, by choosing étale locally on XX a dormant flat bundle :=(,)\mathscr{F}:=(\mathcal{F},\nabla) inducing \mathscr{E} and successively taking the projectivization of {{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\nabla, we obtain a well-defined mm-PD stratification

ϕ:={ϕ:P(m)×X×XP(m)}0\displaystyle{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\phi:=\{{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\phi_{\ell}:P_{(m)}^{\ell}\times_{X}\mathcal{E}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{E}\times_{X}P_{(m)}^{\ell}\}_{\ell\in\mathbb{Z}_{\geq 0}} (3.17)

on 0\mathcal{E}_{0}. We shall set

:=(0,ϕ),\displaystyle{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{E}:=(\mathcal{E}_{0},{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\phi), (3.18)

which forms an mm-PD stratified PGLn\mathrm{PGL}_{n}-bundle on Xlog0/S0logX^{\mathrm{log}}_{0}/S_{0}^{\mathrm{log}}.

Definition 3.2.1.
  • (i)

    With the above notation, we shall refer to {{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{F} (resp., {{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{E}) as the diagonal reduction of \mathscr{F} (resp., \mathscr{E}).

  • (ii)

    Given a 𝒟0(m)\mathcal{D}_{0}^{(m)}-module (resp., an mm-PD stratified PGLn\mathrm{PGL}_{n}-bundle) 𝒢\mathscr{G}, we shall refer to any dormant flat module \mathscr{F} (resp., any dormant flat PGLn\mathrm{PGL}_{n}-bundle \mathscr{E}) on Xmlog/SmlogX_{m}^{\mathrm{log}}/S_{m}^{\mathrm{log}} satisfying =𝒢{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{F}=\mathscr{G} (resp., =𝒢{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{E}=\mathscr{G}) as a diagonal lifting of 𝒢\mathscr{G}.

Remark 3.2.2 (Compatibility with level reduction).

Let \mathscr{F} (resp., \mathscr{E}) be as above. If mm^{\prime} is a nonnegative integer m\leq m, then the reduction m\mathscr{F}_{m^{\prime}} (resp., m\mathscr{E}_{m^{\prime}}) modulo pm+1p^{m^{\prime}+1} of \mathscr{F} (resp., \mathscr{E}) is dormant and the diagonal reduction (m){{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!(\mathscr{F}_{m^{\prime}}) (resp., (m){{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!(\mathscr{E}_{m^{\prime}})) is obtained by reducing the level of {{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{F} (resp., {{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{E}) to mm^{\prime}.

Remark 3.2.3 (Diagonal reduction of non-dormant flat modules).

Suppose that the relative characteristic of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} is trivial. Let :=(,)\mathscr{F}:=(\mathcal{F},\nabla) be a flat bundle on Xmlog/SmlogX_{m}^{\mathrm{log}}/S_{m}^{\mathrm{log}} such that m1\mathscr{F}_{m-1} is dormant. Write m1=(0,0(m1)){{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{F}_{m-1}=(\mathcal{F}_{0},\nabla_{0}^{(m-1)}). Just as in the discussion at the beginning of the previous subsection, (,0(m1))(\mathscr{F},\nabla_{0}^{(m-1)}) associates a flat bundle (𝒱,)(\mathcal{V}_{\mathscr{F}},\nabla_{\mathscr{F}}) (cf. (3.5)). According to the equivalence of categories (2.82) and  [PBer2, Proposition 2.2.3, (i)] (or,  [Mon, Corollaire 3.3.1]), \nabla_{\mathscr{F}} induces a 𝒟(m)0\mathcal{D}^{(m)}_{0}-module structure 0(m)\nabla_{0}^{(m)} on F(m)X0/S0(𝒱)F^{(m)*}_{X_{0}/S_{0}}(\mathcal{V}_{\mathscr{F}}) compatible with 0(m1)\nabla_{0}^{(m-1)} via the isomorphism F(m)X0/S0(𝒱)0F^{(m)*}_{X_{0}/S_{0}}(\mathcal{V}_{\mathscr{F}})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{F}_{0} induced by the inclusion 𝒱0\mathcal{V}_{\mathscr{F}}\hookrightarrow\mathcal{F}_{0}. Thus, 0(m)\nabla_{0}^{(m)} may be regarded as a 𝒟(m)0\mathcal{D}^{(m)}_{0}-module structure on 0\mathcal{F}_{0} via this isomorphism and satisfies (m)(m1)0=0(m1)\nabla^{(m)\Rightarrow(m-1)}_{0}=\nabla_{0}^{(m-1)}.

Similarly to the case of dormant flat modules, we set

:=(0,0(m)),\displaystyle{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{F}:=(\mathcal{F}_{0},\nabla_{0}^{(m)}), (3.19)

which we refer to as the diagonal reduction of \mathscr{F}. If \mathscr{F} is dormant, then this coincides with the diagonal reduction in the sense of Definition 3.2.1.

Example 3.2.4 (Trivial flat bundle).

One may verify that the diagonal reduction of the trivial flat bundle (𝒪Xm,(0)Xm,triv)(\mathcal{O}_{X_{m}},\nabla^{(0)}_{X_{m},\mathrm{triv}}) (cf. (2.21)) is the trivial 𝒟0(m)\mathcal{D}_{0}^{(m)}-module (𝒪X0,(m)X0,triv)(\mathcal{O}_{X_{0}},\nabla^{(m)}_{X_{0},\mathrm{triv}}), i.e.,

(𝒪Xm,(0)Xm,triv)=(𝒪X0,(m)X0,triv).\displaystyle{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!(\mathcal{O}_{X_{m}},\nabla^{(0)}_{X_{m},\mathrm{triv}})=(\mathcal{O}_{X_{0}},\nabla^{(m)}_{X_{0},\mathrm{triv}}). (3.20)
Proposition 3.2.5.

Suppose that the relative characteristic of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} is trivial.

  • (i)

    Let :=(,)\mathscr{F}:=(\mathcal{F},\nabla) be a flat module on Xmlog/SmlogX_{m}^{\mathrm{log}}/S_{m}^{\mathrm{log}} whose reduction modulo pmp^{m} (i.e., m1\mathscr{F}_{m-1}) is dormant. Then, \mathscr{F} is dormant if and only if ψ()=0\psi(\nabla_{\mathscr{F}})=0 (cf. Remark 3.1.6). In particular, if \mathcal{F} is assumed to be a vector bundle and we fix a scheme-theoretically dense open subscheme UU of XmX_{m} (equipped with a log structure pulled-back from XlogX^{\mathrm{log}}, by which we obtain a log curve Ulog/SlogmU^{\mathrm{log}}/S^{\mathrm{log}}_{m}), then \mathscr{F} is dormant if and only if its restriction |U\mathscr{F}|_{U} to UU is dormant.

  • (ii)

    Let nn be a positive integer and :=(,)\mathscr{F}:=(\mathcal{F},\nabla) a rank nn flat bundle on Xmlog/SmlogX_{m}^{\mathrm{log}}/S_{m}^{\mathrm{log}}. Note that, since \nabla is 𝒮ol(Xm,triv(0))\mathcal{S}ol(\nabla_{X_{m},\mathrm{triv}}^{(0)})-linear, the sheaf of horizontal sections Ker()\mathrm{Ker}(\nabla) forms an 𝒮ol(Xm,triv(0))\mathcal{S}ol(\nabla_{X_{m},\mathrm{triv}}^{(0)})-submodule of \mathcal{F}. Then, the following three conditions are equivalent to each other:

    • (a)

      \mathscr{F} is dormant;

    • (b)

      \mathscr{F} is locally trivial, i.e., isomorphic, Zariski locally on XX, to (𝒪Xm,Xm,triv(0))n(\mathcal{O}_{X_{m}},\nabla_{X_{m},\mathrm{triv}}^{(0)})^{\oplus n};

    • (c)

      The 𝒮ol(Xm,triv(0))\mathcal{S}ol(\nabla_{X_{m},\mathrm{triv}}^{(0)})-module Ker()\mathrm{Ker}(\nabla) is locally free of rank nn (which implies that the natural morphism 𝒪Xm𝒮ol(Xm,triv(0))Ker()\mathcal{O}_{X_{m}}\otimes_{\mathcal{S}ol(\nabla_{X_{m},\mathrm{triv}}^{(0)})}\mathrm{Ker}(\nabla)\rightarrow\mathcal{F} is an isomorphism).

Proof.

First, we shall prove the first assertion of (i). Since the “only if” part of the required equivalence is immediate from Proposition 2.6.1, (i), we only consider the “if” part. Suppose that ψ()=0\psi(\nabla_{\mathscr{F}})=0. Then, the morphism

FX0(m)/S0(𝒮ol())𝒱\displaystyle F_{X_{0}^{(m)}/S_{0}}^{*}(\mathcal{S}ol(\nabla_{\mathscr{F}}))\rightarrow\mathcal{V}_{\mathscr{F}} (3.21)

induced naturally by the inclusion 𝒮ol()𝒱\mathcal{S}ol(\nabla_{\mathscr{F}})\hookrightarrow\mathcal{V}_{\mathscr{F}} is an isomorphism (cf.  [Kal, Theorem (5.1)]). On the other hand, if we set (0,0(m1)):=m1(\mathcal{F}_{0},\nabla_{0}^{(m-1)}):={{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{F}_{m-1}, then it follows from the equivalence of categories (2.82) that the morphism

(FX0/S0(m)(𝒮ol(0(m1)))=)FX0/S0(m)(𝒱)0\displaystyle\left(F_{X_{0}/S_{0}}^{(m)*}(\mathcal{S}ol(\nabla_{0}^{(m-1)}))=\right)F_{X_{0}/S_{0}}^{(m)*}(\mathcal{V}_{\mathscr{F}})\rightarrow\mathcal{F}_{0} (3.22)

induced by the inclusion 𝒮ol(0(m1))0\mathcal{S}ol(\nabla_{0}^{(m-1)})\hookrightarrow\mathcal{F}_{0} is an isomorphism. Hence, we obtain the composite isomorphism

F(m+1)X0/S0(𝒮ol())(=F(m)X0/S0(FX0(m)/S0(𝒮ol())))F(m)X0/S0(𝒱)(3.22)0,\displaystyle F^{(m+1)*}_{X_{0}/S_{0}}(\mathcal{S}ol(\nabla_{\mathscr{F}}))\left(=F^{(m)*}_{X_{0}/S_{0}}(F^{*}_{X_{0}^{(m)}/S_{0}}(\mathcal{S}ol(\nabla_{\mathscr{F}})))\right)\stackrel{{\scriptstyle\sim}}{{\rightarrow}}F^{(m)*}_{X_{0}/S_{0}}(\mathcal{V}_{\mathscr{F}})\xrightarrow{\eqref{YY1}}\mathcal{F}_{0}, (3.23)

where the first arrow denotes the pull-back of (3.21) by FX0/S0(m)F_{X_{0}/S_{0}}^{(m)}. Denote by 0(m)\nabla_{0}^{(m)} the 𝒟0(m)\mathcal{D}_{0}^{(m)}-module structure on 0\mathcal{F}_{0} corresponding to 𝒮ol(),can(m)\nabla_{\mathcal{S}ol(\nabla_{\mathscr{F}}),\mathrm{can}}^{(m)} (cf. Definition 2.5.4) via this isomorphism. One may verify that (,0(m))(\mathscr{F},\nabla_{0}^{(m)}) belongs to Diagm\mathrm{Diag}_{m}, meaning that \mathscr{F} is dormant. This proves the “if” part of the required equivalence.

The second assertion of (i) follows from the first assertion together with the fact that the pp-curvature of a flat bundle in characteristic pp can be identified with a global section of a certain associated vector bundle.

Next, we shall consider assertion (ii). The implication (b) \Rightarrow (c) is clear. Also, since the dormancy condition is closed under taking direct sums, the implication (b) \Rightarrow (a) follows from the fact that the trivial flat bundle is dormant (cf. Example 3.2.4).

Let us prove the implication (a) \Rightarrow (b). Suppose that \mathscr{F} is dormant, i.e., there exists a 𝒟0(m)\mathcal{D}_{0}^{(m)}-module structure 0(m)\nabla_{0}^{(m)} on 0\mathcal{F}_{0} with (,0(m))Diagm(\mathscr{F},\nabla_{0}^{(m)})\in\mathrm{Diag}_{m}. By the equivalence of categories (2.82), the morphism F(m+1)X0/S0(𝒮ol(0(m)))0F^{(m+1)*}_{X_{0}/S_{0}}(\mathcal{S}ol(\nabla_{0}^{(m)}))\rightarrow\mathcal{F}_{0} extending the inclusion 𝒮ol(0(m))0\mathcal{S}ol(\nabla_{0}^{(m)})\hookrightarrow\mathcal{F}_{0} is an isomorphism. Hence, the faithful flatness of F(m+1)X/SF^{(m+1)}_{X/S} (cf.  [KaFu, Theorem 1.1]) implies that 𝒮ol(0(m))\mathcal{S}ol(\nabla_{0}^{(m)}) forms a rank nn vector bundle on X(m+1)X^{(m+1)}. By this fact and the property (β)m(\beta)_{m} for (,0(m))(\mathscr{F},\nabla_{0}^{(m)}) (cf. Proposition 3.1.1, (i)), we can find, for each point qq of XmX_{m}, a collection of data

(U;v1,,vn),\displaystyle(U;v_{1},\cdots,v_{n}), (3.24)

where UU denotes an open neighborhood of qq in XmX_{m} and v1,,vnv_{1},\cdots,v_{n} are sections of \mathcal{F} defined on UU which are horizontal with respect to \nabla and whose reductions v1,0,,vn,0v_{1,0},\cdots,v_{n,0} modulo pp form a local basis of 𝒮ol(0(m))\mathcal{S}ol(\nabla_{0}^{(m)}). The morphism 𝒪Un|U\mathcal{O}_{U}^{\oplus n}\rightarrow\mathcal{F}|_{U} given by (ai)i=1ni=1naivi(a_{i})_{i=1}^{n}\mapsto\sum_{i=1}^{n}a_{i}\cdot v_{i} (for any a1,,an𝒪Ua_{1},\cdots,a_{n}\in\mathcal{O}_{U}) is compatible with the respective SlogS^{\mathrm{log}}-connections (U,triv(0))n(\nabla_{U,\mathrm{triv}}^{(0)})^{\oplus n} and \nabla. The resulting morphism of flat modules

(𝒪U,U,triv(0))n|U\displaystyle(\mathcal{O}_{U},\nabla_{U,\mathrm{triv}}^{(0)})^{\oplus n}\rightarrow\mathscr{F}|_{U} (3.25)

is an isomorphism by Nakayama’s lemma. In particular, \mathscr{F} is locally trivial, and this completes the proof of (a) \Rightarrow (b).

Finally, we shall prove (c) \Rightarrow (b). To this end, we may assume that there exists an 𝒮ol(Xm,triv(0))\mathcal{S}ol(\nabla_{X_{m},\mathrm{triv}}^{(0)})-linear isomorphism h:𝒮ol(Xm,triv(0))nKer()h^{\nabla}:\mathcal{S}ol(\nabla_{X_{m},\mathrm{triv}}^{(0)})^{\oplus n}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathrm{Ker}(\nabla). For each j=1,,nj=1,\cdots,n, denote by eje_{j} the image of 11 via the inclusion into the jj-th factor 𝒮ol(Xm,triv(0))𝒮ol(Xm,triv(0))n\mathcal{S}ol(\nabla_{X_{m},\mathrm{triv}}^{(0)})\hookrightarrow\mathcal{S}ol(\nabla_{X_{m},\mathrm{triv}}^{(0)})^{\oplus n}. Then, we obtain the morphism of flat bundles

h:(𝒪Xm,Xm,triv(0))n\displaystyle h:(\mathcal{O}_{X_{m}},\nabla_{X_{m},\mathrm{triv}}^{(0)})^{\oplus n}\rightarrow\mathscr{F} (3.26)

given by (aj)j=1nj=1najh(ej)(a_{j})_{j=1}^{n}\mapsto\sum_{j=1}^{n}a_{j}\cdot h^{\nabla}(e_{j}). The reduction of hh modulo pp determines a morphism

h0:(𝒪X0,X0,triv(0))n0.\displaystyle h_{0}:(\mathcal{O}_{X_{0}},\nabla_{X_{0},\mathrm{triv}}^{(0)})^{\oplus n}\rightarrow\mathscr{F}_{0}. (3.27)

Since 0\mathscr{F}_{0} has vanishing pp-curvature, it follows from (the proof of)  [Wak8, Proposition 4.60] that h0h_{0} is an isomorphism. Hence, by Nakayama’s lemma, hh turns out to be an isomorphism. This proves (c) \Rightarrow (b). ∎

Corollary 3.2.6.

Suppose that the relative characteristic of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} is trivial. Let (,)(\mathcal{E},\nabla) be a flat PGLn\mathrm{PGL}_{n}-bundle on Xlogm/SlogmX^{\mathrm{log}}_{m}/S^{\mathrm{log}}_{m}. Then, (,)(\mathcal{E},\nabla) is dormant if and only if it is, étale locally on XX, isomorphic to the trivial flat PGLn\mathrm{PGL}_{n}-bundle (cf.  [Wak8, § 1.3.2] or Example 2.3.2).

Proof.

The assertion follows from the equivalence (a) \Leftrightarrow (b) obtained in Proposition 3.2.5, (ii). ∎

Let h:𝒢h:\mathscr{F}\rightarrow\mathscr{G} be a morphism between dormant flat modules on Xmlog/SmlogX_{m}^{\mathrm{log}}/S_{m}^{\mathrm{log}}, and write (0,,0):=(\mathcal{F}_{0},\nabla_{\mathscr{F},0}):={{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{F} and (𝒢0,𝒢,0):=𝒢(\mathcal{G}_{0},\nabla_{\mathscr{G},0}):={{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{G}. By the functoriality of Cartier operator (cf. Remark 2.6.6), we see that hh induces a morphism of flat bundles ha:(𝒱a,a)(𝒱𝒢a,𝒢a)h_{a}:(\mathcal{V}_{\mathscr{F}_{a}},\nabla_{\mathscr{F}_{a}})\rightarrow(\mathcal{V}_{\mathscr{G}_{a}},\nabla_{\mathscr{G}_{a}}) for every a=0,,ma=0,\cdots,m. It follows from the property (γm)(\gamma_{m}) asserted in Proposition 3.1.1, (i), that hah_{a} may be regarded as a morphism (0[a],,0[a])(𝒢0[a],𝒢,0[a])(\mathcal{F}_{0}^{[a]},\nabla_{\mathscr{F},0}^{[a]})\rightarrow(\mathcal{G}_{0}^{[a]},\nabla_{\mathscr{G},0}^{[a]}). Since the hah_{a}’s are compatible with each other via restriction, the morphism h0:0𝒢0h_{0}:\mathcal{F}_{0}\rightarrow\mathcal{G}_{0} preserves the 𝒟0(m)\mathcal{D}_{0}^{(m)}-module structure. In other words, it determines a morphism of 𝒟0(m)\mathcal{D}_{0}^{(m)}-modules

h:𝒢.\displaystyle{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!h:{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{F}\rightarrow{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{G}. (3.28)

The assignments \mathscr{F}\mapsto{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{F} and hhh\mapsto{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!h define a functor

():(the category of dormantflat modules on Xmlog/Smlog)(the category of dormant (i.e., pm+1-flat) 𝒟0(m)-modules).\displaystyle{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!(-):\left(\begin{matrix}\text{the category of dormant}\\ \text{flat modules on $X_{m}^{\mathrm{log}}/S_{m}^{\mathrm{log}}$}\end{matrix}\right)\rightarrow\left(\begin{matrix}\text{the category of dormant}\\ \text{ (i.e., $p^{m+1}$-flat) $\mathcal{D}_{0}^{(m)}$-modules}\end{matrix}\right). (3.29)

This functor commutes with the formations of direct sums, tensor products, and determinants (in the case where the underlying 𝒪Xm\mathcal{O}_{X_{m}}-modules of dormant flat modules are locally free of finite rank).

3.3. Change of structure group

We shall prove the following two assertions, which are generalizations of  [Wak6, Lemma 3.6.3] and  [Wak8, Proposition 4.22].

Proposition 3.3.1.

Let nn be a positive integer with pnp\nmid n and \mathcal{L} a line bundle on XX. Suppose that either =0\ell=0 or m=0m=0 is satisfied. Also, suppose that we are given a 𝒟(m)\mathcal{D}^{(m)}-module structure n\nabla_{\mathcal{L}^{\otimes n}} on the nn-fold tensor product n\mathcal{L}^{\otimes n} of \mathcal{L}.

  • (i)

    There exists a unique 𝒟(m)\mathcal{D}^{(m)}-module structure \nabla_{\mathcal{L}} on \mathcal{L} satisfying n=n\nabla^{\otimes n}_{\mathcal{L}}=\nabla_{\mathcal{L}^{\otimes n}} (cf.  [Mon, Corollaire 2.6.1] for the definition of the nn-th fold tensor product of a 𝒟(m)\mathcal{D}^{(m)}-module structure).

  • (ii)

    If, moreover, (n,n)(\mathcal{L}^{\otimes n},\nabla_{\mathcal{L}^{\otimes n}}) is dormant, then the resulting 𝒟(m)\mathcal{D}^{(m)}-module (,)(\mathcal{L},\nabla_{\mathcal{L}}) is dormant.

Proof.

First, we shall consider assertion (i). Denote by ϕn\phi_{\mathcal{L}^{\otimes n}} the mm-PD stratification on n\mathcal{L}^{\otimes n} corresponding to n\nabla_{\mathcal{L}^{\otimes n}} (cf. Remark 2.3.3). Let us take an open covering 𝒰:={𝒰α}αI\mathscr{U}:=\{\mathcal{U}_{\alpha}\}_{\alpha\in I} of XX such that, for each αI\alpha\in I, there exists a trivialization τα:|Uα𝒪Uα\tau_{\alpha}:\mathcal{L}|_{U_{\alpha}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{O}_{U_{\alpha}}. For each 0\ell\in\mathbb{Z}_{\geq 0} and d>0d\in\mathbb{Z}_{>0}, τα\tau_{\alpha} induces isomorphisms

Lτα,,d:𝒫(m)d|Uα𝒪P(m)|UαandRτα,,d:d|Uα𝒫(m)𝒪P(m)|Uα.\displaystyle{{}^{L}}\tau_{\alpha,\ell,d}:\mathcal{P}^{\ell}_{(m)}\otimes\mathcal{L}^{\otimes d}|_{U_{\alpha}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{O}_{P^{\ell}_{(m)}}|_{U_{\alpha}}\ \ \text{and}\ \ {{}^{R}}\tau_{\alpha,\ell,d}:\mathcal{L}^{\otimes d}|_{U_{\alpha}}\otimes\mathcal{P}^{\ell}_{(m)}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{O}_{P^{\ell}_{(m)}}|_{U_{\alpha}}. (3.30)

The isomorphisms Lτα,,n{{}^{L}}\tau_{\alpha,\ell,n} and Rτα,,n{{}^{R}}\tau_{\alpha,\ell,n} allow us to regard ϕ|Uα\phi_{\mathcal{L}^{\otimes}}|_{U_{\alpha}} as an automorphism of 𝒪P(m)|Uα\mathcal{O}_{P^{\ell}_{(m)}}|_{U_{\alpha}}; it may be described as the multiplication by some element ηα,\eta_{\alpha,\ell} of 𝒪P(m)|Uα×\mathcal{O}_{P^{\ell}_{(m)}|_{U_{\alpha}}}^{\times}. Since ηα,0=1\eta_{\alpha,0}=1 and pnp\nmid n, we can find a unique compatible collection {λα,}0\{\lambda_{\alpha,\ell}\}_{\ell\in\mathbb{Z}_{\geq 0}}, where each λα,\lambda_{\alpha,\ell} is an element of 𝒪P(m)|Uα×\mathcal{O}_{P^{\ell}_{(m)}|_{U_{\alpha}}}^{\times} with λα,n=ηα,\lambda_{\alpha,\ell}^{\otimes n}=\eta_{\alpha,\ell}. By Lτα,,1{{}^{L}}\tau_{\alpha,\ell,1} and Rτα,,1{{}^{R}}\tau_{\alpha,\ell,1}, the automorphisms given by multiplication by λα,\lambda_{\alpha,\ell} for various \ell’s together determine an mm-PD stratification ϕ,α\phi_{\mathcal{L},\alpha} on |Uα\mathcal{L}|_{U_{\alpha}}. The uniqueness of the collection {λα,}\{\lambda_{\alpha,\ell}\}_{\ell} implies ϕ,α|UαUβ=ϕ,β|UαUβ\phi_{\mathcal{L},\alpha}|_{U_{\alpha}\cap U_{\beta}}=\phi_{\mathcal{L},\beta}|_{U_{\alpha}\cap U_{\beta}} for any pair (α,β)I×I(\alpha,\beta)\in I\times I with UαUβU_{\alpha}\cap U_{\beta}\neq\emptyset. Hence, ϕ,α\phi_{\mathcal{L},\alpha} may be glued together to obtain an mm-PD stratification ϕ\phi_{\mathcal{L}} on \mathcal{L}. Let \nabla_{\mathcal{L}} denote the 𝒟(m)\mathcal{D}^{(m)}-module structure on \mathcal{L} corresponding to ϕ\phi_{\mathcal{L}}. Then, it follows from the definitions of ϕ,α\phi_{\mathcal{L},\alpha}’s that the equality n=n\nabla_{\mathcal{L}}^{\otimes n}=\nabla_{\mathcal{L}^{\otimes n}} holds, and that an mm-PD stratification satisfying this equality is uniquely determined. This completes the proof of assertion (i).

Next, we shall consider assertion (ii). To consider the case of =0\ell=0, let UU denote the open subscheme of XX where the relative characteristic of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} is trivial. Since UU is scheme-theoretically dense (cf.  [KaFu, Lemma 1.4]), the problem is reduced, after restriction to UU, to the case where Slog=SS^{\mathrm{log}}=S and Xlog=XX^{\mathrm{log}}=X. Hence, the assertion follows from  [Wak6, Lemma 3.6.3].

Finally, let us prove the case of m=0m=0 by induction on \ell. The base step, i.e., the case of =0\ell=0, was already proved. To consider the induction step, we suppose that the assertion with \ell replaced by 1\ell-1 (1\ell\geq 1) has been proved. Denote by n,0()\nabla_{\mathcal{L}^{\otimes n},0}^{(\ell)} the 𝒟0()\mathcal{D}_{0}^{(\ell)}-module structure on 0n\mathcal{L}_{0}^{\otimes n} obtained as the diagonal reduction of (n,n)(\mathcal{L}^{\otimes n},\nabla_{\mathcal{L}^{\otimes n}}). By applying assertion (i) to n,0()\nabla_{\mathcal{L}^{\otimes n},0}^{(\ell)}, we obtain uniquely a 𝒟0()\mathcal{D}_{0}^{(\ell)}-module structure ,0()\nabla_{\mathcal{L},0}^{(\ell)} on 0\mathcal{L}_{0} with (,0())n=n,0()(\nabla_{\mathcal{L},0}^{(\ell)})^{\otimes n}=\nabla_{\mathcal{L}^{\otimes n},0}^{(\ell)}. By the induction hypothesis, ,1\nabla_{\mathcal{L},\ell-1} is dormant and the uniqueness of ,0()\nabla_{\mathcal{L},0}^{(\ell)} implies 1=(0,,0()(1)){{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{L}_{\ell-1}=(\mathcal{L}_{0},\nabla_{\mathcal{L},0}^{(\ell)\Rightarrow(\ell-1)}), where :=(,)\mathscr{L}:=(\mathcal{L},\nabla_{\mathcal{L}}). If UU is as above, then the restriction 𝒱|U()\mathcal{V}_{\mathscr{L}}|_{U^{(\ell)}} of 𝒱\mathcal{V}_{\mathscr{L}} is a line bundle on U()U^{(\ell)}. The diagonal reduction of n\mathscr{L}^{\otimes n} is (,0())n(\nabla_{\mathcal{L},0}^{(\ell)})^{\otimes n}, so the uniqueness portion of assertion (i) (together with the equivalence of categories (2.82)) implies that \nabla_{\mathscr{L}} and (,0())[](\nabla_{\mathcal{L},0}^{(\ell)})^{[\ell]} are equal when restricted to U()U^{(\ell)}. But, since U()U^{(\ell)} is scheme-theoretically dense in X()X^{(\ell)} and 𝒱\mathcal{V}_{\mathscr{L}} is relatively torsion-free (cf. Proposition 2.6.2, (i)), the equality =(,0())[]\nabla_{\mathscr{L}}=(\nabla_{\mathcal{L},0}^{(\ell)})^{[\ell]} holds. This implies (,)Diag(\mathscr{L},\nabla_{\mathcal{L}})\in\mathrm{Diag}_{\ell}, and hence completes the proof of assertion (ii). ∎

Proposition 3.3.2.

Let nn be a positive integer with pnp\nmid n and GL\mathcal{E}_{\mathrm{GL}} a GLn\mathrm{GL}_{n}-bundle on XX. Suppose that either =0\ell=0 or m=0m=0 is satisfied. Also, suppose that we are given a pair (ϕPGL,ϕ𝔾m)(\phi_{\mathrm{PGL}},\phi_{\mathbb{G}_{m}}), where

  • ϕPGL\phi_{\mathrm{PGL}} denotes an mm-PD stratification on the PGLn\mathrm{PGL}_{n}-bundle PGL:=GL×GLnPGLn\mathcal{E}_{\mathrm{PGL}}:=\mathcal{E}_{\mathrm{GL}}\times^{\mathrm{GL}_{n}}\mathrm{PGL}_{n} induced from GL\mathcal{E}_{\mathrm{GL}} via the natural quotient μPGL:GLnPGLn\mu_{\mathrm{PGL}}:\mathrm{GL}_{n}\twoheadrightarrow\mathrm{PGL}_{n};

  • ϕ𝔾m\phi_{\mathbb{G}_{m}} denotes an mm-PD stratification on the 𝔾m\mathbb{G}_{m}-bundle 𝔾m:=GL×GLn𝔾m\mathcal{E}_{\mathbb{G}_{m}}:=\mathcal{E}_{\mathrm{GL}}\times^{\mathrm{GL}_{n}}\mathbb{G}_{m} induced from GL\mathcal{E}_{\mathrm{GL}} via the determinant map μ𝔾m:GLn𝔾m\mu_{\mathbb{G}_{m}}:\mathrm{GL}_{n}\twoheadrightarrow\mathbb{G}_{m}.

Then, the following assertions hold:

  • (i)

    There exists a unique mm-PD stratification ϕGL\phi_{\mathrm{GL}} on GL\mathcal{E}_{\mathrm{GL}} satisfying the following equalities:

    ϕGL×GLn,μPGLPGLn=ϕPGL,ϕGL×GLn,μ𝔾m𝔾m=ϕ𝔾m\displaystyle\phi_{\mathrm{GL}}\times^{\mathrm{GL}_{n},\mu_{\mathrm{PGL}}}\mathrm{PGL}_{n}=\phi_{\mathrm{PGL}},\hskip 28.45274pt\phi_{\mathrm{GL}}\times^{\mathrm{GL}_{n},\mu_{\mathbb{G}_{m}}}\mathbb{G}_{m}=\phi_{\mathbb{G}_{m}} (3.31)

    (cf. (2.65) for the change of structure group of an mm-PD stratification).

  • (ii)

    If, moreover, both ϕPGL\phi_{\mathrm{PGL}} and ϕ𝔾m\phi_{\mathbb{G}_{m}} are dormant, then the resulting pair (GL,ϕGL)(\mathcal{E}_{\mathrm{GL}},\phi_{\mathrm{GL}}) (or equivalently, the corresponding 𝒟(m)\mathcal{D}^{(m)}-module) is dormant.

Proof.

First, we shall consider assertion (i). Let us take an open covering 𝒰:={Uα}αI\mathscr{U}:=\{U_{\alpha}\}_{\alpha\in I} of XX such that, for each αI\alpha\in I, there exists an mm-PD stratification ϕα\phi^{\prime}_{\alpha} on GL|Uα\mathcal{E}_{\mathrm{GL}}|_{U_{\alpha}} with ϕα×GLnPGLn=ϕPGL|Uα\phi^{\prime}_{\alpha}\times^{\mathrm{GL}_{n}}\mathrm{PGL}_{n}=\phi_{\mathrm{PGL}}|_{U_{\alpha}}. By Proposition 3.3.1, (i), there exists an mm-PD stratification ϕ𝔾m,α\phi_{\mathbb{G}_{m},\alpha} on the trivial 𝔾m\mathbb{G}_{m}-bundle on UαU_{\alpha} such that ϕ𝔾m,αn(ϕα×GLn𝔾m)=ϕ𝔾m|Uα\phi_{\mathbb{G}_{m},\alpha}^{\otimes n}\otimes(\phi^{\prime}_{\alpha}\times^{\mathrm{GL}_{n}}\mathbb{G}_{m})=\phi_{\mathbb{G}_{m}}|_{U_{\alpha}}, where the tensor product “\otimes” is defined in a natural manner. Write ϕα:=ϕαϕ𝔾m,α\phi_{\alpha}:=\phi^{\prime}_{\alpha}\otimes\phi_{\mathbb{G}_{m},\alpha}. Then, it is verified that ϕα×GLn𝔾m=ϕ𝔾m|Uα\phi_{\alpha}\times^{\mathrm{GL}_{n}}\mathbb{G}_{m}=\phi_{\mathbb{G}_{m}}|_{U_{\alpha}} and ϕα×GLnPGLn=ϕPGL|α\phi_{\alpha}\times^{\mathrm{GL}_{n}}\mathrm{PGL}_{n}=\phi_{\mathrm{PGL}}|_{\alpha}. By the uniqueness assertion of Proposition 3.3.1, (i), an mm-PD stratification on GL|Uα\mathcal{E}_{\mathrm{GL}}|_{U_{\alpha}} satisfying these properties is uniquely determined. In particular, for any pair (α,β)I×I(\alpha,\beta)\in I\times I with UαUβU_{\alpha}\cap U_{\beta}\neq\emptyset, we have ϕα|UαUβ=ϕβ|UαUβ\phi_{\alpha}|_{U_{\alpha}\cap U_{\beta}}=\phi_{\beta}|_{U_{\alpha}\cap U_{\beta}}. This implies that {ϕα}αI\{\phi_{\alpha}\}_{\alpha\in I} may be glued together to obtain an mm-PD stratification ϕGL\phi_{\mathrm{GL}} on GL\mathcal{E}_{\mathrm{GL}} satisfying (3.31). This completes the proof of assertion (i).

Next, we shall prove assertion (ii) under the assumption that =0\ell=0. Similarly to the proof of Proposition 3.3.1, (ii), it suffices to consider the case where Slog=SS^{\mathrm{log}}=S and Xlog=XX^{\mathrm{log}}=X. Denote by 𝒬\mathcal{Q} (resp., 𝒩\mathcal{N}) the n\mathbb{P}^{n}-bundle (resp., the line bundle) on X(m+1)X^{(m+1)} corresponding to (PGL,ϕPGL)(\mathcal{E}_{\mathrm{PGL}},\phi_{\mathrm{PGL}}) (resp., (𝔾m,ϕ𝔾m)(\mathcal{E}_{\mathbb{G}_{m}},\phi_{\mathbb{G}_{m}})) via the equivalence of categories asserted in  [Wak7, Proposition 7.7.3] (cf. Remark 2.5.3). Since pnp\nmid n, there exists, after possibly replacing SS with its étale covering, a pair (𝒱,)(\mathcal{V}^{\prime},\mathcal{M}), where

  • 𝒱\mathcal{V}^{\prime} denotes a rank nn vector bundle on X(m+1)X^{(m+1)} whose projectivization is 𝒬\mathcal{Q};

  • \mathcal{M} denote a line bundle on X(m+1)X^{(m+1)} with ndet(𝒱)𝒩\mathcal{M}^{\otimes n}\otimes\mathrm{det}(\mathcal{V}^{\prime})\cong\mathcal{N}.

Write 𝒱:=𝒱\mathcal{V}:=\mathcal{M}\otimes\mathcal{V}^{\prime}. Then, it is verified that det(𝒱)𝒩\mathrm{det}(\mathcal{V})\cong\mathcal{N} and that the projectivization of 𝒱\mathcal{V} is isomorphic to 𝒬\mathcal{Q}. The vector bundle 𝒱\mathcal{V} corresponds to a pm+1p^{m+1}-flat mm-PD stratified GLn\mathrm{GL}_{n}-bundle (GL,ϕGL)(\mathcal{E}^{\prime}_{\mathrm{GL}},\phi^{\prime}_{\mathrm{GL}}) via the equivalence of categories in  [Wak7, Proposition 7.7.3]. This equivalence of categories also implies (GL,ϕGL)(GL,ϕGL)(\mathcal{E}^{\prime}_{\mathrm{GL}},\phi^{\prime}_{\mathrm{GL}})\cong(\mathcal{E}_{\mathrm{GL}},\phi_{\mathrm{GL}}), so ϕGL\phi_{\mathrm{GL}} is pm+1p^{m+1}-flat.

Finally, we shall prove assertion (ii) under the assumption that m=0m=0. The problem is of local nature with respect to the étale topology on XX, we may assume that there exists a rank nn dormant flat bundle (,)(\mathcal{F},\nabla_{\mathcal{F}}) on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} whose projectivization corresponds to ϕPGL\phi_{\mathrm{PGL}}. Denote by (𝒱,𝒱)(\mathcal{V},\nabla_{\mathcal{V}}) the flat bundle corresponding to (GL,ϕGL)(\mathcal{E}_{\mathrm{GL}},\phi_{\mathrm{GL}}). Then, we obtain an isomorphism h:𝒱h:\mathcal{V}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{L}\otimes\mathcal{F} for some line bundle \mathcal{L}. It follows from Proposition 3.3.1, (i), that there exists SlogS^{\mathrm{log}}-connection \nabla_{\mathcal{L}} on \mathcal{L} such that the determinant of hh defines an isomorphism of flat line bundles

(det(𝒱),det(𝒱))(ndet(),n).\displaystyle(\mathrm{det}(\mathcal{V}),\mathrm{det}(\nabla_{\mathcal{V}}))\cong(\mathcal{L}^{\otimes n}\otimes\mathrm{det}(\mathcal{F}),\nabla_{\mathcal{L}}^{\otimes n}\otimes\nabla_{\mathcal{F}}). (3.32)

But, since both (deg(𝒱),det(𝒱))(\mathrm{deg}(\mathcal{V}),\mathrm{det}(\nabla_{\mathcal{V}})) (which corresponds to (𝔾m,ϕ𝔾m)(\mathcal{E}_{\mathbb{G}_{m}},\phi_{\mathbb{G}_{m}})) and (det(),det())(\mathrm{det}(\mathcal{F}),\mathrm{det}(\nabla_{\mathcal{F}})) are dormant, Proposition 3.3.1, (ii), implies that (,)(\mathcal{L},\nabla_{\mathcal{L}}) is dormant. By the uniqueness portion of assertion (i), hh defines an isomorphism (𝒱,𝒱)(,)(\mathcal{V},\nabla_{\mathcal{V}})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}(\mathcal{L}\otimes\mathcal{F},\nabla_{\mathcal{L}}\otimes\nabla_{\mathcal{F}}). In particular, (,)(\mathcal{F},\nabla) turns out to be dormant. This completes the proof of assertion (ii). ∎

3.4. Deformation space of a dormant flat bundle

In the rest of this section, suppose that XX is a geometrically connected, proper, and smooth curve of genus >1>1 over S:=Spec(R)S:=\mathrm{Spec}(R) for a flat /p+1\mathbb{Z}/p^{\ell+1}\mathbb{Z}-algebra RR. Let us fix an element (,,0())(\mathscr{L},\nabla_{\mathcal{L},0}^{(\ell)}) (where :=(,)\mathscr{L}:=(\mathcal{L},\nabla_{\mathcal{L}})) of Diag\mathrm{Diag}_{\ell} such that \mathcal{L} is a line bundle on XX.

Let mm be an integer with 0m<0\leq m<\ell, and let (,0(m))(\mathscr{F},\nabla_{0}^{(m)}) (where :=(,)\mathscr{F}:=(\mathcal{F},\nabla)) be an element of Diagm\mathrm{Diag}_{m} such that \mathcal{F} is a vector bundle on XX and a pair of identifications (det(),det(0(m)))=(m,,0(l)(m))(\mathrm{det}(\mathscr{F}),\mathrm{det}(\nabla_{0}^{(m)}))=(\mathscr{L}_{m},\nabla_{\mathcal{L},0}^{(l)\Rightarrow(m)}) is fixed. We shall write

Lift(0(m))(resp.,Lift((m)0))\displaystyle\mathrm{Lift}(\nabla_{0}^{(m)})\ \left(\text{resp.,}\ \mathrm{Lift}(\nabla^{(m)}_{0})_{\mathscr{L}}\right) (3.33)

for the set of 𝒟0(m+1)\mathcal{D}_{0}^{(m+1)}-module structures (m+1)0\nabla^{(m+1)}_{0} on 0\mathcal{F}_{0} with 0(m+1)(m)=0(m)\nabla_{0}^{(m+1)\Rightarrow(m)}=\nabla_{0}^{(m)} (resp., 0(m+1)(m)=(m)0\nabla_{0}^{(m+1)\Rightarrow(m)}=\nabla^{(m)}_{0} and det((m+1)0)=,0(l)(m+1)\mathrm{det}(\nabla^{(m+1)}_{0})=\nabla_{\mathcal{L},0}^{(l)\Rightarrow(m+1)}).

According to  [PBer2, Théorème 2.3.6], giving a 𝒟0(m+1)\mathcal{D}_{0}^{(m+1)}-module structure classified by this set amounts to giving an SS-connection on the 𝒪X0(m)\mathcal{O}_{X_{0}^{(m)}}-module 𝒮ol(0(m))\mathcal{S}ol(\nabla_{0}^{(m)}) (resp., an SS-connection on the 𝒪X0(m+1)\mathcal{O}_{X_{0}^{(m+1)}}-module 𝒮ol(0(m))\mathcal{S}ol(\nabla_{0}^{(m)}) whose determinant coincides with det((,0(l))[m+1]\mathrm{det}((\nabla_{\mathcal{L},0}^{(l)})^{[m+1]}). Hence, the set Lift(0(m))\mathrm{Lift}(\nabla_{0}^{(m)}) (resp., Lift(0(m))\mathrm{Lift}(\nabla_{0}^{(m)})_{\mathscr{L}}) is, if it is nonempty, equipped with a canonical structure of torsor modeled on the RR-module

H0(X0(m+1),Ω(m+1)0nd(𝒮ol(0(m))))\displaystyle H^{0}(X_{0}^{(m+1)},\Omega^{(m+1)}_{0}\otimes\mathcal{E}nd(\mathcal{S}ol(\nabla_{0}^{(m)})))\ \ \ \ (3.34)
(resp.,H0(X0(m+1),Ω0(m+1)nd0(𝒮ol(0(m))))),\displaystyle\left(\text{resp.,}\ H^{0}(X_{0}^{(m+1)},\Omega_{0}^{(m+1)}\otimes\mathcal{E}nd^{0}(\mathcal{S}ol(\nabla_{0}^{(m)})))\right),

where nd(𝒮ol(0(m))))\mathcal{E}nd(\mathcal{S}ol(\nabla_{0}^{(m)}))) (resp., nd0(𝒮ol(0(m)))\mathcal{E}nd^{0}(\mathcal{S}ol(\nabla_{0}^{(m)}))) denotes the sheaf of 𝒪X0(m+1)\mathcal{O}_{X_{0}^{(m+1)}}-linear endomorphisms of 𝒮ol(0(m)))\mathcal{S}ol(\nabla_{0}^{(m)})) (resp., 𝒪X0(m+1)\mathcal{O}_{X_{0}^{(m+1)}}-linear endomorphisms of 𝒮ol(0(m))\mathcal{S}ol(\nabla_{0}^{(m)}) with vanishing trace). This torsor structure is defined in such a way that if \nabla^{\prime} is the SS-connection corresponding to an element of Lift(0(m))\mathrm{Lift}(\nabla_{0}^{(m)}) (resp., Lift(0(m))\mathrm{Lift}(\nabla_{0}^{(m)})_{\mathscr{L}}) and AA is an element of the RR-module displayed in (3.34), then the result of the action by AA on \nabla^{\prime} is the SS-connection +A\nabla^{\prime}+A.

Proposition 3.4.1.

The natural inclusion Lift(0(m))Lift(0(m))\mathrm{Lift}(\nabla_{0}^{(m)})_{\mathscr{L}}\hookrightarrow\mathrm{Lift}(\nabla_{0}^{(m)}) commutes with the respective torsor structures via the injection

H0(X0(m+1),Ω0(m+1)nd0(𝒮ol(0(m))))H0(X0(m+1),Ω0(m+1)nd(𝒮ol(0(m))))\displaystyle H^{0}(X_{0}^{(m+1)},\Omega_{0}^{(m+1)}\otimes\mathcal{E}nd^{0}(\mathcal{S}ol(\nabla_{0}^{(m)})))\hookrightarrow H^{0}(X_{0}^{(m+1)},\Omega_{0}^{(m+1)}\otimes\mathcal{E}nd(\mathcal{S}ol(\nabla_{0}^{(m)}))) (3.35)

induced by the inclusion nd0(𝒮ol(0(m)))nd(𝒮ol((m)0))\mathcal{E}nd^{0}(\mathcal{S}ol(\nabla_{0}^{(m)}))\hookrightarrow\mathcal{E}nd(\mathcal{S}ol(\nabla^{(m)}_{0})).

Proof.

The assertion follows from the torsor structures of Lift(0(m))\mathrm{Lift}(\nabla_{0}^{(m)}) and Lift(0(m))\mathrm{Lift}(\nabla_{0}^{(m)})_{\mathscr{L}}. ∎

We shall denote by

(m)0,nd(or((m)0)nd):L𝒟0(m)nd𝒪S0(nd(0))\displaystyle\nabla^{(m)}_{0,\mathcal{E}nd}\ \left(\text{or}\ (\nabla^{(m)}_{0})_{\mathcal{E}nd}\right):{{}^{L}}\mathcal{D}_{0}^{(m)}\rightarrow\mathcal{E}nd_{\mathcal{O}_{S_{0}}}(\mathcal{E}nd(\mathcal{F}_{0})) (3.36)

the 𝒟0(m)\mathcal{D}_{0}^{(m)}-module structure on nd(0)(:=nd𝒪X0(0))\mathcal{E}nd(\mathcal{F}_{0})\left(:=\mathcal{E}nd_{\mathcal{O}_{X_{0}}}(\mathcal{F}_{0})\right) induced naturally by 0(m)\nabla_{0}^{(m)}. It restricts to a 𝒟0(m)\mathcal{D}_{0}^{(m)}-module structure

(m)0,nd0(or((m)0)nd0):L𝒟0(m)nd𝒪S(nd0(0))\displaystyle\nabla^{(m)}_{0,\mathcal{E}nd^{0}}\ \left(\text{or}\ (\nabla^{(m)}_{0})_{\mathcal{E}nd^{0}}\right):{{}^{L}}\mathcal{D}_{0}^{(m)}\rightarrow\mathcal{E}nd_{\mathcal{O}_{S}}(\mathcal{E}nd^{0}(\mathcal{F}_{0})) (3.37)

on the subsheaf nd0(0)\mathcal{E}nd^{0}(\mathcal{F}_{0}) consisting of 𝒪X0\mathcal{O}_{X_{0}}-linear endomorphisms with vanishing trace. The SS-connection 0,nd(m)(0)\nabla_{0,\mathcal{E}nd}^{(m)\Rightarrow(0)} (resp., 0,nd0(m)(0)\nabla_{0,\mathcal{E}nd^{0}}^{(m)\Rightarrow(0)}) may be regarded as a complex of sheaves 𝒦[0,nd(m)(0)]\mathcal{K}^{\bullet}[\nabla_{0,\mathcal{E}nd}^{(m)\Rightarrow(0)}] (resp., 𝒦[0,nd0(m)(0)]\mathcal{K}^{\bullet}[\nabla_{0,\mathcal{E}nd^{0}}^{(m)\Rightarrow(0)}]) concentrated at degrees 0 and 11.

Next, we shall write

Lift()(resp.,Lift())\displaystyle\mathrm{Lift}(\mathscr{F})\ \left(\text{resp.,}\ \mathrm{Lift}(\mathscr{F})_{\mathscr{L}}\right) (3.38)

for the set of isomorphism classes of flat bundles 𝒢\mathscr{G} on Xm+1/Sm+1X_{m+1}/S_{m+1} with 𝒢m=\mathscr{G}_{m}=\mathscr{F} (resp., flat bundles 𝒢\mathscr{G} on Xm+1/Sm+1X_{m+1}/S_{m+1} with 𝒢m=\mathscr{G}_{m}=\mathscr{F} together with an identification det(𝒢)=m+1\mathrm{det}(\mathscr{G})=\mathscr{L}_{m+1} compatible with the fixed identification det()=m\mathrm{det}(\mathscr{F})=\mathscr{L}_{m}). It follows from well-known generalities of deformation theory that the set Lift()\mathrm{Lift}(\mathscr{F}) (resp., Lift()\mathrm{Lift}(\mathscr{F})_{\mathscr{L}}) is, if it is nonempty, equipped with a structure of torsor modeled on 1(X0,𝒦[0,nd(m)(0)])\mathbb{H}^{1}(X_{0},\mathcal{K}^{\bullet}[\nabla_{0,\mathcal{E}nd}^{(m)\Rightarrow(0)}]) (resp., 1(X0,𝒦[0,nd0(m)(0)])\mathbb{H}^{1}(X_{0},\mathcal{K}^{\bullet}[\nabla_{0,\mathcal{E}nd^{0}}^{(m)\Rightarrow{(0)}}])) in the manner of  [Wak8, § 6.1.4].

Proposition 3.4.2.

The natural inclusion Lift()Lift()\mathrm{Lift}(\mathscr{F})_{\mathscr{L}}\hookrightarrow\mathrm{Lift}(\mathscr{F}) commutes with the respective torsor structures via the morphism

1(X0,𝒦[0,nd0(m)(0)])1(X0,𝒦[0,nd(m)(0)])\displaystyle\mathbb{H}^{1}(X_{0},\mathcal{K}^{\bullet}[\nabla_{0,\mathcal{E}nd^{0}}^{(m)\Rightarrow(0)}])\rightarrow\mathbb{H}^{1}(X_{0},\mathcal{K}^{\bullet}[\nabla_{0,\mathcal{E}nd}^{(m)\Rightarrow(0)}]) (3.39)

induced by the inclusion 𝒦[0,nd0(m)(0)]𝒦[0,nd(m)(0)]\mathcal{K}^{\bullet}[\nabla_{0,\mathcal{E}nd^{0}}^{(m)\Rightarrow(0)}]\hookrightarrow\mathcal{K}^{\bullet}[\nabla_{0,\mathcal{E}nd}^{(m)\Rightarrow(0)}].

Proof.

The assertion follows from the torsor structures of Lift()\mathrm{Lift}(\mathscr{F}) and Lift()\mathrm{Lift}(\mathscr{F})_{\mathscr{L}}. ∎

Since the equivalence of categories (2.82) commutes with the formation of internal Homs, there exists a natural identification

nd(𝒮ol(0(m)))=𝒮ol(0,nd(m))(resp.,nd0(𝒮ol(0(m)))=𝒮ol(0,nd0(m))).\displaystyle\mathcal{E}nd(\mathcal{S}ol(\nabla_{0}^{(m)}))=\mathcal{S}ol(\nabla_{0,\mathcal{E}nd}^{(m)})\ \left(\text{resp.,}\ \mathcal{E}nd^{0}(\mathcal{S}ol(\nabla_{0}^{(m)}))=\mathcal{S}ol(\nabla_{0,\mathcal{E}nd^{0}}^{(m)})\right). (3.40)

Under this identification, the Cartier operator associated to (nd(0),0,nd(m))(\mathcal{E}nd(\mathcal{F}_{0}),\nabla_{0,\mathcal{E}nd}^{(m)}) (resp., (nd0(0),0,nd0(m))(\mathcal{E}nd^{0}(\mathcal{F}_{0}),\nabla_{0,\mathcal{E}nd^{0}}^{(m)})) yields a morphism of complex

𝒦[0,nd(m)(0)](Ω0(m+1)nd(𝒮ol(0(m))))[1]\displaystyle\mathcal{K}^{\bullet}[\nabla_{0,\mathcal{E}nd}^{(m)\Rightarrow(0)}]\rightarrow(\Omega_{0}^{(m+1)}\otimes\mathcal{E}nd(\mathcal{S}ol(\nabla_{0}^{(m)})))[-1] (3.41)
(resp.,𝒦[0,nd0(m)(0)](Ω0(m+1)nd0(𝒮ol(0(m))))[1]).\displaystyle\left(\text{resp.,}\ \mathcal{K}^{\bullet}[\nabla_{0,\mathcal{E}nd^{0}}^{(m)\Rightarrow(0)}]\rightarrow(\Omega_{0}^{(m+1)}\otimes\mathcal{E}nd^{0}(\mathcal{S}ol(\nabla_{0}^{(m)})))[-1]\right).

By applying the 11-st hypercohomology functor to this morphism, we obtain an RR-linear morphism

1(X0,𝒦[0,nd(m)(0)])H0(X0(m+1),Ω0(m+1)nd(𝒮ol(0(m))))\displaystyle\mathbb{H}^{1}(X_{0},\mathcal{K}^{\bullet}[\nabla_{0,\mathcal{E}nd}^{(m)\Rightarrow(0)}])\rightarrow H^{0}(X_{0}^{(m+1)},\Omega_{0}^{(m+1)}\otimes\mathcal{E}nd(\mathcal{S}ol(\nabla_{0}^{(m)})))\ \ \ \ \ \, (3.42)
(resp.,1(X0,𝒦[0,nd0(m)(0)])H0(X0(m+1),Ω0(m+1)nd0(𝒮ol(0(m))))).\displaystyle\left(\text{resp.,}\ \mathbb{H}^{1}(X_{0},\mathcal{K}^{\bullet}[\nabla_{0,\mathcal{E}nd^{0}}^{(m)\Rightarrow(0)}])\rightarrow H^{0}(X_{0}^{(m+1)},\Omega_{0}^{(m+1)}\otimes\mathcal{E}nd^{0}(\mathcal{S}ol(\nabla_{0}^{(m)})))\right).
Proposition 3.4.3.

The assignment 𝒢𝒢\mathscr{G}\mapsto{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{G} (cf. Remark 3.2.3) for each 𝒢Lift()\mathscr{G}\in\mathrm{Lift}(\mathscr{F}) (resp., 𝒢Lift()\mathscr{G}\in\mathrm{Lift}(\mathscr{F})_{\mathscr{L}}) defines a map of sets

Lift()Lift(0(m))(resp.,Lift()Lift(0(m))).\displaystyle\mathrm{Lift}(\mathscr{F})\rightarrow\mathrm{Lift}(\nabla_{0}^{(m)})\ \left(\text{resp.,}\ \mathrm{Lift}(\mathscr{F})_{\mathscr{L}}\rightarrow\mathrm{Lift}(\nabla_{0}^{(m)})_{\mathscr{L}}\right). (3.43)

Moreover, this map commutes with the respective torsor structures via the morphism (3.42).

Proof.

The assertion follows immediately from the fact mentioned in Remark 3.2.2 and the definition of the functor (){{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!(-). ∎

Finally, we shall denote by

Lift(0(m))ψ(resp.,Lift(0(m))ψ)\displaystyle\mathrm{Lift}(\nabla_{0}^{(m)})^{\psi}\ \left(\text{resp.,}\ \mathrm{Lift}(\nabla_{0}^{(m)})^{\psi}_{\mathscr{L}}\right) (3.44)

the subset of Lift(0(m))\mathrm{Lift}(\nabla_{0}^{(m)}) (resp., Lift(0(m))\mathrm{Lift}(\nabla_{0}^{(m)})_{\mathscr{L}}) consisting of 𝒟0(m)\mathcal{D}_{0}^{(m)}-module structures with vanishing pm+1p^{m+1}-curvature. Also, denote by

Lift()ψ(resp.,Lift()ψ)\displaystyle\mathrm{Lift}(\mathscr{F})^{\psi}\ \left(\text{resp.,}\ \mathrm{Lift}(\mathscr{F})_{\mathscr{L}}^{\psi}\right) (3.45)

the subset of Lift()\mathrm{Lift}(\mathscr{F}) (resp., Lift()\mathrm{Lift}(\mathscr{F})_{\mathscr{L}}) consisting of dormant flat bundles. The following assertion is immediately verified.

Proposition 3.4.4.

The assignment 𝒢𝒢\mathscr{G}\mapsto{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{G} for each 𝒢Lift()ψ\mathscr{G}\in\mathrm{Lift}(\mathscr{F})^{\psi} (resp., 𝒢Lift()ψ\mathscr{G}\in\mathrm{Lift}(\mathscr{F})_{\mathscr{L}}^{\psi}) yields a map of sets

Lift()ψLift(0(m))ψ(resp.,Lift()ψLift(0(m))ψ)\displaystyle\mathrm{Lift}(\mathscr{F})^{\psi}\rightarrow\mathrm{Lift}(\nabla_{0}^{(m)})^{\psi}\ \left(\text{resp.,}\ \mathrm{Lift}(\mathscr{F})^{\psi}_{\mathscr{L}}\rightarrow\mathrm{Lift}(\nabla_{0}^{(m)})^{\psi}_{\mathscr{L}}\right) (3.46)

Moreover, the following commutative square diagram is Cartesian:

Lift()ψ(3.46)inclusionLift(0(m))ψinclusionLift()(3.43)Lift(0(m))(resp.,Lift()ψ(3.46)inclusionLift(0(m))ψinclusionLift()(3.43)Lift(0(m))).\displaystyle\vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 32.87225pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-19.96283pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{Lift}(\mathscr{F})^{\psi}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 26.58714pt\raise 6.1111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\eqref{fE17}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 55.96283pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-32.87225pt\raise-24.34444pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\mathrm{inclusion}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-43.18887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 55.96283pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{Lift}(\nabla_{0}^{(m)})^{\psi}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 78.22844pt\raise-23.62778pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\mathrm{inclusion}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 78.22844pt\raise-41.75555pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-18.13893pt\raise-53.68887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{Lift}(\mathscr{F})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 28.33714pt\raise-59.79997pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\eqref{fE6}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 57.78673pt\raise-53.68887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 57.78673pt\raise-53.68887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{Lift}(\nabla_{0}^{(m)})}$}}}}}}}\ignorespaces}}}}\ignorespaces}\ \left(\text{resp.,}\ \vbox{\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 32.87225pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-19.96283pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{Lift}(\mathscr{F})^{\psi}_{\mathscr{L}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 26.58714pt\raise 6.1111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\eqref{fE17}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 55.96283pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-32.87225pt\raise-26.84444pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\mathrm{inclusion}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-43.18887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 55.96283pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{Lift}(\nabla_{0}^{(m)})^{\psi}_{\mathscr{L}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 78.22844pt\raise-23.62778pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{\mathrm{inclusion}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 78.22844pt\raise-41.75555pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-19.88893pt\raise-53.68887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{Lift}(\mathscr{F})_{\mathscr{L}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 28.33714pt\raise-59.79997pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\eqref{fE6}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 56.03673pt\raise-53.68887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 56.03673pt\raise-53.68887pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathrm{Lift}(\nabla_{0}^{(m)})_{\mathscr{L}}}$}}}}}}}\ignorespaces}}}}\ignorespaces}\right). (3.55)
Proof.

The assertion follows from Propositions 2.6.1, (i), 3.2.5, (i), and Corollary 2.6.4. ∎

3.5. Canonical diagonal liftings of pm+1p^{m+1}-flat line bundles

In what follows, we will show that any 𝒟(m)0\mathcal{D}^{(m)}_{0}-module structure on a line bundle with vanishing pm+1p^{m+1}-curvature admits a unique diagonal lifting (cf. Proposition 3.5.1).

Denote by dlog:𝒪X×Ωd\mathrm{log}:\mathcal{O}_{X}^{\times}\rightarrow\Omega the morphism given by assigning vdlog(v):=dvvv\mapsto d\mathrm{log}(v):=\frac{dv}{v}. The natural short exact sequence 0Ω[1]𝒦[dlog]𝒪×X[0]00\rightarrow\Omega[-1]\rightarrow\mathcal{K}^{\bullet}[d\mathrm{log}]\rightarrow\mathcal{O}^{\times}_{X}[0]\rightarrow 0 yields an exact sequence of (hyper)cohomology groups

1(X,𝒦[dlog])linH1(X,𝒪×X)obs(:=H1(dlog))H1(X,Ω).\displaystyle\mathbb{H}^{1}(X,\mathcal{K}^{\bullet}[d\mathrm{log}])\xrightarrow{\mathrm{lin}}H^{1}(X,\mathcal{O}^{\times}_{X})\xrightarrow{\mathrm{obs}\,(:=H^{1}(d\mathrm{log}))}H^{1}(X,\Omega). (3.56)

Recall from  [Katz2, Proposition (7.2.1)] that the group 1(X,𝒦[dlog])\mathbb{H}^{1}(X,\mathcal{K}^{\bullet}[d\mathrm{log}]) (resp., H1(X,𝒪×X)H^{1}(X,\mathcal{O}^{\times}_{X})) parametrizes isomorphism classes of flat line bundles on X/SX/S (resp., line bundles on XX), and the map “lin\mathrm{lin}” is given by forgetting the data of SS-connections.

For each line bundle 𝒩\mathcal{N} on XX, we denote by

obs(𝒩)H1(X,Ω)\displaystyle\mathrm{obs}(\mathcal{N})\in H^{1}(X,\Omega) (3.57)

the image via the map “obs\mathrm{obs}” of the element in H1(X,𝒪×X)H^{1}(X,\mathcal{O}^{\times}_{X}) represented by 𝒩\mathcal{N}. The obstruction to the surjectivity of lin\mathrm{lin} lies in H1(X,Ω)H^{1}(X,\Omega), which means that obs(𝒩)=0\mathrm{obs}(\mathcal{N})=0 if and only if 𝒩\mathcal{N} admits an SS-connection.

Now, let us fix a line bundle \mathcal{L} on XX with obs()=0\mathrm{obs}(\mathcal{L})=0. Also, let mm be an integer with 0m<0\leq m<\ell and m\nabla_{m} an SmS_{m}-connection on m\mathcal{L}_{m} such that m:=(m,m)\mathscr{L}_{m}:=(\mathcal{L}_{m},\nabla_{m}) is dormant. Write m:=(0,0(m)){{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{L}_{m}:=(\mathcal{L}_{0},\nabla_{0}^{(m)}). As discussed in (3.33), the set Lift(0(m))\mathrm{Lift}(\nabla_{0}^{(m)}) of 𝒟0(m+1)\mathcal{D}_{0}^{(m+1)}-module structures 0(m+1)\nabla_{0}^{(m+1)} on 0\mathcal{L}_{0} with 0(m+1)(m)=0(m)\nabla_{0}^{(m+1)\Rightarrow(m)}=\nabla_{0}^{(m)} forms, if it is nonempty, a torsor modeled on H0(X0(m+1),Ω0(m+1))H^{0}(X_{0}^{(m+1)},\Omega_{0}^{(m+1)}); it contains a subset Lift(0(m))ψ\mathrm{Lift}(\nabla_{0}^{(m)})^{\psi} consisting of 𝒟0(m+1)\mathcal{D}_{0}^{(m+1)}-module structures with vanishing pm+1p^{m+1}-curvature.

Moreover, similarly to (3.38), we have the set

Lift(m)(resp.,Lift(m)ψ)\displaystyle\mathrm{Lift}(\mathscr{L}_{m})_{\mathcal{L}}\ \left(\text{resp.,}\ \mathrm{Lift}(\mathscr{L}_{m})_{\mathcal{L}}^{\psi}\right) (3.58)

of SS-connections (resp., dormant SS-connections) on m+1\mathcal{L}_{m+1} whose reduction modulo pm+1p^{m+1} coincides with m\nabla_{m}. Since obs()=0\mathrm{obs}(\mathcal{L})=0 and SS is affine, Lift(m)\mathrm{Lift}(\mathscr{L}_{m})_{\mathcal{L}} is verified to be nonempty and forms a torsor modeled on H0(X0,Ω)H^{0}(X_{0},\Omega).

The operation of taking diagonal reductions (){{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!(-) gives a map of sets

Lift(m)Lift(0(m))\displaystyle\mathrm{Lift}(\mathscr{L}_{m})_{\mathcal{L}}\rightarrow\mathrm{Lift}(\nabla_{0}^{(m)}) (3.59)

(cf. Remark 3.2.3), by which we see that Lift(0(m))\mathrm{Lift}(\nabla_{0}^{(m)}) is nonempty. By the dormancy condition, it can be restricted to a map

Lift(m)ψLift(0(m))ψ.\displaystyle\mathrm{Lift}(\mathscr{L}_{m})_{\mathcal{L}}^{\psi}\rightarrow\mathrm{Lift}(\nabla_{0}^{(m)})^{\psi}. (3.60)

Note that the map (3.59) commutes with the respective torsor structures via the Cartier operator

H0(C(𝒪X0,X0,triv(m))):H0(X0,Ω0)H0(X0(m+1),Ω0(m+1))\displaystyle H^{0}(C_{(\mathcal{O}_{X_{0}},\nabla_{X_{0},\mathrm{triv}}^{(m)})}):H^{0}(X_{0},\Omega_{0})\rightarrow H^{0}(X_{0}^{(m+1)},\Omega_{0}^{(m+1)}) (3.61)

of (𝒪X0,X0,triv(m))(\mathcal{O}_{X_{0}},\nabla_{X_{0},\mathrm{triv}}^{(m)}) (cf. (2.21), (2.99)). Hence, if the curve X0/S0X_{0}/S_{0} is ordinary in the usual sense, then (since (3.61) is bijective) the map (3.59), as well as (3.60), becomes a bijection. Applying inductively the bijectivity of (3.60) for various mm’s, we obtain the following proposition, asserting the existence of canonical diagonal liftings for the rank one case.

Proposition 3.5.1.

Let \mathcal{L} be as above and (m)0\nabla^{(m)}_{0} a 𝒟(m)0\mathcal{D}^{(m)}_{0}-module structure on 0\mathcal{L}_{0} with vanishing pm+1p^{m+1}-curvature. Suppose that the curve X0/S0X_{0}/S_{0} is ordinary. Then, there exists a unique diagonal lifting of (0,(m)0)(\mathcal{L}_{0},\nabla^{(m)}_{0}) whose underlying 𝒪X\mathcal{O}_{X}-module coincides with \mathcal{L}.

4. Local study of 𝒟(m)\mathcal{D}^{(m)}-modules

In this section, we study the local description of pm+1p^{m+1}-flat 𝒟(m)\mathcal{D}^{(m)}-modules in characteristic pp around a marked/nodal point of the underlying pointed stable curve. By applying the resulting description, we show that each dormant flat bundle in characteristic pm+1p^{m+1} can be decomposed into the direct sum of rank 11 flat bundles of a certain type (cf. Proposition-Definition 4.5.4).

Throughout this section, we fix a scheme SS.

4.1. Formal neighborhoods of a marked/nodal point

We shall set

U:=𝒮pec(𝒪S[[t]]),U:=𝒮pec(𝒪S[[t1,t2]]/(t1t2)),\displaystyle U_{\oslash}:=\mathcal{S}pec(\mathcal{O}_{S}[\![t]\!]),\hskip 14.22636ptU_{\otimes}:=\mathcal{S}pec(\mathcal{O}_{S}[\![t_{1},t_{2}]\!]/(t_{1}t_{2})), (4.1)

where tt, t1t_{1}, and t2t_{2} are formal parameters. For simplicity, we write 𝒪:=𝒪U\mathcal{O}_{\oslash}:=\mathcal{O}_{U_{\oslash}} and 𝒪:=𝒪U\mathcal{O}_{\otimes}:=\mathcal{O}_{U_{\otimes}}.

Hereinafter, let us fix a pair of nonnegative integers (,m)(\ell,m) with =0\ell=0 or m=0m=0, and suppose that SS is a flat scheme over /p+1\mathbb{Z}/p^{\ell+1}\mathbb{Z}. Denote by SlogS^{\mathrm{log}} the log scheme defined as SS equipped with the trivial log structure. Also, we equip UU_{\oslash} with the log structure associated to the monoid morphism 𝒪\mathbb{N}\rightarrow\mathcal{O}_{\oslash} given by ntnn\mapsto t^{n}; if UlogU_{\oslash}^{\mathrm{log}} denotes the resulting log scheme, then we obtain the sheaf of noncommutative rings on UU_{\oslash} defined as

𝒟(m):=limn1𝒟U,nlog/Slog(m),\displaystyle\mathcal{D}_{\oslash}^{(m)}:=\varprojlim_{n\geq 1}\mathcal{D}_{U_{\oslash,n}^{\mathrm{log}}/S^{\mathrm{log}}}^{(m)}, (4.2)

where U,nlogU_{\oslash,n}^{\mathrm{log}} (n1n\geq 1) denotes the strict closed subscheme of UlogU_{\oslash}^{\mathrm{log}} defined by the ideal sheaf (tn)𝒪S[[t]](t^{n})\subseteq\mathcal{O}_{S}[\![t]\!]. This sheaf has two 𝒪\mathcal{O}_{\oslash}-module structures L𝒟(m){{}^{L}}\mathcal{D}_{\oslash}^{(m)} and R𝒟(m){{}^{R}}\mathcal{D}_{\oslash}^{(m)} arising from those of L𝒟U,nlog/Slog(m){{}^{L}}\mathcal{D}_{U_{\oslash,n}^{\mathrm{log}}/S^{\mathrm{log}}}^{(m)}’s and R𝒟U,nlog/Slog(m){{}^{R}}\mathcal{D}_{U_{\oslash,n}^{\mathrm{log}}/S^{\mathrm{log}}}^{(m)}’s, respectively. The 𝒪\mathcal{O}_{\oslash}-module L𝒟(m){{}^{L}}\mathcal{D}_{\oslash}^{(m)} can be decomposed as the direct sum j0𝒪j\bigoplus_{j\in\mathbb{Z}_{\geq 0}}\mathcal{O}_{\oslash}\cdot\partial^{\langle j\rangle}, where j\partial^{\langle j\rangle}’s denote the sections associated to the logarithmic coordinate tt as defined in § 2.2. In particular, the multiplication in 𝒟(m)\mathcal{D}_{\oslash}^{(m)} is given by (2.12).

On the other hand, we equip UU_{\otimes} (resp., SS) with a log structure associated to the monoid morphism 𝒪\mathbb{N}\oplus\mathbb{N}\rightarrow\mathcal{O}_{\otimes} (resp., 𝒪S\mathbb{N}\rightarrow\mathcal{O}_{S}) given by (n1,n2)tn1tn2(n_{1},n_{2})\mapsto t^{n_{1}}\cdot t^{n_{2}} (resp., n0nn\mapsto 0^{n}); denote by UlogU_{\otimes}^{\mathrm{log}} (resp., SlogS^{\mathrm{log}}) the resulting log scheme. By the diagonal embedding \mathbb{N}\rightarrow\mathbb{N}\oplus\mathbb{N}, the projection USU_{\otimes}\rightarrow S extends to a morphism of log schemes UlogSlogU_{\otimes}^{\mathrm{log}}\rightarrow S^{\mathrm{log}}. We obtain the sheaf on UU_{\otimes} defined as

𝒟(m):=limn1𝒟U,nlog/Slog(m),\displaystyle\mathcal{D}^{(m)}_{\otimes}:=\varprojlim_{n\geq 1}\mathcal{D}_{U_{\otimes,n}^{\mathrm{log}}/S^{\mathrm{log}}}^{(m)}, (4.3)

where U,nlogU_{\otimes,n}^{\mathrm{log}} (n1n\geq 1) denotes the strict closed subscheme of UlogU_{\otimes}^{\mathrm{log}} defined by the ideal sheaf (t1,t2)n𝒪S[[t1,t2]]/(t1t2)(t_{1},t_{2})^{n}\subseteq\mathcal{O}_{S}[\![t_{1},t_{2}]\!]/(t_{1}t_{2}). Just as in the case of 𝒟(m)\mathcal{D}^{(m)}_{\oslash}, this sheaf has two 𝒪\mathcal{O}_{\otimes}-module structures L𝒟(m){{}^{L}}\mathcal{D}^{(m)}_{\otimes} and R𝒟(m){{}^{R}}\mathcal{D}^{(m)}_{\otimes}.

For each i=1,2i=1,2, denote by {ij}j0\{\partial_{i}^{\langle j\rangle}\}_{j\in\mathbb{Z}_{\geq 0}} the basis of 𝒟(m)\mathcal{D}^{(m)}_{\otimes} associated to the logarithmic coordinate tit_{i}. In particular, we have L𝒟(m)=j0𝒪ij{{}^{L}}\mathcal{D}^{(m)}_{\otimes}=\bigoplus_{j\in\mathbb{Z}_{\geq 0}}\mathcal{O}_{\otimes}\cdot\partial_{i}^{\langle j\rangle}.

Lemma 4.1.1.

For each positive integer jpmj\leq p^{m}, the following equality holds:

2j=(1)jj=1j(j1j1)1j.\displaystyle\partial_{2}^{\langle j\rangle}=(-1)^{j}\cdot\sum_{j^{\prime}=1}^{j}\binom{j-1}{j^{\prime}-1}\cdot\partial_{1}^{\langle j^{\prime}\rangle}. (4.4)

In particular, for each nonnegative integer ama\leq m, the following equalities hold:

2pa=j=1pa(1)j1j=1pa1+b=0a1(1(1pb)p1),\displaystyle\partial_{2}^{\langle p^{a}\rangle}=\sum_{j^{\prime}=1}^{p^{a}}(-1)^{j^{\prime}}\cdot\partial_{1}^{\langle j^{\prime}\rangle}=-\partial_{1}^{\langle p^{a}\rangle}-1+\prod_{b=0}^{a-1}(1-(\partial_{1}^{\langle p^{b}\rangle})^{p-1}), (4.5)

where we set b=01():=1\prod_{b=0}^{-1}(-):=1.

Proof.

Note that the morphism μ(m)\mu_{(m)} and the sheaves 𝒫(m)\mathcal{P}_{(m)}^{\ell} (0\ell\in\mathbb{Z}_{\geq 0}) discussed in § 2.2 can be defined even in the case where Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} is replaced by Ulog/SlogU_{\otimes}^{\mathrm{log}}/S^{\mathrm{log}}. In particular, we obtain the sections ηi:=μ(m)(ti)1\eta_{i}:=\mu_{(m)}(t_{i})-1 (i=1,2i=1,2) of 𝒫(m)\mathcal{P}_{(m)}^{\ell}. Since μ(m)\mu_{(m)} preserves the monoid structure, we have

(1+η1)(1+η2)=μ(m)(t1)μ(m)(t2)=μ(m)(t1t2)=μ(m)(0)=1.\displaystyle(1+\eta_{1})(1+\eta_{2})=\mu_{(m)}(t_{1})\cdot\mu_{(m)}(t_{2})=\mu_{(m)}(t_{1}\cdot t_{2})=\mu_{(m)}(0)=1. (4.6)

This implies

η1=1+(1+η2)1=η2+η22η23+η24(=j=1(η2)j).\displaystyle\eta_{1}=-1+(1+\eta_{2})^{-1}=-\eta_{2}+\eta_{2}^{2}-\eta_{2}^{3}+\eta_{2}^{4}-\cdots\left(=\sum_{j=1}^{\infty}(-\eta_{2})^{j}\right).

Hence, for each jpmj^{\prime}\leq p^{m}, the following equalities hold:

η1{j}=η1j=(j=1(η2)j)j=i=0(j+i1j1)(η2)j+i.\displaystyle\eta_{1}^{\{j^{\prime}\}}=\eta_{1}^{j^{\prime}}=(\sum_{j=1}^{\infty}(-\eta_{2})^{j})^{j^{\prime}}=\sum_{i=0}^{\infty}\binom{j^{\prime}+i-1}{j^{\prime}-1}\cdot(-\eta_{2})^{j^{\prime}+i}. (4.7)

By taking duals, we obtain (4.4). This completes the proof of the first assertion. Moreover, the second assertion follows from (4.4) together with Lemma 2.2.2. ∎

Next, we shall set

ι1:UU(resp.,ι2:UU)\displaystyle\iota_{1}:U_{\oslash}\hookrightarrow U_{\otimes}\ \left(\text{resp.,}\ \iota_{2}:U_{\oslash}\hookrightarrow U_{\otimes}\right) (4.8)

to be the closed immersion corresponding to the surjection 𝒪S[[t1,t2]]/(t1t2)𝒪S[[t]]\mathcal{O}_{S}[\![t_{1},t_{2}]\!]/(t_{1}t_{2})\twoheadrightarrow\mathcal{O}_{S}[\![t]\!] given by t1tt_{1}\mapsto t and t20t_{2}\mapsto 0 (resp., t10t_{1}\mapsto 0 and t2tt_{2}\mapsto t). The inclusion into the ii-th factor \mathbb{N}\hookrightarrow\mathbb{N}\oplus\mathbb{N} determines a morphism of log schemes

U×ιi,UUlogUlog\displaystyle U_{\oslash}\times_{\iota_{i},U_{\otimes}}U_{\otimes}^{\mathrm{log}}\rightarrow U_{\oslash}^{\mathrm{log}} (4.9)

whose underlying morphism of SS-schemes coincides with the identity morphism of UU_{\oslash}. This morphism induces an identification ιi(L𝒟(m))=L𝒟(m)\iota_{i}^{*}({{}^{L}}\mathcal{D}^{(m)}_{\otimes})={{}^{L}}\mathcal{D}_{\oslash}^{(m)}. The 𝒪\mathcal{O}_{\otimes}-linear surjection

ωi:L𝒟(m)(ιi(ιi(L𝒟(m)))=)ιi(L𝒟(m))\displaystyle\omega_{i}:{{}^{L}}\mathcal{D}_{\otimes}^{(m)}\twoheadrightarrow\left(\iota_{i*}(\iota_{i}^{*}({{}^{L}}\mathcal{D}^{(m)}_{\otimes}))=\right)\iota_{i*}({{}^{L}}\mathcal{D}_{\oslash}^{(m)}) (4.10)

corresponding to this identification via the adjunction relation “ιi()ιi()\iota^{*}_{i}(-)\dashv\iota_{i*}(-) maps ij\partial_{i}^{\langle j\rangle} to j\partial^{\langle j\rangle} for every j0j\geq 0.

For a 𝒟(m)\mathcal{D}_{\otimes}^{(m)}-module (,)(\mathcal{F},\nabla), we shall write

ιi():L𝒟(m)nd𝒪S(ιi())\displaystyle\iota^{*}_{i}(\nabla):{{}^{L}}\mathcal{D}_{\oslash}^{(m)}\rightarrow\mathcal{E}nd_{\mathcal{O}_{S}}(\iota_{i}^{*}(\mathcal{F})) (4.11)

for the 𝒟(m)\mathcal{D}_{\oslash}^{(m)}-module structure on ιi()\iota_{i}^{*}(\mathcal{F}) induced naturally by \nabla under the identification ιi(L𝒟(m))=L𝒟(m)\iota_{i}^{*}({{}^{L}}\mathcal{D}^{(m)}_{\otimes})={{}^{L}}\mathcal{D}_{\oslash}^{(m)}.

4.2. Monodromy operator

We shall set

S:=j0𝒪Sj,\displaystyle\mathcal{B}_{S}:=\bigoplus_{j\in\mathbb{Z}_{\geq 0}}\mathcal{O}_{S}\cdot\partial_{\mathcal{B}}^{\langle j\rangle}, (4.12)

where i\partial_{\mathcal{B}}^{\langle i\rangle}’s are abstract symbols. We equip S\mathcal{B}_{S} with a structure of 𝒪S\mathcal{O}_{S}-algebra given by

jj=j=max{j,j}j+jj!(j+jj)!(jj)!(jj)!qj!qj!qj!j.\displaystyle\partial_{\mathcal{B}}^{\langle j^{\prime}\rangle}\cdot\partial_{\mathcal{B}}^{\langle j^{\prime\prime}\rangle}=\sum_{j=\mathrm{max}\{j^{\prime},j^{\prime\prime}\}}^{j^{\prime}+j^{\prime\prime}}\frac{j!}{(j^{\prime}+j^{\prime\prime}-j)!\cdot(j-j^{\prime})!\cdot(j-j^{\prime\prime})!}\cdot\frac{q_{j^{\prime}}!\cdot q_{j^{\prime\prime}}!}{q_{j}!}\cdot\partial_{\mathcal{B}}^{\langle j\rangle}. (4.13)

In particular, the 𝒪S\mathcal{O}_{S}-algebra S\mathcal{B}_{S} is commutative and generated by the sections 1,p,,pm\partial_{\mathcal{B}}^{\langle 1\rangle},\partial_{\mathcal{B}}^{\langle p\rangle},\cdots,\partial_{\mathcal{B}}^{\langle p^{m}\rangle}.

Let 𝒢\mathcal{G} be an 𝒪S\mathcal{O}_{S}-module and μ\mu a morphism of 𝒪S\mathcal{O}_{S}-algebras Snd𝒪S(𝒢)\mathcal{B}_{S}\rightarrow\mathcal{E}nd_{\mathcal{O}_{S}}(\mathcal{G}). For each a0a\in\mathbb{Z}_{\geq 0}, we set μpa:=μ(pa)\mu^{\langle p^{a}\rangle}:=\mu(\partial_{\mathcal{B}}^{\langle p^{a}\rangle}), which is an element of End𝒪S(𝒢)\mathrm{End}_{\mathcal{O}_{S}}(\mathcal{G}). The morphism μ\mu is uniquely determined by the (m+1)(m+1)-tuple

μ:=(μ1,μp,μpm)End𝒪S(𝒢)(m+1).\displaystyle\mu^{\langle\bullet\rangle}:=(\mu^{\langle 1\rangle},\mu^{\langle p\rangle}\cdots,\mu^{\langle p^{m}\rangle})\in\mathrm{End}_{\mathcal{O}_{S}}(\mathcal{G})^{\oplus(m+1)}. (4.14)

Denote by σ:SU\sigma_{\oslash}:S\rightarrow U_{\oslash} (resp., σ:SU\sigma_{\otimes}:S\rightarrow U_{\otimes}) the closed immersion corresponding to the surjection 𝒪S[[t]]𝒪S\mathcal{O}_{S}[\![t]\!]\twoheadrightarrow\mathcal{O}_{S} given by t0t\mapsto 0 (resp., the surjection 𝒪S[[t1,t2]]/(t1t2)𝒪S\mathcal{O}_{S}[\![t_{1},t_{2}]\!]/(t_{1}t_{2})\twoheadrightarrow\mathcal{O}_{S} given by t10t_{1}\mapsto 0 and t20t_{2}\mapsto 0). It follows from (2.12) and (4.13) that the assignment jj\partial^{\langle j\rangle}\mapsto\partial_{\mathcal{B}}^{\langle j\rangle} (j0j\in\mathbb{Z}_{\geq 0}) determines an isomorphism of 𝒪S\mathcal{O}_{S}-algebras σ(L𝒟(m))S\sigma_{\oslash}^{*}({{}^{L}}\mathcal{D}_{\oslash}^{(m)})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{B}_{S}. This morphism induces, via the adjunction relation “σ()σ()\sigma_{\oslash}^{*}(-)\dashv\sigma_{\oslash*}(-)”, an 𝒪\mathcal{O}_{\oslash}-linear surjection

ω:L𝒟(m)σ(S).\displaystyle\omega:{{}^{L}}\mathcal{D}_{\oslash}^{(m)}\twoheadrightarrow\sigma_{\oslash*}(\mathcal{B}_{S}). (4.15)

Now, let (,)(\mathcal{F},\nabla) be a 𝒟(m)\mathcal{D}_{\oslash}^{(m)}-module. The 𝒟(m)\mathcal{D}_{\oslash}^{(m)}-module structure \nabla induces an σ(L𝒟(m))\sigma_{\oslash}^{*}({{}^{L}}\mathcal{D}_{\oslash}^{(m)})-action σ()\sigma_{\oslash}^{*}(\nabla) on σ()\sigma_{\oslash}^{*}(\mathcal{F}); it gives the composite

μ():Sσ(L𝒟(m))σ()nd𝒪S(σ()).\displaystyle\mu(\nabla):\mathcal{B}_{S}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\sigma_{\oslash}^{*}({{}^{L}}\mathcal{D}_{\oslash}^{(m)})\xrightarrow{\sigma^{*}_{\oslash}(\nabla)}\mathcal{E}nd_{\mathcal{O}_{S}}(\sigma_{\oslash}^{*}(\mathcal{F})). (4.16)

In particular, we obtain

μ():=(μ()1,μ()p,μ()pm)End𝒪S(σ())(m+1).\displaystyle\mu(\nabla)^{\langle\bullet\rangle}:=(\mu(\nabla)^{\langle 1\rangle},\mu(\nabla)^{\langle p\rangle}\cdots,\mu(\nabla)^{\langle p^{m}\rangle})\in\mathrm{End}_{\mathcal{O}_{S}}(\sigma_{\oslash}^{*}(\mathcal{F}))^{\oplus(m+1)}. (4.17)

Since S\mathcal{B}_{S} is commutative, the elements μ()1,,μ()pm\mu(\nabla)^{\langle 1\rangle},\cdots,\mu(\nabla)^{\langle p^{m}\rangle} commute with each other.

Definition 4.2.1.

We shall refer to μ()\mu(\nabla) and μ()\mu(\nabla)^{\langle\bullet\rangle} as the monodromy operator of \nabla. Also, for each a=0,,ma=0,\cdots,m, we shall refer to μ()pa\mu(\nabla)^{\langle p^{a}\rangle} as the aa-th monodromy operator of \nabla.

Note that there exists uniquely an automorphism

sw:SS\displaystyle\mathrm{sw}:\mathcal{B}_{S}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{B}_{S} (4.18)

of the 𝒪S\mathcal{O}_{S}-algebra S\mathcal{B}_{S} determined by sw(j)=(1)jj=1j(j1j1)j\mathrm{sw}(\partial_{\mathcal{B}}^{\langle j\rangle})=(-1)^{j}\cdot\sum_{j^{\prime}=1}^{j}\binom{j-1}{j^{\prime}-1}\cdot\partial_{\mathcal{B}}^{\langle j^{\prime}\rangle} for every positive integer jpmj\leq p^{m} (cf. Lemma 4.1.1). In particular, the equality sw(pa)=j=1pa(1)jj\mathrm{sw}(\partial_{\mathcal{B}}^{\langle p^{a}\rangle})=\sum_{j^{\prime}=1}^{p^{a}}(-1)^{j^{\prime}}\cdot\partial_{\mathcal{B}}^{\langle j^{\prime}\rangle} holds for ama\leq m. This automorphism is involutive, i.e., swsw=idS\mathrm{sw}\circ\mathrm{sw}=\mathrm{id}_{\mathcal{B}_{S}}.

For an 𝒪S\mathcal{O}_{S}-module 𝒢\mathcal{G}, we shall set

sw𝒢:End𝒪S(𝒢)(m+1)End𝒪S(𝒢)(m+1)\displaystyle\mathrm{sw}^{\bullet}_{\mathcal{G}}:\mathrm{End}_{\mathcal{O}_{S}}(\mathcal{G})^{\oplus(m+1)}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathrm{End}_{\mathcal{O}_{S}}(\mathcal{G})^{\oplus(m+1)} (4.19)

to be the endomap of End𝒪S(𝒢)(m+1)\mathrm{End}_{\mathcal{O}_{S}}(\mathcal{G})^{\oplus(m+1)} given by

sw𝒢((Aa)a=0m):=((Aaid𝒢+b=0a1(id𝒢Abp1))a=0m),\displaystyle\mathrm{sw}^{\bullet}_{\mathcal{G}}((A_{a})_{a=0}^{m}):=((-A_{a}-\mathrm{id}_{\mathcal{G}}+\prod_{b=0}^{a-1}(\mathrm{id}_{\mathcal{G}}-A_{b}^{p-1}))_{a=0}^{m}), (4.20)

where b=01():=id𝒢\prod_{b=0}^{-1}(-):=\mathrm{id}_{\mathcal{G}} and b=0a1Bb:=B0B1Ba1\prod_{b=0}^{a-1}B_{b}:=B_{0}\circ B_{1}\circ\cdots\circ B_{a-1} (a1a\geq 1). If (,)(\mathcal{F},\nabla) is as above, then the second equality in (4.5) implies

(μ()sw)=swσ()(μ()).\displaystyle(\mu(\nabla)\circ\mathrm{sw})^{\langle\bullet\rangle}=\mathrm{sw}_{\sigma_{\oslash}^{*}(\mathcal{F})}^{\bullet}(\mu(\nabla)^{\langle\bullet\rangle}). (4.21)
Proposition 4.2.2.

Let \mathcal{F} be an 𝒪\mathcal{O}_{\otimes}-module.

  • (i)

    Let \nabla be a 𝒟(m)\mathcal{D}_{\otimes}^{(m)}-module structure on \mathcal{F}. Then, the equality

    μ(ι1())sw=μ(ι2())(swσ()(μ(ι1()))=μ(ι2())by (4.21))\displaystyle\mu(\iota_{1}^{*}(\nabla))\circ\mathrm{sw}=\mu(\iota_{2}^{*}(\nabla))\left(\Longleftrightarrow\mathrm{sw}^{\bullet}_{\sigma_{\otimes}^{*}(\mathcal{F})}(\mu(\iota_{1}^{*}(\nabla))^{\langle\bullet\rangle})=\mu(\iota_{2}^{*}(\nabla))^{\langle\bullet\rangle}\ \text{by \eqref{dE110}}\right) (4.22)

    holds.

  • (ii)

    Conversely, let i\nabla_{i} (for each i=1,2i=1,2) be a 𝒟(m)\mathcal{D}_{\oslash}^{(m)}-module structure on ιi()\iota_{i}^{*}(\mathcal{F}), and suppose that the equality μ(1)sw=μ(2)\mu(\nabla_{1})\circ\mathrm{sw}=\mu(\nabla_{2}) (or equivalently, swσ()(μ(1))=μ(2)\mathrm{sw}^{\bullet}_{\sigma_{\otimes}^{*}(\mathcal{F})}(\mu(\nabla_{1})^{\langle\bullet\rangle})=\mu(\nabla_{2})^{\langle\bullet\rangle}) holds. Then, there exists a unique 𝒟(m)\mathcal{D}_{\otimes}^{(m)}-module structure \nabla on \mathcal{F} satisfying the equalities ι1()=1\iota_{1}^{*}(\nabla)=\nabla_{1} and ι2()=2\iota_{2}^{*}(\nabla)=\nabla_{2} under the natural identifications ι1(L𝒟(m))=L𝒟(m)\iota_{1}^{*}({{}^{L}}\mathcal{D}_{\otimes}^{(m)})={{}^{L}}\mathcal{D}_{\oslash}^{(m)} and ι2(L𝒟(m))=L𝒟(m)\iota_{2}^{*}({{}^{L}}\mathcal{D}_{\otimes}^{(m)})={{}^{L}}\mathcal{D}_{\oslash}^{(m)}, respectively.

Proof.

We shall set L𝒟˘(m){{}^{L}}\breve{\mathcal{D}}_{\otimes}^{(m)} to be the sheaf defined as

L𝒟˘(m)\displaystyle{{}^{L}}\breve{\mathcal{D}}_{\otimes}^{(m)} :=ι1(L𝒟(m))×ω,S,swωι2(L𝒟(m))\displaystyle:=\iota_{1*}({{}^{L}}\mathcal{D}_{\oslash}^{(m)})\times_{\omega,\mathcal{B}_{S},\mathrm{sw}\circ\omega}\iota_{2*}({{}^{L}}\mathcal{D}_{\oslash}^{(m)}) (4.23)
(={(s1,s2)ι1(L𝒟(m))×ι2(L𝒟(m))|ι1(ω)(s1)=(σ(sw)ι2(ω))(s2)}).\displaystyle\left(=\left\{(s_{1},s_{2})\in\iota_{1*}({{}^{L}}\mathcal{D}_{\oslash}^{(m)})\times\iota_{2*}({{}^{L}}\mathcal{D}_{\oslash}^{(m)})\,\Big{|}\,\iota_{1*}(\omega)(s_{1})=(\sigma_{\otimes*}(\mathrm{sw})\circ\iota_{2*}(\omega))(s_{2})\right\}\right).

By using the isomorphism 𝒪ι1(𝒪)×σ(𝒪S)ι2(𝒪)\mathcal{O}_{\otimes}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\iota_{1*}(\mathcal{O}_{\oslash})\times_{\sigma_{\otimes*}(\mathcal{O}_{S})}\iota_{2*}(\mathcal{O}_{\oslash}) given by t1(t,0)t_{1}\mapsto(t,0) and t2(0,t)t_{2}\mapsto(0,t), we equip L𝒟˘(m){{}^{L}}\breve{\mathcal{D}}_{\otimes}^{(m)} with an 𝒪\mathcal{O}_{\otimes}-module structure. It follows from Lemma 4.1.1 that the assignment s(ω1(s),ω2(s))s\mapsto(\omega_{1}(s),\omega_{2}(s)) for each local section sL𝒟(m)s\in{{}^{L}}\mathcal{D}_{\otimes}^{(m)} defines an 𝒪\mathcal{O}_{\otimes}-linear isomorphism

L𝒟(m)L𝒟˘(m).\displaystyle{{}^{L}}\mathcal{D}_{\otimes}^{(m)}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}{{}^{L}}\breve{\mathcal{D}}_{\otimes}^{(m)}. (4.24)

Hence, both assertions (i) and (ii) are direct consequences of this isomorphism. ∎

4.3. 𝒟(m)\mathcal{D}^{(m)}-module structures ,d(m)\nabla_{\oslash,d}^{(m)} and ,d(m)\nabla_{\otimes,d}^{(m)}

In §§ 4.3-4.4, we suppose that SS is a scheme over 𝔽p\mathbb{F}_{p} (equipped with the trivial mm-PD structure). Note that the discussions in §§ 2.5-2.6 can be applied even when “Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}” is replaced by Ulog/SlogU_{\oslash}^{\mathrm{log}}/S^{\mathrm{log}} or Ulog/SlogU_{\otimes}^{\mathrm{log}}/S^{\mathrm{log}}. In particular, we can define the pm+1p^{m+1}-curvature of a 𝒟(m)\mathcal{D}_{\oslash}^{(m)}-module, as well as of a 𝒟(m)\mathcal{D}_{\otimes}^{(m)}-module.

The Frobenius twist U(m+1)U_{\oslash}^{(m+1)} (resp., U(m+1)U_{\otimes}^{(m+1)}) of UU_{\oslash} (resp., UU_{\otimes}) over SS may be identified with the relative affine scheme over SS associated to the 𝒪S\mathcal{O}_{S}-subalgebra

𝒪S[[tpm+1]](resp.,𝒪S[[tpm+11,t2pm+1]]/(t1pm+1t2pm+1))\displaystyle\mathcal{O}_{S}[\![t^{p^{m+1}}]\!]\ \left(\text{resp.},\ \mathcal{O}_{S}[\![t^{p^{m+1}}_{1},t_{2}^{p^{m+1}}]\!]/(t_{1}^{p^{m+1}}t_{2}^{p^{m+1}})\right) (4.25)

of 𝒪S[[t]]\mathcal{O}_{S}[\![t]\!] (resp., 𝒪S[[t1,t2]]/(t1t2)\mathcal{O}_{S}[\![t_{1},t_{2}]\!]/(t_{1}t_{2})). For simplicity, we write 𝒪(m+1):=𝒪U(m+1)\mathcal{O}_{\oslash}^{(m+1)}:=\mathcal{O}_{U_{\oslash}^{(m+1)}} and 𝒪(m+1):=𝒪U(m+1)\mathcal{O}_{\otimes}^{(m+1)}:=\mathcal{O}_{U_{\otimes}^{(m+1)}}.

Given an element dd of /pm+1\mathbb{Z}/p^{m+1}\mathbb{Z}, we denote by d~\widetilde{d} the integer defined as the unique lifting of dd via the natural surjection /pm+1\mathbb{Z}\twoheadrightarrow\mathbb{Z}/p^{m+1}\mathbb{Z} satisfying 0d~<pm+10\leq\widetilde{d}<p^{m+1}. Let d~[0],,d~[m]\widetilde{d}_{[0]},\cdots,\widetilde{d}_{[m]} be the collection of integers uniquely determined by the condition that d~=a=0mpad~[a]\widetilde{d}=\sum_{a=0}^{m}p^{a}\cdot\widetilde{d}_{[a]} and 0d~[a]<p0\leq\widetilde{d}_{[a]}<p (a=0,,ma=0,\cdots,m). Also, for each a=0,,ma=0,\cdots,m, we write d~[0,a]:=b=0apbd~[b]\widetilde{d}_{[0,a]}:=\sum_{b=0}^{a}p^{b}\cdot\widetilde{d}_{[b]}, i.e., the remainder obtained by dividing d~\widetilde{d} by pa+1p^{a+1}, and write d[a]d_{[a]} (resp., d[0,a]d_{[0,a]}) for the image of d~[a]\widetilde{d}_{[a]} (resp., d~[0,a]\widetilde{d}_{[0,a]}) via the natural projection 𝔽p\mathbb{Z}\twoheadrightarrow\mathbb{F}_{p} (resp., /pa+1\mathbb{Z}\twoheadrightarrow\mathbb{Z}/p^{a+1}\mathbb{Z}).

Now, let us fix an element d/pm+1d\in\mathbb{Z}/p^{m+1}\mathbb{Z}. Then, there exists a unique 𝒟(m)\mathcal{D}_{\oslash}^{(m)}-module structure

,d(m):L𝒟(m)nd𝒪S(𝒪)\displaystyle\nabla_{\oslash,d}^{(m)}:{{}^{L}}\mathcal{D}_{\oslash}^{(m)}\rightarrow\mathcal{E}nd_{\mathcal{O}_{S}}(\mathcal{O}_{\oslash}) (4.26)

on 𝒪\mathcal{O}_{\oslash} determined by the condition that ,d(m)(j)(tn)=qj!(nd~j)tn\nabla_{\oslash,d}^{(m)}(\partial^{\langle j\rangle})(t^{n})=q_{j}!\cdot\binom{n-\widetilde{d}}{j}\cdot t^{n} for every jj, n0n\in\mathbb{Z}_{\geq 0}. The resulting 𝒟(m)\mathcal{D}_{\oslash}^{(m)}-module

𝒪,d(m):=(𝒪,,d(m))\displaystyle\mathscr{O}_{\oslash,d}^{(m)}:=(\mathcal{O}_{\oslash},\nabla_{\oslash,d}^{(m)}) (4.27)

is isomorphic to the unique extension of 𝒪,0(m)\mathscr{O}_{\oslash,0}^{(m)} to td~𝒪(𝒪)t^{-\widetilde{d}}\cdot\mathcal{O}_{\oslash}\left(\supseteq\mathcal{O}_{\oslash}\right). In particular (m),d\nabla^{(m)}_{\oslash,d} has vanishing pm+1p^{m+1}-curvature.

Proposition 4.3.1.

For each a=0,,ma=0,\cdots,m, we have

𝒮ol(,d(m)(a))=td~[0,a]𝒪(a+1)(𝒪).\displaystyle\mathcal{S}ol(\nabla_{\oslash,d}^{(m)\Rightarrow(a)})=t^{\widetilde{d}_{[0,a]}}\cdot\mathcal{O}_{\oslash}^{(a+1)}\left(\subseteq\mathcal{O}_{\oslash}\right). (4.28)

Moreover, under the identification (𝒮ol(,d(m)(a1))=)td~[0,a1]𝒪(a)=𝒪\left(\mathcal{S}ol(\nabla_{\oslash,d}^{(m)\Rightarrow(a-1)})=\right)t^{\widetilde{d}_{[0,a-1]}}\cdot\mathcal{O}_{\oslash}^{(a)}=\mathcal{O}_{\oslash} given by td~[0,a1]h(tpa)h(t)t^{\widetilde{d}_{[0,a-1]}}\cdot h(t^{p^{a}})\leftrightarrow h(t) for each h(t)𝒪S[[t]]h(t)\in\mathcal{O}_{S}[\![t]\!] (where td~[0,a1]𝒪(a):=𝒪t^{\widetilde{d}_{[0,a-1]}}\cdot\mathcal{O}_{\oslash}^{(a)}:=\mathcal{O}_{\oslash} if a=0a=0), the following equality of SS-connections holds:

(,d(m))[a]=,d[a](0).\displaystyle(\nabla_{\oslash,d}^{(m)})^{[a]}=\nabla_{\oslash,d_{[a]}}^{(0)}. (4.29)
Proof.

The assertion follows from the definition of ,d(m)\nabla_{\oslash,d}^{(m)}. ∎

Proposition 4.3.2.

Under the natural identification End𝒪S(σ(𝒪))=H0(S,𝒪S)(𝔽p)\mathrm{End}_{\mathcal{O}_{S}}(\sigma_{\oslash}^{*}(\mathcal{O}_{\oslash}))=H^{0}(S,\mathcal{O}_{S})\left(\supseteq\mathbb{F}_{p}\right), the following equality holds:

μ(,d(m))=((d)[0],,(d)[m]).\displaystyle\mu(\nabla_{\oslash,d}^{(m)})^{\langle\bullet\rangle}=((-d)_{[0]},\cdots,(-d)_{[m]}). (4.30)

Moreover, the equality

μ(,d(m))sw=μ(,d(m))(sw𝒪S(μ(,d(m)))=μ(,d(m)))\displaystyle\mu(\nabla_{\oslash,d}^{(m)})\circ\mathrm{sw}=\mu(\nabla_{\oslash,-d}^{(m)})\ \left(\Longleftrightarrow\mathrm{sw}^{\bullet}_{\mathcal{O}_{S}}(\mu(\nabla_{\oslash,d}^{(m)})^{\langle\bullet\rangle})=\mu(\nabla_{\oslash,-d}^{(m)})^{\langle\bullet\rangle}\right) (4.31)

holds.

Proof.

Since the first assertion follows from the definition of ,d(m)\nabla_{\oslash,d}^{(m)}, we only prove the second assertion. To this end, it suffices to consider the case of d0d\neq 0. Let us write c:=dc:=-d. Since c0c\neq 0, the nonnegative integer a0:=min{a|c[a]0}a_{0}:=\mathrm{min}\left\{a\,|\,c_{[a]}\neq 0\right\} is well-defined. For each aa0a\leq a_{0}, the following equalities hold:

c[a]1+b=0a1(1c[b]p1)=c[a]1+b=0a1(10)=c[a]1+1=d[a].\displaystyle-c_{[a]}-1+\prod_{b=0}^{a-1}(1-c_{[b]}^{p-1})=-c_{[a]}-1+\prod_{b=0}^{a-1}(1-0)=-c_{[a]}-1+1=d_{[a]}. (4.32)

On the other hand, if a>a0a>a_{0}, then we have

c[a]1+b=0a1(1c[b]p1)=c[a]1=d[a],\displaystyle-c_{[a]}-1+\prod_{b=0}^{a-1}(1-c_{[b]}^{p-1})=-c_{[a]}-1=d_{[a]}, (4.33)

where the first equality follows from 1c[a0]p1=01-c_{[a_{0}]}^{p-1}=0. By (4.32), (4.33), and the first assertion, the following sequence of equalities holds:

sw𝒪S(μ(,d(m)))\displaystyle\mathrm{sw}^{\bullet}_{\mathcal{O}_{S}}\left(\mu(\nabla_{\oslash,d}^{(m)})^{\langle\bullet\rangle}\right) =sw𝒪S(c[0],,c[m])\displaystyle=\mathrm{sw}^{\bullet}_{\mathcal{O}_{S}}\left(c_{[0]},\cdots,c_{[m]}\right) (4.34)
=(c[a]1+b=0a1(1c[b]p1))a=0m\displaystyle=(-c_{[a]}-1+\prod_{b=0}^{a-1}(1-c_{[b]}^{p-1}))_{a=0}^{m}
=(d[a])a=0m\displaystyle=\left(d_{[a]}\right)_{a=0}^{m}
=μ(,d(m)).\displaystyle=\mu(\nabla_{\oslash,-d}^{(m)})^{\langle\bullet\rangle}.

This completes the proof of the assertion. ∎

By Propositions 4.2.2, (ii), and 4.3.2, there exists a unique 𝒟(m)\mathcal{D}_{\otimes}^{(m)}-module structure

,d(m):L𝒟(m)nd𝒪S(𝒪)\displaystyle\nabla_{\otimes,d}^{(m)}:{{}^{L}}\mathcal{D}_{\otimes}^{(m)}\rightarrow\mathcal{E}nd_{\mathcal{O}_{S}}(\mathcal{O}_{\otimes}) (4.35)

on 𝒪\mathcal{O}_{\otimes} with ι1(,d(m))=,d(m)\iota_{1}^{*}(\nabla_{\otimes,d}^{(m)})=\nabla_{\oslash,d}^{(m)} and ι2(,d(m))=,d(m)\iota_{2}^{*}(\nabla_{\otimes,d}^{(m)})=\nabla_{\oslash,-d}^{(m)}. It is verified that ,d(m)\nabla_{\otimes,d}^{(m)} has vanishing pm+1p^{m+1}-curvature. We shall write

𝒪,d(m):=(𝒪,,d(m)).\displaystyle\mathscr{O}_{\otimes,d}^{(m)}:=(\mathscr{O}_{\otimes},\nabla_{\otimes,d}^{(m)}). (4.36)
Proposition 4.3.3.

We shall write c:=dc:=-d. Also, let us fix a{0,,m}a\in\{0,\cdots,m\}.

  • (i)

    We have

    𝒮ol(,d(m)(a))={𝒪(a+1)if d~[0,a]=0;t1d~[0,a]ι1(𝒪(a+1))t2c~[0,a]ι2(𝒪(a+1))if otherwise.\displaystyle\mathcal{S}ol(\nabla_{\otimes,d}^{(m)\Rightarrow(a)})=\begin{cases}\mathcal{O}_{\otimes}^{(a+1)}&\text{if $\widetilde{d}_{[0,a]}=0$;}\\ t_{1}^{\widetilde{d}_{[0,a]}}\cdot\iota_{1*}(\mathcal{O}_{\oslash}^{(a+1)})\oplus t_{2}^{\widetilde{c}_{[0,a]}}\cdot\iota_{2*}(\mathcal{O}_{\oslash}^{(a+1)})&\text{if otherwise.}\end{cases} (4.37)
  • (ii)

    Suppose that a=0a=0 or d~[0,a1]=0\widetilde{d}_{[0,a-1]}=0. Then, under the identification 𝒪(a)=𝒪\mathcal{O}_{\otimes}^{(a)}=\mathcal{O}_{\otimes} given by h(tpa)h(t)h(t^{p^{a}})\leftrightarrow h(t) for each h(t)𝒪S[[t]]h(t)\in\mathcal{O}_{S}[\![t]\!], the following equality of SlogS^{\mathrm{log}}-connections holds:

    (,d(m))[a]=(0),d[a].\displaystyle(\nabla_{\otimes,d}^{(m)})^{[a]}=\nabla^{(0)}_{\otimes,d_{[a]}}. (4.38)
  • (iii)

    Suppose that a1a\geq 1 and d~[0,a1]0\widetilde{d}_{[0,a-1]}\neq 0. Then, under the identification

    (𝒮ol(,d(m)(a1))=)t1d~[0,a1]ι1(𝒪(a))t2c~[0,a1]ι2(𝒪(a))=ι1(𝒪)ι2(𝒪)\displaystyle\left(\mathcal{S}ol(\nabla_{\otimes,d}^{(m)\Rightarrow(a-1)})=\right)t_{1}^{\widetilde{d}_{[0,a-1]}}\cdot\iota_{1*}(\mathcal{O}_{\oslash}^{(a)})\oplus t_{2}^{\widetilde{c}_{[0,a-1]}}\cdot\iota_{2*}(\mathcal{O}_{\oslash}^{(a)})=\iota_{1*}(\mathcal{O}_{\oslash})\oplus\iota_{2*}(\mathcal{O}_{\oslash}) (4.39)

    given by (t1d~[0,a1]h1(t1pa),t2c~[0,a1]h2(t2pa))(h1(t),h2(t))(t_{1}^{\widetilde{d}_{[0,a-1]}}\cdot h_{1}(t_{1}^{p^{a}}),t_{2}^{\widetilde{c}_{[0,a-1]}}\cdot h_{2}(t_{2}^{p^{a}}))\leftrightarrow(h_{1}(t),h_{2}(t)) for each pair (h1(t),h2(t))𝒪S[[t]]×2(h_{1}(t),h_{2}(t))\in\mathcal{O}_{S}[\![t]\!]^{\times 2}, the following equality of SlogS^{\mathrm{log}}-connections holds:

    (,d(m))[a]=ι1(,d[a](0))ι2(,c[a](0)).\displaystyle(\nabla_{\otimes,d}^{(m)})^{[a]}=\iota_{1*}(\nabla_{\oslash,d_{[a]}}^{(0)})\oplus\iota_{2*}(\nabla_{\oslash,c_{[a]}}^{(0)}). (4.40)
Proof.

The assertions follow from Proposition 4.3.1. ∎

Also, the following assertion can be proved immediately.

Proposition 4.3.4.

Let dd and cc be elements of /pm+1\mathbb{Z}/p^{m+1}\mathbb{Z}. Also, let {,}\odot\in\{\oslash,\otimes\}.

  • (i)

    The canonical isomorphism 𝒪𝒪𝒪𝒪\mathcal{O}_{\odot}\otimes_{\mathcal{O}_{\odot}}\mathcal{O}_{\odot}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{O}_{\odot} defines an isomorphism of 𝒟(m)\mathcal{D}_{\odot}^{(m)}-modules

    𝒪,d(m)𝒪,c(m)𝒪,d+c(m).\displaystyle\mathscr{O}_{\odot,d}^{(m)}\otimes\mathscr{O}_{\odot,c}^{(m)}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathscr{O}_{\odot,d+c}^{(m)}. (4.41)

    In particular, we have 𝒪,d(m)=𝒪,d(m)\mathscr{O}_{\odot,d}^{(m)\vee}=\mathscr{O}_{\odot,-d}^{(m)} (cf.  [Mon, Corollaire 2.6.1, (ii)] for the definition of dual ()(-)^{\vee}).

  • (ii)

    The following equality holds:

    Hom(𝒪,d(m),𝒪,c(m))={mults|sH0(U,𝒮ol(,cd(m)))},\displaystyle\mathrm{Hom}(\mathscr{O}_{\odot,d}^{(m)},\mathscr{O}_{\odot,c}^{(m)})=\left\{\mathrm{mult}_{s}\,\Big{|}\,s\in H^{0}(U_{\odot},\mathcal{S}ol(\nabla_{\odot,c-d}^{(m)}))\right\}, (4.42)

    where mults\mathrm{mult}_{s} denotes the endomorphism of 𝒪\mathcal{O}_{\odot} given by multiplication by ss. In particular, there exists a surjective morphism 𝒪,d(m)𝒪,c(m)\mathscr{O}_{\odot,d}^{(m)}\twoheadrightarrow\mathscr{O}_{\odot,c}^{(m)} if and only if the equality d=cd=c holds.

  • (iii)

    Let mm^{\prime} be a nonnegative integer m\leq m. Then, the following equality holds:

    ,d(m)(m)=,d[0,m](m).\displaystyle\nabla_{\odot,d}^{(m)\Rightarrow(m^{\prime})}=\nabla_{\odot,d_{[0,m^{\prime}]}}^{(m^{\prime})}. (4.43)

4.4. Local description of pm+1p^{m+1}-flat 𝒟(m)\mathcal{D}^{(m)}-modules

In this subsection, we show that a pm+1p^{m+1}-flat 𝒟(m)\mathcal{D}_{\odot}^{(m)}-module (where {,}\odot\in\{\oslash,\otimes\}) can be described as the direct sum of 𝒪,d(m)\mathscr{O}_{\odot,d}^{(m)}’s for some elements d/pm+1d\in\mathbb{Z}/p^{m+1}\mathbb{Z}. This assertion generalizes  [Kin1, Proposition 1.1.12], in which 𝒟(m)\mathcal{D}^{(m)}-modules on the formal disc Spec(k[[t]])\mathrm{Spec}(k[\![t]\!]) over an algebraically closed field kk were discussed. See also  [O2, Corollary 2.10] for the case of m=0m=0 and  [Gie, Theorem 3.3] for the case of so-called FF-divided (or, stratified) bundles, i.e., the case of m=m=\infty.

Proposition-Definition 4.4.1.

Suppose that S=Spec(R)S=\mathrm{Spec}(R) for a local ring (R,𝔪)(R,\mathfrak{m}) over 𝔽p\mathbb{F}_{p} such that the residue field k:=R/𝔪k:=R/\mathfrak{m} is algebraically closed. Let {,}\odot\in\{\oslash,\otimes\}, and let (,(m))(\mathcal{F},\nabla^{(m)}) be a pm+1p^{m+1}-flat 𝒟(m)\mathcal{D}_{\odot}^{(m)}-module such that \mathcal{F} is a (locally) free 𝒪\mathcal{O}_{\odot}-module of rank n>0n>0. Then, there exists an isomorphism of 𝒟(m)\mathcal{D}_{\odot}^{(m)}-modules

i=1n𝒪,di(m)(,(m))\displaystyle\bigoplus_{i=1}^{n}\mathscr{O}_{\odot,d_{i}}^{(m)}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}(\mathcal{F},\nabla^{(m)}) (4.44)

for some d1,,dn/pm+1d_{1},\cdots,d_{n}\in\mathbb{Z}/p^{m+1}\mathbb{Z}. (This implies that, for each a=0,,ma=0,\cdots,m, the aa-th monodromy operator μ((m))pa\mu(\nabla^{(m)})^{\langle p^{a}\rangle} of (m)\nabla^{(m)} can be transformed, after choosing a suitable trivialization σ()𝒪Sn\sigma_{\odot}^{*}(\mathcal{F})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{O}_{S}^{\oplus n} of σ()\sigma_{\odot}^{*}(\mathcal{F}), into the diagonal matrix with diagonal entries (d)1[a],,(d)n[a](-d)_{1[a]},\cdots,(-d)_{n[a]}.) Moreover, the resulting multiset

e((m)):=[d1,,dn]\displaystyle e(\nabla^{(m)}):=[d_{1},\cdots,d_{n}] (4.45)

depends only on the isomorphism class of (,(m))(\mathcal{F},\nabla^{(m)}). We shall refer to e((m))e(\nabla^{(m)}) as the exponent of (,(m))(\mathcal{F},\nabla^{(m)}).

Proof.

First, let us consider the case where =\odot=\oslash. Hereinafter, we shall use subscripted “kk” to denote the result of reducing modulo 𝔪\mathfrak{m}. Since the 𝒟,k(m)\mathcal{D}_{\otimes,k}^{(m)}-module (k,k(m))(\mathcal{F}_{k},\nabla_{k}^{(m)}) has vanishing pm+1p^{m+1}-curvature, it follows from  [Kin1, Proposition 1.1.12] that there exist a multiset [d1,,dn][d_{1},\cdots,d_{n}] of elements in /pm+1\mathbb{Z}/p^{m+1}\mathbb{Z} and an isomorphism of 𝒟,k(m)\mathcal{D}_{\otimes,k}^{(m)}-modules

ξ:(i=1n(𝒪,k,,di,k(m)))i=1n(td~i𝒪,k,,0,k(m))(k,k(m)),\displaystyle\xi:\left(\bigoplus_{i=1}^{n}(\mathcal{O}_{\oslash,k},\nabla_{\oslash,d_{i},k}^{(m)})\cong\right)\bigoplus_{i=1}^{n}(t^{-\widetilde{d}_{i}}\cdot\mathcal{O}_{\oslash,k},\nabla_{\oslash,0,k}^{(m)})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}(\mathcal{F}_{k},\nabla_{k}^{(m)}), (4.46)

where, for each d~0\widetilde{d}\in\mathbb{Z}_{\geq 0}, we abuse notation by writing ,0,k(m)\nabla_{\oslash,0,k}^{(m)} for the 𝒟,k(m)\mathcal{D}_{\otimes,k}^{(m)}-module structure on the line bundle td~𝒪,k(𝒪,k)t^{-\widetilde{d}}\cdot\mathcal{O}_{\oslash,k}\left(\supseteq\mathcal{O}_{\oslash,k}\right) extending (𝒪,k,,0,k(m))(\mathcal{O}_{\oslash,k},\nabla_{\oslash,0,k}^{(m)}).

Now, let us choose j{1,,n}j\in\{1,\cdots,n\}. Denote by (m)j\nabla^{(m)}_{j} the 𝒟(m)\mathcal{D}_{\oslash}^{(m)}-module structure on td~j()t^{\widetilde{d}_{j}}\cdot\mathcal{F}\left(\subseteq\mathcal{F}\right) obtained by restricting (m)\nabla^{(m)}. Then, ξ\xi restricts to an isomorphism

ξj:i=1n(td~i+d~j𝒪,k,,0,k(m))(td~jk,j,k(m)).\displaystyle\xi_{j}:\bigoplus_{i=1}^{n}(t^{-\widetilde{d}_{i}+\widetilde{d}_{j}}\cdot\mathcal{O}_{\oslash,k},\nabla_{\oslash,0,k}^{(m)})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}(t^{\widetilde{d}_{j}}\cdot\mathcal{F}_{k},\nabla_{j,k}^{(m)}). (4.47)

If eje_{j} denotes the image of 1𝒪,k1\in\mathcal{O}_{\oslash,k} via the inclusion into the jj-th factor 𝒪,k𝒪,kn\mathcal{O}_{\oslash,k}\hookrightarrow\mathcal{O}_{\oslash,k}^{\oplus n}, then it is a horizontal section in the domain of ξj\xi_{j}. In particular, we have ξj(ej)𝒮ol(j,k(m))\xi_{j}(e_{j})\in\mathcal{S}ol(\nabla_{j,k}^{(m)}). Since the natural morphism 𝒮ol(j(m))𝒮ol(j,k(m))\mathcal{S}ol(\nabla_{j}^{(m)})\rightarrow\mathcal{S}ol(\nabla_{j,k}^{(m)}) is surjective by Proposition 2.6.2, (ii), we can find a section vj𝒮ol(j(m))v_{j}\in\mathcal{S}ol(\nabla_{j}^{(m)}) mapped to ξj(ej)\xi_{j}(e_{j}) via this surjection. The section vjv_{j} determines a morphism of 𝒟(m)\mathcal{D}_{\oslash}^{(m)}-modules (𝒪,,0(m))(td~j,j(m))(\mathcal{O}_{\oslash},\nabla_{\oslash,0}^{(m)})\rightarrow(t^{\widetilde{d}_{j}}\cdot\mathcal{F},\nabla_{j}^{(m)}); it can be extended uniquely to a morphism ζj:(td~j𝒪,,0(m))(,(m))\zeta_{j}:(t^{-\widetilde{d}_{j}}\cdot\mathcal{O}_{\oslash},\nabla_{\oslash,0}^{(m)})\rightarrow(\mathcal{F},\nabla^{(m)}). Thus, we obtain the composite

ζ:i=1n(𝒪,,dj(m))i=1n(td~i𝒪,,0(m))iζi(,(m)),\displaystyle\zeta:\bigoplus_{i=1}^{n}(\mathcal{O}_{\oslash},\nabla_{\oslash,d_{j}}^{(m)})\xrightarrow{\sim}\bigoplus_{i=1}^{n}(t^{-\widetilde{d}_{i}}\cdot\mathcal{O}_{\oslash},\nabla_{\oslash,0}^{(m)})\xrightarrow{\bigoplus_{i}\zeta_{i}}(\mathcal{F},\nabla^{(m)}), (4.48)

where the first arrow is the direct sum of the natural isomorphisms (𝒪,,dj(m))(td~i𝒪,,0(m))(\mathcal{O}_{\oslash},\nabla_{\oslash,d_{j}}^{(m)})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}(t^{-\widetilde{d}_{i}}\cdot\mathcal{O}_{\oslash},\nabla_{\oslash,0}^{(m)}). Note that the reduction modulo 𝔪\mathfrak{m} of iζi\bigoplus_{i}\zeta_{i} coincides with the isomorphism ξ\xi. Hence, ζ\zeta turns out to be an isomorphism by Nakayama’s lemma. This proves the first assertion for =\odot=\oslash. Moreover, the second assertion follows immediately from Proposition 4.3.4, (ii), in the case of =\odot=\oslash.

Next, we shall consider the case of =\odot=\otimes. It follows from the above discussion that there exists an isomorphism of 𝒟(m)\mathcal{D}_{\oslash}^{(m)}-modules

ζ,1:(i=1n(ι1(𝒪),ι1(,di(m)))=)i=1n(𝒪,(m),di)(ι1(),ι1((m)))\displaystyle\zeta_{\oslash,1}:\left(\bigoplus_{i=1}^{n}(\iota_{1}^{*}(\mathcal{O}_{\otimes}),\iota_{1}^{*}(\nabla_{\otimes,d_{i}}^{(m)}))=\right)\bigoplus_{i=1}^{n}(\mathcal{O}_{\oslash},\nabla^{(m)}_{\oslash,d_{i}})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}(\iota_{1}^{*}(\mathcal{F}),\iota_{1}^{*}(\nabla^{(m)})) (4.49)

for some d1,,dn/pm+1d_{1},\cdots,d_{n}\in\mathbb{Z}/p^{m+1}\mathbb{Z}. By Propositions 4.2.2, (i), and 4.3.2, the exponent of (ι2(),ι2((m)))(\iota_{2}^{*}(\mathcal{F}),\iota_{2}^{*}(\nabla^{(m)})) coincides with [d1,,dn][-d_{1},\cdots,-d_{n}]. Hence, we can find an isomorphism of 𝒟(m)\mathcal{D}_{\oslash}^{(m)}-modules

ζ,2:i=1n(ι2(𝒪),ι2(,di(m)))(ι2(),ι2((m))).\displaystyle\zeta_{\oslash,2}:\bigoplus_{i=1}^{n}(\iota_{2}^{*}(\mathcal{O}_{\otimes}),\iota_{2}^{*}(\nabla_{\otimes,d_{i}}^{(m)}))\stackrel{{\scriptstyle\sim}}{{\rightarrow}}(\iota_{2}^{*}(\mathcal{F}),\iota_{2}^{*}(\nabla^{(m)})). (4.50)

The automorphism σ(ζ,2)1σ(ζ,1)\sigma_{\oslash}^{*}(\zeta_{\oslash,2})^{-1}\circ\sigma_{\oslash}^{*}(\zeta_{\oslash,1}) defines an n×nn\times n matrix A:=(aij)1i,jnGLn(R)A:=(a_{ij})_{1\leq i,j\leq n}\in\mathrm{GL}_{n}(R) (under the natural identification H0(S,σ(𝒪))=RH^{0}(S,\sigma_{\otimes}^{*}(\mathcal{O}_{\otimes}))=R). We shall set D:=(D[0],,D[m])D:=(D_{[0]},\cdots,D_{[m]}), where each D[a]D_{[a]} (a=0,,ma=0,\cdots,m) denotes the diagonal matrix with diagonal entries (d)1[a],,(d)n[a](-d)_{1[a]},\cdots,(-d)_{n[a]}. By regarding this matrix as an element of End𝒪S(𝒪Sn)(m+1)\mathrm{End}_{\mathcal{O}_{S}}(\mathcal{O}_{S}^{\oplus n})^{\oplus(m+1)}, we can identify DD (resp., sw𝒪S(D)\mathrm{sw}^{\bullet}_{\mathcal{O}_{S}}(D)) with the monodromy operator μ(i=1nι1(,di(m)))\mu(\bigoplus_{i=1}^{n}\iota_{1}^{*}(\nabla_{\otimes,d_{i}}^{(m)}))^{\langle\bullet\rangle} (resp., μ(i=1nι2(,di(m)))\mu(\bigoplus_{i=1}^{n}\iota_{2}^{*}(\nabla_{\otimes,d_{i}}^{(m)}))^{\langle\bullet\rangle}) of i=1nι1(,di(m))\bigoplus_{i=1}^{n}\iota_{1}^{*}(\nabla_{\otimes,d_{i}}^{(m)}) (resp., i=1nι2(,di(m))\bigoplus_{i=1}^{n}\iota_{2}^{*}(\nabla_{\otimes,d_{i}}^{(m)})). Since both ζ,1\zeta_{\oslash,1} and ζ,2\zeta_{\oslash,2} preserve the 𝒟(m)\mathcal{D}_{\oslash}^{(m)}-module structure, we obtain the following equalities of elements in End𝒪S(𝒪Sn)(m+1)\mathrm{End}_{\mathcal{O}_{S}}(\mathcal{O}_{S}^{\oplus n})^{\oplus(m+1)}:

μσ(ζ,1)=σ(ζ,1)D,sw𝒪S(μ)σ(ζ,2)=σ(ζ,2)sw𝒪S(D),\displaystyle\mu\circ\sigma_{\oslash}^{*}(\zeta_{\oslash,1})=\sigma_{\oslash}^{*}(\zeta_{\oslash,1})\circ D,\hskip 14.22636pt\mathrm{sw}_{\mathcal{O}_{S}}^{\bullet}(\mu)\circ\sigma_{\oslash}^{*}(\zeta_{\oslash,2})=\sigma_{\oslash}^{*}(\zeta_{\oslash,2})\circ\mathrm{sw}_{\mathcal{O}_{S}}^{\bullet}(D), (4.51)

where μ:=μ(ι1((m)))\mu:=\mu(\iota_{1}^{*}(\nabla^{(m)}))^{\langle\bullet\rangle}. These equalities imply

σ(ζ,2)Dσ(ζ,2)1\displaystyle\sigma_{\oslash}^{*}(\zeta_{\oslash,2})\circ D\circ\sigma_{\oslash}^{*}(\zeta_{\oslash,2})^{-1} =σ(ζ,2)sw𝒪S(sw𝒪S(D))σ(ζ,2)1\displaystyle=\sigma_{\oslash}^{*}(\zeta_{\oslash,2})\circ\mathrm{sw}_{\mathcal{O}_{S}}^{\bullet}(\mathrm{sw}_{\mathcal{O}_{S}}^{\bullet}(D))\circ\sigma_{\oslash}^{*}(\zeta_{\oslash,2})^{-1} (4.52)
=sw𝒪S(σ(ζ,2)sw𝒪S(D)σ(ζ,2)1)\displaystyle=\mathrm{sw}_{\mathcal{O}_{S}}^{\bullet}(\sigma_{\oslash}^{*}(\zeta_{\oslash,2})\circ\mathrm{sw}_{\mathcal{O}_{S}}^{\bullet}(D)\circ\sigma_{\oslash}^{*}(\zeta_{\oslash,2})^{-1})
=sw𝒪S(sw𝒪S(μ))\displaystyle=\mathrm{sw}_{\mathcal{O}_{S}}^{\bullet}(\mathrm{sw}_{\mathcal{O}_{S}}^{\bullet}(\mu))
=μ\displaystyle=\mu
=σ(ζ,1)Dσ(ζ,1)1.\displaystyle=\sigma_{\oslash}^{*}(\zeta_{\oslash,1})\circ D\circ\sigma_{\oslash}^{*}(\zeta_{\oslash,1})^{-1}.

It follows that DA=ADDA=AD, i.e., (D[0]A,,D[m]A)=(AD[0],,AD[m])(D_{[0]}A,\cdots,D_{[m]}A)=(AD_{[0]},\cdots,AD_{[m]}). Hence, for each pair (i,j)(i,j) with didjd_{i}\neq d_{j}, we have aij=aji=0a_{ij}=a_{ji}=0. By Proposition 4.3.4, (ii), the matrix AA defines an automorphism α\alpha of the 𝒟(m)\mathcal{D}_{\oslash}^{(m)}-module i=1n(ι2(𝒪),ι2(,di(m)))\bigoplus_{i=1}^{n}(\iota_{2}^{*}(\mathcal{O}_{\otimes}),\iota_{2}^{*}(\nabla_{\otimes,d_{i}}^{(m)})) when regarded as an element of GLn(R[[t]])\mathrm{GL}_{n}(R[\![t]\!]) via the natural inclusion RR[[t]]R\hookrightarrow R[\![t]\!]. The equality σ(ζ,1)=σ(ζ,2α)\sigma_{\oslash}^{*}(\zeta_{\oslash,1})=\sigma_{\oslash}^{*}(\zeta_{\oslash,2}\circ\alpha) holds, so the two morphisms of 𝒟(m)\mathcal{D}_{\oslash}^{(m)}-modules ζ,1\zeta_{\oslash,1}, ζ,2α\zeta_{\oslash,2}\circ\alpha may be glued together (by using (4.24)) to obtain an isomorphism

i=1n(𝒪,,di(m))(,(m)).\displaystyle\bigoplus_{i=1}^{n}(\mathcal{O}_{\otimes},\nabla_{\otimes,d_{i}}^{(m)})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}(\mathcal{F},\nabla^{(m)}). (4.53)

This completes the proof of the first assertion for =\odot=\otimes. Moreover, the second assertion can be proved by applying Proposition 4.3.4, (ii), in the case of =\odot=\otimes. Thus, we have finished the proof of this proposition. ∎

The following assertion is a corollary of the above proposition.

Corollary 4.4.2.

Let a{0,,m}a\in\{0,\cdots,m\}, and let (,)(\mathcal{F},\nabla) be a pm+1p^{m+1}-flat 𝒟(m)\mathcal{D}_{\otimes}^{(m)}-module such that \mathcal{F} is locally free of rank n>0n>0. Then, the natural 𝒪(a)\mathcal{O}_{\otimes}^{(a)}-linear morphism ()[a]([a])(\mathcal{F}^{\vee})^{[a]}\rightarrow(\mathcal{F}^{[a]})^{\vee} restricts to an 𝒪(a+1)\mathcal{O}_{\otimes}^{(a+1)}-linear isomorphism

(()[a+1]=)Ker(()[a])Ker(([a])).\displaystyle\left((\mathcal{F}^{\vee})^{[a+1]}=\right)\mathrm{Ker}((\nabla^{\vee})^{[a]})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathrm{Ker}((\nabla^{[a]})^{\vee}). (4.54)
Proof.

It suffices to prove the assertion under the assumption in Proposition-Definition 4.4.1. Then, by that proposition, the problem is reduced to the case where (,)=(𝒪,,d(m))(\mathcal{F},\nabla)=(\mathcal{O}_{\otimes},\nabla_{\otimes,d}^{(m)}) for an element dd of /pm\mathbb{Z}/p^{m}\mathbb{Z}.

If a=0a=0 or d~[0,a1]=0\widetilde{d}_{[0,a-1]}=0 (a1a\geq 1), then the assertion follows immediately from Proposition 4.3.3, (ii). Before proving the remaining case, let us make the following observation. For each uu, v𝔽pv\in\mathbb{F}_{p}, we shall denote by ,(u,v)(0)\nabla_{\oslash,(u,v)}^{(0)} the 𝒟(0)\mathcal{D}_{\otimes}^{(0)}-module structure on the 𝒪\mathcal{O}_{\otimes}-module ι1(𝒪)ι2(𝒪)\iota_{1*}(\mathcal{O}_{\oslash})\oplus\iota_{2*}(\mathcal{O}_{\oslash}) expressed as ,(u,v)(0):=ι1(,u(0))ι2(,v(0))\nabla_{\oslash,(u,v)}^{(0)}:=\iota_{1*}(\nabla_{\oslash,u}^{(0)})\oplus\iota_{2*}(\nabla_{\oslash,v}^{(0)}). By regarding ι1(𝒪)ι2(𝒪)\iota_{1*}(\mathcal{O}_{\oslash})\oplus\iota_{2*}(\mathcal{O}_{\oslash}) as an 𝒪\mathcal{O}_{\otimes}-submodule of 𝒪\mathcal{O}_{\otimes} via the injection (ι1,ι2):ι1(𝒪)ι2(𝒪)𝒪(\iota_{1*},\iota_{2*}):\iota_{1*}(\mathcal{O}_{\oslash})\oplus\iota_{2*}(\mathcal{O}_{\oslash})\rightarrow\mathcal{O}_{\otimes}, we have

Hom((ι1(𝒪)ι2(𝒪),,(u,v)(0)),(𝒪,,0(0)))(=H0(U,𝒮ol((,(u,v)(0)))))\displaystyle\ \ \ \ \mathrm{Hom}\left((\iota_{1*}(\mathcal{O}_{\oslash})\oplus\iota_{2*}(\mathcal{O}_{\oslash}),\nabla_{\oslash,(u,v)}^{(0)}),(\mathcal{O}_{\otimes},\nabla_{\otimes,0}^{(0)})\right)\left(=H^{0}(U_{\otimes},\mathcal{S}ol((\nabla_{\oslash,(u,v)}^{(0)})^{\vee}))\right) (4.55)
={(multα,multβ)|αt1pu~R[[t1p]],βt2pv~R[[t2p]]},\displaystyle=\left\{(\mathrm{mult}_{\alpha},\mathrm{mult}_{\beta})\,\Big{|}\,\alpha\in t_{1}^{p-\widetilde{u}}\cdot R[\![t_{1}^{p}]\!],\beta\in t_{2}^{p-\widetilde{v}}\cdot R[\![t_{2}^{p}]\!]\right\},

where mult()\mathrm{mult}_{(-)} denotes the morphism given by multiplication by ()(-).

Now, let us go back to the proof of the remaining case, i.e., the case where a1a\geq 1 and d~[0,a1]0\widetilde{d}_{[0,a-1]}\neq 0. Write c:=dc:=-d. By taking account of (4.55) and Proposition 4.3.3, (iii), we obtain the following sequence of equalities:

H0(U,Ker(((,d(m))[a])))\displaystyle\ \ \ \ H^{0}(U_{\otimes},\mathrm{Ker}(((\nabla_{\otimes,d}^{(m)})^{[a]})^{\vee})) (4.56)
=Hom((t1d~[0,a1]ι1(𝒪(a))t2c~[0,a1]ι2(𝒪(a)),(,d(m))[a]),(𝒪(a),U(a),triv(0)))\displaystyle=\mathrm{Hom}\left((t_{1}^{\widetilde{d}_{[0,a-1]}}\cdot\iota_{1*}(\mathcal{O}_{\oslash}^{(a)})\oplus t_{2}^{\widetilde{c}_{[0,a-1]}}\cdot\iota_{2*}(\mathcal{O}_{\oslash}^{(a)}),(\nabla_{\otimes,d}^{(m)})^{[a]}),(\mathcal{O}_{\otimes}^{(a)},\nabla_{U_{\otimes}^{(a)},\mathrm{triv}}^{(0)})\right)
={(multα,multβ)|αt1d~[0,a1]+pa(pd~[a])R[[t1pa+1]],βt2c~[0,a1]+pa(pc~[a])R[[t2pa+1]]}\displaystyle=\left\{(\mathrm{mult}_{\alpha},\mathrm{mult}_{\beta})\,\bigg{|}\,\alpha\in t_{1}^{-\widetilde{d}_{[0,a-1]}+p^{a}(p-\widetilde{d}_{[a]})}\cdot R[\![t_{1}^{p^{a+1}}]\!],\beta\in t_{2}^{-\widetilde{c}_{[0,a-1]}+p^{a}(p-\widetilde{c}_{[a]})}\cdot R[\![t_{2}^{p^{a+1}}]\!]\right\}
={(multα,multβ)|αt1c~[0,a]R[[t1pa+1]],βt2d~[0,a]R[[t2pa+1]]}\displaystyle=\left\{(\mathrm{mult}_{\alpha},\mathrm{mult}_{\beta})\,\bigg{|}\,\alpha\in t_{1}^{\widetilde{c}_{[0,a]}}\cdot R[\![t_{1}^{p^{a+1}}]\!],\beta\in t_{2}^{\widetilde{d}_{[0,a]}}\cdot R[\![t_{2}^{p^{a+1}}]\!]\right\}
=H0(U,Ker((,d(m))[a]))\displaystyle=H^{0}(U_{\otimes},\mathrm{Ker}((\nabla_{\otimes,-d}^{(m)})^{[a]}))
=H0(U,Ker(((,d(m)))[a])).\displaystyle=H^{0}(U_{\otimes},\mathrm{Ker}(((\nabla_{\otimes,d}^{(m)})^{\vee})^{[a]})).

This completes the proof of the assertion. ∎

4.5. Local description of dormant flat bundles

In the rest of this section, we suppose that SS is a flat scheme over /pm+1\mathbb{Z}/p^{m+1}\mathbb{Z}. Note that the notion of a dormant flat bundle on Ulog/SlogU_{\oslash}^{\mathrm{log}}/S^{\mathrm{log}}, as well as the functor (){{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!(-), can be defined in the same manner as the case where the underlying space is a log curve. Just as in the discussion of § 3, we will denote by a subscript mm^{\prime} (for each mmm^{\prime}\leq m) the result of reducing an object over /pm+1\mathbb{Z}/p^{m+1}\mathbb{Z} modulo pm+1p^{m^{\prime}+1}. Also, we use the notation “,d,0(m)\nabla_{\oslash,d,0}^{(m)}” to denote the 𝒟,0(m)\mathcal{D}_{\oslash,0}^{(m)}-module structure ,d(m)\nabla_{\oslash,d}^{(m)} on 𝒪,0\mathcal{O}_{\oslash,0} introduced in (4.26). In particular, we obtain 𝒪,d,0(m):=(𝒪,0,,d,0(m))\mathscr{O}_{\oslash,d,0}^{(m)}:=(\mathcal{O}_{\oslash,0},\nabla_{\oslash,d,0}^{(m)}).

Let (,)(\mathcal{F},\nabla) be a flat module on Ulog/SU_{\oslash}^{\mathrm{log}}/S. Since \nabla induces an 𝒪S\mathcal{O}_{S}-linear morphism σ():σ()σ(ΩUlog/Slog)\sigma_{\oslash}^{*}(\nabla):\sigma_{\oslash}^{*}(\mathcal{F})\rightarrow\sigma_{\oslash}^{*}(\Omega_{U_{\oslash}^{\mathrm{log}}/S^{\mathrm{log}}}\otimes\mathcal{F}), we obtain the 𝒪S\mathcal{O}_{S}-linear composite

μ():σ()\displaystyle\mu(\nabla):\sigma_{\oslash}^{*}(\mathcal{F}) σ()σ(ΩUlog/Slog)\displaystyle\xrightarrow{\sigma_{\oslash}^{*}(\nabla)}\sigma_{\oslash}^{*}(\Omega_{U_{\oslash}^{\mathrm{log}}/S^{\mathrm{log}}}\otimes\mathcal{F}) (4.57)
σ(ΩUlog/Slog)σ()\displaystyle\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\sigma_{\oslash}^{*}(\Omega_{U_{\oslash}^{\mathrm{log}}/S^{\mathrm{log}}})\otimes\sigma_{\oslash}^{*}(\mathcal{F})
Resσid(𝒪Sσ()=)σ(),\displaystyle\xrightarrow{\mathrm{Res}_{\sigma_{\oslash}}\otimes\mathrm{id}}\left(\mathcal{O}_{S}\otimes\sigma_{\oslash}^{*}(\mathcal{F})=\right)\sigma_{\oslash}^{*}(\mathcal{F}),

where Resσ\mathrm{Res}_{\sigma_{\oslash}} denotes the residue map σ(ΩUlog/Slog)𝒪S\sigma_{\oslash}^{*}(\Omega_{U_{\oslash}^{\mathrm{log}}/S^{\mathrm{log}}})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{O}_{S}.

Definition 4.5.1.

We shall refer to μ()(End𝒪S(σ()))\mu(\nabla)\left(\in\mathrm{End}_{\mathcal{O}_{S}}(\sigma_{\oslash}^{*}(\mathcal{F}))\right) as the monodromy operator of \nabla. (This is essentially the same as the notion of (0-th) monodromy operator of the corresponding 𝒟(0)\mathcal{D}_{\oslash}^{(0)}-module, in the sense of Definition 4.2.1.)

For each element dd of /pm+1\mathbb{Z}/p^{m+1}\mathbb{Z}, we denote by ,d:𝒪ΩUlog/Slog\nabla_{\oslash,d}:\mathcal{O}_{\oslash}\rightarrow\Omega_{U_{\oslash}^{\mathrm{log}}/S^{\mathrm{log}}} the SlogS^{\mathrm{log}}-connection on 𝒪\mathcal{O}_{\oslash} given by

,d(v):=D(v)dvdtt\displaystyle\nabla_{\oslash,d}(v):=D(v)-d\cdot v\cdot\frac{dt}{t} (4.58)

for any local section v𝒪v\in\mathcal{O}_{\oslash}, where DD denotes the universal derivation 𝒪ΩUlog/Slog\mathcal{O}_{\oslash}\rightarrow\Omega_{U_{\oslash}^{\mathrm{log}}/S^{\mathrm{log}}}. Thus, we obtain a flat line bundle

𝒪,d:=(𝒪,,d)\displaystyle\mathscr{O}_{\oslash,d}:=(\mathcal{O}_{\oslash},\nabla_{\oslash,d}) (4.59)

on Ulog/SlogU^{\mathrm{log}}_{\oslash}/S^{\mathrm{log}}. Note that 𝒪,d\mathscr{O}_{\oslash,d} is isomorphic to the unique extension of 𝒪,0\mathscr{O}_{\oslash,0} to td~𝒪(𝒪)t^{-\widetilde{d}}\cdot\mathcal{O}_{\oslash}\left(\supseteq\mathcal{O}_{\oslash}\right). Also, the equality μ(,d)=d\mu(\nabla_{\oslash,d})=-d holds.

Proposition 4.5.2.

Let dd be an element of /pm+1\mathbb{Z}/p^{m+1}\mathbb{Z}.

  • (i)

    The flat bundle 𝒪,d\mathscr{O}_{\oslash,d} is dormant and satisfies

    𝒪,d=𝒪,d,0(m).\displaystyle{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{O}_{\oslash,d}=\mathscr{O}_{\oslash,d,0}^{(m)}. (4.60)

    Moreover, 𝒪,d\mathscr{O}_{\oslash,d} is the unique (up to isomorphism) diagonal lifting of 𝒪,d,0(m)\mathscr{O}_{\oslash,d,0}^{(m)}.

  • (ii)

    The following equality holds:

    Ker(,d)=td~(a=0mpma𝒪S[[tpa+1]])(𝒪S[[t]]).\displaystyle\mathrm{Ker}(\nabla_{\oslash,d})=t^{\widetilde{d}}\cdot\left(\sum_{a=0}^{m}p^{m-a}\cdot\mathcal{O}_{S}[\![t^{p^{a+1}}]\!]\right)\left(\subseteq\mathcal{O}_{S}[\![t]\!]\right). (4.61)
Proof.

We shall prove assertion (i) by induction on mm. There is nothing to prove for the base step, i.e., the case of m=0m=0. To consider the induction step, we suppose that the assertion with mm replaced by m1m-1 (m1m\geq 1) has been proved. We shall set :=(𝒪,,d)\mathscr{F}:=(\mathcal{O}_{\oslash},\nabla_{\oslash,d}). By the induction hypothesis, (𝒪,m1,,d[0,m1])(\mathcal{O}_{\oslash,m-1},\nabla_{\oslash,d_{[0,m-1]}}) is the unique diagonal lifting of (𝒪,0,,d,0(m)(m1))(\mathcal{O}_{\oslash,0},\nabla_{\oslash,d,0}^{(m)\Rightarrow(m-1)}) (cf. Proposition 4.3.4, (iii)). It follows from Proposition 4.3.1 that 𝒱(=𝒮ol(,d,0(m)(m1)))=td~[0,m1]𝒪S0[[tpm]]\mathcal{V}_{\mathscr{F}}\left(=\mathcal{S}ol(\nabla_{\oslash,d,0}^{(m)\Rightarrow(m-1)})\right)=t^{\widetilde{d}_{[0,m-1]}}\cdot\mathcal{O}_{S_{0}}[\![t^{p^{m}}]\!]. The section td~[0,m1]t^{\widetilde{d}_{[0,m-1]}} of 𝒪S[[t]]\mathcal{O}_{S}[\![t]\!] is horizontal modulo pmp^{m} with respect to ,d\nabla_{\oslash,d} and satisfies

,d(td~[0,m1])=pm(d[m]td~[0,m1])dtt.\displaystyle\nabla_{\oslash,d}(t^{\widetilde{d}_{[0,m-1]}})=-p^{m}\cdot(d_{[m]}\cdot t^{\widetilde{d}_{[0,m-1]}})\cdot\frac{dt}{t}. (4.62)

Hence, under the identification

td~[0,m1]𝒪S0[[tpm]]=𝒪S0[[t]]\displaystyle t^{\widetilde{d}_{[0,m-1]}}\cdot\mathcal{O}_{S_{0}}[\![t^{p^{m}}]\!]=\mathcal{O}_{S_{0}}[\![t]\!] (4.63)

given by td~[0,m1]h(tpm)h(t)t^{\widetilde{d}_{[0,m-1]}}\cdot h(t^{p^{m}})\leftrightarrow h(t) (for any h(t)𝒪S0[[t]]h(t)\in\mathcal{O}_{S_{0}}[\![t]\!]), the flat bundle (𝒱,)(\mathcal{V}_{\mathscr{F}},\nabla_{\mathscr{F}}) coincides with (𝒪,0,,d[m])(\mathcal{O}_{\oslash,0},\nabla_{\oslash,d_{[m]}}). By  [Wak9, Proposition 3.2.1, (i) and (iv)], ,d,0(m)\nabla_{\oslash,d,0}^{(m)} is the unique 𝒟,0(m)\mathcal{D}_{\oslash,0}^{(m)}-module structure (m)\nabla^{(m)} on 𝒪,0\mathcal{O}_{\oslash,0} satisfying (m)(m1)=,d,0(m)(m1)\nabla^{(m)\Rightarrow(m-1)}=\nabla_{\oslash,d,0}^{(m)\Rightarrow(m-1)} and (𝒱,)=(𝒪,0[m],((m))[m])(\mathcal{V}_{\mathscr{F}},\nabla_{\mathscr{F}})=(\mathcal{O}_{\oslash,0}^{[m]},(\nabla^{(m)})^{[m]}) (under the identification (4.63)). In particular, (𝒪,,d)(\mathcal{O}_{\oslash},\nabla_{\oslash,d}) turns out to be the unique diagonal lifting of (𝒪,0,,d,0(m))(\mathcal{O}_{\oslash,0},\nabla_{\oslash,d,0}^{(m)}). This completes the proof of assertion (i).

Also, assertion (ii) follows immediately from the definition of ,d\nabla_{\oslash,d}. ∎

The following assertion can be proved immediately, so we omit the proof.

Proposition 4.5.3.

Let dd and cc be elements of /pm+1\mathbb{Z}/p^{m+1}\mathbb{Z}.

  • (i)

    The canonical isomorphism 𝒪𝒪𝒪𝒪\mathcal{O}_{\oslash}\otimes_{\mathcal{O}_{\oslash}}\mathcal{O}_{\oslash}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{O}_{\oslash} defines an isomorphism of flat bundles

    𝒪,d𝒪,c𝒪,d+c.\displaystyle\mathscr{O}_{\oslash,d}\otimes\mathscr{O}_{\oslash,c}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathscr{O}_{\oslash,d+c}. (4.64)

    In particular, we have 𝒪,d=𝒪,d\mathscr{O}_{\oslash,d}^{\vee}=\mathscr{O}_{\oslash,-d}. Moreover, the isomorphism (4.64) is compatible with (4.41) via (4.60).

  • (ii)

    We have

    Hom(𝒪,d,𝒪,c)={mults|sH0(U,Ker(,cd))},\displaystyle\mathrm{Hom}(\mathscr{O}_{\oslash,d},\mathscr{O}_{\oslash,c})=\left\{\mathrm{mult}_{s}\,|\,s\in H^{0}(U_{\oslash},\mathrm{Ker}(\nabla_{\oslash,c-d}))\right\}, (4.65)

    where mults\mathrm{mult}_{s} denotes the endomorphism of 𝒪\mathcal{O}_{\oslash} given by multiplication by ss. In particular, there exists a surjection morphism 𝒪,d𝒪,c\mathscr{O}_{\oslash,d}\twoheadrightarrow\mathscr{O}_{\oslash,c} if and only if the equality d=cd=c holds. Moreover, the equality (4.65) is compatible, in a natural sense, with (4.42) via the functor (){{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!(-) and the composite

    H0(U,Ker(,cd))modpH0(U,0,Ker(,cd)0)(3.14)H0(U,0,𝒮ol(,cd,0(m))).\displaystyle H^{0}(U_{\oslash},\mathrm{Ker}(\nabla_{\oslash,c-d}))\xrightarrow{\mathrm{mod}\,p}H^{0}(U_{\oslash,0},\mathrm{Ker}(\nabla_{\oslash,c-d})_{0})\xrightarrow{\eqref{YY82}}H^{0}(U_{\oslash,0},\mathcal{S}ol(\nabla_{\oslash,c-d,0}^{(m)})). (4.66)

Also, by applying Proposition-Definition 4.4.1 (for =\odot=\oslash), we obtain the following assertion.

Proposition-Definition 4.5.4.

Suppose that S0=Spec(R)S_{0}=\mathrm{Spec}(R) for a local ring (R,𝔪)(R,\mathfrak{m}) over 𝔽p\mathbb{F}_{p} such that the residue field k:=R/𝔪k:=R/\mathfrak{m} is algebraically closed. Let :=(,)\mathscr{F}:=(\mathcal{F},\nabla) be a dormant flat bundle on Ulog/SlogU_{\oslash}^{\mathrm{log}}/S^{\mathrm{log}} of rank n>0n>0. Then, there exists an isomorphism of flat bundles

i=1n𝒪,di\displaystyle\bigoplus_{i=1}^{n}\mathscr{O}_{\oslash,d_{i}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathscr{F} (4.67)

for some d1,,dn/pm+1d_{1},\cdots,d_{n}\in\mathbb{Z}/p^{m+1}\mathbb{Z}. (This implies that the monodromy operator μ()\mu(\nabla) of \nabla can be transformed, after choosing a suitable trivialization σ()𝒪Sn\sigma_{\oslash}^{*}(\mathcal{F})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{O}_{S}^{\oplus n} of σ()\sigma_{\oslash}^{*}(\mathcal{F}), into the diagonal matrix with diagonal entries d1,,dn-d_{1},\cdots,-d_{n}.) Moreover, the resulting multiset

e():=[d1,,dn]\displaystyle e(\nabla):=[d_{1},\cdots,d_{n}] (4.68)

depends only on the isomorphism class of \mathscr{F}. We shall refer to e()e(\nabla) as the exponent of \mathscr{F}.

Proof.

According to Proposition-Definition 4.4.1, there exists an isomorphism

ζ0:i=1n𝒪,di,0(m)\displaystyle\zeta_{0}:\bigoplus_{i=1}^{n}\mathscr{O}_{\oslash,d_{i},0}^{(m)}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{F} (4.69)

for some d1,,dn/pm+1d_{1},\cdots,d_{n}\in\mathbb{Z}/p^{m+1}\mathbb{Z}. Let us choose j{1,,n}j\in\{1,\cdots,n\}. Since the functor (){{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!(-) commutes with the formation of tensor products, it follows from Propositions 4.3.4, (i), and 4.5.2, (i), that ζ0\zeta_{0} induces an isomorphism

ζ0,j:i=1n𝒪,didj,0(m)(𝒪,dj)(=(,,dj)).\displaystyle\zeta_{0,j}:\bigoplus_{i=1}^{n}\mathscr{O}_{\oslash,d_{i}-d_{j},0}^{(m)}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!(\mathscr{F}\otimes\mathscr{O}_{\oslash,-d_{j}})\left(={{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!(\mathcal{F},\nabla\otimes\nabla_{\oslash,-d_{j}})\right). (4.70)

If eje_{j} denotes the image of 1𝒪,01\in\mathcal{O}_{\oslash,0} via the inclusion into the jj-th factor 𝒪,0𝒪,0n\mathcal{O}_{\oslash,0}\hookrightarrow\mathcal{O}_{\oslash,0}^{\oplus n}, then its image ζ0,j(ej)\zeta_{0,j}(e_{j}) is a horizontal section in the codomain of ζ0,j\zeta_{0,j}. By the property (β)m(\beta)_{m} asserted in Proposition 3.1.1, (i) (or Corollary 3.1.3), we can find a lifting of ζ0,j(ej)\zeta_{0,j}(e_{j}) in \mathcal{F} that is horizontal with respect to ,dj(0)\nabla\otimes\nabla_{\oslash,-d_{j}}^{(0)}; this section corresponds to a morphism of flat bundles 𝒪,0(,,dj(0))\mathscr{O}_{\oslash,0}\rightarrow(\mathcal{F},\nabla\otimes\nabla_{\oslash,-d_{j}}^{(0)}). The tensor produce of this morphism and the identity morphism of 𝒪,dj\mathscr{O}_{\oslash,d_{j}} determines a morphism ζj:𝒪,dj\zeta_{j}:\mathscr{O}_{\oslash,d_{j}}\rightarrow\mathscr{F}. Thus, we obtain a morphism of flat bundles

ζ:=i=1nζj:𝒪,dj.\displaystyle\zeta:=\bigoplus_{i=1}^{n}\zeta_{j}:\mathscr{O}_{\oslash,d_{j}}\rightarrow\mathscr{F}. (4.71)

Since the reduction of ζ\zeta modulo pp coincides with the isomorphism ζ0\zeta_{0} (after reducing the level to 0), it follows from Nakayama’s lemma that ζ\zeta is an isomorphism. This completes the proof of the first assertion. The second assertion can be proved immediately from Proposition 4.5.3, (ii). ∎

5. Dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers on pointed stable curves

This section deals with higher-level generalizations of (dormant) PGLn\mathrm{PGL}_{n}-opers, which we call (dormant) PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers. The goal of this section is to show that the moduli category of dormant PGLn\mathrm{PGL}_{n}-opers may be represented by a proper Deligne-Mumford stack (cf. Theorem 5.5.3 and Corollary 5.6.2).

Throughout this section, we shall fix an element (,N)(\ell,N) of 0×>0\mathbb{Z}_{\geq 0}\times\mathbb{Z}_{>0} with =0\ell=0 or N=1N=1. Also, denote by BB the Borel subgroup of PGLn\mathrm{PGL}_{n} (n>0n\in\mathbb{Z}_{>0}) defined as the image, via the natural projection GLnPGLn\mathrm{GL}_{n}\twoheadrightarrow\mathrm{PGL}_{n}, of the group of invertible upper-triangular n×nn\times n matrices.

5.1. Moduli space of pointed stable curves

Let (g,r)(g,r) be a pair of nonnegative integers with 2g2+r>02g-2+r>0. For each commutative ring RR, denote by

¯g,r,R(or simply,¯g,r)\displaystyle\overline{\mathcal{M}}_{g,r,R}\ \left(\text{or simply},\ \overline{\mathcal{M}}_{g,r}\right) (5.1)

the moduli stack classifying rr-pointed stable curves of genus gg over RR. Also, denote by g,r,R\mathcal{M}_{g,r,R} the dense open substack of ¯g,r,R\overline{\mathcal{M}}_{g,r,R} classifying nonsingular curves. The normal crossing divisor defined as the boundary ¯g,r,Rg,r,R\overline{\mathcal{M}}_{g,r,R}\setminus\mathcal{M}_{g,r,R} on ¯g,r,R\overline{\mathcal{M}}_{g,r,R} determines a log structure; we shall denote the resulting fs log stack by

¯g,r,Rlog(or simply,¯g,rlog).\displaystyle\overline{\mathcal{M}}_{g,r,R}^{\mathrm{log}}\ \left(\text{or simply},\ \overline{\mathcal{M}}_{g,r}^{\mathrm{log}}\right). (5.2)

Next, let 𝒳:=(f:XS,{σi}i=1r)\mathscr{X}:=(f:X\rightarrow S,\{\sigma_{i}\}_{i=1}^{r}) be an rr-pointed stable curve of genus gg over an RR-scheme SS, where σi\sigma_{i} denotes the ii-th marked point SXS\rightarrow X. Recall from  [KaFu, Theorem 2.6] that there exists canonical log structures on XX and SS; we shall denote the resulting log schemes by XlogX^{\mathrm{log}} and SlogS^{\mathrm{log}}, respectively. (The log structure of SlogS^{\mathrm{log}} is obtained as the pull-back from ¯g,rlog\overline{\mathcal{M}}_{g,r}^{\mathrm{log}} via the classifying morphism S¯g,rS\rightarrow\overline{\mathcal{M}}_{g,r} of 𝒳\mathscr{X}.)

The following assertion will be applied in the proof of Lemma 10.1.1.

Proposition 5.1.1.

Let Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} be as above, and suppose that SS is flat over /p+1\mathbb{Z}/p^{\ell+1}\mathbb{Z}. Also, let UU be a scheme-theoretically dense open subscheme of Xi=1rIm(σi)X\setminus\bigcup_{i=1}^{r}\mathrm{Im}(\sigma_{i}), and :=(,)\mathscr{L}:=(\mathcal{L},\nabla) a flat line bundle on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} whose restriction |U\mathscr{L}|_{U} to UU is dormant. Then, (,)(\mathcal{L},\nabla) is dormant.

Proof.

For simplicity, we shall write 𝒟(m)\mathcal{D}^{(m)} (for each m0m\geq 0) instead of 𝒟(m)X0log/S0log\mathcal{D}^{(m)}_{X_{0}^{\mathrm{log}}/S_{0}^{\mathrm{log}}}. By Proposition 3.2.5, (ii), we may assume, without loss of generality, that U=Xi=1rIm(σi)U=X\setminus\bigcup_{i=1}^{r}\mathrm{Im}(\sigma_{i}). We shall prove the assertion by induction on \ell.

The base step, i.e., =0\ell=0, is clear because UU is scheme-theoretically dense in XX and the pp-curvature of a flat bundle in characteristic pp can be regarded as a global section of a certain associated vector bundle.

Next, to discuss the induction step, suppose that we have proved the required assertion with \ell replaced with 1\ell-1 (>0\ell\in\mathbb{Z}_{>0}). In particular, the reduction (1,1)(\mathcal{L}_{\ell-1},\nabla_{\ell-1}) modulo pp^{\ell} is dormant. The diagonal reduction of 1\nabla_{\ell-1} determines a 𝒟(1)\mathcal{D}^{(\ell-1)}-module structure 0(1)\nabla_{0}^{(\ell-1)} on 0\mathcal{L}_{0}. Just as in (3.5), we have an SlogS^{\mathrm{log}}-connection \nabla_{\mathscr{L}} on 𝒱:=𝒮ol(0(1))\mathcal{V}_{\mathscr{L}}:=\mathcal{S}ol(\nabla_{0}^{(\ell-1)}) associated to \mathscr{L}; it has vanishing pp-curvature because |U\mathscr{L}|_{U} is dormant. According to  [Mon, Corollaire 3.3.1], \nabla_{\mathscr{L}} induces a 𝒟()\mathcal{D}^{(\ell)}-module structure ()0\nabla^{(\ell)}_{\mathcal{L}^{\flat}_{0}} on 0:=FX0/S0()(𝒮ol(0(1)))\mathcal{L}^{\flat}_{0}:=F_{X_{0}/S_{0}}^{(\ell)*}(\mathcal{S}ol(\nabla_{0}^{(\ell-1)})) with vanishing p+1p^{\ell+1}-curvature that are compatible with 0(1)\nabla_{0}^{(\ell-1)} via the inclusion τ:00\tau:\mathcal{L}^{\flat}_{0}\hookrightarrow\mathcal{L}_{0} and the natural morphism 𝒟(1)𝒟()\mathcal{D}^{(\ell-1)}\rightarrow\mathcal{D}^{(\ell)}. Denote by u(0|U)()\nabla_{u_{*}(\mathcal{L}^{\flat}_{0}|_{U})}^{(\ell)} the 𝒟()\mathcal{D}^{(\ell)}-module structure on u(0|U)(=u(0|U))u_{*}(\mathcal{L}^{\flat}_{0}|_{U})\left(=u_{*}(\mathcal{L}_{0}|_{U})\right) extending ()0\nabla^{(\ell)}_{\mathcal{L}^{\flat}_{0}} via the open immersion u:UXu:U\hookrightarrow X.

In what follows, we prove the claim that 0(u(0|U))\mathcal{L}_{0}\left(\subseteq u_{*}(\mathcal{L}^{\flat}_{0}|_{U})\right) is closed under u(0|U)()\nabla_{u_{*}(\mathcal{L}^{\flat}_{0}|_{U})}^{(\ell)}. To this end, we may assume that SS is connected. Then, the equality 0=0(i=1raiσi)\mathcal{L}_{0}^{\flat}=\mathcal{L}_{0}(-\sum_{i=1}^{r}a_{i}\sigma_{i}) holds for some integers aia_{i} with 0ai<p0\leq a_{i}<p^{\ell} (cf. Proposition-Definition 4.4.1). We choose i{1,,r}i\in\{1,\cdots,r\}. Each section ss of 0\mathcal{L}_{0} over a sufficiently small open neighborhood of a point in Im(σi)\mathrm{Im}(\sigma_{i}) may be described as s=taiss=t^{-a_{i}}\cdot s^{\prime} for some s0s^{\prime}\in\mathcal{L}^{\flat}_{0}, where tt denotes a local function defining Im(σi)\mathrm{Im}(\sigma_{i}). Denote by {j}j0\{\partial^{\langle j\rangle}\}_{j\geq 0} the local basis of 𝒟()\mathcal{D}^{(\ell)} associated to tt in the manner of § 2.2. Since the 𝒪X\mathcal{O}_{X}-algebra 𝒟()\mathcal{D}^{(\ell)} is locally generated by {pa}a=0\{\partial^{\langle p^{a}\rangle}\}_{a=0}^{\ell}, the problem is reduced to show that u(0|U)()(pa)(s)0\nabla_{u_{*}(\mathcal{L}^{\flat}_{0}|_{U})}^{(\ell)}(\partial^{\langle p^{a}\rangle})(s)\in\mathcal{L}_{0} for a=0,,a=0,\cdots,\ell. If a=0,,1a=0,\cdots,\ell-1, this is true because u(0|U)()(pa)(s)\nabla_{u_{*}(\mathcal{L}^{\flat}_{0}|_{U})}^{(\ell)}(\partial^{\langle p^{a}\rangle})(s) coincides with 0(1)(pa)(s)\nabla_{0}^{(\ell-1)}(\partial^{\langle p^{a}\rangle})(s) via 𝒟(1)𝒟()\mathcal{D}^{(\ell-1)}\rightarrow\mathcal{D}^{(\ell)}. As for the case of a=a=\ell, we have

u(0|U)()(p)(tais)\displaystyle\nabla_{u_{*}(\mathcal{L}^{\flat}_{0}|_{U})}^{(\ell)}(\partial^{\langle p^{\ell}\rangle})(t^{-a_{i}}\cdot s^{\prime}) =j=0pj(tai)u(0|U)()(pj)(s)\displaystyle=\sum_{j=0}^{p^{\ell}}\partial^{\langle j\rangle}(t^{-a_{i}})\cdot\nabla_{u_{*}(\mathcal{L}^{\flat}_{0}|_{U})}^{(\ell)}(\partial^{\langle p^{\ell}-j\rangle})(s^{\prime}) (5.3)
=j=0pj(tai)()0(pj)(s)\displaystyle=\sum_{j=0}^{p^{\ell}}\partial^{\langle j\rangle}(t^{-a_{i}})\cdot\nabla^{(\ell)}_{\mathcal{L}_{0}^{\flat}}(\partial^{\langle p^{\ell}-j\rangle})(s^{\prime})

(cf.  [Mon, Corollaire 2.6.1]). Since j(tai)tai𝒪X\partial^{\langle j\rangle}(t^{-a_{i}})\in t^{-a_{i}}\cdot\mathcal{O}_{X} for any jj (cf.  [Mon, Lemme 2.3.3]) and ()0(pj)(s)0\nabla^{(\ell)}_{\mathcal{L}_{0}^{\flat}}(\partial^{\langle p^{\ell}-j\rangle})(s^{\prime})\in\mathcal{L}_{0}^{\flat}, we have u(0|U)()(p)(s)0\nabla_{u_{*}(\mathcal{L}^{\flat}_{0}|_{U})}^{(\ell)}(\partial^{\langle p^{\ell}\rangle})(s)\in\mathcal{L}_{0}. This proves the claim, as desired.

Now, let ()0\nabla^{(\ell)}_{\mathcal{L}_{0}} denote the resulting 𝒟()\mathcal{D}^{(\ell)}-module structure on 0\mathcal{L}_{0}. One may verify (from the inequalities ai<pa_{i}<p^{\ell} for ii’s) that (,0())Diag(\mathscr{L},\nabla_{\mathcal{L}_{0}}^{(\ell)})\in\mathrm{Diag}_{\ell} (cf. (3.6)), i.e., \mathscr{L} is dormant. This completes the proof of the assertion. ∎

5.2. PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers on log curves

Let SlogS^{\mathrm{log}} be an fs log scheme whose underlying scheme SS is flat over /p+1\mathbb{Z}/p^{\ell+1}\mathbb{Z}, and let flog:XlogSlogf^{\mathrm{log}}:X^{\mathrm{log}}\rightarrow S^{\mathrm{log}} be a log curve over SlogS^{\mathrm{log}}. Suppose that SS is equipped with an (N1)(N-1)-PD structure that extends to XX via ff. For simplicity, we write Ω:=ΩXlog/Slog\Omega:=\Omega_{X^{\mathrm{log}}/S^{\mathrm{log}}}, 𝒯:=𝒯Xlog/Slog\mathcal{T}:=\mathcal{T}_{X^{\mathrm{log}}/S^{\mathrm{log}}}, 𝒟(N1):=𝒟(N1)Xlog/Slog\mathcal{D}^{(N-1)}:=\mathcal{D}^{(N-1)}_{X^{\mathrm{log}}/S^{\mathrm{log}}}, and 𝒟(N1)j:=𝒟(N1)Xlog/Slog,j\mathcal{D}^{(N-1)}_{\leq j}:=\mathcal{D}^{(N-1)}_{X^{\mathrm{log}}/S^{\mathrm{log}},\leq j} (j0j\in\mathbb{Z}_{\geq 0}). In this subsection, we shall fix an integer nn with 1<n<p1<n<p.

Let us consider a pair

:=(B,ϕ)\displaystyle\mathscr{E}^{\spadesuit}:=(\mathcal{E}_{B},\phi) (5.5)

consisting of a BB-bundle B\mathcal{E}_{B} on XX and an (N1)(N-1)-PD stratification on \mathcal{E}, where :=B×BPGLn\mathcal{E}:=\mathcal{E}_{B}\times^{B}\mathrm{PGL}_{n}, i.e., \mathcal{E} is the PGLn\mathrm{PGL}_{n}-bundle induced from B\mathcal{E}_{B} via change of structure group by the natural inclusion BPGLnB\hookrightarrow\mathrm{PGL}_{n}. Denote by ϕ\nabla_{\phi} the SlogS^{\mathrm{log}}-connection on \mathcal{E} corresponding, via the equivalence of categories (2.63), to the 0-PD stratification induced from ϕ\phi.

Definition 5.2.1.
  • (i)

    We shall say that \mathscr{E}^{\spadesuit} is a PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper (or a PGLn\mathrm{PGL}_{n}-oper of level NN) on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} if the pair (B,ϕ)(\mathcal{E}_{B},\nabla_{\phi}) forms an 𝔰𝔩n\mathfrak{s}\mathfrak{l}_{n}-oper on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} in the sense of  [Wak8, Definition 2.1]. (Note that the notion of an 𝔰𝔩n\mathfrak{s}\mathfrak{l}_{n}-oper can be defined in exactly the same way as  [Wak8], even though we are working over /p+1\mathbb{Z}/p^{\ell+1}\mathbb{Z}. In particular, a PGLn(1)\mathrm{PGL}_{n}^{(1)}-oper can be formulated in terms of flat connections, i.e., without fixing a (0-)PD structure on SS.) If the log curve Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} arises from a pointed stable curve 𝒳\mathscr{X}, then we will refer to any PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} as a PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on 𝒳\mathscr{X}. Also, for simplicity, we shall refer to any PGLn(1)\mathrm{PGL}_{n}^{(1)}-oper as a PGLn\mathrm{PGL}_{n}-oper.

  • (ii)

    Let :=(,B,ϕ)\mathscr{E}^{\spadesuit}_{\circ}:=(\mathcal{E}_{\circ,B},\phi_{\circ}) and :=(,B,ϕ)\mathscr{E}^{\spadesuit}_{\bullet}:=(\mathcal{E}_{\bullet,B},\phi_{\bullet}) be PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. Write :=,B×BPGLn\mathcal{E}_{\circ}:=\mathcal{E}_{\circ,B}\times^{B}\mathrm{PGL}_{n} and :=,B×BPGLn\mathcal{E}_{\bullet}:=\mathcal{E}_{\bullet,B}\times^{B}\mathrm{PGL}_{n}. Then, an isomorphism of PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers from \mathscr{E}^{\spadesuit}_{\circ} to \mathscr{E}^{\spadesuit}_{\bullet} is defined as an isomorphism ,B,B\mathcal{E}_{\circ,B}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{E}_{\bullet,B} of BB-bundles that induces, via change of structure group by BPGLnB\hookrightarrow\mathrm{PGL}_{n}, an isomorphism of (N1)(N-1)-PD stratified PGLn\mathrm{PGL}_{n}-bundles (,ϕ)(,ϕ)(\mathcal{E}_{\circ},\phi_{\circ})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}(\mathcal{E}_{\bullet},\phi_{\bullet}).

Moreover, we shall define the notion of a dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper, generalizing  [Mzk2, Chap. II, Definition 1.1],  [Wak8, Definition 3.15], and  [Wak9, Definition 4.1.1].

Definition 5.2.2.

Let :=(B,ϕ)\mathscr{E}^{\spadesuit}:=(\mathcal{E}_{B},\phi) be a PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}.

  • (i)

    Suppose that =0\ell=0, i.e., SS is a scheme over 𝔽p\mathbb{F}_{p}. Then, we shall say that \mathscr{E}^{\spadesuit} is dormant if ϕ\phi has vanishing pNp^{N}-curvature.

  • (ii)

    Suppose that N=1N=1. Then, we shall say that \mathscr{E}^{\spadesuit} is dormant if the induced flat PGLn\mathrm{PGL}_{n}-bundle is dormant in the sense of Definition 3.1.4, (ii).

Remark 5.2.3 (GG-oper of higher level).

In a similar manner to the above definition, we can extend the definition of a GG-oper (discussed in  [Wak8, Definition 2.1]) to higher level at least when GG is a semisimple algebraic group of adjoint type.

Let :=(B,ϕ)\mathscr{E}^{\spadesuit}:=(\mathcal{E}_{B},\phi) be a PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. Suppose that we are given an fs log scheme SlogS^{\prime\mathrm{log}} flat over /p+1\mathbb{Z}/p^{\ell+1}\mathbb{Z} and a morphism of log schemes slog:SlogSlogs^{\mathrm{log}}:S^{\prime\mathrm{log}}\rightarrow S^{\mathrm{log}} over /p+1\mathbb{Z}/p^{\ell+1}\mathbb{Z}. Then, the pair of base-changes

s():=(s(B),s(ϕ))\displaystyle s^{*}(\mathscr{E}^{\spadesuit}):=(s^{*}(\mathcal{E}_{B}),s^{*}(\phi)) (5.6)

forms a PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on the log curve (Slog×SlogXlog)/Slog(S^{\prime\mathrm{log}}\times_{S^{\mathrm{log}}}X^{\mathrm{log}})/S^{\prime\mathrm{log}}. Conversely, the formation of a PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper has descent with respect to, e.g., the étale topology on SS.

Let us prove the following fundamental property of PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers, which is a generalization of  [BD2, § 1.3, Proposition] and  [Wak8, Proposition 2.9] (in the case of PGLn\mathrm{PGL}_{n}-opers).

Proposition 5.2.4.

Any PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} does not have nontrivial automorphisms.

Proof.

We prove the assertion by induction on \ell. The base step, i.e., the case of =0\ell=0, follows from  [Wak8, Proposition 2.9].

Next, to prove the induction step, we suppose that the assertion with \ell replaced by 1\ell-1 (1\ell\geq 1) has been proved. We may assume, without loss of generality, that SS is affine. Let :=(B,ϕ)\mathscr{E}^{\spadesuit}:=(\mathcal{E}_{B},\phi) be a PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} and h:h:\mathscr{E}^{\spadesuit}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathscr{E}^{\spadesuit} an automorphism of \mathscr{E}^{\spadesuit}. By the induction hypothesis, the reduction of hh modulo pp^{\ell} is equal to the identity morphism. Denote by h(1)h^{(1)} the automorphism of the PGLn\mathrm{PGL}_{n}-oper ()(1):=(B,ϕ)(\mathscr{E}^{\spadesuit})^{(1)}:=(\mathcal{E}_{B},\nabla_{\phi}) induced by \mathscr{E}^{\spadesuit}. According to an argument similar to the argument in  [Wak8, § 6.3] (which deals with the case where the base space SlogS^{\mathrm{log}} is a log scheme over a field), h(1)h^{(1)} coincides with the identify morphism. Indeed, the space of automorphisms of ()(1)(\mathscr{E}^{\spadesuit})^{(1)} inducing the identity morphism via reduction modulo pp^{\ell} has a structure of torsor modeled on H0(X,Ker(ad(0)))H^{0}(X,\mathrm{Ker}(\nabla^{\mathrm{ad}(0)})), where “ad(0)\nabla^{\mathrm{ad}(0)}” denotes the morphism defined in  [Wak8, Eq. (759)] (for 𝔤=𝔰𝔩n\mathfrak{g}=\mathfrak{s}\mathfrak{l}_{n}) associated to the reduction modulo pp of ()(1)(\mathscr{E}^{\spadesuit})^{(1)}; but the equality H0(X,Ker(ad(0)))=0H^{0}(X,\mathrm{Ker}(\nabla^{\mathrm{ad}(0)}))=0 holds by  [Wak8, Proposition 6.5], which implies h=idBh=\mathrm{id}_{\mathcal{E}_{B}}. This proves the induction step, and hence we have finished the proof of the assertion. ∎

We shall set R:=/p+1R:=\mathbb{Z}/p^{\ell+1}\mathbb{Z} (0\ell\in\mathbb{Z}_{\geq 0}). Denote by 𝒮et\mathcal{S}et the category of (small) sets and by 𝒮chRflat/S\mathcal{S}ch_{R}^{\mathrm{flat}}/S the category of flat RR-schemes SS^{\prime} equipped with an RR-morphism SSS^{\prime}\rightarrow S. We shall denote by

𝒪p(resp.,𝒪pZzz):𝒮chRflat/S𝒮et\displaystyle\mathcal{O}p_{\spadesuit}\ \left(\text{resp.,}\ \mathcal{O}p_{\spadesuit}^{{}^{\mathrm{Zzz...}}}\right):\mathcal{S}ch_{R}^{\mathrm{flat}}/S\rightarrow\mathcal{S}et (5.7)

the contravariant functor on 𝒮chRflat/S\mathcal{S}ch_{R}^{\mathrm{flat}}/S, which to any SS-scheme SS^{\prime} in Ob(𝒮chRflat/S)\mathrm{Ob}(\mathcal{S}ch_{R}^{\mathrm{flat}}/S), assigns the set of isomorphism classes of PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers (resp., dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers) on the log curve (S×SXlog)/(S×SSlog)(S^{\prime}\times_{S}X^{\mathrm{log}})/(S^{\prime}\times_{S}S^{\mathrm{log}}). By Proposition 5.2.4 above, 𝒪p\mathcal{O}p_{\spadesuit} (resp., 𝒪pZzz\mathcal{O}p_{\spadesuit}^{{}^{\mathrm{Zzz...}}}) turns out to be a sheaf with respect to the big étale topology on 𝒮chRflat/S\mathcal{S}ch_{R}^{\mathrm{flat}}/S.

5.3. GLn(N)\mathrm{GL}_{n}^{(N)}-opers on log curves

Next, we shall define the notion of a GLn(N)\mathrm{GL}_{n}^{(N)}-oper and define a certain equivalence relation in the set of GLn(N)\mathrm{GL}_{n}^{(N)}-opers. Fix an integer nn with 1<npN1<n\leq p^{N}.

Let us consider a collection of data

:=(,,{j}j=0n),\displaystyle\mathscr{F}^{\heartsuit}:=(\mathcal{F},\nabla,\{\mathcal{F}^{j}\}_{j=0}^{n}), (5.8)

where

  • \mathcal{F} is a vector bundle on XX of rank nn;

  • \nabla is a 𝒟(N1)\mathcal{D}^{(N-1)}-module structure on \mathcal{F};

  • {j}j=0n\{\mathcal{F}^{j}\}_{j=0}^{n} is an nn-step decreasing filtration

    0=nn10=\displaystyle 0=\mathcal{F}^{n}\subseteq\mathcal{F}^{n-1}\subseteq\cdots\subseteq\mathcal{F}^{0}=\mathcal{F} (5.9)

    on \mathcal{F} consisting of subbundles such that the subquotients j/j+1\mathcal{F}^{j}/\mathcal{F}^{j+1} are line bundles.

Definition 5.3.1.
  • (i)

    We shall say that \mathscr{F}^{\heartsuit} is a GLn(N)\mathrm{GL}_{n}^{(N)}-oper (or a GLn\mathrm{GL}_{n}-oper of level NN) on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} if, for every j=0,,n1j=0,\cdots,n-1, the 𝒪X\mathcal{O}_{X}-linear morphism 𝒟(N1)\mathcal{D}^{(N-1)}\otimes\mathcal{F}\rightarrow\mathcal{F} induced by \nabla restricts to an isomorphism

    𝒟nj1(N1)n1j.\displaystyle\mathcal{D}_{\leq n-j-1}^{(N-1)}\otimes\mathcal{F}^{n-1}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{F}^{j}. (5.10)

    When Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} arises from a pointed stable curve 𝒳\mathscr{X}, we shall refer to any GLn(N)\mathrm{GL}_{n}^{(N)}-oper on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} as a GLn(N)\mathrm{GL}_{n}^{(N)}-oper on 𝒳\mathscr{X}. (When N=1N=1, this definition is the same as the usual definition of a GLn\mathrm{GL}_{n}-oper, as defined in, e.g.,  [Wak8, Definition 4.17].)

  • (ii)

    Let :=(,,{j}j)\mathscr{F}_{\circ}^{\heartsuit}:=(\mathcal{F}_{\circ},\nabla_{\circ},\{\mathcal{F}_{\circ}^{j}\}_{j}) and :=(,,{j}j)\mathscr{F}_{\bullet}^{\heartsuit}:=(\mathcal{F}_{\bullet},\nabla_{\bullet},\{\mathcal{F}_{\bullet}^{j}\}_{j}) be GLn(N)\mathrm{GL}_{n}^{(N)}-opers on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. An isomorphism of GLn(N)\mathrm{GL}_{n}^{(N)}-opers from \mathscr{F}_{\circ}^{\heartsuit} to \mathscr{F}_{\bullet}^{\heartsuit} is an isomorphism (,)(,)(\mathcal{F}_{\circ},\nabla_{\circ})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}(\mathcal{F}_{\bullet},\nabla_{\bullet}) of 𝒟(N1)\mathcal{D}^{(N-1)}-modules preserving the filtration.

Definition 5.3.2.

Let :=(,,{j}j)\mathscr{F}^{\heartsuit}:=(\mathcal{F},\nabla,\{\mathcal{F}^{j}\}_{j}) be a GLn(N)\mathrm{GL}_{n}^{(N)}-oper on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}.

  • (i)

    Suppose that =0\ell=0, i.e., SS is a scheme over 𝔽p\mathbb{F}_{p}. Then, we shall say that \mathscr{F}^{\heartsuit} is dormant if \nabla has vanishing pNp^{N}-curvature.

  • (ii)

    Suppose that N=1N=1. Then, we shall say that \mathscr{F}^{\heartsuit} is dormant if the flat bundle (,)(\mathcal{F},\nabla) is dormant in the sense of Definition 3.1.4, (i).

Example 5.3.3 (GL2(N)\mathrm{GL}_{2}^{(N)}-opers for large NN’s).

Despite the fact that dormant GL2(1)\mathrm{GL}_{2}^{(1)}-opers have been substantially investigated in many references, there are few examples for higher level at the time of writing this manuscript. We here give an example of a dormant GL2(N)\mathrm{GL}_{2}^{(N)}-oper (for a general NN) constructed recently in  [Wak10].

Let kk be an algebraically closed field over 𝔽p\mathbb{F}_{p} and XX a curve embedded in the projective plane 2:={[t0:t1:t2]|(t0,t1,t2)(0,0,0)}\mathbb{P}^{2}:=\{[t_{0}:t_{1}:t_{2}]\,|\,(t_{0},t_{1},t_{2})\neq(0,0,0)\} over kk. Denote by Grass(2,3)\mathrm{Grass}(2,3) the Grassman variety classifying 22-dimensional quotient spaces of the kk-vector space k3k^{3}; it may be identified with the space of 11-planes in 2\mathbb{P}^{2}. Recall that the Gauss map on XX is the rational morphism γ:XGrass(2,3)\gamma:X\dashrightarrow\mathrm{Grass}(2,3) that assigns to each smooth point xx the embedded tangent space to XX at xx in 2\mathbb{P}^{2}.

Now, suppose that p>2p>2 and that XX is the Fermat hypersurface of degree pN+1p^{N}+1 in 2\mathbb{P}^{2}, i.e., the smooth hypersurface defined by the homogenous polynomial t0pN+1+t1pN+1+t2pN+1t_{0}^{p^{N}+1}+t_{1}^{p^{N}+1}+t_{2}^{p^{N}+1}. It is well-known that the Gauss map on XX factors through the NN-th relative Frobenius morphism FX/k(N)F_{X/k}^{(N)}. In particular, we obtain a rank 22 vector bundle \mathcal{F}^{\nabla} on X(N)X^{(N)} by pulling-back the universal quotient bundle on Grass(2,3)\mathrm{Grass}(2,3) via the resulting morphism X(N)Grass(2,3)X^{(N)}\rightarrow\mathrm{Grass}(2,3). If {F(N)X/k()j}j\{F^{(N)*}_{X/k}(\mathcal{F}^{\nabla})^{j}\}_{j} denotes the Harder-Narasimhan filtration on F(N)X/k()F^{(N)*}_{X/k}(\mathcal{F}^{\nabla}), then it forms a 22-step (decreasing) filtration. Moreover, it follows from  [Wak10, Theorem C] that the collection of data

(F(N)X/k(),(N1),can,{F(N)X/k()j}j)\displaystyle(F^{(N)*}_{X/k}(\mathcal{F}^{\nabla}),\nabla^{(N-1)}_{\mathcal{F}^{\nabla},\mathrm{can}},\{F^{(N)*}_{X/k}(\mathcal{F}^{\nabla})^{j}\}_{j}) (5.11)

(cf. (2.81) for the definition of (),can(m)\nabla_{(-),\mathrm{can}}^{(m)}) defines a dormant GL2(N)\mathrm{GL}_{2}^{(N)}-oper on X/kX/k.

Proposition 5.3.4.

Let :=(,(N1),{j}j)\mathcal{F}^{\heartsuit}:=(\mathcal{F},\nabla^{(N-1)},\{\mathcal{F}^{j}\}_{j}) be a (dormant) GLn(N)\mathrm{GL}_{n}^{(N)}-oper on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. Also, let NN^{\prime} be a positive integer with n<pNn<p^{N^{\prime}}. Then, the collection

(,(N1)(N1),{j}j)\displaystyle(\mathcal{F},\nabla^{(N-1)\Rightarrow(N^{\prime}-1)},\{\mathcal{F}_{j}\}_{j}) (5.12)

forms a (dormant) GLn(N)\mathrm{GL}_{n}^{(N^{\prime})}-oper on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}.

Proof.

The assertion follows from the fact that the natural morphism 𝒟nj1(N1)𝒟nj1(N1)\mathcal{D}_{\leq n-j-1}^{(N^{\prime}-1)}\otimes\mathcal{F}\rightarrow\mathcal{D}_{\leq n-j-1}^{(N-1)}\otimes\mathcal{F} is an isomorphism for every j=0,,n1j=0,\cdots,n-1. ∎

Next, we shall define an equivalence relation in the set of GLn(N)\mathrm{GL}_{n}^{(N)}-opers. Let :=(,,{j}j)\mathscr{F}^{\heartsuit}:=(\mathcal{F},\nabla,\{\mathcal{F}^{j}\}_{j}) be a GLn(N)\mathrm{GL}_{n}^{(N)}-oper on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} and :=(,)\mathscr{L}:=(\mathcal{L},\nabla_{\mathcal{L}}) an invertible 𝒟(N1)\mathcal{D}^{(N-1)}-module. In particular, we obtain a 𝒟(N1)\mathcal{D}^{(N-1)}-module structure \nabla\otimes\nabla_{\mathcal{L}} on the tensor product \mathcal{F}\otimes\mathcal{L} arising from \nabla and \nabla_{\mathcal{L}}. One may verify that the collection

:=(,,{j}j=0n)\displaystyle\mathscr{F}^{\heartsuit}_{\otimes\mathscr{L}}:=(\mathcal{F}\otimes\mathcal{L},\nabla\otimes\nabla_{\mathcal{L}},\{\mathcal{F}^{j}\otimes\mathcal{L}\}_{j=0}^{n}) (5.13)

forms a GLn(N)\mathrm{GL}_{n}^{(N)}-oper on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. If \mathscr{F}^{\heartsuit} and (,)(\mathcal{L},\nabla_{\mathcal{L}}) are dormant, then \mathscr{F}^{\heartsuit}_{\otimes\mathscr{L}} is verified to be dormant.

Definition 5.3.5.

Let :=(,,{j}j)\mathscr{F}^{\heartsuit}_{\circ}:=(\mathcal{F}_{\circ},\nabla_{\circ},\{\mathcal{F}_{\circ}^{j}\}_{j}) and :=(,,{j}j)\mathscr{F}^{\heartsuit}_{\bullet}:=(\mathcal{F}_{\bullet},\nabla_{\bullet},\{\mathcal{F}_{\bullet}^{j}\}_{j}) be GLn(N)\mathrm{GL}_{n}^{(N)}-opers (resp., dormant GLn(N)\mathrm{GL}_{n}^{(N)}-opers) on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. We shall say that \mathscr{F}^{\heartsuit}_{\circ} is equivalent to \mathscr{F}^{\heartsuit}_{\bullet} if there exists an invertible (resp., a dormant invertible) 𝒟(N1)\mathcal{D}^{(N-1)}-module :=(,)\mathscr{L}:=(\mathcal{L},\nabla_{\mathcal{L}}) such that the GLn(N)\mathrm{GL}_{n}^{(N)}-oper ,\mathscr{F}^{\heartsuit}_{\circ,\otimes\mathscr{L}} is isomorphic to \mathscr{F}_{\bullet}^{\heartsuit}. We use the notion “\mathscr{F}^{\heartsuit}_{\circ}\sim\mathscr{F}^{\heartsuit}_{\bullet}” to indicate the situation that \mathscr{F}^{\heartsuit}_{\circ} is equivalent to \mathscr{F}_{\bullet}^{\heartsuit}. (The binary relation “\sim” in the set of (dormant) GLn(N)\mathrm{GL}_{n}^{(N)}-opers on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} actually defines an equivalence relation.) Moreover, for a (dormant) GLn(N)\mathrm{GL}_{n}^{(N)}-oper \mathscr{F}^{\heartsuit}, we shall write [][\mathscr{F}^{\heartsuit}] for the equivalence class represented by \mathscr{F}^{\heartsuit}.

Let s:SSs:S^{\prime}\rightarrow S be an SS-scheme classified by 𝒮chRflat/S\mathcal{S}ch_{R}^{\mathrm{flat}}/S. The base-change s()s^{*}(\mathscr{F}^{\heartsuit}) of \mathscr{F}^{\heartsuit} along ss can be constructed, and the formulation of base-changes preserves the equivalence relation “\sim”. Hence, we obtain the contravariant functor

𝒪p(resp.,𝒪pZzz):𝒮chRflat/S𝒮et\displaystyle\mathcal{O}p_{\heartsuit}\ \left(\text{resp.,}\ \mathcal{O}p_{\heartsuit}^{{}^{\mathrm{Zzz...}}}\right):\mathcal{S}ch_{R}^{\mathrm{flat}}/S\rightarrow\mathcal{S}et (5.14)

on 𝒮chRflat/S\mathcal{S}ch_{R}^{\mathrm{flat}}/S defined as the sheaf (with respect to the étale topology) associated to the functor which, to any SS-scheme SS^{\prime} in Ob(𝒮chRflat/S)\mathrm{Ob}(\mathcal{S}ch_{R}^{\mathrm{flat}}/S), assigns the set of equivalence classes of GLn(N)\mathrm{GL}_{n}^{(N)}-opers (resp., dormant GLn(N)\mathrm{GL}_{n}^{(N)}-opers) on (S×SXlog)/(S×SSlog)(S^{\prime}\times_{S}X^{\mathrm{log}})/(S^{\prime}\times_{S}S^{\mathrm{log}}).

Proposition 5.3.6.

Suppose that pnp\nmid n. Then, the natural morphism of functors 𝒪pZzz𝒪p\mathcal{O}p_{\heartsuit}^{{}^{\mathrm{Zzz...}}}\!\rightarrow\mathcal{O}p_{\heartsuit} is injective. (In the subsequent discussion, we shall regard 𝒪pZzz\mathcal{O}p_{\heartsuit}^{{}^{\mathrm{Zzz...}}}\! as a subfunctor of 𝒪p\mathcal{O}p_{\heartsuit} by using this injection.)

Proof.

Suppose that two dormant GLn(N)\mathrm{GL}_{n}^{(N)}-opers :=(,,{j}j)\mathscr{F}^{\heartsuit}_{\circ}:=(\mathcal{F}_{\circ},\nabla_{\circ},\{\mathcal{F}_{\circ}^{j}\}_{j}) and :=(,,{j}j)\mathscr{F}^{\heartsuit}_{\bullet}:=(\mathcal{F}_{\bullet},\nabla_{\bullet},\{\mathcal{F}_{\bullet}^{j}\}_{j}) are equivalent in the set of (non-dormant) GLn(N)\mathrm{GL}_{n}^{(N)}-opers on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. This means that there exists an invertible 𝒟(N1)\mathcal{D}^{(N-1)}-module :=(,)\mathscr{L}:=(\mathcal{L},\nabla_{\mathcal{L}}) with ,\mathscr{F}^{\heartsuit}_{\circ,\otimes\mathscr{L}}\cong\mathscr{F}^{\heartsuit}_{\bullet}. By taking determinants, we obtain

(det(),det())(n,n)(det(),det()).\displaystyle(\mathrm{det}(\mathcal{F}_{\circ}),\mathrm{det}(\nabla_{\circ}))\otimes(\mathcal{L}^{\otimes n},\nabla_{\mathcal{L}}^{\otimes n})\cong(\mathrm{det}(\mathcal{F}_{\bullet}),\mathrm{det}(\nabla_{\bullet})). (5.15)

Since both det()\mathrm{det}(\nabla_{\circ}) and det()\mathrm{det}(\nabla_{\bullet}) are dormant, n\nabla_{\mathcal{L}}^{\otimes n} is dormant by (5.15). It follows from Proposition 3.3.1, (ii), that \nabla_{\mathcal{L}} turns out to be dormant. That is to say, \mathscr{F}_{\circ}^{\heartsuit} is equivalent to \mathscr{F}_{\bullet}^{\heartsuit} in the set of dormant GLn(N)\mathrm{GL}_{n}^{(N)}-opers. ∎

Suppose further that n<pn<p. Let :=(,,{j}j)\mathscr{F}^{\heartsuit}:=(\mathcal{F},\nabla,\{\mathcal{F}^{j}\}_{j}) be a GLn(N)\mathrm{GL}_{n}^{(N)}-oper (resp., a dormant GLn(N)\mathrm{GL}_{n}^{(N)}-oper) on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. Denote by \mathcal{E}_{\mathcal{F}} the PGLn\mathrm{PGL}_{n}-bundle associated to the vector bundle \mathcal{F} via a change of structure group by the projection GLnPGLn\mathrm{GL}_{n}\twoheadrightarrow\mathrm{PGL}_{n}. The filtration {j}j\{\mathcal{F}^{j}\}_{j} determines a BB-reduction {j}j\mathcal{E}_{\{\mathcal{F}^{j}\}_{j}} of \mathcal{E}_{\mathcal{F}}. Also, \nabla induces an (N1)(N-1)-PD stratification ϕ\phi_{\nabla} on \mathcal{E}_{\mathcal{F}} (cf. Remark 2.3.3). The resulting pair

:=({j}j,ϕ)\displaystyle\mathscr{F}^{\heartsuit\Rightarrow\spadesuit}:=(\mathcal{E}_{\{\mathcal{F}^{j}\}_{j}},\phi_{\nabla}) (5.16)

forms a PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper (resp., a dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper) on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} (cf.  [Wak8, § 4.4.6]). The isomorphism class of \mathscr{F}^{\heartsuit\Rightarrow\spadesuit} depends only on the equivalence class [][\mathscr{F}^{\heartsuit}] of \mathscr{F}^{\heartsuit}. Hence, the assignment [][\mathscr{F}^{\heartsuit}]\mapsto\mathscr{F}^{\heartsuit\Rightarrow\spadesuit} determines a well-defined morphism of functors

Λ:𝒪p𝒪p.(resp.,ΛZzz:𝒪pZzz𝒪pZzz).\displaystyle\Lambda_{\heartsuit\Rightarrow\spadesuit}:\mathcal{O}p_{\heartsuit}\rightarrow\mathcal{O}p_{\spadesuit}.\ \left(\text{resp.,}\ \Lambda_{\heartsuit\Rightarrow\spadesuit}^{{}^{\mathrm{Zzz...}}}:\mathcal{O}p_{\heartsuit}^{{}^{\mathrm{Zzz...}}}\rightarrow\mathcal{O}p_{\spadesuit}^{{}^{\mathrm{Zzz...}}}\right). (5.17)

5.4. n(N)n^{(N)}-theta characteristics

We introduce n(N)n^{(N)}-theta characteristics, generalizing nn-theta characteristic defined in  [Wak8, Definition 4.31]. Let nn be an integer >1>1.

Definition 5.4.1.

An n(N)n^{(N)}-theta characteristic (or an nn-theta characteristic of level NN) of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} is a pair

ϑ:=(Θ,ϑ),\displaystyle\vartheta:=(\varTheta,\nabla_{\vartheta}), (5.18)

consisting of a line bundle Θ\varTheta on XX and a 𝒟(N1)\mathcal{D}^{(N-1)}-module structure ϑ\nabla_{\vartheta} on the line bundle 𝒯n(n1)2Θn\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes\varTheta^{\otimes n}. Also, we say that an n(N)n^{(N)}-theta characteristic ϑ:=(Θ,ϑ)\vartheta:=(\varTheta,\nabla_{\vartheta}) is dormant if (𝒯n(n1)2Θn,ϑ)(\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes\varTheta^{\otimes n},\nabla_{\vartheta}) is dormant.

Example 5.4.2 (n(N)n^{(N)}-theta characteristics arising from theta characteristics).

Recall that a theta characteristic of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} is a line bundle Θ0\varTheta_{0} on XX together with an isomorphism 𝒪X𝒯Θ02\mathcal{O}_{X}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{T}\otimes\varTheta_{0}^{\otimes 2}.

Suppose that we are given a theta characteristic Θ0\varTheta_{0} of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}, and fix an isomorphism τΘ0:𝒪X𝒯Θ02\tau_{\varTheta_{0}}:\mathcal{O}_{X}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{T}\otimes\varTheta_{0}^{\otimes 2}. Then, the line bundle Θ0\varTheta_{0} together with the 𝒟(N1)\mathcal{D}^{(N-1)}-module structure on 𝒯Θ02\mathcal{T}\otimes\varTheta_{0}^{\otimes 2} corresponding to X,triv(N1)\nabla_{X,\mathrm{triv}}^{(N-1)} via τΘ0\tau_{\varTheta_{0}} specifies a 2(N)2^{(N)}-theta characteristic.

More generally, by setting Θ:=Θ0(n1)\varTheta:=\varTheta_{0}^{\otimes(n-1)}, the line bundle 𝒯n(n1)2Θn\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes\varTheta^{\otimes n} admits a 𝒟(N1)\mathcal{D}^{(N-1)}-module structure ϑ0\nabla_{\vartheta_{0}} corresponding to (N1)X,triv\nabla^{(N-1)}_{X,\mathrm{triv}} via the composite isomorphism

𝒪XτΘ0n(n1)2(𝒯Θ02)n(n1)2𝒯n(n1)2(Θ(n1)0)n(=𝒯n(n1)2Θn).\displaystyle\mathcal{O}_{X}\xrightarrow{\tau_{\varTheta_{0}}^{\otimes\frac{n(n-1)}{2}}}(\mathcal{T}\otimes\varTheta_{0}^{\otimes 2})^{\otimes\frac{n(n-1)}{2}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes(\varTheta^{\otimes(n-1)}_{0})^{\otimes n}\left(=\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes\varTheta^{\otimes n}\right). (5.19)

Thus, the resulting pair

ϑ0:=(Θ,ϑ0)\displaystyle\vartheta_{0}:=(\varTheta,\nabla_{\vartheta_{0}}) (5.20)

forms an n(N)n^{(N)}-theta characteristic of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} (cf.  [Wak8, Example 4.34] for the case of (,N)=(0,1)(\ell,N)=(0,1)). Moreover, this n(N)n^{(N)}-theta characteristic is verified to be dormant.

Note that if, for example, Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} arises from a pointed stable curve, then the resulting n(N)n^{(N)}-theta characteristic does not depend on the choice of the isomorphism τΘ\tau_{\varTheta}; this is because any automorphism of a line bundle on XX is given by multiplication by an element of H0(S,𝒪S×)(=H0(X,𝒪X×))H^{0}(S,\mathcal{O}_{S}^{\times})\left(=H^{0}(X,\mathcal{O}_{X}^{\times})\right), which is therefore compatible with any 𝒟(N1)\mathcal{D}^{(N-1)}-action.

The following assertion is a higher-level generalization of the fact proved in  [Wak8, § 4.6.4].

Proposition 5.4.3.

Suppose that pnp\nmid n. Then, there always exists a dormant n(N)n^{(N)}-theta characteristic on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}.

Proof.

Since (pN+,n)=1(p^{N+\ell},n)=1, one may find a pair of integers (a,b)(a,b) with an+bpN+=n(n1)2a\cdot n+b\cdot p^{N+\ell}=\frac{n(n-1)}{2}. By letting Θa,b:=Ωa\varTheta_{a,b}:=\Omega^{\otimes a}, we have a composite isomorphism

𝒯n(n1)2Θa,bn𝒯(n(n1)2an)𝒯bpN+(𝒯b)pN+.\displaystyle\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes\varTheta_{a,b}^{\otimes n}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{T}^{\otimes\left(\frac{n(n-1)}{2}-a\cdot n\right)}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{T}^{\otimes b\cdot p^{N+\ell}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}(\mathcal{T}^{\otimes b})^{\otimes p^{N+\ell}}. (5.21)

Let us take an open covering {Uα}αI\{U_{\alpha}\}_{\alpha\in I} of XX together with a collection {τα}αI\{\tau_{\alpha}\}_{\alpha\in I}, where each τα\tau_{\alpha} denotes a trivialization 𝒯b|Uα𝒪Uα\mathcal{T}^{\otimes b}|_{U_{\alpha}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{O}_{U_{\alpha}} of 𝒯b\mathcal{T}^{\otimes b} over UαU_{\alpha}. For each αI\alpha\in I, denote by α\nabla_{\alpha} the 𝒟(N1)|Uα\mathcal{D}^{(N-1)}|_{U_{\alpha}}-module structure on (𝒯b)pN+1|Uα(\mathcal{T}^{\otimes b})^{\otimes p^{N+\ell-1}}|_{U_{\alpha}} corresponding to Uα,triv(N1)\nabla_{U_{\alpha},\mathrm{triv}}^{(N-1)} via the isomorphism

τ˘α:=ταpN+1:(𝒯b)pN+1|Uα(𝒪UαpN+1=)𝒪Uα.\displaystyle\breve{\tau}_{\alpha}:=\tau_{\alpha}^{\otimes p^{N+\ell-1}}:(\mathcal{T}^{\otimes b})^{\otimes p^{N+\ell-1}}|_{U_{\alpha}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\left(\mathcal{O}_{U_{\alpha}}^{\otimes p^{N+\ell-1}}=\right)\mathcal{O}_{U_{\alpha}}. (5.22)

For each pair (α,β)I×I(\alpha,\beta)\in I\times I with UαUβU_{\alpha}\cap U_{\beta}\neq\emptyset, the automorphism τ˘ατ˘β1\breve{\tau}_{\alpha}\circ\breve{\tau}_{\beta}^{-1} of 𝒪UαUβ\mathcal{O}_{U_{\alpha}\cap U_{\beta}} is given by multiplication by a section of the form upN+1u^{p^{N+\ell-1}} for some uH0(UαUβ,𝒪X×)u\in H^{0}(U_{\alpha}\cap U_{\beta},\mathcal{O}_{X}^{\times}). By the local description of (),triv(N1)\nabla_{(-),\mathrm{triv}}^{(N-1)} displayed in (2.22), this automorphism is verified to preserve the 𝒟(N1)|UαUβ\mathcal{D}^{(N-1)}|_{U_{\alpha}\cap U_{\beta}}-module structure. It follows that the collection {α}αI\{\nabla_{\alpha}\}_{\alpha\in I} may be glued together to obtain a 𝒟(N1)\mathcal{D}^{(N-1)}-module structure on (𝒯b)pN+(\mathcal{T}^{\otimes b})^{\otimes p^{N+\ell}}; if a,b\nabla_{a,b} denotes the corresponding 𝒟(N1)\mathcal{D}^{(N-1)}-module structure on 𝒯n(n12Θa,bn\mathcal{T}^{\otimes\frac{n(n-1}{2}}\otimes\varTheta_{a,b}^{\otimes n} via (5.21), then the resulting pair (Θa,b,a,b)(\varTheta_{a,b},\nabla_{a,b}) specifies a required n(N)n^{(N)}-theta characteristic. ∎

Let us fix an n(N)n^{(N)}-theta characteristic ϑ:=(Θ,ϑ)\vartheta:=(\varTheta,\nabla_{\vartheta}) of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}, and set

Θ:=𝒟n1(N1)Θ,Θj:=𝒟nj1(N1)Θ(j=0,,n).\displaystyle\mathcal{F}_{\varTheta}:=\mathcal{D}_{\leq n-1}^{(N-1)}\otimes\varTheta,\hskip 14.22636pt\mathcal{F}_{\varTheta}^{j}:=\mathcal{D}_{\leq n-j-1}^{(N-1)}\otimes\varTheta\ \ (j=0,\cdots,n). (5.23)

Since jΘ/j+1Θ\mathcal{F}^{j}_{\varTheta}/\mathcal{F}^{j+1}_{\varTheta} (j=0,,n1j=0,\cdots,n-1) may be identified with 𝒯(nj1)Θ\mathcal{T}^{\otimes(n-j-1)}\otimes\varTheta, we obtain the composite isomorphism between line bundles

det(Θ)j=0n1jΘ/j+1Θj=0n1𝒯(nj1)Θ𝒯n(n1)2Θn.\displaystyle\mathrm{det}(\mathcal{F}_{\varTheta})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\bigotimes_{j=0}^{n-1}\mathcal{F}^{j}_{\varTheta}/\mathcal{F}^{j+1}_{\varTheta}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\bigotimes_{j=0}^{n-1}\mathcal{T}^{\otimes(n-j-1)}\otimes\varTheta\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes\varTheta^{\otimes n}. (5.24)
Definition 5.4.4.
  • (i)

    A (dormant) (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta)-oper on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} is a 𝒟(N1)\mathcal{D}^{(N-1)}-module structure \nabla^{\diamondsuit} on Θ\mathcal{F}_{\varTheta} such that the collection of data

    :=(Θ,,{Θj}j=0n)\displaystyle\nabla^{\diamondsuit\Rightarrow\heartsuit}:=(\mathcal{F}_{\varTheta},\nabla^{\diamondsuit},\{\mathcal{F}_{\varTheta}^{j}\}_{j=0}^{n}) (5.25)

    forms a (dormant) GLn(N)\mathrm{GL}_{n}^{(N)}-oper on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} and the equality det()=ϑ\mathrm{det}(\nabla)=\nabla_{\vartheta} holds under the identification det(Θ)=𝒯n(n1)2Θn\mathrm{det}(\mathcal{F}_{\varTheta})=\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes\varTheta^{\otimes n} given by (5.24). When Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} arises from a pointed stable curve 𝒳\mathscr{X}, we will refer to any (dormant) (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta)-oper on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} as a (dormant) (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta)-oper on 𝒳\mathscr{X}.

  • (ii)

    Let \nabla_{\circ}^{\diamondsuit} and \nabla_{\bullet}^{\diamondsuit} be (dormant) (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta)-opers on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. We say that \nabla_{\circ}^{\diamondsuit} is isomorphic to \nabla_{\bullet}^{\diamondsuit} if the associated GLn(N)\mathrm{GL}_{n}^{(N)}-opers \nabla_{\circ}^{\diamondsuit\Rightarrow\heartsuit} and \nabla_{\bullet}^{\diamondsuit\Rightarrow\heartsuit} are isomorphic.

We shall prove the following two propositions concerning (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta)-opers.

Proposition 5.4.5.

Let :=(,,{j}j)\mathscr{F}^{\heartsuit}:=(\mathcal{F},\nabla,\{\mathcal{F}^{j}\}_{j}) be a GLn(N)\mathrm{GL}_{n}^{(N)}-oper on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}.

  • (i)

    There exists a triple

    (ϑ0,0,h0)\displaystyle(\vartheta_{0},\nabla_{0}^{\diamondsuit},h_{0}) (5.26)

    consisting of an n(N)n^{(N)}-theta characteristic ϑ0:=(Θ0,ϑ0)\vartheta_{0}:=(\varTheta_{0},\nabla_{\vartheta_{0}}) of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}, a (GLn,ϑ)(\mathrm{GL}_{n},\vartheta)-oper 0\nabla_{0}^{\diamondsuit}, and an isomorphism of GLn\mathrm{GL}_{n}-opers h0:h_{0}:\nabla^{\diamondsuit\Rightarrow\heartsuit}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathscr{F}^{\heartsuit}. (Such an n(N)n^{(N)}-theta characteristic is uniquely determined up to isomorphism in a certain sense.)

  • (ii)

    Suppose that pnp\nmid n. Then, there exists a pair

    (,)\displaystyle(\nabla^{\diamondsuit},\mathscr{L}) (5.27)

    consisting of a (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta)-oper \nabla^{\diamondsuit} on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} and an invertible 𝒟(N1)\mathcal{D}^{(N-1)}-module \mathscr{L} with \mathscr{F}^{\heartsuit}_{\otimes\mathscr{L}}\cong\nabla^{\diamondsuit\Rightarrow\heartsuit}. If, moreover, both ϑ\vartheta and \mathscr{F}^{\heartsuit} are dormant, we can choose such \nabla^{\diamondsuit} and \mathscr{L} as being dormant.

Proof.

First, we shall prove assertion (i). Let us set Θ0:=n1\varTheta_{0}:=\mathcal{F}^{n-1}. Consider the composite

h0:Θ0(=𝒟n1(N1)Θ0)𝒟(N1),\displaystyle h_{0}:\mathcal{F}_{\varTheta_{0}}\left(=\mathcal{D}_{\leq n-1}^{(N-1)}\otimes\varTheta_{0}\right)\rightarrow\mathcal{D}^{(N-1)}\otimes\mathcal{F}\xrightarrow{\nabla}\mathcal{F}, (5.28)

where the first arrow arises from the inclusions 𝒟n1(N1)𝒟(N1)\mathcal{D}_{\leq n-1}^{(N-1)}\hookrightarrow\mathcal{D}^{(N-1)} and Θ0\varTheta_{0}\hookrightarrow\mathcal{F}. Since \mathscr{F}^{\heartsuit} is a GLn\mathrm{GL}_{n}-oper, this composite turns out to be an isomorphism. Denote by 0\nabla_{0}^{\diamondsuit} (resp., ϑ0\nabla_{\vartheta_{0}}) the 𝒟(N1)\mathcal{D}^{(N-1)}-module structure on Θ0\mathcal{F}_{\varTheta_{0}} (resp., 𝒯n(n1)2Θ0n(=det(Θ0))\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes\varTheta_{0}^{\otimes n}\left(=\mathrm{det}(\mathcal{F}_{\varTheta_{0}})\right)) corresponding to \nabla (resp., det()\mathrm{det}(\nabla)) via the isomorphism h0h_{0} (resp., the isomorphism det(Θ0)det()\mathrm{det}(\mathcal{F}_{\varTheta_{0}})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathrm{det}(\mathcal{F}) induced by h0h_{0}). Then, the resulting collection (ϑ0,0,h0)(\vartheta_{0},\nabla_{0}^{\diamondsuit},h_{0}), where ϑ0:=(Θ0,ϑ0)\vartheta_{0}:=(\varTheta_{0},\nabla_{\vartheta_{0}}), determines the desired triple.

Next, we shall prove assertion (ii). Write :=Θn1\mathcal{L}:=\varTheta\otimes\mathcal{F}^{n-1\vee}, and consider the composite of isomorphisms

(𝒯n(n1)2Θn)det()\displaystyle(\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes\varTheta^{\otimes n})\otimes\mathrm{det}(\mathcal{F})^{\vee} (𝒯n(n1)2Θn)(𝒯n(n1)2(n1)n)\displaystyle\stackrel{{\scriptstyle\sim}}{{\rightarrow}}(\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes\varTheta^{\otimes n})\otimes(\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes(\mathcal{F}^{n-1})^{\otimes n})^{\vee} (5.29)
𝒯n(n1)2(𝒯n(n1)2)Θn(n1)n\displaystyle\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes(\mathcal{T}^{\otimes\frac{n(n-1)}{2}})^{\vee}\otimes\varTheta^{\otimes n}\otimes(\mathcal{F}^{n-1\vee})^{\otimes n}
((Θn1)n=)n,\displaystyle\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\left((\varTheta\otimes\mathcal{F}^{n-1\vee})^{\otimes n}=\right)\mathcal{L}^{\otimes n},

where the first arrow is the morphism induced by the isomorphism det()𝒯n(n1)2(n1)n\mathrm{det}(\mathcal{F})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes(\mathcal{F}^{n-1})^{\otimes n} in  [Wak8, Eq. (501)] (applied to the GLn\mathrm{GL}_{n}-oper determined by \mathscr{F}^{\heartsuit}). It follows from Proposition 3.3.1, (i), that there exists a unique 𝒟(N1)\mathcal{D}^{(N-1)}-module structure \nabla_{\mathcal{L}} on \mathcal{L} whose nn-th tensor product corresponds to ϑdet()\nabla_{\vartheta}\otimes\mathrm{det}(\nabla)^{\vee} via (5.29). Let us consider the composite

Θ(=𝒟n1(N1)Θ)\displaystyle\mathcal{F}_{\varTheta}\left(=\mathcal{D}_{\leq n-1}^{(N-1)}\otimes\varTheta\right) 𝒟n1(N1)(n1)\displaystyle\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{D}_{\leq n-1}^{(N-1)}\otimes(\mathcal{L}\otimes\mathcal{F}^{n-1}) (5.30)
inclusion𝒟(N1)()\displaystyle\xrightarrow{\mathrm{inclusion}}\mathcal{D}^{(N-1)}\otimes(\mathcal{L}\otimes\mathcal{F})
.\displaystyle\xrightarrow{\nabla_{\mathcal{L}}\otimes\nabla}\mathcal{L}\otimes\mathcal{F}.

Since \mathscr{F}^{\heartsuit} is a GLn(N)\mathrm{GL}_{n}^{(N)}-oper, this composite turns out to be an isomorphism. Moreover, the equality ϑ=det()\nabla_{\vartheta}=\mathrm{det}(\mathcal{L}\otimes\mathcal{F}) holds under the identification 𝒯n(n1)2Θn=det()\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes\varTheta^{\otimes n}=\mathrm{det}(\mathcal{L}\otimes\mathcal{F}) given by (5.24) and the determinant of (5.30). Hence, if \nabla^{\diamondsuit} denotes the 𝒟(N1)\mathcal{D}^{(N-1)}-module structure on Θ\mathcal{F}_{\varTheta} corresponding to \nabla_{\mathcal{L}}\otimes\nabla via (5.30), then the pair (,)(\nabla^{\diamondsuit},\mathscr{L}), where :=(,)\mathscr{L}:=(\mathcal{L},\nabla_{\mathcal{L}}), defines the desired pair. Also, the second assertion follows from Proposition 3.3.2, (ii). This completes the proof of the assertion. ∎

Proposition 5.4.6.

Suppose that pnp\nmid n and =0\ell=0. Let \nabla^{\diamondsuit}_{\circ} and \nabla^{\diamondsuit}_{\bullet} be (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta)-opers on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. Write ϑ(1)\vartheta^{(1)} for the n(1)n^{(1)}-theta characteristic obtained by reducing the level of ϑ\vartheta to 11. Also, for each =,\star=\circ,\bullet, denote by (1)\nabla^{(1)\diamondsuit}_{\star} the (GLn(1),ϑ(1))(\mathrm{GL}_{n}^{(1)},\vartheta^{(1)})-oper induced by \nabla_{\star}^{\diamondsuit}. Suppose that \nabla^{\diamondsuit}_{\circ} is isomorphic to \nabla^{\diamondsuit}_{\bullet} and the equality (1)=(1)\nabla^{(1)\diamondsuit}_{\circ}=\nabla^{(1)\diamondsuit}_{\bullet} holds. Then, we have =\nabla^{\diamondsuit}_{\circ}=\nabla^{\diamondsuit}_{\bullet}.

Proof.

Let us take an isomorphism of GLn(N)\mathrm{GL}_{n}^{(N)}-opers h:h:\nabla^{\diamondsuit\Rightarrow\heartsuit}_{\circ}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\nabla_{\bullet}^{\diamondsuit\Rightarrow\heartsuit}. By the assumption (1)=(1)\nabla^{(1)\diamondsuit}_{\circ}=\nabla^{(1)\diamondsuit}_{\bullet}, the isomorphism of GLn(1)\mathrm{GL}_{n}^{(1)}-opers h(1):(1)(1)h^{(1)}:\nabla^{(1)\diamondsuit\Rightarrow\heartsuit}_{\circ}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\nabla_{\bullet}^{(1)\diamondsuit\Rightarrow\heartsuit} induced by hh defines an automorphism of \nabla_{\circ}^{\diamondsuit\Rightarrow\heartsuit}. According to  [Wak8, Proposition 4.25], hh coincides with the automorphism multa:ΘΘ\mathrm{mult}_{a}:\mathcal{F}_{\varTheta}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{F}_{\varTheta} given by multiplication by an element aa of H0(X,𝒪X×)H^{0}(X,\mathcal{O}_{X}^{\times}). The multiplication by ana^{n} defines an isomorphism (det(Θ),det())(det(Θ),det())(\mathrm{det}(\mathcal{F}_{\varTheta}),\mathrm{det}(\nabla_{\circ}^{\diamondsuit}))\stackrel{{\scriptstyle\sim}}{{\rightarrow}}(\mathrm{det}(\mathcal{F}_{\varTheta}),\mathrm{det}(\nabla_{\bullet}^{\diamondsuit})); this may be regarded as an automorphism of (𝒯n(n1)2Θn,ϑ)(\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes\varTheta^{\otimes n},\nabla_{\vartheta}) via (5.24). Hence, we have anH0(X,FX/S1(𝒪X(N)))a^{n}\in H^{0}(X,F_{X/S}^{-1}(\mathcal{O}_{X^{(N)}})). This implies aH0(X,FX/S1(𝒪X(N)))a\in H^{0}(X,F_{X/S}^{-1}(\mathcal{O}_{X^{(N)}})) because of the assumption pnp\nmid n. Since \nabla_{\circ}^{\diamondsuit} is the unique 𝒟(N)\mathcal{D}^{(N)}-module structure on Θ\mathcal{F}_{\varTheta} compatible with \nabla_{\circ}^{\diamondsuit} itself via multa(=h)\mathrm{mult}_{a}\left(=h\right), the equality =\nabla_{\circ}^{\diamondsuit}=\nabla_{\bullet}^{\diamondsuit} must be satisfied. This completes the proof of the assertion. ∎

5.5. Representability of the moduli space

For any morphism s:SSs:S^{\prime}\rightarrow S between flat RR-schemes, the pair of base-changes

s(ϑ)(orϑS):=(s(Θ),s(ϑ))\displaystyle s^{*}(\vartheta)\ \left(\text{or}\ \vartheta_{S^{\prime}}\right):=(s^{*}(\varTheta),s^{*}(\nabla_{\vartheta})) (5.31)

specifies an n(N)n^{(N)}-theta characteristic of the log curve (S×SXlog)/(S×SSlog)(S^{\prime}\times_{S}X^{\mathrm{log}})/(S^{\prime}\times_{S}S^{\mathrm{log}}). Hence, we obtain the 𝒮et\mathcal{S}et-valued contravariant functor

𝒪p,ϑ(resp.,𝒪p,ϑZzz):𝒮chRflat/S𝒮et\displaystyle\mathcal{O}p_{\diamondsuit,\vartheta}\ \left(\text{resp.,}\ \mathcal{O}p_{\diamondsuit,\vartheta}^{{}^{\mathrm{Zzz...}}}\right):\mathcal{S}ch_{R}^{\mathrm{flat}}/S\rightarrow\mathcal{S}et (5.32)

on 𝒮chRflat/S\mathcal{S}ch_{R}^{\mathrm{flat}}/S which, to any SS-scheme s:SSs:S^{\prime}\rightarrow S in Ob(𝒮chRflat/S)\mathrm{Ob}(\mathcal{S}ch_{R}^{\mathrm{flat}}/S), assigns the set of isomorphism classes of (GLn(N),s(ϑ))(\mathrm{GL}_{n}^{(N)},s^{*}(\vartheta))-opers (resp., dormant (GLn(N),s(ϑ))(\mathrm{GL}_{n}^{(N)},s^{*}(\vartheta))-opers) on (S×SXlog)/(S×SSlog)(S^{\prime}\times_{S}X^{\mathrm{log}})/(S^{\prime}\times_{S}S^{\mathrm{log}}).

Suppose that (1<)n<p(1<)n<p, and let \star denote either the absence or presence of “ Zzz\mathrm{Zzz...}”. Then, the assignments ()\nabla^{\diamondsuit}\mapsto(\nabla^{\diamondsuit\Rightarrow\heartsuit})^{\Rightarrow\spadesuit} and \nabla^{\diamondsuit}\mapsto\nabla^{\diamondsuit\Rightarrow\heartsuit} define morphisms of functors

Λ,ϑ:𝒪p,ϑ𝒪pandΛ,ϑ:𝒪p,ϑ𝒪p,\displaystyle\Lambda_{\diamondsuit\Rightarrow\spadesuit,\vartheta}^{\star}:\mathcal{O}p_{\diamondsuit,\vartheta}^{\star}\rightarrow\mathcal{O}p_{\spadesuit}^{\star}\hskip 14.22636pt\text{and}\hskip 14.22636pt\Lambda_{\diamondsuit\Rightarrow\heartsuit,\vartheta}^{\star}:\mathcal{O}p_{\diamondsuit,\vartheta}^{\star}\rightarrow\mathcal{O}p_{\heartsuit}^{\star}, (5.33)

respectively. These morphisms make the following diagram commute:

(5.38)

Moreover, we can obtain the following assertion.

Theorem 5.5.1.

Suppose that n<pn<p, and let \star denote either the absence or presence of “ Zzz\mathrm{Zzz...}”. In the case of =Zzz\star=\mathrm{Zzz...}, we assume that the fixed n(N)n^{(N)}-theta characteristic ϑ\vartheta is dormant. Then, the morphisms of functors Λ\Lambda_{\heartsuit\Rightarrow\spadesuit}^{\star}, Λ,ϑ\Lambda_{\diamondsuit\Rightarrow\spadesuit,\vartheta}^{\star}, and Λ,ϑ\Lambda_{\diamondsuit\Rightarrow\heartsuit,\vartheta}^{\star} are all isomorphisms.

Proof.

The assertion for Λ,ϑ\Lambda_{\diamondsuit\Rightarrow\spadesuit,\vartheta}^{\star} follows immediately from Proposition 3.3.2, (i) and (ii). The surjectivity of Λ,ϑ\Lambda^{\star}_{\diamondsuit\Rightarrow\heartsuit,\vartheta} is a direct consequence of Proposition 5.4.5, (ii). The injectivity of Λ,ϑ\Lambda_{\diamondsuit\Rightarrow\heartsuit,\vartheta}^{\star} can be proved by an argument entirely similar to the argument in the injectivity of “Λϑ\Lambda_{\vartheta}^{\diamondsuit\Rightarrow\heartsuit}” discussed in  [Wak8, Proposition 4.40]. Moreover, these results together with the commutativity of (5.38) deduce the remaining portion, i.e., Λ\Lambda_{\heartsuit\Rightarrow\spadesuit}^{\star} turns out to be an isomorphism. ∎

Corollary 5.5.2.

Suppose that n<pn<p.

  • (i)

    For any (dormant) PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper \mathscr{E}^{\spadesuit} on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}, there always exists a (dormant) GLn(N)\mathrm{GL}_{n}^{(N)}-oper \mathscr{F}^{\heartsuit} on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} with \mathscr{F}^{\heartsuit\Rightarrow\spadesuit}\cong\mathscr{E}^{\spadesuit}.

  • (ii)

    Suppose further that the relative characteristic of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} is trivial. Let :=(B,ϕ)\mathscr{E}^{\spadesuit}:=(\mathcal{E}_{B},\phi) be a dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}, and write :=B×BPGLn\mathcal{E}:=\mathcal{E}_{B}\times^{B}\mathrm{PGL}_{n}. Then, (,ϕ)(\mathcal{E},\phi) is, Zariski locally on XX, isomorphic to the trivial (N1)(N-1)-PD stratified PGLn\mathrm{PGL}_{n}-bundle (X×PGLn,ϕtriv)(X\times\mathrm{PGL}_{n},\phi_{\mathrm{triv}}) (cf. Example 2.3.2).

Proof.

Assertion (i) follows from Proposition 5.4.3 and the surjectivity of Λ(Zzz),ϑ\Lambda^{{}^{(\mathrm{Zzz...})}}_{\diamondsuit\Rightarrow\spadesuit,\vartheta}. Assertion (ii) follows from assertion (i) and the equivalence (a) \Leftrightarrow (b) obtained in Proposition 3.2.5, (ii). ∎

By applying Theorem 5.5.1 above, we can prove the representability of the functors 𝒪p\mathcal{O}p_{\spadesuit} and 𝒪pZzz\mathcal{O}p_{\spadesuit}^{{}^{\mathrm{Zzz...}}} for =0\ell=0, as follows.

Theorem 5.5.3.

Let (g,r)(g,r) be a pair of nonnegative integers with 2g2+r>02g-2+r>0. Suppose that n<pn<p and that Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} arises from an rr-pointed stable curve of genus gg over an 𝔽p\mathbb{F}_{p}-scheme SS. Then, both 𝒪p\mathcal{O}p_{\spadesuit} and 𝒪pZzz\mathcal{O}p_{\spadesuit}^{{}^{\mathrm{Zzz...}}} may be represented by (possibly empty) affine schemes of finite type over SS, and the natural inclusion 𝒪pZzz𝒪p\mathcal{O}p_{\spadesuit}^{{}^{\mathrm{Zzz...}}}\hookrightarrow\mathcal{O}p_{\spadesuit} defines a closed immersion between SS-schemes. (In the rest of this manuscript, we will use the notations 𝒪p\mathcal{O}p_{\spadesuit} and 𝒪pZzz\mathcal{O}p_{\spadesuit}^{{}^{\mathrm{Zzz...}}} for writing the schemes representing the functors 𝒪p\mathcal{O}p_{\spadesuit} and 𝒪pZzz\mathcal{O}p_{\spadesuit}^{{}^{\mathrm{Zzz...}}}, respectively.)

Proof.

Let us choose a (dormant) n(N)n^{(N)}-theta characteristic ϑ:=(Θ,ϑ)\vartheta:=(\varTheta,\nabla_{\vartheta}) of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} (cf. Proposition 5.4.3). It induces an n(1)n^{(1)}-theta characteristic ϑ(1)\vartheta^{(1)} via reduction to level 11. Recall from  [Wak8, Theorem 4.66] that T:=𝒪p,ϑ(1)T:=\mathcal{O}p_{\diamondsuit,\vartheta^{(1)}} (with “NN” taken to be 11) may be represented by an affine SS-scheme. Denote by 𝒴:=(h:YT,{σY,i}i)\mathscr{Y}:=(h:Y\rightarrow T,\{\sigma_{Y,i}\}_{i}) the base-change over TT of the pointed stable curve defining Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. Also, for each M{0,N1}M\in\{0,N-1\}, we shall set

𝒱M:=om𝒪Y(𝒟Ylog/Tlog,pN1(M)ΘT,ΘT),\displaystyle\mathcal{V}_{M}:=\mathcal{H}om_{\mathcal{O}_{Y}}(\mathcal{D}_{Y^{\mathrm{log}}/T^{\mathrm{log}},\leq p^{N-1}}^{(M)}\otimes\mathcal{F}_{\varTheta_{T}},\mathcal{F}_{\varTheta_{T}}), (5.39)

where ΘT\varTheta_{T} denotes the base-change of Θ\varTheta over TT. Note that 𝒱M\mathcal{V}_{M} can be equipped with a filtration induced by the filtrations on both 𝒟Ylog/Tlog,pN1(M)\mathcal{D}_{Y^{\mathrm{log}}/T^{\mathrm{log}},\leq p^{N-1}}^{(M)} and ΘT\mathcal{F}_{\varTheta_{T}} whose graded pieces are isomorphic to ΩYlog/Tlogj\Omega_{Y^{\mathrm{log}}/T^{\mathrm{log}}}^{\otimes j} (for some jj’s). Hence, the direct image h(𝒱M)h_{*}(\mathcal{V}_{M}) is a vector bundle on TT. We shall define 𝕍(h(𝒱M))\mathbb{V}(h_{*}(\mathcal{V}_{M})) to be the relative affine space over TT associated to h(𝒱M)h_{*}(\mathcal{V}_{M}). The natural morphism 𝒟Ylog/Tlog,pN1(0)ΘT𝒟Ylog/Tlog,pN1(N1)ΘT\mathcal{D}_{Y^{\mathrm{log}}/T^{\mathrm{log}},\leq p^{N-1}}^{(0)}\otimes\mathcal{F}_{\varTheta_{T}}\rightarrow\mathcal{D}_{Y^{\mathrm{log}}/T^{\mathrm{log}},\leq p^{N-1}}^{(N-1)}\otimes\mathcal{F}_{\varTheta_{T}} induces an SS-morphism

ν:𝕍(h(𝒱N1))𝕍(h(𝒱0)).\displaystyle\nu:\mathbb{V}(h_{*}(\mathcal{V}_{N-1}))\rightarrow\mathbb{V}(h_{*}(\mathcal{V}_{0})). (5.40)

The formation of this morphism commutes with base-change to TT-schemes.

Next, the universal (GLn(1),ϑ(1)T)(\mathrm{GL}_{n}^{(1)},\vartheta^{(1)}_{T})-oper on 𝒴\mathscr{Y} determines an 𝒪Y\mathcal{O}_{Y}-linear morphism

:𝒟Ylog/Tlog(0)ΘTΘT.\displaystyle\nabla^{\diamondsuit}:\mathcal{D}_{Y^{\mathrm{log}}/T^{\mathrm{log}}}^{(0)}\otimes\mathcal{F}_{\varTheta_{T}}\rightarrow\mathcal{F}_{\varTheta_{T}}. (5.41)

The restriction of \nabla^{\diamondsuit} to 𝒟Ylog/Tlog,pN1(0)ΘT(𝒟Ylog/Tlog(0)ΘT)\mathcal{D}_{Y^{\mathrm{log}}/T^{\mathrm{log}},\leq p^{N-1}}^{(0)}\otimes\mathcal{F}_{\varTheta_{T}}\left(\subseteq\mathcal{D}_{Y^{\mathrm{log}}/T^{\mathrm{log}}}^{(0)}\otimes\mathcal{F}_{\varTheta_{T}}\right) specifies a global section σ\sigma of 𝕍(h(𝒱0))\mathbb{V}(h_{*}(\mathcal{V}_{0})). Note that, for any TT-scheme TT^{\prime}, a 𝒟(N1)Ylog/Tlog\mathcal{D}^{(N-1)}_{Y^{\prime\mathrm{log}}/T^{\prime\mathrm{log}}}-module structure (where Tlog:=T×TTlogT^{\prime\mathrm{log}}:=T^{\prime}\times_{T}T^{\mathrm{log}} and Ylog:=T×TYlogY^{\prime\mathrm{log}}:=T^{\prime}\times_{T}Y^{\mathrm{log}}) on a sheaf is completely determined by its restriction to 𝒟(N1)Ylog/Tlog,pN1(𝒟(N1)Ylog/Tlog)\mathcal{D}^{(N-1)}_{Y^{\prime\mathrm{log}}/T^{\prime\mathrm{log}},\leq p^{N-1}}\left(\subseteq\mathcal{D}^{(N-1)}_{Y^{\prime\mathrm{log}}/T^{\prime\mathrm{log}}}\right). Hence, Proposition 5.4.6 implies that the set of isomorphism classes of (GLn(N),ϑT)(\mathrm{GL}_{n}^{(N)},\vartheta_{T^{\prime}})-opers on Ylog/TlogY^{\prime\mathrm{log}}/T^{\prime\mathrm{log}} extending (the base-change to TT^{\prime} of) \nabla^{\diamondsuit} may be identified with a subset of ν1(σ)(T)\nu^{-1}(\sigma)(T^{\prime}). This identification enables us to consider 𝒪p,ϑ\mathcal{O}p_{\diamondsuit,\vartheta} as a closed subscheme of 𝕍(h(𝒱N1))\mathbb{V}(h_{*}(\mathcal{V}_{N-1})). In particular, 𝒪p\mathcal{O}p_{\spadesuit} (𝒪p,ϑ\cong\mathcal{O}p_{\diamondsuit,\vartheta} by Theorem 5.5.1) may be represented by an affine scheme over TT, which is affine over SS. The assertions for 𝒪pZzz\mathcal{O}p_{\spadesuit}^{{}^{\mathrm{Zzz...}}} follow immediately from the fact just proved and the definition of pNp^{N}-curvature. ∎

Remark 5.5.4 (Representability for higher rank cases).

If the notion of a dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper can be defined for a large nn, then it will be expected that Theorem 5.5.3 is true even when pnp\geq n. Indeed, as proved in  [Wak9, Theorem B], there exists a canonical duality between dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers and dormant PGLpNn(N)\mathrm{PGL}_{p^{N}-n}^{(N)}-opers. (Although the discussion in  [Wak9] only deals with the case where XX is smooth, we can immediately extend the duality to pointed stable curves in the same manner.) This result and Theorem 5.5.3 together imply the representability of 𝒪pZzz\mathcal{O}p_{\spadesuit}^{{}^{\mathrm{Zzz...}}} for pNp<n<pN1p^{N}-p<n<p^{N}-1.

Denote by 𝒮chRflat\mathcal{S}ch_{R}^{\mathrm{flat}} the category of flat RR-schemes, where R:=/p+1R:=\mathbb{Z}/p^{\ell+1}\mathbb{Z} . Given a pair of nonnegative integers (g,r)(g,r) with 2g2+r>02g-2+r>0, we shall denote by

𝒪pn,N,g,r,R,or simply𝒪pg,r(resp.,𝒪pn,N,g,r,RZzz,or simply𝒪pZzzg,r)\displaystyle\mathcal{O}p_{n,N,g,r,R},\ \text{or simply}\ \mathcal{O}p_{g,r}\ \left(\text{resp.,}\ \mathcal{O}p_{n,N,g,r,R}^{{}^{\mathrm{Zzz...}}},\ \text{or simply}\ \mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r}\right) (5.42)

the category over 𝒮chRflat\mathcal{S}ch_{R}^{\mathrm{flat}} defined as follows:

  • The objects are the pairs (𝒳,)(\mathscr{X},\mathscr{E}^{\spadesuit}), where 𝒳\mathscr{X} denotes an rr-pointed stable curve of genus gg over a flat RR-scheme SS and \mathscr{E}^{\spadesuit} denotes a PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper (resp., a dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper) on 𝒳\mathscr{X};

  • The morphisms from (𝒳,)(\mathscr{X}_{\circ},\mathscr{E}_{\circ}^{\spadesuit}) to (𝒳,)(\mathscr{X}_{\bullet},\mathscr{E}_{\bullet}^{\spadesuit}) are morphisms (νS,νX):𝒳𝒳(\nu_{S},\nu_{X}):\mathscr{X}_{\circ}\rightarrow\mathscr{X}_{\bullet} of rr-pointed stable curves (cf.  [Wak8, Definition 1.36, (ii)]) with νS()\mathscr{E}^{\spadesuit}_{\circ}\cong\nu_{S}^{*}(\mathscr{E}_{\bullet}^{\spadesuit});

  • The projection 𝒪pn,N,g,r,R𝒮chRflat\mathcal{O}p_{n,N,g,r,R}\rightarrow\mathcal{S}ch_{R}^{\mathrm{flat}} (resp., 𝒪pn,N,g,r,RZzz𝒮chRflat\mathcal{O}p_{n,N,g,r,R}^{{}^{\mathrm{Zzz...}}}\rightarrow\mathcal{S}ch_{R}^{\mathrm{flat}}) is given by assigning, to each pair (𝒳,)(\mathscr{X},\mathscr{E}^{\spadesuit}) as above, the base scheme SS of 𝒳\mathscr{X}.

By Proposition 5.2.4, 𝒪pg,r\mathcal{O}p_{g,r} (resp., 𝒪pg,rZzz\mathcal{O}p_{g,r}^{{}^{\mathrm{Zzz...}}}) turns out to be fibered in equivalence relations, i.e., specifies a set-valued sheaf on 𝒮chRflat\mathcal{S}ch_{R}^{\mathrm{flat}}. Forgetting the data of dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers yields the projection

Πn,N,g,r,R(or simply,Πg,r):𝒪pZzzg,r¯g,r.\displaystyle\Pi_{n,N,g,r,R}\ \left(\text{or simply},\ \Pi_{g,r}\right):\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r}\rightarrow\overline{\mathcal{M}}_{g,r}. (5.43)

Also, we obtain a projective system

𝒪pZzzn,N,g,r,R𝒪pZzzn,2,g,r,R𝒪pZzzn,1,g,r,R\displaystyle\cdots\rightarrow\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{n,N,g,r,R}\rightarrow\cdots\rightarrow\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{n,2,g,r,R}\rightarrow\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{n,1,g,r,R} (5.44)

each of whose morphisms is given by reducing the level of dormant PGLn\mathrm{PGL}_{n}-opers.

By applying Theorem 5.5.3 to various pointed stable curves, we obtain the following assertion.

Theorem 5.5.5.

Suppose that n<pn<p and R=𝔽pR=\mathbb{F}_{p}. Then, the fibered category 𝒪pg,r\mathcal{O}p_{g,r} may be represented by a (possibly empty) Deligne-Mumford stack of finite type over 𝔽p\mathbb{F}_{p} and the natural projection 𝒪pg,r¯g,r\mathcal{O}p_{g,r}\rightarrow\overline{\mathcal{M}}_{g,r} is (represented by schemes and) affine. Moreover, 𝒪pg,rZzz\mathcal{O}p_{g,r}^{{}^{\mathrm{Zzz...}}}\! may be represented by a closed substack of 𝒪pg,r\mathcal{O}p_{g,r}.

Let us take a pair (𝒳,)(\mathscr{X},\mathscr{E}^{\spadesuit}) classified by 𝒪pZzzn,1,g,r,/pN\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{n,1,g,r,\mathbb{Z}/p^{N}\mathbb{Z}}, where :=(B,ϕ)\mathscr{E}^{\spadesuit}:=(\mathcal{E}_{B},\phi). Then, the pair

:=(B,0,ϕ)\displaystyle{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{E}^{\spadesuit}:=(\mathcal{E}_{B,0},{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\phi) (5.45)

consisting of the reduction B,0\mathcal{E}_{B,0} modulo pp of B\mathcal{E}_{B} and the diagonal reduction ϕ{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\phi of ϕ\phi (cf. (3.17)) specifies a dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on 𝒳0\mathscr{X}_{0} (= the reduction modulo pp of 𝒳\mathscr{X}).

Definition 5.5.6.

We shall refer to {{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{E}^{\spadesuit} as the diagonal reduction of \mathscr{E}^{\spadesuit}.

The resulting assignment (𝒳,)(𝒳0,)(\mathscr{X},\mathscr{E}^{\spadesuit})\mapsto(\mathscr{X}_{0},{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{E}^{\spadesuit}) defines a functor

():𝒪pZzzn,1,g,r,/pN𝒪pZzzn,N,g,r,𝔽p.\displaystyle{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!(-):\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{n,1,g,r,\mathbb{Z}/p^{N}\mathbb{Z}}\rightarrow\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{n,N,g,r,\mathbb{F}_{p}}. (5.46)

Moreover, the square diagram of categories

(5.51)

is 11-commutative, where the lower horizontal arrow denotes the functor given by base-change along the closed immersion Spec(𝔽p)Spec(/pN)\mathrm{Spec}(\mathbb{F}_{p})\hookrightarrow\mathrm{Spec}(\mathbb{Z}/p^{N}\mathbb{Z}).

5.6. Finiteness of the moduli space

Suppose that Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} arises from an rr-pointed stable curve 𝒳:=(f:XS,{σi}i)\mathscr{X}:=(f:X\rightarrow S,\{\sigma_{i}\}_{i}) of genus gg over an 𝔽p\mathbb{F}_{p}-scheme SS. Also, let us fix a dormant n(N)n^{(N)}-theta characteristic ϑ:=(Θ,ϑ)\vartheta:=(\varTheta,\nabla_{\vartheta}) of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} (cf. Proposition 5.4.3). We equip 𝒟(N1)Θ\mathcal{D}^{(N-1)}\otimes\varTheta with the left 𝒟(N1)\mathcal{D}^{(N-1)}-module structure given by left multiplication.

Write

𝒫Θ\displaystyle\mathcal{P}_{\varTheta} (5.52)

for the quotient of the 𝒟(N1)\mathcal{D}^{(N-1)}-module 𝒟(N1)Θ\mathcal{D}^{(N-1)}\otimes\varTheta by the 𝒟(N1)\mathcal{D}^{(N-1)}-submodule generated by the image of ψXlog/SlogidΘ:𝒯pNΘ𝒟(N1)Θ\psi_{X^{\mathrm{log}}/S^{\mathrm{log}}}\otimes\mathrm{id}_{\varTheta}:\mathcal{T}^{\otimes p^{N}}\otimes\varTheta\rightarrow\mathcal{D}^{(N-1)}\otimes\varTheta (cf. (2.77) for the definition of ψXlog/Slog\psi_{X^{\mathrm{log}}/S^{\mathrm{log}}}); this 𝒟(N1)\mathcal{D}^{(N-1)}-module structure on 𝒫Θ\mathcal{P}_{\varTheta} will be denoted by Θ\nabla_{\varTheta}. By construction, Θ\nabla_{\varTheta} has vanishing pNp^{N}-curvature. For each j=0,,pNj=0,\cdots,p^{N}, we shall set 𝒫jΘ\mathcal{P}^{j}_{\varTheta} to be the subbundle of 𝒫Θ\mathcal{P}_{\varTheta} defines as

𝒫jΘ:=Im(𝒟pNj1(N1)Θinclusion𝒟(N1)Θquotient𝒫Θ).\displaystyle\mathcal{P}^{j}_{\varTheta}:=\mathrm{Im}\left(\mathcal{D}_{\leq p^{N}-j-1}^{(N-1)}\otimes\varTheta\xrightarrow{\mathrm{inclusion}}\mathcal{D}^{(N-1)}\otimes\varTheta\xrightarrow{\mathrm{quotient}}\mathcal{P}_{\varTheta}\right). (5.53)

The natural composite Θ𝒟(N1)Θ𝒫Θ\mathcal{F}_{\varTheta}\hookrightarrow\mathcal{D}^{(N-1)}\otimes\varTheta\twoheadrightarrow\mathcal{P}_{\varTheta} is injective and restricts, for each j=0,,nj=0,\cdots,n, to an isomorphism

Θj𝒫ΘpNn+j.\displaystyle\mathcal{F}_{\varTheta}^{j}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{P}_{\varTheta}^{p^{N}-n+j}. (5.54)

In particular, this isomorphism for j=0j=0 gives a short exact sequence

0Θ𝒫Θ𝒫Θ/𝒫ΘpNn0.\displaystyle 0\rightarrow\mathcal{F}_{\varTheta}\rightarrow\mathcal{P}_{\varTheta}\rightarrow\mathcal{P}_{\varTheta}/\mathcal{P}_{\varTheta}^{p^{N}-n}\rightarrow 0. (5.55)

By the definition of Θ\nabla_{\varTheta}, the collection of data

𝒫Θ:=(𝒫Θ,Θ,{𝒫jΘ}j=0pN)\displaystyle\mathscr{P}^{\heartsuit}_{\varTheta}:=(\mathcal{P}_{\varTheta},\nabla_{\varTheta},\{\mathcal{P}^{j}_{\varTheta}\}_{j=0}^{p^{N}}) (5.56)

forms a dormant GLpN(N)\mathrm{GL}_{p^{N}}^{(N)}-oper on 𝒳\mathscr{X}.

Next, let \nabla^{\diamondsuit} be a dormant (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta)-oper on 𝒳\mathscr{X}. The composite

𝒟(N1)Θ(=𝒟(N1)Θn1)inclusion𝒟(N1)ΘΘ\displaystyle\mathcal{D}^{(N-1)}\otimes\varTheta\left(=\mathcal{D}^{(N-1)}\otimes\mathcal{F}_{\varTheta}^{n-1}\right)\xrightarrow{\mathrm{inclusion}}\mathcal{D}^{(N-1)}\otimes\mathcal{F}_{\varTheta}\xrightarrow{\nabla^{\diamondsuit}}\mathcal{F}_{\varTheta} (5.57)

factors through the quotient 𝒟(N1)Θ𝒫Θ\mathcal{D}^{(N-1)}\otimes\varTheta\twoheadrightarrow\mathcal{P}_{\varTheta} because it preserves the 𝒟(N1)\mathcal{D}^{(N-1)}-module structure and \nabla^{\diamondsuit} has vanishing pNp^{N}-curvature. Thus, this composite induces a morphism of 𝒟(N1)\mathcal{D}^{(N-1)}-modules

ν:(𝒫Θ,Θ)(Θ,).\displaystyle\nu_{\nabla^{\diamondsuit}}:(\mathcal{P}_{\varTheta},\nabla_{\varTheta})\rightarrow(\mathcal{F}_{\varTheta},\nabla^{\diamondsuit}). (5.58)

This morphism restricts to the identity morphism of Θ(=𝒫ΘpN1=Θn1)\varTheta\left(=\mathcal{P}_{\varTheta}^{p^{N}-1}=\mathcal{F}_{\varTheta}^{n-1}\right), so it follows from the definition of a GLn(N)\mathrm{GL}_{n}^{(N)}-oper that the restriction

ν|𝒫ΘpNn:𝒫ΘpNnΘ(=0Θ)\displaystyle\nu_{\nabla^{\diamondsuit}}|_{\mathcal{P}_{\varTheta}^{p^{N}-n}}:\mathcal{P}_{\varTheta}^{p^{N}-n}\rightarrow\mathcal{F}_{\varTheta}\left(=\mathcal{F}^{0}_{\varTheta}\right) (5.59)

of ν\nu_{\nabla^{\diamondsuit}} to 𝒫ΘpNn\mathcal{P}_{\varTheta}^{p^{N}-n} is an isomorphism. In particular, ν\nu_{\nabla^{\diamondsuit}} specifies a split surjection of (5.55).

Using the surjection ν\nu_{\nabla^{\diamondsuit}}, we prove the following assertion. (When N=1N=1 and 𝒳\mathscr{X} is an unpointed smooth curve over a single point, assertion (ii) can be found in  [JP, Corollary 6.1.6].)

Proposition 5.6.1.

Let us keep the above situation.

  • (i)

    The functor 𝒪p,ϑZzz\mathcal{O}p_{\diamondsuit,\vartheta}^{{}^{\mathrm{Zzz...}}} is empty unless npNn\leq p^{N}.

  • (ii)

    Suppose further that n<pn<p. Then, the scheme (representing the functor) 𝒪pZzz\mathcal{O}p_{\spadesuit}^{{}^{\mathrm{Zzz...}}} is finite over SS. In particular, there are only finitely many isomorphism classes of dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers on 𝒳\mathscr{X}.

Proof.

Assertion (i) follows immediately from the fact that the morphism ν\nu_{\nabla^{\diamondsuit}} defined for each dormant (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta)-oper \nabla^{\diamondsuit} is surjective and the vector bundle 𝒫Θ\mathcal{P}_{\varTheta} has rank pNp^{N}.

Next, let us consider assertion (ii). Since we already know that 𝒪p,ϑZzz\mathcal{O}p_{\diamondsuit,\vartheta}^{{}^{\mathrm{Zzz...}}} may be represented by an affine scheme over SS (cf. Theorems 5.5.1 and 5.5.3), the problem is reduced to proving the properness of 𝒪p,ϑZzz/S\mathcal{O}p_{\diamondsuit,\vartheta}^{{}^{\mathrm{Zzz...}}}/S. To this end, we apply the valuative criterion, so it suffices to consider the case of S=Spec(A)S=\mathrm{Spec}(A), where AA denotes a valuation ring for a field KK over 𝔽p\mathbb{F}_{p}. Denote by 𝒳K:=(XK/K,{σK,i}i)\mathscr{X}_{K}:=(X_{K}/K,\{\sigma_{K,i}\}_{i}) the generic fiber of 𝒳\mathscr{X} and by ϑK:=(ΘK,ΘK)\vartheta_{K}:=(\varTheta_{K},\nabla_{\varTheta_{K}}) the restriction of ϑ\vartheta to XKX_{K}. Let us take an arbitrary dormant (GLn(N),ϑK)(\mathrm{GL}_{n}^{(N)},\vartheta_{K})-oper K\nabla_{K}^{\diamondsuit} on 𝒳K\mathscr{X}_{K}. It follows from the discussion preceding this proposition that K\nabla_{K}^{\diamondsuit} induces an 𝒪XK\mathcal{O}_{X_{K}}-linear surjection νK:(𝒫ΘK,ΘK)(ΘK,K)\nu_{\nabla^{\diamondsuit}_{K}}:(\mathcal{P}_{\varTheta_{K}},\nabla_{\varTheta_{K}})\twoheadrightarrow(\mathcal{F}_{\varTheta_{K}},\nabla_{K}^{\diamondsuit}). By the properness of Quot schemes, there exists a pair (,ν)(\mathcal{F},\nu) consisting of an 𝒪X\mathcal{O}_{X}-module \mathcal{F} flat over SS and an 𝒪X\mathcal{O}_{X}-linear surjection ν:𝒫Θ\nu:\mathcal{P}_{\varTheta}\twoheadrightarrow\mathcal{F} with (,ν)|XK=(ΘK,νK)(\mathcal{F},\nu)|_{X_{K}}=(\mathcal{F}_{\varTheta_{K}},\nu_{\nabla^{\diamondsuit}_{K}}). The composite

Θ(5.54) for j=0(𝒫ΘpNn)𝒫Θν\displaystyle\mathcal{F}_{\varTheta}\xrightarrow{\text{$\eqref{e790}$ for $j=0$}}\left(\mathcal{P}_{\varTheta}^{p^{N}-n}\hookrightarrow\right)\mathcal{P}_{\varTheta}\xrightarrow{\nu}\mathcal{F} (5.60)

is an isomorphism because it becomes an isomorphism when restricted over XKX_{K} and the special fiber of \mathcal{F} has the same degree and rank as ΘK(=|XK)\mathcal{F}_{\varTheta_{K}}\left(=\mathcal{F}|_{X_{K}}\right). Under the identification Θ=\mathcal{F}_{\varTheta}=\mathcal{F} given by (5.60), the surjection ν\nu specifies a split surjection of (5.55). In particular, the kernel Ker(ν)\mathrm{Ker}(\nu) of ν\nu is isomorphic to the vector bundle 𝒫Θ/𝒫ΘpNn\mathcal{P}_{\varTheta}/\mathcal{P}_{\varTheta}^{p^{N}-n}. Since Ker(ν)|XK(=Ker(νK))\mathrm{Ker}(\nu)|_{X_{K}}\left(=\mathrm{Ker}(\nu_{\nabla_{K}^{\diamondsuit}})\right) is closed under ΘK\nabla_{\varTheta_{K}}, Ker(ν)\mathrm{Ker}(\nu) must be closed under Θ\nabla_{\varTheta}. Hence, Θ\nabla_{\varTheta} induces, via ν\nu and (5.60), a 𝒟(N1)\mathcal{D}^{(N-1)}-module structure \nabla^{\diamondsuit} on Θ\mathcal{F}_{\varTheta} with vanishing pNp^{N}-curvature. It is immediately verified that \nabla^{\diamondsuit} forms a dormant (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta)-oper on 𝒳\mathscr{X} whose generic fiber coincides with K\nabla_{K}^{\diamondsuit}. Consequently, we have proved that an KK-rational point of 𝒪p,ϑZzz\mathcal{O}p_{\diamondsuit,\vartheta}^{{}^{\mathrm{Zzz...}}} (classifying K\nabla_{K}^{\diamondsuit} as above) extends to an AA-rational point. Thus, 𝒪p,ϑZzz/S\mathcal{O}p_{\diamondsuit,\vartheta}^{{}^{\mathrm{Zzz...}}}/S turns out to be proper, and the proof of the assertion is completed. ∎

By applying the above result to various pointed stable curves, we obtain the following theorem, which is a higher-level generalization of  [Wak8, Theorem 3.38, (i)] for PGLn\mathrm{PGL}_{n}-opers (or a part of  [Mzk2, Chap. II, Theorem 2.8]).

Corollary 5.6.2.

Suppose that n<pn<p and R=𝔽pR=\mathbb{F}_{p}. Then, the Deligne-Mumford stack representing 𝒪pg,rZzz\mathcal{O}p_{g,r}^{{}^{\mathrm{Zzz...}}} is finite over ¯g,r\overline{\mathcal{M}}_{g,r} (hence also proper over 𝔽p\mathbb{F}_{p}). In particular, for every positive integer NN^{\prime} with 1N<N1\leq N^{\prime}<N, the morphism of stacks ΠNN:𝒪pn,N,g,r,𝔽pZzz𝒪pZzzn,N,g,r,𝔽p\Pi_{N\Rightarrow N^{\prime}}:\mathcal{O}p_{n,N,g,r,\mathbb{F}_{p}}^{{}^{\mathrm{Zzz...}}}\rightarrow\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{n,N^{\prime},g,r,\mathbb{F}_{p}} obtained by reducing the level of dormant PGLn\mathrm{PGL}_{n}-opers to NN^{\prime} is finite.

5.7. Correspondence with projective connections

We here describe the bijective correspondence between GLn\mathrm{GL}_{n}-opers and ordinary linear differential operators. As most of the arguments in this subsection are exactly the same as those made in  [Wak8, § 4], the details of the proofs are omitted. Hereinafter, we shall suppose that N=1N=1 and fix an integer nn with 1<n<p1<n<p. Also, set R:=/p+1R:=\mathbb{Z}/p^{\ell+1}\mathbb{Z}.

Let SlogS^{\mathrm{log}} be an fs log scheme whose underlying scheme SS is flat over RR and flog:XlogSlogf^{\mathrm{log}}:X^{\mathrm{log}}\rightarrow S^{\mathrm{log}} a log curve over SlogS^{\mathrm{log}}. Also, let \mathcal{L} and 𝒩\mathcal{N} be line bundles on XX.

Definition 5.7.1.

By an nn-th order (linear) differential operator (over SlogS^{\mathrm{log}}) from \mathcal{L} to 𝒩\mathcal{N}, we mean an f1(𝒪S)f^{-1}(\mathcal{O}_{S})-linear morphism 𝒟:𝒩\mathpzc{D}:\mathcal{L}\rightarrow\mathcal{N} locally expressed, by using some local identifications =𝒩=𝒪X\mathcal{L}=\mathcal{N}=\mathcal{O}_{X} and the local basis {j(:=j)}j\{\partial^{j}\left(:=\partial^{\langle j\rangle}\right)\}_{j} of 𝒟(0)\mathcal{D}^{(0)} associated to some logarithmic coordinate of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}, as

𝒟:𝓋𝒟(𝓋)=𝒿=0𝓃𝒶𝒿𝒿(𝓋),\displaystyle\mathpzc{D}:v\mapsto\mathpzc{D}(v)=\sum_{j=0}^{n}a_{j}\cdot\partial^{j}(v), (5.61)

where a0,,ana_{0},\cdots,a_{n}’s are local sections of 𝒪X\mathcal{O}_{X} with an0a_{n}\neq 0.

Denote by

𝒟𝑖𝑓𝑓n(,𝒩)\displaystyle\mathcal{D}{\it iff}_{\!\leq n}(\mathcal{L},\mathcal{N}) (5.62)

the Zariski sheaf on XX consisting of locally defined mm-th order differential operators from \mathcal{L} to 𝒩\mathcal{N} with mnm\leq n. It is verified that 𝒟𝑖𝑓𝑓n(,𝒩)\mathcal{D}{\it iff}_{\!\leq n}(\mathcal{L},\mathcal{N}) forms a subsheaf of omf1(𝒪S)(,𝒩)\mathcal{H}om_{f^{-1}(\mathcal{O}_{S})}(\mathcal{L},\mathcal{N}). Moreover, the composition with the f1(𝒪S)f^{-1}(\mathcal{O}_{S})-linear morphism 𝒩𝒟(0)n𝒩\mathcal{N}\otimes\mathcal{D}^{(0)}_{\leq n}\rightarrow\mathcal{N} given by vDvD(1)v\otimes D\mapsto v\otimes D(1) yields an isomorphism

om𝒪X(,𝒩𝒟(0)n)𝒟𝑖𝑓𝑓n(,𝒩)(omf1(𝒪S)(,𝒩)).\displaystyle\mathcal{H}om_{\mathcal{O}_{X}}(\mathcal{L},\mathcal{N}\otimes\mathcal{D}^{(0)}_{\leq n})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{D}{\it iff}_{\leq n}(\mathcal{L},\mathcal{N})\left(\subseteq\mathcal{H}om_{f^{-1}(\mathcal{O}_{S})}(\mathcal{L},\mathcal{N})\right). (5.63)

This isomorphism for =𝒩=𝒪X\mathcal{L}=\mathcal{N}=\mathcal{O}_{X} is nothing but (the restriction to 𝒟n(0)\mathcal{D}_{\leq n}^{(0)} of) the 𝒟(0)\mathcal{D}^{(0)}-module structure (0)X,triv\nabla^{(0)}_{X,\mathrm{triv}} on 𝒪X\mathcal{O}_{X} defined in (2.21).

Definition 5.7.2.

Let 𝒟\mathpzc{D} be an nn-th order differential operator 𝒩\mathcal{L}\rightarrow\mathcal{N}. The composite

Σ1(𝒟):𝒟𝒩𝒟(0)𝓃(𝒩(𝒟(0)𝓃/𝒟(0)𝓃1)=)𝒩𝒯𝓃,\displaystyle\Sigma_{1}(\mathpzc{D}):\mathcal{L}\xrightarrow{D}\mathcal{N}\otimes\mathcal{D}^{(0)}_{\leq n}\twoheadrightarrow\left(\mathcal{N}\otimes(\mathcal{D}^{(0)}_{\leq n}/\mathcal{D}^{(0)}_{\leq n-1})=\right)\mathcal{N}\otimes\mathcal{T}^{\otimes n}, (5.64)

where DD denotes the morphism corresponding to 𝒟\mathpzc{D} via (5.63), is called the principal symbol of 𝒟\mathpzc{D}. Also, we shall say that 𝒟\mathpzc{D} has unit principal symbol if =𝒩𝒯n\mathcal{L}=\mathcal{N}\otimes\mathcal{T}^{\otimes n} and Σ1(𝒟)\Sigma_{1}(\mathpzc{D}) coincide with the identity morphism id\mathrm{id}_{\mathcal{L}} of \mathcal{L}.

Let us fix a line bundle Θ\varTheta on XX, and consider an nn-th order differential operator 𝒟:ΘΩ𝓃Θ\mathpzc{D}^{\clubsuit}:\varTheta^{\vee}\rightarrow\Omega^{\otimes n}\otimes\varTheta^{\vee} from Θ\varTheta^{\vee} to ΩnΘ\Omega^{\otimes n}\otimes\varTheta^{\vee} with unit principal symbol. It defines an 𝒪X\mathcal{O}_{X}-linear morphism Θ(ΩnΘ)𝒟n(0)\varTheta^{\vee}\rightarrow(\Omega^{\otimes n}\otimes\varTheta^{\vee})\otimes\mathcal{D}_{\leq n}^{(0)} by (5.63) and moreover determines an 𝒪X\mathcal{O}_{X}-linear morphism D:𝒯nΘ𝒟n(0)ΘD^{{{}^{\rotatebox{180.0}{{\tiny$\clubsuit$}}}}}:\mathcal{T}^{\otimes n}\otimes\varTheta\rightarrow\mathcal{D}_{\leq n}^{(0)}\otimes\varTheta via the composite of natural isomorphisms

om𝒪X(Θ,(ΩnΘ)𝒟(0)n)\displaystyle\mathcal{H}om_{\mathcal{O}_{X}}(\varTheta^{\vee},(\Omega^{\otimes n}\otimes\varTheta^{\vee})\otimes\mathcal{D}^{(0)}_{\leq n}) ΩnΘ𝒟n(0)Θ\displaystyle\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\Omega^{\otimes n}\otimes\varTheta^{\vee}\otimes\mathcal{D}_{\leq n}^{(0)}\otimes\varTheta (5.65)
om𝒪X(𝒯nΘ,𝒟n(0)Θ).\displaystyle\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{H}om_{\mathcal{O}_{X}}(\mathcal{T}^{\otimes n}\otimes\varTheta,\mathcal{D}_{\leq n}^{(0)}\otimes\varTheta).

The quotient (𝒟(0)Θ)/Im(D)(\mathcal{D}^{(0)}\otimes\varTheta)/\langle\mathrm{Im}(D^{{{}^{\rotatebox{180.0}{{\tiny$\clubsuit$}}}}})\rangle of 𝒟(0)Θ\mathcal{D}^{(0)}\otimes\varTheta by the 𝒟(0)\mathcal{D}^{(0)}-submodule generated by the image of DD^{{{}^{\rotatebox{180.0}{{\tiny$\clubsuit$}}}}} specifies a left 𝒟(N1)\mathcal{D}^{(N-1)}-module. Since Σ1(𝒟)=1\Sigma_{1}(\mathpzc{D}^{\clubsuit})=1, the composite

Θinclusion𝒟(0)Θquotient𝒟(0)Θ/Im(D)\displaystyle\mathcal{F}_{\varTheta}\xrightarrow{\mathrm{inclusion}}\mathcal{D}^{(0)}\otimes\varTheta\xrightarrow{\mathrm{quotient}}\mathcal{D}^{(0)}\otimes\varTheta/\langle\mathrm{Im}(D^{\!{{}^{\rotatebox{180.0}{{\tiny$\clubsuit$}}}}})\rangle (5.66)

(cf. (5.23) for the definition of Θ\mathcal{F}_{\varTheta}) turns out to be an isomorphism of 𝒪X\mathcal{O}_{X}-modules. The 𝒟(0)\mathcal{D}^{(0)}-action on (𝒟(0)Θ)/Im(D)(\mathcal{D}^{(0)}\otimes\varTheta)/\langle\mathrm{Im}(D^{{{}^{\rotatebox{180.0}{{\tiny$\clubsuit$}}}}})\rangle is transposed into an SlogS^{\mathrm{log}}-connection

𝒟:ΘΩΘ\displaystyle\mathpzc{D}^{\clubsuit\Rightarrow\diamondsuit}:\mathcal{F}_{\varTheta}\rightarrow\Omega\otimes\mathcal{F}_{\varTheta} (5.67)

on Θ\mathcal{F}_{\varTheta} via this composite isomorphism. The collection of data

𝒟:=(Θ,𝒟,{𝒿Θ}𝒿=0𝓃)\displaystyle\mathpzc{D}^{\clubsuit\Rightarrow\heartsuit}:=(\mathcal{F}_{\varTheta},\mathpzc{D}^{\clubsuit\Rightarrow\diamondsuit},\{\mathcal{F}^{j}_{\varTheta}\}_{j=0}^{n}) (5.68)

forms a GLn\mathrm{GL}_{n}-oper on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}, and the determinant

Σ2(𝒟):=det(𝒟)\displaystyle\Sigma_{2}(\mathpzc{D}^{\clubsuit}):=\mathrm{det}(\mathpzc{D}^{\clubsuit\Rightarrow\diamondsuit}) (5.69)

may be regarded as an SlogS^{\mathrm{log}}-connection on 𝒯n(n1)2Θn\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes\varTheta^{\otimes n} via (5.24).

Definition 5.7.3.
  • (i)

    We shall refer to Σ2(𝒟)\Sigma_{2}(\mathpzc{D}^{\clubsuit}) as the subprincipal symbol of 𝒟\mathpzc{D}^{\clubsuit}. Also, under the assumption that Θ=Θ0(1n)\varTheta=\varTheta_{0}^{\otimes(1-n)} for some theta characteristic Θ0\varTheta_{0} of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} (cf. Example 5.4.2), we say that 𝒟\mathpzc{D}^{\clubsuit} has vanishing subprincipal symbol if Σ2(𝒟)\Sigma_{2}(\mathpzc{D}^{\clubsuit}) coincides with the ϑ0\nabla_{\vartheta_{0}} defined in (5.20).

  • (ii)

    Suppose further that we are given an n(1)n^{(1)}-theta characteristic ϑ:=(Θ,ϑ)\vartheta:=(\varTheta,\nabla_{\vartheta}) of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. We say that 𝒟\mathpzc{D}^{\clubsuit} is an (n,ϑ)(n,\vartheta)-projective connection on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} if the equality Σ2(𝒟)=ϑ\Sigma_{2}(\mathpzc{D}^{\clubsuit})=\nabla_{\vartheta} holds, or equivalently, 𝒟\mathpzc{D}^{\clubsuit\Rightarrow\diamondsuit} specifies a (GLn,ϑ)(\mathrm{GL}_{n},\vartheta)-oper on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. (In particular, if Θ=Θ0(1n)\varTheta=\varTheta_{0}^{\otimes(1-n)} for Θ0\varTheta_{0} as above, then 𝒟\mathpzc{D}^{\clubsuit} has vanishing subprincipal symbol if and only if it is an (n,ϑ0)(n,\vartheta_{0})-projective connection, where ϑ0\vartheta_{0} is as defined in (5.20).)

In what follows, we fix an n(1)n^{(1)}-theta characteristic ϑ:=(Θ,ϑ)\vartheta:=(\varTheta,\nabla_{\vartheta}) of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. Denote by

𝒟iff,ϑ:𝒮chRflat/S𝒮et\displaystyle\mathcal{D}i\!f\!f_{\clubsuit,\vartheta}:\mathcal{S}ch_{R}^{\mathrm{flat}}/S\rightarrow\mathcal{S}et (5.70)

the contravariant functor on 𝒮chRflat/S\mathcal{S}ch_{R}^{\mathrm{flat}}/S which, to any SS-scheme s:SSs:S^{\prime}\rightarrow S in Ob(𝒮chRflat/S)\mathrm{Ob}(\mathcal{S}ch_{R}^{\mathrm{flat}}/S), assigns the set of (n,s(ϑ))(n,s^{*}(\vartheta))-projective connections on (S×SXlog)/(S×SSlog)(S^{\prime}\times_{S}X^{\mathrm{log}})/(S^{\prime}\times_{S}S^{\mathrm{log}}) (where s()s^{*}(-) denotes the result of base-changing along ss).

Then, the assignment 𝒟𝒟\mathpzc{D}^{\clubsuit}\mapsto\mathpzc{D}^{\clubsuit\Rightarrow\heartsuit} determines a morphism of functors

Λ,ϑ:𝒟iff,ϑ𝒪p,ϑ.\displaystyle\Lambda_{\clubsuit\Rightarrow\diamondsuit,\vartheta}:\mathcal{D}i\!f\!f_{\clubsuit,\vartheta}\rightarrow\mathcal{O}p_{\diamondsuit,\vartheta}. (5.71)

Just as in the proof of  [Wak8, Proposition 4.28], this morphism is verified to be an isomorphism. Thus, by an argument similar to the proof of  [Wak8, Theorem 4.66], we obtain the following assertion.

Proposition 5.7.4.

We shall set

𝒱Θ:=om𝒪X(Θ,(ΩnΘ)𝒟(0)(n2)).\displaystyle\mathcal{V}_{\varTheta}:=\mathcal{H}om_{\mathcal{O}_{X}}(\varTheta^{\vee},(\Omega^{\otimes n}\otimes\varTheta^{\vee})\otimes\mathcal{D}^{(0)}_{\leq(n-2)}). (5.72)

(Similarly to  [Wak8, Lemma 4.67, (ii)], the direct image f(𝒱Θ)f_{*}(\mathcal{V}_{\varTheta}) is verified to be a vector bundle on SS of rank (n21)(g1)+(n2+n2)r2(n^{2}-1)(g-1)+\frac{(n^{2}+n-2)r}{2}.) Then, the functor 𝒪p,ϑ\mathcal{O}p_{\diamondsuit,\vartheta} (which is isomorphic to both 𝒪p\mathcal{O}p_{\heartsuit} and 𝒪p\mathcal{O}p_{\spadesuit} via Λ,ϑ\Lambda_{\heartsuit\Rightarrow\spadesuit,\vartheta} and Λ,ϑ\Lambda_{\diamondsuit\Rightarrow\spadesuit,\vartheta}, respectively) forms a f(𝒱Θ)f_{*}(\mathcal{V}_{\varTheta})-torsor.

5.8. Projective connections having a full set of root functions

In the rest of this section, we suppose that the log structures of XlogX^{\mathrm{log}} and SlogS^{\mathrm{log}} are trivial, or more generally the relative characteristic of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} is trivial (which implies that X/SX/S is smooth and 𝒟(0)=𝒟X/S(0)\mathcal{D}^{(0)}=\mathcal{D}_{X/S}^{(0)}). Let \mathcal{L}, 𝒩\mathcal{N} be line bundles on XX and 𝒟\mathpzc{D} an nn-th order differential operator from \mathcal{L} to 𝒩\mathcal{N}. Since 𝒟\mathpzc{D} is 𝒮ol(X,triv(0))\mathcal{S}ol(\nabla_{X,\mathrm{triv}}^{(0)})-linear, the kernel Ker(𝒟)\mathrm{Ker}(\mathpzc{D}) forms an 𝒮ol(X,triv(0))\mathcal{S}ol(\nabla_{X,\mathrm{triv}}^{(0)})-submodule of \mathcal{L}.

Definition 5.8.1.

We shall say that 𝒟\mathpzc{D} has a full set of root functions (or the differential equation associated to 𝒟\mathpzc{D} has a full set of solutions) if the 𝒮ol(X,triv(0))\mathcal{S}ol(\nabla_{X,\mathrm{triv}}^{(0)})-module Ker(𝒟)\mathrm{Ker}(\mathpzc{D}) is locally free of rank nn.

The condition of having a full set of root functions is closed under base-change, so we obtain the subfunctor

𝒟iff,ϑfull\displaystyle\mathcal{D}i\!f\!f_{\clubsuit,\vartheta}^{\mathrm{full}} (5.73)

of 𝒟iff,ϑ\mathcal{D}i\!f\!f_{\clubsuit,\vartheta} consisting of (n,ϑ)(n,\vartheta)-projective connections having a full set of root functions.

By an argument similar to the proof of  [Wak8, Proposition 4.65], we see that Λ,ϑ\Lambda_{\clubsuit\Rightarrow\diamondsuit,\vartheta} restricts to an isomorphism

Λ,ϑfull:𝒟iff,ϑfull𝒪pZzz,ϑ.\displaystyle\Lambda_{\clubsuit\Rightarrow\diamondsuit,\vartheta}^{\mathrm{full}}:\mathcal{D}i\!f\!f_{\clubsuit,\vartheta}^{\mathrm{full}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{\diamondsuit,\vartheta}. (5.74)

(In fact, the argument in  [Wak8] can be applied by using the equivalence (a) \Leftrightarrow (c) obtained in Proposition 3.2.5, (ii), instead of  [Wak8, Proposition 4.60].) In particular, by combining with Theorem 5.5.1, we obtain the following sequence consisting of isomorphisms between functors:

(5.79)

(cf.  [Wak8, Theorem D]). Also, the following assertion holds.

Corollary 5.8.2.

Let Θ0\varTheta_{0} be a theta characteristic of X/SX/S. Then, there exists a bijective correspondence between the following two sets:

  • The set of isomorphism classes of dormant PGLn\mathrm{PGL}_{n}-opers on X/SX/S;

  • The set of nn-th order differential operators on Θ0(1n)\varTheta_{0}^{\otimes(1-n)} with unit principal symbol and vanishing subprincipal symbol.

Proof.

The assertion follows from the isomorphisms Λ,ϑZzz\Lambda_{\diamondsuit\Rightarrow\spadesuit,\vartheta}^{{}^{\mathrm{Zzz...}}} (obtained in Theorem 5.5.1) and Λ,ϑfull\Lambda_{\clubsuit\Rightarrow\diamondsuit,\vartheta}^{\mathrm{full}} (constructed above), where “ϑ\vartheta” is taken to be ϑ0\vartheta_{0}. ∎

6. Radii of dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers

This section discusses the radii of dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers, which determines a sort of boundary condition to glue together dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers on pointed curves along the fibers over the points of attachment. After proving a certain factorization property of the moduli space 𝒪pZzzg,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r} in accordance with the data of radii, we obtain the nonemptiness of that space (cf. Corollary 6.5.4).

Let us fix a pair of nonnegative integers (g,r)(g,r) with 2g2+r>02g-2+r>0. Also, fix a pair of nonnegative integers (,m)(\ell,m) with =0\ell=0 or m=0m=0.

6.1. Monodromy/Exponent at a marked point

Let SS be a flat scheme over /p+1\mathbb{Z}/p^{\ell+1}\mathbb{Z}, and let 𝒳:=(f:XS,{σi}i)\mathscr{X}:=(f:X\rightarrow S,\{\sigma_{i}\}_{i}) be an rr-pointed stable curve of genus gg over SS. In particular, we obtain a log curve Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. For simplicity, we write Ω:=ΩXlog/Slog\Omega:=\Omega_{X^{\mathrm{log}}/S^{\mathrm{log}}}, 𝒯:=𝒯Xlog/Slog\mathcal{T}:=\mathcal{T}_{X^{\mathrm{log}}/S^{\mathrm{log}}}, and 𝒟(m):=𝒟Xlog/Slog(m)\mathcal{D}^{(m)}:=\mathcal{D}_{X^{\mathrm{log}}/S^{\mathrm{log}}}^{(m)}.

Suppose that r>0r>0, and fix i{1,,r}i\in\{1,\cdots,r\}. Note that there exists a canonical isomorphism of 𝒪S\mathcal{O}_{S}-algebras

σi(L𝒟(m))S\displaystyle\sigma^{*}_{i}({{}^{L}}\mathcal{D}^{(m)})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{B}_{S} (6.1)

(cf. (4.12) for the definition of S\mathcal{B}_{S}) determined by the following condition: if {j}j0\{\partial^{\langle j\rangle}\}_{j\in\mathbb{Z}_{\geq 0}} is the local basis of 𝒟(m)\mathcal{D}^{(m)} associated, in the manner of § 2.2, to any local section tt defining the closed subscheme Im(σi)\mathrm{Im}(\sigma_{i}) (which determines a logarithmic coordinate on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} around Im(σi)\mathrm{Im}(\sigma_{i})), then σi1(j)\sigma_{i}^{-1}(\partial^{\langle j\rangle}) is mapped to j\partial_{\mathcal{B}}^{\langle j\rangle} via (6.1) for every jj.

Let us take a 𝒟(m)\mathcal{D}^{(m)}-module (,)(\mathcal{F},\nabla). The 𝒟(m)\mathcal{D}^{(m)}-module structure \nabla induces a σi(𝒟(m))\sigma_{i}^{*}(\mathcal{D}^{(m)})-action σi()\sigma_{i}^{*}(\nabla) on σi()\sigma^{*}_{i}(\mathcal{F}); this action gives the composite

μi():S(6.1)1σi(L𝒟(m))σi()nd𝒪S(σi()).\displaystyle\mu_{i}(\nabla):\mathcal{B}_{S}\xrightarrow{\eqref{e66}^{-1}}\sigma^{*}_{i}({{}^{L}}\mathcal{D}^{(m)})\xrightarrow{\sigma^{*}_{i}(\nabla)}\mathcal{E}nd_{\mathcal{O}_{S}}(\sigma^{*}_{i}(\mathcal{F})). (6.2)

In particular, we obtain

μi():=(μi()1,μ2()p,,μi()pm)End𝒪S(σi())(m+1).\displaystyle\mu_{i}(\nabla)^{\langle\bullet\rangle}:=(\mu_{i}(\nabla)^{\langle 1\rangle},\mu_{2}(\nabla)^{\langle p\rangle},\cdots,\mu_{i}(\nabla)^{\langle p^{m}\rangle})\in\mathrm{End}_{\mathcal{O}_{S}}(\sigma_{i}^{*}(\mathcal{F}))^{\oplus(m+1)}. (6.3)

(cf. (4.14)).

Definition 6.1.1.

We shall refer to μi()\mu_{i}(\nabla) and μi()\mu_{i}(\nabla)^{\langle\bullet\rangle} as the monodromy operator of \nabla at σi\sigma_{i}. Also, for each a=0,,ma=0,\cdots,m, we shall refer to μi()pa\mu_{i}(\nabla)^{\langle p^{a}\rangle} as the aa-th monodromy operator of \nabla at σi\sigma_{i}.

Let us take an open subscheme UU of XX meeting Im(σi)\mathrm{Im}(\sigma_{i}), and take a section t𝒪Xt\in\mathcal{O}_{X} on UU defining the closed subscheme Im(σi)U\mathrm{Im}(\sigma_{i})\cap U of UU. The tt-adic formal completion U^t\widehat{U}_{t} of UU may be identified with UU_{\oslash} (cf. (4.1)). Under this identification U^t=U\widehat{U}_{t}=U_{\oslash}, the restriction 𝒟(m)|U^t\mathcal{D}^{(m)}|_{\widehat{U}_{t}} of 𝒟(m)\mathcal{D}^{(m)} to U^t\widehat{U}_{t} may be considered as 𝒟(m)\mathcal{D}_{\oslash}^{(m)} (cf. (4.2)). The monodromy operator μi()\mu_{i}(\nabla) of \nabla at σi\sigma_{i} coincides with that of the 𝒟(m)\mathcal{D}_{\oslash}^{(m)}-module structure on |U^t\mathcal{F}|_{\widehat{U}_{t}} (in the sense of Definition 4.2.1) obtained by restricting \nabla.

Moreover, we suppose that (,)(\mathcal{F},\nabla) is dormant, \mathcal{F} is a vector bundle of rank n>0n>0, and SS is connected. According to Proposition-Definitions 4.4.1 and 4.5.4, there exists a well-defined multiset

ei():=[d1,,dn]\displaystyle e_{i}(\nabla):=[d_{1},\cdots,d_{n}] (6.4)

of elements in /pm+1\mathbb{Z}/p^{m+1}\mathbb{Z} satisfying the following condition: for any local section tt as above, the 𝒟(m)\mathcal{D}_{\oslash}^{(m)}-module (,)|U^t(\mathcal{F},\nabla)|_{\widehat{U}_{t}} obtained by restricting (,)(\mathcal{F},\nabla) to U^t(=U)\widehat{U}_{t}\left(=U_{\oslash}\right) has exponent ei()e_{i}(\nabla). The following definition generalizes  [Wak9, Definition 4.1.3].

Definition 6.1.2.
  • (i)

    With the above notation, we shall refer to ei()e_{i}(\nabla) as the (local) exponent of \nabla at the marked point σi\sigma_{i}.

  • (ii)

    We shall set N:=m+1N:=m+1. Also, let :=(,,{j}j)\mathscr{F}^{\heartsuit}:=(\mathcal{F},\nabla,\{\mathcal{F}^{j}\}_{j}) be a dormant GLn(N)\mathrm{GL}_{n}^{(N)}-oper on 𝒳\mathscr{X}. Then, the multiset

    ei():=ei()\displaystyle e_{i}(\mathscr{F}^{\heartsuit}):=e_{i}(\nabla) (6.5)

    is called the (local) exponent of \mathscr{F}^{\heartsuit} at σi\sigma_{i}.

The following assertion will be applied in the proofs of Propositions 6.3.5 and 8.6.4.

Proposition 6.1.3.

Let us keep the above notation. Also, let nn be an integer with 1<npN1<n\leq p^{N} and :=(,,{j}j)\mathscr{F}^{\heartsuit}:=(\mathcal{F},\nabla,\{\mathcal{F}^{j}\}_{j}) a dormant GLn(N)\mathrm{GL}_{n}^{(N)}-oper on 𝒳\mathscr{X}. Suppose that we are given an isomorphism of 𝒟(N1)\mathcal{D}_{\oslash}^{(N-1)}-modules

h:(,)|U^tj=1n𝒪,dj(N1)\displaystyle h:(\mathcal{F},\nabla)|_{\widehat{U}_{t}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\bigoplus_{j=1}^{n}\mathscr{O}_{\oslash,d_{j}}^{(N-1)} (6.6)

for some d1,,dn/pNd_{1},\cdots,d_{n}\in\mathbb{Z}/p^{N}\mathbb{Z}. (In particular, the exponent ei()e_{i}(\mathscr{F}^{\heartsuit}) of \mathscr{F}^{\heartsuit} at σi\sigma_{i} coincides with [d1,,dn][d_{1},\cdots,d_{n}].) Then, the following assertions hold:

  • (i)

    Let vv be a global section of the line subbundle n1|U^t(|U^t)\mathcal{F}^{n-1}|_{\widehat{U}_{t}}\left(\subseteq\mathcal{F}|_{\widehat{U}_{t}}\right), and write

    (v1(t),,vn(t)):=h(v)H0(U^t,𝒪S[[t]])n.\displaystyle(v_{1}(t),\cdots,v_{n}(t)):=h(v)\in H^{0}(\widehat{U}_{t},\mathcal{O}_{S}[\![t]\!])^{\oplus n}. (6.7)

    Suppose that vv formally generates n1|U^t\mathcal{F}^{n-1}|_{\widehat{U}_{t}}. Then, each section vj(t)v_{j}(t) (j=1,,nj=1,\cdots,n) belongs to 𝒪S[[t]]×\mathcal{O}_{S}[\![t]\!]^{\times}, or equivalently vj(0)H0(S,𝒪S×)v_{j}(0)\in H^{0}(S,\mathcal{O}_{S}^{\times}).

  • (ii)

    The elements d1,,dnd_{1},\cdots,d_{n} are mutually distinct. Moreover, this fact implies that, if we are given global sections vj(t)H0(U^t,𝒪S[[t]]×)v_{j}(t)\in H^{0}(\widehat{U}_{t},\mathcal{O}_{S}[\![t]\!]^{\times}) for i=1,,ni=1,\cdots,n, then h1(v1(t),,vn(t))h^{-1}(v_{1}(t),\cdots,v_{n}(t)) formally generates the 𝒟(N1)\mathcal{D}_{\oslash}^{(N-1)}-module (,)(\mathcal{F},\nabla).

Proof.

Both assertions (i) and (ii) follow from arguments entirely similar to the proof of  [Wak9, Proposition 3.4.1], so we omit the details of the proofs. (The case of N=1N=1 can also be found in  [Wak8, Proposition 8.4].) ∎

6.2. Gluing 𝒟(m)\mathcal{D}^{(m)}-modules

We recall the definition of a semi-graph in the sense of  [Wak8, Definition 7.1].

Definition 6.2.1.

A semi-graph is a triple

G:=(V,E,ζ)\displaystyle{{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G:=(V,E,\zeta) (6.8)

consisting of the following data:

  • a set VV, whose elements are called vertices;

  • a set EE, whose elements are called edges, consisting of sets with cardinality 22 such that eeEe\neq e^{\prime}\in E implies ee=e\cap e^{\prime}=\emptyset;

  • a map ζ:eEeV{}\zeta:\bigsqcup_{e\in E}e\rightarrow V\sqcup\{\circledast\} (where “\circledast” denotes an abstract symbol with V\circledast\notin V), called a coincidence map, such that ζ(e){}\zeta(e)\neq\{\circledast\} for any eEe\in E.

Each edge eEe\in E with ζ(e)\circledast\in\zeta(e) (resp., ζ(e)\circledast\notin\zeta(e)) is called open (resp., closed), and write EopE^{\mathrm{op}} (resp., EclE^{\mathrm{cl}}) for the set of open (resp., closed) edges in EE. (In particular, we have E=EopEclE=E^{\mathrm{op}}\sqcup E^{\mathrm{cl}}.) Also, for each edge eEe\in E, we will refer to any element bb of ee as a branch of ee. Also, for each vV{}v\in V\sqcup\{\circledast\}, we write

Bv:=ζ1({v}).\displaystyle B_{v}:=\zeta^{-1}(\{v\}). (6.9)

Moreover, we recall some notions related to semi-graphs.

Definition 6.2.2 (cf.  [Wak8], Definition 7.2).

Fix a semi-graph G:=(V,E,ζ){{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G:=(V,E,\zeta).

  • (i)

    We say that G{{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G is finite if both VV and EE are finite.

  • (ii)

    We say that G{{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G is connected if for any two distinct vertices u,vVu,v\in V, there exists a sequence of edges e1,,eEe_{1},\cdots,e_{\ell}\in E (1\ell\geq 1) such that uζ(e1)u\in\zeta(e_{1}), vζ(e)v\in\zeta(e_{\ell}), and ζ(ej)ζ(ej+1)\zeta(e_{j})\cap\zeta(e_{j+1})\neq\emptyset for any j=1,,1j=1,\cdots,\ell-1.

  • (iii)

    We say that G{{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G is trivalent (or 33-regular) if, for any vertex vVv\in V, the cardinality of BvB_{v} is precisely 33.

  • (iv)

    Suppose further that G{{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G is trivalent. Then, we shall set

    g(G):=1(V)+(E)(B),r(G):=(B).\displaystyle g({{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G):=1-\sharp(V)+\sharp(E)-\sharp(B_{\circledast}),\hskip 28.45274ptr({{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G):=\sharp(B_{\circledast}). (6.10)

    Also, for a pair of nonnegative integer (g,r)(g^{\prime},r^{\prime}), we say that G{{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G is of type (g,r)(g^{\prime},r^{\prime}) if the equalities g(G)=gg({{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G)=g^{\prime} and r(G)=rr({{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G)=r^{\prime} hold.

Definition 6.2.3 (cf.  [Wak8], Definition 7.4).
  • (i)

    By clutching data, we mean a collection of data

    𝔾:=(G,{(gj,rj)}j=1J,{λj}j=1J)\displaystyle\mathbb{G}:=({{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G,\{(g_{j},r_{j})\}_{j=1}^{J},\{\lambda_{j}\}_{j=1}^{J}) (6.11)

    where

    • G:=(V,E,ζ){{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G:=(V,E,\zeta) is a finite connected semi-graph with JJ vertices V:={v1,,vJ}V:=\{v_{1},\cdots,v_{J}\} (where J>0J\in\mathbb{Z}_{>0}), numbered 11 through JJ;

    • (gj,rj)(g_{j},r_{j}) (j=1,,Jj=1,\cdots,J) is a pair of nonnegative integers with 2gj2+rj>02g_{j}-2+r_{j}>0;

    • λj\lambda_{j} (j=1,,Jj=1,\cdots,J) denotes a bijection of sets Bvj{1,,rj}B_{v_{j}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\{1,\cdots,r_{j}\}.

  • (ii)

    Let 𝔾\mathbb{G} be clutching data as in (6.11) and (g,r)(g^{\prime},r^{\prime}) a pair of nonnegative integers. We say that 𝔾\mathbb{G} is of type (g,r)(g^{\prime},r^{\prime}) if the equalities g=g(G)+j=1Jgjg^{\prime}=g({{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G)+\sum_{j=1}^{J}g_{j} and r=r(G)r^{\prime}=r({{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G) hold.

  • (iii)

    Let 𝔾\mathbb{G} be clutching data as in (6.11). We say that 𝔾\mathbb{G} is trivalent (or 33-regular) if (gj,rj)=(0,3)(g_{j},r_{j})=(0,3) for every j=1,,Jj=1,\cdots,J. Since trivalent clutching data is determined by “G{{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G” and “{λj}j\{\lambda_{j}\}_{j}”, we often indicate it by 𝔾=(G,{λj}j)\mathbb{G}=({{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G,\{\lambda_{j}\}_{j}).

Remark 6.2.4 (The natural ordering of open edges).

Let 𝔾:=(G,{(gj,rj)}j=1J,{λj}j=1J)\mathbb{G}:=({{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G,\{(g_{j},r_{j})\}_{j=1}^{J},\{\lambda_{j}\}_{j=1}^{J}) be clutching data of type (g,r)(g,r). We order the elements of the set BB_{\circledast} lexicographically, i.e., a branch incident to vjv_{j} comes before a branch incident to vjv_{j^{\prime}} if j<jj<j^{\prime}, and among branches incident to a common vjv_{j}, we take the ordering induced by λj\lambda_{j}. According to the resulting ordering, we occasionally write B:={b,1,,b,r}B_{\circledast}:=\{b_{\circledast,1},\cdots,b_{\circledast,r}\}.

Let us fix clutching data 𝔾:=(G,{(gj,rj)}j=1J,{λj}j=1J)\mathbb{G}:=({{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G,\{(g_{j},r_{j})\}_{j=1}^{J},\{\lambda_{j}\}_{j=1}^{J}) of type (g,r)(g,r). For each j=1,,Jj=1,\cdots,J, suppose that we are given an rjr_{j}-pointed stable curve 𝒳j:=(Xj/Sj,{σj,i}rji=1){\mathscr{X}_{j}}:=(X_{j}/S_{j},\{\sigma_{j,i}\}^{r_{j}}_{i=1}) of genus gjg_{j} over Sj:=SS_{j}:=S. Also, suppose that 𝒳\mathscr{X} may be obtained by gluing together the 𝒳j\mathscr{X}_{j}’s by means of 𝔾\mathbb{G} in the manner of  [Wak8, § 7.2.1]. (The discussions in  [Wak8] only deal with schemes over a field, but the gluing construction mentioned there can be applied to a general base space SS.) In particular, there exist natural morphisms

Clutj:XjX\displaystyle\mathrm{Clut}_{j}:X_{j}\rightarrow X (6.12)

(j=1,,Jj=1,\cdots,J) of S(=Sj)S\left(=S_{j}\right)-schemes.

Recall that, for each jj, the scheme SjS_{j} (resp., XjX_{j}) is equipped with the log structure pulled-back from ¯gj,rjlog\overline{\mathcal{M}}_{g_{j},r_{j}}^{\mathrm{log}} (resp., the universal family of log curves over ¯gj,rjlog\overline{\mathcal{M}}_{g_{j},r_{j}}^{\mathrm{log}}) via the classifying morphism of 𝒳j{\mathscr{X}_{j}}. Denote by SjlogS_{j}^{\mathrm{log}} (resp., XlogjX^{\mathrm{log}}_{j}) the resulting log scheme. For simplicity, we shall write 𝒯j:=𝒯Xjlog/Sjlog\mathcal{T}_{j}:=\mathcal{T}_{X_{j}^{\mathrm{log}}/S_{j}^{\mathrm{log}}} and 𝒟j(m):=𝒟Xjlog/Sjlog(m)\mathcal{D}_{j}^{(m)}:=\mathcal{D}_{X_{j}^{\mathrm{log}}/S_{j}^{\mathrm{log}}}^{(m)}.

On the other hand, write Xlog|XjX^{\mathrm{log}|_{X}}_{j} for the log scheme obtained by equipping XjX_{j} with the log structure pulled-back from XlogX^{\mathrm{log}} via Clutj\mathrm{Clut}_{j}. The structure morphism XjSj(=S)X_{j}\rightarrow S_{j}\left(=S\right) of Xj/SjX_{j}/S_{j} extends to a morphism Xjlog|XSlogX_{j}^{\mathrm{log}|_{X}}\rightarrow S^{\mathrm{log}} of log schemes. Moreover, the natural morphisms SlogS(=Sj)S^{\mathrm{log}}\rightarrow S\left(=S_{j}\right) and Xjlog|XXjX_{j}^{\mathrm{log}|_{X}}\rightarrow X_{j} extend to morphisms SlogSjlogS^{\mathrm{log}}\rightarrow S_{j}^{\mathrm{log}} and Xjlog|XXjlogX_{j}^{\mathrm{log}|_{X}}\rightarrow X_{j}^{\mathrm{log}}, respectively, which make the following square diagram commute:

(6.17)

This diagram induces a morphism Xjlog|XXjlog×SjlogSlogX_{j}^{\mathrm{log}|_{X}}\rightarrow X_{j}^{\mathrm{log}}\times_{S_{j}^{\mathrm{log}}}S^{\mathrm{log}} over SlogS^{\mathrm{log}} whose underlying morphism of SS-schemes coincides with the identity morphism of XjX_{j}. The differential of this morphism yields isomorphisms of 𝒪Xj\mathcal{O}_{X_{j}}-modules

δj𝒯:𝒯Xjlog|X/Slog(=Clutj(𝒯))𝒯j,δj𝒟:L𝒟(m)Xjlog|X/Slog(=Clutj(L𝒟(m)))L𝒟j(m).\displaystyle\delta_{j}^{\mathcal{T}}:\mathcal{T}_{X_{j}^{\mathrm{log}|_{X}}/S^{\mathrm{log}}}\left(=\mathrm{Clut}_{j}^{*}(\mathcal{T})\right)\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{T}_{j},\hskip 14.22636pt\delta_{j}^{\mathcal{D}}:{{}^{L}}\mathcal{D}^{(m)}_{X_{j}^{\mathrm{log}|_{X}}/S^{\mathrm{log}}}\left(=\mathrm{Clut}_{j}^{*}({{}^{L}}\mathcal{D}^{(m)})\right)\stackrel{{\scriptstyle\sim}}{{\rightarrow}}{{}^{L}}\mathcal{D}_{j}^{(m)}. (6.18)

Now, let \mathcal{F} be an 𝒪X\mathcal{O}_{X}-module. For each j=1,,Jj=1,\cdots,J, denote by j\mathcal{F}_{j} the pull-back of \mathcal{F} to XjX_{j}.

Definition 6.2.5.

A 𝔾\mathbb{G}-𝒟(m)\mathcal{D}^{(m)}-module structure on \mathcal{F} is a collection

{j}j=1J,\displaystyle\{\nabla_{j}\}_{j=1}^{J}, (6.19)

where each j\nabla_{j} denotes a 𝒟j(m)\mathcal{D}_{j}^{(m)}-module structure on j\mathcal{F}_{j}, such that, for any closed edge {b,b}Ecl\{b,b^{\prime}\}\in E^{\mathrm{cl}} of G{{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G with ζ(b)=vj\zeta(b)=v_{j}, ζ(b)=vj\zeta(b^{\prime})=v_{j^{\prime}} (j,j{1,,J}j,j^{\prime}\in\{1,\cdots,J\}), the equality

μλj(b)(j)sw=μλj(b)(j)(sw𝒪S(μλj(b)(j))=μλj(b)(j)by (4.21))\displaystyle\mu_{\lambda_{j}(b)}(\nabla_{j})\circ\mathrm{sw}=\mu_{\lambda_{j^{\prime}}(b^{\prime})}(\nabla_{j^{\prime}})\ \left(\Longleftrightarrow\mathrm{sw}^{\bullet}_{\mathcal{O}_{S}}(\mu_{\lambda_{j}(b)}(\nabla_{j}))^{\langle\bullet\rangle}=\mu_{\lambda_{j^{\prime}}(b^{\prime})}(\nabla_{j^{\prime}})^{\langle\bullet\rangle}\ \text{by \eqref{dE110}}\right) (6.20)

holds under the natural identification σj,λj(b)(j)=σj,λj(b)(j)\sigma_{j,\lambda_{j}(b)}^{*}(\mathcal{F}_{j})=\sigma_{j^{\prime},\lambda_{j^{\prime}}(b^{\prime})}^{*}(\mathcal{F}_{j^{\prime}}).

Let :L𝒟(m)nd𝒪S()\nabla:{{}^{L}}\mathcal{D}^{(m)}\rightarrow\mathcal{E}nd_{\mathcal{O}_{S}}(\mathcal{F}) be a 𝒟(m)\mathcal{D}^{(m)}-module structure on \mathcal{F}. For each j=1,,Jj=1,\cdots,J, the composite

|j:L𝒟j(δ𝒟j)1L𝒟(m)Xjlog|X/SlogClutj()nd𝒪S(j)\displaystyle\nabla|_{j}:{{}^{L}}\mathcal{D}_{j}\xrightarrow{(\delta^{\mathcal{D}}_{j})^{-1}}{{}^{L}}\mathcal{D}^{(m)}_{X_{j}^{\mathrm{log}|_{X}}/S^{\mathrm{log}}}\xrightarrow{\mathrm{Clut}^{*}_{j}(\nabla)}\mathcal{E}nd_{\mathcal{O}_{S}}(\mathcal{F}_{j}) (6.21)

specifies a 𝒟j(m)\mathcal{D}_{j}^{(m)}-module structure on j\mathcal{F}_{j}. We shall refer to |j\nabla|_{j} (resp., (j,|j)(\mathcal{F}_{j},\nabla|_{j})) as the restriction of \nabla (resp., (,)(\mathcal{F},\nabla)) to j\mathcal{F}_{j} (resp., XjX_{j}).

Proposition 6.2.6.

Let \nabla be a 𝒟(m)\mathcal{D}^{(m)}-module structure on \mathcal{F}.

  • (i)

    The collection of its restrictions {|j}j=1J\{\nabla|_{j}\}_{j=1}^{J} specifies a 𝔾\mathbb{G}-𝒟(m)\mathcal{D}^{(m)}-module structure on \mathcal{F}. Moreover, the resulting assignment {|j}j=1J\nabla\mapsto\{\nabla|_{j}\}_{j=1}^{J} determines a bijection of sets

    (the set of 𝒟(m)-module structures on )(the set of 𝔾-𝒟(m)-module structures on ).\displaystyle\begin{pmatrix}\text{the set of }\\ \text{$\mathcal{D}^{(m)}$-module structures on $\mathcal{F}$}\end{pmatrix}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\begin{pmatrix}\text{the set of }\\ \text{$\mathbb{G}$-$\mathcal{D}^{(m)}$-module structures on $\mathcal{F}$}\end{pmatrix}. (6.22)
  • (ii)

    (,)(\mathcal{F},\nabla) is dormant if and only if (j,|j)(\mathcal{F}_{j},\nabla|_{j}) is dormant for every j=1,,Jj=1,\cdots,J. Moreover, for each jj, the formation of restrictions (,)(j,|j)(\mathcal{F},\nabla)\mapsto(\mathcal{F}_{j},\nabla|_{j}) commutes with diagonal reduction.

Proof.

Assertion (i) follows from Proposition 4.2.2, (i) and (ii) (cf. the discussion in the proof of  [Wak8, Proposition 7.6]).

Assertion (ii) for =0\ell=0 follows from the commutativity of the following square diagram defined for every j=1,,Jj=1,\cdots,J:

(6.27)

Also, the assertion for m=0m=0 can be proved by applying the assertion for =0\ell=0 together with the definition of the functor (){{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!(-). ∎

6.3. Definition of radius

Let nn be an integer with 1<n<p1<n<p. We shall discuss the notion of radius associated to a dormant PGLn\mathrm{PGL}_{n}-oper of finite level on a pointed stable curve (cf.  [Wak9, Definition 4.3.2] for the case of pointed smooth curves). The level 11 case was already defined in  [Wak8, Definition 2.32] under the identification between elements in “𝔖n\𝔽p×n/Δ\mathfrak{S}_{n}\backslash\mathbb{F}_{p}^{\times n}/\Delta” (cf. (6.28) below) and certain 𝔽p\mathbb{F}_{p}-rational points in the adjoint quotient of the Lie algebra 𝔰𝔩n\mathfrak{s}\mathfrak{l}_{n}.

For convenience, we shall set N:=m+1N:=m+1 and L:=+NL:=\ell+N. Denote by Δ\Delta the image of the diagonal embedding /pL(/pL)×n\mathbb{Z}/p^{L}\mathbb{Z}\hookrightarrow(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}, which is a group homomorphism. In particular, we obtain the quotient set (/pL)×n/Δ(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta. Note that the set (/pL)×n(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n} is equipped with the action of the symmetric group 𝔖n\mathfrak{S}_{n} of nn letters by permutation; this action induces a well-defined 𝔖n\mathfrak{S}_{n}-action on (/pL)×n/Δ(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta. Hence, we obtain the quotient sets

𝔖n\(/pL)×n,𝔖n\(/pL)×n/Δ,\displaystyle\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n},\hskip 14.22636pt\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta, (6.28)

and moreover, obtain the natural projection

πΔ:𝔖n\(/pL)×n𝔖n\(/pL)×n/Δ.\displaystyle\pi_{\Delta}:\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}\twoheadrightarrow\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta. (6.29)

Each element of 𝔖n\(/pL)×n\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n} may be regarded as a multiset of /pL\mathbb{Z}/p^{L}\mathbb{Z} whose cardinality equals nn. Also, we occasionally identify 𝔖n\(/pL)×n\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n} (resp., 𝔖n\(/pL)×n/Δ\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta) with the scheme defined as the disjoint union of copies of Spec()\mathrm{Spec}(\mathbb{Z}) indexed by the set 𝔖n\(/pL)×n\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n} (resp., 𝔖n\(/pL)×n/Δ\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta).

Remark 6.3.1 (Radii for n=2n=2).

Denote by (/pL)/{±1}(\mathbb{Z}/p^{L}\mathbb{Z})/\{\pm 1\} the set of equivalence classes of elements a/pLa\in\mathbb{Z}/p^{L}\mathbb{Z}, in which aa and a-a are identified. Then, the assignment a[a,a]a\mapsto[a,-a] determines a well-defined bijection

(/pL)/{±1}𝔖2\(/pL)×2/Δ.\displaystyle(\mathbb{Z}/p^{L}\mathbb{Z})/\{\pm 1\}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathfrak{S}_{2}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times 2}/\Delta. (6.30)

We occasionally identify 𝔖2\(/pL)×2/Δ\mathfrak{S}_{2}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times 2}/\Delta with (/pL)/{±1}(\mathbb{Z}/p^{L}\mathbb{Z})/\{\pm 1\} by using this bijection. Under this identification, the notion of radius introduced below coincides with the classical notion of radius for torally indigenous bundles in the sense of  [Mzk2, Chap. I, Definition 4.1] (see also  [Wak9, Remark 4.3.3]).

Let us take a dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper \mathscr{E}^{\spadesuit} on 𝒳\mathscr{X}. According to Corollary 5.5.2, (i), we can find a dormant GLn(N)\mathrm{GL}_{n}^{(N)}-oper :=(,,{j}j)\mathscr{F}^{\heartsuit}:=(\mathcal{F},\nabla,\{\mathcal{F}^{j}\}_{j}) on 𝒳\mathscr{X} with \mathscr{F}^{\heartsuit\Rightarrow\spadesuit}\cong\mathscr{E}^{\spadesuit}. For each i=1,,ri=1,\cdots,r, the exponent of \mathscr{F}^{\heartsuit} at σi\sigma_{i} determines an element

ei():=[di,1,,di,n](𝔖n\(/pL)×n)(S),\displaystyle e_{i}(\mathscr{F}^{\heartsuit}):=[d_{i,1},\cdots,d_{i,n}]\in(\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n})(S), (6.31)

where di,1,,di,n(/pL)×n(S)d_{i,1},\cdots,d_{i,n}\in(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}(S). Its image

ρi():=πΔ(ei())(𝔖n\(/pL)×n/Δ)(S)\displaystyle\rho_{i}(\mathscr{E}^{\spadesuit}):=\pi_{\Delta}(e_{i}(\mathscr{F}^{\heartsuit}))\in(\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta)(S) (6.32)

via πΔ\pi_{\Delta} depends only on the equivalence class [][\mathscr{F}^{\heartsuit}], i.e., the isomorphism class of \mathscr{E}^{\spadesuit}. In fact, if :=(,)\mathscr{L}:=(\mathcal{L},\nabla_{\mathcal{L}}) is a dormant invertible 𝒟(N1)\mathcal{D}^{(N-1)}-module whose exponent at σi\sigma_{i} is ci(/pL)(S)c_{i}\in(\mathbb{Z}/p^{L}\mathbb{Z})(S), then the exponent of \mathscr{F}_{\otimes\mathscr{L}}^{\heartsuit} at σi\sigma_{i} coincides with [di,1+ci,,di,n+ci][d_{i,1}+c_{i},\cdots,d_{i,n}+c_{i}]. Since πΔ([di,1,,di,n])=πΔ([di,1+ci,,di,n+ci])\pi_{\Delta}([d_{i,1},\cdots,d_{i,n}])=\pi_{\Delta}([d_{i,1}+c_{i},\cdots,d_{i,n}+c_{i}]), we see that ρi()\rho_{i}(\mathscr{E}^{\spadesuit}) is a well-defined element associated to \mathscr{E}^{\spadesuit}.

Definition 6.3.2.
  • (i)

    With the above notation, we shall refer to ρi()\rho_{i}(\mathscr{E}^{\spadesuit}) as the radius of \mathscr{E}^{\spadesuit} at σi\sigma_{i}.

  • (ii)

    Let ρ:=(ρi)i=1r\rho:=(\rho_{i})_{i=1}^{r} be an element of (𝔖n\(/pL)×n/Δ)×r(\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta)^{\times r}. We shall say that a dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper \mathscr{E}^{\spadesuit} is of radii ρ\rho if ρi=ρi()\rho_{i}=\rho_{i}(\mathscr{E}^{\spadesuit}) for every i=1,,ri=1,\cdots,r. When r=0r=0, we will refer to any dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper as being of radii \emptyset.

The following two propositions describe some basic properties of the radius of a dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper.

Proposition 6.3.3.

Let \mathscr{E}^{\spadesuit} be a dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on 𝒳\mathscr{X} of radii ρ(𝔖n\(/pL)×n/Δ)×r\rho\in(\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta)^{\times r}. For each integer LL^{\prime} with 1LL1\leq L^{\prime}\leq L, we denote by

qLL:(𝔖n\(/pL)×n/Δ)×r(𝔖n\(/pL)×n/Δ)×r\displaystyle q_{L\Rightarrow L^{\prime}}:(\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta)^{\times r}\twoheadrightarrow(\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L^{\prime}}\mathbb{Z})^{\times n}/\Delta)^{\times r} (6.33)

the surjection induced from the natural quotient /pL/pL\mathbb{Z}/p^{L}\mathbb{Z}\twoheadrightarrow\mathbb{Z}/p^{L^{\prime}}\mathbb{Z}.

  • (i)

    Suppose further that =0\ell=0 (hence N=LN=L). Then, for each positive integer NNN^{\prime}\leq N, the dormant PGLn(N)\mathrm{PGL}_{n}^{(N^{\prime})}-oper on 𝒳\mathscr{X} obtained by reducing the level of \mathscr{E}^{\spadesuit} to NN^{\prime} is of radii qNN(ρ)q_{N\Rightarrow N^{\prime}}(\rho).

  • (ii)

    Suppose further that N=1N=1 (hence +1=L\ell+1=L). Then, for each nonnegative integer \ell^{\prime}\leq\ell, the dormant PGLn\mathrm{PGL}_{n}-oper on 𝒳\mathscr{X}_{\ell^{\prime}} (:= the reduction of 𝒳\mathscr{X} modulo p+1p^{\ell^{\prime}+1}) obtained by reducing \mathscr{E}^{\spadesuit} modulo p+1p^{\ell^{\prime}+1} is of radii q+1+1(ρ)q_{\ell+1\Rightarrow\ell^{\prime}+1}(\rho).

Proof.

Assertion (i) follows from Proposition 4.3.4, (iii). Also, assertion (ii) follows from the definition of the radius of a dormant PGLn\mathrm{PGL}_{n}-oper. ∎

Proposition 6.3.4.

We shall fix i{1,,r}i\in\{1,\cdots,r\}, a0/pLa_{0}\in\mathbb{Z}/p^{L}\mathbb{Z}, and ρ0𝔖n\(/pL)×n/Δ\rho_{0}\in\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta. Note that (since n<pn<p) there exists a unique multiset e0:=[d1,,dn]𝔖n\(/pL)×ne_{0}:=[d_{1},\cdots,d_{n}]\in\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n} with πΔ(e0)=ρ0\pi_{\Delta}(e_{0})=\rho_{0} and i=1ndi=a0\sum_{i=1}^{n}d_{i}=a_{0}. Also, let ϑ:=(Θ,ϑ)\vartheta:=(\varTheta,\nabla_{\vartheta}) be a dormant n(N)n^{(N)}-theta characteristic of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} such that the exponent of ϑ\nabla_{\vartheta} at σi\sigma_{i} is a0a_{0}, and let \nabla^{\diamondsuit} be a dormant (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta)-oper on 𝒳\mathscr{X}. Denote by \mathscr{E}^{\spadesuit} the dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper corresponding to \nabla^{\diamondsuit} via Λ,ϑZzz\Lambda_{\diamondsuit\Rightarrow\spadesuit,\vartheta}^{{}^{\mathrm{Zzz...}}}. Then, the radius of \mathscr{E}^{\spadesuit} at σi\sigma_{i} is ρ0\rho_{0} if and only if the exponent of \nabla^{\diamondsuit\Rightarrow\heartsuit} at σi\sigma_{i} is e0e_{0}.

Proof.

The assertion follows from the various definitions involved. ∎

Denote by Ξ~n,L\widetilde{\Xi}_{n,L} the subset of 𝔖n\(/pL)×n\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n} consisting of multisets [d1,,dn][d_{1},\cdots,d_{n}] such that the elements d1[0],,dn[0]d_{1[0]},\cdots,d_{n[0]} of 𝔽p\mathbb{F}_{p} determined by d1,,dnd_{1},\cdots,d_{n} are mutually distinct. (In particular, Ξ~n,L\widetilde{\Xi}_{n,L} may be identified with a set of subsets of /pL\mathbb{Z}/p^{L}\mathbb{Z} with cardinality nn.) Also, we denote the image of Ξ~n,L\widetilde{\Xi}_{n,L} via the projection πΔ:𝔖n\(/pL)×n𝔖n\(/pL)×n/Δ\pi_{\Delta}:\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}\twoheadrightarrow\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta by

Ξn,L(𝔖n\(/pL)×n/Δ).\displaystyle\Xi_{n,L}\ \left(\subseteq\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta\right). (6.34)

Under the identification (/pL)/{±1}=𝔖2\(/pL)×2/Δ(\mathbb{Z}/p^{L}\mathbb{Z})/\{\pm 1\}=\mathfrak{S}_{2}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times 2}/\Delta given by (6.30), Ξ2,L\Xi_{2,L} may be identified with the subset (/pL)×/{±1}(\mathbb{Z}/p^{L}\mathbb{Z})^{\times}/\{\pm 1\} of (/pL)/{±1}(\mathbb{Z}/p^{L}\mathbb{Z})/\{\pm 1\}.

Proposition 6.3.5.

Let ρ\rho be an element of 𝔖n\(/pL)×n/Δ\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta such that there exists a dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on 𝒳\mathscr{X} whose radius at σi\sigma_{i} (for some i{1,,r}i\in\{1,\cdots,r\}) coincides with ρ\rho. Then, ρ\rho belongs to Ξn,L\Xi_{n,L}.

Proof.

Let us choose a dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper \mathscr{E}^{\spadesuit} on 𝒳\mathscr{X} whose radius at σi\sigma_{i} coincides with ρ\rho. There exists a dormant GLn(N)\mathrm{GL}_{n}^{(N)}-oper :=(,,{j}j)\mathscr{F}^{\heartsuit}:=(\mathcal{F},\nabla,\{\mathcal{F}^{j}\}_{j}) on 𝒳\mathscr{X} with \mathscr{F}^{\heartsuit\Rightarrow\spadesuit}\cong\mathscr{E}^{\spadesuit} (cf. Corollary 5.5.2, (i)). The exponent ei()e_{i}(\mathscr{F}^{\heartsuit}) of \mathscr{F}^{\heartsuit} at σi\sigma_{i} can be described as a multiset [d1,,dn][d_{1},\cdots,d_{n}] (d1,,dn/pLd_{1},\cdots,d_{n}\in\mathbb{Z}/p^{L}\mathbb{Z}). Now, let us consider the case where =0\ell=0, or equivalently L=NL=N (resp., N=1N=1, or equivalently L=+1L=\ell+1). By Propositions 5.3.4 and 6.3.3, (i) (resp., Proposition 6.3.3, (ii)), the radius at σi\sigma_{i} of the dormant PGLn\mathrm{PGL}_{n}-oper obtained by reducing the level of \mathscr{E}^{\spadesuit} to 11 (resp., by reducing \mathscr{E}^{\spadesuit} modulo pp) coincides with the image of [d1[0],,dn[0]][d_{1[0]},\cdots,d_{n[0]}] in 𝔖n\(/pL)×n/Δ\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta. Then, it follows from Propositions 5.3.4 and 6.1.3, (ii) (or  [Wak9, Proposition 3.4.1]) that d1[0],,dn[0]d_{1[0]},\cdots,d_{n[0]} are mutually distinct. This means that ρi()Ξn,L\rho_{i}(\mathscr{E}^{\spadesuit})\in\Xi_{n,L}, and hence completes the proof of this proposition. ∎

Remark 6.3.6 (Comparison with the classical definition).

Suppose that N=1N=1. Then, the notion of radius defined above is essentially the same as  [Wak8, Definitions 2.32 and 4.46], and the definitions discussed there can be naturally extended to our setting, i.e., the case where the ground ring has prime-power characteristic.

To see this, let us take an element ρ\rho of Ξn,N\Xi_{n,N}, which can be expressed as ρ=πΔ([d1,,dn])\rho=\pi_{\Delta}([d_{1},\cdots,d_{n}]) for a unique element [d1,,dn][d_{1},\cdots,d_{n}] of Ξ~n,N\widetilde{\Xi}_{n,N} with j=1ndj=0\sum_{j=1}^{n}d_{j}=0. It determines a well-defined element

s𝔱(ρ):=(s2𝔱(d1,,dn),s3𝔱(d1,,dn),,sn𝔱(d1,,dn))H0(S,𝒪S)(n1),\displaystyle s^{\mathfrak{t}}(\rho):=(s_{2}^{\mathfrak{t}}(d_{1},\cdots,d_{n}),s_{3}^{\mathfrak{t}}(d_{1},\cdots,d_{n}),\cdots,s_{n}^{\mathfrak{t}}(d_{1},\cdots,d_{n}))\in H^{0}(S,\mathcal{O}_{S})^{\oplus(n-1)}, (6.35)

where s𝔱is^{\mathfrak{t}}_{i}’s are the elementary symmetric polynomials, i.e.,

s1𝔱(λ1,,λn):=j=1nλj,s2𝔱(λ1,,λn):=j<jλjλj,,sn𝔱(λ1,,λn):=j=1nλj.\displaystyle s_{1}^{\mathfrak{t}}(\lambda_{1},\cdots,\lambda_{n}):=\sum_{j=1}^{n}\lambda_{j},\hskip 8.53581pts_{2}^{\mathfrak{t}}(\lambda_{1},\cdots,\lambda_{n}):=\sum_{j<j^{\prime}}\lambda_{j}\cdot\lambda_{j^{\prime}},\hskip 8.53581pt\cdots,\hskip 8.53581pts_{n}^{\mathfrak{t}}(\lambda_{1},\cdots,\lambda_{n}):=\prod_{j=1}^{n}\lambda_{j}. (6.36)

The assignment ρs𝔱(ρ)\rho\mapsto s^{\mathfrak{t}}(\rho) defines an injection

Ξn,NH0(S,𝒪S)(n1).\displaystyle\Xi_{n,N}\hookrightarrow H^{0}(S,\mathcal{O}_{S})^{\oplus(n-1)}. (6.37)

Now, let \mathscr{E}^{\spadesuit} be a PGLn\mathrm{PGL}_{n}-oper on 𝒳\mathscr{X} (that is not necessarily dormant). By Corollary 5.5.2, (i), there exists a GLn\mathrm{GL}_{n}-oper :=(,,{j}j=0n)\mathscr{F}^{\heartsuit}:=(\mathcal{F},\nabla,\{\mathcal{F}^{j}\}_{j=0}^{n}) with \mathscr{F}^{\heartsuit\Rightarrow\spadesuit}\cong\mathscr{E}^{\spadesuit}, where we use the notation \nabla to denote an SlogS^{\mathrm{log}}-connection on \mathcal{F}. For each i=1,,ri=1,\cdots,r, the monodromy operator of \nabla at σi\sigma_{i} (in the sense of  [Wak8, Definition 4.42]) is the element μi\mu_{i}^{\nabla} of End(σi())\mathrm{End}(\sigma_{i}^{*}(\mathcal{F})) defined to be the composite

μi:σi()σi()σi(Ω)σi(Ω)σi()σi(),\displaystyle\mu_{i}^{\nabla}:\sigma_{i}^{*}(\mathcal{F})\xrightarrow{\sigma_{i}^{*}(\nabla)}\sigma_{i}^{*}(\Omega\otimes\mathcal{F})\xrightarrow{\sim}\sigma_{i}^{*}(\Omega)\otimes\sigma_{i}^{*}(\mathcal{F})\xrightarrow{\sim}\sigma_{i}^{*}(\mathcal{F}), (6.38)

where the last arrow arises from the residue isomorphism σi(Ω)𝒪S\sigma^{*}_{i}(\Omega)\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{O}_{S}.

Then, there exists a tuple

ϱi():=(s2(ρ),,sn(ρ))H0(S,𝒪S)(n1)\displaystyle\varrho_{i}(\mathscr{E}^{\spadesuit}):=(s_{2}(\rho),\cdots,s_{n}(\rho))\in H^{0}(S,\mathcal{O}_{S})^{\oplus(n-1)} (6.39)

of elements of H0(S,𝒪S)H^{0}(S,\mathcal{O}_{S}) uniquely determined by the equality

det(tidσi()μ˘i)=tn+j=2n(1)jsj(ρ)tnjH0(S,𝒪S)[t],\displaystyle\mathrm{det}\left(t\cdot\mathrm{id}_{\sigma_{i}^{*}(\mathcal{F})}-\breve{\mu}_{i}^{\nabla}\right)=t^{n}+\sum_{j=2}^{n}(-1)^{j}\cdot s_{j}(\rho)\cdot t^{n-j}\in H^{0}(S,\mathcal{O}_{S})[t], (6.40)

where μ˘i:=μitr(μi)nidσi()\breve{\mu}_{i}^{\nabla}:=\mu_{i}^{\nabla}-\frac{\mathrm{tr}(\mu_{i}^{\nabla})}{n}\cdot\mathrm{id}_{\sigma_{i}^{*}(\mathcal{F})}, and ϱi()\varrho_{i}(\mathscr{E}^{\spadesuit}) does not depend on the choice of \mathscr{F}^{\heartsuit}. We refer to ϱi()\varrho_{i}(\mathscr{E}^{\spadesuit}) as the radius of \nabla at σi\sigma_{i} (cf.  [Wak8, Definition 4.43]). It follows from the various definitions involved that if \mathscr{E}^{\spadesuit} is dormant, then the equality ρi()=ϱi()\rho_{i}(\mathscr{E}^{\spadesuit})=\varrho_{i}(\mathscr{E}^{\spadesuit}) holds via the injection (6.37).

Moreover, for ρ(𝔖n\(/pL)×n/Δ)×r\rho\in(\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta)^{\times r} (where ρ:=\rho:=\emptyset if r=0r=0), we denote by 𝒪p,ρ\mathcal{O}p_{\spadesuit,\rho} the subfunctor of 𝒪p\mathcal{O}p_{\spadesuit} classifying PGLn\mathrm{PGL}_{n}-opers of radii ρ\rho. Then, it follows from an argument similar to the arguments in  [Wak8, §§ 4.7.5-4.7.6 and § 4.11.1] that 𝒪p,ρ\mathcal{O}p_{\spadesuit,\rho} admits a structure of f(𝒱Θ(i=1rσi))f_{*}(\mathcal{V}_{\varTheta}(-\sum_{i=1}^{r}\sigma_{i}))-torsor (cf. (5.72) for the definition of 𝒱Θ\mathcal{V}_{\varTheta}), where the direct image f(𝒱Θ(i=1rσi))f_{*}(\mathcal{V}_{\varTheta}(-\sum_{i=1}^{r}\sigma_{i})) forms a vector bundle on SS of rank (n21)(g1)+(n2n)r2(n^{2}-1)(g-1)+\frac{(n^{2}-n)r}{2} (cf.  [Wak8, Lemma 4.67]).

Write R:=/p+1R:=\mathbb{Z}/p^{\ell+1}\mathbb{Z}. Given an rr-tuple ρ:=(ρ1,,ρr)(𝔖n\(/pL)×n/Δ)×r\rho:=(\rho_{1},\cdots,\rho_{r})\in(\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta)^{\times r} (where ρ:=\rho:=\emptyset if r=0r=0), we shall write

𝒪pn,N,ρ,g,r,RZzz,or simply𝒪pρ,g,rZzz,\displaystyle\mathcal{O}p_{n,N,\rho,g,r,R}^{{}^{\mathrm{Zzz...}}},\ \text{or simply}\ \mathcal{O}p_{\rho,g,r}^{{}^{\mathrm{Zzz...}}}, (6.41)

for the full subcategory of 𝒪pn,N,g,r,RZzz\mathcal{O}p_{n,N,g,r,R}^{{}^{\mathrm{Zzz...}}} consisting of pairs (𝒳,)(\mathscr{X},\mathscr{E}^{\spadesuit}) such that the dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper \mathscr{E}^{\spadesuit} is of radii ρ\rho. The projection Πg,r\Pi_{g,r} restricts to a morphism

Πn,N,ρ,g,r,𝔽p(or simplyΠρ,g,r):𝒪pZzzρ,g,r¯g,r.\displaystyle\Pi_{n,N,\rho,g,r,\mathbb{F}_{p}}\left(\text{or simply}\ \Pi_{\rho,g,r}\right):\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{\rho,g,r}\rightarrow\overline{\mathcal{M}}_{g,r}. (6.42)

It follows from Proposition 6.3.5 that 𝒪pρ,g,rZzz\mathcal{O}p_{\rho,g,r}^{{}^{\mathrm{Zzz...}}} is empty unless ρΞn,L×r\rho\in\Xi_{n,L}^{\times r}, and that 𝒪pg,rZzz\mathcal{O}p_{g,r}^{{}^{\mathrm{Zzz...}}}\! and Πg,r\Pi_{g,r} decompose as the disjoint unions

𝒪pg,rZzz=ρΞn,L×r𝒪pρ,g,rZzzandΠg,r=ρΞn,L×rΠρ,g,r,\displaystyle\mathcal{O}p_{g,r}^{{}^{\mathrm{Zzz...}}}=\coprod_{\rho\in\Xi_{n,L}^{\times r}}\mathcal{O}p_{\rho,g,r}^{{}^{\mathrm{Zzz...}}}\hskip 14.22636pt\text{and}\hskip 14.22636pt\Pi_{g,r}=\coprod_{\rho\in\Xi_{n,L}^{\times r}}\Pi_{\rho,g,r}, (6.43)

respectively, where Ξn,L×r:={}\Xi_{n,L}^{\times r}:=\{\emptyset\} if r=0r=0.

By Proposition 4.5.2, (i), the functor (){{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!(-) (cf. (5.46)) restricts to a functor

():𝒪pn,1,ρ,g,r,/pNZzz𝒪pn,N,ρ,g,r,𝔽pZzz.\displaystyle{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!(-):\mathcal{O}p_{n,1,\rho,g,r,\mathbb{Z}/p^{N}\mathbb{Z}}^{{}^{\mathrm{Zzz...}}}\rightarrow\mathcal{O}p_{n,N,\rho,g,r,\mathbb{F}_{p}}^{{}^{\mathrm{Zzz...}}}. (6.44)

That is to say, a dormant PGLn(1)\mathrm{PGL}_{n}^{(1)}-oper on a pointed stable curve classified by ¯g,r,/pN\overline{\mathcal{M}}_{g,r,\mathbb{Z}/p^{N}\mathbb{Z}} is of radii ρ\rho if and only if its diagonal reduction is of radii ρ\rho (cf. Definition 5.5.6).

Theorem 6.3.7.

Suppose that =0\ell=0. Then, for each ρΞn,L×r\rho\in\Xi_{n,L}^{\times r}, the category 𝒪pρ,g,rZzz\mathcal{O}p_{\rho,g,r}^{{}^{\mathrm{Zzz...}}} may be represented by a (possibly empty) proper Deligne-Mumford stack over 𝔽p\mathbb{F}_{p}, and the projection Πρ,g,r\Pi_{\rho,g,r} is finite.

Proof.

The assertion follows from the decompositions displayed in (6.43) together with Theorem 5.5.5 and Corollary 5.6.2. ∎

6.4. Gluing dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers

In this subsection, we shall discuss a gluing procedure for dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers by means of clutching data.

Given each d:=(d1,,dn)(/pL)×nd:=(d_{1},\cdots,d_{n})\in(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}, we write d:=(d1,,dn)d^{\veebar}:=(-d_{1},\cdots,-d_{n}). The assignment ddd\mapsto d^{\veebar} induces a well-defined involution

():𝔖n\(/pL)×n/Δ𝔖n\(/pL)×n/Δ\displaystyle(-)^{\veebar}:\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta (6.45)

on the set 𝔖n\(/pL)×n/Δ\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta. Also, for each ρ:=(ρ1,,ρr)(𝔖n\(/pL)×n/Δ)×r\rho:=(\rho_{1},\cdots,\rho_{r})\in(\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times n}/\Delta)^{\times r}, we set ρ:=(ρ1,,ρr)\rho^{\veebar}:=(\rho_{1}^{\veebar},\cdots,\rho_{r}^{\veebar}). Note that ()(-)^{\veebar} restricts to an involution on Ξn,L\Xi_{n,L} (hence also on Ξn,L×r\Xi_{n,L}^{\times r}).

Let 𝔾\mathbb{G} and 𝒳j\mathscr{X}_{j} (j=1,,Jj=1,\cdots,J) be as in § 6.2.

Definition 6.4.1.

A set of 𝔾\mathbb{G}-Ξn,L\Xi_{n,L}-radii is an ordered set

ρ𝔾:={ρj}j=1J,\displaystyle\rho_{\mathbb{G}}:=\{\rho^{j}\}_{j=1}^{J}, (6.46)

where each ρj:=(ρji)i=1rj\rho^{j}:=(\rho^{j}_{i})_{i=1}^{r_{j}} is an element of Ξn,L×rj\Xi_{n,L}^{\times r_{j}} such that for every closed edge {b,b}Ecl\{b,b^{\prime}\}\in E^{\mathrm{cl}} of G{{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G with ζ(b)=vj\zeta(b)=v_{j}, ζ(b)=vj\zeta(b^{\prime})=v_{j^{\prime}} (for some jj, j{1,,J}j^{\prime}\in\{1,\cdots,J\}), the equality ρjλj(b)=(ρjλj(b))\rho^{j}_{\lambda_{j}(b)}=(\rho^{j^{\prime}}_{\lambda_{j^{\prime}}(b^{\prime})})^{\veebar} holds.

Definition 6.4.2.
  • (i)

    A dormant 𝔾\mathbb{G}-PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on 𝒳\mathscr{X} is a collection

    𝔾:=(B,{ϕj}j=1J),\displaystyle\mathscr{E}_{\mathbb{G}}^{\spadesuit}:=(\mathcal{E}_{B},\{\phi_{j}\}_{j=1}^{J}), (6.47)

    where B\mathcal{E}_{B} denotes a BB-bundle on XX and each ϕj\phi_{j} (j=1,,Jj=1,\cdots,J) denotes an (N1)(N-1)-PD stratification on (B×BPGLn)j(:=B,j×BPGLn)/Xjlog/Sjlog(\mathcal{E}_{B}\times^{B}\mathrm{PGL}_{n})_{j}\left(:=\mathcal{E}_{B,j}\times^{B}\mathrm{PGL}_{n}\right)/X_{j}^{\mathrm{log}}/S_{j}^{\mathrm{log}}, satisfying the following conditions:

    • For each j=1,,Jj=1,\cdots,J, the pair 𝔾,j:=(B,j,ϕj)\mathscr{E}^{\spadesuit}_{\mathbb{G},j}:=(\mathcal{E}_{B,j},\phi_{j}) forms a dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on 𝒳j\mathscr{X}_{j}.

    • For each closed edge {b,b}Ecl\{b,b^{\prime}\}\in E^{\mathrm{cl}} of G{{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G with ζ(b)=vj\zeta(b)=v_{j}, ζ(b)=vj\zeta(b^{\prime})=v_{j^{\prime}} (for some j,j{1,,J}j,j^{\prime}\in\{1,\cdots,J\}), the equality ρλj(b)(𝔾,j)=(ρλj(b)(𝔾,j))\rho_{\lambda_{j}(b)}(\mathscr{E}^{\spadesuit}_{\mathbb{G},j})=(\rho_{\lambda_{j^{\prime}}(b^{\prime})}(\mathscr{E}^{\spadesuit}_{\mathbb{G},j^{\prime}}))^{\veebar} holds.

  • (ii)

    Let ,𝔾:=(,B,{ϕ,j}j=1J)\mathscr{E}_{\circ,\mathbb{G}}^{\spadesuit}:=(\mathcal{E}_{\circ,B},\{\phi_{\circ,j}\}_{j=1}^{J}) and ,𝔾:=(,B,{ϕ,j}j=1J)\mathscr{E}_{\bullet,\mathbb{G}}^{\spadesuit}:=(\mathcal{E}_{\bullet,B},\{\phi_{\bullet,j}\}_{j=1}^{J}) be dormant 𝔾\mathbb{G}-PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers on 𝒳\mathscr{X}. An isomorphism of dormant 𝔾\mathbb{G}-PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers from ,𝔾\mathscr{E}_{\circ,\mathbb{G}}^{\spadesuit} to ,𝔾\mathscr{E}_{\bullet,\mathbb{G}}^{\spadesuit} is defined as an isomorphism ,B,B\mathcal{E}_{\circ,B}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{E}_{\bullet,B} of BB-bundles such that, for every j=1,,Jj=1,\cdots,J, the induced isomorphism ,B,j,B,j\mathcal{E}_{\circ,B,j}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{E}_{\bullet,B,j} defines an isomorphism of PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers ,𝔾,j,𝔾,j\mathscr{E}^{\spadesuit}_{\circ,\mathbb{G},j}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathscr{E}_{\bullet,\mathbb{G},j}^{\spadesuit}.

Definition 6.4.3.

Let ρ𝔾:={ρj}j=1n\rho_{\mathbb{G}}:=\{\rho^{j}\}_{j=1}^{n} be a set of 𝔾\mathbb{G}-Ξn,L\Xi_{n,L}-radii and 𝔾:=(B,{ϕj}j=1J)\mathscr{E}_{\mathbb{G}}^{\spadesuit}:=(\mathcal{E}_{B},\{\phi_{j}\}_{j=1}^{J}) a dormant 𝔾\mathbb{G}-PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on 𝒳\mathscr{X}. Then, we shall say that 𝔾\mathscr{E}_{\mathbb{G}}^{\spadesuit} is of radii ρ𝔾\rho_{\mathbb{G}} if for any j=1,,Jj=1,\cdots,J, the dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper 𝔾,j\mathscr{E}^{\spadesuit}_{\mathbb{G},j} is of radii ρj\rho^{j}.

Proposition 6.4.4.
  • (i)

    Any dormant 𝔾\mathbb{G}-PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on 𝒳\mathscr{X} does not have nontrivial automorphisms.

  • (ii)

    Suppose that N=1N=1, and we set N:=+1N^{\prime}:=\ell+1. Denote by 𝒳0\mathscr{X}_{0} the reduction of 𝒳\mathscr{X} modulo pp. Also, let 𝔾:=(B,{ϕj}j)\mathscr{E}_{\mathbb{G}}^{\spadesuit}:=(\mathcal{E}_{B},\{\phi_{j}\}_{j}) be a dormant 𝔾\mathbb{G}-PGLn(1)\mathrm{PGL}_{n}^{(1)}-oper on 𝒳\mathscr{X}. Then, the collection of data

    𝔾:=(B,0,{ϕj}j=1J)\displaystyle{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{E}_{\mathbb{G}}^{\spadesuit}:=(\mathcal{E}_{B,0},\{{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\phi_{j}\}_{j=1}^{J}) (6.48)

    forms a dormant 𝔾\mathbb{G}-PGLn(N)\mathrm{PGL}_{n}^{(N^{\prime})}-oper on 𝒳0\mathscr{X}_{0}. (We shall refer to 𝔾{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{E}_{\mathbb{G}}^{\spadesuit} as the diagonal reduction of 𝔾\mathscr{E}_{\mathbb{G}}^{\spadesuit}.) If, moreover, ρ𝔾\rho_{\mathbb{G}} is a set of 𝔾\mathbb{G}-Ξn,N\Xi_{n,N}-radii, then \mathscr{E}^{\spadesuit} is of radii ρ𝔾\rho_{\mathbb{G}} if and only if 𝔾{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{E}_{\mathbb{G}}^{\spadesuit} is of radii ρ𝔾\rho_{\mathbb{G}}.

Proof.

Assertion (i) follows from Proposition 5.2.4. Also, assertion (ii) follows from the various definitions involved and the functor (){{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!(-) (cf. (6.44)). ∎

Proposition 6.4.5.
  • (i)

    There exists an equivalence of categories

    (the groupoid of dormantPGLn(N)-opers on 𝒳)(the groupoid of dormant𝔾-PGLn(N)-opers on 𝒳).\displaystyle\begin{pmatrix}\text{the groupoid of dormant}\\ \text{$\mathrm{PGL}_{n}^{(N)}$-opers on $\mathscr{X}$}\end{pmatrix}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\begin{pmatrix}\text{the groupoid of dormant}\\ \text{$\mathbb{G}$-$\mathrm{PGL}_{n}^{(N)}$-opers on $\mathscr{X}$}\end{pmatrix}. (6.49)

    Moreover, this equivalence commutes with the formation of diagonal reductions.

  • (ii)

    Let ρ𝔾:={ρj}j=1J\rho_{\mathbb{G}}:=\{\rho^{j}\}_{j=1}^{J} be a set of 𝔾\mathbb{G}-Ξn,L\Xi_{n,L}-radii. Then, there exists an equivalence of categories

    (the groupoid of dormant𝔾-PGLn(N)-opers of radii ρ𝔾 on 𝒳)j=1J(the groupoid of dormantPGLn(N)-opers of radii ρj on 𝒳j).\displaystyle\begin{pmatrix}\text{the groupoid of dormant}\\ \text{$\mathbb{G}$-$\mathrm{PGL}_{n}^{(N)}$-opers of radii $\rho_{\mathbb{G}}$ on $\mathscr{X}$}\end{pmatrix}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\prod_{j=1}^{J}\begin{pmatrix}\text{the groupoid of dormant}\\ \text{$\mathrm{PGL}_{n}^{(N)}$-opers of radii $\rho^{j}$ on $\mathscr{X}_{j}$}\end{pmatrix}. (6.50)

    Moreover, this equivalence commutes with the formation of diagonal reductions.

Proof.

First, we shall prove assertion (i). Choose a dormant n(N)n^{(N)}-theta characteristic ϑ:=(Θ,ϑ)\vartheta:=(\varTheta,\nabla_{\vartheta}) of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. Also, let :=(B,ϕ)\mathscr{E}^{\spadesuit}:=(\mathcal{E}_{B},\phi) be a dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on 𝒳\mathscr{X}. By Theorem 5.5.1, \mathscr{E}^{\spadesuit} defines a dormant (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta)-oper \nabla^{\diamondsuit} on 𝒳\mathscr{X} via the isomorphism Λ,ϑZzz\Lambda_{\diamondsuit\Rightarrow\spadesuit,\vartheta}^{{}^{\mathrm{Zzz...}}}. It follows from Proposition 6.2.6 that the collection {|j}j=1J\{\nabla^{\diamondsuit}|_{j}\}_{j=1}^{J} (cf. (6.21)) forms a 𝔾\mathbb{G}-𝒟(N1)\mathcal{D}^{(N-1)}-module structure on Θ\mathcal{F}_{\varTheta}. For each j=1,,Jj=1,\cdots,J, denote by B,j\mathcal{E}_{B,j} (resp., j\mathcal{E}_{j}) the restriction of B\mathcal{E}_{B} (resp., :=B×BPGLn\mathcal{E}:=\mathcal{E}_{B}\times^{B}\mathrm{PGL}_{n}) to XjX_{j}, and by ϕj\phi_{j} the (N1)(N-1)-PD stratification on j/Xjlog/Sjlog\mathcal{E}_{j}/X_{j}^{\mathrm{log}}/S_{j}^{\mathrm{log}} induced from |j\nabla^{\diamondsuit}|_{j} via projectivization. Then, the pair 𝔾,j:=(B,j,ϕj)\mathscr{E}^{\spadesuit}_{\mathbb{G},j}:=(\mathcal{E}_{B,j},\phi_{j}) forms a dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on 𝒳j\mathscr{X}_{j}. Let {b,b}Ecl\{b,b^{\prime}\}\in E^{\mathrm{cl}} be a closed edge of G{{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G with ζ(b)=vj\zeta(b)=v_{j}, ζ(b)=vj\zeta(b^{\prime})=v_{j^{\prime}} (for some j,j{1,,J}j,j^{\prime}\in\{1,\cdots,J\}), and write i:=λj(b)i:=\lambda_{j}(b), i:=λj(b)i^{\prime}:=\lambda_{j^{\prime}}(b^{\prime}). Then, Proposition 4.3.2 implies the equality

ei(|j)=ei(|j)(ρi(𝔾,j)=(ρi(𝔾,j))).\displaystyle e_{i}(\nabla^{\diamondsuit}|_{j})=e_{i^{\prime}}(\nabla^{\diamondsuit}|_{j^{\prime}})^{\veebar}\ \left(\Longrightarrow\rho_{i}(\mathscr{E}_{\mathbb{G},j}^{\spadesuit})=(\rho_{i^{\prime}}(\mathscr{E}_{\mathbb{G},j^{\prime}}^{\spadesuit}))^{\veebar}\right). (6.51)

That is to say, the collection 𝔾:=(B,{ϕj}j=1J)\mathscr{E}^{\spadesuit}_{\emptyset\Rightarrow\mathbb{G}}:=(\mathcal{E}_{B},\{\phi_{j}\}_{j=1}^{J}) specifies a dormant 𝔾\mathbb{G}-PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on 𝒳\mathscr{X}. The resulting assignment 𝔾\mathscr{E}^{\spadesuit}\mapsto\mathscr{E}^{\spadesuit}_{\emptyset\Rightarrow\mathbb{G}} defines a functor of the form (6.49). Also, this functor is fully faithful by Propositions 5.2.4 and 6.4.4, (i).

In what follows, we shall prove the essential surjectivity of this functor. To this end, we are always free to replace SS with its covering in the étale topology because (6.49) is fully faithful. Let 𝔾:=(B,{ϕj}j=1J)\mathscr{E}_{\mathbb{G}}^{\spadesuit}:=(\mathcal{E}_{B},\{\phi_{j}\}_{j=1}^{J}) be a dormant 𝔾\mathbb{G}-PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on 𝒳\mathscr{X}. Note that, for each j=1,,Jj=1,\cdots,J, the pair of restrictions ϑj:=(Θj,ϑ|j)\vartheta_{j}:=(\varTheta_{j},\nabla_{\vartheta}|_{j}), where Θj:=Clutj(Θ)\varTheta_{j}:=\mathrm{Clut}_{j}^{*}(\varTheta), forms a dormant n(N)n^{(N)}-theta characteristic of Xjlog/SjlogX_{j}^{\mathrm{log}}/S_{j}^{\mathrm{log}}. Denote by j\nabla_{j}^{\diamondsuit} (j=1,,Jj=1,\cdots,J) the dormant (GLn(N),ϑj)(\mathrm{GL}_{n}^{(N)},\vartheta_{j})-oper on 𝒳j\mathscr{X}_{j} corresponding to j:=(B,j,ϕj)\mathscr{E}_{j}^{\spadesuit}:=(\mathcal{E}_{B,j},\phi_{j}). For each i=1,,rji=1,\cdots,r_{j}, let us fix an identification of UU_{\oslash} (cf. (4.1)) with the formal neighborhood U^j,i\widehat{U}_{j,i} of Im(σj,i)\mathrm{Im}(\sigma_{j,i}) in XjX_{j}. (We can choose such an identification thanks to the italicized fact described above.) Also, we shall fix an isomorphism of 𝒟(N1)\mathcal{D}_{\oslash}^{(N-1)}-modules

hj,i:(Θj,j)|U^j,is=1n𝒪,di,sj(N1),\displaystyle h_{j,i}:(\mathcal{F}_{\varTheta_{j}},\nabla^{\diamondsuit}_{j})|_{\widehat{U}_{j,i}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\bigoplus_{s=1}^{n}\mathscr{O}_{\oslash,d_{i,s}^{j}}^{(N-1)}, (6.52)

where [di,1j,,di,nj][d_{i,1}^{j},\cdots,d_{i,n}^{j}] are the exponent of j\nabla^{\diamondsuit\Rightarrow\heartsuit}_{j} at σj,i\sigma_{j,i}. This isomorphism restricts to an isomorphism σ(hj,i):σj,i(Θj)𝒪Sn(=σ(𝒪n))\sigma_{\oslash}^{*}(h_{j,i}):\sigma_{j,i}^{*}(\mathcal{F}_{\varTheta_{j}})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{O}_{S}^{\oplus n}\left(=\sigma_{\oslash}^{*}(\mathcal{O}_{\oslash}^{\oplus n})\right). Here, let us take a closed edge {b,b}Ecl\{b,b^{\prime}\}\in E^{\mathrm{cl}} of G{{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G with ζ(b)=vj\zeta(b)=v_{j}, ζ(b)=vj\zeta(b^{\prime})=v_{j^{\prime}} (for some j,j{1,,J}j,j^{\prime}\in\{1,\cdots,J\}). Then, the equalities ei(ϑ|j)=ei(ϑ|j)e_{i}(\nabla_{\vartheta}|_{j})=-e_{i^{\prime}}(\nabla_{\vartheta}|_{j^{\prime}}) and ρi(j)=ρi(j)\rho_{i}(\mathscr{E}^{\spadesuit}_{j})=\rho_{i^{\prime}}(\mathscr{E}^{\spadesuit}_{j^{\prime}})^{\veebar} hold (cf. Propositions 6.2.6, (i), and 6.4.4). It follows from Proposition 6.3.4 that, after possibly rearranging the indexes of elements of the ei(j)e_{i}(\nabla^{\diamondsuit}_{j})’s, we obtain the equality dji,s=di,sjd^{j}_{i,s}=-d_{i^{\prime},s}^{j^{\prime}} for every s=1,,ns=1,\cdots,n. In particular, the equality

μi(j)sw=μi(j)\displaystyle\mu_{i}(\nabla^{\diamondsuit}_{j})\circ\mathrm{sw}=\mu_{i^{\prime}}(\nabla^{\diamondsuit}_{j^{\prime}}) (6.53)

holds under the identifications given by hj,ih_{j,i} and hj,ih_{j^{\prime},i^{\prime}} (cf. (4.31)). Also, according to Proposition 6.1.3, (i), we may assume, after possibly composing hj,ih_{j,i} with an automorphism of s=1n𝒪,dji,s(N1)\bigoplus_{s=1}^{n}\mathscr{O}_{\oslash,d^{j}_{i,s}}^{(N-1)} determined by an element of GLn(𝒪S)\mathrm{GL}_{n}(\mathcal{O}_{S}), that the equality σ(hj,i)(Θjn1)=σ(hj,i)(Θjn1)\sigma_{\oslash}^{*}(h_{j,i})(\mathcal{F}_{\varTheta_{j}}^{n-1})=\sigma_{\oslash}^{*}(h_{j^{\prime},i^{\prime}})(\mathcal{F}_{\varTheta_{j^{\prime}}}^{n-1}) holds in 𝒪Sn\mathcal{O}_{S}^{\oplus n}. By the definition of a GLn(N)\mathrm{GL}_{n}^{(N)}-oper, this equality implies

σ(hj,i)(Θjs)=σ(hj,i)(Θjs)\displaystyle\sigma_{\oslash}^{*}(h_{j,i})(\mathcal{F}_{\varTheta_{j}}^{s})=\sigma_{\oslash}^{*}(h_{j^{\prime},i^{\prime}})(\mathcal{F}_{\varTheta_{j^{\prime}}}^{s}) (6.54)

for every s=0,,ns=0,\cdots,n. By (6.53) and (6.54), the collections (Θj,j,{Θjs}s=0n)(\mathcal{F}_{\varTheta_{j}},\nabla_{j}^{\diamondsuit},\{\mathcal{F}_{\varTheta_{j}}^{s}\}_{s=0}^{n}) (j=1,,Jj=1,\cdots,J) may be glued together to obtain a dormant GLn(N)\mathrm{GL}_{n}^{(N)}-oper \mathscr{F}^{\heartsuit} (cf. Proposition 4.2.2, (ii)). If \mathscr{E}^{\spadesuit} denotes the dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper induced from \mathscr{F}^{\heartsuit}, then the dormant 𝔾\mathbb{G}-PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper 𝔾\mathscr{E}^{\spadesuit}_{\emptyset\Rightarrow\mathbb{G}} given by its image via (6.49) is isomorphic to \mathscr{E}^{\spadesuit} by construction. This means that the functor (6.49) is essentially surjective, and hence it is an equivalence of categories. The second assertion of (i) follows from the definitions of (6.49) and (){{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!(-).

Next, we shall prove assertion (ii). The assignment 𝔾:=(B,{ϕj}j=1J)(𝔾,j)j=1J\mathscr{E}^{\spadesuit}_{\mathbb{G}}:=(\mathcal{E}_{B},\{\phi_{j}\}_{j=1}^{J})\mapsto(\mathscr{E}_{\mathbb{G},j}^{\spadesuit})_{j=1}^{J} (where 𝔾,j:=(B,j,ϕj)\mathscr{E}^{\spadesuit}_{\mathbb{G},j}:=(\mathcal{E}_{B,j},\phi_{j})) defines a functor of the form (6.50). This functor is immediately verified to commute with the formation of diagonal reductions. Also, it is fully faithful because of Propositions 5.2.4 and 6.4.4, (i), so the remaining portion is the essential surjectivity.

Suppose that we are given a collection (j)j=1J(\mathscr{E}^{\spadesuit}_{j})_{j=1}^{J}, where each j:=(B,j,ϕj)\mathscr{E}^{\spadesuit}_{j}:=(\mathcal{E}_{B,j},\phi_{j}) (j=1,,Jj=1,\cdots,J) is a dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper of radii ρj\rho^{j} on 𝒳j\mathscr{X}_{j}. Denote by B{{}^{\dagger}}\mathcal{E}_{B} the BB-bundle defined in  [Wak8, Eq. (605)]. If we write (B)j({{}^{\dagger}}\mathcal{E}_{B})_{j} (j=1,,Jj=1,\cdots,J) for the restriction of B{{}^{\dagger}}\mathcal{E}_{B} to XjX_{j}, then there exists an isomorphism of BB-bundles B,j(B)j\mathcal{E}_{B,j}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}({{}^{\dagger}}\mathcal{E}_{B})_{j} for every jj (cf.  [Wak8, Proposition 4.55]). We obtain an (N1)(N-1)-PD stratification ϕj{{}^{\dagger}}\phi_{j} on (B)j/Xjlog/Sjlog({{}^{\dagger}}\mathcal{E}_{B})_{j}/X_{j}^{\mathrm{log}}/S_{j}^{\mathrm{log}} corresponding to ϕj\phi_{j} via this isomorphism. The resulting collection (B,{ϕj}j=1J)({{}^{\dagger}}\mathcal{E}_{B},\{{{}^{\dagger}}\phi_{j}\}_{j=1}^{J}) forms a dormant 𝔾\mathbb{G}-PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper of radii ρ𝔾\rho_{\mathbb{G}} on 𝒳\mathscr{X} which is mapped to (j)j=1J(\mathscr{E}_{j}^{\spadesuit})_{j=1}^{J} via (6.50). This proves the essential surjectivity of (6.50), and hence we have finished the proof of assertion (ii). ∎

Remark 6.4.6 (The choice of an n(N)n^{(N)}-theta characteristic).

Despite the fact that a specific n(N)n^{(N)}-theta characteristic ϑ\vartheta is fixed in the proof of assertion (i), the resulting functor (6.49) does not depend on the choice of ϑ\vartheta.

Just as in the discussion of  [Wak8, § 7.1.3], we obtain the morphism between moduli stacks

Clut𝔾:j=1J¯gj,rj¯g,r,\displaystyle\mathrm{Clut}_{\mathbb{G}}:\prod_{j=1}^{J}\overline{\mathcal{M}}_{g_{j},r_{j}}\rightarrow\overline{\mathcal{M}}_{g,r}, (6.55)

given by assigning {𝒳j}j=1n𝒳\{\mathscr{X}_{j}\}_{j=1}^{n}\mapsto\mathscr{X}, where the product “\prod” in the domain is taken over RR.

Let ρ𝔾:={ρj}j=1J\rho_{\mathbb{G}}:=\{\rho^{j}\}_{j=1}^{J} be a set of 𝔾\mathbb{G}-Ξn,L\Xi_{n,L}-radii and 𝔾\mathscr{E}^{\spadesuit}_{\mathbb{G}} be a dormant 𝔾\mathbb{G}-PGLn\mathrm{PGL}_{n}-oper on 𝒳\mathscr{X} of radii ρ𝔾\rho_{\mathbb{G}}. By the equivalence of categories (6.49) resulting from Proposition 6.4.5, (i), 𝔾\mathscr{E}^{\spadesuit}_{\mathbb{G}} corresponds to a dormant PGLn\mathrm{PGL}_{n}-oper 𝔾\mathscr{E}_{\mathbb{G}\Rightarrow\emptyset}^{\spadesuit} on 𝒳\mathscr{X}. The radii of 𝔾\mathscr{E}_{\mathbb{G}\Rightarrow\emptyset}^{\spadesuit} can be determined by ρj\rho^{j} (j=1,,Jj=1,\cdots,J) in accordance with the clutching data 𝔾\mathbb{G} (cf. Remark 6.2.4); we denote the resulting radii of 𝔾\mathscr{E}_{\mathbb{G}\Rightarrow\emptyset}^{\spadesuit} by

ρ𝔾Ξn,L×r.\displaystyle\rho_{\mathbb{G}\Rightarrow\emptyset}\in\Xi_{n,L}^{\times r}. (6.56)

On the other hand, it follows from Proposition 6.4.5, (ii), that any point of j=1J𝒪pρj,gj,rjZzz\prod_{j=1}^{J}\mathcal{O}p_{\rho^{j},g_{j},r_{j}}^{{}^{\mathrm{Zzz...}}} classifies a unique (up to isomorphism) dormant 𝔾\mathbb{G}-PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper of radii ρ𝔾\rho_{\mathbb{G}}. Hence, the assignment ({𝒳j}j=1J,𝔾)(𝒳,𝔾)(\{\mathscr{X}_{j}\}_{j=1}^{J},\mathscr{E}^{\spadesuit}_{\mathbb{G}})\mapsto(\mathscr{X},\mathscr{E}_{\mathbb{G}\Rightarrow\emptyset}^{\spadesuit}) determines a well-defined morphism

Clut𝔾,ρ𝔾:j=1J𝒪pρj,gj,rjZzz𝒪pρ𝔾,g,rZzz.\displaystyle\mathrm{Clut}_{\mathbb{G},\rho_{\mathbb{G}}}:\prod_{j=1}^{J}\mathcal{O}p_{\rho^{j},g_{j},r_{j}}^{{}^{\mathrm{Zzz...}}}\rightarrow\mathcal{O}p_{\rho_{\mathbb{G}\Rightarrow\emptyset},g,r}^{{}^{\mathrm{Zzz...}}}. (6.57)
Theorem 6.4.7.

Let us keep the above notation. Also, let ρ\rho be an element of Ξn,L×r\Xi_{n,L}^{\times r} (where ρ:=\rho:=\emptyset if r=0r=0). Then, the following commutative square diagram is Cartesian:

(6.62)

where the products “\prod” are taken over RR and the disjoint union on the upper-left corner runs over the sets of 𝔾\mathbb{G}-Ξn,L\Xi_{n,L}-radii ρ𝔾\rho_{\mathbb{G}} with ρ𝔾=ρ\rho_{\mathbb{G}\Rightarrow\emptyset}=\rho. Finally, this diagram is compatible with the functors (){{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!(-) (cf. (6.44)) in a natural sense.

Proof.

The assertion follows from Proposition 6.4.5, (i) and (ii). ∎

6.5. Nonemptiness of the moduli space

Let SS be as before. Denote by \mathbb{P} the projective line over SS, i.e., :=𝒫roj(𝒪S[x,y])\mathbb{P}:=\mathcal{P}roj(\mathcal{O}_{S}[x,y]). Also, denote by [0][0], [1][1], and [][\infty] the SS-rational points of \mathbb{P} determined by the values 0, 11, and \infty, respectively. After ordering the three points [0],[1],[][0],[1],[\infty], we obtain a unique (up to isomorphism) 33-pointed stable curve

𝒫:=(/S,{[0],[1],[]})\displaystyle\mathscr{P}:=(\mathbb{P}/S,\{[0],[1],[\infty]\}) (6.63)

of genus 0 over SS. In particular, we obtain a log curve log\mathbb{P}^{\mathrm{log}} over S(=Slog)S\left(=S^{\mathrm{log}}\right).

We shall write :=𝒪(1)𝒪([0]+[1]+[])\mathcal{L}:=\mathcal{O}_{\mathbb{P}}(-1)\otimes\mathcal{O}_{\mathbb{P}}([0]+[1]+[\infty]), and write κ\kappa for the 𝒪\mathcal{O}_{\mathbb{P}}-linear injection 𝒪(1)𝒪2\mathcal{O}_{\mathbb{P}}(-1)\hookrightarrow\mathcal{O}_{\mathbb{P}}^{\oplus 2} given by w(wx,wy)w\mapsto(wx,wy) for each local section w𝒪(1)w\in\mathcal{O}_{\mathbb{P}}(-1). Also, let \mathcal{F} be a vector bundle on \mathbb{P} which makes the following square diagram cocartesian:

(6.68)

The trivial 𝒟(N1)\mathcal{D}^{(N-1)}-module structure (,triv(N1))2(\nabla_{\mathbb{P},\mathrm{triv}}^{(N-1)})^{\oplus 2} on 𝒪2\mathcal{O}_{\mathbb{P}}^{\oplus 2} extends uniquely to a 𝒟(N1)\mathcal{D}^{(N-1)}-module structure (N1)\nabla_{\mathcal{F}}^{(N-1)} on \mathcal{F}.

Note that the 𝒪\mathcal{O}_{\mathbb{P}}-linear composite

(N1)(0)ΩΩ(/)\displaystyle\mathcal{L}\hookrightarrow\mathcal{F}\xrightarrow{\nabla_{\mathcal{F}}^{(N-1)\Rightarrow(0)}}\Omega\otimes\mathcal{F}\twoheadrightarrow\Omega\otimes(\mathcal{F}/\mathcal{L}) (6.69)

is nonzero. Since /S\mathbb{P}/S is a smooth curve and Ω(/)\Omega\otimes(\mathcal{F}/\mathcal{L}) is a line bundle, this composite must be injective. Moreover, the following equalities of relative degrees hold:

deg(Ω(/))=det(Ω)+deg()deg()=1+32=2(=deg()).\displaystyle\mathrm{deg}(\Omega\otimes(\mathcal{F}/\mathcal{L}))=\mathrm{det}(\Omega)+\mathrm{deg}(\mathcal{F})-\mathrm{deg}(\mathcal{L})=1+3-2=2\left(=\mathrm{deg}(\mathcal{L})\right). (6.70)

It follows that (6.69) turns out to be an isomorphism. That is to say, the triple

N,S:=(,(N1),)\displaystyle\mathscr{F}^{\heartsuit}_{N,S}:=(\mathcal{F},\nabla_{\mathcal{F}}^{(N-1)},\mathcal{L}) (6.71)

forms a GL2(N)\mathrm{GL}_{2}^{(N)}-oper on 𝒫\mathscr{P}.

Also, we shall set

N,S:=N,S,\displaystyle\mathscr{E}^{\spadesuit}_{N,S}:=\mathscr{F}^{\heartsuit\Rightarrow\spadesuit}_{N,S}, (6.72)

which defines a PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper on 𝒫\mathscr{P}. Both 0,S\mathscr{F}^{\heartsuit}_{0,S} and 0,S\mathscr{E}^{\spadesuit}_{0,S} are dormant and satisfy

0,S=N,S0,0,S=N,S0.\displaystyle{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{F}^{\heartsuit}_{0,S}=\mathscr{F}^{\heartsuit}_{N,S_{0}},\hskip 28.45274pt{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{E}^{\spadesuit}_{0,S}=\mathscr{E}^{\spadesuit}_{N,S_{0}}. (6.73)

Denote by

ϵ(/pL)×/{±1}\displaystyle\epsilon\in(\mathbb{Z}/p^{L}\mathbb{Z})^{\times}/\{\pm 1\} (6.74)

the element defined as the image of 12(/pL)×\frac{1}{2}\in(\mathbb{Z}/p^{L}\mathbb{Z})^{\times} via the natural quotient /pL(/pL)/{±1}\mathbb{Z}/p^{L}\mathbb{Z}\twoheadrightarrow(\mathbb{Z}/p^{L}\mathbb{Z})/\{\pm 1\}. (By the bijection (6.30), we occasionally regard it as an element of 𝔖2\(/pL)×2/Δ\mathfrak{S}_{2}\backslash(\mathbb{Z}/p^{L}\mathbb{Z})^{\times 2}/\Delta.) The exponent of N,S0\mathscr{F}^{\heartsuit}_{N,S_{0}} at every marked point coincides with the multiset [1,0][1,0] (cf. Proposition 7.1.1 for a more general assertion), so we have ρi(N,S0)=ϵ\rho_{i}(\mathscr{E}^{\spadesuit}_{N,S_{0}})=\epsilon for every i=1,,ri=1,\cdots,r.

Here, we shall make the definition of a totally degenerate curve over a general base space SS (cf., e.g.,  [Wak8, Definition 7.15] for the case where SS is the spectrum of an algebraically closed field).

Definition 6.5.1.

Let 𝒳:=(X/S,{σi}i=1r)\mathscr{X}:=(X/S,\{\sigma_{i}\}_{i=1}^{r}) be an rr-pointed stable curve of genus gg over SS. We say that 𝒳\mathscr{X} is totally degenerate if there exists trivalent clutching data 𝔾:=(G,{λj}j=1J)\mathbb{G}:=({{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G,\{\lambda_{j}\}_{j=1}^{J}) of type (g,r)(g,r) (cf. Definition 6.2.3) satisfying the following conditions:

  • G{{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G coincides with the dual semi-graph of 𝒳\mathscr{X} (cf.  [Wak8, § 7.1.2]);

  • 𝒳\mathscr{X} may be obtained by gluing together JJ copies of the 33-pointed projective line 𝒫\mathscr{P} by means of 𝔾\mathbb{G} in the manner of  [Wak8, § 7.2.1].

  • The ordering of the marked points {σi}i\{\sigma_{i}\}_{i} is compatible with that of elements in BB_{\circledast} defined in the manner of Remark 6.2.4.

(Note that such trivalent clutching data is uniquely determined in a certain sense.) In this situation, we say that 𝔾\mathbb{G} corresponds to 𝒳\mathscr{X}.

Theorem 6.5.2.

Let 𝒳\mathscr{X} be an rr-pointed totally degenerate curve of genus gg over SS. We shall set

ϵ×r:=(ϵ,,ϵ)((/pL)×/{±1})×r,\displaystyle\epsilon^{\times r}:=(\epsilon,\cdots,\epsilon)\in((\mathbb{Z}/p^{L}\mathbb{Z})^{\times}/\{\pm 1\})^{\times r}, (6.75)

where ϵ×r:=\epsilon^{\times r}:=\emptyset if r=0r=0. Then, there exists a dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper on 𝒳\mathscr{X} of radii ϵ×r\epsilon^{\times r}. In particular, the category 𝒪pZzzϵ×r,g,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{\epsilon^{\times r},g,r} (hence also 𝒪pZzzg,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r}) for n=2n=2 is nonempty.

Proof.

Let us take trivalent clutching data corresponding to 𝒳\mathscr{X}. In particular, 𝒳\mathscr{X} may be obtained by gluing together 33-pointed projective lines 𝒳j(𝒫)\mathscr{X}_{j}\left(\cong\mathscr{P}\right) (j=1,,Jj=1,\cdots,J) by means of 𝔾\mathbb{G}. Since ϵ=ϵ\epsilon=\epsilon^{\veebar}, the dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers N,S\mathscr{E}^{\spadesuit}_{N,S} defined on the respective components 𝒳j\mathscr{X}_{j} may be glued together to form a dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper on 𝒳\mathscr{X} (cf. Proposition 6.4.5, (i) and (ii)). The resulting dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper is verified to be of radii ϵ×r\epsilon^{\times r}, so this completes the proof of the assertion. ∎

Next, let SlogS^{\mathrm{log}} and flog:XlogSlogf^{\mathrm{log}}:X^{\mathrm{log}}\rightarrow S^{\mathrm{log}} be as in § 5.2. Also, let us take a GL2(N)\mathrm{GL}_{2}^{(N)}-oper :=(,,{j}j=02)\mathscr{F}^{\heartsuit}:=(\mathcal{F},\nabla,\{\mathcal{F}^{j}\}_{j=0}^{2}) on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. For an integer nn with 1<n<p1<n<p, the (n1)(n-1)-st symmetric product Sn1()S^{n-1}(\mathcal{F}) of \mathcal{F} over 𝒪X\mathcal{O}_{X} forms a rank nn vector bundle. It admits a 𝒟(N1)\mathcal{D}^{(N-1)}-module structure Sn1()S^{n-1}(\nabla) induced naturally by \nabla. Moreover, Sn1()S^{n-1}(\mathcal{F}) is equipped with an nn-step decreasing filtration {Sn1()j}j=0n\{S^{n-1}(\mathcal{F})^{j}\}_{j=0}^{n} induced from {j}j\{\mathcal{F}^{j}\}_{j}; to be precise, we set Sn1()0:=Sn1()S^{n-1}(\mathcal{F})^{0}:=S^{n-1}(\mathcal{F}), Sn1()n:=0S^{n-1}(\mathcal{F})^{n}:=0, and Sn1()jS^{n-1}(\mathcal{F})^{j} (for each j=1,,n1j=1,\cdots,n-1) is defined as the image of (1)j(n1j)(\mathcal{F}^{1})^{\otimes j}\otimes\mathcal{F}^{\otimes(n-1-j)} via the natural quotient (n1)Sn1()\mathcal{F}^{\otimes(n-1)}\twoheadrightarrow S^{n-1}(\mathcal{F}). This filtration satisfies

Sn1()j/Sn1()j+1n1𝒯(n1j)\displaystyle S^{n-1}(\mathcal{F})^{j}/S^{n-1}(\mathcal{F})^{j+1}\cong\mathcal{F}^{n-1}\otimes\mathcal{T}^{\otimes(n-1-j)} (6.76)

for every j=0,,n1j=0,\cdots,n-1. By the assumption n<pn<p, the collection

Sn1():=(Sn1(),Sn1(),{Sn1()j}j=0n)\displaystyle S^{n-1}(\mathscr{F}^{\heartsuit}):=(S^{n-1}(\mathcal{F}),S^{n-1}(\nabla),\{S^{n-1}(\mathcal{F})^{j}\}_{j=0}^{n}) (6.77)

is verified to form a GLn(N)\mathrm{GL}_{n}^{(N)}-oper on Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. If \mathscr{F}^{\heartsuit} is dormant, then so is Sn1()S^{n-1}(\mathscr{F}^{\heartsuit}).

Since the formation of Sn1()S^{n-1}(\mathscr{F}^{\heartsuit}) commutes with base-change over SS-schemes and preserves the equivalence class (cf. Definition 5.3.5), the assignment Sn1()\mathscr{F}^{\heartsuit}\mapsto S^{n-1}(\mathscr{F}^{\heartsuit}) defines a morphism of functors

𝒪p,n=2𝒪p(resp.,𝒪p,n=2Zzz𝒪pZzz),\displaystyle\mathcal{O}p_{\heartsuit,n=2}\rightarrow\mathcal{O}p_{\heartsuit}\ \left(\text{resp.,}\ \mathcal{O}p_{\heartsuit,n=2}^{{}^{\mathrm{Zzz...}}}\rightarrow\mathcal{O}p_{\heartsuit}^{{}^{\mathrm{Zzz...}}}\right), (6.78)

where 𝒪p,n=2\mathcal{O}p_{\heartsuit,n=2} (resp., 𝒪p,n=2Zzz\mathcal{O}p_{\heartsuit,n=2}^{{}^{\mathrm{Zzz...}}}) denotes the functor 𝒪p\mathcal{O}p_{\heartsuit} (resp., 𝒪pZzz\mathcal{O}p_{\heartsuit}^{{}^{\mathrm{Zzz...}}}) in the case of n=2n=2. By using this morphism, we obtain the following assertion.

Proposition 6.5.3.
  • (i)

    Suppose that SS is an 𝔽p\mathbb{F}_{p}-scheme (i.e., =0\ell=0) and that Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} arises from an unpointed, geometrically connected, proper, and smooth curve of genus g>1g>1. Then, the fiber of 𝒪pZzz\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{\spadesuit}\! over each geometric point of SS is nonempty.

  • (ii)

    Suppose that Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}} arises from an unpointed totally degenerate curve of genus g>1g>1. Then, the fiber of 𝒪pZzz\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{\spadesuit}\! over each SS-scheme in Ob(𝒮chRflat/S)\mathrm{Ob}(\mathcal{S}ch_{R}^{\mathrm{flat}}/S) is nonempty.

Proof.

First, we shall prove assertion (i). To this end, we may assume, without loss of generality, that S=Spec(k)S=\mathrm{Spec}(k) for an algebraically closed field kk over 𝔽p\mathbb{F}_{p}. Under this assumption, 𝒪p,n=2Zzz\mathcal{O}p_{\heartsuit,n=2}^{{}^{\mathrm{Zzz...}}} is known to be nonempty by  [Wak6, Theorem 7.5.2]. Hence, by using the morphism (6.78), we see that 𝒪pZzz\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{\heartsuit}\!\neq\emptyset, which implies 𝒪pZzz\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{\spadesuit}\!\neq\emptyset via the isomorphism ΛZzz\Lambda_{\diamondsuit\Rightarrow\spadesuit}^{{}^{\mathrm{Zzz...}}} (cf. Theorem 5.5.1).

Also, assertion (ii) is a direct consequence of Theorem 6.5.2. ∎

Corollary 6.5.4.

Suppose that R=𝔽pR=\mathbb{F}_{p}. Also, let nn and NN be positive integers with 1<n<p1<n<p.

  • (i)

    The fibers of the projection Πg,r\Pi_{g,r} over the geometric points of ¯g,r\overline{\mathcal{M}}_{g,r} classifying totally degenerate curves are nonempty. In particular, 𝒪pZzzg,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r} is nonempty.

  • (ii)

    Suppose further that r=0r=0 (and g>1g>1). Then, the fibers of the projection Πg,r\Pi_{g,r} over the geometric points of ¯g,0\overline{\mathcal{M}}_{g,0} classifying smooth curves is nonempty. In particular, 𝒪pZzzg,0ׯg,0g,0\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,0}\times_{\overline{\mathcal{M}}_{g,0}}\mathcal{M}_{g,0} is nonempty and Πg,0\Pi_{g,0} is surjective.

Proof.

Assertions (i) and the first assertion of (ii) (as well as the nonemptiness of 𝒪pZzzg,rׯg,0g,0\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r}\times_{\overline{\mathcal{M}}_{g,0}}\mathcal{M}_{g,0}) follow from Proposition 6.5.3. Also, the first assertion of (ii) implies the surjectivity of Πg,0\Pi_{g,0} because 𝒪pg,0Zzz\mathcal{O}p_{g,0}^{{}^{\mathrm{Zzz...}}} is proper over ¯g,0\overline{\mathcal{M}}_{g,0} (cf. Corollary 5.6.2) and ¯g,0\overline{\mathcal{M}}_{g,0} is irreducible. ∎

Remark 6.5.5 (The nonemptiness assertion).

The nonemptiness of 𝒪pZzzg,rׯg,rg,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r}\!\times_{\overline{\mathcal{M}}_{g,r}}\mathcal{M}_{g,r} (including the case of r>0r>0) will be proved in Corollary 8.4.4 by a different approach.

6.6. Factorization property of generic degrees

As a corollary of 6.4.7, we can prove that, under an étaleness assumption, the collection of the generic degrees deg(Πρ,g,r)\mathrm{deg}(\Pi_{\rho,g,r}) of Πρ,g,r\Pi_{\rho,g,r} satisfies specific nice factorization properties determined in accordance with various clutching morphisms Clut𝔾\mathrm{Clut}_{\mathbb{G}}.

Theorem 6.6.1.

Let ρ\rho be an element of Ξn,N×r\Xi_{n,N}^{\times r} and 𝔾:=(G,{(gj,rj)}j=1J,{λj}j=1J)\mathbb{G}:=({{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G,\{(g_{j},r_{j})\}_{j=1}^{J},\{\lambda_{j}\}_{j=1}^{J}) clutching data of type (g,r)(g,r). Assume that Πρ,g,r\Pi_{\rho,g,r} is étale over all the points of ¯g,r\overline{\mathcal{M}}_{g,r} classifying totally degenerate curves. Then, the finite morphisms Πρ,g,r\Pi_{\rho,g,r} and Πρj,gj,rj\Pi_{\rho^{j},g_{j},r_{j}} (j=1,,Jj=1,\cdots,J) are generically étale, i.e., any irreducible component that dominates ¯g,r\overline{\mathcal{M}}_{g,r} admits a dense open substack which is étale over ¯g,r\overline{\mathcal{M}}_{g,r}. Moreover, their generic degrees deg(Πρ,g,r)\mathrm{deg}(\Pi_{\rho,g,r}), deg(Πρj,gj,rj)\mathrm{deg}(\Pi_{\rho^{j},g_{j},r_{j}}) satisfy the equality

deg(Πρ,r,g)=ρ𝔾:={ρj}j=1Jj=1Jdeg(Πρj,gj,rj),\displaystyle\mathrm{deg}(\Pi_{\rho,r,g})=\sum_{\rho_{\mathbb{G}}:=\{\rho^{j}\}_{j=1}^{J}}\prod_{j=1}^{J}\mathrm{deg}(\Pi_{\rho^{j},g_{j},r_{j}}), (6.79)

where the sum in the right-hand side runs over the sets of 𝔾\mathbb{G}-Ξn,N\Xi_{n,N}-radii ρ𝔾\rho_{\mathbb{G}} with ρ𝔾=ρ\rho_{\mathbb{G}\Rightarrow\emptyset}=\rho.

Proof.

Let us consider the square diagram (6.62). This is Cartesian by Theorem 6.4.7, and the image of its lower horizontal arrow Clut𝔾\mathrm{Clut}_{\mathbb{G}} contains a point classifying a totally degenerate curve. Hence, by our assumption, the left-hand vertical arrow turns out to be generically étale. This implies the first assertion.

The second assertion follows from the observation that the right-hand side of the desired equality (6.79) is nothing but the generic degree of the left-hand vertical arrow in the Cartesian diagram (6.62). ∎

Example 6.6.2 (Cutting edges).

Let us describe the cartesian diagram (6.62), as well as the equality (6.79), in two particular cases corresponding to clutching morphisms, in the classical sense, between moduli spaces of pointed stable curves.

  • (i)

    First, let g1g_{1}, g2g_{2}, r1r_{1}, and r2r_{2} be nonnegative integers with 2gi1+ri>02g_{i}-1+r_{i}>0 (i=1,2i=1,2) and g=g1+g2g=g_{1}+g_{2}, r=r1+r2r=r_{1}+r_{2}. These integers associate the gluing morphism

    Φtree:¯g1,r1+1ׯg2,r2+1¯g1+g2,r1+r2\displaystyle\Phi_{\mathrm{tree}}:\overline{\mathcal{M}}_{g_{1},r_{1}+1}\times\overline{\mathcal{M}}_{g_{2},r_{2}+1}\rightarrow\overline{\mathcal{M}}_{g_{1}+g_{2},r_{1}+r_{2}} (6.80)

    obtained by attaching the respective last marked points of curves classified by ¯g1,r1+1\overline{\mathcal{M}}_{g_{1},r_{1}+1} and ¯g2,r2+1\overline{\mathcal{M}}_{g_{2},r_{2}+1} to form a node.

    For ρ1Ξn,N×r1\rho_{1}\in\Xi_{n,N}^{\times r_{1}}, ρ2Ξn,N×r2\rho_{2}\in\Xi_{n,N}^{\times r_{2}}, and ρ0Ξn,N\rho_{0}\in\Xi_{n,N}, there exists a morphism

    pΦtree,ρ0:𝒪pZzz(ρ1,ρ0),g1,r1+1×𝒪pZzz(ρ2,ρ0),g2,r2+1𝒪pZzz(ρ1,ρ2),g,r\displaystyle{{}^{p}}\Phi_{\mathrm{tree},\rho_{0}}:\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{(\rho_{1},\rho_{0}),g_{1},r_{1}+1}\times\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{(\rho_{2},\rho^{\veebar}_{0}),g_{2},r_{2}+1}\rightarrow\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{(\rho_{1},\rho_{2}),g,r} (6.81)

    obtained by gluing together two dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers along the fibers over the respective last marked points of the underlying curves. These morphisms for various ρ0\rho_{0}’s make the following square diagram commute:

    (6.86)

    This diagram coincides with (6.62) in the case where 𝔾\mathbb{G} is taken to be the clutching data “𝒢tree\mathscr{G}_{\mathrm{tree}}” defined in  [Wak8, Eq. (908)], i.e., the clutching data whose underlying semi-graph is visualized as in Figure 1 below.

    Under the assumption in Theorem 6.6.1, the equality (6.79) in our situation here reads

    deg(Π(ρ1,ρ2),g,r)=ρ0Ξn,Ndeg(Π(ρ1,ρ0),g1,r1+1)deg(Π(ρ2,ρ0),g2,r2+1).\displaystyle\mathrm{deg}(\Pi_{(\rho_{1},\rho_{2}),g,r})=\sum_{\rho_{0}\in\Xi_{n,N}}\mathrm{deg}(\Pi_{(\rho_{1},\rho_{0}),g_{1},r_{1}+1})\cdot\mathrm{deg}(\Pi_{(\rho_{2},\rho_{0}^{\veebar}),g_{2},r_{2}+1}). (6.87)
  • (ii)

    Next, given nonnegative integers gg, rr with 2g+r>02g+r>0, we shall write

    Φloop:¯g,r+2¯g+1,r\displaystyle\Phi_{\mathrm{loop}}:\overline{\mathcal{M}}_{g,r+2}\rightarrow\overline{\mathcal{M}}_{g+1,r} (6.88)

    for the gluing morphism obtained by attaching the last two marked points of each curve classified by ¯g,r+2\overline{\mathcal{M}}_{g,r+2} to form a node.

    For ρΞn,N×r\rho\in\Xi_{n,N}^{\times r} and ρ0Ξn,N\rho_{0}\in\Xi_{n,N}, there exists a morphism

    pΦloop,ρ0:𝒪pZzz(ρ,ρ0,ρ0),g,r+2𝒪pZzzρ,g+1,r\displaystyle{{}^{p}}\Phi_{\mathrm{loop},\rho_{0}}:\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{(\rho,\rho_{0},\rho_{0}^{\veebar}),g,r+2}\rightarrow\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{\rho,g+1,r} (6.89)

    obtained by gluing each dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper along the fibers over the last two marked points of the underlying curve. These morphisms for various ρ0\rho_{0}’s make the following square diagram commute:

    (6.94)

    This diagram coincides with (6.62) in the case where 𝔾\mathbb{G} is taken to be the clutching data “𝒢loop\mathscr{G}_{\mathrm{loop}}” defined in  [Wak8, Eq. (912)], i.e., the clutching data whose underlying semi-graph is visualized as in Figure 2 below.

    Under the assumption in Theorem 6.6.1, the equality (6.79) in our situation here reads

    deg(Π(ρ,g+1,r))=ρ0Ξn,Ndeg(Π(ρ,ρ0,ρ0),g,r+2).\displaystyle\mathrm{deg}(\Pi_{(\rho,g+1,r)})=\sum_{\rho_{0}\in\Xi_{n,N}}\mathrm{deg}(\Pi_{(\rho,\rho_{0},\rho_{0}^{\veebar}),g,r+2}). (6.95)
[Uncaptioned image]

(Here, “\circ--\bullet” represents an open edge and “\bullet--\bullet” represents a closed edge.)

7. 22d TQFT for dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers

In this section, we prove some assertions concerning the moduli spaces 𝒪pZzzρ,g,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{\rho,g,r}, as well as their generic degrees deg(Πρ,g,r)\mathrm{deg}(\mathrm{\Pi}_{\rho,g,r}). These facts together with the factorization property resulting from Theorem 6.6.1 are collectively explained by the notion of a 22d TQFT or a fusion rule (cf. Theorem 7.4.2). It gives an effective way of computing the values deg(Πρ,g,r)\mathrm{deg}(\Pi_{\rho,g,r}) by means of the ring-theoretic structure of the corresponding Frobenius algebra (cf. Theorem 7.5.4).

Let nn be an integer with 1<n<p1<n<p, NN a positive integer, (g,r)(g,r) a pair of nonnegative integers with 2g2+r>02g-2+r>0. We shall set ¯g,r:=¯g,r,𝔽p\overline{\mathcal{M}}_{g,r}:=\overline{\mathcal{M}}_{g,r,\mathbb{F}_{p}}, 𝒪pZzzρ,g,r:=𝒪pZzzn,N,ρ,g,r,𝔽p\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{\rho,g,r}:=\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{n,N,\rho,g,r,\mathbb{F}_{p}}, and Πρ,g,r:=Πn,N,ρ,g,r,𝔽p\Pi_{\rho,g,r}:=\Pi_{n,N,\rho,g,r,\mathbb{F}_{p}} for each ρΞn,N×r\rho\in\Xi_{n,N}^{\times r}.

7.1. Forgetting tails

We denote by

Φtail:¯g,r+1¯g,r\displaystyle\Phi_{\mathrm{tail}}:\overline{\mathcal{M}}_{g,r+1}\rightarrow\overline{\mathcal{M}}_{g,r} (7.1)

the morphism obtained by forgetting the last marked point and successively contracting any resulting unstable components of each curve classified by ¯g,r+1\overline{\mathcal{M}}_{g,r+1}. In what follows, we consider the behavior of the moduli stack of dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers according to pull-back along Φtail\Phi_{\mathrm{tail}}.

Let SS be a scheme over 𝔽p\mathbb{F}_{p} and 𝒳:=(X/S,{σi}i=1r+1)\mathscr{X}:=(X/S,\{\sigma_{i}\}_{i=1}^{r+1}) an (r+1)(r+1)-pointed smooth curve over SS of genus gg (hence Slog=SS^{\mathrm{log}}=S). We shall write

𝒳tail:=(Xtail,{σtail,i}i=1r)\displaystyle\mathscr{X}_{\mathrm{tail}}:=(X_{\mathrm{tail}},\{\sigma_{\mathrm{tail},i}\}_{i=1}^{r}) (7.2)

for the rr-pointed curve obtained from 𝒳\mathscr{X} by forgetting the last marked point. That is to say, Xtail=XX_{\mathrm{tail}}=X and σtail,i=σi\sigma_{\mathrm{tail},i}=\sigma_{i} for every i{1,,r}i\in\{1,\cdots,r\}.

Next, let ϑ:=(Θ,ϑ)\vartheta:=(\varTheta,\nabla_{\vartheta}) be a dormant n(N)n^{(N)}-theta characteristic of Xlogtail/SX^{\mathrm{log}}_{\mathrm{tail}}/S, which consists of a line bundle Θ\varTheta on XX and a 𝒟(N1)Xlogtail/S\mathcal{D}^{(N-1)}_{X^{\mathrm{log}}_{\mathrm{tail}}/S}-module structure ϑ\nabla_{\vartheta} on 𝒯n(n1)2Xlogtail/SΘn\mathcal{T}^{\otimes\frac{n(n-1)}{2}}_{X^{\mathrm{log}}_{\mathrm{tail}}/S}\otimes\varTheta^{\otimes n} with vanishing pNp^{N}-curvature. Note that there always exists such a pair because of the assumption pnp\nmid n (cf. Proposition 5.4.3).

By letting Θ+:=Θ((n1)σr+1)\varTheta_{+}:=\varTheta((n-1)\sigma_{r+1}), we have a sequence of natural isomorphisms

𝒯Xlog/Sn(n1)2Θ+n\displaystyle\mathcal{T}_{X^{\mathrm{log}}/S}^{\otimes\frac{n(n-1)}{2}}\otimes\varTheta_{+}^{\otimes n} 𝒯Xlogtail/S(σr+1)n(n1)2Θ((n1)σr+1)n\displaystyle\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{T}_{X^{\mathrm{log}}_{\mathrm{tail}}/S}(-\sigma_{r+1})^{\otimes\frac{n(n-1)}{2}}\otimes\varTheta((n-1)\sigma_{r+1})^{\otimes n} (7.3)
𝒯Xlogtail/Sn(n1)2Θn(n(n1)2σr+1).\displaystyle\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{T}_{X^{\mathrm{log}}_{\mathrm{tail}}/S}^{\otimes\frac{n(n-1)}{2}}\otimes\varTheta^{\otimes n}\left(\frac{n(n-1)}{2}\sigma_{r+1}\right).

The 𝒟Xlog/S(N1)\mathcal{D}_{X^{\mathrm{log}}/S}^{(N-1)}-module structure on 𝒯n(n1)2Xlogtail/SΘn\mathcal{T}^{\otimes\frac{n(n-1)}{2}}_{X^{\mathrm{log}}_{\mathrm{tail}}/S}\otimes\varTheta^{\otimes n} associated to ϑ\nabla_{\vartheta} extends, via (7.3), to a unique 𝒟(N1)Xlog/S\mathcal{D}^{(N-1)}_{X^{\mathrm{log}}/S}-module structure ϑ,+\nabla_{\vartheta,+} on 𝒯Xlog/Sn(n1)2Θ+n\mathcal{T}_{X^{\mathrm{log}}/S}^{\otimes\frac{n(n-1)}{2}}\otimes\varTheta_{+}^{\otimes n}. The resulting pair

ϑ+:=(Θ+,ϑ,+)\displaystyle\vartheta_{+}:=(\varTheta_{+},\nabla_{\vartheta,+}) (7.4)

forms a dormant n(N)n^{(N)}-theta characteristic of Xlog/SX^{\mathrm{log}}/S.

In our discussion here, we shall set

Θ:=𝒟Xlogtail/S,n1(N1)ΘandΘj:=𝒟Xlogtail/S,nj1(N1)Θ\displaystyle\mathcal{F}_{\varTheta}:=\mathcal{D}_{X^{\mathrm{log}}_{\mathrm{tail}}/S,\leq n-1}^{(N-1)}\otimes\varTheta\ \ \ \text{and}\ \ \ \mathcal{F}_{\varTheta}^{j}:=\mathcal{D}_{X^{\mathrm{log}}_{\mathrm{tail}}/S,\leq n-j-1}^{(N-1)}\otimes\varTheta\hskip 34.1433pt (7.5)
(resp.,Θ,+:=𝒟Xlog/S,n1(N1)Θ+andΘ,+j:=𝒟Xlog/S,nj1(N1)Θ+)\displaystyle\left(\text{resp.,}\ \mathcal{F}_{\varTheta,+}:=\mathcal{D}_{X^{\mathrm{log}}/S,\leq n-1}^{(N-1)}\otimes\varTheta_{+}\ \ \ \text{and}\ \ \ \mathcal{F}_{\varTheta,+}^{j}:=\mathcal{D}_{X^{\mathrm{log}}/S,\leq n-j-1}^{(N-1)}\otimes\varTheta_{+}\right) (7.6)

for j=0,,nj=0,\cdots,n. In particular, {Θj}j\{\mathcal{F}_{\varTheta}^{j}\}_{j} and {Θ,+j}j\{\mathcal{F}_{\varTheta,+}^{j}\}_{j} define decreasing filtrations of Θ\mathcal{F}_{\varTheta} and Θ,+\mathcal{F}_{\varTheta,+}, respectively, such that

jΘ/j+1Θ𝒯Xlogtail/S(n1j)Θ,jΘ,+/j+1Θ,+𝒯Xlog/S(n1j)Θ+.\displaystyle\mathcal{F}^{j}_{\varTheta}/\mathcal{F}^{j+1}_{\varTheta}\cong\mathcal{T}_{X^{\mathrm{log}}_{\mathrm{tail}}/S}^{\otimes(n-1-j)}\otimes\varTheta,\hskip 28.45274pt\mathcal{F}^{j}_{\varTheta,+}/\mathcal{F}^{j+1}_{\varTheta,+}\cong\mathcal{T}_{X^{\mathrm{log}}/S}^{\otimes(n-1-j)}\otimes\varTheta_{+}. (7.7)

The tensor product of the natural inclusion 𝒟Xlogtail/S,n1(N1)𝒟Xlog/S,n1(N1)((n1)σr+1)\mathcal{D}_{X^{\mathrm{log}}_{\mathrm{tail}}/S,\leq n-1}^{(N-1)}\hookrightarrow\mathcal{D}_{X^{\mathrm{log}}/S,\leq n-1}^{(N-1)}((n-1)\sigma_{r+1}) and the identity morphism of Θ\varTheta forms an inclusion ΘΘ,+\mathcal{F}_{\varTheta}\hookrightarrow\mathcal{F}_{\varTheta,+}, which preserves the filtration.

Proposition 7.1.1.

Let \nabla^{\diamondsuit} be a (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta)-oper on 𝒳tail\mathscr{X}_{\mathrm{tail}}. Then, there exists a unique (GLn(N),ϑ+)(\mathrm{GL}_{n}^{(N)},\vartheta_{+})-oper +\nabla^{\diamondsuit}_{+} on 𝒳\mathscr{X} extending \nabla^{\diamondsuit}. If, moreover, \nabla^{\diamondsuit} is dormant, then +\nabla_{+}^{\diamondsuit} is dormant and its exponent at σr+1\sigma_{r+1} coincides with [0¯,1¯,,n1¯][\overline{0},\overline{1},\cdots,\overline{n-1}], where m¯\overline{m} (for each integer mm) denotes the image of mm via /pN\mathbb{Z}\twoheadrightarrow\mathbb{Z}/p^{N}\mathbb{Z}.

Proof.

We shall write U:=XIm(σr+1)U:=X\setminus\mathrm{Im}(\sigma_{r+1}) and write uu for the open immersion UXU\hookrightarrow X. The natural morphism Θu(Θ|U)(=u(Θ,+|U))\mathcal{F}_{\varTheta}\rightarrow u_{*}(\mathcal{F}_{\varTheta}|_{U})\left(=u_{*}(\mathcal{F}_{\varTheta,+}|_{U})\right) is injective, and \nabla^{\diamondsuit} extends, via this injection, to a 𝒟Xlog/S(N1)\mathcal{D}_{X^{\mathrm{log}}/S}^{(N-1)}-module structure ˘\breve{\nabla}^{\diamondsuit} on u(Θ|U)u_{*}(\mathcal{F}_{\varTheta}|_{U}).

In what follows, we prove the claim that Θ,+(u(Θ|U))\mathcal{F}_{\varTheta,+}\left(\subseteq u_{*}(\mathcal{F}_{\varTheta}|_{U})\right) is closed under ˘\breve{\nabla}^{\diamondsuit}. Choose a local function tt defining Im(σr+1)\mathrm{Im}(\sigma_{r+1}) and a local generator vv of the line bundle Θ\varTheta around Im(σr+1)\mathrm{Im}(\sigma_{r+1}) (hence Θ\varTheta is locally identified with 𝒪Xv\mathcal{O}_{X}v). The local basis {jnon-log}j0\{\partial^{\langle j\rangle}_{\mathrm{non}\text{-}\mathrm{log}}\}_{j\in\mathbb{Z}_{\geq 0}} of 𝒟Xtaillog/S(N1)\mathcal{D}_{X_{\mathrm{tail}}^{\mathrm{log}}/S}^{(N-1)} associated to tt (in the manner of  [PBer1, § 1.2.3]) gives locally defined decompositions

𝒟Xtaillog/S(N1)=j0𝒪Xjnon-logandΘ=j=0n1𝒪Xjnon-logv.\displaystyle\mathcal{D}_{X_{\mathrm{tail}}^{\mathrm{log}}/S}^{(N-1)}=\bigoplus_{j\in\mathbb{Z}_{\geq 0}}\mathcal{O}_{X}\cdot\partial^{\langle j\rangle}_{\mathrm{non}\text{-}\mathrm{log}}\ \ \ \text{and}\ \ \ \mathcal{F}_{\varTheta}=\bigoplus_{j=0}^{n-1}\mathcal{O}_{X}\cdot\partial^{\langle j\rangle}_{\mathrm{non}\text{-}\mathrm{log}}\otimes v. (7.8)

These decompositions extend to

𝒟Xlog/S(N1)=j0𝒪Xtjjnon-logandΘ,+=j=0n1𝒪Xtjn+1jnon-logv,\displaystyle\mathcal{D}_{X^{\mathrm{log}}/S}^{(N-1)}=\bigoplus_{j\in\mathbb{Z}_{\geq 0}}\mathcal{O}_{X}\cdot t^{j}\cdot\partial^{\langle j\rangle}_{\mathrm{non}\text{-}\mathrm{log}}\ \ \ \text{and}\ \ \ \mathcal{F}_{\varTheta,+}=\bigoplus_{j=0}^{n-1}\mathcal{O}_{X}\cdot t^{j-n+1}\cdot\partial^{\langle j\rangle}_{\mathrm{non}\text{-}\mathrm{log}}\otimes v, (7.9)

respectively. Let aa and jj^{\prime} be nonnegative integers with jn1j^{\prime}\leq n-1, and regard tpapanon-logt^{p^{a}}\cdot\partial^{\langle p^{a}\rangle}_{\mathrm{non}\text{-}\mathrm{log}} and tjn+1jnon-logvt^{j^{\prime}-n+1}\cdot\partial^{\langle j^{\prime}\rangle}_{\mathrm{non}\text{-}\mathrm{log}}\otimes v as local sections of 𝒟Xlog/S(N1)\mathcal{D}_{X^{\mathrm{log}}/S}^{(N-1)} and Θ,+\mathcal{F}_{\varTheta,+}, respectively, via (7.9). Then, the following sequence of equalities holds:

˘(tpapanon-log)(tjn+1jnon-logv)\displaystyle\ \ \ \ \breve{\nabla}^{\diamondsuit}(t^{p^{a}}\cdot\partial^{\langle p^{a}\rangle}_{\mathrm{non}\text{-}\mathrm{log}})(t^{j^{\prime}-n+1}\cdot\partial^{\langle j^{\prime}\rangle}_{\mathrm{non}\text{-}\mathrm{log}}\otimes v) (7.10)
=tpaj=0paqpa!qj!qpaj!non-logj(tjn+1)˘(non-logpaj)(non-logjv)\displaystyle=t^{p^{a}}\cdot\sum_{j=0}^{p^{a}}\frac{q_{p^{a}}!}{q_{j}!\cdot q_{p^{a}-j}!}\cdot\partial_{\mathrm{non}\text{-}\mathrm{log}}^{\langle j\rangle}(t^{j^{\prime}-n+1})\cdot\breve{\nabla}^{\diamondsuit}(\partial_{\mathrm{non}\text{-}\mathrm{log}}^{\langle p^{a}-j\rangle})(\partial_{\mathrm{non}\text{-}\mathrm{log}}^{\langle j^{\prime}\rangle}\otimes v)
=tpaj=0min{pa,pn+1+j}qpa!qj!qpaj!non-logj(tjn+1)(non-logpaj)(non-logjv),\displaystyle=t^{p^{a}}\cdot\sum_{j=0}^{\mathrm{min}\left\{p^{a},\,p-n+1+j^{\prime}\right\}}\frac{q_{p^{a}}!}{q_{j}!\cdot q_{p^{a}-j}!}\cdot\partial_{\mathrm{non}\text{-}\mathrm{log}}^{\langle j\rangle}(t^{j^{\prime}-n+1})\cdot\nabla^{\diamondsuit}(\partial_{\mathrm{non}\text{-}\mathrm{log}}^{\langle p^{a}-j\rangle})(\partial_{\mathrm{non}\text{-}\mathrm{log}}^{\langle j^{\prime}\rangle}\otimes v),

where the first equality follows from  [PBer1, Eq. (1.2.3.2)] and the second equality follows from the equality non-logj(tm)=0\partial_{\mathrm{non}\text{-}\mathrm{log}}^{\langle j\rangle}(t^{-m})=0 for m+j>pm+j>p induced from the discussion following  [GLQ, Definition 2.5] (i.e.,  [Wak6, Eq. (64)]). If a=0a=0, then the rightmost of (7.10) equals

t(tjn+1(1non-log)(jnon-logv)+(jn+1)tjnjnon-logv)\displaystyle\ \ \ \ t\cdot\left(t^{j^{\prime}-n+1}\cdot\nabla^{\diamondsuit}(\partial^{\langle 1\rangle}_{\mathrm{non}\text{-}\mathrm{log}})(\partial^{\langle j^{\prime}\rangle}_{\mathrm{non}\text{-}\mathrm{log}}\otimes v)+(j^{\prime}-n+1)\cdot t^{j^{\prime}-n}\cdot\partial^{\langle j^{\prime}\rangle}_{\mathrm{non}\text{-}\mathrm{log}}\otimes v\right) (7.11)
=t(j+1)n+1(1non-log)(jnon-logv)+(jn+1)tjn+1jnon-logv.\displaystyle=t^{(j^{\prime}+1)-n+1}\cdot\nabla^{\diamondsuit}(\partial^{\langle 1\rangle}_{\mathrm{non}\text{-}\mathrm{log}})(\partial^{\langle j^{\prime}\rangle}_{\mathrm{non}\text{-}\mathrm{log}}\otimes v)+(j^{\prime}-n+1)\cdot t^{j^{\prime}-n+1}\cdot\partial^{\langle j^{\prime}\rangle}_{\mathrm{non}\text{-}\mathrm{log}}\otimes v.

This local section lies in Θ,+\mathcal{F}_{\varTheta,+} because (1non-log)(jnon-logv)\nabla^{\diamondsuit}(\partial^{\langle 1\rangle}_{\mathrm{non}\text{-}\mathrm{log}})(\partial^{\langle j^{\prime}\rangle}_{\mathrm{non}\text{-}\mathrm{log}}\otimes v) is contained in Θn2j\mathcal{F}_{\varTheta}^{n-2-j^{\prime}} (resp., Θ\mathcal{F}_{\varTheta}) when j<n1j^{\prime}<n-1 (resp., j=n1j^{\prime}=n-1). Similarly for the case of a>0a>0, the rightmost of (7.10) lies in Θ,+\mathcal{F}_{\varTheta,+} because of the fact that tpanon-logj(tjn+1)𝒪Xt^{p^{a}}\cdot\partial_{\mathrm{non}\text{-}\mathrm{log}}^{\langle j\rangle}(t^{j^{\prime}-n+1})\in\mathcal{O}_{X} and (non-logpaj)(non-logjv)Θ\nabla^{\diamondsuit}(\partial_{\mathrm{non}\text{-}\mathrm{log}}^{\langle p^{a}-j\rangle})(\partial_{\mathrm{non}\text{-}\mathrm{log}}^{\langle j^{\prime}\rangle}\otimes v)\in\mathcal{F}_{\varTheta}. Since the 𝒪X\mathcal{O}_{X}-algebra 𝒟Xlog/S(N1)\mathcal{D}_{X^{\mathrm{log}}/S}^{(N-1)} is locally generated by the sections tpanon-logpat^{p^{a}}\cdot\partial_{\mathrm{non}\text{-}\mathrm{log}}^{\langle p^{a}\rangle} (a0a\geq 0), we have ˘(δ)(Θ,+)Θ,+\breve{\nabla}^{\diamondsuit}(\delta)(\mathcal{F}_{\varTheta,+})\subseteq\mathcal{F}_{\varTheta,+} for any δ𝒟Xlog/S(N1)\delta\in\mathcal{D}_{X^{\mathrm{log}}/S}^{(N-1)}. This completes the proof of the claim.

Now, denote by +\nabla_{+}^{\diamondsuit} the 𝒟Xlog/S(N1)\mathcal{D}_{X^{\mathrm{log}}/S}^{(N-1)}-module structure on Θ,+\mathcal{F}_{\varTheta,+} obtained by restricting ˘\breve{\nabla}^{\diamondsuit}. By the second “\cong” in (7.7), +\nabla_{+}^{\diamondsuit} is verified to form a (GLn(N),ϑ+)(\mathrm{GL}_{n}^{(N)},\vartheta_{+})-oper, extending \nabla^{\diamondsuit}. Since the uniqueness portion follows from the equality Θ|U=Θ,+|U\mathcal{F}_{\varTheta}|_{U}=\mathcal{F}_{\varTheta,+}|_{U}, the proof of the first assertion is completed.

Next, to prove the second assertion, we suppose further that \nabla^{\diamondsuit} is dormant. After possibly taking the geometric fibers of points in SS, we may assume that S=Spec(k)S=\mathrm{Spec}(k) for an algebraically closed field kk over 𝔽p\mathbb{F}_{p}. Since ˘\breve{\nabla}^{\diamondsuit} has vanishing pNp^{N}-curvature, its restriction +\nabla_{+}^{\diamondsuit} turns out to be dormant. The formal neighborhood of Im(σr+1)\mathrm{Im}(\sigma_{r+1}) in XX may be identified with U:=Spec(k[[t]])U_{\oslash}:=\mathrm{Spec}(k[\![t]\!]) (cf. (4.1)) by using the function tt. It follows from Proposition-Definition 4.4.1 that there exists an isomorphism

(Θ,+,+)|Ui=1n(𝒪,,di(N1))\displaystyle(\mathcal{F}_{\varTheta,+},\nabla^{\diamondsuit}_{+})|_{U_{\oslash}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\bigoplus_{i=1}^{n}(\mathcal{O}_{\oslash},\nabla_{\oslash,d_{i}}^{(N-1)}) (7.12)

for some d1,,dn/pNd_{1},\cdots,d_{n}\in\mathbb{Z}/p^{N}\mathbb{Z}, where ,d(N1)\nabla_{\oslash,d}^{(N-1)} for each dd\in\mathbb{Z} denotes the 𝒟(N1)\mathcal{D}_{\oslash}^{(N-1)}-module structure on 𝒪:=𝒪U\mathcal{O}_{\oslash}:=\mathcal{O}_{U_{\oslash}} defined in (4.26). Here, for each 𝒟(N1)\mathcal{D}_{\oslash}^{(N-1)}-module (,)(\mathcal{F},\nabla), we shall write Res(,)\mathrm{Res}(\mathcal{F},\nabla) for the cokernel of the natural morphism F(N)U/k(𝒮ol())F^{(N)*}_{U_{\oslash}/k}(\mathcal{S}ol(\nabla))\rightarrow\mathcal{F}. The assignment (,)Res(,)(\mathcal{F},\nabla)\mapsto\mathrm{Res}(\mathcal{F},\nabla) is functorial, so the isomorphism (7.12) yields an isomorphism of kk-vector spaces

Res((Θ,+,+)|U)i=1nRes(𝒪,,di(N1)).\displaystyle\mathrm{Res}((\mathcal{F}_{\varTheta,+},\nabla^{\diamondsuit}_{+})|_{U_{\oslash}})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\bigoplus_{i=1}^{n}\mathrm{Res}(\mathcal{O}_{\oslash},\nabla_{\oslash,d_{i}}^{(N-1)}). (7.13)

The 𝒟(N1)\mathcal{D}_{\oslash}^{(N-1)}-module (Θ,+,+)|U(\mathcal{F}_{\varTheta,+},\nabla^{\diamondsuit}_{+})|_{U_{\oslash}} restricts to (Θ,)|U(\mathcal{F}_{\varTheta},\nabla^{\diamondsuit})|_{U_{\oslash}}, which is isomorphic to the direct sum of nn copies of (𝒪,(N1),0)(\mathcal{O}_{\oslash},\nabla^{(N-1)}_{\oslash,0}). It follows that Res((Θ,+,+)|U)\mathrm{Res}((\mathcal{F}_{\varTheta,+},\nabla^{\diamondsuit}_{+})|_{U_{\oslash}}) is isomorphic to Θ,+/Θ\mathcal{F}_{\varTheta,+}/\mathcal{F}_{\varTheta}. On the other hand, by Proposition 4.3.1, Res(𝒪,,di(N1))\mathrm{Res}(\mathcal{O}_{\oslash},\nabla_{\oslash,d_{i}}^{(N-1)}) is isomorphic to 𝒪/(td~i)\mathcal{O}_{\oslash}/(t^{\widetilde{d}_{i}}). Thus, (7.13) implies

i=1n𝒪/(td~i)\displaystyle\bigoplus_{i=1}^{n}\mathcal{O}_{\oslash}/(t^{\widetilde{d}_{i}}) Θ,+/Θ\displaystyle\cong\mathcal{F}_{\varTheta,+}/\mathcal{F}_{\varTheta} (7.14)
j=0n1(𝒪Xtjn+1jnon-logv)/(𝒪Xjnon-logv)\displaystyle\cong\bigoplus_{j=0}^{n-1}(\mathcal{O}_{X}\cdot t^{j-n+1}\cdot\partial^{\langle j\rangle}_{\mathrm{non}\text{-}\mathrm{log}}\otimes v)/(\mathcal{O}_{X}\cdot\partial^{\langle j\rangle}_{\mathrm{non}\text{-}\mathrm{log}}\otimes v)
j=0n1𝒪/(tn1j).\displaystyle\cong\bigoplus_{j=0}^{n-1}\mathcal{O}_{\oslash}/(t^{n-1-j}).

This yields the equality of sets {d1,,dn}={0¯,,n1¯}\{d_{1},\cdots,d_{n}\}=\{\overline{0},\cdots,\overline{n-1}\}, meaning that the exponent of +\nabla_{+}^{\diamondsuit} at σr+1\sigma_{r+1} coincides with [0¯,1¯,,n1¯][\overline{0},\overline{1},\cdots,\overline{n-1}]. This completes the proof of the second assertion. ∎

Proposition 7.1.2.

Let \nabla^{\diamondsuit} be a dormant (GLn(N),ϑ+)(\mathrm{GL}_{n}^{(N)},\vartheta_{+})-oper on 𝒳\mathscr{X} whose exponent at σr+1\sigma_{r+1} coincides with [0¯,1¯,,n1¯][\overline{0},\overline{1},\cdots,\overline{n-1}]. Then, there exists a unique dormant (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta)-oper tail\nabla^{\diamondsuit}_{\mathrm{tail}} on 𝒳tail\mathscr{X}_{\mathrm{tail}} such that the (GLn(N),ϑ+)(\mathrm{GL}_{n}^{(N)},\vartheta_{+})-oper (tail)+(\nabla^{\diamondsuit}_{\mathrm{tail}})_{+} associated to tail\nabla^{\diamondsuit}_{\mathrm{tail}} (by applying the construction of Proposition 7.1.1) coincides with \nabla^{\diamondsuit}.

Proof.

Let can\nabla_{\mathrm{can}} denote the canonical 𝒟Xlog/S(N1)\mathcal{D}_{X^{\mathrm{log}}/S}^{(N-1)}-module structure on FX/S(N)(𝒮ol())F_{X/S}^{(N)*}(\mathcal{S}ol(\nabla^{\diamondsuit})) in the sense of Definition 2.5.4, i.e., can:=(N1)𝒮ol(),can\nabla_{\mathrm{can}}:=\nabla^{(N-1)}_{\mathcal{S}ol(\nabla^{\diamondsuit}),\mathrm{can}}. The inclusion 𝒮ol()Θ,+\mathcal{S}ol(\nabla^{\diamondsuit})\hookrightarrow\mathcal{F}_{\varTheta,+} induces a morphism of 𝒟Xlog/S(N1)\mathcal{D}_{X^{\mathrm{log}}/S}^{(N-1)}-modules

η:(F(N)X/S(𝒮ol()),can)(Θ,+,).\displaystyle\eta:(F^{(N)*}_{X/S}(\mathcal{S}ol(\nabla^{\diamondsuit})),\nabla_{\mathrm{can}})\rightarrow(\mathcal{F}_{\varTheta,+},\nabla^{\diamondsuit}). (7.15)

This morphism becomes an isomorphism when restricted to Xi=1r+1Im(σi)X\setminus\bigcup_{i=1}^{r+1}\mathrm{Im}(\sigma_{i}). Hence, one can glue together (Θ,+,)|XIm(σr+1)(\mathcal{F}_{\varTheta,+},\nabla^{\diamondsuit})|_{X\setminus\mathrm{Im}(\sigma_{r+1})} and (F(N)X/S(𝒮ol()),can)|Xi=1rIm(σi)(F^{(N)*}_{X/S}(\mathcal{S}ol(\nabla^{\diamondsuit})),\nabla_{\mathrm{can}})|_{X\setminus\bigcup_{i=1}^{r}\mathrm{Im}(\sigma_{i})} by using the isomorphism η|Xi=1r+1Im(σi)\eta|_{X\setminus\bigcup_{i=1}^{r+1}\mathrm{Im}(\sigma_{i})}; the resulting 𝒟Xlog/S(N1)\mathcal{D}_{X^{\mathrm{log}}/S}^{(N-1)}-module will be denoted by (,tail)(\mathcal{F},\nabla^{\diamondsuit}_{\mathrm{tail}}). Since (F(N)X/S(𝒮ol()),can)(F^{(N)*}_{X/S}(\mathcal{S}ol(\nabla^{\diamondsuit})),\nabla_{\mathrm{can}}) comes from a (non-logarithmic) 𝒟(N1)X/S\mathcal{D}^{(N-1)}_{X/S}-module, (,tail)(\mathcal{F},\nabla^{\diamondsuit}_{\mathrm{tail}}) specifies a 𝒟Xlogtail/S(N1)\mathcal{D}_{X^{\mathrm{log}}_{\mathrm{tail}}/S}^{(N-1)}-module.

In what follows, we prove the equality =Θ\mathcal{F}=\mathcal{F}_{\varTheta} of 𝒪X\mathcal{O}_{X}-submodules of Θ,+\mathcal{F}_{\varTheta,+}. To this end, we may assume, after possibly restricting 𝒳\mathscr{X} over each geometric point of SS, that S=Spec(k)S=\mathrm{Spec}(k) for an algebraically closed field kk over 𝔽p\mathbb{F}_{p}. Let us fix a local function tt defining Im(σr+1)\mathrm{Im}(\sigma_{r+1}), which gives an identification of the formal neighborhood of Im(σr+1)X\mathrm{Im}(\sigma_{r+1})\subseteq X with UU_{\oslash} (cf. (4.1)). The assumption on \nabla^{\diamondsuit} implies the existence of an isomorphism between 𝒟(N1)\mathcal{D}_{\oslash}^{(N-1)}-modules

(Θ,+,)|Ui=0n1(𝒪,,i¯(N1)).\displaystyle(\mathcal{F}_{\varTheta,+},\nabla^{\diamondsuit})|_{U_{\oslash}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\bigoplus_{i=0}^{n-1}(\mathcal{O}_{\oslash},\nabla_{\oslash,\overline{i}}^{(N-1)}). (7.16)

According to Proposition 6.1.3, (ii), the global section (1,1,,1)H0(U,𝒪n)(1,1,\cdots,1)\in H^{0}(U_{\oslash},\mathcal{O}_{\oslash}^{\oplus n}) formally generates its codomain (as a 𝒟(N1)\mathcal{D}_{\oslash}^{(N-1)}-module). Hence, the 𝒪\mathcal{O}_{\oslash}-module Θ|U\mathcal{F}_{\varTheta}|_{U_{\oslash}} is formally generated by the sections corresponding, via (7.16), to the sections

((,1¯(N1)(non-log1))j(tn1),,(,n1¯(N1)(non-log1))j(tn1))\displaystyle\ \ \ \ ((\nabla_{\oslash,\overline{1}}^{(N-1)}(\partial_{\mathrm{non}\text{-}\mathrm{log}}^{\langle 1\rangle}))^{j}(t^{n-1}),\cdots,(\nabla_{\oslash,\overline{n-1}}^{(N-1)}(\partial_{\mathrm{non}\text{-}\mathrm{log}}^{\langle 1\rangle}))^{j}(t^{n-1})) (7.17)
=((n10j)tn1j,,(n1(n1)j)tn1j)H0(U,𝒪n)\displaystyle=(\binom{n-1-0}{j}t^{n-1-j},\cdots,\binom{n-1-(n-1)}{j}t^{n-1-j})\in H^{0}(U_{\oslash},\mathcal{O}_{\oslash}^{\oplus n}) (7.18)

for j=0,,n1j=0,\cdots,n-1, where non-log1\partial_{\mathrm{non}\text{-}\mathrm{log}}^{\langle 1\rangle} is as in the proof of Proposition 7.1.1, and (m0):=1\binom{m}{0}:=1 for any mm\in\mathbb{Z}. By this fact together with Proposition 4.3.1, Θ|U\mathcal{F}_{\varTheta}|_{U_{\oslash}} coincides with F(N)U/k(𝒮ol(|U))F^{(N)*}_{U_{\oslash}/k}(\mathcal{S}ol(\nabla^{\diamondsuit}|_{U_{\oslash}})). This proves the desired equality =Θ\mathcal{F}=\mathcal{F}_{\varTheta}.

The collection (Θ,tail,{Θj}j=0n)(\mathcal{F}_{\varTheta},\nabla^{\diamondsuit}_{\mathrm{tail}},\{\mathcal{F}_{\varTheta}^{j}\}_{j=0}^{n}) forms a GLn(N1)\mathrm{GL}_{n}^{(N-1)}-oper on 𝒳tail\mathscr{X}_{\mathrm{tail}} because of the above discussion and the fact that its restriction to XIm(σr+1)X\setminus\mathrm{Im}(\sigma_{r+1}) defines a GLn(N1)\mathrm{GL}_{n}^{(N-1)}-oper. Moreover, it follows from the various definitions involved that tail\nabla^{\diamondsuit}_{\mathrm{tail}} specifies a dormant (GLn(N1),ϑ)(\mathrm{GL}_{n}^{(N-1)},\vartheta)-oper satisfying the required conditions. The proof of the assertion is completed. ∎

Let \mathscr{E}^{\spadesuit} be a dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on 𝒳tail\mathscr{X}_{\mathrm{tail}}. This corresponds, via the isomorphism ΛZzz,ϑ\Lambda^{{}^{\mathrm{Zzz...}}}_{\diamondsuit\Rightarrow\spadesuit,\vartheta} (cf. Theorem 5.5.1), to a dormant (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta)-oper \nabla^{\diamondsuit}. We shall denote by +\mathscr{E}^{\spadesuit}_{+} the dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on 𝒳\mathscr{X} corresponding to the (GLn(N),ϑ+)(\mathrm{GL}_{n}^{(N)},\vartheta_{+})-oper +\nabla_{+}^{\diamondsuit} constructed from \nabla^{\diamondsuit} in the manner of Proposition 7.1.1. Note that the isomorphism classes of +\mathscr{E}^{\spadesuit}_{+} depend only on that of \mathscr{E}^{\spadesuit} (i.e., does not depend on the choice of ϑ\vartheta).

Moreover, by Proposition 7.1.1 again, the radius of +\mathscr{E}^{\spadesuit}_{+} at σr+1\sigma_{r+1} coincides with ε\varepsilon. Here, we set

ε:=πΔ([0¯,,n1¯])𝔖n\(/pN)×n/Δ\displaystyle\varepsilon:=\pi_{\Delta}([\overline{0},\cdots,\overline{n-1}])\in\mathfrak{S}_{n}\backslash(\mathbb{Z}/p^{N}\mathbb{Z})^{\times n}/\Delta (7.19)

(cf. (6.29) for the definition of πΔ\pi_{\Delta}). Note that this element for n=2n=2 corresponds to “ϵ\epsilon” (cf. (6.74)) via the bijection (6.30).

The following assertion follows immediately from Proposition 7.1.2.

Proposition 7.1.3.

Let (g,r)(g,r) be a pair of nonnegative integers with 2g1+r>02g-1+r>0 and ρ\rho an element of Ξn,N×r\Xi_{n,N}^{\times r}. Then, the assignment

(𝒳,(𝒳tail,))(𝒳,(𝒳,+))\displaystyle(\mathscr{X},(\mathscr{X}_{\mathrm{tail}},\mathscr{E}^{\spadesuit}))\mapsto(\mathscr{X},(\mathscr{X},\mathscr{E}^{\spadesuit}_{+})) (7.20)

constructed above is functorial with respect to base-change over SS-schemes, and determines an isomorphism

g,r+1×Φtail,¯g,r𝒪pρ,g,rZzzg,r+1ׯg,r+1𝒪p(ρ,ε),g,r+1Zzz\displaystyle\mathcal{M}_{g,r+1}\times_{\Phi_{\mathrm{tail}},\overline{\mathcal{M}}_{g,r}}\mathcal{O}p_{\rho,g,r}^{{}^{\mathrm{Zzz...}}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{M}_{g,r+1}\times_{\overline{\mathcal{M}}_{g,r+1}}\mathcal{O}p_{(\rho,\varepsilon),g,r+1}^{{}^{\mathrm{Zzz...}}} (7.21)

of stacks over g,r+1\mathcal{M}_{g,r+1}.

Moreover, the following assertion is a direct consequence of the above proposition.

Corollary 7.1.4.

Let (g,r)(g,r) and ρ\rho be as in Proposition 7.1.3. Also, let us keep the assumption in Theorem 6.6.1. Then, the following equality holds:

deg(Π(ρ,ε),g,r+1)=deg(Πρ,g,r).\displaystyle\mathrm{deg}(\Pi_{(\rho,\varepsilon),g,r+1})=\mathrm{deg}(\Pi_{\rho,g,r}). (7.22)

7.2. PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers on a 22-pointed projective line

Let SS be a scheme over 𝔽p\mathbb{F}_{p}, and let :=𝒫roj(𝒪S[x,y])\mathbb{P}:=\mathcal{P}roj(\mathcal{O}_{S}[x,y]) denote the projective line over SS. Denote by σ1\sigma_{1} and σ2\sigma_{2} the marked points of \mathbb{P} determined by the values 0 and \infty, respectively (i.e., σ1:=[0]\sigma_{1}:=[0] and σ2:=[]\sigma_{2}:=[\infty] in the terminology of § 6.5). In particular, we have a 22-pointed curve

𝒫:=(,{σ1,σ2})\displaystyle\mathscr{P}^{\prime}:=(\mathbb{P},\{\sigma_{1},\sigma_{2}\}) (7.23)

over SS. The SS-scheme \mathbb{P} has two open subschemes U1:=Im(σ2)=𝒮pec(𝒪S[t1])U_{1}:=\mathbb{P}\setminus\mathrm{Im}(\sigma_{2})=\mathcal{S}pec(\mathcal{O}_{S}[t_{1}]) (where t1:=x/yt_{1}:=x/y) and U2:=Im(σ1)=𝒮pec(𝒪S[t2])U_{2}:=\mathbb{P}\setminus\mathrm{Im}(\sigma_{1})=\mathcal{S}pec(\mathcal{O}_{S}[t_{2}]) (where t2:=y/xt_{2}:=y/x).

Just as in the hyperbolic case, we can equip \mathbb{P} with a log structure induced from the relative divisor defined as the union of Im(σ1)\mathrm{Im}(\sigma_{1}) and Im(σ2)\mathrm{Im}(\sigma_{2}); the resulting log curve will be denoted by log\mathbb{P}^{\mathrm{log}^{\prime}}. Also, the definition of radius ρi()\rho_{i}(-) at σi\sigma_{i} (i=1,2i=1,2) can be formulated as in Definition 6.3.2.

Proposition 7.2.1.
  • (i)

    Let \mathscr{E}^{\spadesuit} be a dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on 𝒫\mathscr{P}^{\prime}. Then, the equality ρ1()=ρ2()\rho_{1}(\mathscr{E}^{\spadesuit})=\rho_{2}(\mathscr{E}^{\spadesuit})^{\veebar} holds.

  • (ii)

    For each ρΞn,N\rho\in\Xi_{n,N}, there exists a unique (up to isomorphism) dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper on 𝒫\mathscr{P}^{\prime} with ρ=ρ1()=ρ2()\rho=\rho_{1}(\mathscr{E}^{\spadesuit})=\rho_{2}(\mathscr{E}^{\spadesuit})^{\veebar}.

Proof.

First, we shall prove assertion (i). For each i=1,2i=1,2, denote by {ij}j0\{\partial_{i}^{\langle j\rangle}\}_{j\in\mathbb{Z}_{\geq 0}} the (globally defined) basis of 𝒟log/S(N1)\mathcal{D}_{\mathbb{P}^{\mathrm{log}^{\prime}}/S}^{(N-1)} associated to the function tit_{i}. In particular, we have 𝒟log/S(N1)=j0𝒪ij\mathcal{D}_{\mathbb{P}^{\mathrm{log}^{\prime}}/S}^{(N-1)}=\bigoplus_{j\in\mathbb{Z}_{\geq 0}}\mathcal{O}_{\mathbb{P}}\cdot\partial_{i}^{\langle j\rangle}. The morphism μ()\mu_{(-)} and the sheaves 𝒫()\mathcal{P}^{\ell}_{(-)} (0\ell\in\mathbb{Z}_{\geq 0}) discussed in §§ 2.1-2.2 can be defined even in our situation here. In particular, we obtain a section ηi:=μ(N1)(ti)1\eta_{i}:=\mu_{(N-1)}(t_{i})-1 of 𝒫(N1)\mathcal{P}_{(N-1)}^{\ell}. Since μ(N1)\mu_{(N-1)} preserves the monoid structure, we have

(1+η1)(1+η2)=μ(N1)(t1)μ(N1)(t2)=μ(N1)(t1t2)=μ(N1)(1)=1.\displaystyle(1+\eta_{1})(1+\eta_{2})=\mu_{(N-1)}(t_{1})\cdot\mu_{(N-1)}(t_{2})=\mu_{(N-1)}(t_{1}\cdot t_{2})=\mu_{(N-1)}(1)=1. (7.24)

Just as in the proof of Lemma 4.1.1, the resulting equality (1+η1)(1+η2)=1(1+\eta_{1})(1+\eta_{2})=1 induces

2pa=1pa1+b=0a1(1(1pb)p1).\displaystyle\partial_{2}^{\langle p^{a}\rangle}=-\partial_{1}^{\langle p^{a}\rangle}-1+\prod_{b=0}^{a-1}(1-(\partial_{1}^{\langle p^{b}\rangle})^{p-1}). (7.25)

Then, the assertion follows from (4.20) and Proposition 4.3.2.

Next, we shall prove assertion (ii). Denote by triv(N1)\nabla_{\mathrm{triv}}^{(N-1)} the trivial 𝒟(N1)log/S\mathcal{D}^{(N-1)}_{\mathbb{P}^{\mathrm{log}^{\prime}}/S}-module structure on 𝒪\mathcal{O}_{\mathbb{P}}. By fixing an identification Ωlog/S=𝒪\Omega_{\mathbb{P}^{\mathrm{log}^{\prime}}/S}=\mathcal{O}_{\mathbb{P}}, we regard the pair ϑ:=(𝒪,triv(N1))\vartheta:=(\mathcal{O}_{\mathbb{P}},\nabla_{\mathrm{triv}}^{(N-1)}) as a dormant n(N)n^{(N)}-theta characteristic of log/S\mathbb{P}^{\mathrm{log}^{\prime}}/S. Since n<pn<p, there exists an nn-tuple of integers (d1,,dn)(d_{1},\cdots,d_{n}) such that πΔ([d1,,dn])=ρ\pi_{\Delta}([d_{1},\cdots,d_{n}])=\rho, pNj=1ndjp^{N}\mid\sum_{j=1}^{n}d_{j}, and 0djpN10\leq d_{j}\leq p^{N}-1 for every jj. Given each j=1,,nj=1,\cdots,n, we denote by j\nabla_{j} the 𝒟(N1)log/S\mathcal{D}^{(N-1)}_{\mathbb{P}^{\mathrm{log}^{\prime}}/S}-module structure on 𝒪(dj[σ1]dj[σ2])\mathcal{O}_{\mathbb{P}}(d_{j}[\sigma_{1}]-d_{j}[\sigma_{2}]) whose restriction to (Im(σ1)Im(σ2))\mathbb{P}\setminus(\mathrm{Im}(\sigma_{1})\cup\mathrm{Im}(\sigma_{2})) coincides with the trivial one. It is verified that the exponents of j\nabla_{j} at σ1\sigma_{1} and σ2\sigma_{2} are djd_{j} and dj-d_{j} (as elements of /pN\mathbb{Z}/p^{N}\mathbb{Z}), respectively. The direct sum :=j=1nj\nabla:=\bigoplus_{j=1}^{n}\nabla_{j} defines a 𝒟(N1)log/S\mathcal{D}^{(N-1)}_{\mathbb{P}^{\mathrm{log}^{\prime}}/S}-module structure on the rank nn vector bundle

:=j=1n𝒪(dj[σ1]dj[σ2]).\displaystyle\mathcal{F}:=\bigoplus_{j=1}^{n}\mathcal{O}_{\mathbb{P}}(d_{j}[\sigma_{1}]-d_{j}[\sigma_{2}]). (7.26)

Let us fix isomorphisms of 𝒪\mathcal{O}_{\mathbb{P}}-modules τj:𝒪𝒪(dj[σ1]dj[σ2])\tau_{j}:\mathcal{O}_{\mathbb{P}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{O}_{\mathbb{P}}(d_{j}[\sigma_{1}]-d_{j}[\sigma_{2}]) (j=1,,nj=1,\cdots,n). Denote by n1\mathcal{F}^{n-1} the line subbundle of \mathcal{F} defined to as the image of the diagonal embedding (τ1,,τn):𝒪(\tau_{1},\cdots,\tau_{n}):\mathcal{O}_{\mathbb{P}}\hookrightarrow\mathcal{F}. Also, for each j=0,,n2j=0,\cdots,n-2, let j\mathcal{F}^{j} denote the subbundle of \mathcal{F} generated locally by v,(v),,n1j(v)v,\nabla(v),\cdots,\nabla^{n-1-j}(v) for local sections vn1v\in\mathcal{F}^{n-1}. Since the mod pp reductions of d1,,dnd_{1},\cdots,d_{n} are mutually distinct, we see that the collection

(,,{j}j=0n)\displaystyle(\mathcal{F},\nabla,\{\mathcal{F}^{j}\}_{j=0}^{n}) (7.27)

forms a dormant GLn(N)\mathrm{GL}_{n}^{(N)}-oper on 𝒫\mathscr{P}^{\prime} (cf. Proposition 6.1.3, (ii)), and its exponent at σ1\sigma_{1} coincides with [d1,,dn][d_{1},\cdots,d_{n}]. The composite

𝒪(=𝒟(N1)log/S,n1𝒪X=𝒟(N1)log/S,n1n1)inclusion𝒟(N1)log/S\displaystyle\mathcal{F}_{\mathcal{O}_{\mathbb{P}}}\left(=\mathcal{D}^{(N-1)}_{\mathbb{P}^{\mathrm{log}^{\prime}}/S,\leq n-1}\otimes\mathcal{O}_{X}=\mathcal{D}^{(N-1)}_{\mathbb{P}^{\mathrm{log}^{\prime}}/S,\leq n-1}\otimes\mathcal{F}^{n-1}\right)\xrightarrow{\mathrm{inclusion}}\mathcal{D}^{(N-1)}_{\mathbb{P}^{\mathrm{log}^{\prime}}/S}\otimes\mathcal{F}\xrightarrow{\nabla}\mathcal{F} (7.28)

is an isomorphism, so \nabla is transposed into a 𝒟(N1)log/S\mathcal{D}^{(N-1)}_{\mathbb{P}^{\mathrm{log}^{\prime}}/S}-module structure \nabla^{\diamondsuit} on 𝒪\mathcal{F}_{\mathcal{O}_{\mathbb{P}}} via this composite. Then, \nabla^{\diamondsuit} specifies a dormant (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta)-oper, and the induced PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper \mathscr{E}^{\spadesuit} satisfies the required condition. This completes the existence assertion of (ii).

To prove the uniqueness portion, let us take another dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper 1\mathscr{E}^{\spadesuit}_{1} on 𝒫\mathscr{P}^{\prime} with ρ=ρ1(1)=ρ2(1)\rho=\rho_{1}(\mathscr{E}_{1}^{\spadesuit})=\rho_{2}(\mathscr{E}^{\spadesuit}_{1})^{\veebar}; it corresponds to a dormant (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta)-oper 1\nabla_{1}^{\diamondsuit} on 𝒫\mathscr{P}^{\prime}, whose exponent at σ1\sigma_{1} coincides with [d1,,dn][d_{1},\cdots,d_{n}]. Under the identification 𝒪=𝒪n\mathcal{F}_{\mathcal{O}_{\mathbb{P}}}=\mathcal{O}_{\mathbb{P}}^{\oplus n} given by composing (7.28) and j=1nτj1:j=1n𝒪(dj[σ1]dj[σ2])𝒪n\bigoplus_{j=1}^{n}\tau_{j}^{-1}:\bigoplus_{j=1}^{n}\mathcal{O}_{\mathbb{P}}(d_{j}[\sigma_{1}]-d_{j}[\sigma_{2}])\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{O}_{\mathbb{P}}^{\oplus n}, both 1\nabla_{1}^{\diamondsuit} and \nabla^{\diamondsuit} may be regarded as 𝒟log/S(N1)\mathcal{D}_{\mathbb{P}^{\mathrm{log}^{\prime}}/S}^{(N-1)}-module structures on 𝒪n\mathcal{O}_{\mathbb{P}}^{\oplus n}. After possibly applying a suitable gauge transformation of 𝒪n\mathcal{O}_{\mathbb{P}}^{\oplus n}, we may assume that the monodromy operator μ1(1)\mu_{1}(\nabla_{1}^{\diamondsuit}) of 1\nabla_{1}^{\diamondsuit} at σ1\sigma_{1} (cf. Definition 6.1.1) coincide with that of \nabla^{\diamondsuit}. For each a=0,,N1a=0,\cdots,N-1 and each 𝒟log/S(N1)\mathcal{D}_{\mathbb{P}^{\mathrm{log}^{\prime}}/S}^{(N-1)}-module structure \nabla^{\prime} on 𝒪n(=𝒪)\mathcal{O}_{\mathbb{P}}^{\oplus n}\left(=\mathcal{F}_{\mathcal{O}_{\mathbb{P}}}\right), we shall set

Ma():=((1pa)(e1),(1pa)(e2),,(1pa)(en))End𝒪S(H0(,𝒪)n),\displaystyle M^{a}(\nabla^{\prime}):=(\nabla^{\prime}(\partial_{1}^{\langle p^{a}\rangle})(\vec{e}_{1}),\nabla^{\prime}(\partial_{1}^{\langle p^{a}\rangle})(\vec{e}_{2}),\cdots,\nabla^{\prime}(\partial_{1}^{\langle p^{a}\rangle})(\vec{e}_{n}))\in\mathrm{End}_{\mathcal{O}_{S}}(H^{0}(\mathbb{P},\mathcal{O}_{\mathbb{P}})^{\oplus n}), (7.29)

where e1,,en\vec{e}_{1},\cdots,\vec{e}_{n} denote the canonical basis vectors. Because of  [Mon, Eq. (2.5)], each such \nabla^{\prime} is uniquely determined by {Ma()}a=0N1\{M^{a}(\nabla^{\prime})\}_{a=0}^{N-1}. On the other hand, the morphism

End𝒪S(H0(,𝒪)n)(=End𝒪S(H0(,𝒪)))End𝒪S(σ1(𝒪X))\displaystyle\mathrm{End}_{\mathcal{O}_{S}}(H^{0}(\mathbb{P},\mathcal{O}_{\mathbb{P}})^{\oplus n})\left(=\mathrm{End}_{\mathcal{O}_{S}}(H^{0}(\mathbb{P},\mathcal{F}_{\mathcal{O}_{\mathbb{P}}}))\right)\rightarrow\mathrm{End}_{\mathcal{O}_{S}}(\sigma_{1}^{*}(\mathcal{F}_{\mathcal{O}_{X}})) (7.30)

given by restriction to σ1\sigma_{1} is bijective and the image of Ma()M^{a}(\nabla^{\prime}) coincides with μ1()a\mu_{1}(\nabla^{\prime})^{\langle a\rangle} (cf. (6.3)). Hence, the equality μ1(1)=μ1()\mu_{1}(\nabla_{1}^{\diamondsuit})=\mu_{1}(\nabla^{\diamondsuit}) implies 1=\nabla^{\diamondsuit}_{1}=\nabla^{\diamondsuit}. This completes the proof of the uniqueness assertion. ∎

By combining Propositions 7.1.2 and 7.2.1, (i) and (ii), we obtain the following assertion.

Corollary 7.2.2.

Let ρ1,ρ2\rho_{1},\rho_{2} be elements of Ξn,N\Xi_{n,N}. Then, we have

𝒪p(ρ1,ρ2,ε),0,3Zzz{Spec(𝔽p)if ρ1=ρ2;if otherwise.\displaystyle\mathcal{O}p_{(\rho_{1},\rho_{2},\varepsilon),0,3}^{{}^{\mathrm{Zzz...}}}\cong\begin{cases}\mathrm{Spec}(\mathbb{F}_{p})&\text{if $\rho_{1}=\rho_{2}$};\\ \emptyset&\text{if otherwise}.\end{cases} (7.31)

In particular, the following equality holds:

deg(Π(ρ1,ρ2,ε),0,3)={1if ρ1=ρ2;0if otherwise.\displaystyle\mathrm{deg}(\Pi_{(\rho_{1},\rho_{2},\varepsilon),0,3})=\begin{cases}1&\text{if $\rho_{1}=\rho_{2}$};\\ 0&\text{if otherwise}.\end{cases} (7.32)

7.3. Dual of GLn(N)\mathrm{GL}_{n}^{(N)}-opers

Let (g,r)(g,r) be a pair of nonnegative integers with 2g2+r>02g-2+r>0 and 𝒳:=(X,{σi}i=1r)\mathscr{X}:=(X,\{\sigma_{i}\}_{i=1}^{r}) an rr-pointed stable curve of genus gg over an 𝔽p\mathbb{F}_{p}-scheme SS. For simplicity, we write Ω:=ΩXlog/Slog\Omega:=\Omega_{X^{\mathrm{log}}/S^{\mathrm{log}}}, 𝒯:=𝒯Xlog/Slog\mathcal{T}:=\mathcal{T}_{X^{\mathrm{log}}/S^{\mathrm{log}}}, and 𝒟(N1):=𝒟(N1)Xlog/Slog\mathcal{D}^{(N-1)}:=\mathcal{D}^{(N-1)}_{X^{\mathrm{log}}/S^{\mathrm{log}}}.

Consider a GLn(N)\mathrm{GL}_{n}^{(N)}-oper :=(,,{j}j=0n)\mathscr{F}^{\heartsuit}:=(\mathcal{F},\nabla,\{\mathcal{F}^{j}\}_{j=0}^{n}) on 𝒳\mathscr{X}. For each j=0,,nj=0,\cdots,n, we regard j:=(/nj)\mathcal{F}^{j\vee}:=(\mathcal{F}/\mathcal{F}^{n-j})^{\vee} as a subbundle of \mathcal{F}^{\vee}. According to  [Mon, Corollaire 2.6.1, (ii)], \nabla induces a 𝒟(N1)\mathcal{D}^{(N-1)}-module structure \nabla^{\vee} on \mathcal{F}^{\vee}. The resulting collection

:=(,,{j}j=0n)\displaystyle\mathscr{F}^{\heartsuit\blacktriangledown}:=(\mathcal{F}^{\vee},\nabla^{\vee},\{\mathcal{F}^{\vee j}\}_{j=0}^{n}) (7.33)

forms a GLn(N)\mathrm{GL}_{n}^{(N)}-oper on 𝒳\mathscr{X}, which will be called the dual of \mathscr{F}^{\heartsuit}. Note that ()(\mathscr{F}^{\heartsuit\blacktriangledown})^{\blacktriangledown} is isomorphic to \mathscr{F}^{\heartsuit} itself, and that \mathscr{F}^{\heartsuit\blacktriangledown} is dormant when \mathscr{F}^{\heartsuit} is dormant.

Next, let ϑ:=(Θ,ϑ)\vartheta:=(\varTheta,\nabla_{\vartheta}) be an n(N)n^{(N)}-theta characteristic of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. Write

Θ:=Ω(n1)Θ.\displaystyle\varTheta^{\blacktriangledown}:=\Omega^{\otimes(n-1)}\otimes\varTheta^{\vee}. (7.34)

Then, we have a composite isomorphism

𝒯n(n1)2(Θ)n𝒯n(n1)2𝒯(n(n1))(Θ)n(𝒯n(n1)2Θn).\displaystyle\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes(\varTheta^{\blacktriangledown})^{\otimes n}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes\mathcal{T}^{\otimes(-n(n-1))}\otimes(\varTheta^{\vee})^{\otimes n}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}(\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes\varTheta^{\otimes n})^{\vee}. (7.35)

By this composite, the dual ϑ\nabla_{\vartheta}^{\vee} of ϑ\nabla_{\vartheta} may be regarded as a 𝒟(N1)\mathcal{D}^{(N-1)}-module structure on 𝒯n(n1)2(Θ)n\mathcal{T}^{\otimes\frac{n(n-1)}{2}}\otimes(\varTheta^{\blacktriangledown})^{\otimes n}. Thus, we obtain an n(N)n^{(N)}-theta characteristic

ϑ:=(Θ,ϑ)\displaystyle\vartheta^{\blacktriangledown}:=(\varTheta^{\blacktriangledown},\nabla_{\vartheta}^{\vee}) (7.36)

of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. We shall refer to ϑ\vartheta^{\blacktriangledown} as the dual of ϑ\vartheta. It is immediately verified that (ϑ)(\vartheta^{\blacktriangledown})^{\blacktriangledown} coincides with ϑ\vartheta, and that ϑ\vartheta^{\blacktriangledown} is dormant when ϑ\vartheta is dormant.

Fix a (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta)-oper \nabla^{\diamondsuit} on 𝒳\mathscr{X}. Since

Θn1=(Θ/Θ1)=(𝒯(n1)Θ)=Θ,\displaystyle\mathcal{F}_{\varTheta}^{\vee n-1}=(\mathcal{F}_{\varTheta}/\mathcal{F}_{\varTheta}^{1})^{\vee}=(\mathcal{T}^{\otimes(n-1)}\otimes\varTheta)^{\vee}=\varTheta^{\blacktriangledown}, (7.37)

we have an inclusion ΘΘ\varTheta^{\blacktriangledown}\hookrightarrow\mathcal{F}_{\varTheta}^{\vee}. The composite

Θ(=𝒟n1(N1)Θ)inclusion𝒟(N1)ΘΘ\displaystyle\mathcal{F}_{\varTheta^{\blacktriangledown}}\left(=\mathcal{D}_{\leq n-1}^{(N-1)}\otimes\varTheta^{\blacktriangledown}\right)\xrightarrow{\mathrm{inclusion}}\mathcal{D}^{(N-1)}\otimes\mathcal{F}_{\varTheta}^{\vee}\xrightarrow{\nabla^{\diamondsuit\vee}}\mathcal{F}_{\varTheta}^{\vee} (7.38)

turns out to be an isomorphism, and the dual \nabla^{\diamondsuit\vee} of \nabla^{\diamondsuit} corresponds, via this composite, to a 𝒟(N1)\mathcal{D}^{(N-1)}-module structure

\displaystyle\nabla^{\diamondsuit\blacktriangledown} (7.39)

on Θ\mathcal{F}_{\varTheta^{\blacktriangledown}}. Moreover, \nabla^{\diamondsuit\blacktriangledown} forms a (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta^{\blacktriangledown})-oper on 𝒳\mathscr{X} whose underlying GLn(N)\mathrm{GL}_{n}^{(N)}-oper coincides with the dual of \nabla^{\diamondsuit\Rightarrow\heartsuit}, i.e., ()=()(\nabla^{\diamondsuit\blacktriangledown})^{\Rightarrow\heartsuit}=(\nabla^{\diamondsuit\Rightarrow\heartsuit})^{\blacktriangledown}.

If both ϑ\vartheta and \nabla^{\diamondsuit} are dormant, then \nabla^{\diamondsuit\blacktriangledown} is dormant. Thus, the assignment \nabla^{\diamondsuit}\mapsto\nabla^{\diamondsuit\blacktriangledown} defines an equivalence of categories between the categories of (dormant) (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta)-opers and (dormant) (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta^{\blacktriangledown})-opers.

Suppose that we are given a PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper \mathscr{E}^{\spadesuit} on 𝒳\mathscr{X}. The dual of the (GLn(N),ϑ)(\mathrm{GL}_{n}^{(N)},\vartheta)-oper corresponding to \mathscr{E}^{\spadesuit} induces a PGLn(N)\mathrm{PGL}_{n}^{(N)}-oper

.\displaystyle\mathscr{E}^{\spadesuit\blacktriangledown}. (7.40)

The isomorphism classes of \mathscr{E}^{\spadesuit\blacktriangledown} does not depend on the choice of ϑ\vartheta, and \mathscr{E}^{\spadesuit} is dormant if and only if \mathscr{E}^{\spadesuit\blacktriangledown} is dormant. Also, we have ()(\mathscr{E}^{\spadesuit\blacktriangledown})^{\blacktriangledown}\cong\mathscr{E}^{\spadesuit}.

Proposition 7.3.1.
  • (i)

    The assignment \mathscr{E}^{\spadesuit}\mapsto\mathscr{E}^{\spadesuit\blacktriangledown} is functorial with respect to pull-back over SS, and hence, determines an isomorphism of ¯g,r\overline{\mathcal{M}}_{g,r}-stacks

    D:𝒪pg,r𝒪pg,r(resp.,pD:𝒪pg,rZzz𝒪pg,rZzz),\displaystyle\rotatebox[origin={c}]{180.0}{$D$}:\mathcal{O}p_{g,r}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{O}p_{g,r}\ \left(\text{resp.,}\ {{}^{p}}\rotatebox[origin={c}]{180.0}{$D$}:\mathcal{O}p_{g,r}^{{}^{\mathrm{Zzz...}}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{O}p_{g,r}^{{}^{\mathrm{Zzz...}}}\right), (7.41)

    satisfying DDid\rotatebox[origin={c}]{180.0}{$D$}\circ\rotatebox[origin={c}]{180.0}{$D$}\cong\mathrm{id} (resp., pDpDid{{}^{p}}\rotatebox[origin={c}]{180.0}{$D$}\circ{{}^{p}}\rotatebox[origin={c}]{180.0}{$D$}\cong\mathrm{id}).

  • (b)

    Let ρ\rho be an element of Ξn,N×r\Xi_{n,N}^{\times r}, Then, (7.41) restricts to an isomorphism of ¯g,r\overline{\mathcal{M}}_{g,r}-stacks

    pDρ:𝒪pρ,g,rZzz𝒪pρ,g,rZzz\displaystyle{{}^{p}}\rotatebox[origin={c}]{180.0}{$D$}_{\rho}:\mathcal{O}p_{\rho,g,r}^{{}^{\mathrm{Zzz...}}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{O}p_{\rho^{\veebar},g,r}^{{}^{\mathrm{Zzz...}}} (7.42)

    with pDρpDρid{{}^{p}}\rotatebox[origin={c}]{180.0}{$D$}_{\rho^{\veebar}}\circ{{}^{p}}\rotatebox[origin={c}]{180.0}{$D$}_{\rho}\cong\mathrm{id} (cf. (6.45) for the definition of ()(-)^{\veebar}).

Proof.

Assertion (i) follows from the above discussion. Also, assertion (ii) follows from assertion (i) together with the second assertion of Proposition 4.3.4, (i). ∎

The following assertion is a direct consequence of the above theorem.

Corollary 7.3.2.

Let us keep the assumption in Theorem 6.6.1. Then, for each ρΞ×rn,N\rho\in\Xi^{\times r}_{n,N}, the following equality holds:

deg(Πρ,g,r)=deg(Πρ,g,r).\displaystyle\mathrm{deg}(\Pi_{\rho,g,r})=\mathrm{deg}(\Pi_{\rho^{\veebar},g,r}). (7.43)

7.4. 22d TQFT for dormant PGLn(N)\mathrm{PGL}_{n}^{(N)}-opers

This subsection aims to describe the various factorization properties on the generic degrees Πρ,g,r\Pi_{\rho,g,r} proved so far in terms of 22d TQFTs (= 22-dimensional topological quantum field theories). To begin with, let us briefly recall what a 22d TQFT is. For details on its precise definition, we refer the reader to  [Koc] (or  [Ati],  [DuMu1],  [DuMu2]).

Let us fix a field KK (say, \mathbb{Q} or \mathbb{C}). Denote by 𝒱ectK\mathcal{V}ect_{K} the category consisting of vector spaces over KK and KK-linear maps between them. Equipped with the ordinary tensor product K\otimes_{K} as the multiplication, with the ground field KK as the unit, and with the collection of maps T𝒱ect:={TV,V:VKVVKV}V,VOb(𝒱ectK)T_{\mathcal{V}ect}:=\{T_{V,V^{\prime}}:V\otimes_{K}V^{\prime}\rightarrow V^{\prime}\otimes_{K}V\}_{V,V^{\prime}\in\mathrm{Ob}(\mathcal{V}ect_{K})} given by interchanging the two factors of K\otimes_{K} as the symmetric braiding, the quadruple

(𝒱ectK,K,K,T𝒱ect)\displaystyle(\mathcal{V}ect_{K},\otimes_{K},K,T_{\mathcal{V}ect}) (7.44)

specifies a symmetric monoidal category.

Next, let Σ\Sigma and Σ\Sigma^{\prime} be closed oriented (1)(\ell-1)-dimensional manifolds (>0\ell\in\mathbb{Z}_{>0}). An oriented cobordism from Σ\Sigma to Σ\Sigma^{\prime} is a compact oriented \ell-dimensional manifold MM together with smooth maps ΣM\Sigma\rightarrow M, ΣM\Sigma^{\prime}\rightarrow M such that Σ\Sigma maps diffeomorphically (preserving orientation) onto the in-boundary of MM, and Σ\Sigma^{\prime} maps diffeomorphically (preserving orientation) onto the out-boundary of MM. We will denote it by M:ΣΣM:\Sigma\Rightarrow\Sigma^{\prime}. Two oriented cobordisms M,M:ΣΣM,M^{\prime}:\Sigma\Rightarrow\Sigma^{\prime} are equivalent if there is an orientation-preserving diffeomorphism ψ:MM\psi:M\stackrel{{\scriptstyle\sim}}{{\rightarrow}}M^{\prime} inducing the identity morphisms of Σ\Sigma and Σ\Sigma^{\prime}.

Denote by -𝒞ob\ell\text{-}\mathcal{C}ob the category defined as follows:

  • The objects are (1)(\ell-1)-dimensional closed oriented manifolds;

  • Given two such objects Σ\Sigma and Σ\Sigma^{\prime}, a morphism from Σ\Sigma to Σ\Sigma^{\prime} is an equivalence class of oriented cobordisms M:ΣΣM:\Sigma\Rightarrow\Sigma^{\prime} (in the above sense). The identity morphisms are just the cylinders, and the composition of morphisms is given by gluing cobordism classes.

Equipped with the disjoint union \sqcup as the multiplication, with the empty manifold \emptyset as the unit, and with the collection of twist diffeomorphisms T-𝒞ob:={TΣ,Σ:ΣΣΣΣ}Σ,ΣOb(-𝒞ob)T_{\ell\text{-}\mathcal{C}ob}:=\{T_{\Sigma,\Sigma^{\prime}}:\Sigma\sqcup\Sigma^{\prime}\Rightarrow\Sigma^{\prime}\sqcup\Sigma\}_{\Sigma,\Sigma^{\prime}\in\mathrm{Ob}(\ell\text{-}\mathcal{C}ob)} as the the symmetric braiding, the quadruple

(-𝒞ob,,,T-𝒞ob)\displaystyle(\ell\text{-}\mathcal{C}ob,\sqcup,\emptyset,T_{\ell\text{-}\mathcal{C}ob}) (7.45)

forms a symmetric monoidal category.

Definition 7.4.1 (cf.  [Koc], § 1.3.32).

An \ell-dimensional topological quantum field theory (over KK), or \elld TQFT for short, is a symmetric monoidal functor from (-𝒞ob,,,T-𝒞ob)(\ell\text{-}\mathcal{C}ob,\sqcup,\emptyset,T_{\ell\text{-}\mathcal{C}ob}) to (𝒱ectK,K,K,T𝒱ect)(\mathcal{V}ect_{K},\otimes_{K},K,T_{\mathcal{V}ect}).

Hereinafter, we focus on 22d TQFTs. We can uniquely classify an isomorphism class of objects in 2-𝒞ob2\text{-}\mathcal{C}ob with an integer n0n\in\mathbb{Z}_{\geq 0} indicating the number of connected components, i.e., the number of disjoint circles 𝕊:={(x,y)2|x2+y2=1}\mathbb{S}:=\left\{(x,y)\in\mathbb{R}^{2}\,|\,x^{2}+y^{2}=1\right\}. In other words, the full subcategory whose objects are {𝕊r|r0}\{\mathbb{S}^{r}\,|\,r\in\mathbb{Z}_{\geq 0}\}, where 𝕊0:=\mathbb{S}^{0}:=\emptyset and 𝕊r\mathbb{S}^{r} denotes the disjoint union of rr copies of 𝕊\mathbb{S}, forms a skeleton of 2-𝒞ob2\text{-}\mathcal{C}ob.

Also, each connected oriented cobordism in 2-𝒞ob2\text{-}\mathcal{C}ob may be represented by 𝕄rsg\mathbb{M}^{r\Rightarrow s}_{g} for some triple of nonnegative integers (g,r,s)(g,r,s), where 𝕄rsg\mathbb{M}^{r\Rightarrow s}_{g} denotes a connected, compact oriented surface whose in-boundary and out-boundary are 𝕊r\mathbb{S}^{r} and 𝕊s\mathbb{S}^{s}, respectively. According to  [Koc, Lemma 1.4.19], every oriented cobordism in 2-𝒞ob2\text{-}\mathcal{C}ob factors as a permutation cobordism, followed by a disjoint union of 𝕄rsg\mathbb{M}^{r\Rightarrow s}_{g}’s (for various triples (g,r,s)(g,r,s)), followed by a permutation cobordisms.

It follows that a 22d TQFT 𝒵:𝒱ectK2-𝒞ob\mathcal{Z}:\mathcal{V}ect_{K}\rightarrow 2\text{-}\mathcal{C}ob is uniquely determined by the KK-vector space A:=𝒵(𝕊1)A:=\mathcal{Z}(\mathbb{S}^{1}) and the collection of KK-linear maps

ωrsg:=𝒵(𝕄rsg):Ar(=𝒵(𝕊r))As(=𝒵(𝕊s))\displaystyle\omega^{r\Rightarrow s}_{g}:=\mathcal{Z}(\mathbb{M}^{r\Rightarrow s}_{g}):A^{\otimes r}\left(=\mathcal{Z}(\mathbb{S}^{r})\right)\rightarrow A^{\otimes s}\left(=\mathcal{Z}(\mathbb{S}^{s})\right) (7.46)

for (g,r,s)0×3(g,r,s)\in\mathbb{Z}_{\geq 0}^{\times 3} (where A0:=KA^{\otimes 0}:=K). This collection of data satisfies the following properties (cf.  [DuMu1, § 3],  [DuMu2, Definition 2.1]):

  • (1)

    The KK-linear map ω110\omega^{1\Rightarrow 1}_{0} coincides with idA\mathrm{id}_{A} (because 𝒵\mathcal{Z} is a functor), and ωrsg\omega^{r\Rightarrow s}_{g} (for r1r\geq 1) is symmetric with respect to the action of 𝔖r\mathfrak{S}_{r} (:= the symmetric group of rr letters) arising from permutations of the rr factors in the domain ArA^{\otimes r};

  • (2)

    If ω˘020\breve{\omega}_{0}^{2\Rightarrow 0} denotes the KK-linear morphism AAA\rightarrow A^{\vee} induced by ω200:A2K\omega^{2\Rightarrow 0}_{0}:A^{\otimes 2}\rightarrow K, then the square diagram

    (7.51)

    is commutative for any (g,r,s)(g,r,s).

  • (3)

    For each triples (g1,r1,s1),(g2,r2,s2)0×3(g_{1},r_{1},s_{1}),(g_{2},r_{2},s_{2})\in\mathbb{Z}_{\geq 0}^{\times 3} and each positive integer \ell with s1\ell\leq s_{1} and r2\ell\leq r_{2}, the equality

    (idA(s1)ωg2r2s2)(ωg1r1s1idA(r2))=ωg1+g2+1(r1+r2)(s1+s2)\displaystyle(\mathrm{id}_{A}^{\otimes(s_{1}-\ell)}\otimes\omega_{g_{2}}^{r_{2}\Rightarrow s_{2}})\circ(\omega_{g_{1}}^{r_{1}\Rightarrow s_{1}}\otimes\mathrm{id}_{A}^{\otimes(r_{2}-\ell)})=\omega_{g_{1}+g_{2}+\ell-1}^{(r_{1}+r_{2}-\ell)\Rightarrow(s_{1}+s_{2}-\ell)} (7.52)

    of KK-linear maps A(r1+r2)A(s1+s2)A^{\otimes(r_{1}+r_{2}-\ell)}\rightarrow A^{\otimes(s_{1}+s_{2}-\ell)} (arising from gluing only \ell pairs of boundary circles in two cobordisms) holds;

By the condition (3) for (g1,r1,s1)=(0,0,2)(g_{1},r_{1},s_{1})=(0,0,2), (g2,r2,s2)=(0,2,0)(g_{2},r_{2},s_{2})=(0,2,0), and =1\ell=1, the morphism ω˘020\breve{\omega}_{0}^{2\Rightarrow 0} introduced in (2) turns out to be an isomorphism (i.e., ω200\omega^{2\Rightarrow 0}_{0} is nondegenerate). On the other hand, the case of (g1,r1,s1)=(0,1,2)(g_{1},r_{1},s_{1})=(0,1,2), (g2,r2,s2)=(0,1,0)(g_{2},r_{2},s_{2})=(0,1,0), and =1\ell=1 implies that ω100\omega^{1\Rightarrow 0}_{0} is nontrivial.

Conversely, a KK-vector space AA together with a collection of various KK-linear maps ωgrs:ArAs\omega_{g}^{r\Rightarrow s}:A^{\otimes r}\rightarrow A^{\otimes s} satisfying the conditions (1)-(3) above extends to a unique 22d TQFT over KK.

Returning to our discussion, we obtain the following assertion.

Theorem 7.4.2.

Suppose that Πρ,g,r\Pi_{\rho,g,r} (for any (g,r,ρ)(g,r,\rho)) is étale over all the points of ¯g,r\overline{\mathcal{M}}_{g,r} classifying totally degenerate curves. Then, there exists a unique 22d TQFT

𝒵n,N:(2-𝒞ob,,,T2-𝒞ob)(𝒱ectK,K,K,T𝒱ect)\displaystyle\mathcal{Z}_{n,N}:(2\text{-}\mathcal{C}ob,\sqcup,\emptyset,T_{2\text{-}\mathcal{C}ob})\rightarrow(\mathcal{V}ect_{K},\otimes_{K},K,T_{\mathcal{V}ect}) (7.53)

over KK determined by the following conditions:

  • 𝒵n,N(𝕊1)=KΞn,N\mathcal{Z}_{n,N}(\mathbb{S}^{1})=K^{\Xi_{n,N}}, i.e., the KK-vector space with basis Ξn,N\Xi_{n,N};

  • 𝒵n,N(𝕄000)=idK\mathcal{Z}_{n,N}(\mathbb{M}_{0}^{0\Rightarrow 0})=\mathrm{id}_{K}, and 𝒵n,N(𝕄100)=(Ξn,N)idK(=(pn)pnNnNidK)\mathcal{Z}_{n,N}(\mathbb{M}_{1}^{0\Rightarrow 0})=\sharp(\Xi_{n,N})\cdot\mathrm{id}_{K}\left(=\binom{p}{n}\cdot p^{nN-n-N}\cdot\mathrm{id}_{K}\right);

  • 𝒵n,N(𝕄001):KKΞn,N\mathcal{Z}_{n,N}(\mathbb{M}_{0}^{0\Rightarrow 1}):K\rightarrow K^{\Xi_{n,N}} and 𝒵n,N(𝕄002):K(KΞn,N)2\mathcal{Z}_{n,N}(\mathbb{M}_{0}^{0\Rightarrow 2}):K\rightarrow(K^{\Xi_{n,N}})^{\otimes 2} satisfy

    𝒵n,N(𝕄001)(1)=εand𝒵n,N(𝕄002)(1)=λΞn,Nλλ,\displaystyle\mathcal{Z}_{n,N}(\mathbb{M}_{0}^{0\Rightarrow 1})(1)=\varepsilon\hskip 14.22636pt\text{and}\hskip 14.22636pt\mathcal{Z}_{n,N}(\mathbb{M}_{0}^{0\Rightarrow 2})(1)=\sum_{\lambda\in\Xi_{n,N}}\lambda\otimes\lambda^{\veebar}, (7.54)

    respectively.

  • 𝒵n,N(𝕄010):KΞn,NK\mathcal{Z}_{n,N}(\mathbb{M}_{0}^{1\Rightarrow 0}):K^{\Xi_{n,N}}\rightarrow K and 𝒵n,N(𝕄020):(KΞn,N)2K\mathcal{Z}_{n,N}(\mathbb{M}_{0}^{2\Rightarrow 0}):(K^{\Xi_{n,N}})^{\otimes 2}\rightarrow K satisfy

    𝒵n,N(𝕄010)(λ)={1if λ=ε;0if otherwise,and𝒵n,N(𝕄020)(λη)={1if η=λ;0if otherwise,\displaystyle\mathcal{Z}_{n,N}(\mathbb{M}_{0}^{1\Rightarrow 0})(\lambda)=\begin{cases}1&\text{if $\lambda=\varepsilon$};\\ 0&\text{if otherwise},\end{cases}\hskip 14.22636pt\text{and}\hskip 14.22636pt\mathcal{Z}_{n,N}(\mathbb{M}_{0}^{2\Rightarrow 0})(\lambda\otimes\eta)=\begin{cases}1&\text{if $\eta=\lambda^{\veebar}$};\\ 0&\text{if otherwise},\end{cases} (7.55)

    respectively.

  • For any triple of nonnegative integers (g,r,s)(g,r,s) with 2g2+r+s>02g-2+r+s>0, the KK-linear map 𝒵n,N(𝕄grs):(KΞn,N)r(KΞn,N)s\mathcal{Z}_{n,N}(\mathbb{M}_{g}^{r\Rightarrow s}):(K^{\Xi_{n,N}})^{\otimes r}\rightarrow(K^{\Xi_{n,N}})^{\otimes s} is given by

    𝒵n,N(𝕄grs)(i=1rρi)=(λj)jΞn,N×sdeg(Π((ρi)i,(λj)j),g,r+s)j=1sλj.\displaystyle\mathcal{Z}_{n,N}(\mathbb{M}_{g}^{r\Rightarrow s})(\bigotimes_{i=1}^{r}\rho_{i})=\sum_{(\lambda_{j})_{j}\in\Xi_{n,N}^{\times s}}\mathrm{deg}(\Pi_{((\rho_{i})_{i},(\lambda_{j}^{\veebar})_{j}),g,r+s})\bigotimes_{j=1}^{s}\lambda_{j}. (7.56)
Proof.

For simplicity, we write ωgrs:=𝒵n,N(𝕄grs)\omega_{g}^{r\Rightarrow s}:=\mathcal{Z}_{n,N}(\mathbb{M}_{g}^{r\Rightarrow s}), Ξ:=Ξn,N\Xi:=\Xi_{n,N}, Ξr:=Ξn,N×r\Xi^{r}:=\Xi_{n,N}^{\times r}, and moreover, we abbreviate deg(Π(ρi)i,g,r)\mathrm{deg}(\Pi_{(\rho_{i})_{i},g,r}) to the notation D(ρi)i,g,rD_{(\rho_{i})_{i},g,r} or D(ρi)iD_{(\rho_{i})_{i}} if there is no fear of confusion.

The condition (1) described above is fulfilled because of the definition of 𝒵n,N\mathcal{Z}_{n,N} (together with the fact that D(ρi)iD_{(\rho_{i})_{i}} does not depend on the ordering of (ρi)i(\rho_{i})_{i}).

Given an element λΞ\lambda\in\Xi, we shall write λ\lambda^{\vee} for the element of KΞ(=HomK(KΞ,K))K^{\Xi\vee}\left(=\mathrm{Hom}_{K}(K^{\Xi},K)\right) determined by λ(ρ)=1\lambda^{\vee}(\rho)=1 if λ=ρ\lambda=\rho and λ(ρ)=0\lambda^{\vee}(\rho)=0 if λρΞ\lambda\neq\rho\in\Xi. For each triple (g,r,s)0×3(g,r,s)\in\mathbb{Z}_{\geq 0}^{\times 3} with 2g2+r+s>02g-2+r+s>0 and each (ρi)iΞr(\rho_{i})_{i}\in\Xi^{r}, the following sequence of equalities holds:

(ωgsr)(ω˘020)r(i=1rρi)\displaystyle(\omega_{g}^{s\Rightarrow r})^{\vee}\circ(\breve{\omega}_{0}^{2\Rightarrow 0})^{\otimes r}(\bigotimes_{i=1}^{r}\rho_{i}) =(ωgsr)(i=1r(ρi))\displaystyle=(\omega_{g}^{s\Rightarrow r})^{\vee}(\bigotimes_{i=1}^{r}(\rho_{i}^{\veebar})^{\vee}) (7.57)
=(λj)jD((λj)j,(ρi)i)j=1sλj\displaystyle=\sum_{(\lambda_{j})_{j}}D_{((\lambda_{j})_{j},(\rho_{i})_{i})}\bigotimes_{j=1}^{s}\lambda_{j}^{\vee}
=(ω˘020)s((λj)jD((ρi)i,(λj)j)j=1sλj)\displaystyle=(\breve{\omega}_{0}^{2\Rightarrow 0})^{\otimes s}(\sum_{(\lambda_{j})_{j}}D_{((\rho_{i})_{i},(\lambda_{j})_{j})}\bigotimes_{j=1}^{s}\lambda^{\veebar}_{j})
=(ω˘020)sωgrs(i=1rρi),\displaystyle=(\breve{\omega}_{0}^{2\Rightarrow 0})^{\otimes s}\circ\omega_{g}^{r\Rightarrow s}(\bigotimes_{i=1}^{r}\rho_{i}),

where the third follows from the fact that D((ρi)i,(λj)j)D_{((\rho_{i})_{i},(\lambda_{j})_{j})} does not depend on the ordering of ρ1,,ρr,λ1,,λs\rho_{1},\cdots,\rho_{r},\lambda_{1},\cdots,\lambda_{s}. That is to say, the square diagram (7.51) is commutative. The commutativities for the remaining cases of (g,r,s)(g,r,s)’s are immediately verified, so 𝒵n,N\mathcal{Z}_{n,N} satisfies the condition (2).

Finally, let us take two triples (gj,rj,sj)0×3(g_{j},r_{j},s_{j})\in\mathbb{Z}_{\geq 0}^{\times 3} (j=1,2j=1,2) with 2gj2+rj+sj>02g_{j}-2+r_{j}+s_{j}>0 and a positive integer \ell with s1\ell\leq s_{1} and r2\ell\leq r_{2}. Consider the clutching data

𝔾:=(G,{(gj,rj+sj)}j=12,{λj}j=12)\displaystyle\mathbb{G}:=({{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G,\{(g_{j},r_{j}+s_{j})\}_{j=1}^{2},\{\lambda_{j}\}_{j=1}^{2}) (7.58)

determined by the following conditions:

  • 𝔾\mathbb{G} is of type (g1+g2+1,r1+r2+s1+s22)(g_{1}+g_{2}+\ell-1,r_{1}+r_{2}+s_{1}+s_{2}-2\ell);

  • G:=({v1,v2},{ei}i=1{e1,i}i=1r1+s1{e2,i}i=1r2+s2,ζ){{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G:=(\{v_{1},v_{2}\},\{e_{i}\}_{i=1}^{\ell}\sqcup\{e_{1,i}\}_{i=1}^{r_{1}+s_{1}-\ell}\sqcup\{e_{2,i}\}_{i=1}^{r_{2}+s_{2}-\ell},\zeta), where vjv_{j}’s, eie_{i}’s, and ej,ie_{j,i}’s are abstract symbols, and ζ\zeta is given by ζ(ei)={v1,v2}\zeta(e_{i})=\{v_{1},v_{2}\} (for i=1,,i=1,\cdots,\ell) and ζ(ej,i)={,vj}\zeta(e_{j,i})=\{\circledast,v_{j}\} (for j=1,2j=1,2 and i=1,,rj+sji=1,\cdots,r_{j}+s_{j}-\ell).

  • For each j=1,2j=1,2, the bijection λj:Bvj{1,,rj+sj}\lambda_{j}:B_{v_{j}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\{1,\cdots,r_{j}+s_{j}\} is given by λ(b)=i\lambda(b)=i if bej,ib\in e_{j,i} (1irj+sj1\leq i\leq r_{j}+s_{j}-\ell) and λ(b)=rj+sj+i\lambda(b)=r_{j}+s_{j}-\ell+i if beib\in e_{i}.

By applying Theorem 6.6.1 to this clutching data, we obtain, for each (ρ1,i1)i1Ξr1+s1(\rho_{1,i_{1}})_{i_{1}}\in\Xi^{r_{1}+s_{1}-\ell} and (ρ2,i2)i2Ξr2+s2(\rho_{2,i_{2}})_{i_{2}}\in\Xi^{r_{2}+s_{2}-\ell}, the equality

D((ρ1,i1)i1,(ρ2,i2)i2)=ρ3ΞD((ρ1,i1)i1,ρ3)D((ρ2,i2)i2,ρ3).\displaystyle D_{((\rho_{1,i_{1}})_{i_{1}},(\rho_{2,i_{2}})_{i_{2}})}=\sum_{\rho_{3}\in\Xi^{\ell}}D_{((\rho_{1,i_{1}})_{i_{1}},\rho_{3})}\cdot D_{((\rho_{2,i_{2}})_{i_{2}},\rho_{3}^{\vee})}. (7.59)

It follows that, for (ρi)iΞr1+r2(\rho_{i})_{i}\in\Xi^{r_{1}+r_{2}-\ell}, the following sequence of equalities holds:

(idA(s1)ωg2r2s2)(ωg1r1s1idA(r2))(i=1r1+r2ρi)\displaystyle\ \ \ \ (\mathrm{id}_{A}^{\otimes(s_{1}-\ell)}\otimes\omega_{g_{2}}^{r_{2}\Rightarrow s_{2}})\circ(\omega_{g_{1}}^{r_{1}\Rightarrow s_{1}}\otimes\mathrm{id}_{A}^{\otimes(r_{2}-\ell)})(\bigotimes_{i=1}^{r_{1}+r_{2}-\ell}\rho_{i}) (7.60)
=(idA(s1)ωg2r2s2)((λj)j=1s1Ξs1D((ρi)i=1r1,(λj)j=1s1))j=1s1λji=r1+1r1+r2ρi)\displaystyle=(\mathrm{id}_{A}^{\otimes(s_{1}-\ell)}\otimes\omega_{g_{2}}^{r_{2}\Rightarrow s_{2}})(\sum_{(\lambda_{j})_{j=1}^{s_{1}}\in\Xi^{s_{1}}}D_{((\rho_{i})_{i=1}^{r_{1}},(\lambda_{j}^{\veebar})_{j=1}^{s_{1}})})\bigotimes_{j=1}^{s_{1}}\lambda_{j}\otimes\bigotimes_{i=r_{1}+1}^{r_{1}+r_{2}-\ell}\rho_{i})
=(λj)j=1s1Ξs1(ηj)j=1s2Ξs2D((ρi)i=1r1,(λj)j=1s1)D((λj)j=s1+1s1,(ρi)i=r1+1r1+r2,(ηj)j=1s2)j=1s1λjj=1s2ηj\displaystyle=\sum_{(\lambda_{j})_{j=1}^{s_{1}}\in\Xi^{s_{1}}}\sum_{(\eta_{j^{\prime}})_{j^{\prime}=1}^{s_{2}}\in\Xi^{s_{2}}}D_{((\rho_{i})_{i=1}^{r_{1}},(\lambda_{j}^{\veebar})_{j=1}^{s_{1}})}\cdot D_{((\lambda_{j})_{j=s_{1}-\ell+1}^{s_{1}},(\rho_{i})_{i=r_{1}+1}^{r_{1}+r_{2}-\ell},(\eta_{j^{\prime}}^{\veebar})_{j^{\prime}=1}^{s_{2}})}\bigotimes_{j=1}^{s_{1}-\ell}\lambda_{j}\otimes\bigotimes_{j^{\prime}=1}^{s_{2}}\eta_{j^{\prime}} (7.61)
=(7.59)(λj)j=1s1+1Ξs1(ηj)j=1s2Ξs2D((ρi)i=1r1+r2,(λj)j=1s1,(ηj)j=1s2)j=1s1λjj=1s2ηj\displaystyle\stackrel{{\scriptstyle\eqref{eeQQ420}}}{{=}}\sum_{(\lambda_{j})_{j=1}^{s_{1}-\ell+1}\in\Xi^{s_{1}}}\sum_{(\eta_{j^{\prime}})_{j^{\prime}=1}^{s_{2}}\in\Xi^{s_{2}}}D_{((\rho_{i})_{i=1}^{r_{1}+r_{2}-\ell},(\lambda_{j}^{\veebar})_{j=1}^{s_{1}-\ell},(\eta_{j^{\prime}}^{\veebar})_{j^{\prime}=1}^{s_{2}})}\bigotimes_{j=1}^{s_{1}-\ell}\lambda_{j}\otimes\bigotimes_{j^{\prime}=1}^{s_{2}}\eta_{j^{\prime}}
=ωg1+g2+1(r1+r2)(s1+s2)(i=1r1+r2ρi).\displaystyle=\omega_{g_{1}+g_{2}+\ell-1}^{(r_{1}+r_{2}-\ell)\Rightarrow(s_{1}+s_{2}-\ell)}(\bigotimes_{i=1}^{r_{1}+r_{2}-\ell}\rho_{i}). (7.62)

This proves (7.52). Also, the equalities for the remaining cases of (g1,r1,s1)(g_{1},r_{1},s_{1}) and (g2,r2,s2)(g_{2},r_{2},s_{2}) can be immediately verified from the various results obtained in this section, so 𝒵n,N\mathcal{Z}_{n,N} satisfies the condition (3). Thus, the proof of the assertion is completed. ∎

7.5. Dormant fusion ring

The factorization property of Πρ,g,r\Pi_{\rho,g,r}’s resulting from Theorem 6.6.1 is also described in terms of fusion rules, which can be essentially regarded as a special type of 22d TQFT in a certain sense. Applying a discussion in the general theory of fusion rules (cf.  [Beau]), we will see that our fusion rule associates a commutative ring encoding this factorization property, as well as the data of the values deg(Πρ,g,r)\mathrm{deg}(\Pi_{\rho,g,r}).

Let II be a finite set with an involution ()(-)^{*} (i.e., a bijection of order 22). Denote by I:=aIa\mathbb{N}^{I}:=\bigoplus_{a\in I}\mathbb{N}a be the free commutative monoid generated by the elements of II. The involution of II extends, in an evident manner, to an involution of I\mathbb{N}^{I}.

Definition 7.5.1 (cf.  [Beau], § 5, Definition).

A fusion rule on II is a map F:IF:\mathbb{N}^{I}\rightarrow\mathbb{Z} satisfying the following three conditions:

  • (1)

    One has F(0)=1F(0)=1, and F(α)>0F(\alpha)>0 for some αI\alpha\in I;

  • (2)

    F(x)=F(x)F(x^{*})=F(x) for every xIx\in\mathbb{N}^{I};

  • (3)

    For xx, y(I)y\in\mathbb{N}^{(I)}, one has F(x+y)=λIF(x+λ)F(y+λ)F(x+y)=\sum_{\lambda\in I}F(x+\lambda)\cdot F(y+\lambda^{*}).

Also, a fusion rule FF on II is said to be nondegenerate if it satisfies the following condition:

  • (4)

    For any αI\alpha\in I, there exists an element βI\beta\in I with F(α+β)0F(\alpha+\beta)\neq 0.

Now, suppose that Πρ,g,r:=Πn,N,ρ,g,r,𝔽p\Pi_{\rho,g,r}:=\Pi_{n,N,\rho,g,r,\mathbb{F}_{p}} (for any (g,r,ρ)(g,r,\rho)) is étale over all the points of ¯g,r\overline{\mathcal{M}}_{g,r} classifying totally degenerate curves. Write

Fn,N:Ξn,N\displaystyle F_{n,N}:\mathbb{N}^{\Xi_{n,N}}\rightarrow\mathbb{Z} (7.63)

for the map determined by the following rules:

  • Fn,N(0):=1F_{n,N}(0):=1;

  • For λΞn,N\lambda\in\Xi_{n,N}, we set Fn,N(λ):=1F_{n,N}(\lambda):=1 if λ=ε\lambda=\varepsilon and Fn,N(λ)=0F_{n,N}(\lambda)=0 if otherwise;

  • For (λ,η)Ξn,N×2(\lambda,\eta)\in\Xi_{n,N}^{\times 2}, we set Fn,N(λ+η):=1F_{n,N}(\lambda+\eta):=1 if η=λ\eta=\lambda^{\vee} and Fn,N(λ+η):=0F_{n,N}(\lambda+\eta):=0 if otherwise;

  • For any (ρi)iΞn,N×r(\rho_{i})_{i}\in\Xi_{n,N}^{\times r} (with r3r\geq 3), we set Fn,N(i=1rρi):=deg(Π(ρi)i,0,r)F_{n,N}(\sum_{i=1}^{r}\rho_{i}):=\mathrm{deg}(\Pi_{(\rho_{i})_{i},0,r}).

Regarding this map, one can prove the following assertion, which is a higher-level generalization of  [Wak8, Proposition 7.33].

Theorem 7.5.2.

(Recall that we have assumed that the morphism Πρ,g,r\Pi_{\rho,g,r} for any (g,r,ρ)(g,r,\rho) is étale over all the points of ¯g,r\overline{\mathcal{M}}_{g,r} classifying totally degenerate curves.) The map Fn,NF_{n,N} forms a nondegenerate fusion rule on the finite set Ξn,N\Xi_{n,N} (with respect to the involution ()(-)^{\veebar}).

Proof.

The conditions (1) and (4) are fulfilled because of the definition of Fn,NF_{n,N} and Corollary 7.2.2. Also, Corollary 7.3.2 and (6.87) show that Fn,NF_{n,N} satisfies the conditions (2) and (3), respectively. ∎

According to the discussion in  [Beau, § 5], the fusion rule Fn,NF_{n,N} associates a ring encoding its structure. To be precise, we define a multiplication law :Ξn,N×Ξn,NΞn,N*:\mathbb{Z}^{\Xi_{n,N}}\times\mathbb{Z}^{\Xi_{n,N}}\rightarrow\mathbb{Z}^{\Xi_{n,N}} on Ξn,N\mathbb{Z}^{\Xi_{n,N}} by putting

αβ=λΞn,NFn,N(α+β+λ)λ\displaystyle\alpha*\beta=\sum_{\lambda\in\Xi_{n,N}}F_{n,N}(\alpha+\beta+\lambda^{\veebar})\lambda (7.64)

for any α,βΞn,N\alpha,\beta\in\Xi_{n,N}, and extending by bilinearity. The abelian group Ξn,N\mathbb{Z}^{\Xi_{n,N}} together with this multiplication law defines a unital, associative, and commutative ring

𝕐n,N\displaystyle\rotatebox[origin={c}]{180.0}{$\mathbb{Y}$}_{n,N} (7.65)

with identity element ε\varepsilon.

The tensor product KΞn,N:=K𝕐n,NK^{\Xi_{n,N}}:=K\otimes_{\mathbb{Z}}\rotatebox[origin={c}]{180.0}{$\mathbb{Y}$}_{n,N} (for the field KK fixed at the beginning of § 7.4) may be identified with the Frobenius algebra corresponding to the 22d TQFT 𝒵n,N\mathcal{Z}_{n,N}, and the Frobenius pairing is determined by (α,β)Fn,N(α+β)(\alpha,\beta)\mapsto F_{n,N}(\alpha+\beta) for α,βΞn,N\alpha,\beta\in\Xi_{n,N}. (Recall from, e.g.,  [Koc, § 2.2.5], that a Frobenius algebra over KK is a KK-algebra of finite dimension equipped with an associative nondegenerate pairing AKAKA\otimes_{K}A\rightarrow K, called the Frobenius pairing. As a classical result, there exists an equivalence of categories between the category of 22d TQFTs over KK and the category of commutative Frobenius algebras over KK. See  [Koc, Theorem 3.3.2].) Since 𝕐n,N\mathbb{C}\otimes_{\mathbb{Z}}\rotatebox[origin={c}]{180.0}{$\mathbb{Y}$}_{n,N} is isomorphic to a direct product of copies of \mathbb{C} (cf.  [Beau, Proposition 6.1]), the Frobenius algebra defined for 𝒵n,N\mathcal{Z}_{n,N} is semisimple.

Definition 7.5.3.

We shall refer to 𝕐n,N\rotatebox[origin={c}]{180.0}{$\mathbb{Y}$}_{n,N} as the dormant fusion ring of type PGLn(N)\mathrm{PGL}_{n}^{(N)}.

We shall write

𝔖n,N(:=Hom(𝕐n,N,))\displaystyle\mathfrak{S}_{n,N}\left(:=\mathrm{Hom}(\rotatebox[origin={c}]{180.0}{$\mathbb{Y}$}_{n,N},\mathbb{C})\right) (7.66)

for the set of ring homomorphisms 𝕐n,N\rotatebox[origin={c}]{180.0}{$\mathbb{Y}$}_{n,N}\rightarrow\mathbb{C}, i.e., the set of \mathbb{C}-rational points of Spec(𝕐n,N)\mathrm{Spec}(\rotatebox[origin={c}]{180.0}{$\mathbb{Y}$}_{n,N}). Also, write

Casn,N:=λΞn,Nλλ(𝕐n,N).\displaystyle\mathrm{Cas}_{n,N}:=\sum_{\lambda\in\Xi_{n,N}}\lambda*\lambda^{\veebar}\left(\in\rotatebox[origin={c}]{180.0}{$\mathbb{Y}$}_{n,N}\right). (7.67)

An explicit knowledge of the ring homomorphisms 𝕐n,N\rotatebox[origin={c}]{180.0}{$\mathbb{Y}$}_{n,N}\rightarrow\mathbb{C} and the element Casn,N\mathrm{Cas}_{n,N} of 𝕐n,N\rotatebox[origin={c}]{180.0}{$\mathbb{Y}$}_{n,N} allow us to perform some computation that we need in the ring 𝕐n,N\rotatebox[origin={c}]{180.0}{$\mathbb{Y}$}_{n,N}, as follows.

Proposition 7.5.4.

(Recall that we have assumed that the morphism Πρ,g,r\Pi_{\rho,g,r} for any (g,r,ρ)(g,r,\rho) is étale over all the points of ¯g,r\overline{\mathcal{M}}_{g,r} classifying totally degenerate curves.) Let (g,r)(g,r) be a pair of nonnegative integers with 2g2+r>02g-2+r>0 and ρ:=(ρi)i\rho:=(\rho_{i})_{i} an element of Ξn,N×r\Xi_{n,N}^{\times r}. Then, the following equality holds:

deg(Πρ,g,r)=χ𝔖n,Nχ(Casn,N)g1i=1rχ(ρi).\displaystyle\mathrm{deg}(\Pi_{\rho,g,r})=\sum_{\chi\in\mathfrak{S}_{n,N}}\chi(\mathrm{Cas}_{n,N})^{g-1}\cdot\prod_{i=1}^{r}\chi(\rho_{i}). (7.68)

Moreover, if r=0r=0 (which implies g>1g>1), then this equality means

deg(Π,g,0)=χ𝔖n,Nχ(Casn,N)g1.\displaystyle\mathrm{deg}(\Pi_{\emptyset,g,0})=\sum_{\chi\in\mathfrak{S}_{n,N}}\chi(\mathrm{Cas}_{n,N})^{g-1}. (7.69)
Proof.

The assertion follows from  [Beau, Proposition 6.3] and the fact that, in our situation here, the map “NgN_{g}” introduced in  [Beau, Proposition 5.9] coincides with the degree function i=1rρideg(Π(ρi),g,r)\sum_{i=1}^{r}\rho_{i}\mapsto\mathrm{deg}(\Pi_{(\rho_{i}),g,r}). ∎

8. Deformation theory of dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers

This section focuses on the study of dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers in characteristic pp from the viewpoint of deformation theory. By applying cohomological descriptions of their deformation spaces, we prove that the moduli space 𝒪pZzz2,N,g,r,𝔽p\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,r,\mathbb{F}_{p}} is smooth (cf. Corollary 8.3.6, (i)) and the projection onto ¯g,r\overline{\mathcal{M}}_{g,r} is generically étale (cf. Theorem 8.7.1).

Let BB denote the Borel subgroup of PGL2\mathrm{PGL}_{2} consisting of the images of invertible upper triangular 2×22\times 2 matrices via the quotient GL2PGL2\mathrm{GL}_{2}\twoheadrightarrow\mathrm{PGL}_{2}. Also, denote by 𝔤\mathfrak{g} and 𝔟\mathfrak{b} the Lie algebras of PGL2\mathrm{PGL}_{2} and BB, respectively.

Next, let us fix a positive integer NN and a pair of nonnegative integers (g,r)(g,r) with 2g2+r>02g-2+r>0. Throughout this section, we suppose that p>2p>2, and the Deligne-Mumford stack 𝒪pZzz2,N,g,r,𝔽p\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,r,\mathbb{F}_{p}} (resp., 𝒪pZzz2,N,ρ,g,r,𝔽p\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,\rho,g,r,\mathbb{F}_{p}} for ρΞ2,N×r\rho\in\Xi_{2,N}^{\times r}) will be denoted by 𝒪pZzzg,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r} (resp., 𝒪pZzzρ,g,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{\rho,g,r}) if there is no fear of confusion. By using the bijection (6.30), we identify Ξ2,N\Xi_{2,N} with the set (/pN)×/{±1}(\mathbb{Z}/p^{N}\mathbb{Z})^{\times}/\{\pm 1\}.

8.1. Adjoint bundle associated to a dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper

Let SS be a scheme over 𝔽p\mathbb{F}_{p} and 𝒳:=(f:XS,{σi}i=1r)\mathscr{X}:=(f:X\rightarrow S,\{\sigma_{i}\}_{i=1}^{r}) an rr-pointed stable curve of genus gg over SS. In particular, we obtain a log curve Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. For simplicity, we write Ω:=ΩXlog/Slog\Omega:=\Omega_{X^{\mathrm{log}}/S^{\mathrm{log}}}, 𝒯:=𝒯Xlog/Slog\mathcal{T}:=\mathcal{T}_{X^{\mathrm{log}}/S^{\mathrm{log}}}, and 𝒟(N1):=𝒟(N1)Xlog/Slog\mathcal{D}^{(N-1)}:=\mathcal{D}^{(N-1)}_{X^{\mathrm{log}}/S^{\mathrm{log}}}.

Let ρ:=(ρi)i=1r\rho:=(\rho_{i})_{i=1}^{r} be an element of ((/pN)×/{±1})×r((\mathbb{Z}/p^{N}\mathbb{Z})^{\times}/\{\pm 1\})^{\times r} (where ρ:=\rho:=\emptyset if r=0r=0). For each i=1,,ri=1,\cdots,r, we denote by λ~i\widetilde{\lambda}_{i} the unique integer with 0λ~ipN120\leq\widetilde{\lambda}_{i}\leq\frac{p^{N}-1}{2} mapped to ρi\rho_{i} via the natural quotient (/pN)/{±1}\mathbb{Z}\twoheadrightarrow(\mathbb{Z}/p^{N}\mathbb{Z})/\{\pm 1\}. Also, denote by λi\lambda_{i} the image of λ~i\widetilde{\lambda}_{i} via /pN\mathbb{Z}\twoheadrightarrow\mathbb{Z}/p^{N}\mathbb{Z}.

Next, let :=(B,ϕ)\mathscr{E}^{\spadesuit}:=(\mathcal{E}_{B},\phi) be a dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper on 𝒳\mathscr{X} of radii ρ\rho, and let π:X\pi:\mathcal{E}\rightarrow X be the PGL2\mathrm{PGL}_{2}-bundle induced from B\mathcal{E}_{B}. In particular, we obtain the 𝒪X\mathcal{O}_{X}-algebra 𝒪\mathcal{O}_{\mathcal{E}} corresponding to \mathcal{E} (cf. the discussion following Remark 2.3.3). By pulling-back the log structure of XlogX^{\mathrm{log}} via π\pi, one may obtain a log structure on \mathcal{E}; we denote the resulting log scheme by log\mathcal{E}^{\mathrm{log}}. The PGL2\mathrm{PGL}_{2}-action on \mathcal{E} induces a PGL2\mathrm{PGL}_{2}-action on the direct image π(𝒯log/Slog)\pi_{*}(\mathcal{T}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}) of 𝒯log/Slog\mathcal{T}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}, so we obtain

𝒯~log/Slog:=π(𝒯log/Slog)PGL2,\displaystyle\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}:=\pi_{*}(\mathcal{T}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}})^{\mathrm{PGL}_{2}}, (8.1)

i.e., 𝒯~log/Slog\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}} is the subsheaf of PGL2\mathrm{PGL}_{2}-invariant sections of π(𝒯log/Slog)\pi_{*}(\mathcal{T}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}).

Denote by 𝔤\mathfrak{g}_{\mathcal{E}} (resp., 𝔟B\mathfrak{b}_{\mathcal{E}_{B}}) the adjoint vector bundle of \mathcal{E} (resp., B\mathcal{E}_{B}), i.e., the vector bundle on XX associated to \mathcal{E} (resp., B\mathcal{E}_{B}) via change of structure group by the adjoint representation PGL2GL(𝔤)\mathrm{PGL}_{2}\rightarrow\mathrm{GL}(\mathfrak{g}) (resp., BGL(𝔟)B\rightarrow\mathrm{GL}(\mathfrak{b})). We regard 𝔤\mathfrak{g}_{\mathcal{E}} as an 𝒪X\mathcal{O}_{X}-submodule of nd𝒪S(𝒪)\mathcal{E}nd_{\mathcal{O}_{S}}(\mathcal{O}_{\mathcal{E}}) under the natural identification 𝔤=π(𝒯/X)PGL2(=π(𝒯log/Xlog)PGLn)\mathfrak{g}_{\mathcal{E}}=\pi_{*}(\mathcal{T}_{\mathcal{E}/X})^{\mathrm{PGL}_{2}}\left(=\pi_{*}(\mathcal{T}_{\mathcal{E}^{\mathrm{log}}/X^{\mathrm{log}}})^{\mathrm{PGL}_{n}}\right). Differentiating π\pi yields a short exact sequence of 𝒪X\mathcal{O}_{X}-modules

0𝔤inclusion𝒯~log/Slogd𝒯0\displaystyle 0\rightarrow\mathfrak{g}_{\mathcal{E}}\xrightarrow{\mathrm{inclusion}}\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}\xrightarrow{d_{\mathcal{E}}}\mathcal{T}\rightarrow 0 (8.2)

(cf.  [Wak8, § 1.2.5]).

Note that ϕ\phi induces a 𝒟(N1)\mathcal{D}^{(N-1)}-module structure

adϕ:L𝒟(N1)nd𝒪S(𝔤)\displaystyle\nabla^{\mathrm{ad}}_{\phi}:{{}^{L}}\mathcal{D}^{(N-1)}\rightarrow\mathcal{E}nd_{\mathcal{O}_{S}}(\mathfrak{g}_{\mathcal{E}}) (8.3)

on 𝔤\mathfrak{g}_{\mathcal{E}}. To be precise, if ϕ\phi^{\natural\natural} denotes the 𝒟(N1)\mathcal{D}^{(N-1)}-module structure on 𝒪\mathcal{O}_{\mathcal{E}} corresponding to ϕ\phi (cf. Remark 2.3.4), then adϕ\nabla^{\mathrm{ad}}_{\phi} is given by adϕ(D)(v)=[ϕ(D),v]\nabla^{\mathrm{ad}}_{\phi}(D)(v)=[\phi^{\natural\natural}(D),v] for any local sections D𝒟(N1)D\in\mathcal{D}^{(N-1)} and v𝔤v\in\mathfrak{g}_{\mathcal{E}}. In particular, we obtain a 𝒟(N1)\mathcal{D}^{(N-1)}-module (𝔤,ϕad)(\mathfrak{g}_{\mathcal{E}},\nabla_{\phi}^{\mathrm{ad}}), which has vanishing pNp^{N}-curvature.

Recall from  [Wak8, § 2.1.2] that there exists a canonical 33-step decreasing filtration

0=𝔤2𝔤1𝔤0𝔤1=𝔤\displaystyle 0=\mathfrak{g}_{\mathcal{E}}^{2}\subseteq\mathfrak{g}_{\mathcal{E}}^{1}\subseteq\mathfrak{g}_{\mathcal{E}}^{0}\subseteq\mathfrak{g}_{\mathcal{E}}^{-1}=\mathfrak{g}_{\mathcal{E}} (8.4)

on 𝔤\mathfrak{g}_{\mathcal{E}} together with natural identifications 𝔤i/𝔤i+1=Ωi\mathfrak{g}_{\mathcal{E}}^{i}/\mathfrak{g}_{\mathcal{E}}^{i+1}=\Omega^{\otimes i} (i=1,0,1i=-1,0,1) and 𝔤0=𝔟B\mathfrak{g}_{\mathcal{E}}^{0}=\mathfrak{b}_{\mathcal{E}_{B}}. Then, we can prove the following assertion.

Proposition 8.1.1.

The collection of data

𝔤:=(𝔤,ϕad,{𝔤j1}j=03)\displaystyle\mathfrak{g}_{\mathcal{E}}^{\heartsuit}:=(\mathfrak{g}_{\mathcal{E}},\nabla_{\phi}^{\mathrm{ad}},\{\mathfrak{g}_{\mathcal{E}}^{j-1}\}_{j=0}^{3}) (8.5)

forms a dormant GL3(N)\mathrm{GL}_{3}^{(N)}-oper on 𝒳\mathscr{X}. Moreover, for each i=1,,ri=1,\cdots,r, the exponent of 𝔤\mathfrak{g}_{\mathcal{E}}^{\heartsuit} at σi\sigma_{i} coincides with [0,λi,λi][0,\lambda_{i},-\lambda_{i}].

Proof.

Let us fix a dormant 2(N)2^{(N)}-theta characteristic ϑ:=(Θ,ϑ)\vartheta:=(\varTheta,\nabla_{\vartheta}) of Xlog/SlogX^{\mathrm{log}}/S^{\mathrm{log}}. The dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper \mathscr{E}^{\spadesuit} corresponds to a dormant (GL2(N),ϑ)(\mathrm{GL}_{2}^{(N)},\vartheta)-oper :=(,,{j}j)\mathscr{F}^{\heartsuit}:=(\mathcal{F},\nabla,\{\mathcal{F}^{j}\}_{j}) on 𝒳\mathscr{X} via the isomorphism ΛZzz\Lambda_{\diamondsuit\Rightarrow\spadesuit}^{{}^{\mathrm{Zzz...}}} (cf. Theorem 5.5.1). Let nd0()\mathcal{E}nd^{0}(\mathcal{F}) denote the sheaf of 𝒪X\mathcal{O}_{X}-linear endomorphisms of \mathcal{F} with vanishing trace. This sheaf has a decreasing filtration

0=nd0()2nd0()1nd0()0nd0()1=nd()\displaystyle 0=\mathcal{E}nd^{0}(\mathcal{F})^{2}\subseteq\mathcal{E}nd^{0}(\mathcal{F})^{1}\subseteq\mathcal{E}nd^{0}(\mathcal{F})^{0}\subseteq\mathcal{E}nd^{0}(\mathcal{F})^{-1}=\mathcal{E}nd(\mathcal{F}) (8.6)

determined by the condition that nd0()1\mathcal{E}nd^{0}(\mathcal{F})^{1} (resp., nd0()\mathcal{E}nd^{0}(\mathcal{F})) consists of local sections hh with h(1)=0h(\mathcal{F}^{1})=0 (resp., h(1)1h(\mathcal{F}^{1})\subseteq\mathcal{F}^{1}). Also, nd0()\mathcal{E}nd^{0}(\mathcal{F}) admits a 𝒟(N1)\mathcal{D}^{(N-1)}-module structure nd0\nabla_{\mathcal{E}nd^{0}} induced naturally from \nabla. One may verify that the resulting collection

(nd0(),nd0,{nd0()j1}j=03)\displaystyle(\mathcal{E}nd^{0}(\mathcal{F}),\nabla_{\mathcal{E}nd^{0}},\{\mathcal{E}nd^{0}(\mathcal{F})^{j-1}\}_{j=0}^{3}) (8.7)

forms a dormant GL3(N)\mathrm{GL}_{3}^{(N)}-oper on 𝒳\mathscr{X}. On the other hand, there exists a canonical identification nd0()=𝔤\mathcal{E}nd^{0}(\mathcal{F})=\mathfrak{g}_{\mathcal{E}}, by which {nd0()j1}j\{\mathcal{E}nd^{0}(\mathcal{F})^{j-1}\}_{j} and nd0\nabla_{\mathcal{E}nd^{0}} correspond to {𝔤j1}j\{\mathfrak{g}_{\mathcal{E}}^{j-1}\}_{j} and ϕad\nabla_{\phi}^{\mathrm{ad}}, respectively. This implies that 𝔤\mathfrak{g}_{\mathcal{E}}^{\heartsuit} is a dormant GL3(N)\mathrm{GL}_{3}^{(N)}-oper. This proves the first assertion.

Next, to prove the second assertion, we fix i{1,,r}i\in\{1,\cdots,r\}. Let [di,1,di,2][d_{i,1},d_{i,2}] be the exponent of \mathscr{F}^{\heartsuit} at σi\sigma_{i}. Since \mathscr{F}^{\heartsuit\Rightarrow\spadesuit}\cong\mathscr{E}^{\spadesuit}, the equality di,1di,2=λid_{i,1}-d_{i,2}=\lambda_{i} holds. We see that the exponent of nd0\nabla_{\mathcal{E}nd^{0}} at σi\sigma_{i} is given by [0,di,1di,2,di,2di,1]=[0,λi,λi][0,d_{i,1}-d_{i,2},d_{i,2}-d_{i,1}]=[0,\lambda_{i},-\lambda_{i}] (cf. Proposition 4.3.4, (i)), which completes the proof of the second assertion. ∎

Proposition 8.1.2.

Let us fix a{0,1,,N1}a\in\{0,1,\cdots,N-1\}, and write Ω(a):=ΩX(a)log/Slog\Omega^{(a)}:=\Omega_{X^{(a)\mathrm{log}}/S^{\mathrm{log}}}. Recall that (𝔤,ϕad)(\mathfrak{g}_{\mathcal{E}},\nabla_{\phi}^{\mathrm{ad}}) induces a flat module (𝔤[a],ϕad[a]:𝔤[a]Ω(a)𝔤[a])(\mathfrak{g}_{\mathcal{E}}^{[a]},\nabla_{\phi}^{\mathrm{ad}[a]}:\mathfrak{g}_{\mathcal{E}}^{[a]}\rightarrow\Omega^{(a)}\otimes\mathfrak{g}_{\mathcal{E}}^{[a]}) on X(a)log/SlogX^{(a)\mathrm{log}}/S^{\mathrm{log}} with vanishing pp-curvature (cf. (2.86), Proposition 2.6.1, (i) and (ii)).

  • (i)

    The following equalities of 𝒪S\mathcal{O}_{S}-modules hold:

    2f(𝒦[ad[a]ϕ])=f(Ker(ϕad[a]))=1f(Coker(ad[a]ϕ))=0.\displaystyle\mathbb{R}^{2}f_{*}(\mathcal{K}^{\bullet}[\nabla^{\mathrm{ad}[a]}_{\phi}])=f_{*}(\mathrm{Ker}(\nabla_{\phi}^{\mathrm{ad}[a]}))=\mathbb{R}^{1}f_{*}(\mathrm{Coker}(\nabla^{\mathrm{ad}[a]}_{\phi}))=0. (8.8)
  • (ii)

    1f(𝒦[ad[a]ϕ])\mathbb{R}^{1}f_{*}(\mathcal{K}^{\bullet}[\nabla^{\mathrm{ad}[a]}_{\phi}]) is a vector bundle on SS of rank 6g6+3r6g-6+3r. Also, 1f(Ker(ϕad[a]))\mathbb{R}^{1}f_{*}(\mathrm{Ker}(\nabla_{\phi}^{\mathrm{ad}[a]})) and f(Coker(ad[a]ϕ))f_{*}(\mathrm{Coker}(\nabla^{\mathrm{ad}[a]}_{\phi}))) are vector bundles on SS of rank 3g3+r3g-3+r and 3g3+2r3g-3+2r, respectively. In particular, 1f(𝒮ol(ϕad))\mathbb{R}^{1}f_{*}(\mathcal{S}ol(\nabla_{\phi}^{\mathrm{ad}})) is a vector bundle of rank 3g3+r3g-3+r.

Proof.

We shall prove both assertions (i) and (ii) by induction on aa. The base step, i.e., the case of a=0a=0, was already proved in  [Wak8, Propositions 6.5, (ii), and 6.18]. To consider the induction step, we shall suppose that the assertions with aa replaced by a1a-1 (a1a\geq 1) have been proved. For simplicity, we write [a]:=𝔤[a]\mathcal{F}^{[a]}:=\mathfrak{g}_{\mathcal{E}}^{[a]} and [a]:=ϕad[a]\nabla^{[a]}:=\nabla_{\phi}^{\mathrm{ad}[a]}.

First, we shall consider assertion (i). Since Ker([a])Ker([a1])\mathrm{Ker}(\nabla^{[a]})\subseteq\mathrm{Ker}(\nabla^{[a-1]}), the equality

f(Ker([a]))=0\displaystyle f_{*}(\mathrm{Ker}(\nabla^{[a]}))=0 (8.9)

holds because of the induction hypothesis f(Ker([a1]))=0f_{*}(\mathrm{Ker}(\nabla^{[a-1]}))=0. On the other hand, let us consider the Hodge to de Rham spectral sequence

E1q1,q2:=q2f(𝒦q1[[a]])q1+q2f(𝒦[[a]])\displaystyle^{\prime}E_{1}^{q_{1},q_{2}}:=\mathbb{R}^{q_{2}}f_{*}(\mathcal{K}^{q_{1}}[\nabla^{[a]}])\Rightarrow\mathbb{R}^{q_{1}+q_{2}}f_{*}(\mathcal{K}^{\bullet}[\nabla^{[a]}]) (8.10)

associated to the complex 𝒦[[a]]\mathcal{K}^{\bullet}[\nabla^{[a]}] (cf.  [Wak8, Eq. (755)]). Since the relative dimension dim(X/S)\mathrm{dim}(X/S) of X/SX/S is 11, the equality 2f([a])=0\mathbb{R}^{2}f_{*}(\mathcal{F}^{[a]})=0 holds. It follows that the sequence

1f([a])1f([a])1f(Ω(a)[a])2f(𝒦[[a]])0\displaystyle\mathbb{R}^{1}f_{*}(\mathcal{F}^{[a]})\xrightarrow{\mathbb{R}^{1}f_{*}(\nabla^{[a]})}\mathbb{R}^{1}f_{*}(\Omega^{(a)}\otimes\mathcal{F}^{[a]})\rightarrow\mathbb{R}^{2}f_{*}(\mathcal{K}^{\bullet}[\nabla^{[a]}])\rightarrow 0 (8.11)

induced by (8.10) is exact. By the comment following  [Og, Proposition 1.2.4], 1f(Ω(a)[a])\mathbb{R}^{1}f_{*}(\Omega^{(a)}\otimes\mathcal{F}^{[a]}) is isomorphic to 1f(Coker([a1]))\mathbb{R}^{1}f_{*}(\mathrm{Coker}(\nabla^{[a-1]})). But, the equality 1f(Coker([a1]))=0\mathbb{R}^{1}f_{*}(\mathrm{Coker}(\nabla^{[a-1]}))=0 holds by the induction hypothesis, so the exactness of (8.11) implies

2f(𝒦[[a]])=0.\displaystyle\mathbb{R}^{2}f_{*}(\mathcal{K}^{\bullet}[\nabla^{[a]}])=0. (8.12)

Moreover, consider the conjugate spectral sequence

E2q1,q2:=q1f(q2(𝒦[[a]]))q1+q2f(𝒦[[a]])\displaystyle^{\prime\prime}E_{2}^{q_{1},q_{2}}:=\mathbb{R}^{q_{1}}f_{*}(\mathcal{H}^{q_{2}}(\mathcal{K}^{\bullet}[\nabla^{[a]}]))\Rightarrow\mathbb{R}^{q_{1}+q_{2}}f_{*}(\mathcal{K}^{\bullet}[\nabla^{[a]}]) (8.13)

associated to 𝒦[[a]]\mathcal{K}^{\bullet}[\nabla^{[a]}] (cf.  [Wak8, Eq. (757)]). Since the equality 2f(Ker([a]))=0\mathbb{R}^{2}f_{*}(\mathrm{Ker}(\nabla^{[a]}))=0 holds because of dim(X/S)=1\mathrm{dim}(X/S)=1, the morphism 2f(𝒦[[a]])1f(Coker([a]))\mathbb{R}^{2}f_{*}(\mathcal{K}^{\bullet}[\nabla^{[a]}])\rightarrow\mathbb{R}^{1}f_{*}(\mathrm{Coker}(\nabla^{[a]})) induced by (8.13) is surjective. Hence, it follows from (8.12) that

1f(Coker([a]))=0.\displaystyle\mathbb{R}^{1}f_{*}(\mathrm{Coker}(\nabla^{[a]}))=0. (8.14)

By (8.9), (8.12), and (8.14), the proof of assertion (i) is completed.

Next, we shall consider assertion (ii). It follows from Proposition 2.6.2, (i), that Ker([a])\mathrm{Ker}(\nabla^{[a]}) is a relatively torsion-free sheaf on X(a+1)X^{(a+1)}. Also, since Coker([a])\mathrm{Coker}(\nabla^{[a]}) is isomorphic to Ω(a+1)Ker([a])\Omega^{(a+1)}\otimes\mathrm{Ker}(\nabla^{[a]}) (cf. the comment following  [Og, Proposition 1.2.4]), Coker([a])\mathrm{Coker}(\nabla^{[a]}) is a relatively torsion-free sheaf on X(a+1)X^{(a+1)}. By the equality 2f(Ker([a]))=0\mathbb{R}^{2}f_{*}(\mathrm{Ker}(\nabla^{[a]}))=0 and (8.14), both 1f(Ker([a]))\mathbb{R}^{1}f_{*}(\mathrm{Ker}(\nabla^{[a]})) and f(Coker([a]))f_{*}(\mathrm{Coker}(\nabla^{[a]})) turn out to be vector bundles (cf.  [Har, Chap. III, Theorem 12.11, (b)]). Moreover, the exactness of the sequence

0f(Ω(a)[a])(=f(Coker([a1])))\displaystyle 0\rightarrow f_{*}(\Omega^{(a)}\otimes\mathcal{F}^{[a]})\left(=f_{*}(\mathrm{Coker}(\nabla^{[a-1]}))\right) 1f(𝒦[[a]])\displaystyle\rightarrow\mathbb{R}^{1}f_{*}(\mathcal{K}^{\bullet}[\nabla^{[a]}]) (8.15)
1f([a])(=1f(Ker([a1])))0\displaystyle\rightarrow\mathbb{R}^{1}f_{*}(\mathcal{F}^{[a]})\left(=\mathbb{R}^{1}f_{*}(\mathrm{Ker}(\nabla^{[a-1]}))\right)\rightarrow 0

induced by (8.10) and the induction hypothesis together imply that 1f(𝒦[[a]])\mathbb{R}^{1}f_{*}(\mathcal{K}^{\bullet}[\nabla^{[a]}]) is a vector bundle.

In what follows, we shall compute the ranks of the vector bundles under consideration. To this end, we may assume that S=Spec(k)S=\mathrm{Spec}(k) for an algebraically closed field kk over 𝔽p\mathbb{F}_{p}. Denote by 𝒳(a)\mathscr{X}^{(a)} the pointed stable curve obtained as the aa-th Frobenius twist of 𝒳\mathscr{X} over kk, and by D(a)D^{(a)} the reduced effective divisor on X(a)X^{(a)} determined by the union of the marked points of 𝒳(a)\mathscr{X}^{(a)}. For each flat module (𝒱,𝒱)(\mathcal{V},\nabla_{\mathcal{V}}) on X(a)log/klogX^{(a)\mathrm{log}}/k^{\mathrm{log}}, we write c𝒱:=𝒱(D[a]){{}^{c}}\mathcal{V}:=\mathcal{V}(-D^{[a]}) and write c𝒱{{}^{c}}\nabla_{\mathcal{V}} for the SlogS^{\mathrm{log}}-connection on c𝒱(𝒱){{}^{c}}\mathcal{V}\left(\subseteq\mathcal{V}\right) obtained by restricting 𝒱\nabla_{\mathcal{V}}. By  [Wak8, Corollary 6.16] in the case where “(,)(\mathcal{F},\nabla)” is taken to be ([a],[a])(\mathcal{F}^{[a]},\nabla^{[a]}), there exists a canonical isomorphism of kk-vector spaces

H1(X(a),Ker(c([a])))H0(X(a),Coker([a])).\displaystyle H^{1}(X^{(a)},\mathrm{Ker}({{}^{c}}(\nabla^{[a]\vee})))\stackrel{{\scriptstyle\sim}}{{\rightarrow}}H^{0}(X^{(a)},\mathrm{Coker}(\nabla^{[a]}))^{\vee}. (8.16)

In particular, we have

h1(Ker(c([a])))=h0(Coker([a])).\displaystyle h^{1}(\mathrm{Ker}({{}^{c}}(\nabla^{[a]\vee})))=h^{0}(\mathrm{Coker}(\nabla^{[a]})). (8.17)

Next, the Killing form on 𝔤\mathfrak{g} induces an isomorphism of 𝒟(N1)\mathcal{D}^{(N-1)}-modules (𝔤,ϕad)(𝔤,(ϕad))(\mathfrak{g}_{\mathcal{E}},\nabla_{\phi}^{\mathrm{ad}})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}(\mathfrak{g}_{\mathcal{E}}^{\vee},(\nabla_{\phi}^{\mathrm{ad}})^{\vee}). This isomorphism restricts to an isomorphism of flat modules

(c[a],c[a])(c()[a],c()[a]).\displaystyle({{}^{c}}\mathcal{F}^{[a]},{{}^{c}}\nabla^{[a]})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}({{}^{c}}(\mathcal{F}^{\vee})^{[a]},{{}^{c}}(\nabla^{\vee})^{[a]}). (8.18)

This isomorphism gives the equality Ker(c[a])=Ker(c()[a])\mathrm{Ker}({{}^{c}}\nabla^{[a]})=\mathrm{Ker}({{}^{c}}(\nabla^{\vee})^{[a]}), which implies

h1(Ker(c[a]))=h1(Ker(c()[a])).\displaystyle h^{1}(\mathrm{Ker}({{}^{c}}\nabla^{[a]}))=h^{1}(\mathrm{Ker}({{}^{c}}(\nabla^{\vee})^{[a]})). (8.19)

Hence, the following sequence of equalities holds:

h0(Coker([a]))\displaystyle h^{0}(\mathrm{Coker}(\nabla^{[a]})) =(8.17)h1(Ker(c([a])))\displaystyle\stackrel{{\scriptstyle\eqref{ddE1}}}{{=}}h^{1}(\mathrm{Ker}({{}^{c}}(\nabla^{[a]\vee}))) (8.20)
=h1(Ker(c()[a]))Ra\displaystyle=h^{1}(\mathrm{Ker}({{}^{c}}(\nabla^{\vee})^{[a]}))-R_{a}
=(8.19)h1(Ker(c[a]))Ra\displaystyle\stackrel{{\scriptstyle\eqref{dE155}}}{{=}}h^{1}(\mathrm{Ker}({{}^{c}}\nabla^{[a]}))-R_{a}
=(h1(Ker([a]))+r+Ra)Ra\displaystyle=(h^{1}(\mathrm{Ker}(\nabla^{[a]}))+r+R_{a})-R_{a}
=h1(Ker([a]))+r\displaystyle=h^{1}(\mathrm{Ker}(\nabla^{[a]}))+r

(cf. (8.24) for the definition of RaR_{a}), where the second and fourth equalities follow from Lemma 8.1.3 described below. On the other hand, there exists a short exact sequence

0H1(X(a),Ker([a]))1(X(a),𝒦[[a]])H0(X(a),Coker([a]))0\displaystyle 0\rightarrow H^{1}(X^{(a)},\mathrm{Ker}(\nabla^{[a]}))\rightarrow\mathbb{H}^{1}(X^{(a)},\mathcal{K}^{\bullet}[\nabla^{[a]}])\rightarrow H^{0}(X^{(a)},\mathrm{Coker}(\nabla^{[a]}))\rightarrow 0 (8.21)

induced by (8.13). This implies

h1(Ker([a]))+h0(Coker([a]))\displaystyle h^{1}(\mathrm{Ker}(\nabla^{[a]}))+h^{0}(\mathrm{Coker}(\nabla^{[a]})) =dim(1(X(a),𝒦[[a]]))\displaystyle=\mathrm{dim}(\mathbb{H}^{1}(X^{(a)},\mathcal{K}^{\bullet}[\nabla^{[a]}])) (8.22)
=h1(Ker([a1]))+h0(Coker([a1]))\displaystyle=h^{1}(\mathrm{Ker}(\nabla^{[a-1]}))+h^{0}(\mathrm{Coker}(\nabla^{[a-1]}))
=(3g3+r)+(3g3+2r)\displaystyle=(3g-3+r)+(3g-3+2r)
=6g6+3r,\displaystyle=6g-6+3r,

where the second equality follows from the exactness of (8.15) and the third equality follows from the induction hypothesis. Consequently, it follows from (8.20) and (8.22) that

h1(Ker(ad))=3g3+r,h0(Coker(ad))=3g3+2r.\displaystyle h^{1}(\mathrm{Ker}(\nabla^{\mathrm{ad}}))=3g-3+r,\ \ \ h^{0}(\mathrm{Coker}(\nabla^{\mathrm{ad}}))=3g-3+2r. (8.23)

This completes the proof of the proposition. ∎

The following lemma was applied in the proof of the above proposition.

Lemma 8.1.3.

We shall keep the notation in the proof of the above proposition. Let a{1,,N1}a\in\{1,\cdots,N-1\}, and suppose that S=Spec(k)S=\mathrm{Spec}(k) for an algebraically closed field kk over 𝔽p\mathbb{F}_{p}. Also, we shall set

Ra:={i| 1ir,(λi)[a]{0,p1}(𝔽p)}\displaystyle R_{a}:=\sharp\left\{i\,\Big{|}\,1\leq i\leq r,\ (\lambda_{i})_{[a]}\in\{0,p-1\}\left(\subseteq\mathbb{F}_{p}\right)\right\} (8.24)

(cf. § 4.3 for the definition of ()[a](-)_{[a]}). Then, the following two equalities hold:

h1(Ker(c[a])\displaystyle h^{1}(\mathrm{Ker}({{}^{c}}\nabla^{[a]}) =h1(Ker([a]))+r+Ra,\displaystyle=h^{1}(\mathrm{Ker}(\nabla^{[a]}))+r+R_{a}, (8.25)
h1(Ker(c()[a]))\displaystyle h^{1}(\mathrm{Ker}({{}^{c}}(\nabla^{\vee})^{[a]})) =h1(Ker(c([a])))+Ra.\displaystyle=h^{1}(\mathrm{Ker}({{}^{c}}(\nabla^{[a]\vee})))+R_{a}.
Proof.

To begin with, we prepare some notations. Let UU_{\oslash} and 𝒟(N1)\mathcal{D}_{\oslash}^{(N-1)} be as in (4.1) and (4.2), respectively. Let 𝒱:=(𝒱,)\mathscr{V}:=(\mathcal{V},\nabla) be a 𝒟(N1)\mathcal{D}^{(N-1)}-module (resp., a 𝒟(N1)\mathcal{D}_{\oslash}^{(N-1)}-module) such that ψ()=0\psi(\nabla)=0 and 𝒱\mathcal{V} is a vector bundle of rank n>0n>0. In the non-resp’d portion, (c𝒱[a],c[a])({{}^{c}}\mathcal{V}^{[a]},{{}^{c}}\nabla^{[a]}) is defined as in the proof of the above proposition. Also, in the resp’d portion, we set c𝒱[a]:=tpa𝒱[a](𝒱[a]){{}^{c}}\mathcal{V}^{[a]}:=t^{p^{a}}\cdot\mathcal{V}^{[a]}\left(\subseteq\mathcal{V}^{[a]}\right), which has an SlogS^{\mathrm{log}}-connection c[a]{{}^{c}}\nabla^{[a]} obtained by restricting [a]\nabla^{[a]}. Then, the inclusion c𝒱[a]𝒱[a]{{}^{c}}\mathcal{V}^{[a]}\hookrightarrow\mathcal{V}^{[a]} restricts to an inclusion

α𝒱[a]:Ker(c[a])Ker([a]).\displaystyle\alpha_{\mathscr{V}}^{[a]}:\mathrm{Ker}({{}^{c}}\nabla^{[a]})\hookrightarrow\mathrm{Ker}(\nabla^{[a]}). (8.26)

On the other hand, the natural morphism c(𝒱)[a]c(𝒱[a]){{}^{c}}(\mathcal{V}^{\vee})^{[a]}\rightarrow{{}^{c}}(\mathcal{V}^{[a]\vee}) restricts to a morphism of 𝒪X(a+1)\mathcal{O}_{X^{(a+1)}}-modules

β𝒱[a]:Ker(c()[a])Ker(c([a])).\displaystyle\beta_{\mathscr{V}}^{[a]}:\mathrm{Ker}({{}^{c}}(\nabla^{\vee})^{[a]})\rightarrow\mathrm{Ker}({{}^{c}}(\nabla^{[a]\vee})). (8.27)

In what follows, we shall examine the morphisms α𝒱[a]\alpha_{\mathscr{V}}^{[a]} and β𝒱[a]\beta_{\mathscr{V}}^{[a]} in the case where 𝒱\mathscr{V} is taken to be the 𝒟(N1)\mathcal{D}_{\oslash}^{(N-1)}-module 𝒪,d(N1):=(𝒪,,d(N1))\mathscr{O}_{\oslash,d}^{(N-1)}:=(\mathcal{O}_{\oslash},\nabla_{\oslash,d}^{(N-1)}) for d(/pN)×d\in(\mathbb{Z}/p^{N}\mathbb{Z})^{\times} (cf. (4.27)). For simplicity, write 𝒪d:=𝒪,d(N1)\mathscr{O}_{d}:=\mathscr{O}_{\oslash,d}^{(N-1)} and d:=,d(N1)\nabla_{d}:=\nabla_{\oslash,d}^{(N-1)}. First, a straightforward calculation shows

Ker(c[a]d)={td~[0,a]𝒪(a+1)if d[a]0;td~[0,a]+pa+1𝒪(a+1)if d[a]=0.\displaystyle\mathrm{Ker}({{}^{c}}\nabla^{[a]}_{d})=\begin{cases}t^{\widetilde{d}_{[0,a]}}\cdot\mathcal{O}^{(a+1)}_{\oslash}&\text{if $d_{[a]}\neq 0$};\\ t^{\widetilde{d}_{[0,a]}+p^{a+1}}\cdot\mathcal{O}^{(a+1)}_{\oslash}&\text{if $d_{[a]}=0$}.\end{cases} (8.28)

Hence, it follows from Proposition 4.3.1 that α𝒪d[a]\alpha_{\mathscr{O}_{d}}^{[a]} is injective and its cokernel satisfies

length𝒪(a+1)(Coker(α[a]𝒪d))={0if d[a]0;1if d[a]=0.\displaystyle\mathrm{length}_{\mathcal{O}_{\oslash}^{(a+1)}}(\mathrm{Coker}(\alpha^{[a]}_{\mathscr{O}_{d}}))=\begin{cases}0&\text{if $d_{[a]}\neq 0$};\\ 1&\text{if $d_{[a]}=0$}.\end{cases} (8.29)

Also, by putting c:=dc:=-d, we see (from d(/pN)×d\in(\mathbb{Z}/p^{N}\mathbb{Z})^{\times}) that

Ker(c(d)[a])(=Ker(cc[a]))={tc~[0,a]𝒪(a+1)if c[a]0(d[a]p1);tc~[0,a]+pa+1𝒪(a+1)if c[a]=0(d[a]=p1).\displaystyle\mathrm{Ker}({{}^{c}}(\nabla_{d}^{\vee})^{[a]})\left(=\mathrm{Ker}({{}^{c}}\nabla_{c}^{[a]})\right)=\begin{cases}t^{\widetilde{c}_{[0,a]}}\cdot\mathcal{O}_{\oslash}^{(a+1)}&\text{if $c_{[a]}\neq 0\left(\Leftrightarrow d_{[a]}\neq p-1\right)$};\\ t^{\widetilde{c}_{[0,a]}+p^{a+1}}\cdot\mathcal{O}_{\oslash}^{(a+1)}&\text{if $c_{[a]}=0\left(\Leftrightarrow d_{[a]}=p-1\right)$}.\end{cases} (8.30)

and that

Ker(c(d[a]))=td~[0,a]+pa+1𝒪(a+1)(=tc~[0,a]𝒪(a+1)).\displaystyle\mathrm{Ker}({{}^{c}}(\nabla_{d}^{[a]})^{\vee})=t^{-\widetilde{d}_{[0,a]}+p^{a+1}}\cdot\mathcal{O}_{\oslash}^{(a+1)}\left(=t^{\widetilde{c}_{[0,a]}}\cdot\mathcal{O}_{\oslash}^{(a+1)}\right). (8.31)

Hence, β𝒪d[a]\beta_{\mathscr{O}_{d}}^{[a]} is injective and its cokernel satisfies

length𝒪(a+1)(Coker(β[a]𝒪d))={1if d[a]=p1;0if d[a]p1.\displaystyle\mathrm{length}_{\mathcal{O}_{\oslash}^{(a+1)}}(\mathrm{Coker}(\beta^{[a]}_{\mathscr{O}_{d}}))=\begin{cases}1&\text{if $d_{[a]}=p-1$};\\ 0&\text{if $d_{[a]}\neq p-1$}.\end{cases} (8.32)

The same arguments with dd replaced by cc give

length𝒪(a+1)(Coker(α[a]𝒪d))\displaystyle\mathrm{length}_{\mathcal{O}_{\oslash}^{(a+1)}}(\mathrm{Coker}(\alpha^{[a]}_{\mathscr{O}_{-d}})) ={0if d[a]p1;1if d[a]=p1,\displaystyle=\begin{cases}0&\text{if $d_{[a]}\neq p-1$};\\ 1&\text{if $d_{[a]}=p-1$},\end{cases} (8.33)
length𝒪(a+1)(Coker(β[a]𝒪d))\displaystyle\mathrm{length}_{\mathcal{O}_{\oslash}^{(a+1)}}(\mathrm{Coker}(\beta^{[a]}_{\mathscr{O}_{-d}})) ={1if d[a]=0;0if d[a]0.\displaystyle=\begin{cases}1&\text{if $d_{[a]}=0$};\\ 0&\text{if $d_{[a]}\neq 0$}.\end{cases}

Now, let us go back to our situation. We shall set (,):=(𝔤,ϕad)(\mathcal{F},\nabla):=(\mathfrak{g}_{\mathcal{E}},\nabla_{\phi}^{\mathrm{ad}}). Both α[a](,)\alpha^{[a]}_{(\mathcal{F},\nabla)} and β[a](,)\beta^{[a]}_{(\mathcal{F},\nabla)} become isomorphisms when restricted to Xi=1rIm(σi)X\setminus\bigcup_{i=1}^{r}\mathrm{Im}(\sigma_{i}). Given each d/pNd\in\mathbb{Z}/p^{N}\mathbb{Z}, we shall set

𝒬d[a]:={𝒪(a+1)/(tpa+1)if d[a]{0,p1};0if d[a]{0,p1}.\displaystyle\mathcal{Q}_{d}^{[a]}:=\begin{cases}\mathcal{O}_{\oslash}^{(a+1)}/(t^{p^{a+1}})&\text{if $d_{[a]}\in\{0,p-1\}$};\\ 0&\text{if $d_{[a]}\notin\{0,p-1\}$}.\end{cases} (8.34)

For each i=1,,ri=1,\cdots,r, denote by U^i\widehat{U}_{i} the formal neighborhood of Im(σi)\mathrm{Im}(\sigma_{i}) in XX, and by incli:U^iX\mathrm{incl}_{i}:\widehat{U}_{i}\rightarrow X the natural morphism. It follows from Proposition 8.1.1 that the restriction (|U^i,|U^i)(\mathcal{F}|_{\widehat{U}_{i}},\nabla|_{\widehat{U}_{i}}) of (,)(\mathcal{F},\nabla) to U^i\widehat{U}_{i} is isomorphic to (𝒪3,,0(N1),λi(N1),λi(N1))(\mathcal{O}_{\oslash}^{\oplus 3},\nabla_{\oslash,0}^{(N-1)}\oplus\nabla_{\oslash,\lambda_{i}}^{(N-1)}\oplus\nabla_{\oslash,-\lambda_{i}}^{(N-1)}) via a fixed identification U^i=U\widehat{U}_{i}=U_{\oslash}. By (8.29) and the first equality of (8.33), the cokernel of α(,)[a]\alpha_{(\mathcal{F},\nabla)}^{[a]} restricted to U^i\widehat{U}_{i} is isomorphic to 𝒬[a]λi𝒪(a+1)/(tpa+1)\mathcal{Q}^{[a]}_{\lambda_{i}}\oplus\mathcal{O}_{\oslash}^{(a+1)}/(t^{p^{a+1}}). This implies that α[a](,)\alpha^{[a]}_{(\mathcal{F},\nabla)} fits into the short exact sequence

0Ker(c[a])α[a](,)Ker([a])i=1rincli(𝒬[a]λi𝒪(a+1)/(tpa+1))0.\displaystyle 0\rightarrow\mathrm{Ker}({{}^{c}}\nabla^{[a]})\xrightarrow{\alpha^{[a]}_{(\mathcal{F},\nabla)}}\mathrm{Ker}(\nabla^{[a]})\rightarrow\bigoplus_{i=1}^{r}\mathrm{incl}_{i*}(\mathcal{Q}^{[a]}_{\lambda_{i}}\oplus\mathcal{O}^{(a+1)}_{\oslash}/(t^{p^{a+1}}))\rightarrow 0. (8.35)

Here, we shall write Hj():=Hj(X(a+1),)H^{j}(-):=H^{j}(X^{(a+1)},-) (j0j\geq 0) for simplicity. Since H0(Ker([a]))=0H^{0}(\mathrm{Ker}(\nabla^{[a]}))=0 (cf. (8.9)), the sequence (8.35) yields a short exact sequence of kk-vector spaces

0i=1rH0(incli(𝒬[a]λi𝒪(a+1)/(tpa+1)))H1(Ker(c[a]))H1(Ker([a]))0.\displaystyle 0\rightarrow\bigoplus_{i=1}^{r}H^{0}(\mathrm{incl}_{i*}(\mathcal{Q}^{[a]}_{\lambda_{i}}\oplus\mathcal{O}^{(a+1)}_{\oslash}/(t^{p^{a+1}})))\rightarrow H^{1}(\mathrm{Ker}({{}^{c}}\nabla^{[a]}))\rightarrow H^{1}(\mathrm{Ker}(\nabla^{[a]}))\rightarrow 0. (8.36)

This sequence implies

h1(Ker(c[a]))\displaystyle h^{1}(\mathrm{Ker}({{}^{c}}\nabla^{[a]})) =h1(Ker([a]))+i=1rdim(H0(incli(𝒬[a]λi𝒪(a+1)/(tpa+1))))\displaystyle=h^{1}(\mathrm{Ker}(\nabla^{[a]}))+\sum_{i=1}^{r}\mathrm{dim}(H^{0}(\mathrm{incl}_{i*}(\mathcal{Q}^{[a]}_{\lambda_{i}}\oplus\mathcal{O}^{(a+1)}_{\oslash}/(t^{p^{a+1}})))) (8.37)
=h1(Ker([a]))+i=1r(length𝒪(a+1)(𝒬[a]λi)+1)\displaystyle=h^{1}(\mathrm{Ker}(\nabla^{[a]}))+\sum_{i=1}^{r}(\mathrm{length}_{\mathcal{O}_{\oslash}^{(a+1)}}(\mathcal{Q}^{[a]}_{\lambda_{i}})+1)
=h1(Ker([a]))+Ra+r.\displaystyle=h^{1}(\mathrm{Ker}(\nabla^{[a]}))+R_{a}+r.

Thus, we have proved the first equality in (8.25). Moreover, (8.32) and the second equality of (8.33) together imply

0Ker(c[a])β[a](,)Ker(c[a])i=1rincli(𝒬[a]λi)0.\displaystyle 0\rightarrow\mathrm{Ker}({{}^{c}}\nabla^{\vee[a]})\xrightarrow{\beta^{[a]}_{(\mathcal{F},\nabla)}}\mathrm{Ker}({{}^{c}}\nabla^{[a]\vee})\rightarrow\bigoplus_{i=1}^{r}\mathrm{incl}_{i*}(\mathcal{Q}^{[a]}_{\lambda_{i}})\rightarrow 0. (8.38)

Similarly to the above argument, we obtain from (8.38) the equality

h1(Ker(c()[a]))=h1(Ker(c([a])))+Ra,\displaystyle h^{1}(\mathrm{Ker}({{}^{c}}(\nabla^{\vee})^{[a]}))=h^{1}(\mathrm{Ker}({{}^{c}}(\nabla^{[a]\vee})))+R_{a}, (8.39)

which is the second equality in (8.25). Thus, we have finished the proof of this lemma. ∎

8.2. Horizontal sections of the adjoint bundle

Just as in the case of 𝔤\mathfrak{g}_{\mathcal{E}}, 𝒯~log/Slog\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}} can be regarded as an 𝒪X\mathcal{O}_{X}-submodules of nd𝒪S(𝒪)\mathcal{E}nd_{\mathcal{O}_{S}}(\mathcal{O}_{\mathcal{E}}). We shall write

𝔤,ϕ(resp.,𝒯~log/Slog,ϕ)\displaystyle\mathfrak{g}_{\mathcal{E},\phi}\ \left(\text{resp.,}\ \widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}\right) (8.40)

for the subsheaf of 𝔤\mathfrak{g}_{\mathcal{E}} (resp., 𝒯~log/Slog\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}) consisting of local sections vv such that the equality [ϕ(D),v]=0[\phi^{\natural\natural}(D),v]=0 (resp., [ϕ(D),v]ϕ([D,d(v)])=0[\phi^{\natural\natural}(D),v]-\phi^{\natural\natural}([D,d_{\mathcal{E}}(v)])=0) holds for any D𝒟(N1)D\in\mathcal{D}^{(N-1)}. In particular, the equality 𝔤,ϕ=𝒮ol(ϕad)\mathfrak{g}_{\mathcal{E},\phi}=\mathcal{S}ol(\nabla_{\phi}^{\mathrm{ad}}) holds. Both 𝔤,ϕ\mathfrak{g}_{\mathcal{E},\phi} and 𝒯~log/Slog,ϕ\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi} may be regarded as 𝒪X(N)\mathcal{O}_{X^{(N)}}-modules via the underlying homeomorphism of F(N)X/S:XX(N)F^{(N)}_{X/S}:X\rightarrow X^{(N)}.

Denote by

ϕ:𝒯𝒯~log/Slog\displaystyle\nabla_{\phi}:\mathcal{T}\rightarrow\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}} (8.41)

the SlogS^{\mathrm{log}}-connection on \mathcal{E} obtained by reducing the level of ϕ\phi to 0 (cf.  [Wak8, Definition 1.17] and (2.80)).

The following lemma will be applied in the proof of Lemma 8.2.3 described later.

Lemma 8.2.1.
  • (i)

    The inclusion 𝔤𝒯~log/Slog\mathfrak{g}_{\mathcal{E}}\hookrightarrow\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}} restricts to an injective morphism

    incl:𝔤,ϕ𝒯~log/Slog,ϕ,\displaystyle\mathrm{incl}_{\mathscr{E}^{\spadesuit}}:\mathfrak{g}_{\mathcal{E},\phi}\hookrightarrow\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}, (8.42)

    and the image of ϕ\nabla_{\phi} is contained in 𝒯~log/Slog,ϕ(𝒯~log/Slog)\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}\left(\subseteq\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}\right). In particular, the sequence

    0𝔤,ϕincl𝒯~log/Slog,ϕ𝒯0\displaystyle 0\rightarrow\mathfrak{g}_{\mathcal{E},\phi}\xrightarrow{\mathrm{incl}_{\mathscr{E}^{\spadesuit}}}\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}\rightarrow\mathcal{T}\rightarrow 0 (8.43)

    is exact and split by the morphism ϕ\nabla_{\phi}.

  • (ii)

    The 𝒪S\mathcal{O}_{S}-module 1f(𝒯~log/Slog,ϕ)\mathbb{R}^{1}f_{*}(\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}) forms a vector bundle.

Proof.

We shall consider assertion (i). The first assertion follows immediately from the definitions of 𝔤,ϕ\mathfrak{g}_{\mathcal{E},\phi} and 𝒯~log/Slog,ϕ\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}. Moreover, for any local sections v𝒯v\in\mathcal{T} and D𝒟(N1)D\in\mathcal{D}^{(N-1)}, we have

[ϕ(D),ϕ(v)]ϕ([D,d(ϕ(v))])=[ϕ(D),ϕ(v)]ϕ([D,v])=0.\displaystyle[\phi^{\natural\natural}(D),\nabla_{\phi}(v)]-\phi^{\natural\natural}([D,d_{\mathcal{E}}(\nabla_{\phi}(v))])=[\phi^{\natural\natural}(D),\phi^{\natural\natural}(v)]-\phi^{\natural\natural}([D,v])=0. (8.44)

This implies the inclusion relation Im(ϕ)𝒯~log/Slog,ϕ\mathrm{Im}(\nabla_{\phi})\subseteq\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}. The last assertion of (i) follows from the first two assertions.

Next, we shall prove assertion (ii). By Proposition 2.6.2, (i), 𝔤,ϕ(=𝒮ol(ϕad))\mathfrak{g}_{\mathcal{E},\phi}\left(=\mathcal{S}ol(\nabla_{\phi}^{\mathrm{ad}})\right) is flat over SS. Since the equality 2f(𝔤,ϕ)=0\mathbb{R}^{2}f_{*}(\mathfrak{g}_{\mathcal{E},\phi})=0 holds, 1f(𝔤,ϕ)\mathbb{R}^{1}f_{*}(\mathfrak{g}_{\mathcal{E},\phi}) turns out to be a vector bundle (cf.  [Har, Chap. III, Theorem 12.11, (b)]). On the other hand, the short exact sequence (8.43) induces the short exact sequence

01f(𝔤,ϕ)1f(𝒯~log/Slog,ϕ)1f(𝒯)0.\displaystyle 0\rightarrow\mathbb{R}^{1}f_{*}(\mathfrak{g}_{\mathcal{E},\phi})\rightarrow\mathbb{R}^{1}f_{*}(\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi})\rightarrow\mathbb{R}^{1}f_{*}(\mathcal{T})\rightarrow 0. (8.45)

Both 1f(𝔤,ϕ)\mathbb{R}^{1}f_{*}(\mathfrak{g}_{\mathcal{E},\phi}) and 1f(𝒯)\mathbb{R}^{1}f_{*}(\mathcal{T}) are vector bundles, so the exactness of this sequence implies that 1f(𝒯~log/Slog,ϕ)\mathbb{R}^{1}f_{*}(\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}) is a vector bundle. This completes the proof of assertion (ii). ∎

Next, denote by

ad(0)ϕ:𝔤Ω𝔤\displaystyle\nabla^{\mathrm{ad}(0)}_{\phi}:\mathfrak{g}_{\mathcal{E}}\rightarrow\Omega\otimes\mathfrak{g}_{\mathcal{E}} (8.46)

the SlogS^{\mathrm{log}}-connection on the vector bundle 𝔤\mathfrak{g}_{\mathcal{E}} obtained by reducing the level of ϕad\nabla_{\phi}^{\mathrm{ad}} to 0. In other words, ad(0)ϕ\nabla^{\mathrm{ad}(0)}_{\phi} is obtained from ϕ\nabla_{\phi} via change of structure group by the adjoint representation PGL2GL(𝔤)\mathrm{PGL}_{2}\rightarrow\mathrm{GL}(\mathfrak{g}) (cf.  [Wak8, Eq. (745)]).

Also, denote by

~ad(0)ϕ:𝒯~log/SlogΩ𝔤\displaystyle\widetilde{\nabla}^{\mathrm{ad}(0)}_{\phi}:\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}\rightarrow\Omega\otimes\mathfrak{g}_{\mathcal{E}} (8.47)

the unique f1(𝒪S)f^{-1}(\mathcal{O}_{S})-linear morphism determined by the condition that

1,~ad(0)ϕ(2)=[ϕ(1),2]ϕ([1,d(2)])\displaystyle\langle\partial_{1},\widetilde{\nabla}^{\mathrm{ad}(0)}_{\phi}(\partial_{2})\rangle=[\nabla_{\phi}(\partial_{1}),\partial_{2}]-\nabla_{\phi}([\partial_{1},d_{\mathcal{E}}(\partial_{2})]) (8.48)

for any local sections 1𝒯\partial_{1}\in\mathcal{T} and 2𝒯~log/Slog\partial_{2}\in\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}, where ,\langle-,-\rangle denotes the pairing 𝒯×(Ω𝔤)𝔤\mathcal{T}\times(\Omega\otimes\mathfrak{g}_{\mathcal{E}})\rightarrow\mathfrak{g}_{\mathcal{E}} arising from the natural pairing 𝒯×Ω𝒪X\mathcal{T}\times\Omega\rightarrow\mathcal{O}_{X}. The restriction of ~ad(0)ϕ\widetilde{\nabla}^{\mathrm{ad}(0)}_{\phi} to 𝔤(𝒯~log/Slog)\mathfrak{g}_{\mathcal{E}}\left(\subseteq\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}\right) coincides with ad(0)ϕ\nabla^{\mathrm{ad}(0)}_{\phi}.

Consider the composite

~ϕ,Bad(0):𝒯~Blog/Sloginclusion𝒯~log/Slog~ad(0)ϕΩ𝔤,\displaystyle\widetilde{\nabla}_{\phi,B}^{\mathrm{ad}(0)}:\widetilde{\mathcal{T}}_{\mathcal{E}_{B}^{\mathrm{log}}/S^{\mathrm{log}}}\xrightarrow{\mathrm{inclusion}}\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}\xrightarrow{\widetilde{\nabla}^{\mathrm{ad}(0)}_{\phi}}\Omega\otimes\mathfrak{g}_{\mathcal{E}}, (8.49)

where 𝒯~Blog/Slog\widetilde{\mathcal{T}}_{\mathcal{E}_{B}^{\mathrm{log}}/S^{\mathrm{log}}} denotes the 𝒪X\mathcal{O}_{X}-module obtained from the BB-bundle B\mathcal{E}_{B} in the same manner as 𝒯~log/Slog\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}. The pair of the natural inclusion 𝒯~Blog/Slog𝒯~log/Slog\widetilde{\mathcal{T}}_{\mathcal{E}_{B}^{\mathrm{log}}/S^{\mathrm{log}}}\hookrightarrow\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}} and the identity morphism of Ω𝔤\Omega\otimes\mathfrak{g}_{\mathcal{E}} defines an inclusion of complexes

γ1:𝒦[~ϕ,Bad(0)]𝒦[~ϕad(0)].\displaystyle\gamma_{1}:\mathcal{K}^{\bullet}[\widetilde{\nabla}_{\phi,B}^{\mathrm{ad}(0)}]\hookrightarrow\mathcal{K}^{\bullet}[\widetilde{\nabla}_{\phi}^{\mathrm{ad}(0)}]. (8.50)

On the other hand, since ~ϕad(0)\widetilde{\nabla}_{\phi}^{\mathrm{ad}(0)} becomes the zero map when restricted to 𝒯~log/Slog,ϕ(𝒯~log/Slog)\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}\left(\subseteq\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}\right), we obtain an inclusion

γ2:𝒯~log/Slog,ϕ[0]𝒦[~ϕad(0)].\displaystyle\gamma_{2}:\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}[0]\hookrightarrow\mathcal{K}^{\bullet}[\widetilde{\nabla}_{\phi}^{\mathrm{ad}(0)}]. (8.51)

For each i0i\geq 0, we shall set

𝒢i:=Ker(if(𝒦[~ad(0)ϕ,B])if(𝒯~log/Slog,ϕ)if(γ1(γ2))if(𝒦[~ϕad(0)])).\displaystyle\mathcal{G}_{\mathscr{E}^{\spadesuit}}^{i}:=\mathrm{Ker}\left(\mathbb{R}^{i}f_{*}(\mathcal{K}^{\bullet}[\widetilde{\nabla}^{\mathrm{ad}(0)}_{\phi,B}])\oplus\mathbb{R}^{i}f_{*}(\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi})\xrightarrow{\mathbb{R}^{i}f_{*}(\gamma_{1}\oplus(-\gamma_{2}))}\mathbb{R}^{i}f_{*}(\mathcal{K}^{\bullet}[\widetilde{\nabla}_{\phi}^{\mathrm{ad}(0)}])\right). (8.52)

Then, we obtain the composite

D:𝒢1\displaystyle D_{\mathscr{E}^{\spadesuit}}:\mathcal{G}^{1}_{\mathscr{E}^{\spadesuit}} inclusion1f(𝒦[~ad(0)ϕ,B])1f(𝒯~log/Slog,ϕ)\displaystyle\xrightarrow{\mathrm{inclusion}}\mathbb{R}^{1}f_{*}(\mathcal{K}^{\bullet}[\widetilde{\nabla}^{\mathrm{ad}(0)}_{\phi,B}])\oplus\mathbb{R}^{1}f_{*}(\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}) (8.53)
pr11f(𝒦[~ad(0)ϕ,B])\displaystyle\xrightarrow{\mathrm{pr}_{1}}\mathbb{R}^{1}f_{*}(\mathcal{K}^{\bullet}[\widetilde{\nabla}^{\mathrm{ad}(0)}_{\phi,B}])
1f(𝒯),\displaystyle\rightarrow\mathbb{R}^{1}f_{*}(\mathcal{T}),

where the last arrow arises from dB:𝒯~logB/Slog𝒯d_{\mathcal{E}_{B}}:\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}_{B}/S^{\mathrm{log}}}\rightarrow\mathcal{T}.

The following two lemmas will be applied in the proof of Proposition 8.2.4 described below.

Lemma 8.2.2.

Denote by ξ\xi the composite 𝔤,ϕ𝔤𝔤/𝔟B\mathfrak{g}_{\mathcal{E},\phi}\hookrightarrow\mathfrak{g}_{\mathcal{E}}\twoheadrightarrow\mathfrak{g}_{\mathcal{E}}/\mathfrak{b}_{\mathcal{E}_{B}}. Then, ξ\xi is injective, and the direct image of its cokernel f(Coker(ξ))f_{*}(\mathrm{Coker}(\xi)) is a vector bundle on SS.

Proof.

First, we shall prove the injectivity of ξ\xi. Let us take a dormant GL2(N)\mathrm{GL}_{2}^{(N)}-oper :=(,,{j}j=12)\mathscr{F}^{\heartsuit}:=(\mathcal{F},\nabla,\{\mathcal{F}^{j}\}_{j=1}^{2}) on 𝒳\mathscr{X} with \mathscr{F}^{\heartsuit\Rightarrow\spadesuit}\cong\mathscr{E}^{\spadesuit} (cf. Corollary 5.5.2, (i)). Denote by nd0()\mathcal{E}nd^{0}(\mathcal{F}) (resp., nd0()\mathcal{E}nd^{0}(\mathcal{F})^{\nabla}) the subsheaf of nd𝒪X()\mathcal{E}nd_{\mathcal{O}_{X}}(\mathcal{F}) consisting of endomorphisms with vanishing trace (resp., endomorphisms with vanishing trace preserving \nabla). Under the natural identification nd0()=𝔤\mathcal{E}nd^{0}(\mathcal{F})=\mathfrak{g}_{\mathcal{E}}, the sheaf nd0()\mathcal{E}nd^{0}(\mathcal{F})^{\nabla} corresponds to 𝔤,ϕ\mathfrak{g}_{\mathcal{E},\phi}. Also, the surjection 𝔤𝔤/𝔟B\mathfrak{g}_{\mathcal{E}}\twoheadrightarrow\mathfrak{g}_{\mathcal{E}}/\mathfrak{b}_{\mathcal{E}_{B}} corresponds to the morphism nd0()om𝒪X(1,/1)\mathcal{E}nd^{0}(\mathcal{F})\twoheadrightarrow\mathcal{H}om_{\mathcal{O}_{X}}(\mathcal{F}^{1},\mathcal{F}/\mathcal{F}^{1}) induced by composing with 1\mathcal{F}^{1}\hookrightarrow\mathcal{F} and /1\mathcal{F}\twoheadrightarrow\mathcal{F}/\mathcal{F}^{1}. Thus, ξ\xi may be identified with the composite

nd0()inclusionnd0()om𝒪X(1,/1).\displaystyle\mathcal{E}nd^{0}(\mathcal{F})^{\nabla}\xrightarrow{\mathrm{inclusion}}\mathcal{E}nd^{0}(\mathcal{F})\twoheadrightarrow\mathcal{H}om_{\mathcal{O}_{X}}(\mathcal{F}^{1},\mathcal{F}/\mathcal{F}^{1}). (8.54)

Let UU be an open subscheme of XX and hh an element of H0(U,nd0())H^{0}(U,\mathcal{E}nd^{0}(\mathcal{F})^{\nabla}) which is mapped to the zero map via (8.54). The inclusion relation h(1|U)1|Uh(\mathcal{F}^{1}|_{U})\subseteq\mathcal{F}^{1}|_{U} holds, and the endomorphism of 1|U\mathcal{F}^{1}|_{U} induced by hh is given by multiplication by some element aH0(U,𝒪X)a\in H^{0}(U,\mathcal{O}_{X}). Since the morphism (5.10) associated to \mathscr{F}^{\heartsuit} is an isomorphism and hh preserves the 𝒟(N1)\mathcal{D}^{(N-1)}-module structure, the induced endomorphism of (/1)|U(\mathcal{F}/\mathcal{F}^{1})|_{U} is given by multiplication by aa. However, hh has vanishing trace, so we have a=0a=0. This implies (since hh preserves the 𝒟(N1)\mathcal{D}^{(N-1)}-module structure) the equality h=0h=0, completing the proof of the injectivity of ξ\xi.

Next, we shall prove the remaining assertion. Note that the formation of ξ\xi is functorial with respect to base-change over SS-schemes. Hence, the above discussion implies that ξ\xi is universally injective relative to SS. By  [MAT, p. 17, Theorem 1], Coker(ξ)\mathrm{Coker}(\xi) turns out to be flat over SS. In particular, 1f(Coker(ξ))\mathbb{R}^{1}f_{*}(\mathrm{Coker}(\xi)) is a vector bundle on SS because the relative dimension of X/SX/S equals 11 (cf.  [Har, Chap. III, Theorem 12.11, (b)]). Also, by the equality 𝔤,ϕ=𝒮ol(ϕad)\mathfrak{g}_{\mathcal{E},\phi}=\mathcal{S}ol(\nabla_{\phi}^{\mathrm{ad}}) together with Proposition 2.6.2, (i), 𝔤,ϕ\mathfrak{g}_{\mathcal{E},\phi} is flat over SS. This implies that 1f(𝔤,ϕ)\mathbb{R}^{1}f_{*}(\mathfrak{g}_{\mathcal{E},\phi}) is a vector bundle. The short exact sequence 0𝔤,ϕξ𝔤/𝔟BCoker(ξ)00\rightarrow\mathfrak{g}_{\mathcal{E},\phi}\xrightarrow{\xi}\mathfrak{g}_{\mathcal{E}}/\mathfrak{b}_{\mathcal{E}_{B}}\rightarrow\mathrm{Coker}(\xi)\rightarrow 0 yields an exact sequence of 𝒪S\mathcal{O}_{S}-modules

0f(Coker(ξ))1f(𝔤,ϕ)1f(𝔤/𝔟B)(1f(𝒯))1f(Coker(ξ))0,\displaystyle 0\rightarrow f_{*}(\mathrm{Coker}(\xi))\rightarrow\mathbb{R}^{1}f_{*}(\mathfrak{g}_{\mathcal{E},\phi})\rightarrow\mathbb{R}^{1}f_{*}(\mathfrak{g}_{\mathcal{E}}/\mathfrak{b}_{\mathcal{E}_{B}})\left(\cong\mathbb{R}^{1}f_{*}(\mathcal{T})\right)\rightarrow\mathbb{R}^{1}f_{*}(\mathrm{Coker}(\xi))\rightarrow 0, (8.55)

where the exactness at f(Coker(ξ))f_{*}(\mathrm{Coker}(\xi)) follows from the fact that f(𝔤/𝔟B)f(𝒯)=0f_{*}(\mathfrak{g}_{\mathcal{E}}/\mathfrak{b}_{\mathcal{E}_{B}})\cong f_{*}(\mathcal{T})=0. Since the sheaves appearing in this sequence except for f(Coker(ξ))f_{*}(\mathrm{Coker}(\xi)) are all vector bundles, f(Coker(ξ))f_{*}(\mathrm{Coker}(\xi)) turns out to be a vector bundle. This completes the proof of the assertion. ∎

Lemma 8.2.3.

We shall write

γ:=γ1(γ2):𝒦[~ϕ,Bad(0)]𝒯~log/Slog,ϕ[0]𝒦[~ϕad(0)].\displaystyle\gamma:=\gamma_{1}\oplus(-\gamma_{2}):\mathcal{K}^{\bullet}[\widetilde{\nabla}_{\phi,B}^{\mathrm{ad}(0)}]\oplus\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}[0]\rightarrow\mathcal{K}^{\bullet}[\widetilde{\nabla}_{\phi}^{\mathrm{ad}(0)}]. (8.56)

Also, write Im(γ)\mathrm{Im}(\gamma) for the subcomplex of 𝒦[~ϕad(0)]\mathcal{K}^{\bullet}[\widetilde{\nabla}_{\phi}^{\mathrm{ad}(0)}] defined as the image of γ\gamma. Then, the complex Coker(ξ)[0]\mathrm{Coker}(\xi)[0] fits into the following short exact sequence:

0Im(γ)inclusion𝒦[~ϕad(0)]Coker(ξ)[0]0.\displaystyle 0\rightarrow\mathrm{Im}(\gamma)\xrightarrow{\mathrm{inclusion}}\mathcal{K}^{\bullet}[\widetilde{\nabla}_{\phi}^{\mathrm{ad}(0)}]\rightarrow\mathrm{Coker}(\xi)[0]\rightarrow 0. (8.57)
Proof.

Denote by ϕ,Bad(0):𝔟BΩ𝔤\nabla_{\phi,B}^{\mathrm{ad}(0)}:\mathfrak{b}_{\mathcal{E}_{B}}\rightarrow\Omega\otimes\mathfrak{g}_{\mathcal{E}} the morphism obtained by restricting the domain of ϕad(0)\nabla_{\phi}^{\mathrm{ad}(0)} (i.e., 𝔤\mathfrak{g}_{\mathcal{E}}) to 𝔟B\mathfrak{b}_{\mathcal{E}_{B}}. Then, we obtain the following diagram of complexes:

(8.62)

where

  • the second (resp., third) upper horizontal arrow denotes the inclusion into the first factor (resp., the projection onto the second factor);

  • γ¯1\overline{\gamma}_{1} (resp., γ¯2\overline{\gamma}_{2}) denotes the natural inclusion 𝒦[ϕ,Bad(0)]𝒦[ϕad(0)]\mathcal{K}^{\bullet}[\nabla_{\phi,B}^{\mathrm{ad}(0)}]\hookrightarrow\mathcal{K}^{\bullet}[\nabla_{\phi}^{\mathrm{ad}(0)}] (resp., 𝔤,ϕ[0]𝒦[ϕad(0)]\mathfrak{g}_{\mathcal{E},\phi}[0]\hookrightarrow\mathcal{K}^{\bullet}[\nabla_{\phi}^{\mathrm{ad}(0)}]);

  • the third lower horizontal arrow denotes the morphism induced by the natural surjection 𝔤𝔤/𝔟B\mathfrak{g}_{\mathcal{E}}\twoheadrightarrow\mathfrak{g}_{\mathcal{E}}/\mathfrak{b}_{\mathcal{E}_{B}} and the zero map Ω𝔤0\Omega\otimes\mathfrak{g}_{\mathcal{E}}\rightarrow 0.

Since the two horizontal sequences are exact, the snake lemma shows that there exists an isomorphism

Coker(γ¯1(γ¯2))Coker(ξ)[0].\displaystyle\mathrm{Coker}(\overline{\gamma}_{1}\oplus(-\overline{\gamma}_{2}))\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathrm{Coker}(\xi)[0]. (8.63)

Next, let us consider the following diagram:

(8.68)

where

  • δ1\delta_{1} is the morphism induced from dB:𝒯~Blog/Slog𝒯d_{\mathcal{E}_{B}}:\widetilde{\mathcal{T}}_{\mathcal{E}_{B}^{\mathrm{log}}/S^{\mathrm{log}}}\rightarrow\mathcal{T} and the zero map Ω𝔤0\Omega\otimes\mathfrak{g}_{\mathcal{E}}\rightarrow 0;

  • δ2\delta_{2} is the morphism induced from the composite of the inclusion 𝒯~log/Slog,ϕ𝒯~log/Slog\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}\hookrightarrow\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}} and d:𝒯~log/Slog𝒯d_{\mathcal{E}}:\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}\twoheadrightarrow\mathcal{T};

  • the third lower horizontal arrow denotes the morphism induced from d:𝒯~log/Slog𝒯d_{\mathcal{E}}:\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}\twoheadrightarrow\mathcal{T} and the zero map Ω𝔤0\Omega\otimes\mathfrak{g}_{\mathcal{E}}\rightarrow 0.

The two horizontal sequences in this diagram are exact. Here, denote by ς1\varsigma_{1} the morphism 𝒯[0]𝒦[~ϕ,Bad(0)]\mathcal{T}[0]\rightarrow\mathcal{K}^{\bullet}[\widetilde{\nabla}_{\phi,B}^{\mathrm{ad}(0)}] determined by ϕ(0)\nabla_{\phi}^{(0)}, and by ς2\varsigma_{2} the morphism 𝒯[0]𝒯~log/Slog,ϕ[0]\mathcal{T}[0]\rightarrow\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}[0] determined by the split injection of (8.43) resulting from Lemma 8.2.1, (i). Since the direct sum ς1ς2\varsigma_{1}\oplus\varsigma_{2} specifies a split injection of the upper horizontal sequence in (8.68), it follows from the snake lemma again that there exists an isomorphism

Coker(γ¯1(γ¯2))Coker(γ).\displaystyle\mathrm{Coker}(\overline{\gamma}_{1}\oplus(-\overline{\gamma}_{2}))\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathrm{Coker}(\gamma). (8.69)

Thus, the assertion follows from (8.63) and (8.69). ∎

Proposition 8.2.4.

The equality 𝒢i=0\mathcal{G}_{\mathscr{E}^{\spadesuit}}^{i}=0 holds except for i=1i=1. Moreover, 𝒢1\mathcal{G}_{\mathscr{E}^{\spadesuit}}^{1} is a vector bundle on SS and the formation of 𝒢1\mathcal{G}_{\mathscr{E}^{\spadesuit}}^{1} commutes with base-change over SS-schemes.

Proof.

First, we shall prove the assertion for i=0i=0. Let us consider the short exact sequence of complexes

0𝒦[ϕad(0)]inclusion𝒦[~ϕad(0)](d,0)𝒯[0]0.\displaystyle 0\rightarrow\mathcal{K}^{\bullet}[\nabla_{\phi}^{\mathrm{ad}(0)}]\xrightarrow{\mathrm{inclusion}}\mathcal{K}^{\bullet}[\widetilde{\nabla}_{\phi}^{\mathrm{ad}(0)}]\xrightarrow{(d_{\mathcal{E}},0)}\mathcal{T}[0]\rightarrow 0. (8.70)

As already proved in  [Wak8, Proposition 6.5], the equality 0f(𝒦[ϕad(0)])=0\mathbb{R}^{0}f_{*}(\mathcal{K}^{\bullet}[\nabla_{\phi}^{\mathrm{ad}(0)}])=0 holds. Hence, applying the functor 0f()\mathbb{R}^{0}f_{*}(-) to (8.70) yields

0f(𝒦[~ϕad(0)])(=f(Ker(~ϕad(0))))=0.\displaystyle\mathbb{R}^{0}f_{*}(\mathcal{K}^{\bullet}[\widetilde{\nabla}_{\phi}^{\mathrm{ad}(0)}])\left(=f_{*}(\mathrm{Ker}(\widetilde{\nabla}_{\phi}^{\mathrm{ad}(0)}))\right)=0. (8.71)

Both 𝒦[~ϕ,Bad(0)]\mathcal{K}^{\bullet}[\widetilde{\nabla}_{\phi,B}^{\mathrm{ad}(0)}] and 𝒯~log/Slog,ϕ[0]\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}[0] are subcomplexes of 𝒦[~ϕad(0)]\mathcal{K}^{\bullet}[\widetilde{\nabla}_{\phi}^{\mathrm{ad}(0)}], so (8.71) implies

0f(𝒦[~ϕ,Bad(0)])=0f(𝒯~log/Slog,ϕ)=0.\displaystyle\mathbb{R}^{0}f_{*}(\mathcal{K}^{\bullet}[\widetilde{\nabla}_{\phi,B}^{\mathrm{ad}(0)}])=\mathbb{R}^{0}f_{*}(\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi})=0. (8.72)

Since 𝒢0\mathcal{G}_{\mathscr{E}^{\spadesuit}}^{0} is a subsheaf of the direct sum 0f(𝒦[~ϕ,Bad(0)])0f(𝒯~log/Slog,ϕ)\mathbb{R}^{0}f_{*}(\mathcal{K}^{\bullet}[\widetilde{\nabla}_{\phi,B}^{\mathrm{ad}(0)}])\oplus\mathbb{R}^{0}f_{*}(\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}), we have 𝒢0=0\mathcal{G}_{\mathscr{E}^{\spadesuit}}^{0}=0.

Next, we shall prove the assertion for i=1i=1. Note that the short exact sequence (8.57) obtained in Lemma 8.2.3 induces an exact sequence of 𝒪S\mathcal{O}_{S}-modules

0\displaystyle 0 0f(Im(γ))0f(𝒦[~ϕad(0)])f(Coker(ξ))\displaystyle\rightarrow\mathbb{R}^{0}f_{*}(\mathrm{Im}(\gamma))\rightarrow\mathbb{R}^{0}f_{*}(\mathcal{K}^{\bullet}[\widetilde{\nabla}_{\phi}^{\mathrm{ad}(0)}])\rightarrow f_{*}(\mathrm{Coker}(\xi)) (8.73)
1f(Im(γ))1f(𝒦[~ϕad(0)])1f(Coker(ξ))0.\displaystyle\rightarrow\mathbb{R}^{1}f_{*}(\mathrm{Im}(\gamma))\rightarrow\mathbb{R}^{1}f_{*}(\mathcal{K}^{\bullet}[\widetilde{\nabla}_{\phi}^{\mathrm{ad}(0)}])\rightarrow\mathbb{R}^{1}f_{*}(\mathrm{Coker}(\xi))\rightarrow 0.

The exactness at 0f(Im(γ))\mathbb{R}^{0}f_{*}(\mathrm{Im}(\gamma)) in this sequence and (8.71) together imply the equality

0f(Im(γ))=0.\displaystyle\mathbb{R}^{0}f_{*}(\mathrm{Im}(\gamma))=0. (8.74)

The sheaves appearing in this sequence except for 1f(Im(γ))\mathbb{R}^{1}f_{*}(\mathrm{Im}(\gamma)) are all vector bundles (cf. Lemma 8.2.2), so 1f(Im(γ))\mathbb{R}^{1}f_{*}(\mathrm{Im}(\gamma)) turns out to be a vector bundle. Also, let us consider the short exact sequence

0Ker(γ)inclusion𝒦[~ad(0)ϕ,B]𝒯~log/Slog,ϕ[0]γIm(γ)0.\displaystyle 0\rightarrow\mathrm{Ker}(\gamma)\xrightarrow{\mathrm{inclusion}}\mathcal{K}^{\bullet}[\widetilde{\nabla}^{\mathrm{ad}(0)}_{\phi,B}]\oplus\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}[0]\xrightarrow{\gamma}\mathrm{Im}(\gamma)\rightarrow 0. (8.75)

Since γ\gamma is an isomorphism at degree 11, the complex Ker(γ)\mathrm{Ker}(\gamma) is concentrated only at degree 0. This implies 2f(Ker(γ))=0\mathbb{R}^{2}f_{*}(\mathrm{Ker}(\gamma))=0, and hence (8.75) induces the following short exact sequence

01f(Ker(γ))1f(𝒦[~ad(0)ϕ,B])1f(𝒯~log/Slog,ϕ)1f(Im(γ))0,\displaystyle 0\rightarrow\mathbb{R}^{1}f_{*}(\mathrm{Ker}(\gamma))\rightarrow\mathbb{R}^{1}f_{*}(\mathcal{K}^{\bullet}[\widetilde{\nabla}^{\mathrm{ad}(0)}_{\phi,B}])\oplus\mathbb{R}^{1}f_{*}(\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi})\rightarrow\mathbb{R}^{1}f_{*}(\mathrm{Im}(\gamma))\rightarrow 0, (8.76)

where the exactness at 1f(Ker(γ))\mathbb{R}^{1}f_{*}(\mathrm{Ker}(\gamma)) follows from (8.74). Since 1f(𝒦[~ad(0)ϕ,B])\mathbb{R}^{1}f_{*}(\mathcal{K}^{\bullet}[\widetilde{\nabla}^{\mathrm{ad}(0)}_{\phi,B}]), 1f(𝒯~log/Slog,ϕ)\mathbb{R}^{1}f_{*}(\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}), and 1f(Im(γ))\mathbb{R}^{1}f_{*}(\mathrm{Im}(\gamma)) are vector bundles (cf.  [Wak8, Eq. (788)] and Lemma 8.2.1, (ii)), we see that 1f(Ker(γ))\mathbb{R}^{1}f_{*}(\mathrm{Ker}(\gamma)) is a vector bundle. Here, consider the following diagram

(8.81)

where the right-hand and left-hand vertical arrows are the natural morphisms, and the upper horizontal sequence is (8.76). By the snake lemma applied to this diagram and the exactness of (8.73), we obtain the short exact sequence

01f(Ker(γ))𝒢1f(Coker(ξ))0.\displaystyle 0\rightarrow\mathbb{R}^{1}f_{*}(\mathrm{Ker}(\gamma))\rightarrow\mathcal{G}^{1}_{\mathscr{E}^{\spadesuit}}\rightarrow f_{*}(\mathrm{Coker}(\xi))\rightarrow 0. (8.82)

Since both 1f(Ker(γ))\mathbb{R}^{1}f_{*}(\mathrm{Ker}(\gamma)) and f(Coker(ξ))f_{*}(\mathrm{Coker}(\xi)) are vector bundles on SS (cf. Lemma 8.2.2), 𝒢1\mathcal{G}_{\mathscr{E}^{\spadesuit}}^{1} turns out to be a vector bundle. Moreover, it follows from the various definitions involved that the formations of 1f(Ker(γ))\mathbb{R}^{1}f_{*}(\mathrm{Ker}(\gamma)) and f(Coker(ξ))f_{*}(\mathrm{Coker}(\xi)) commute with base-change over SS-schemes. Hence, the exactness of (8.82) implies the required commutativity of the formation of 𝒢1\mathcal{G}_{\mathscr{E}^{\spadesuit}}^{1}. This completes the proof of the assertion for i=1i=1.

Finally, the assertion for i2i\geq 2 follows immediately from the fact that if(𝒦[~ϕ,Bad(0)])=if(𝒯~log/Slog,ϕ)=0\mathbb{R}^{i}f_{*}(\mathcal{K}^{\bullet}[\widetilde{\nabla}_{\phi,B}^{\mathrm{ad}(0)}])=\mathbb{R}^{i}f_{*}(\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi})=0 for every i2i\geq 2 (cf.  [Wak8, Lemma 6.6]). ∎

8.3. Deformation space of a dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper

In this subsection, we suppose that S=Spec(k)S=\mathrm{Spec}(k) for an algebraically closed field kk over 𝔽p\mathbb{F}_{p}. We will regard 𝒢i\mathcal{G}_{\mathscr{E}^{\spadesuit}}^{i} (i0i\in\mathbb{Z}_{\geq 0}) as kk-vector spaces. Denote by 𝒜rt/k\mathcal{A}rt_{/k} the category of local Artinian kk-algebras with residue field kk. For each ROb(𝒜rt/k)R\in\mathrm{Ob}(\mathcal{A}rt_{/k}), we write 𝔪R\mathfrak{m}_{R} for the maximal ideal of RR.

Definition 8.3.1.

Let ROb(𝒜rt/k)R\in\mathrm{Ob}(\mathcal{A}rt_{/k}). A deformation of (𝒳,)(\mathscr{X},\mathscr{E}^{\spadesuit}) over RR is a pair

(𝒳R,R),\displaystyle(\mathscr{X}_{R},\mathscr{E}_{R}^{\spadesuit}), (8.83)

where

  • 𝒳R\mathscr{X}_{R} denotes an rr-pointed stable curve of genus gg over RR equipped with an isomorphism ν:𝒳k×R𝒳\nu:\mathscr{X}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}k\times_{R}\mathscr{X} between 𝒳\mathscr{X} and the reduction k×R𝒳Rk\times_{R}\mathscr{X}_{R} of 𝒳R\mathscr{X}_{R} modulo 𝔪R\mathfrak{m}_{R};

  • R\mathscr{E}^{\spadesuit}_{R} denotes a dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper on 𝒳R\mathscr{X}_{R} whose reduction modulo 𝔪R\mathfrak{m}_{R} corresponds to \mathscr{E}^{\spadesuit} via ν\nu.

The notion of an isomorphism between two deformations of (𝒳,)(\mathscr{X},\mathscr{E}^{\spadesuit}) can be defined naturally (so the precise definition is left to the reader).

Recall that any deformation of the pointed stable curve 𝒳\mathscr{X} (or equivalently, the log curve Xlog/klogX^{\mathrm{log}}/k^{\mathrm{log}}) is locally trivial (cf.  [Wak8, § 6.1.2]). Also, the local triviality of deformations holds for a dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper, as shown in the following proposition.

Proposition 8.3.2.

Let RR be an element of Ob(𝒜rt/k)\mathrm{Ob}(\mathcal{A}rt_{/k}) and (𝒳R,R)(\mathscr{X}_{R},\mathscr{E}^{\spadesuit}_{R}), where R:=((B)R,ϕR)\mathscr{E}^{\spadesuit}_{R}:=((\mathcal{E}_{B})_{R},\phi_{R}), a deformation of (𝒳,)(\mathscr{X},\mathscr{E}^{\spadesuit}) over RR. We shall write R:=(B)R×BPGL2\mathcal{E}_{R}:=(\mathcal{E}_{B})_{R}\times^{B}\mathrm{PGL}_{2}. Then, the (N1)(N-1)-PD stratified PGL2\mathrm{PGL}_{2}-bundle (R,ϕR)(\mathcal{E}_{R},\phi_{R}) is, Zariski locally on XX, isomorphic to the trivial deformation of (,ϕ)(\mathcal{E},\phi) (i.e., the base-change of (,ϕ)(\mathcal{E},\phi) over RR).

Proof.

We shall prove the assertion by double induction on NN and :=dimk(R)\ell:=\mathrm{dim}_{k}(R). There is nothing to prove when =1\ell=1, i.e., R=kR=k. Also, the assertion for N=1N=1 can be proved by an argument entirely similar to the proof of  [Wak8, Corollary 6.12].

Next, we shall consider the induction step. Suppose that N2N\geq 2, 2\ell\geq 2, and that we have proved the assertion in the case where the level of \mathscr{E}^{\spadesuit} and the dimension of RR are smaller than NN and \ell, respectively. To clarify the level of PD stratifications, we write ϕ(N1):=ϕ\phi^{(N-1)}:=\phi, ϕR(N1):=ϕR\phi_{R}^{(N-1)}:=\phi_{R}, and use the notation ()(N)(-)^{(N^{\prime})} (N<NN^{\prime}<N) to denote the result of reducing the level of an (N1)(N-1)-PD stratification ()(-) to NN^{\prime}. Also, we use the notation R×k()R\times_{k}(-) to denote the result of base-changing objects over kk via kRk\rightarrow R.

Let us take a nonzero element aa of RR with a2=0a^{2}=0, and write R0:=R/(a)R_{0}:=R/(a). By the induction hypothesis, each point qq of XX has an open neighborhood U(X)U\left(\subseteq X\right) on which ((B)R,ϕ(N2)R)((\mathcal{E}_{B})_{R},\phi^{(N-2)}_{R}) is isomorphic to the base-change (R×kB,R×kϕ(N2))(R\times_{k}\mathcal{E}_{B},R\times_{k}\phi^{(N-2)}) of the dormant PGL2(N1)\mathrm{PGL}_{2}^{(N-1)}-oper (B,ϕ(N2))(\mathcal{E}_{B},\phi^{(N-2)}). We shall fix an identification

((B)R|U,ϕ(N2)R|U)=(R×kB|U,R×kϕ(N2)|U),\displaystyle((\mathcal{E}_{B})_{R}|_{U},\phi^{(N-2)}_{R}|_{U})=(R\times_{k}\mathcal{E}_{B}|_{U},R\times_{k}\phi^{(N-2)}|_{U}), (8.84)

by which we regard ϕR(N1)|U\phi_{R}^{(N-1)}|_{U} as an (N1)(N-1)-PD stratification on (R×k|U)/Ulog/klog(R\times_{k}\mathcal{E}|_{U})/U^{\mathrm{log}}/k^{\mathrm{log}} (where Ulog:=U×XXlogU^{\mathrm{log}}:=U\times_{X}X^{\mathrm{log}}) satisfying the equality

ϕR(N2)|U=R×kϕ(N2)|U.\displaystyle\phi_{R}^{(N-2)}|_{U}=R\times_{k}\phi^{(N-2)}|_{U}. (8.85)

If ϕR0(N1)\phi_{R_{0}}^{(N-1)} denotes the reduction modulo aa of ϕR(N1)\phi_{R}^{(N-1)}, then the induction hypothesis asserts that (R0×kB,ϕR0(N1))(R_{0}\times_{k}\mathcal{E}_{B},\phi_{R_{0}}^{(N-1)}) is locally isomorphic to the base-change (R0×kB,R0×kϕ(N1))(R_{0}\times_{k}\mathcal{E}_{B},R_{0}\times_{k}\phi^{(N-1)}) of (B,ϕ(N1))(\mathcal{E}_{B},\phi^{(N-1)}) over R0R_{0}. Hence, after possibly shrinking UU, we may assume that there exists an isomorphism

(R0×kB|U,ϕR0(N1)|U)(R0×kB|U,R0×kϕ(N1)|U).\displaystyle(R_{0}\times_{k}\mathcal{E}_{B}|_{U},\phi_{R_{0}}^{(N-1)}|_{U})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}(R_{0}\times_{k}\mathcal{E}_{B}|_{U},R_{0}\times_{k}\phi^{(N-1)}|_{U}). (8.86)

By Proposition 5.2.4, this isomorphism coincides, via reducing the level to N2N-2, with the identity morphism of (R0×kB|U,R0×kϕ(N2)|U)(R_{0}\times_{k}\mathcal{E}_{B}|_{U},R_{0}\times_{k}\phi^{(N-2)}|_{U}) under the identification (8.84). This implies the equality

ϕR0(N1)|U=R0×kϕ(N1)|U.\displaystyle\phi_{R_{0}}^{(N-1)}|_{U}=R_{0}\times_{k}\phi^{(N-1)}|_{U}. (8.87)

It follows that there exists a well-defined 𝒪X\mathcal{O}_{X}-linear morphism h:𝒟(N1)|Undk(𝒪)|Uh:\mathcal{D}^{(N-1)}|_{U}\rightarrow\mathcal{E}nd_{k}(\mathcal{O}_{\mathcal{E}})|_{U} satisfying

ϕR(N1)|U=R×kϕ(N1)|U+ah\displaystyle\phi_{R}^{\natural\natural(N-1)}|_{U}=R\times_{k}\phi^{\natural\natural(N-1)}|_{U}+a\cdot h (8.88)

(cf. Remark 2.3.4 for the definition of ()(-)^{\natural\natural}). According to (8.85), the composite

𝒟(N2)pN11|U𝒟(N1)pN11|Uinclusion𝒟pN1(N1)|Uhndk(𝒪)|U\displaystyle\mathcal{D}^{(N-2)}_{\leq p^{N-1}-1}|_{U}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{D}^{(N-1)}_{\leq p^{N-1}-1}|_{U}\xrightarrow{\mathrm{inclusion}}\mathcal{D}_{\leq p^{N-1}}^{(N-1)}|_{U}\xrightarrow{h}\mathcal{E}nd_{k}(\mathcal{O}_{\mathcal{E}})|_{U} (8.89)

coincides with the zero map. Hence, hh induces an 𝒪X\mathcal{O}_{X}-linear morphism

h¯:F(N1)X/k(𝒯(N1))|U(=𝒯pN1|U=(𝒟pN1(N1)/𝒟pN11(N1))|U)ndk(𝒪)|U,\displaystyle\overline{h}:F^{(N-1)*}_{X/k}(\mathcal{T}^{(N-1)})|_{U}\left(=\mathcal{T}^{\otimes p^{N-1}}|_{U}=(\mathcal{D}_{\leq p^{N-1}}^{(N-1)}/\mathcal{D}_{\leq p^{N-1}-1}^{(N-1)})|_{U}\right)\rightarrow\mathcal{E}nd_{k}(\mathcal{O}_{\mathcal{E}})|_{U}, (8.90)

where 𝒯(N1):=𝒯X(N1)log/Slog\mathcal{T}^{(N-1)}:=\mathcal{T}_{X^{(N-1)\mathrm{log}}/S^{\mathrm{log}}}. Since a2=0a^{2}=0 and hh is PGL2\mathrm{PGL}_{2}-equivariant (in an evident sense), the image of h¯\overline{h} lies in 𝔤(=π(𝒯/X)PGL2)\mathfrak{g}_{\mathcal{E}}\left(=\pi_{*}(\mathcal{T}_{\mathcal{E}/X})^{\mathrm{PGL}_{2}}\right). Moreover, (8.85) implies that h¯\overline{h} restricts to a morphism

h¯:𝒯(N1)|U𝔤[N1]|U.\displaystyle\overline{h}^{\nabla}:\mathcal{T}^{(N-1)}|_{U}\rightarrow\mathfrak{g}_{\mathcal{E}}^{[N-1]}|_{U}. (8.91)

We shall use the same notation h¯\overline{h}^{\nabla} to denote the induced 𝒪U(N1)\mathcal{O}_{U^{(N-1)}}-linear morphism 𝒪[N1]|UΩ(N1)𝒪[N1]|U\mathcal{O}_{\mathcal{E}}^{[N-1]}|_{U}\rightarrow\Omega^{(N-1)}\otimes\mathcal{O}_{\mathcal{E}}^{[N-1]}|_{U} (where Ω(N1):=𝒯(N1)\Omega^{(N-1)}:=\mathcal{T}^{(N-1)\vee}) via the natural morphism 𝔤[N1]nd𝒪X(N1)(𝒪[N1])\mathfrak{g}_{\mathcal{E}}^{[N-1]}\rightarrow\mathcal{E}nd_{\mathcal{O}_{X^{(N-1)}}}(\mathcal{O}_{\mathcal{E}}^{[N-1]}). If R\nabla_{R} (resp., R×kR\times_{k}\nabla) denotes the SlogS^{\mathrm{log}}-connection on the 𝒪U(N1)\mathcal{O}_{U^{(N-1)}}-module 𝒪|U\mathcal{O}_{\mathcal{E}}|_{U} induced by ϕR(N1)|U\phi_{R}^{(N-1)}|_{U} (resp., R×kϕ(N1)|UR\times_{k}\phi^{(N-1)}|_{U}), then (8.88) implies R=R×k+ah¯\nabla_{R}=R\times_{k}\nabla+a\cdot\overline{h}^{\nabla}. Since both R\nabla_{R} and R×kR\times_{k}\nabla have vanishing pp-curvature (cf. Proposition 2.6.1, (ii)), it follows from Lemma 8.3.3 described below that we can find, after possibly shrinking UU, an element vH0(U,𝔤[N1])v\in H^{0}(U,\mathfrak{g}_{\mathcal{E}}^{[N-1]}) satisfying

(ϕad)[N1](v)=h¯.\displaystyle(\nabla_{\phi}^{\mathrm{ad}})^{[N-1]}(v)=\overline{h}^{\nabla}. (8.92)

Denote by hvh_{v} the automorphism of R×kR\times_{k}\mathcal{E} corresponding to the automorphism of 𝒪R×k\mathcal{O}_{R\times_{k}\mathcal{E}} described as id𝒪R×kav\mathrm{id}_{\mathcal{O}_{R\times_{k}\mathcal{E}}}-a\cdot v. Also, denote by hv(R×kϕ|U)(N1)h_{v}^{*}(R\times_{k}\phi^{\natural\natural}|_{U})^{(N-1)} the 𝒟(N1)\mathcal{D}^{(N-1)}-module structure on 𝒪R×k|U\mathcal{O}_{R\times_{k}\mathcal{E}|_{U}} defined as the pull-back of R×kϕ(N1)|UR\times_{k}\phi^{(N-1)\natural\natural}|_{U} by hvh_{v}. Since vv belongs to 𝔤[N1]\mathfrak{g}_{\mathcal{E}}^{[N-1]}, we have

hv(R×kϕ|U)(N2)=(R×kϕ(N2)|U=)ϕR(N2)|U.\displaystyle h_{v}^{*}(R\times_{k}\phi^{\natural\natural}|_{U})^{(N-2)}=\left(R\times_{k}\phi^{\natural\natural(N-2)}|_{U}=\right)\phi_{R}^{\natural\natural(N-2)}|_{U}. (8.93)

On the other hand, the equality (8.92) together with the same argument as  [Wak8, Remark 6.2] shows that

hv(R×kϕ|U)[N1]=ϕR[N1]|U.\displaystyle h_{v}^{*}(R\times_{k}\phi^{\natural\natural}|_{U})^{[N-1]}=\phi_{R}^{\natural\natural[N-1]}|_{U}. (8.94)

By (8.93) and (8.94), we can apply Lemma 3.1.2 to obtain the equality hv(R×kϕ|U)(N1)=ϕR(N1)|Uh_{v}^{*}(R\times_{k}\phi^{\natural\natural}|_{U})^{(N-1)}=\phi_{R}^{\natural\natural(N-1)}|_{U}. This means that ϕR(N1)|U\phi_{R}^{\natural\natural(N-1)}|_{U} can be transformed into the trivial deformation of ϕ(N1)\phi^{\natural\natural(N-1)} via a suitable trivialization R|UR×k|U\mathcal{E}_{R}|_{U}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}R\times_{k}\mathcal{E}|_{U}. By applying this argument to various points qq of XX, we finish the proof of this proposition. ∎

The following lemma was used in the proof of the above proposition.

Lemma 8.3.3.

Let us keep the notation in the proof of Proposition 8.3.2. Then, the pp-curvature of R\nabla_{R} satisfies the equality

ψ(R)=aC(𝔤[N1],(ϕad)[N1])(h¯)\displaystyle\psi(\nabla_{R})=-a\cdot C_{(\mathfrak{g}_{\mathcal{E}}^{[N-1]},(\nabla_{\phi}^{\mathrm{ad}})^{[N-1]})}(\overline{h}^{\nabla}) (8.95)

under the composite of natural inclusions

H0(U(N),Ω(N)𝔤[N])\displaystyle H^{0}(U^{(N)},\Omega^{(N)}\otimes\mathfrak{g}_{\mathcal{E}}^{[N]}) Hom𝒪U(N)(𝒯[N]|U(N),𝔤[N]|U(N))\displaystyle\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathrm{Hom}_{\mathcal{O}_{U^{(N)}}}(\mathcal{T}^{[N]}|_{U^{(N)}},\mathfrak{g}_{\mathcal{E}}^{[N]}|_{U^{(N)}}) (8.96)
Hom𝒪U(N)(𝒯[N]|U(N),ndk(𝒪)|U(N))\displaystyle\hookrightarrow\mathrm{Hom}_{\mathcal{O}_{U^{(N)}}}(\mathcal{T}^{[N]}|_{U^{(N)}},\mathcal{E}nd_{k}(\mathcal{O}_{\mathcal{E}})|_{U^{(N)}})
Hom𝒪U(N1)(FX(N1)/k(𝒯[N])|U(N1),ndk(𝒪)|U(N1)).\displaystyle\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathrm{Hom}_{\mathcal{O}_{U^{(N-1)}}}(F_{X^{(N-1)}/k}^{*}(\mathcal{T}^{[N]})|_{U^{(N-1)}},\mathcal{E}nd_{k}(\mathcal{O}_{\mathcal{E}})|_{U^{(N-1)}}).

In particular, if the pp-curvature of R\nabla_{R} vanishes, then h¯\overline{h}^{\nabla} may be expressed, Zariski locally on XX, as h¯=(ϕad)[N1](v)\overline{h}^{\nabla}=(\nabla_{\phi}^{\mathrm{ad}})^{[N-1]}(v) for some local section vv of 𝔤[N1]\mathfrak{g}_{\mathcal{E}}^{[N-1]}.

Proof.

The assertion follows from computations similar to those in the proof of  [Wak8, Proposition 6.11]. So we omit the details of the proof. ∎

Remark 8.3.4 (Higher rank cases).

The same assertion as Proposition 8.3.2 also holds for a general rank n(<p)n\left(<p\right) not only the case of n=2n=2. In fact, it can be proved by a similar argument because the result of Proposition 5.2.4, which is one of the essential points in the proof, holds for a general nn.

For each ROb(𝒜rt/kR\in\mathrm{Ob}(\mathcal{A}rt_{/k}), we shall set

Def(𝒳,)(R):=(the set of isomorphism classesof deformations of (𝒳,) over R).\displaystyle\mathrm{Def}_{(\mathscr{X},\mathscr{E}^{\spadesuit})}(R):=\left(\begin{matrix}\text{the set of isomorphism classes}\\ \text{of deformations of $(\mathscr{X},\mathscr{E}^{\spadesuit})$ over $R$}\end{matrix}\right). (8.97)

If σ:RR\sigma:R^{\prime}\rightarrow R is a morphism in 𝒜rt/k\mathcal{A}rt_{/k}, then the base-change along the induced morphism Spec(R)Spec(R)\mathrm{Spec}(R)\rightarrow\mathrm{Spec}(R^{\prime}) gives a map of sets σ:Def(𝒳,)(R)Def(𝒳,)(R)\sigma^{*}:\mathrm{Def}_{(\mathscr{X},\mathscr{E}^{\spadesuit})}(R^{\prime})\rightarrow\mathrm{Def}_{(\mathscr{X},\mathscr{E}^{\spadesuit})}(R). Thus, the assignments RDef(𝒳,)(R)R\mapsto\mathrm{Def}_{(\mathscr{X},\mathscr{E}^{\spadesuit})}(R) and σσ\sigma\mapsto\sigma^{*} together determine a functor

Def(𝒳,):𝒜rt/k𝒮et.\displaystyle\mathrm{Def}_{(\mathscr{X},\mathscr{E}^{\spadesuit})}:\mathcal{A}rt_{/k}\rightarrow\mathcal{S}et. (8.98)
Theorem 8.3.5.

The functor Def(𝒳,)\mathrm{Def}_{(\mathscr{X},\mathscr{E}^{\spadesuit})} is a rigid deformation functor with good deformation theory, in the sense of  [Wak7, § 6.1]. Moreover, the triple

(Def(𝒳,),𝒢1,𝒢2)\displaystyle(\mathrm{Def}_{(\mathscr{X},\mathscr{E}^{\spadesuit})},\mathcal{G}_{\mathscr{E}^{\spadesuit}}^{1},\mathcal{G}_{\mathscr{E}^{\spadesuit}}^{2}) (8.99)

forms a deformation triple, in the sense of  [Wak7, Definition 6.1.1], i.e., Def(𝒳,)\mathrm{Def}_{(\mathscr{X},\mathscr{E}^{\spadesuit})} has a tangent-obstruction theory by putting 𝒢1\mathcal{G}_{\mathscr{E}^{\spadesuit}}^{1} as the tangent space and 𝒢2\mathcal{G}_{\mathscr{E}^{\spadesuit}}^{2} as the obstruction space. In particular, Def(𝒳,)\mathrm{Def}_{(\mathscr{X},\mathscr{E}^{\spadesuit})} is smooth and pro-representable by k[[t1,,tdim(𝒢1)]]k[\![t_{1},\cdots,t_{\mathrm{dim}(\mathcal{G}_{\mathscr{E}^{\spadesuit}}^{1})}]\!] (cf.  [Wak7, Remark 6.1.3, (i)]).

Proof.

First, we shall consider the tangent space of Def(𝒳,)\mathrm{Def}_{(\mathscr{X},\mathscr{E}^{\spadesuit})}. Let 𝔢:=(0MRR00)\mathfrak{e}:=(0\rightarrow M\rightarrow R\rightarrow R_{0}\rightarrow 0) be a small extension in 𝒜rt/k\mathcal{A}rt_{/k} and (𝒳R,R)(\mathscr{X}_{R},\mathscr{E}^{\spadesuit}_{R}) (where 𝒳R:=(XR/R,{σR,i}i)\mathscr{X}_{R}:=(X_{R}/R,\{\sigma_{R,i}\}_{i}) and R:=((B)R,ϕR)\mathscr{E}^{\spadesuit}_{R}:=((\mathcal{E}_{B})_{R},\phi_{R})) a deformation of (𝒳,)(\mathscr{X},\mathscr{E}^{\spadesuit}) over RR. Set R:=(B)R×BPGL2\mathcal{E}_{R}:=(\mathcal{E}_{B})_{R}\times^{B}\mathrm{PGL}_{2}. Also, let us take an element vv of Mk𝒢1M\otimes_{k}\mathcal{G}_{\mathscr{E}^{\spadesuit}}^{1}, which may be described as v=(v1,v2)v=(v_{1},v_{2}) for v11(X,𝒦[idM~ϕ,Bad(0)])v_{1}\in\mathbb{H}^{1}(X,\mathcal{K}^{\bullet}[\mathrm{id}_{M}\otimes\widetilde{\nabla}_{\phi,B}^{\mathrm{ad}(0)}]), v2H1(X,Mk𝒯~log/klog,ϕ)v_{2}\in H^{1}(X,M\otimes_{k}\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/k^{\mathrm{log}},\phi}), where idM~ϕ,Bad(0)\mathrm{id}_{M}\otimes\widetilde{\nabla}_{\phi,B}^{\mathrm{ad}(0)} denotes the tensor product Mk𝒯~Blog/klogMk(Ω𝔤)M\otimes_{k}\widetilde{\mathcal{T}}_{\mathcal{E}_{B}^{\mathrm{log}}/k^{\mathrm{log}}}\rightarrow M\otimes_{k}(\Omega\otimes\mathfrak{g}_{\mathcal{E}}) of idM\mathrm{id}_{M} and ~ϕ,Bad(0)\widetilde{\nabla}_{\phi,B}^{\mathrm{ad}(0)}. Note here that H1(X,Mk𝒯~log/klog,ϕ)H^{1}(X,M\otimes_{k}\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/k^{\mathrm{log}},\phi}) can be realized as the cohomology of the Čech complex of Mk𝒯~log/klog,ϕM\otimes_{k}\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/k^{\mathrm{log}},\phi} associated with an affine covering. That is to say, we can find an affine open covering 𝒰:={Uα}αI\mathcal{U}:=\{U_{\alpha}\}_{\alpha\in I} (where II is a finite index set) of XX, and vv may be represented by a Čech 11-cocycle

v2={~αβ}(α,β)I2Cˇ1(𝒰,Mk𝒯~log/klog,ϕ),\displaystyle v_{2}=\{\widetilde{\partial}_{\alpha\beta}\}_{(\alpha,\beta)\in I_{2}}\in\check{C}^{1}(\mathcal{U},M\otimes_{k}\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/k^{\mathrm{log}},\phi}), (8.100)

where I2I_{2} denotes the subset of I×II\times I consisting of pairs (α,β)(\alpha,\beta) with Uαβ:=UαUβU_{\alpha\beta}:=U_{\alpha}\cap U_{\beta}\neq\emptyset, and ~αβH0(Uαβ,Mk𝒯~log/klog,ϕ)\widetilde{\partial}_{\alpha\beta}\in H^{0}(U_{\alpha\beta},M\otimes_{k}\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/k^{\mathrm{log}},\phi}). For each (α,β)I2(\alpha,\beta)\in I_{2}, we set αβ:=dB(~αβ)H0(Uαβ,Mk𝒯)\partial_{\alpha\beta}:=d_{\mathcal{E}_{B}}(\widetilde{\partial}_{\alpha\beta})\in H^{0}(U_{\alpha\beta},M\otimes_{k}\mathcal{T}). Also, we shall set UR,αlog:=XRlog|UαU_{R,\alpha}^{\mathrm{log}}:=X_{R}^{\mathrm{log}}|_{U_{\alpha}} for each αI\alpha\in I and set UR,αβlog:=XRlog|UαβU_{R,\alpha\beta}^{\mathrm{log}}:=X_{R}^{\mathrm{log}}|_{U_{\alpha\beta}} for each (α,β)I2(\alpha,\beta)\in I_{2}. The element αβ\partial_{\alpha\beta} (resp., ~αβ\widetilde{\partial}_{\alpha\beta}) may be regarded as a kk-linear morphism

αβ:𝒪UαβMk𝒪Uαβ(resp.,~αβ:𝒪|UαβMk𝒪|Uαβ)\displaystyle\partial_{\alpha\beta}:\mathcal{O}_{U_{\alpha\beta}}\rightarrow M\otimes_{k}\mathcal{O}_{U_{\alpha\beta}}\ \left(\text{resp.,}\ \widetilde{\partial}_{\alpha\beta}:\mathcal{O}_{\mathcal{E}|_{U_{\alpha\beta}}}\rightarrow M\otimes_{k}\mathcal{O}_{\mathcal{E}|_{U_{\alpha\beta}}}\right) (8.101)

satisfying the Leibniz rule. Then, id𝒪UR,αβ+αβ\mathrm{id}_{\mathcal{O}_{U_{R,\alpha\beta}}}+\partial_{\alpha\beta} (resp., id𝒪R|UR,αβ+~αβ\mathrm{id}_{\mathcal{O}_{\mathcal{E}_{R}|_{U_{R,\alpha\beta}}}}+\widetilde{\partial}_{\alpha\beta}) defines a well-defined automorphism αβ\partial^{\sharp}_{\alpha\beta} (resp., ~αβ\widetilde{\partial}^{\sharp}_{\alpha\beta}) of UR,αβlogU_{R,\alpha\beta}^{\mathrm{log}} (resp., Rlog|UR,αβ\mathcal{E}_{R}^{\mathrm{log}}|_{U_{R,\alpha\beta}}). By means of the αβ\partial_{\alpha\beta}^{\sharp}’s ((α,β)I2(\alpha,\beta)\in I_{2}), we can glue together the UR,αlogU_{R,\alpha}^{\mathrm{log}}’s (αI\alpha\in I) to obtain a log curve XlogR,vX^{\mathrm{log}}_{R,v} over R×kSlogR\times_{k}S^{\mathrm{log}}. It determines a deformation 𝒳R,v\mathscr{X}_{R,v} of 𝒳\mathscr{X} over RR (cf.  [KaFu, Theorem 4.1]). Also, the automorphism ~αβ\widetilde{\partial}^{\sharp}_{\alpha\beta} is PGL2\mathrm{PGL}_{2}-equivariant, and the following square diagram is commutative and Cartesian:

(8.106)

For each local section D𝒟(N1)UR,αβlog/RlogD\in\mathcal{D}^{(N-1)}_{U_{R,\alpha\beta}^{\mathrm{log}}/R^{\mathrm{log}}}, the following sequence of equalities holds:

(~αβ)(ϕR|UR,αβ)(D)\displaystyle\hskip 14.22636pt(\widetilde{\partial}^{\sharp}_{\alpha\beta})^{*}(\phi_{R}^{\natural\natural}|_{U_{R,\alpha\beta}})(D) (8.107)
=(id+~αβ)ϕR|UR,αβ(D[αβ,D])(id+~αβ)1\displaystyle=(\mathrm{id}+\widetilde{\partial}_{\alpha\beta})\circ\phi_{R}^{\natural\natural}|_{U_{R,\alpha\beta}}(D-[\partial_{\alpha\beta},D])\circ(\mathrm{id}+\widetilde{\partial}_{\alpha\beta})^{-1}
=(id+~αβ)ϕR|UR,αβ(D[αβ,D])(id~αβ)\displaystyle=(\mathrm{id}+\widetilde{\partial}_{\alpha\beta})\circ\phi_{R}^{\natural\natural}|_{U_{R,\alpha\beta}}(D-[\partial_{\alpha\beta},D])\circ(\mathrm{id}-\widetilde{\partial}_{\alpha\beta})
=ϕR|UR,αβ(D)([ϕR|UR,αβ(D),~αβ]ϕR|UR,αβ([D,αβ]))\displaystyle=\phi_{R}^{\natural\natural}|_{U_{R,\alpha\beta}}(D)-\left([\phi_{R}^{\natural\natural}|_{U_{R,\alpha\beta}}(D),\widetilde{\partial}_{\alpha\beta}]-\phi_{R}^{\natural\natural}|_{U_{R,\alpha\beta}}([D,\partial_{\alpha\beta}])\right)
=ϕR|UR,αβ(D)\displaystyle=\phi_{R}^{\natural\natural}|_{U_{R,\alpha\beta}}(D)

(cf.  [Wak8, Remark 6.2] for the first equality), where the last equality follows from ~αβMk𝒯~log/klog,ϕ\widetilde{\partial}_{\alpha\beta}\in M\otimes_{k}\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/k^{\mathrm{log}},\phi}. This means that ~αβ\widetilde{\partial}^{\sharp}_{\alpha\beta} preserves the (N1)(N-1)-PD stratification ϕR|UR,αβ\phi_{R}|_{U_{R,\alpha\beta}}. Hence, the pairs (R|UR,α,ϕR|UR,αβ)(\mathcal{E}_{R}|_{U_{R,\alpha}},\phi_{R}|_{U_{R,\alpha\beta}}) may be glued together by means of the ~αβ\widetilde{\partial}^{\sharp}_{\alpha\beta}’s; we denote the resulting (N1)(N-1)-PD stratified PGL2\mathrm{PGL}_{2}-bundle by (R,v,ϕR,v)(\mathcal{E}_{R,v},\phi_{R,v}). By construction, ϕR,v\phi_{R,v} has vanishing pNp^{N}-curvature.

On the other hand, according to  [Wak8, Eq. (792)], the element v1v_{1} determines a deformation ((B)R,v,(ϕ)R,v)((\mathcal{E}_{B})_{R,v},(\nabla_{\phi})_{R,v}) over RR of the PGL2\mathrm{PGL}_{2}-oper (B,ϕ)(\mathcal{E}_{B},\nabla_{\phi}). Since v1v_{1} and v2v_{2} agree under the maps 1(γ1)\mathbb{H}^{1}(\gamma_{1}) and 1(γ2)\mathbb{H}^{1}(\gamma_{2}), we see that (B)R,v×BPGL2R,v(\mathcal{E}_{B})_{R,v}\times^{B}\mathrm{PGL}_{2}\cong\mathcal{E}_{R,v} and that the klogk^{\mathrm{log}}-connection on R,v\mathcal{E}_{R,v} induced by ϕR,v\phi_{R,v} coincides with (ϕ)R,v(\nabla_{\phi})_{R,v}. Hence, R,v:=((B)R,v,ϕR,v)\mathscr{E}^{\spadesuit}_{R,v}:=((\mathcal{E}_{B})_{R,v},\phi_{R,v}) forms a dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper on 𝒳R,v\mathscr{X}_{R,v}, and the pair (𝒳R,v,R,v)(\mathscr{X}_{R,v},\mathscr{E}_{R,v}^{\spadesuit}) specifies an element of Def(𝒳,)(R)\mathrm{Def}_{(\mathscr{X},\mathscr{E}^{\spadesuit})}(R). By Proposition 8.3.2 and the bijection displayed in  [Wak8, Eq. (792)], the assignment (𝒳R,R)(𝒳R,v,R,v)(\mathscr{X}_{R},\mathscr{E}^{\spadesuit}_{R})\mapsto(\mathscr{X}_{R,v},\mathscr{E}_{R,v}^{\spadesuit}) (for every vMk𝒢1v\in M\otimes_{k}\mathcal{G}^{1}_{\mathscr{E}^{\spadesuit}}) defines a transitive action of Mk𝒢1M\otimes_{k}\mathcal{G}^{1}_{\mathscr{E}^{\spadesuit}} on the fibers of Def(X,)(σ):Def(𝒳,)(R)Def(𝒳,)(R0)\mathrm{Def}_{(X,\mathscr{E}^{\spadesuit})}(\sigma):\mathrm{Def}_{(\mathscr{X},\mathscr{E}^{\spadesuit})}(R)\rightarrow\mathrm{Def}_{(\mathscr{X},\mathscr{E}^{\spadesuit})}(R_{0}). This action is, by construction, verified to be free if R=kR=k. Consequently, 𝒢1\mathcal{G}^{1}_{\mathscr{E}^{\spadesuit}} is isomorphic to the tangent space of Def(𝒳,)\mathrm{Def}_{(\mathscr{X},\mathscr{E}^{\spadesuit})}.

The assertion concerning an obstruction space can be proved by a routine argument using the Čech cohomological descriptions of relevant deformations as discussed above, so the proof is left to the reader. (Similar discussions can be found in the proofs of  [Wak7, Propositions 6.4.3 and 6.8.2].) Finally, the last assertion follows from  [Sch, Theorem 2.11] together with the fact that dim(𝒢1)<\mathrm{dim}(\mathcal{G}_{\mathscr{E}^{\spadesuit}}^{1})<\infty and 𝒢2=0\mathcal{G}^{2}_{\mathscr{E}^{\spadesuit}}=0 (cf. Proposition 8.2.4). ∎

As a consequence of the above theorem, we obtain the following assertion.

Corollary 8.3.6.
  • (i)

    The Deligne-Mumford stack 𝒪pZzzg,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r}​ is smooth over 𝔽p\mathbb{F}_{p}.

  • (ii)

    Let kk be an algebraically closed field over 𝔽p\mathbb{F}_{p}, 𝒳\mathscr{X} an rr-pointed stable curve of genus gg over kk, and \mathscr{E}^{\spadesuit} a dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper on 𝒳\mathscr{X}. Denote by s:Spec(k)¯g,rs:\mathrm{Spec}(k)\rightarrow\overline{\mathcal{M}}_{g,r} (resp., s~:Spec(k)𝒪pg,rZzz\widetilde{s}:\mathrm{Spec}(k)\rightarrow\mathcal{O}p_{g,r}^{{}^{\mathrm{Zzz...}}}) the kk-rational point classifying 𝒳\mathscr{X} (resp., (𝒳,)(\mathscr{X},\mathscr{E}^{\spadesuit})). Also, denote by Ts¯g,rT_{s}\overline{\mathcal{M}}_{g,r} (resp., Ts~𝒪pg,rZzzT_{\widetilde{s}}\mathcal{O}p_{g,r}^{{}^{\mathrm{Zzz...}}}) the kk-vector space defined as the tangent space of ¯g,r\overline{\mathcal{M}}_{g,r} (resp., 𝒪pg,rZzz\mathcal{O}p_{g,r}^{{}^{\mathrm{Zzz...}}}) at ss (resp., s~\widetilde{s}). Then, there exists a canonical isomorphism of kk-vector spaces

    KS(𝒳,):Ts~𝒪pg,rZzz𝒢1\displaystyle\mathrm{KS}_{(\mathscr{X},\mathscr{E}^{\spadesuit})}:T_{\widetilde{s}}\mathcal{O}p_{g,r}^{{}^{\mathrm{Zzz...}}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{G}_{\mathscr{E}^{\spadesuit}}^{1} (8.108)

    which makes the following diagram commute:

    (8.113)

    where KS𝒳\mathrm{KS}_{\mathscr{X}} denotes the usual Kodaira-Spencer morphism (cf., e.g.,  [Wak8, § 6.1.1]) and the upper horizontal arrow dΠg,rd\Pi_{g,r} denotes the differential of the projection Πg,r\Pi_{g,r} (cf. (5.43)).

Proof.

The assertion follows from Theorem 8.3.5 and the definition of DD_{\mathscr{E}^{\spadesuit}}. ∎

8.4. Dimension of the moduli space

Let SS, 𝒳\mathscr{X}, and \mathscr{E}^{\spadesuit} be as introduced at the beginning of § 8.1. Suppose further that the PGL2\mathrm{PGL}_{2}-oper induced from \mathscr{E}^{\spadesuit} is normal, in the sense of  [Wak8, Definition 4.53]. (According to  [Wak8, Proposition 4.55], any PGL2\mathrm{PGL}_{2}-oper is isomorphic to a normal one.)

Consider the composite surjection

d:𝒯~log/Slog𝒯~log/Slog/𝒯~Blog/Slog𝔤/𝔟B(=𝔤1/𝔤0)𝒯,\displaystyle d^{\prime}_{\mathcal{E}}:\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}\twoheadrightarrow\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}/\widetilde{\mathcal{T}}_{\mathcal{E}_{B}^{\mathrm{log}}/S^{\mathrm{log}}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathfrak{g}_{\mathcal{E}}/\mathfrak{b}_{\mathcal{E}_{B}}\left(=\mathfrak{g}_{\mathcal{E}}^{-1}/\mathfrak{g}_{\mathcal{E}}^{0}\right)\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{T}, (8.114)

where the second and third arrows are the isomorphisms defined in  [Wak8, Eq. (163)] and  [Wak8, Eq. (617)], respectively. By applying the functor 1f()\mathbb{R}^{1}f_{*}(-) to the composite

(𝔤,ϕ=)𝒮ol(ϕad)inclusion(𝔤)𝒯~log/Slogd𝒯,\displaystyle\left(\mathfrak{g}_{\mathcal{E},\phi}=\right)\mathcal{S}ol(\nabla_{\phi}^{\mathrm{ad}})\xrightarrow{\mathrm{inclusion}}\left(\mathfrak{g}_{\mathcal{E}}\hookrightarrow\right)\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}\xrightarrow{d^{\prime}_{\mathcal{E}}}\mathcal{T}, (8.115)

we obtain an 𝒪S\mathcal{O}_{S}-linear morphism

D:1f(𝒮ol(ϕad))1f(𝒯).\displaystyle D^{\prime}_{\mathscr{E}^{\spadesuit}}:\mathbb{R}^{1}f_{*}(\mathcal{S}ol(\nabla_{\phi}^{\mathrm{ad}}))\rightarrow\mathbb{R}^{1}f_{*}(\mathcal{T}). (8.116)

Next, let us consider the 𝒪X\mathcal{O}_{X}-linear endomorphism of 𝒯~log/Slog\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}} defined as

χ:=id𝒯~log/Slogϕ(0)d(0)ϕd:𝒯~log/Slog𝒯~log/Slog.\displaystyle\chi:=\mathrm{id}_{\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}}-\nabla_{\phi}^{(0)}\circ d_{\mathcal{E}}-\nabla^{(0)}_{\phi}\circ d^{\prime}_{\mathcal{E}}:\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}\rightarrow\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}. (8.117)
Lemma 8.4.1.

The automorphism χ\chi of 𝒯~log/Slog\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}} is involutive (i.e., χχ=id\chi\circ\chi=\mathrm{id}), and the following equalities hold:

dχ=d,dχ=d.\displaystyle d_{\mathcal{E}}\circ\chi=-d^{\prime}_{\mathcal{E}},\hskip 28.45274ptd^{\prime}_{\mathcal{E}}\circ\chi=-d_{\mathcal{E}}. (8.118)
Proof.

Since we have assumed that the PGL2\mathrm{PGL}_{2}-oper induced from \mathscr{E}^{\spadesuit} is normal, the equality dϕ=id𝒯d^{\prime}_{\mathcal{E}}\circ\nabla_{\phi}=\mathrm{id}_{\mathcal{T}} holds (cf.  [Wak8, Example 2.7 and Remark 2.16]). Hence, the following sequence of equalities holds:

χχ\displaystyle\chi\circ\chi =(idϕdϕd)(idϕdϕd)\displaystyle=\left(\mathrm{id}-\nabla_{\phi}\circ d_{\mathcal{E}}-\nabla_{\phi}\circ d^{\prime}_{\mathcal{E}}\right)\circ\left(\mathrm{id}-\nabla_{\phi}\circ d_{\mathcal{E}}-\nabla_{\phi}\circ d^{\prime}_{\mathcal{E}}\right) (8.119)
=idϕdϕd\displaystyle=\mathrm{id}-\nabla_{\phi}\circ d_{\mathcal{E}}-\nabla_{\phi}\circ d^{\prime}_{\mathcal{E}}
ϕd(idϕdϕd)\displaystyle\hskip 14.22636pt-\nabla_{\phi}\circ d_{\mathcal{E}}\circ\left(\mathrm{id}-\nabla_{\phi}\circ d_{\mathcal{E}}-\nabla_{\phi}\circ d^{\prime}_{\mathcal{E}}\right)
ϕd(idϕdϕd)\displaystyle\hskip 14.22636pt-\nabla_{\phi}\circ d^{\prime}_{\mathcal{E}}\circ\left(\mathrm{id}-\nabla_{\phi}\circ d_{\mathcal{E}}-\nabla_{\phi}\circ d^{\prime}_{\mathcal{E}}\right)
=idϕdϕd\displaystyle=\mathrm{id}-\nabla_{\phi}\circ d_{\mathcal{E}}-\nabla_{\phi}\circ d^{\prime}_{\mathcal{E}}
ϕd+ϕd+ϕd\displaystyle\hskip 14.22636pt-\nabla_{\phi}\circ d_{\mathcal{E}}+\nabla_{\phi}\circ d_{\mathcal{E}}+\nabla_{\phi}\circ d^{\prime}_{\mathcal{E}}
ϕd+ϕd+ϕd\displaystyle\hskip 14.22636pt-\nabla_{\phi}\circ d^{\prime}_{\mathcal{E}}+\nabla_{\phi}\circ d_{\mathcal{E}}+\nabla_{\phi}\circ d^{\prime}_{\mathcal{E}}
=id.\displaystyle=\mathrm{id}.

Moreover, we have

dχ\displaystyle d_{\mathcal{E}}\circ\chi =d(idϕdϕd)\displaystyle=d_{\mathcal{E}}\circ(\mathrm{id}-\nabla_{\phi}\circ d_{\mathcal{E}}-\nabla_{\phi}\circ d^{\prime}_{\mathcal{E}}) (8.120)
=ddϕddϕd\displaystyle=d_{\mathcal{E}}-d_{\mathcal{E}}\circ\nabla_{\phi}\circ d_{\mathcal{E}}-d_{\mathcal{E}}\circ\nabla_{\phi}\circ d^{\prime}_{\mathcal{E}}
=ddd\displaystyle=d_{\mathcal{E}}-d_{\mathcal{E}}-d^{\prime}_{\mathcal{E}}
=d.\displaystyle=-d^{\prime}_{\mathcal{E}}.

A similar calculation shows dχ=dd^{\prime}_{\mathcal{E}}\circ\chi=-d_{\mathcal{E}}. This completes the proof of this lemma. ∎

Moreover, we can prove the following assertion.

Proposition 8.4.2.

The automorphism χ\chi restricts to an automorphism χϕ:𝒯~log/Slog,ϕ𝒯~log/Slog,ϕ\chi_{\phi}:\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi} of 𝒯~log/Slog,ϕ\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}, and restricts to an isomorphism χB:𝔤𝒯~Blog/Slog\chi_{B}:\mathfrak{g}_{\mathcal{E}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\widetilde{\mathcal{T}}_{\mathcal{E}_{B}^{\mathrm{log}}/S^{\mathrm{log}}}. That is to say, we obtain the following commutative square diagrams:

(8.129)
Proof.

By the definition of ϕ\nabla_{\phi}, the equality

ϕ(D)=ϕ(D)(nd𝒪S(𝒪))\displaystyle\phi^{\natural\natural}(D)=\nabla_{\phi}(D)\left(\in\mathcal{E}nd_{\mathcal{O}_{S}}(\mathcal{O}_{\mathcal{E}})\right) (8.130)

holds for every local section D𝒯(𝒟(N1))D\in\mathcal{T}\left(\subseteq\mathcal{D}^{(N-1)}\right). For local sections v𝒯~log/Slog,ϕv\in\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi} and D𝒟(N1)D\in\mathcal{D}^{(N-1)}, the following sequence of equalities holds:

[ϕ(D),χ(v)]ϕ([D,d(χ(v))])\displaystyle\hskip 14.22636pt[\phi^{\natural\natural}(D),\chi(v)]-\phi^{\natural\natural}([D,d_{\mathcal{E}}(\chi(v))]) (8.131)
=[ϕ(D),v(ϕd)(v)(d)(v)]\displaystyle=[\phi^{\natural\natural}(D),v-(\nabla_{\phi}\circ d_{\mathcal{E}})(v)-(\nabla\circ d^{\prime}_{\mathcal{E}})(v)]
ϕ([D,d(v(ϕd)(v)(ϕd)(v))])\displaystyle\hskip 14.22636pt-\phi^{\natural\natural}([D,d_{\mathcal{E}}(v-(\nabla_{\phi}\circ d_{\mathcal{E}})(v)-(\nabla_{\phi}\circ d^{\prime}_{\mathcal{E}})(v))])
=[ϕ(D),v][ϕ(D),(ϕd)(v)][ϕ(D),(ϕd)(v)]\displaystyle=\cancel{[\phi^{\natural\natural}(D),v]}-[\phi^{\natural\natural}(D),(\nabla_{\phi}\circ d_{\mathcal{E}})(v)]-[\phi^{\natural\natural}(D),(\nabla_{\phi}\circ d^{\prime}_{\mathcal{E}})(v)]
ϕ([D,d(v)])+ϕ([D,d(v)])+ϕ([D,d(v)])\displaystyle\hskip 14.22636pt-\cancel{\phi^{\natural\natural}([D,d_{\mathcal{E}}(v)])}+\phi^{\natural\natural}([D,d_{\mathcal{E}}(v)])+\phi^{\natural\natural}([D,d^{\prime}_{\mathcal{E}}(v)])
=[ϕ(D),ϕ(d(v))][ϕ(D),ϕ(d(v))]+ϕ([D,d(v)])+ϕ([D,d(v)])\displaystyle=-[\phi^{\natural\natural}(D),\phi^{\natural\natural}(d_{\mathcal{E}}(v))]-[\phi^{\natural\natural}(D),\phi^{\natural\natural}(d^{\prime}_{\mathcal{E}}(v))]+\phi^{\natural\natural}([D,d_{\mathcal{E}}(v)])+\phi^{\natural\natural}([D,d^{\prime}_{\mathcal{E}}(v)])
=0,\displaystyle=0,

where the third equality follows from (8.130) together with the equality [ϕ(D),v]ϕ([D,d(v)])=0[\phi^{\natural\natural}(D),v]-\phi^{\natural\natural}([D,d_{\mathcal{E}}(v)])=0, and the fourth equality follows from the fact that ϕ\phi^{\natural\natural} preserves the Lie bracket operator [,][-,-]. This implies that χ(v)𝒯~log/Slog,ϕ\chi(v)\in\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}, and hence χ\chi restricts to an automorphism of 𝒯~log/Slog,ϕ\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}.

Moreover, since Ker(d)=𝔤\mathrm{Ker}(d_{\mathcal{E}})=\mathfrak{g}_{\mathcal{E}} and Ker(d)=𝒯~logB/Slog\mathrm{Ker}(d^{\prime}_{\mathcal{E}})=\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}_{B}/S^{\mathrm{log}}}, the equality dχ=dd^{\prime}_{\mathcal{E}}\circ\chi=-d_{\mathcal{E}} asserted in Lemma 8.4.1 implies that χ\chi restricts to an isomorphism 𝔤𝒯~Blog/Slog\mathfrak{g}_{\mathcal{E}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\widetilde{\mathcal{T}}_{\mathcal{E}_{B}^{\mathrm{log}}/S^{\mathrm{log}}}. This completes the proof of the assertion. ∎

Proposition 8.4.3.

There exists an isomorphism of 𝒪S\mathcal{O}_{S}-modules

Ξ:1f(𝒮ol(ϕad))𝒢1,\displaystyle\Xi:\mathbb{R}^{1}f_{*}(\mathcal{S}ol(\nabla_{\phi}^{\mathrm{ad}}))\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{G}_{\mathscr{E}^{\spadesuit}}^{1}, (8.132)

which makes the following diagram commute:

(8.137)
Proof.

By Proposition 8.4.2, we obtain the following commutative square diagram:

(8.142)

where γ1\gamma^{\prime}_{1} and γ2\gamma^{\prime}_{2} denote the natural inclusions 𝔤𝒯~log/Slog\mathfrak{g}_{\mathcal{E}}\hookrightarrow\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}} and 𝒯~log/Slog,ϕ𝒯~log/Slog\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}\hookrightarrow\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}}}, respectively. This induces an isomorphism of 𝒪S\mathcal{O}_{S}-modules

Ker(1f(γ1(γ2)))𝒢1.\displaystyle\mathrm{Ker}(\mathbb{R}^{1}f_{*}(\gamma^{\prime}_{1}\oplus(-\gamma^{\prime}_{2})))\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{G}_{\mathscr{E}^{\spadesuit}}^{1}. (8.143)

On the other hand, it follows from Lemma 8.2.1, (i), that the commutative square diagram

(8.148)

is Cartesian, where the upper horizontal arrow (resp., the left-hand vertical arrow) arises from the natural inclusion 𝔤,ϕ𝔤\mathfrak{g}_{\mathcal{E},\phi}\hookrightarrow\mathfrak{g}_{\mathcal{E}} (resp., 𝔤,ϕ𝒯~log/Slog,ϕ\mathfrak{g}_{\mathcal{E},\phi}\hookrightarrow\widetilde{\mathcal{T}}_{\mathcal{E}^{\mathrm{log}}/S^{\mathrm{log}},\phi}). Hence, this diagram yields an isomorphism of 𝒪S\mathcal{O}_{S}-modules

1f(𝔤,ϕ)Ker(1f(γ1(γ2))).\displaystyle\mathbb{R}^{1}f_{*}(\mathfrak{g}_{\mathcal{E},\phi})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathrm{Ker}(\mathbb{R}^{1}f_{*}(\gamma^{\prime}_{1}\oplus(-\gamma^{\prime}_{2}))). (8.149)

By composing (8.143) and (8.149), we obtain an isomorphism 1f(𝔤,ϕ)𝒢1\mathbb{R}^{1}f_{*}(\mathfrak{g}_{\mathcal{E},\phi})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{G}_{\mathscr{E}^{\spadesuit}}^{1}, as desired. ∎

Corollary 8.4.4.

The smooth Deligne-Mumford 𝔽p\mathbb{F}_{p}-stack 𝒪pZzzg,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r} is equidimensional of dimension 3g3+r3g-3+r. Moreover, the projection Πg,r\Pi_{g,r} is faithfully flat. In particular, 𝒪pZzzg,rׯg,rg,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r}\times_{\overline{\mathcal{M}}_{g,r}}\mathcal{M}_{g,r} is nonempty.

Proof.

The first assertion follows from Corollary 8.3.6, (ii), Propositions 8.1.2, (ii), and 8.4.3.

Next, suppose that the projection Πg,r\Pi_{g,r} is not surjective. Since Πg,r\Pi_{g,r} is proper (cf. Corollary 5.6.2) and ¯g,r\overline{\mathcal{M}}_{g,r} is irreducible, the image Im(Πg,r)\mathrm{Im}(\Pi_{g,r}) of Πg,r\Pi_{g,r} does not coincides with the entire space ¯g,r\overline{\mathcal{M}}_{g,r} and has dimension <3g3+r<3g-3+r. In particular, we have dim(𝒪pZzzg,r)dim(¯g,r)>0\mathrm{dim}(\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r})-\mathrm{dim}(\overline{\mathcal{M}}_{g,r})>0. This implies that each fiber of Πg,r\Pi_{g,r} has positive dimension (cf.  [Har, Chap. II, Exercise 3.22]); it contradicts the finiteness of Πg,r\Pi_{g,r} asserted in Corollary 5.6.2. Thus, Πg,r\Pi_{g,r} turns out to be surjective.

The flatness of Πg,r\Pi_{g,r} follows immediately from  [Har, Chap. III, Exercise 10.9] because both ¯g,r\overline{\mathcal{M}}_{g,r}, 𝒪pZzzg,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r} are smooth over 𝔽p\mathbb{F}_{p} and Πg,r\Pi_{g,r} is finite. Thus, we have finished the proof of the assertion. ∎

8.5. Ordinariness

Let SS, 𝒳\mathscr{X}, and \mathscr{E}^{\spadesuit} be as before.

Definition 8.5.1.

We shall say that \mathscr{E}^{\spadesuit} is ordinary if the morphism DD_{\mathscr{E}^{\spadesuit}} (cf. (8.53)) is an isomorphism.

The following assertion is a direct consequence of Proposition 8.4.3.

Proposition 8.5.2.

\mathscr{E}^{\spadesuit} is ordinary if and only if the morphism DD^{\prime}_{\mathscr{E}^{\spadesuit}} (cf. (8.116)) is an isomorphism.

Remark 8.5.3 (Previous definition of ordinariness).

When 𝒳\mathscr{X} is unpointed and smooth, it follows from Proposition 8.5.2 that the definition of ordinariness introduced here is equivalent to the ordinariness of the corresponding indigenous (PGL2,B)(\mathrm{PGL}_{2},B)-bundle, in the sense of  [Wak7, Definition 6.7.1].

Denote by

𝒪pn,N,g,r,𝔽p,ordZzz,or simply𝒪pg,r,ordZzz,\displaystyle\mathcal{O}p_{n,N,g,r,\mathbb{F}_{p},\mathrm{ord}}^{{}^{\mathrm{Zzz...}}},\ \text{or simply}\ \mathcal{O}p_{g,r,\mathrm{ord}}^{{}^{\mathrm{Zzz...}}}, (8.150)

the open substack of 𝒪pZzzg,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r} (i.e., 𝒪p2,N,g,r,𝔽pZzz\mathcal{O}p_{2,N,g,r,\mathbb{F}_{p}}^{{}^{\mathrm{Zzz...}}}) classifying ordinary dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers. According to Corollary 8.3.6, this stack coincides with the étale locus of 𝒪pg,rZzz\mathcal{O}p_{g,r}^{{}^{\mathrm{Zzz...}}} relative to ¯g,r\overline{\mathcal{M}}_{g,r}.

Proposition 8.5.4.

The projection ΠN1:𝒪pZzz2,N,g,r,𝔽p𝒪pZzz2,1,g,r,𝔽p\Pi_{N\Rightarrow 1}:\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,r,\mathbb{F}_{p}}\rightarrow\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,1,g,r,\mathbb{F}_{p}} obtained by reducing the level of dormant PGL2\mathrm{PGL}_{2}-opers to 11 restricts to a morphism 𝒪pZzz2,N,g,r,𝔽p,ord𝒪pZzz2,1,g,r,𝔽p,ord\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,r,\mathbb{F}_{p},\mathrm{ord}}\rightarrow\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,1,g,r,\mathbb{F}_{p},\mathrm{ord}}.

Proof.

As shown in  [Mzk2, Chap. II, Theorem 2.8], 𝒪pZzz2,1,g,r,𝔽p\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,1,g,r,\mathbb{F}_{p}} is irreducible. Hence, by an argument similar to the proof of Corollary 8.4.4, the projection ΠN1\Pi_{N\Rightarrow 1} turns out to be flat. If the projection Π2,N,g,r,𝔽p:𝒪pZzz2,N,g,r,𝔽p¯g,r\Pi_{2,N,g,r,\mathbb{F}_{p}}:\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,r,\mathbb{F}_{p}}\rightarrow\overline{\mathcal{M}}_{g,r} is unramified (or equivalently, étale) at a geometric point qq of 𝒪pZzz2,N,g,r,𝔽p\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,r,\mathbb{F}_{p}}, then ΠN1\Pi_{N\Rightarrow 1} is unramified (or equivalently, étale) at the same point. It follows that the differential of the projection Π2,1,g,r,𝔽p:𝒪pZzz2,1,g,r,𝔽p¯g,r\Pi_{2,1,g,r,\mathbb{F}_{p}}:\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,1,g,r,\mathbb{F}_{p}}\rightarrow\overline{\mathcal{M}}_{g,r} at ΠN1(q)\Pi_{N\Rightarrow 1}(q) yields an isomorphism between the respective tangent spaces. This means that Π2,1,g,r,𝔽p\Pi_{2,1,g,r,\mathbb{F}_{p}} is étale at ΠN1(q)\Pi_{N\Rightarrow 1}(q). So the proof of the assertion is completed. ∎

Next, suppose that 𝒳\mathscr{X} is unpointed (i.e., r=0r=0) and smooth (which implies Xlog=XX^{\mathrm{log}}=X and Slog=SS^{\mathrm{log}}=S). We shall write 𝒢:=(𝔤,adϕ)\mathscr{G}:=(\mathfrak{g}_{\mathcal{E}},\nabla^{\mathrm{ad}}_{\phi}) for simplicity. Since the equivalence of categories (2.82) commutes with the formation of duals, the identification (𝔤,ϕad)(𝔤,ϕad)(\mathfrak{g}_{\mathcal{E}},\nabla_{\phi}^{\mathrm{ad}})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}(\mathfrak{g}_{\mathcal{E}}^{\vee},\nabla_{\phi}^{\mathrm{ad}\vee}) induced from the Killing form on 𝔤\mathfrak{g} gives an identification 𝔤,ϕ=𝔤,ϕ\mathfrak{g}_{\mathcal{E},\phi}=\mathfrak{g}_{\mathcal{E},\phi}^{\vee}. Under these identifications, the diagram (2.118) where “(,)(\mathcal{F},\nabla)” is taken to be 𝒢\mathscr{G} defines a commutative square diagram

(8.155)

Let us consider the composite

Ω2Ω𝔤C𝒢Ω(N)𝔤,ϕ,\displaystyle\Omega^{\otimes 2}\hookrightarrow\Omega\otimes\mathfrak{g}_{\mathcal{E}}\xrightarrow{C_{\mathscr{G}}}\Omega^{(N)}\otimes\mathfrak{g}_{\mathcal{E},\phi}, (8.156)

where the first arrow denotes the morphism induced by the inclusion 𝔤1𝔤\mathfrak{g}^{1}_{\mathcal{E}}\hookrightarrow\mathfrak{g}_{\mathcal{E}} under the natural identification (𝔤1/𝔤2=)𝔤1=Ω\left(\mathfrak{g}^{1}_{\mathcal{E}}/\mathfrak{g}^{2}_{\mathcal{E}}=\right)\mathfrak{g}_{\mathcal{E}}^{1}=\Omega (cf.  [Wak8, Eq. (617)]). The direct image via ff of this composite defines an 𝒪S\mathcal{O}_{S}-linear morphism

D:f(Ω2)f(Ω(N)𝔤,ϕ)).\displaystyle D^{\prime\prime}_{\mathscr{E}^{\spadesuit}}:f_{*}(\Omega^{\otimes 2})\rightarrow f_{*}(\Omega^{(N)}\otimes\mathfrak{g}_{\mathcal{E},\phi})). (8.157)
Proposition 8.5.5.

The following square diagram is commutative up to multiplication by an invertible factor in 𝔽p\mathbb{F}_{p}:

(8.162)

where \int denotes the isomorphism obtained by applying Grothendieck-Serre duality to Ω\Omega. In particular, \mathscr{E}^{\spadesuit} is ordinary if and only if DD^{\prime\prime}_{\mathscr{E}^{\spadesuit}} is an isomorphism.

Proof.

Consider the diagram

(8.167)

where the upper and lower horizontal arrows arise from the isomorphisms Ω𝔤1(𝔤)\Omega\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathfrak{g}_{\mathcal{E}}^{1}\left(\hookrightarrow\mathfrak{g}_{\mathcal{E}}\right) and (𝔤)𝔤/𝔤0𝒯\left(\mathfrak{g}_{\mathcal{E}}\twoheadrightarrow\right)\mathfrak{g}_{\mathcal{E}}/\mathfrak{g}_{\mathcal{E}}^{0}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{T}, respectively, defined in  [Wak8, Eq. (617)]. By the definition of the Killing form on 𝔤\mathfrak{g} (i.e., (a,b)14tr(ad(a)ad(b))(=tr(ab))(a,b)\mapsto\frac{1}{4}\cdot\mathrm{tr}(\mathrm{ad}(a)\cdot\mathrm{ad}(b))\left(=\mathrm{tr}(ab)\right) for a,b𝔤a,b\in\mathfrak{g}), this diagram is commutative up to multiplication by an invertible factor. Hence, the assertion follows from the commutativity (in this sense) of this diagram and that of (8.155). The second assertion follows from the first assertion and Proposition 8.5.2. ∎

8.6. Dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers on a 33-pointed projective line

The goal of this subsection is to show that the stack 𝒪pZzzρ,0,3\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{\rho,0,3} defined for each ρ((/pN)×/{±})×3\rho\in((\mathbb{Z}/p^{N}\mathbb{Z})^{\times}/\{\pm\})^{\times 3} is, if it is nonempty, isomorphic to Spec(𝔽p)\mathrm{Spec}(\mathbb{F}_{p}) (cf. Theorem 8.6.5). Since we have already obtained the finiteness and smoothness of the moduli space (cf. Theorem 6.3.7 and Corollary 8.3.6, (i)), the problem is reduced to proving that 𝒪pZzzρ,0,3\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{\rho,0,3} consists of exactly one point in the set-theoretic sense. So the desired assertion follows directly from  [Wak9, Proposition 6.4.1]. However, in this subsection, we give an alternative (somewhat simpler) proof of “𝒪pZzzρ,0,3Spec(𝔽p)\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{\rho,0,3}\cong\mathrm{Spec}(\mathbb{F}_{p})” without applying the finiteness and smoothness, which were actually proved by technically complicated arguments. We do so by slightly generalizing the discussion in  [Wak9].

We shall consider the case where 𝒳\mathscr{X} is the 33-pointed projective line 𝒫:=(/S,{[0],[1],[]})\mathscr{P}:=(\mathbb{P}/S,\{[0],[1],[\infty]\}), introduced in (6.63). Let kk be an algebraically closed field over 𝔽p\mathbb{F}_{p}, and suppose that S=Spec(R)S=\mathrm{Spec}(R) for ROb(𝒜rt/k)R\in\mathrm{Ob}(\mathcal{A}rt_{/k}). To clarify the base space “Spec(R)\mathrm{Spec}(R)”, we occasionally write R\mathbb{P}_{R} and 𝒫R\mathscr{P}_{R} instead of \mathbb{P} and 𝒫\mathscr{P}, respectively.

Let us take a triple (ρ0,ρ1,ρ)(\rho_{0},\rho_{1},\rho_{\infty}) of elements of (/pN)×/{±1}(\mathbb{Z}/p^{N}\mathbb{Z})^{\times}/\{\pm 1\}. Then, there exists a triple of integers (λ0,λ1,λ)(\lambda_{0},\lambda_{1},\lambda_{\infty}) satisfying the following conditions:

  • 2ρx=λx2\cdot\rho_{x}=\lambda_{x} as elements of (/pN)/{±1}(\mathbb{Z}/p^{N}\mathbb{Z})/\{\pm 1\} and 0<λx<pN0<\lambda_{x}<p^{N} for every x=0,1,x=0,1,\infty;

  • The sum λ0+λ1+λ\lambda_{0}+\lambda_{1}+\lambda_{\infty} is odd <2pN<2\cdot p^{N}.

Set 𝒪+:=𝒪(λ0[0]+λ1[1]+λ[])\mathcal{O}_{\mathbb{P}}^{+}:=\mathcal{O}_{\mathbb{P}}(\lambda_{0}\cdot[0]+\lambda_{1}\cdot[1]+\lambda_{\infty}\cdot[\infty]). Note that we can find a unique 𝒟(N1)\mathcal{D}^{(N-1)}-module structure +\nabla^{+} on 𝒪+\mathcal{O}_{\mathbb{P}}^{+} whose restriction to U:={[0],[1],[]}U:=\mathbb{P}\setminus\{[0],[1],[\infty]\} coincides with the trivial 𝒟U/S(N1)\mathcal{D}_{U/S}^{(N-1)}-module structure on 𝒪+|U=𝒪U\mathcal{O}_{\mathbb{P}}^{+}|_{U}=\mathcal{O}_{U}. Also, let \mathcal{L} be a line bundle on \mathbb{P} of relative degree λ0+λ1+λ+12\frac{\lambda_{0}+\lambda_{1}+\lambda_{\infty}+1}{2}, which is uniquely determined up to isomorphism because RR is a local ring. Let us fix an identification 2𝒯=𝒪+\mathcal{L}^{\otimes 2}\otimes\mathcal{T}=\mathcal{O}_{\mathbb{P}}^{+}. Under this identification, the pair ϑ:=(,+)\vartheta:=(\mathcal{L},\nabla^{+}) form a dormant 2(N)2^{(N)}-theta characteristic of log/S\mathbb{P}^{\mathrm{log}}/S.

Now, let \mathscr{E}^{\spadesuit} be a dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper on 𝒫\mathscr{P} of radii (ρ0,ρ1,ρ)(\rho_{0},\rho_{1},\rho_{\infty}), i.e., whose radius at [x][x] (x{0,1,}x\in\{0,1,\infty\}) coincides with ρx\rho_{x}. We shall write

:=(,,{j}j=02)\displaystyle\mathscr{F}^{\heartsuit}:=(\mathcal{F},\nabla,\{\mathcal{F}^{j}\}_{j=0}^{2}) (8.168)

for the dormant GL2(N)\mathrm{GL}_{2}^{(N)}-oper determined by a unique (up to isomorphism) dormant (GL2(N),ϑ)(\mathrm{GL}_{2}^{(N)},\vartheta)-oper \nabla^{\diamondsuit} on 𝒫\mathscr{P} corresponding to \mathscr{E}^{\spadesuit} via the isomorphism ΛZzz\Lambda_{\diamondsuit\Rightarrow\spadesuit}^{{}^{\mathrm{Zzz...}}} (cf. Theorem 5.5.1). That is to say, we set :=\mathscr{F}^{\heartsuit}:=\nabla^{\diamondsuit\Rightarrow\heartsuit} (hence =\mathcal{F}=\mathcal{F}_{\mathcal{L}} and =\nabla=\nabla^{\diamondsuit}). In particular, since 1=\mathcal{F}^{1}=\mathcal{L}, we can regard \mathcal{L} as a line subbundle of \mathcal{F}.

Definition 8.6.1.

We shall refer to \mathscr{F}^{\heartsuit} as the canonical dormant GL2(N)\mathrm{GL}_{2}^{(N)}-oper associated to \mathscr{E}^{\spadesuit}. (Note that the formation of \mathscr{F}^{\heartsuit} depends on the choice of (λ0,λ1,λ)(\lambda_{0},\lambda_{1},\lambda_{\infty}), but its isomorphism class does not depend on the choice of the identification 2𝒯=𝒪+\mathcal{L}^{\otimes 2}\otimes\mathcal{T}=\mathcal{O}_{\mathbb{P}}^{+}.)

Remark 8.6.2 (Previous works on canonical GL2(N)\mathrm{GL}_{2}^{(N)}-opers).

The construction of the canonical GL2\mathrm{GL}_{2}-opers was discussed in  [Mzk2, Chap. IV, § 2.1] (for S=Spec(k)S=\mathrm{Spec}(k) and N=1N=1) and  [Wak9, § 6.3] (for S=Spec(k)S=\mathrm{Spec}(k)) to establish a bijective correspondence between dormant PGL2\mathrm{PGL}_{2}-opers on 𝒫\mathscr{P} and certain tamely ramified coverings on 𝒫\mathscr{P} (i.e., dynamical Belyi maps).

We shall write :=F(N)/S(𝒮ol())\mathcal{F}^{\flat}:=F^{(N)*}_{\mathbb{P}/S}(\mathcal{S}ol(\nabla)) and write

τ:\displaystyle\tau:\mathcal{F}^{\flat}\hookrightarrow\mathcal{F} (8.169)

for the 𝒪\mathcal{O}_{\mathbb{P}}-linear injection extending the 𝒪X(N)\mathcal{O}_{X^{(N)}}-linear inclusion 𝒮ol()\mathcal{S}ol(\nabla)\hookrightarrow\mathcal{F}; this morphism commutes with the 𝒟(N1)\mathcal{D}^{(N-1)}-module structures (N1)𝒮ol(),can\nabla^{(N-1)}_{\mathcal{S}ol(\nabla),\mathrm{can}} (cf. (2.81)) and \nabla. Next, we shall set :=Im(τ)\mathcal{L}^{\flat}:=\mathcal{L}\cap\mathrm{Im}(\tau). Since the restriction of τ\tau to U:={[0],[1],[]}U:=\mathbb{P}\setminus\{[0],[1],[\infty]\} is an isomorphism (cf. (2.82)), the quotient sheaf /\mathcal{L}/\mathcal{L}^{\flat} is a torsion sheaf supported on {[0],[1],[]}\{[0],[1],[\infty]\}.

Lemma 8.6.3.

Let us keep the above notation.

  • (i)

    /\mathcal{L}/\mathcal{L}^{\flat} is flat over SS, and the stalk of /\mathcal{L}/\mathcal{L}^{\flat} at the marked point x{[0],[1],[]}x\in\{[0],[1],[\infty]\} is of rank λx\lambda_{x} (as a free 𝒪S\mathcal{O}_{S}-module). Moreover, the injection

    ι:/Coker(τ)\displaystyle\iota:\mathcal{L}/\mathcal{L}^{\flat}\hookrightarrow\mathrm{Coker}(\tau) (8.170)

    induced from the inclusion \mathcal{L}\hookrightarrow\mathcal{F} is an isomorphism.

  • (ii)

    There exists an 𝒪(N)\mathcal{O}_{\mathbb{P}^{(N)}}-linear isomorphism γ:𝒪(N)2𝒮ol()\gamma:\mathcal{O}_{\mathbb{P}^{(N)}}^{\oplus 2}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{S}ol(\nabla).

Proof.

In what follows, we shall use the notation ()k(-)_{k} to denote the result of reducing objects and morphisms over RR modulo 𝔪R\mathfrak{m}_{R}.

First, let us consider assertion (i). By Proposition 8.3.2 (and the isomorphism ΛZzz\Lambda_{\diamondsuit\Rightarrow\spadesuit}^{{}^{\mathrm{Zzz...}}}), (,)(\mathcal{F},\nabla) is locally isomorphic to the base-change of (k,k)(\mathcal{F}_{k},\nabla_{k}) over RR. Hence, Coker(τ)\mathrm{Coker}(\tau) can be locally identified with the base-change of Coker(τk)\mathrm{Coker}(\tau_{k}). This implies that Coker(τ)\mathrm{Coker}(\tau) is flat over SS. Recall from  [Wak9, Lemma 6.3.2] that the reduction modulo 𝔪R\mathfrak{m}_{R} of (8.170) is an isomorphism. By Nakayama’s lemma, the morphism (8.170) turns out to be an isomorphism. In particular, /\mathcal{L}/\mathcal{L}^{\flat} is flat over SS, and the rank of its stalk at xx (as a free 𝒪S\mathcal{O}_{S}-module) coincides with the rank of its reduction modulo 𝔪R\mathfrak{m}_{R}, i.e., λx\lambda_{x}. This completes the proof of assertion (i).

Next, we shall consider assertion (ii). Since (,)(\mathcal{F},\nabla) is locally isomorphic to the base-change of (k,k)(\mathcal{F}_{k},\nabla_{k}) (as mentioned above), the vector bundle 𝒮ol()\mathcal{S}ol(\nabla) on (N)\mathbb{P}^{(N)} is locally isomorphic to the base-change of 𝒮ol(k)\mathcal{S}ol(\nabla_{k}). Hence, 𝒮ol()\mathcal{S}ol(\nabla) specifies a deformation of 𝒮ol(k)\mathcal{S}ol(\nabla_{k}) over RR. Here, let us observe the following fact from well-known generalities of deformation theory: if we are given a small extension in 𝒜rt/k\mathcal{A}rt_{/k} of the form 0kR1R000\rightarrow k\rightarrow R_{1}\rightarrow R_{0}\rightarrow 0 and a deformation 𝒮ol(k)R0\mathcal{S}ol(\nabla_{k})_{R_{0}} of 𝒮ol(k)\mathcal{S}ol(\nabla_{k}) over R0R_{0}, then the set of deformations of 𝒮ol(k)R0\mathcal{S}ol(\nabla_{k})_{R_{0}} over R1R_{1} has a structure of torsor modeled on H1(k(N),nd(𝒮ol(k)))H^{1}(\mathbb{P}_{k}^{(N)},\mathcal{E}nd(\mathcal{S}ol(\nabla_{k}))). On the other hand, 𝒮ol(k)\mathcal{S}ol(\nabla_{k}) is isomorphic to 𝒪k(N)2\mathcal{O}_{\mathbb{P}_{k}^{(N)}}^{\oplus 2} as proved in  [Wak9, Lemma 6.3.3], so we have

H1(k(N),nd(𝒮ol(k)))H1((N)k,nd(𝒪k(N)2))H1(k(N),𝒪k(N))4=0.\displaystyle H^{1}(\mathbb{P}_{k}^{(N)},\mathcal{E}nd(\mathcal{S}ol(\nabla_{k})))\cong H^{1}(\mathbb{P}^{(N)}_{k},\mathcal{E}nd(\mathcal{O}_{\mathbb{P}_{k}^{(N)}}^{\oplus 2}))\cong H^{1}(\mathbb{P}_{k}^{(N)},\mathcal{O}_{\mathbb{P}_{k}^{(N)}})^{\oplus 4}=0. (8.171)

This implies that any deformation of 𝒮ol(k)\mathcal{S}ol(\nabla_{k}) over RR is trivial. In particular, there exists an isomorphism 𝒪(N)2𝒮ol()\mathcal{O}_{\mathbb{P}^{(N)}}^{\oplus 2}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{S}ol(\nabla). ∎

The following assertion is a slight generalization of  [Wak9, Proposition 6.4.1]. (The proof is entirely similar.)

Proposition 8.6.4.

Let ρ:=(ρ0,ρ1,ρ)\rho:=(\rho_{0},\rho_{1},\rho_{\infty}) be an element of ((/pN)×/{±1})×3((\mathbb{Z}/p^{N}\mathbb{Z})^{\times}/\{\pm 1\})^{\times 3}. Then, any two dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers on 𝒫\mathscr{P} of radii ρ\rho are isomorphic.

Proof.

Suppose that we are given two dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers \mathscr{E}_{\circ}^{\spadesuit}, \mathscr{E}^{\spadesuit}_{\bullet} on 𝒫\mathscr{P} of radii ρ\rho. For each {,}\star\in\{\circ,\bullet\}, denote by :=(,,{j}j)\mathscr{F}^{\heartsuit}_{\star}:=(\mathcal{F}_{\star},\nabla_{\star},\{\mathcal{F}^{j}_{\star}\}_{j}) the canonical dormant GLn(N)\mathrm{GL}_{n}^{(N)}-oper associated to \mathscr{E}^{\spadesuit}_{\star}. As mentioned previously, the inclusion 𝒮ol()\mathcal{S}ol(\nabla_{\star})\hookrightarrow\mathcal{F}_{\star} extends to an 𝒪\mathcal{O}_{\mathbb{P}}-linear injection τ:F(N)/S(𝒮ol())\tau_{\star}:F^{(N)*}_{\mathbb{P}/S}(\mathcal{S}ol(\nabla_{\star}))\hookrightarrow\mathcal{F}_{\star}, and we obtain :=Im(τ)\mathcal{L}_{\star}^{\flat}:=\mathcal{L}_{\star}\cap\mathrm{Im}(\tau_{\star}) by regarding :=\mathcal{L}_{\star}:=\mathcal{L} as a line subbundle of \mathcal{F}_{\star}. The morphism ι:/Coker(τ)\iota_{\star}:\mathcal{L}_{\star}/\mathcal{L}_{\star}^{\flat}\rightarrow\mathrm{Coker}(\tau_{\star}) induced by \mathcal{L}_{\star}\hookrightarrow\mathcal{F}_{\star} is an isomorphism (cf. Lemma 8.6.3, (i)). Write (0)\nabla_{\star}^{(0)} for the 𝒟(0)\mathcal{D}^{(0)}-module structure on \mathcal{F}_{\star} induced from \nabla_{\star}. Then, the collection (1):=(,(0),{j}j)\mathscr{F}_{\star}^{\heartsuit(1)}:=(\mathcal{F}_{\star},\nabla_{\star}^{(0)},\{\mathcal{F}_{\star}^{j}\}_{j}) defines a dormant (GL2(1),ϑ(1))(\mathrm{GL}_{2}^{(1)},\vartheta^{(1)})-oper, where ϑ(1)\vartheta^{(1)} denotes the 2(1)2^{(1)}-theta characteristic obtained by reducing the level of ϑ\vartheta to 11. Recall from  [Mzk2, Chap. I, Theorem 4.4] that dormant PGL2\mathrm{PGL}_{2}-opers on 𝒫\mathscr{P} are completely determined by their radii. In particular, since ((1))(\mathscr{F}^{\heartsuit(1)}_{\circ})^{\Rightarrow\spadesuit} and ((1))(\mathscr{F}^{\heartsuit(1)}_{\bullet})^{\Rightarrow\spadesuit} have the same radii (cf. Proposition 6.3.3, (i)), we have ((1))((1))(\mathscr{F}^{\heartsuit(1)}_{\circ})^{\Rightarrow\spadesuit}\cong(\mathscr{F}^{\heartsuit(1)}_{\bullet})^{\Rightarrow\spadesuit}. It follows that there exists an isomorphism

α:(1)(1)\displaystyle\alpha:\mathscr{F}^{(1)\heartsuit}_{\circ}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathscr{F}^{(1)\heartsuit}_{\bullet} (8.172)

(cf. Theorem 5.5.1). This isomorphism restricts to an isomorphism α|:\alpha|_{\mathcal{L}_{\circ}}:\mathcal{L}_{\circ}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{L}_{\bullet}, and hence induces an isomorphism α|/://\alpha|_{\mathcal{L}_{\circ}/\mathcal{L}^{\flat}_{\circ}}:\mathcal{L}_{\circ}/\mathcal{L}_{\circ}^{\flat}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{L}_{\bullet}/\mathcal{L}^{\flat}_{\bullet}. Thus, we obtain the composite isomorphism

α|Coker(τ):=ια|/ι1:Coker(τ)Coker(τ).\displaystyle\alpha|_{\mathrm{Coker}(\tau_{\circ})}:=\iota_{\bullet}\circ\alpha|_{\mathcal{L}_{\circ}/\mathcal{L}^{\flat}_{\circ}}\circ\iota_{\circ}^{-1}:\mathrm{Coker}(\tau_{\circ})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathrm{Coker}(\tau_{\bullet}). (8.173)

In what follows, we shall prove the commutativity of the following square diagram:

(8.178)

where π\pi_{\star} ({,}\star\in\{\circ,\bullet\}) denotes the natural projection Coker(τ)\mathcal{F}_{\star}\twoheadrightarrow\mathrm{Coker}(\tau_{\star}). Let us take {,}\star\in\{\circ,\bullet\} and x{[0],[1],[]}x\in\{[0],[1],[\infty]\}. Also, choose a local function tt on \mathbb{P} defining xx. The formal neighborhood U^x\widehat{U}_{x} of xx in \mathbb{P} may be identified with UU_{\oslash} (cf. (4.1)). By Proposition 4.3.1 and Lemma 8.6.3, one may verify that the restriction (,)|U^x(\mathcal{F}_{\star},\nabla_{\star})|_{\widehat{U}_{x}} of (,)(\mathcal{F}_{\star},\nabla_{\star}) to U^x\widehat{U}_{x} is isomorphic to 𝒪,λ¯x(N1)𝒪,0(N1)\mathscr{O}_{\oslash,\overline{\lambda}_{x}}^{(N-1)}\oplus\mathscr{O}_{\oslash,0}^{(N-1)}, where λ¯x\overline{\lambda}_{x} denotes the image of λx\lambda_{x} via the natural quotient /pN\mathbb{Z}\twoheadrightarrow\mathbb{Z}/p^{N}\mathbb{Z}. Let us fix an identification (,)|U^x=𝒪,λ¯x(N1)𝒪,0(N1)(\mathcal{F}_{\star},\nabla_{\star})|_{\widehat{U}_{x}}=\mathscr{O}_{\oslash,\overline{\lambda}_{x}}^{(N-1)}\oplus\mathscr{O}_{\oslash,0}^{(N-1)}. Under this identification, the restriction of α\alpha to U^x\widehat{U}_{x} determines an automorphism αU^x\alpha_{\widehat{U}_{x}} of 𝒪,λ¯x(N1)𝒪,0(N1)\mathscr{O}_{\oslash,\overline{\lambda}_{x}}^{(N-1)}\oplus\mathscr{O}_{\oslash,0}^{(N-1)}. Here, we shall use the notation mult()\mathrm{mult}_{(-)} to denote the endomorphism of 𝒪\mathcal{O}_{\oslash} given by multiplication by ()(-). Since λ¯x0\overline{\lambda}_{x}\neq 0, the automorphism α|U^x\alpha|_{\widehat{U}_{x}} may be expressed as multvmultw\mathrm{mult}_{v}\oplus\mathrm{mult}_{w} for some v,w𝒪×v,w\in\mathcal{O}_{\oslash}^{\times} after possibly replacing the fixed identification (,)|U^x=𝒪,λ¯x(N1)𝒪,0(N1)(\mathcal{F}_{\star},\nabla_{\star})|_{\widehat{U}_{x}}=\mathscr{O}_{\oslash,\overline{\lambda}_{x}}^{(N-1)}\oplus\mathscr{O}_{\oslash,0}^{(N-1)} with another (cf. Proposition 4.3.4, (ii)). By Proposition 6.1.3, (i), the inclusion \mathcal{L}_{\star}\hookrightarrow\mathcal{F}_{\star} corresponds, after choosing a suitable trivialization H0(U^x,|U^x)𝒪H^{0}(\widehat{U}_{x},\mathcal{L}_{\star}|_{\widehat{U}_{x}})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{O}_{\oslash}, to the 𝒪\mathcal{O}_{\oslash}-linear morphism 𝒪𝒪2\mathcal{O}_{\oslash}\rightarrow\mathcal{O}_{\oslash}^{\oplus 2} given by 1(u,1)1\mapsto(u_{\star},1) for some u𝒪×u_{\star}\in\mathcal{O}_{\oslash}^{\times}. Then, the restriction of α|\alpha|_{\mathcal{L}_{\star}} to U^x\widehat{U}_{x} may be expressed as multw\mathrm{mult}_{w}, and the equality vu=wuv\cdot u_{\circ}=w\cdot u_{\bullet} holds. Hence, for each (g,h)𝒪2(=|U^x)(g,h)\in\mathcal{O}_{\oslash}^{\oplus 2}\left(=\mathcal{F}_{\circ}|_{\widehat{U}_{x}}\right), we have

(πα)((g,h))\displaystyle(\pi_{\bullet}\circ\alpha)((g,h)) =π((vg,wh))\displaystyle=\pi_{\bullet}((v\cdot g,w\cdot h)) (8.179)
=(vguu,vgu1)modIm(τ)\displaystyle=\left(\frac{v\cdot g}{u_{\bullet}}\cdot u_{\bullet},\frac{v\cdot g}{u_{\bullet}}\cdot 1\right)\text{mod}\ \mathrm{Im}(\tau_{\bullet})
=ι(vgumod)\displaystyle=\iota_{\bullet}\left(\frac{v\cdot g}{u_{\bullet}}\ \mathrm{mod}\ \mathcal{L}^{\flat}_{\bullet}\right)
=(ια|/)(vgwumod)\displaystyle=(\iota_{\bullet}\circ\alpha|_{\mathcal{L}_{\circ}/\mathcal{L}^{\flat}_{\circ}})\left(\frac{v\cdot g}{wu_{\bullet}}\ \mathrm{mod}\ \mathcal{L}^{\flat}_{\circ}\right)
=(α|Coker(τ)ι)(gumod)\displaystyle=(\alpha|_{\mathrm{Coker}(\tau_{\circ})}\circ\iota_{\circ})\left(\frac{g}{u_{\circ}}\ \mathrm{mod}\ \mathcal{L}^{\flat}_{\circ}\right)
=α|Coker(τ)((guu,gu1)modIm(τ))\displaystyle=\alpha|_{\mathrm{Coker}(\tau_{\circ})}\left(\left(\frac{g}{u_{\circ}}\cdot u_{\circ},\frac{g}{u_{\circ}}\cdot 1\right)\text{mod}\ \mathrm{Im}(\tau_{\circ})\right)
=(α|Coker(τ)π)((g,h)).\displaystyle=(\alpha|_{\mathrm{Coker}(\tau_{\circ})}\circ\pi_{\circ})((g,h)).

This shows the desired commutativity of (8.178).

Moreover, the commutativity of (8.178) just proved implies that α\alpha is restricted, via ι\iota_{\circ} and ι\iota_{\bullet}, to an isomorphism

α:F(N)/S(𝒮ol())F(N)/S(𝒮ol()).\displaystyle\alpha^{\prime}:F^{(N)*}_{\mathbb{P}/S}(\mathcal{S}ol(\nabla_{\circ}))\stackrel{{\scriptstyle\sim}}{{\rightarrow}}F^{(N)*}_{\mathbb{P}/S}(\mathcal{S}ol(\nabla_{\bullet})). (8.180)

Since 𝒮ol()𝒮ol()𝒪(N)2\mathcal{S}ol(\nabla_{\circ})\cong\mathcal{S}ol(\nabla_{\bullet})\cong\mathcal{O}_{\mathbb{P}^{(N)}}^{\oplus 2} (cf. Lemma 8.6.3, (ii)), the morphism

Hom𝒪(N)(𝒮ol(),𝒮ol())End𝒪(F(N)/S(𝒮ol()),F(N)/S(𝒮ol()))\displaystyle\mathrm{Hom}_{\mathcal{O}_{\mathbb{P}^{(N)}}}(\mathcal{S}ol(\nabla_{\circ}),\mathcal{S}ol(\nabla_{\bullet}))\rightarrow\mathrm{End}_{\mathcal{O}_{\mathbb{P}}}(F^{(N)*}_{\mathbb{P}/S}(\mathcal{S}ol(\nabla_{\circ})),F^{(N)*}_{\mathbb{P}/S}(\mathcal{S}ol(\nabla_{\bullet}))) (8.181)

arising from pull-back by F(N)/SF^{(N)}_{\mathbb{P}/S} is bijective. In particular, α\alpha^{\prime} comes from an isomorphism 𝒮ol()𝒮ol()\mathcal{S}ol(\nabla_{\circ})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{S}ol(\nabla_{\bullet}), and hence α\alpha^{\prime} is compatible with the respective 𝒟(N1)\mathcal{D}^{(N-1)}-actions (N1)𝒮ol(),can\nabla^{(N-1)}_{\mathcal{S}ol(\nabla_{\circ}),\mathrm{can}}, (N1)𝒮ol(),can\nabla^{(N-1)}_{\mathcal{S}ol(\nabla_{\bullet}),\mathrm{can}}. Since \nabla_{\star} ({,}\star\in\{\circ,\bullet\}) is the unique 𝒟(N1)\mathcal{D}^{(N-1)}-module structure on \mathcal{F}_{\star} extending (N1)𝒮ol(),can\nabla^{(N-1)}_{\mathcal{S}ol(\nabla_{\star}),\mathrm{can}} via τ\tau_{\star}, the isomorphism α\alpha, being an extension of α\alpha^{\prime}, preserves the 𝒟(N1)\mathcal{D}^{(N-1)}-module structure. It follows that α\alpha defines an isomorphism of GL2(N)\mathrm{GL}_{2}^{(N)}-opers \mathscr{F}^{\heartsuit}_{\circ}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathscr{F}^{\heartsuit}_{\bullet}. Thus, we obtain \mathscr{E}_{\circ}^{\spadesuit}\cong\mathscr{E}_{\bullet}^{\spadesuit}, as desired. ∎

Theorem 8.6.5.

Let ρ((/pN)×/{±1})×3\rho\in((\mathbb{Z}/p^{N}\mathbb{Z})^{\times}/\{\pm 1\})^{\times 3}. Then, the stack 𝒪pZzzρ,0,3\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{\rho,0,3} is either empty or isomorphic to Spec(𝔽p)\mathrm{Spec}(\mathbb{F}_{p}). In particular, any dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper on 𝒫\mathscr{P} is ordinary, i.e., we have 𝒪pZzz0,3,ord=𝒪pZzz0,3\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{0,3,\mathrm{ord}}=\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{0,3}.

Proof.

The assertion follows from Proposition 8.6.4. ∎

Corollary 8.6.6.

For each N>0N\in\mathbb{Z}_{>0}, denote by π0(𝒪pZzz2,N,g,r,𝔽p)\pi_{0}(\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,r,\mathbb{F}_{p}}) the set of connected components of 𝒪pZzz2,N,g,r,𝔽p\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,r,\mathbb{F}_{p}}. Let us consider the projective system of sets

π0(𝒪pZzz2,N,g,r,𝔽p)π0(𝒪pZzz2,2,g,r,𝔽p)π0(𝒪pZzz2,1,g,r,𝔽p)\displaystyle\cdots\rightarrow\pi_{0}(\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,r,\mathbb{F}_{p}})\rightarrow\cdots\rightarrow\pi_{0}(\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,2,g,r,\mathbb{F}_{p}})\rightarrow\pi_{0}(\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,1,g,r,\mathbb{F}_{p}}) (8.182)

arising from (5.44). Then, the projective limit

limN>0π0(𝒪pZzz2,N,g,r,𝔽p)\displaystyle\varprojlim_{N\in\mathbb{Z}_{>0}}\pi_{0}(\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,r,\mathbb{F}_{p}}) (8.183)

of this system is nonempty.

Proof.

Let us take an rr-pointed totally degenerate curve 𝒳\mathscr{X} of genus gg over an algebraically closed field kk in characteristic pp. Choose trivalent clutching data 𝔾:=(G,{λj}j=1J)\mathbb{G}:=({{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G,\{\lambda_{j}\}_{j=1}^{J}) corresponding to 𝒳\mathscr{X} (cf. Definition 6.5.1). In particular, 𝒳\mathscr{X} may be obtained by gluing together JJ copies of 𝒫\mathscr{P} by means of 𝔾\mathbb{G}. Denote by ρ𝔾:={ρj}j=1J\rho_{\mathbb{G}}:=\{\rho^{j}\}_{j=1}^{J} the set of 𝔾\mathbb{G}-Ξ2,N\Xi_{2,N}-radii defined by ρj:=ε×3\rho^{j}:=\varepsilon^{\times 3} (cf. (6.75)). By Theorem 8.6.5 and the equivalence of categories (6.50), there exists a unique (up to isomorphism) dormant 𝔾-PGL2(N)\mathbb{G}\text{-}\mathrm{PGL}_{2}^{(N)}-oper of radii ρ𝔾\rho_{\mathbb{G}} on 𝒳\mathscr{X}; we shall denote by 𝒳,N\mathscr{E}^{\spadesuit}_{\mathscr{X},N} the corresponding dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper on 𝒳\mathscr{X} via the equivalence of categories (6.49). Also, denote by N\mathcal{R}_{N} the connected component of 𝒪pZzz2,N,g,r,𝔽p\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,r,\mathbb{F}_{p}} containing the point sNs_{N} classifying (𝒳,𝒳,N)(\mathscr{X},\mathscr{E}^{\spadesuit}_{\mathscr{X},N}). For each NNN^{\prime}\leq N, the equality qNN(ε×3)=ε×3q_{N\Rightarrow N^{\prime}}(\varepsilon^{\times 3})=\varepsilon^{\times 3} holds (cf. (6.33) for the definition of qNNq_{N\Rightarrow N^{\prime}}). This implies that the dormant PGL2(N)\mathrm{PGL}_{2}^{(N^{\prime})}-oper obtained from 𝒳,N\mathscr{E}^{\spadesuit}_{\mathscr{X},N} by reducing its level is isomorphic to 𝒳,N\mathscr{E}^{\spadesuit}_{\mathscr{X},N^{\prime}}. In other words, the projection 𝒪pZzz2,N,g,r,𝔽p𝒪pZzz2,N,g,r,𝔽p\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,r,\mathbb{F}_{p}}\rightarrow\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N^{\prime},g,r,\mathbb{F}_{p}} sends sNs_{N} to sNs_{N^{\prime}}. Since the stacks N\mathcal{R}_{N} are irreducible because of their smoothness proved in Corollary 8.3.6, (i), the projective system (5.44) restricts to a projective system

N21.\displaystyle\cdots\rightarrow\mathcal{R}_{N}\rightarrow\cdots\rightarrow\mathcal{R}_{2}\rightarrow\mathcal{R}_{1}. (8.184)

In particular, this system defines an element of the set limNπ0(𝒪pZzz2,N,g,r,𝔽p)\varprojlim_{N}\pi_{0}(\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,r,\mathbb{F}_{p}}), so we conclude that limNπ0(𝒪pZzz2,N,g,r,𝔽p)\varprojlim_{N}\pi_{0}(\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,r,\mathbb{F}_{p}})\neq\emptyset, as desired. ∎

8.7. Generic étaleness of the moduli space

When N=1N=1, the generic étaleness of 𝒪pZzzg,r/¯g,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r}/\overline{\mathcal{M}}_{g,r} was already shown in  [Mzk2, Chap. II, Theorem 2.8]. By using Theorem 8.6.5, we can prove the following higher-level generalization.

Theorem 8.7.1.

The stack 𝒪pZzzg,r,ord\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r,\mathrm{ord}} is a dense open substack of 𝒪pZzzg,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r} containing all the points lying over the points in ¯g,r\overline{\mathcal{M}}_{g,r} classifying totally degenerate curves. In particular, the projection Πg,r:𝒪pZzzg,r¯g,r\Pi_{g,r}:\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r}\!\rightarrow\overline{\mathcal{M}}_{g,r} is generically étale.

Proof.

First, we shall prove the first assertion. Let kk be an algebraically closed field over 𝔽p\mathbb{F}_{p} and ρ\rho an element of Ξ2,N×r\Xi_{2,N}^{\times r}. Also, let us take an arbitrary rr-pointed totally degenerate curve 𝒳\mathscr{X} of genus gg over kk; there exists trivalent clutching data 𝔾=(G,{λj}j=1J)\mathbb{G}=({{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G,\{\lambda_{j}\}_{j=1}^{J}) corresponding to 𝒳\mathscr{X}. The point q𝔾q_{\mathbb{G}} of ¯g,r\overline{\mathcal{M}}_{g,r} determined by the morphism

Clut𝔾:(Spec(𝔽p)=)j=1J¯0,3¯g,r\displaystyle\mathrm{Clut}_{\mathbb{G}}:\left(\mathrm{Spec}(\mathbb{F}_{p})=\right)\prod_{j=1}^{J}\overline{\mathcal{M}}_{0,3}\rightarrow\overline{\mathcal{M}}_{g,r} (8.185)

(cf. (6.55)) classifies 𝒳\mathscr{X}. By applying Theorem 6.4.7, we obtain the Cartesian square diagram (6.62) for 𝔾\mathbb{G} and ρ\rho. It follows from Theorem 8.6.5 that the left-hand vertical arrow in this diagram is unramified. Hence, the projection Πρ,g,r:𝒪pZzzρ,g,r¯g,r\Pi_{\rho,g,r}:\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{\rho,g,r}\rightarrow\overline{\mathcal{M}}_{g,r}, i.e., the right-hand vertical arrow in (6.62), is unramified over the point q𝔾q_{\mathbb{G}}. By the flatness of Πg,r\Pi_{g,r} obtained in Corollary 8.4.4, Πρ,g,r\Pi_{\rho,g,r} is moreover étale over the same point. This completes the proof of the first assertion.

Also, since the projection Πg,r\Pi_{g,r} is finite and faithfully flat, one may verify that any irreducible component of 𝒪pZzzg,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r} contains a point lying over the point of ¯g,r\overline{\mathcal{M}}_{g,r} classifying a totally degenerate curve. Thus, the second assertion follows from the first assertion together with the open nature of étaleness. ∎

Remark 8.7.2 (Divisor defined by the nonordinary locus).

The complement of the ordinary locus forms a divisor on 𝒪pZzzg,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r}. Indeed, let us consider the morphism DD_{\mathscr{E}^{\spadesuit}} (cf. 8.53) in the case where the pair “(𝒳,)(\mathscr{X},\mathscr{E}^{\spadesuit})” is taken to be the universal object over 𝒪pZzzg,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r}. This morphism determines a morphism

3g3+rD:3g31f(𝒢1)3g3+r1f(𝒯)\displaystyle\bigwedge^{3g-3+r}D_{\mathscr{E}^{\spadesuit}}:\bigwedge^{3g-3}\mathbb{R}^{1}f_{*}(\mathcal{G}^{1}_{\mathscr{E}^{\spadesuit}})\rightarrow\bigwedge^{3g-3+r}\mathbb{R}^{1}f_{*}(\mathcal{T}) (8.186)

between line bundles on 𝒪pZzzg,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r} (cf. Propositions 8.1.2, (ii), 8.2.4, and 8.4.3), which corresponds to a global section of the line bundle

(3g3+r1f(𝒯))(3g3+r1f(𝒢1)).\displaystyle\left(\bigwedge^{3g-3+r}\mathbb{R}^{1}f_{*}(\mathcal{T})\right)\otimes\left(\bigwedge^{3g-3+r}\mathbb{R}^{1}f_{*}(\mathcal{G}^{1}_{\mathscr{E}^{\spadesuit}})\right)^{\vee}. (8.187)

The morphism DD_{\mathscr{E}^{\spadesuit}} is an isomorphism exactly on the complement of the divisor 𝒟ord(𝒪pZzzg,r)\mathcal{D}_{\cancel{\mathrm{ord}}}\left(\subseteq\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r}\right) associated to this section. Thus, the nonordinary locus in 𝒪pZzzg,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{g,r} coincides with the support of 𝒟ord\mathcal{D}_{\cancel{\mathrm{ord}}}.

Remark 8.7.3 (Generic étaleness for higher rank cases).

For a (sufficiently small) general n>1n>1, the projection 𝒪pZzzn,1,g,r,𝔽p¯g,r\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{n,1,g,r,\mathbb{F}_{p}}\rightarrow\overline{\mathcal{M}}_{g,r} is generically étale (cf.  [Wak8, Theorem G]). The generic étaleness is essential in the proofs of Joshi’s conjecture described in  [Wak] and  [Wak8]. Indeed, we used this geometric property to lift relevant moduli spaces to characteristic 0 and then compared them with certain Quot schemes over \mathbb{C}; this argument enables us to compute explicitly the number of all possible dormant PGLn\mathrm{PGL}_{n}-opers on a general curve.

To develop the enumerative geometry of higher-level dormant opers in such a way that this argument works, we expect that the following conjecture is true:

Suppose that pp is sufficiently large relative to nn, gg, and rr. Then, the stack 𝒪pZzzn,N,g,r,𝔽p\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{n,N,g,r,\mathbb{F}_{p}} associated to such a collection (p,n,g,r)(p,n,g,r) is generically étale over ¯g,r\overline{\mathcal{M}}_{g,r}, i.e., any irreducible component of 𝒪pZzzn,N,g,r,𝔽p\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{n,N,g,r,\mathbb{F}_{p}} that dominates ¯g,r\overline{\mathcal{M}}_{g,r} admits a dense open substack which is étale over ¯g,r\overline{\mathcal{M}}_{g,r}.

For each positive integer N<NN^{\prime}<N, we shall write ΠNN\Pi_{N\Rightarrow N^{\prime}} for the morphism 𝒪pZzz2,N,g,r,𝔽p𝒪pZzz2,N,g,r,𝔽p\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,r,\mathbb{F}_{p}}\rightarrow\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N^{\prime},g,r,\mathbb{F}_{p}} obtained by reducing the level of dormant PGL2\mathrm{PGL}_{2}-opers to NN^{\prime}. We shall set

𝒥:=NNΠNN1(𝒪pZzz2,N,g,r,𝔽p,ord),\displaystyle\mathcal{J}:=\bigcap_{N^{\prime}\leq N}\Pi_{N\Rightarrow N^{\prime}}^{-1}(\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N^{\prime},g,r,\mathbb{F}_{p},\mathrm{ord}}), (8.188)

which is a dense open substack of 𝒪pZzz2,N,g,r,𝔽p\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,r,\mathbb{F}_{p}} (cf. Theorem 8.7.1). That is to say, 𝒥\mathcal{J} classifies dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers \mathscr{E}^{\spadesuit} such that the morphisms D(N)D_{\mathscr{E}^{\spadesuit(N^{\prime})}} are isomorphisms for all NNN^{\prime}\leq N, where (N)\mathscr{E}^{\spadesuit(N^{\prime})} denotes the dormant PGL2(N)\mathrm{PGL}_{2}^{(N^{\prime})}-oper induced from \mathscr{E}^{\spadesuit}.

Hence, we obtain the dense open substack

¯g,r,N-ord\displaystyle\overline{\mathcal{M}}_{g,r,N\text{-}\mathrm{ord}} (8.189)

of ¯g,r\overline{\mathcal{M}}_{g,r} defined as the complement of the image of the natural projection 𝒪p2,N,g,r,𝔽pZzz𝒥¯g,r\mathcal{O}p_{2,N,g,r,\mathbb{F}_{p}}^{{}^{\mathrm{Zzz...}}}\setminus\mathcal{J}\rightarrow\overline{\mathcal{M}}_{g,r}.

If 𝒳\mathscr{X} is a pointed stable curve over a geometric point classified by ¯g,r,N-ord\overline{\mathcal{M}}_{g,r,N\text{-}\mathrm{ord}}, then all the dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers on 𝒳\mathscr{X} and their reductions to level NNN^{\prime}\leq N are ordinary. In particular, the set of isomorphism classes of dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers on 𝒳\mathscr{X} has cardinality equal to the degree of the projection Πg,r\Pi_{g,r}.

Definition 8.7.4.

An rr-pointed stable curve of genus gg is called (dormant-)NN-ordinary if it is classified by the open substack ¯g,r,N-ord\overline{\mathcal{M}}_{g,r,N\text{-}\mathrm{ord}}. (Since ¯g,r,N-ord\overline{\mathcal{M}}_{g,r,N\text{-}\mathrm{ord}} is dense in ¯g,r\overline{\mathcal{M}}_{g,r}, a general pointed stable curve is NN-ordinary.)

The following assertion describes the relationship between NN-ordinariness and 11-ordinariness.

Proposition 8.7.5.

The inclusion relation ¯g,r,N-ord¯g,r,1-ord\overline{\mathcal{M}}_{g,r,N\text{-}\mathrm{ord}}\subseteq\overline{\mathcal{M}}_{g,r,1\text{-}\mathrm{ord}} holds. That is to say, if 𝒳\mathscr{X} is NN-ordinary, then it is also 11-ordinary.

Proof.

The assertion follows from Proposition 8.5.4. ∎

Remark 8.7.6 (NN-ordinariness vs. NN^{\prime}-ordinariness).

For the same reason as above, the inclusion relation ¯g,r,N-ord¯g,r,N-ord\overline{\mathcal{M}}_{g,r,N\text{-}\mathrm{ord}}\subseteq\overline{\mathcal{M}}_{g,r,N^{\prime}\text{-}\mathrm{ord}} (where NNN^{\prime}\leq N) holds if the projection ΠNN:𝒪pZzz2,N,g,r,𝔽p𝒪pZzz2,N,g,r,𝔽p\Pi_{N\Rightarrow N^{\prime}}:\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,r,\mathbb{F}_{p}}\rightarrow\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N^{\prime},g,r,\mathbb{F}_{p}} is surjective. In particular, if we can show the connectedness of the stacks 𝒪pZzz2,N,g,r,𝔽p\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,r,\mathbb{F}_{p}} (which implies the surjectivity of the ΠNN\Pi_{N\Rightarrow N^{\prime}}’s), there exists a sequence of open immersions

¯g,r,N-ord¯g,r,2-ord¯g,r,1-ord¯g,r.\displaystyle\cdots\subseteq\overline{\mathcal{M}}_{g,r,N\text{-}\mathrm{ord}}\subseteq\cdots\subseteq\overline{\mathcal{M}}_{g,r,2\text{-}\mathrm{ord}}\subseteq\overline{\mathcal{M}}_{g,r,1\text{-}\mathrm{ord}}\subseteq\overline{\mathcal{M}}_{g,r}. (8.190)

It will be natural to ask what the intersection N>0¯g,r,N-ord\bigcap_{N\in\mathbb{Z}_{>0}}\overline{\mathcal{M}}_{g,r,N\text{-}\mathrm{ord}} is. At the time of writing this manuscript, the author does not know the existence of a closed point of g,r(¯g,r)\mathcal{M}_{g,r}\left(\subseteq\overline{\mathcal{M}}_{g,r}\right) classifying a pointed curve that is NN-ordinary for every NN.

9. Canonical diagonal liftings

In this section, we construct the canonical diagonal lifting of a dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper, as well as of a Frobenius-projective structure, on a general smooth curve of genus >1>1 (cf. Theorem-Definitions 9.2.1 and 9.3.5). A key observation for doing this is that the ordinariness introduced in the previous section enables us to connect various deformation spaces involved. As a consequence, we obtain an approach to solving the counting problem of dormant PGL2\mathrm{PGL}_{2}-opers in characteristic pNp^{N} via reduction modulo pp.

Let us fix a positive integer NN, and suppose that p>2p>2.

9.1. Canonical diagonal liftings of dormant (GL2(N),ϑ)(\mathrm{GL}_{2}^{(N)},\vartheta)-opers

Let RR be a flat /pN\mathbb{Z}/p^{N}\mathbb{Z}-algebra and XX a geometrically connected, proper, and smooth curve over S:=Spec(R)S:=\mathrm{Spec}(R) of genus g>1g>1. For each positive integer NNN^{\prime}\leq N, we shall denote by a subscript “N1N^{\prime}-1” the result of reducing an object over /pN\mathbb{Z}/p^{N}\mathbb{Z} modulo pNp^{N^{\prime}}. For simplicity, we write Ω0:=ΩX0/S0\Omega_{0}:=\Omega_{X_{0}/S_{0}} and Ω(N)0:=ΩX0(N)/S0\Omega^{(N^{\prime})}_{0}:=\Omega_{X_{0}^{(N^{\prime})}/S_{0}}.

We shall fix a dormant 2(1)2^{(1)}-theta characteristic ϑ:=(Θ,ϑ)\vartheta:=(\varTheta,\nabla_{\vartheta}) of X/SX/S (cf. Definition 5.4.1 and Proposition 5.4.3) and fix an integer NN^{\prime} with 1N<N1\leq N^{\prime}<N. The diagonal reduction of ϑN1\vartheta_{N^{\prime}-1} defines a 2(N)2^{(N^{\prime})}-theta characteristic ϑ0(N)\vartheta_{0}^{(N^{\prime})} of X0/S0X_{0}/S_{0}.

Also, let N1\nabla^{\diamondsuit}_{N^{\prime}-1} be a dormant (GL2(1),ϑN1)(\mathrm{GL}_{2}^{(1)},\vartheta_{N^{\prime}-1})-oper on XN1/SN1X_{N^{\prime}-1}/S_{N^{\prime}-1}, and write :=(N1,N1)\mathscr{F}:=(\mathcal{F}_{N^{\prime}-1},\nabla_{N^{\prime}-1}^{\diamondsuit}), where :=Θ\mathcal{F}:=\mathcal{F}_{\varTheta}. The diagonal reduction of N1\nabla^{\diamondsuit}_{N^{\prime}-1} defines a (GL2(N),ϑ0(N))(\mathrm{GL}_{2}^{(N^{\prime})},\vartheta_{0}^{(N^{\prime})})-oper 0(N)\nabla_{0}^{\diamondsuit(N^{\prime})} on X0/S0X_{0}/S_{0}. The (GL2(1),ϑ0)(\mathrm{GL}_{2}^{(1)},\vartheta_{0})-oper on X0/S0X_{0}/S_{0} induced by 0(N)\nabla_{0}^{\diamondsuit(N^{\prime})} via level reduction will be denoted by 0(1)\nabla_{0}^{\diamondsuit(1)}.

We shall write

Lift(N1)ϑ\displaystyle\mathrm{Lift}(\nabla_{N^{\prime}-1}^{\diamondsuit})_{\vartheta} (9.1)

for the set of isomorphism classes of (GL2(1),ϑN)(\mathrm{GL}_{2}^{(1)},\vartheta_{N^{\prime}})-opers N\nabla^{\diamondsuit}_{N^{\prime}} on XN/SNX_{N^{\prime}}/S_{N^{\prime}} with (N)N1=N1(\nabla^{\diamondsuit}_{N^{\prime}})_{N^{\prime}-1}=\nabla^{\diamondsuit}_{N^{\prime}-1}. Then, Lift(N1)ϑ\mathrm{Lift}(\nabla_{N^{\prime}-1}^{\diamondsuit})_{\vartheta} is nonempty and has a canonical structure of torsor modeled on the RR-module H0(X0,Ω02)H^{0}(X_{0},\Omega_{0}^{\otimes 2}) (cf.  [Mzk1, Chap. I, Corollary 2.9]).

Let us consider the composite

H0(X0,Ω02)H0(Ω0nd0(0))1(X,𝒦[((1)0)nd0])\displaystyle H^{0}(X_{0},\Omega_{0}^{\otimes 2})\hookrightarrow H^{0}(\Omega_{0}\otimes\mathcal{E}nd^{0}(\mathcal{F}_{0}))\rightarrow\mathbb{H}^{1}(X,\mathcal{K}^{\bullet}[(\nabla^{\diamondsuit(1)}_{0})_{\mathcal{E}nd^{0}}]) (9.2)

(cf. (3.37) for the definition of ()nd0(-)_{\mathcal{E}nd^{0}}), where the first arrow denotes the canonical inclusion (cf.  [Wak8, § 4.9.5]) and the second arrow denotes the morphism induced by the natural inclusion of complexes (Ω0nd0(0))[1]𝒦[(0(1))nd0](\Omega_{0}\otimes\mathcal{E}nd^{0}(\mathcal{F}_{0}))[-1]\rightarrow\mathcal{K}^{\bullet}[(\nabla_{0}^{\diamondsuit(1)})_{\mathcal{E}nd^{0}}]. Then, the assignment N(N,N)\nabla_{N^{\prime}}^{\diamondsuit}\mapsto(\mathcal{F}_{N^{\prime}},\nabla_{N^{\prime}}^{\diamondsuit}) defines a map of sets

Lift(N1)ϑLift()\displaystyle\mathrm{Lift}(\nabla_{N^{\prime}-1}^{\diamondsuit})_{\vartheta}\rightarrow\mathrm{Lift}(\mathscr{F})_{\mathscr{L}} (9.3)

where :=(det(),ϑ)\mathscr{L}:=(\mathrm{det}(\mathcal{F}),\nabla_{\vartheta}) (cf. (3.38) for the definition of Lift()\mathrm{Lift}(\mathscr{F})_{\mathscr{L}}).

Recall from the discussion preceding Proposition 3.4.2 that Lift()\mathrm{Lift}(\mathscr{F})_{\mathscr{L}} has a structure of 1(X,𝒦[(0(1))nd0])\mathbb{H}^{1}(X,\mathcal{K}^{\bullet}[(\nabla_{0}^{\diamondsuit(1)})_{\mathcal{E}nd^{0}}])-torsor. The map (9.3) is verified to commute with the respective torsor structures via the morphism (9.2) (cf.  [Wak8, § 6.3.2]). By combining this fact and Proposition 3.4.3, we obtain the following assertion.

Proposition 9.1.1.

Taking the diagonal reductions NN\nabla_{N^{\prime}}^{\diamondsuit}\mapsto{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\nabla_{N^{\prime}}^{\diamondsuit} yields a map of sets

Lift(N1)ϑLift(0(N))\displaystyle\mathrm{Lift}(\nabla_{N^{\prime}-1}^{\diamondsuit})_{\vartheta}\rightarrow\mathrm{Lift}(\nabla_{0}^{\diamondsuit(N^{\prime})})_{\mathscr{L}} (9.4)

(cf. (3.33) for the definition of the codomain of this map), and this map commutes with the respective torsor structures via the composite

D0(N):H0(X0,Ω02)\displaystyle D^{\prime\prime}_{\nabla_{0}^{\diamondsuit(N^{\prime})}}:H^{0}(X_{0},\Omega_{0}^{\otimes 2}) (9.2)1(X0,𝒦[(0(1))nd0])\displaystyle\xrightarrow{\eqref{fE14}}\mathbb{H}^{1}(X_{0},\mathcal{K}^{\bullet}[(\nabla_{0}^{\diamondsuit(1)})_{\mathcal{E}nd^{0}}]) (9.5)
(3.42)H0(X0(N),Ω(N)0nd0(𝒮ol(0(N)))).\displaystyle\xrightarrow{\eqref{fE8}}H^{0}(X_{0}^{(N^{\prime})},\Omega^{(N^{\prime})}_{0}\otimes\mathcal{E}nd^{0}(\mathcal{S}ol(\nabla_{0}^{\diamondsuit(N^{\prime})}))).

In particular, the map (9.4) becomes bijective when D0(N)D^{\prime\prime}_{\nabla_{0}^{\diamondsuit(N^{\prime})}} is bijective.

Denote by

Lift(N1)ϑψ\displaystyle\mathrm{Lift}(\nabla_{N^{\prime}-1}^{\diamondsuit})_{\vartheta}^{\psi} (9.6)

the subset of Lift(N1)ϑ\mathrm{Lift}(\nabla_{N^{\prime}-1}^{\diamondsuit})_{\vartheta} consisting of dormant (GL2(1),ϑN)(\mathrm{GL}_{2}^{(1)},\vartheta_{N^{\prime}})-opers. Propositions 3.4.4 and 9.1.1 together imply the following proposition.

Proposition 9.1.2.
  • (i)

    Taking the diagonal reductions NN\nabla_{N^{\prime}}^{\diamondsuit}\mapsto{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\nabla_{N^{\prime}}^{\diamondsuit} yields a map of sets

    Lift(N1)ϑψLift(0(N))ψ,\displaystyle\mathrm{Lift}(\nabla_{N^{\prime}-1}^{\diamondsuit})_{\vartheta}^{\psi}\rightarrow\mathrm{Lift}(\nabla_{0}^{\diamondsuit(N^{\prime})})^{\psi}, (9.7)

    and the following commutative square diagram is Cartesian:

    (9.12)
  • (ii)

    Suppose that D0(N)D^{\prime\prime}_{\nabla_{0}^{\diamondsuit(N^{\prime})}} is bijective. Then, the map (9.7) is bijective. In particular, for each dormant (GL2(N+1),ϑ(N+1)0)(\mathrm{GL}_{2}^{(N^{\prime}+1)},\vartheta^{(N^{\prime}+1)}_{0})-oper 0(N+1)\nabla_{0}^{\diamondsuit(N^{\prime}+1)} of X0/S0X_{0}/S_{0} that induces 0(N)\nabla_{0}^{\diamondsuit(N^{\prime})} by reducing its level, there exists a unique (up to isomorphism) dormant (GL2(1),ϑN)(\mathrm{GL}_{2}^{(1)},\vartheta_{N^{\prime}})-oper N\nabla_{N^{\prime}}^{\diamondsuit} on XN/SNX_{N^{\prime}}/S_{N^{\prime}} with (N)N1=N1(\nabla_{N^{\prime}}^{\diamondsuit})_{N^{\prime}-1}=\nabla_{N^{\prime}-1}^{\diamondsuit} and N=0(N+1){{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\nabla_{N^{\prime}}^{\diamondsuit}=\nabla_{0}^{\diamondsuit(N^{\prime}+1)}.

Corollary 9.1.3.

Let (N)0\nabla^{\diamondsuit(N)}_{0} be a dormant (GL2(N),ϑ0(N))(\mathrm{GL}_{2}^{(N)},\vartheta_{0}^{(N)})-oper on X0/S0X_{0}/S_{0}. Suppose that the morphism D0(N)D^{\prime\prime}_{\nabla_{0}^{\diamondsuit(N^{\prime})}} is bijective for every NNN^{\prime}\leq N, where 0(N)\nabla_{0}^{\diamondsuit(N^{\prime})} denotes the dormant (GL2(N),ϑ(N)0)(\mathrm{GL}_{2}^{(N^{\prime})},\vartheta^{(N^{\prime})}_{0})-oper obtained by reducing the level of (N)0\nabla^{\diamondsuit(N)}_{0} to NN^{\prime}. Then, there exists a unique (up to isomorphism) dormant (GLn(1),ϑ)(\mathrm{GL}_{n}^{(1)},\vartheta)-oper \nabla^{\diamondsuit} on X/SX/S whose diagonal reduction coincides with (N)0\nabla^{\diamondsuit(N)}_{0}.

Proof.

The assertion can be proved by successively applying assertion (ii) of Proposition 9.1.2 with respect to NN^{\prime} (1N<N1\leq N^{\prime}<N). ∎

9.2. Canonical diagonal liftings of dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers

Denote by

Op1,XZzz(resp.,OpN,X0Zzz)\displaystyle\mathrm{Op}_{1,X}^{{}^{\mathrm{Zzz...}}}\ \left(\text{resp.,}\ \mathrm{Op}_{N,X_{0}}^{{}^{\mathrm{Zzz...}}}\right) (9.13)

the set of isomorphism classes of dormant PGL2\mathrm{PGL}_{2}-opers on X/SX/S (resp., dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers on X0/S0X_{0}/S_{0}). By regarding it as a (discrete) category, we obtain, from Proposition 5.2.4, an equivalence of categories

Op1,XZzz𝒪p2,1,g,0,/pNZzzׯg,0,/pN,σXS(resp.,OpN,X0Zzz𝒪p2,N,g,0,𝔽pZzzׯg,0,𝔽p,σX0S),\displaystyle\mathrm{Op}_{1,X}^{{}^{\mathrm{Zzz...}}}\cong\mathcal{O}p_{2,1,g,0,\mathbb{Z}/p^{N}\mathbb{Z}}^{{}^{\mathrm{Zzz...}}}\!\times_{\overline{\mathcal{M}}_{g,0,\mathbb{Z}/p^{N}\mathbb{Z}},\sigma_{X}}S\ \left(\text{resp.,}\ \mathrm{Op}_{N,X_{0}}^{{}^{\mathrm{Zzz...}}}\cong\mathcal{O}p_{2,N,g,0,\mathbb{F}_{p}}^{{}^{\mathrm{Zzz...}}}\!\times_{\overline{\mathcal{M}}_{g,0,\mathbb{F}_{p}},\sigma_{X_{0}}}S\right), (9.14)

where σX\sigma_{X} (resp., σX0\sigma_{X_{0}}) denotes the classifying morphism S¯g,r,/pNS\rightarrow\overline{\mathcal{M}}_{g,r,\mathbb{Z}/p^{N}\mathbb{Z}} (resp., S0¯g,r,𝔽pS_{0}\rightarrow\overline{\mathcal{M}}_{g,r,\mathbb{F}_{p}}) of XX (resp., X0X_{0}).

Taking the diagonal reductions of dormant PGL2\mathrm{PGL}_{2}-opers yields a map of sets

:Op1,XZzzOpN,X0Zzz\displaystyle\rotatebox[origin={c}]{45.0}{$\Leftarrow$}_{\!\!\spadesuit}:\mathrm{Op}_{1,X}^{{}^{\mathrm{Zzz...}}}\rightarrow\mathrm{Op}_{N,X_{0}}^{{}^{\mathrm{Zzz...}}} (9.15)

(cf. (5.46)). Then, we have the following assertion.

Theorem-Definition 9.2.1.

Suppose that X0/S0X_{0}/S_{0} is NN-ordinary (cf. Definition 8.7.4). Then, the map :Op1,XZzzOpN,X0Zzz\rotatebox[origin={c}]{45.0}{$\Leftarrow$}_{\!\!\spadesuit}:\mathrm{Op}_{1,X}^{{}^{\mathrm{Zzz...}}}\rightarrow\mathrm{Op}_{N,X_{0}}^{{}^{\mathrm{Zzz...}}} is bijective. In particular, for each dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper 0\mathscr{E}^{\spadesuit}_{0} on X0/S0X_{0}/S_{0}, there exists a unique (up to isomorphism) dormant PGL2\mathrm{PGL}_{2}-oper \mathscr{E}^{\spadesuit} on X/SX/S with =0{{}^{\rotatebox[origin={c}]{45.0}{$\Leftarrow$}}}\!\!\mathscr{E}^{\spadesuit}=\mathscr{E}^{\spadesuit}_{0}. We shall refer to \mathscr{E}^{\spadesuit} as the canonical diagonal lifting of 0\mathscr{E}^{\spadesuit}_{0}.

Proof.

According to Proposition 5.4.3, we can find a dormant 2(1)2^{(1)}-theta characteristic ϑ:=(Θ,ϑ)\vartheta:=(\varTheta,\nabla_{\vartheta}) of X/SX/S. Denote by ϑ0(N)\vartheta_{0}^{(N)} the 2(N)2^{(N)}-theta characteristic of X0/S0X_{0}/S_{0} obtained as the diagonal reduction of ϑ\vartheta. Now, let 0:=(B,0,ϕ0(N))\mathscr{E}_{0}^{\spadesuit}:=(\mathcal{E}_{B,0},\phi_{0}^{(N)}) be a dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper on X0/S0X_{0}/S_{0}. For each positive integer NNN^{\prime}\leq N, we denote by ϕ(N)0\phi^{(N^{\prime})}_{0} the (N1)(N^{\prime}-1)-PD stratification on \mathcal{E} induced by ϕ(N)0\phi^{(N)}_{0}. The resulting dormant PGL2(N)\mathrm{PGL}_{2}^{(N^{\prime})}-oper 0(N):=(B,0,ϕ0(N))\mathscr{E}_{0}^{\spadesuit(N^{\prime})}:=(\mathcal{E}_{B,0},\phi_{0}^{(N^{\prime})}) corresponds, via the bijection Λ,ϑZzz\Lambda_{\diamondsuit\Rightarrow\spadesuit,\vartheta}^{{}^{\mathrm{Zzz...}}} (cf. Theorem 5.5.1), to a dormant (GL2(N),ϑ0(N))(\mathrm{GL}_{2}^{(N^{\prime})},\vartheta_{0}^{(N^{\prime})})-oper (N)0\nabla^{\diamondsuit(N^{\prime})}_{0} on X0/S0X_{0}/S_{0}. Note that there exists a canonical identification nd0(Θ0)=𝔤0\mathcal{E}nd^{0}(\mathcal{F}_{\varTheta_{0}})=\mathfrak{g}_{\mathcal{E}_{0}} (where 0:=B,0×BPGL2\mathcal{E}_{0}:=\mathcal{E}_{B,0}\times^{B}\mathrm{PGL}_{2}), which is compatible with the respective 𝒟X0/S0(N1)\mathcal{D}_{X_{0}/S_{0}}^{(N^{\prime}-1)}-module structures, i.e., (0(N))nd0(\nabla_{0}^{\diamondsuit(N^{\prime})})_{\mathcal{E}nd^{0}} and ϕ0(N)ad\nabla_{\phi_{0}^{(N^{\prime})}}^{\mathrm{ad}}. In particular, we have

nd0(𝒮ol(0(N)))(=𝒮ol((0(N))nd0))=𝔤0,ϕ0(N).\displaystyle\mathcal{E}nd^{0}(\mathcal{S}ol(\nabla_{0}^{\diamondsuit(N^{\prime})}))\left(=\mathcal{S}ol((\nabla_{0}^{\diamondsuit(N^{\prime})})_{\mathcal{E}nd^{0}})\right)=\mathfrak{g}_{\mathcal{E}_{0},\phi_{0}^{(N^{\prime})}}. (9.16)

Under this identification, the morphism D0(N)D^{\prime\prime}_{\nabla_{0}^{\diamondsuit(N^{\prime})}} coincides with D0(N)D^{\prime\prime}_{\mathscr{E}_{0}^{\spadesuit(N^{\prime})}} (cf. (8.157)). Hence, since X0/S0X_{0}/S_{0} is NN-ordinary, the morphisms D0(N)D^{\prime\prime}_{\nabla_{0}^{\diamondsuit(N^{\prime})}} are bijective for all NN^{\prime}’s. By Corollary 9.1.3, there exists a unique (up to isomorphism) dormant (GL2(1),ϑ)(\mathrm{GL}_{2}^{(1)},\vartheta)-oper N\nabla_{N}^{\diamondsuit} on X/SX/S whose diagonal reduction coincides with (N)0\nabla^{\diamondsuit(N)}_{0}. The dormant PGL2\mathrm{PGL}_{2}-oper \mathscr{E}^{\spadesuit} corresponding to N\nabla_{N}^{\diamondsuit} specifies a diagonal lifting of 0\mathscr{E}^{\spadesuit}_{0}. The resulting assignment 0\mathscr{E}_{0}^{\spadesuit}\mapsto\mathscr{E}^{\spadesuit} specifies a well-defined map of sets OpN,X0ZzzOp1,XZzz\mathrm{Op}_{N,X_{0}}^{{}^{\mathrm{Zzz...}}}\rightarrow\mathrm{Op}_{1,X}^{{}^{\mathrm{Zzz...}}}, and it gives an inverse map of \rotatebox[origin={c}]{45.0}{$\Leftarrow$}_{\!\!\spadesuit}. This completes the proof of the assertion. ∎

Remark 9.2.2 (Affineness assumption).

By the uniqueness assertion in the above theorem, the formation of the canonical diagonal liftings commutes with base-change over SS-schemes. Hence, Theorem-Definition 9.2.1 is verified to be true even when we remove the affineness assumption on SS.

Remark 9.2.3 (Representability of an ordinary locus of 𝒪pZzz2,N,g,0,/pN\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,0,\mathbb{Z}/p^{N}\mathbb{Z}}).

Denote by 𝔽p\mathcal{M}_{\mathbb{F}_{p}} (resp., /pN\mathcal{M}_{\mathbb{Z}/p^{N}\mathbb{Z}}) the open substack of g,0,𝔽p\mathcal{M}_{g,0,\mathbb{F}_{p}} (resp., g,0,/pN\mathcal{M}_{g,0,\mathbb{Z}/p^{N}\mathbb{Z}}) consisting of points lying on ¯g,0,N-ord\overline{\mathcal{M}}_{g,0,N\text{-}\mathrm{ord}}. Since the projection 𝒪p2,N,g,0,𝔽pZzzׯg,0,𝔽p𝔽p𝔽p\mathcal{O}p_{2,N,g,0,\mathbb{F}_{p}}^{{}^{\mathrm{Zzz...}}}\times_{\overline{\mathcal{M}}_{g,0,\mathbb{F}_{p}}}\mathcal{M}_{\mathbb{F}_{p}}\rightarrow\mathcal{M}_{\mathbb{F}_{p}} is étale, there exists a unique (up to isomorphism) étale stack 𝒰\mathcal{U} over /pN\mathcal{M}_{\mathbb{Z}/p^{N}\mathbb{Z}} whose reduction modulo pp is isomorphic to 𝒪p2,N,g,0,𝔽p,ordZzzׯg,0,𝔽p𝔽p\mathcal{O}p_{2,N,g,0,\mathbb{F}_{p},\mathrm{ord}}^{{}^{\mathrm{Zzz...}}}\times_{\overline{\mathcal{M}}_{g,0,\mathbb{F}_{p}}}\mathcal{M}_{\mathbb{F}_{p}}.

Now, let us take an étale scheme SS over g,0,/pN\mathcal{M}_{g,0,\mathbb{Z}/p^{N}\mathbb{Z}} and a section uu of 𝒰\mathcal{U} over SS. The structure morphism Sg,0,/pNS\rightarrow\mathcal{M}_{g,0,\mathbb{Z}/p^{N}\mathbb{Z}} of SS classifies a smooth curve X/SX/S whose reduction X0/S0X_{0}/S_{0} modulo pp is NN-ordinary, and the reduction modulo pp of uu defines a dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper 0\mathscr{E}^{\spadesuit}_{0} on X0/S0X_{0}/S_{0}. According to Theorem-Definition 9.2.1, we obtain the canonical diagonal lifting \mathscr{E}^{\spadesuit} of 0\mathscr{E}^{\spadesuit}_{0} defined on X/SX/S. In particular, the pair (X/S,)(X/S,\mathscr{E}^{\spadesuit}) specifies an object of the category 𝒪p2,N,g,0,/pNZzzׯg,0,/pN/pN\mathcal{O}p_{2,N,g,0,\mathbb{Z}/p^{N}\mathbb{Z}}^{{}^{\mathrm{Zzz...}}}\times_{\overline{\mathcal{M}}_{g,0,\mathbb{Z}/p^{N}\mathbb{Z}}}\mathcal{M}_{\mathbb{Z}/p^{N}\mathbb{Z}} over SS.

One may verify that the functor

𝒰𝒪p2,N,g,0,/pNZzzׯg,0,/pN/pN\displaystyle\mathcal{U}\rightarrow\mathcal{O}p_{2,N,g,0,\mathbb{Z}/p^{N}\mathbb{Z}}^{{}^{\mathrm{Zzz...}}}\times_{\overline{\mathcal{M}}_{g,0,\mathbb{Z}/p^{N}\mathbb{Z}}}\mathcal{M}_{\mathbb{Z}/p^{N}\mathbb{Z}} (9.17)

given by assigning u(X/S,)u\mapsto(X/S,\mathscr{E}^{\spadesuit}) becomes an isomorphism between the étale sheaves on /pN\mathcal{M}_{\mathbb{Z}/p^{N}\mathbb{Z}} represented by the respective fibered categories. In particular, by using this isomorphism, we can construct a universal family of ordinary dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers parametrized by 𝒰\mathcal{U}.

Remark 9.2.4 (Comparison with pp-adic Teichmüller theory).

One of the main achievements in pp-adic Teichmüller theory asserts the existence of a canonical pp-adic lifting of a curve equipped with a certain additional structure involving a PGL2\mathrm{PGL}_{2}-oper (= a torally indigenous bundle).

Each object classified by the VF-stack, or the shifted VF-stack, of pure tone (cf.  [Mzk2, Chap. IV, Definition 2.6]) is related to the notion of a dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper because both are characterized by vanishing of the pp-curvature of the associated flat bundles. However, despite the similarity in concept, there seems to be no (at least direct) correspondence with the canonical diagonal liftings asserted in the above theorem.

Also, other lifting constructions of PGL2\mathrm{PGL}_{2}-opers can be found in  [Mzk1] (which is also in the context of pp-adic Teichmüller theory, but in a more classical setting) and  [LSYZ]. These constructions are entirely different from ours because the PGL2\mathrm{PGL}_{2}-opers treated there never have vanishing pp-curvature.

Corollary 9.2.5.

Let NN be a positive integer and kk an algebraically closed field over 𝔽p\mathbb{F}_{p}. Denote by WNW_{N} the ring of Witt vectors of length NN over kk. Also, let XX be a geometrically connected, proper, and smooth curve of genus g>1g>1 over WNW_{N}. Denote by X0X_{0} the reduction modulo pp of XX. Then, there are only finitely many isomorphism classes of dormant PGL2\mathrm{PGL}_{2}-opers on XX. If, moreover, X0X_{0} is general in g,0,\mathcal{M}_{g,0,}, then the cardinality (OpZzz1,X)\sharp(\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{1,X}) of OpZzz1,X\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{1,X} satisfies the following equalities:

(OpZzz1,X)=(OpZzzN,X0)=deg(Π2,N,g,0,𝔽p).\displaystyle\sharp(\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{1,X})=\sharp(\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{N,X_{0}})=\mathrm{deg}(\Pi_{2,N,g,0,\mathbb{F}_{p}}). (9.18)
Proof.

The assertion follows from Theorem 6.3.7 and Theorem-Definition 9.2.1. ∎

Remark 9.2.6 (pp-adic liftings of dormant PGL2()\mathrm{PGL}_{2}^{(\infty)}-opers).

Let KK be an algebraically closed field over 𝔽p\mathbb{F}_{p}, and let X0X_{0} be a connected proper smooth curve of genus g>1g>1 over KK classified by a KK-rational generic point of g,0\mathcal{M}_{g,0}. Denote by WW the ring of Witt vectors over KK. Also, choose a deformation XX of X0X_{0} over WW.

According to Corollary 8.6.6, we can find a collection of data

{sN}N>0,\displaystyle\{s_{N}\}_{N\in\mathbb{Z}_{>0}}, (9.19)

where

  • each sNs_{N} (N>0N\in\mathbb{Z}_{>0}) denotes a KK-valued generic point of an irreducible component of 𝒪pZzz2,N,g,r,𝔽p\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,r,\mathbb{F}_{p}};

  • the points {sN}N>0\{s_{N}\}_{N\in\mathbb{Z}_{>0}} are compatible with respect to the projective system (5.44), i.e., sNs_{N} is mapped to sNs_{N^{\prime}} via the natural projection ΠNN:𝒪pZzz2,N,g,r,𝔽p𝒪pZzz2,N,g,r,𝔽p\Pi_{N\Rightarrow N^{\prime}}:\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,g,r,\mathbb{F}_{p}}\rightarrow\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N^{\prime},g,r,\mathbb{F}_{p}} for every NNN^{\prime}\leq N.

The point sNs_{N} determines a dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper N\mathscr{E}_{N}^{\spadesuit} on X0/KX_{0}/K. The resulting compatible collection {N}N>0\{\mathscr{E}^{\spadesuit}_{N}\}_{N\in\mathbb{Z}_{>0}} should be called a dormant PGL2\mathrm{PGL}_{2}-oper of level \infty, or dormant PGL2()\mathrm{PGL}_{2}^{(\infty)}-oper.

Since X0X_{0} is NN-ordinary for every NN, we can apply Theorem-Definition 9.2.1 to the N\mathscr{E}_{N}^{\spadesuit}’s, and obtain a dormant PGL2\mathrm{PGL}_{2}-oper \mathscr{E}_{\infty}^{\spadesuit} defined on a curve X/WX/W via algebraization. This construction would partially realize the expected correspondence (at least in the generic situation) between dormant opers of level \infty on a curve in characteristic pp and dormant opers of level 11 on its pp-adic lifting.

9.3. Canonical diagonal liftings of FNF^{N}-projective structures

The notion of an FNF^{N}-projective structures (i.e., a Frobenius-projective structures of level NN) on a curve in characteristic pp was originally introduced by Y. Hoshi (cf.  [Hos2, Definition 2.1]) as an analogue of a complex projective structure on a Riemann surface, and later investigated by the author (cf.  [Wak6],  [Wak7]). Roughly speaking, an FNF^{N}-projective structure is a maximal collection of étale coordinate charts on a curve valued in the projective line whose transition functions descend to its NN-th Frobenius twist.

The statement of  [Hos2, Theorem A] may be interpreted as the existence of a natural bijection between dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers and FNF^{N}-projective structures. (In  [Wak7, Definition 2.2.2], the author introduced Frobenius-Ehresmann structures, which are multi-dimensional generalizations of Frobenius-projective structures. The same kind of bijection as mentioned above holds for those structures, see  [Wak6, Theorem A] and  [Wak7, Theorem A].)

In this final subsection, we extend the definition of a projective structure to the case of characteristic pNp^{N} (cf. Definition 9.3.2 below). After generalizing Hoshi’s bijection, we formulate the canonical diagonal liftings of FNF^{N}-projective structures as a direct consequence of Theorem-Definition 9.2.1.

Let \ell be a nonnegative integer, SS a flat /p+1\mathbb{Z}/p^{\ell+1}\mathbb{Z}-scheme, and XX a geometrically connected, proper, and smooth curve of genus g>1g>1 over SS. Suppose that SS is equipped with an (N1)(N-1)-PD structure extending XX. Denote by (PGL2)X(\mathrm{PGL}_{2})_{X} the Zariski sheaf on XX represented by PGL2\mathrm{PGL}_{2}; this may be identified with the sheaf of automorphisms of the trivial PGL2\mathrm{PGL}_{2}-bundle X×PGL2X\times\mathrm{PGL}_{2}. Also, denote by

(PGL2(N))X\displaystyle(\mathrm{PGL}_{2}^{(N)})_{X} (9.20)

the subsheaf of (PGL2)X(\mathrm{PGL}_{2})_{X} consisting of (locally defined) automorphisms of X×PGL2X\times\mathrm{PGL}_{2} preserving the (N1)(N-1)-PD stratification ϕtriv\phi_{\mathrm{triv}} (cf. (2.38) for the definition of ϕtriv\phi_{\mathrm{triv}}).

Next, let us write

𝒫ét\displaystyle\mathcal{P}^{\text{\'{e}t}} (9.21)

for the Zariski sheaf of sets on XX that assigns, to each open subscheme UU of XX, the set of étale SS-morphisms from UU to the projective line \mathbb{P} over SS.

Lemma 9.3.1.

Let UU be an open subscheme of XX, φ:U\varphi:U\rightarrow\mathbb{P} an element of 𝒫ét(U)\mathcal{P}^{\text{\'{e}t}}(U). Also, let hh be an element of (PGL2(N))X(U)(\mathrm{PGL}_{2}^{(N)})_{X}(U), regarded as an SS-morphism UPGL2U\rightarrow\mathrm{PGL}_{2}. Then, the composite

hφ:U(h,φ)PGL2×Ψ\displaystyle{{}^{h}}\varphi:U\xrightarrow{(h,\varphi)}\mathrm{PGL}_{2}\times\mathbb{P}\xrightarrow{\Psi}\mathbb{P} (9.22)

belongs to 𝒫ét(U)\mathcal{P}^{\text{\'{e}t}}(U), where the second arrow Ψ\Psi denotes the usual PGL2\mathrm{PGL}_{2}-action on \mathbb{P}.

Proof.

After possibly replacing UU with its covering with respect to the étale topology, we may assume that there exists an automorphism h~\widetilde{h} of (𝒪X2,(X,triv(N1))2)(\mathcal{O}_{X}^{\oplus 2},(\nabla_{X,\mathrm{triv}}^{(N-1)})^{\oplus 2}) inducing hh via projectivization; we will use the same notation h~\widetilde{h} to denote the associated morphism UGL2U\rightarrow\mathrm{GL}_{2}. Let us choose a point qU(k)q\in U(k), where kk denotes a field. The differential of (h,φ):UPGL2×(h,\varphi):U\rightarrow\mathrm{PGL}_{2}\times\mathbb{P} at qq yields a morphism of kk-vector spaces

(dh,dφ):𝒯U/S|q𝒯PGL2|h(q)𝒯/S|φ(q)(=𝒯(PGL2×)/S|(h(q),φ(q))).\displaystyle(dh,d\varphi):\mathcal{T}_{U/S}|_{q}\rightarrow\mathcal{T}_{\mathrm{PGL}_{2}}|_{h(q)}\oplus\mathcal{T}_{\mathbb{P}/S}|_{\varphi(q)}\left(=\mathcal{T}_{(\mathrm{PGL}_{2}\times\mathbb{P})/S}|_{(h(q),\varphi(q))}\right). (9.23)

Note that the differential of h~\widetilde{h} coincides with the zero map because h~\widetilde{h} lies in Aut(𝒪X2,(X,triv(N1))2)\mathrm{Aut}(\mathcal{O}_{X}^{\oplus 2},(\nabla_{X,\mathrm{triv}}^{(N-1)})^{\oplus 2}). Hence, since hh factors through h~\widetilde{h}, the morphism dh:𝒯U/S|q𝒯PGL2|h(q)dh:\mathcal{T}_{U/S}|_{q}\rightarrow\mathcal{T}_{\mathrm{PGL}_{2}}|_{h(q)} coincides with the zero map. On the other hand, by the étaleness assumption on φ\varphi, the morphism dφ:𝒯U/S|q𝒯/S|φ(q)d\varphi:\mathcal{T}_{U/S}|_{q}\rightarrow\mathcal{T}_{\mathbb{P}/S}|_{\varphi(q)} is an isomorphism. Also, the differential dΨ:𝒯PGL2|h(q)𝒯/S|φ(q)𝒯/S|h(φ)(q)d\Psi:\mathcal{T}_{\mathrm{PGL}_{2}}|_{h(q)}\oplus\mathcal{T}_{\mathbb{P}/S}|_{\varphi(q)}\rightarrow\mathcal{T}_{\mathbb{P}/S}|_{h(\varphi)(q)} of the PGL2\mathrm{PGL}_{2}-action Ψ\Psi restricts to an isomorphism 𝒯/S|φ(q)(=0𝒯/S|φ(q))𝒯/S|hφ(q)\mathcal{T}_{\mathbb{P}/S}|_{\varphi(q)}\left(=0\oplus\mathcal{T}_{\mathbb{P}/S}|_{\varphi(q)}\right)\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathcal{T}_{\mathbb{P}/S}|_{{{}^{h}}\varphi(q)}. It follows that the differential d(hφ)(=dΨ(dh,dφ))d({{}^{h}}\varphi)\left(=d\Psi\circ(dh,d\varphi)\right) of hφ{{}^{h}}\varphi at qq is an isomorphism. Since both UU and \mathbb{P} are smooth over SS, the morphism hφ{{}^{h}}\varphi turns out to be étale. This completes the proof of this lemma. ∎

By the above lemma, the assignment (h,φ)hφ(h,\varphi)\mapsto{{}^{h}}\varphi defines a (PGL2(N))X(\mathrm{PGL}_{2}^{(N)})_{X}-action

Ψ(N):(PGL2(N))X×𝒫ét𝒫ét\displaystyle\Psi^{(N)}:(\mathrm{PGL}_{2}^{(N)})_{X}\times\mathcal{P}^{\text{\'{e}t}}\rightarrow\mathcal{P}^{\text{\'{e}t}} (9.24)

on the sheaf 𝒫ét\mathcal{P}^{\text{\'{e}t}}.

Definition 9.3.2.

Let 𝒮\mathcal{S}^{\blacklozenge} be a subsheaf of 𝒫ét\mathcal{P}^{\text{\'{e}t}}. We shall say that 𝒮\mathcal{S}^{\blacklozenge} is a Frobenius-projective structure of level NN (or simply, an FNF^{N}-projective structure) on X/SX/S if it is closed under the (PGL2(N))X(\mathrm{PGL}_{2}^{(N)})_{X}-action Ψ(N)\Psi^{(N)} and forms a (PGL2(N))X(\mathrm{PGL}_{2}^{(N)})_{X}-torsor on XX with respect to the resulting (PGL2(N))X(\mathrm{PGL}_{2}^{(N)})_{X}-action on 𝒮\mathcal{S}^{\blacklozenge}.

Remark 9.3.3 (Comparison with the classical definition).

Suppose that =0\ell=0. Then, since (PGL2(N))X(\mathrm{PGL}_{2}^{(N)})_{X} coincides with the subsheaf (FX/S(N))1((PGL2)X(N))(F_{X/S}^{(N)})^{-1}((\mathrm{PGL}_{2})_{X^{(N)}}) of (PGL2)X(\mathrm{PGL}_{2})_{X}, the definition of an FNF^{N}-projective structure described above is the same as the classical definition discussed in  [Hos2, Definition 2.1] and  [Wak6, Definition 1.2.1].

Denote by

FN-PrX\displaystyle F^{N}\text{-}\mathrm{Pr}_{X} (9.25)

the set of FNF^{N}-projective structures on X/SX/S. The following assertion generalizes  [Hos2, Theorem A] and  [Wak7, Theorem B] (for (G,H)=(PGL2,B)(G,H)=(\mathrm{PGL}_{2},B)) to characteristic pNp^{N}.

Theorem 9.3.4.

Suppose that either =0\ell=0 or N=1N=1 is satisfied (hence the set OpN,XZzz\mathrm{Op}_{N,X}^{{}^{\mathrm{Zzz...}}} can be defined as in (9.13)). Then, there exists a canonical bijection of sets

OpN,XZzzFN-PrX.\displaystyle\mathrm{Op}_{N,X}^{{}^{\mathrm{Zzz...}}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}F^{N}\text{-}\mathrm{Pr}_{X}. (9.26)

In particular, there are only finitely many FNF^{N}-projective structures on X/SX/S.

Proof.

Since the assertion for =0\ell=0 was already proved in  [Hos2, Theorem A], it suffices to consider the case of 0\ell\neq 0 (and N=1N=1). First, we shall construct a map of sets Op1,XZzzF1-PrX\mathrm{Op}_{1,X}^{{}^{\mathrm{Zzz...}}}\rightarrow F^{1}\text{-}\mathrm{Pr}_{X}. Let :=(B,)\mathscr{E}^{\spadesuit}:=(\mathcal{E}_{B},\nabla) be a dormant PGL2\mathrm{PGL}_{2}-oper on X/SX/S, and write :=B×BPGL2\mathcal{E}:=\mathcal{E}_{B}\times^{B}\mathrm{PGL}_{2}. Denote by ()\mathbb{P}(\mathcal{E}) the projective line bundle associated to \mathcal{E}. The BB-reduction B\mathcal{E}_{B} of \mathcal{E} determines a global section σ:X()\sigma:X\rightarrow\mathbb{P}(\mathcal{E}). Next, let us take an open subscheme UU of XX on which (,)(\mathcal{E},\nabla) is trivialized (cf. Corollary 5.5.2, (ii)). Choose a trivialization

α:(|U,|U)(U×PGL2,triv),\displaystyle\alpha:(\mathcal{E}|_{U},\nabla|_{U})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}(U\times\mathrm{PGL}_{2},\nabla_{\mathrm{triv}}), (9.27)

where triv\nabla_{\mathrm{triv}} denotes the trivial SS-connection on U×PGL2U\times\mathrm{PGL}_{2} (cf.  [Wak8, Eq. (78)]); it induces an isomorphism α:()|UU×S\alpha_{\mathbb{P}}:\mathbb{P}(\mathcal{E})|_{U}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}U\times_{S}\mathbb{P}. Thus, we obtain the composite

φα:Uσ|U()|UαU×Spr2.\displaystyle\varphi_{\alpha}:U\xrightarrow{\sigma|_{U}}\mathbb{P}(\mathcal{E})|_{U}\xrightarrow{\alpha_{\mathbb{P}}}U\times_{S}\mathbb{P}\xrightarrow{\mathrm{pr}_{2}}\mathbb{P}. (9.28)

Similarly to the proof of  [Wak6, Corollary 1.6.2], we see that φα\varphi_{\alpha} is étale. Let (U)\mathscr{E}^{\spadesuit\Rightarrow\blacklozenge}(U) denote the set of étale morphisms φα\varphi_{\alpha} constructed in this way for all possible trivializations α\alpha as in (9.27). The set (U)\mathscr{E}^{\spadesuit\Rightarrow\blacklozenge}(U) has a structure of (PGL2(1))X(U)(\mathrm{PGL}_{2}^{(1)})_{X}(U)-torsor with respect to the (PGL2(1))X(U)(\mathrm{PGL}_{2}^{(1)})_{X}(U)-action defined by φαφhα\varphi_{\alpha}\mapsto\varphi_{h\circ\alpha} for each h(PGL2(1))X(U)h\in(\mathrm{PGL}_{2}^{(1)})_{X}(U). Hence, the sheaf associated to the assignment U(U)U\mapsto\mathscr{E}^{\spadesuit\Rightarrow\blacklozenge}(U) specifies a subsheaf

\displaystyle\mathscr{E}^{\spadesuit\Rightarrow\blacklozenge} (9.29)

of 𝒫ét\mathcal{P}^{\text{\'{e}t}}. One may verify that \mathscr{E}^{\spadesuit\Rightarrow\blacklozenge} forms an F1F^{1}-projective structure on X/SX/S, and the resulting assignment \mathscr{E}^{\spadesuit}\mapsto\mathscr{E}^{\spadesuit\Rightarrow\blacklozenge} defines a map of sets Op1,XZzzF1-PrX\mathrm{Op}_{1,X}^{{}^{\mathrm{Zzz...}}}\rightarrow F^{1}\text{-}\mathrm{Pr}_{X}. Moreover, we can reverse the steps in the above construction, so the map Op1,XZzzF1-PrX\mathrm{Op}_{1,X}^{{}^{\mathrm{Zzz...}}}\rightarrow F^{1}\text{-}\mathrm{Pr}_{X} is verified to be bijective.

Finally, the second assertion follows from the first assertion together with Proposition 5.6.1, (ii). This completes the proof of the theorem. ∎

Hereinafter, we suppose that +1=N\ell+1=N. Denote by X0/S0X_{0}/S_{0} the curve obtained as the reduction modulo pp of X/SX/S. Let us define a map

:F1-PrXFN-PrX0\displaystyle\rotatebox[origin={c}]{45.0}{$\Leftarrow$}_{\!\!\blacklozenge}:F^{1}\text{-}\mathrm{Pr}_{X}\rightarrow F^{N}\text{-}\mathrm{Pr}_{X_{0}} (9.30)

to be the unique map that makes the following square diagram commute:

(9.35)
Theorem-Definition 9.3.5.

Suppose that X0/S0X_{0}/S_{0} is NN-ordinary. Then, the map \rotatebox[origin={c}]{45.0}{$\Leftarrow$}_{\!\!\blacklozenge} is bijective. That is to say, for any FNF^{N}-projective structure 𝒮0\mathcal{S}^{\blacklozenge}_{0} on X0/S0X_{0}/S_{0}, there exists a unique F1F^{1}-projective structure 𝒮\mathcal{S}^{\blacklozenge} on X/SX/S which is mapped to 𝒮0\mathcal{S}^{\blacklozenge}_{0} via \rotatebox[origin={c}]{45.0}{$\Leftarrow$}_{\!\!\blacklozenge}. We shall refer to 𝒮\mathcal{S}^{\blacklozenge} as the canonical diagonal lifting of 𝒮0\mathcal{S}^{\blacklozenge}_{0}.

Proof.

The assertion follows from Theorem-Definition 9.2.1, Remark 9.2.2, and Theorem 9.3.4. ∎

Corollary 9.3.6.

Suppose that X0/S0X_{0}/S_{0} is NN-ordinary. Then, there are only finitely many F1F^{1}-projective structures on X/SX/S and the following equality holds:

(F1-PrX/S)=(FN-PrX0/S0).\displaystyle\sharp(F^{1}\text{-}\mathrm{Pr}_{X/S})=\sharp(F^{N}\text{-}\mathrm{Pr}_{X_{0}/S_{0}}). (9.36)
Proof.

The assertion follows Theorem 9.3.4 and Theorem-Definition 9.3.5. ∎

10. Combinatorial description of dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers

In this final section, the 22d TQFT 𝒵2,N\mathcal{Z}_{2,N} resulting from Theorem 7.4.2 is translated into some combinatorial objects to solve our counting problem in a practical manner. To this end, we study Gauss hypergeometric differential operators in characteristic pNp^{N} with a full set of root functions, which amounts to the study of dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers on a 33-pointed projective line via diagonal lifting/reduction (cf. Proposition 10.4.3). Since such differential operators are determined by their exponent differences, one can describe dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers by means of certain edge numberings on the trivalent semi-graph associated to a totally degenerate curve, as well as lattice points inside a generalized rational polytope (cf. Propositions 10.5.2, 10.6.4). As a consequence, we prove that the numbers of dormant PGL2\mathrm{PGL}_{2}-opers and 22nd order differential operators on a general curve in characteristic pNp^{N} can be expressed as a quasi-polynomial function (cf. Theorem 10.6.5, 10.7.1).

Let us fix a positive integer NN, and suppose that p>2p>2.

10.1. Gauss hypergeometric differential operators

(The following discussion in the case of =0\ell=0 can be found in  [Wak8, § 4.12].) Denote by WNW_{N} the ring of Witt vectors of length NN over an algebraically closed field kk of characteristic pp. Let us consider (linear) differential operators on the 33-pointed projective line 𝒫:=(/S,{[0],[1],[]})\mathscr{P}:=(\mathbb{P}/S,\{[0],[1],[\infty]\}) over S:=Spec(WN)S:=\mathrm{Spec}(W_{N}) (cf. (6.63)).

Each triple (a,b,c)WN×3(a,b,c)\in W_{N}^{\times 3} of elements of WNW_{N} determines the Gauss hypergeometric differential operator

𝒟𝒶,𝒷,𝒸:=𝓍2+(𝒸𝓍+1𝒸+𝒶+𝒷𝓍1)𝓍+𝒶𝒷𝓍(𝓍1)\displaystyle\mathpzc{D}_{a,b,c}^{\clubsuit}:=\partial_{x}^{2}+\left(\frac{c}{x}+\frac{1-c+a+b}{x-1}\right)\cdot\partial_{x}+\frac{ab}{x(x-1)} (10.1)

on Spec(WN[x])={}\mathrm{Spec}(W_{N}[x])=\mathbb{P}\setminus\{\infty\}, where x:=ddx\partial_{x}:=\frac{d}{dx}. It defines a 22nd differential operator 𝒪1Ω2\mathcal{O}_{\mathbb{P}^{1}}\rightarrow\Omega^{\otimes 2} with unit principal symbol under the natural identification Ω2𝒯2=𝒪\Omega^{\otimes 2}\otimes\mathcal{T}^{\otimes 2}=\mathcal{O}_{\mathbb{P}} (cf. Definition 5.7.2) in such a way that Da,b,c:=dx2𝒟𝒶,𝒷,𝒸D_{a,b,c}^{\clubsuit}:=dx^{\otimes 2}\otimes\mathpzc{D}_{a,b,c}^{\clubsuit} specifies a global section of 𝒟𝑖𝑓𝑓2(𝒪,Ω2)\mathcal{D}{\it iff}_{\!\leq 2}(\mathcal{O}_{\mathbb{P}},\Omega^{\otimes 2}). If we write y:=x1y:=x-1, z:=1/xz:=1/x, then the following equalities hold:

Da,b,c\displaystyle D_{a,b,c}^{\clubsuit} =(dxx)2((xx)2+(a+b)x+1cx1xx+abxx1)\displaystyle=\left(\frac{dx}{x}\right)^{\otimes 2}\otimes\left((x\partial_{x})^{2}+\frac{(a+b)\cdot x+1-c}{x-1}\cdot x\partial_{x}+\frac{ab\cdot x}{x-1}\right) (10.2)
=(dyy)2((yy)2+(a+b)yc+a+by+1yy+abyy+1)\displaystyle=\left(\frac{dy}{y}\right)^{\otimes 2}\otimes\left((y\partial_{y})^{2}+\frac{(a+b)\cdot y-c+a+b}{y+1}\cdot y\partial_{y}+\frac{ab\cdot y}{y+1}\right)
=(dzz)2((zz)2+(1c)z+a+bz1zzabz1).\displaystyle=\left(\frac{dz}{z}\right)^{\otimes 2}\otimes\left((z\partial_{z})^{2}+\frac{(1-c)\cdot z+a+b}{z-1}\cdot z\partial_{z}-\frac{ab}{z-1}\right).

In this section, we shall call such a differential operator (associated to some triple (a,b,c)R×3(a,b,c)\in R^{\times 3}) a hypergeometric operator.

The SlogS^{\mathrm{log}}-connection 𝒟𝒶,𝒷,𝒸\mathpzc{D}_{a,b,c}^{\clubsuit\Rightarrow\diamondsuit} on 𝒪|{}=𝒪{}𝒪{}x(x1)x\mathcal{F}_{\mathcal{O}_{\mathbb{P}}}|_{\mathbb{P}\setminus\{\infty\}}=\mathcal{O}_{\mathbb{P}\setminus\{\infty\}}\oplus\mathcal{O}_{\mathbb{P}\setminus\{\infty\}}\cdot x(x-1)\partial_{x} (cf. (5.67)) satisfies

𝒟𝒶,𝒷,𝒸=𝒹+𝒹𝓍𝓍(𝓍1)(0𝒶𝒷𝓍(𝓍1)1(1𝒶𝒷)𝓍1+𝒸).\displaystyle\mathpzc{D}_{a,b,c}^{\clubsuit\Rightarrow\diamondsuit}=d+\frac{dx}{x(x-1)}\otimes\begin{pmatrix}0&-ab\cdot x(x-1)\\ 1&(1-a-b)\cdot x-1+c\end{pmatrix}. (10.3)

Denote by a,b,c\nabla_{a,b,c} the SlogS^{\mathrm{log}}-connection on 𝒯\mathcal{T} expressed as

a,b,c:=d+dxx(x1)((1ab)x1+c)\displaystyle\nabla_{a,b,c}:=d+\frac{dx}{x(x-1)}\otimes((1-a-b)\cdot x-1+c) (10.4)

under the identification 𝒪{}=𝒯|{}\mathcal{O}_{\mathbb{P}\setminus\{\infty\}}=\mathcal{T}|_{\mathbb{P}\setminus\{\infty\}} given by vvx(x1)xv\leftrightarrow v\cdot x(x-1)\partial_{x}. Then, the pair ϑa,b,c:=(𝒪,a,b,c)\vartheta_{a,b,c}:=(\mathcal{O}_{\mathbb{P}},\nabla_{a,b,c}) specifies a 2(1)2^{(1)}-theta characteristic of log/Slog\mathbb{P}^{\mathrm{log}}/S^{\mathrm{log}}, and 𝒟𝒶,𝒷,𝒸\mathpzc{D}_{a,b,c}^{\clubsuit} (resp., 𝒟𝒶,𝒷,𝒸\mathpzc{D}_{a,b,c}^{\clubsuit\Rightarrow\diamondsuit}) lies in 𝒟𝑖𝑓𝑓,ϑa,b,c\mathcal{D}{\it iff}_{\!\clubsuit,\vartheta_{a,b,c}} (resp., 𝒪p,ϑa,b,c\mathcal{O}p_{\diamondsuit,\vartheta_{a,b,c}}).

Lemma 10.1.1.

Suppose that a+b/pNa+b\in\mathbb{Z}/p^{N}\mathbb{Z} and c/pNc\in\mathbb{Z}/p^{N}\mathbb{Z}. Then, the flat line bundle (𝒯,a,b,c)(\mathcal{T},\nabla_{a,b,c}) (i.e., the 2(1)2^{(1)}-theta characteristic ϑa,b,c\vartheta_{a,b,c}) is dormant.

Proof.

We shall set U:={[0],[1],[]}U:=\mathbb{P}\setminus\{[0],[1],[\infty]\}. By Proposition 5.1.1, it suffices to show that the restriction (𝒯|U,a,b,c|U)(\mathcal{T}|_{U},\nabla_{a,b,c}|_{U}) over UU is dormant. Let ss (resp., tt) be the integer defined as the unique lifting of a+bca+b-c (resp., 1+c-1+c), which is an element of /pN\mathbb{Z}/p^{N}\mathbb{Z} by assumption, via the natural surjection /pN\mathbb{Z}\twoheadrightarrow\mathbb{Z}/p^{N}\mathbb{Z} satisfying 0s<pN0\leq s<p^{N} (resp., 0t<pN0\leq t<p^{N}). Consider the gauge transformation of a,b,c|U\nabla_{a,b,c}|_{U} by an element xs(x1)tH0(U,𝒪X)x^{s}(x-1)^{t}\in H^{0}(U,\mathcal{O}_{X}). If d+dxAd+dx\otimes A denotes the resulting connection, then the section AA is computed as follows:

A\displaystyle A =d(xs(x1)t)xs(x1)t+(1ab)x1+cx(x1)\displaystyle=\frac{d(x^{s}(x-1)^{t})}{x^{s}(x-1)^{t}}+\frac{(1-a-b)\cdot x-1+c}{x(x-1)} (10.5)
=(a+bcx1+1+cx)+(1ab)x1+cx(x1)\displaystyle=\left(\frac{a+b-c}{x-1}+\frac{-1+c}{x}\right)+\frac{(1-a-b)\cdot x-1+c}{x(x-1)}
=0.\displaystyle=0. (10.6)

This implies that (𝒯|U,a,b,c|U)(\mathcal{T}|_{U},\nabla_{a,b,c}|_{U}) can be trivialized, in particular, it is dormant. ∎

If a,b,c\mathscr{E}^{\spadesuit}_{a,b,c} denotes the PGL2\mathrm{PGL}_{2}-oper defined to be the image of 𝒟𝒶,𝒷,𝒸\mathpzc{D}^{\clubsuit}_{a,b,c} via the composite Λ,ϑa,b,cΛ,ϑa,b,c\Lambda_{\diamondsuit\Rightarrow\spadesuit,\vartheta_{a,b,c}}\circ\Lambda_{\clubsuit\Rightarrow\diamondsuit,\vartheta_{a,b,c}}, then the equalities in (10.2) show that the radius of a,b,c\mathscr{E}^{\spadesuit}_{a,b,c} at the marked point [0][0] (resp., [1][1]; resp., [][\infty]) in the sense of Remark 6.3.6 is given by

ϱ[0](a,b,c)=(1c)24(resp.,ϱ[1](a,b,c)=(cab)24;resp.,ϱ[](a,b,c)=(ba)24)\displaystyle\varrho_{[0]}(\mathscr{E}^{\spadesuit}_{a,b,c})=\frac{(1-c)^{2}}{4}\ \left(\text{resp.,}\ \varrho_{[1]}(\mathscr{E}^{\spadesuit}_{a,b,c})=\frac{(c-a-b)^{2}}{4};\text{resp.,}\ \varrho_{[\infty]}(\mathscr{E}^{\spadesuit}_{a,b,c})=\frac{(b-a)^{2}}{4}\right)\hskip 28.45274pt (10.7)

as an element of WNW_{N}.

Here, recall that the exponent differences of 𝒟𝒶,𝒷,𝒸\mathpzc{D}^{\clubsuit}_{a,b,c} at 0, 11, \infty are 1c1-c, cabc-a-b, bab-a, respectively, and set

Exa,b,c:=(1c,cab,ba).\displaystyle\mathrm{Ex}_{a,b,c}:=(1-c,c-a-b,b-a). (10.8)

This triple will be regarded as a triple of elements in WN/{±1}W_{N}/\{\pm 1\} (:=:= the quotient set of WNW_{N} by the equivalence relation generated by vvv\sim-v for every vWNv\in W_{N}).

Applying the fact mentioned at the end of Remark 6.3.6 to the case of n=2n=2, we see that (the isomorphism class of) an PGL2\mathrm{PGL}_{2}-oper is uniquely determined by its radii. Hence, (10.7) implies the following assertion.

Proposition 10.1.2.
  • (i)

    Let \mathscr{E}^{\spadesuit} be a PGL2\mathrm{PGL}_{2}-oper on 𝒫\mathscr{P} whose radius at every marked point belongs to WN×(=WNpWN)W_{N}^{\times}\left(=W_{N}\setminus pW_{N}\right). Then, the preimage of {}\{\mathscr{E}^{\spadesuit}\} via the map of sets

    {the set ofhypergeometric operators}{the set of isomorphism classesof PGL2-opers on 𝒫}\displaystyle\left\{\begin{matrix}\text{the set of}\\ \text{hypergeometric operators}\end{matrix}\right\}\rightarrow\left\{\begin{matrix}\text{the set of isomorphism classes}\\ \text{of $\mathrm{PGL}_{2}$-opers on $\mathscr{P}$}\end{matrix}\right\} (10.9)

    given by assigning 𝒟𝒶,𝒷,𝒸𝒶,𝒷,𝒸\mathpzc{D}^{\clubsuit}_{a,b,c}\mapsto\mathscr{E}^{\spadesuit}_{a,b,c} is nonempty.

  • (ii)

    Let (a,b,c)(a,b,c) and (a,b,c)(a^{\prime},b^{\prime},c^{\prime}) be elements of WN×3W_{N}^{\times 3}. Then, a,b,c\mathscr{E}^{\spadesuit}_{a,b,c} is isomorphic to a,b,c\mathscr{E}^{\spadesuit}_{a^{\prime},b^{\prime},c^{\prime}} if and only if the equality Exa,b,c=Exa,b,c\mathrm{Ex}_{a,b,c}=\mathrm{Ex}_{a^{\prime},b^{\prime},c^{\prime}} holds in (WN/{±1})×3(W_{N}/\{\pm 1\})^{\times 3}.

Next, we discuss dormant PGL2\mathrm{PGL}_{2}-opers arising from hypergeometric operators. To this end, we first prove the following assertion.

Lemma 10.1.3.

Let \mathscr{E}^{\spadesuit} be a PGL2\mathrm{PGL}_{2}-oper on 𝒫\mathscr{P} and UU a dense open subscheme of {[0],[1],[]}\mathbb{P}\setminus\{[0],[1],[\infty]\}. Then, \mathscr{E}^{\spadesuit} is dormant if and only if its restriction |U\mathscr{E}^{\spadesuit}|_{U} is dormant

Proof.

For simplicity, we shall write 𝒟(m)\mathcal{D}^{(m)} (for each m0m\geq 0) instead of 𝒟(m)0log/S0log\mathcal{D}^{(m)}_{\mathbb{P}_{0}^{\mathrm{log}}/S_{0}^{\mathrm{log}}}. The “only if” part of the required equivalence is clear.

We shall prove the “if” part by induction on NN. By Proposition 3.2.5, the second assertion of (i), we may assume, without loss of generality, that U={[0],[1],[]}U=\mathbb{P}\setminus\{[0],[1],[\infty]\}. The base step, i.e., the case of N=1N=1, follows from the density of U()U\left(\subseteq\mathbb{P}\right) because the pp-curvature of a flat bundle on log0/Slog0\mathbb{P}^{\mathrm{log}}_{0}/S^{\mathrm{log}}_{0} can be regarded as a global section of a certain associated vector bundle. Next, to discuss the induction step, suppose that we have proved the required assertion with NN replaced with N1N-1 (N>1N>1). Also, suppose that |U\mathscr{E}^{\spadesuit}|_{U} is dormant. Let ρx(/pN1)×/{±1}\rho_{x}\in(\mathbb{Z}/p^{N-1}\mathbb{Z})^{\times}/\{\pm 1\} (x{0,1,}x\in\{0,1,\infty\}) be the radius of N2\mathscr{E}_{N-2}^{\spadesuit} at [x][x]. Then, there exists a triple of integers (λ0,λ1,λ)(\lambda_{0},\lambda_{1},\lambda_{\infty}) satisfying the following conditions (cf. the discussion at the beginning of § 8.6):

  • 2ρx=λx2\cdot\rho_{x}=\lambda_{x} as elements of (/pN1)/{±1}(\mathbb{Z}/p^{N-1}\mathbb{Z})/\{\pm 1\} and 0<λx<pN10<\lambda_{x}<p^{N-1} for every x=0,1,x=0,1,\infty;

  • The sum λ0+λ1+λ\lambda_{0}+\lambda_{1}+\lambda_{\infty} is odd <2pN1<2\cdot p^{N-1}.

We can find a unique SlogS^{\mathrm{log}}-connection +\nabla^{+} on 𝒪+:=𝒪(λ0[0]+λ1[1]+λ[])\mathcal{O}_{\mathbb{P}}^{+}:=\mathcal{O}_{\mathbb{P}}(\lambda_{0}\cdot[0]+\lambda_{1}\cdot[1]+\lambda_{\infty}\cdot[\infty]) extending the trivial connection on 𝒪\mathcal{O}_{\mathbb{P}}. Also, let \mathcal{L} be a unique (up to isomorphism) line bundle on \mathbb{P} of relative degree λ0+λ1+λ+12\frac{\lambda_{0}+\lambda_{1}+\lambda_{\infty}+1}{2}, and fix an identification 2𝒯=𝒪+\mathcal{L}^{\otimes 2}\otimes\mathcal{T}=\mathcal{O}^{+}_{\mathbb{P}}. Under this identification, the pair ϑ:=(,+)\vartheta:=(\mathcal{L},\nabla^{+}) forms a dormant 2(N)2^{(N)}-theta characteristic of log/Slog(=S)\mathbb{P}^{\mathrm{log}}/S^{\mathrm{log}}\left(=S\right) (cf. Proposition 4.5.2, (i)). Denote by \nabla^{\diamondsuit} be the (GL2(N),ϑ)(\mathrm{GL}_{2}^{(N)},\vartheta)-oper on 𝒫\mathscr{P} corresponding to \mathscr{E}^{\spadesuit} via the isomorphism Λ,ϑ\Lambda_{\diamondsuit\Rightarrow\spadesuit,\vartheta} (cf. Theorem 5.5.1). By the induction assumption, N2\mathscr{E}^{\spadesuit}_{N-2} is dormant, and hence, the reduction N2\nabla^{\diamondsuit}_{N-2} of \nabla^{\diamondsuit} modulo pN1p^{N-1} is dormant. It follows from the definition of \nabla^{\diamondsuit} that the diagonal reduction of N2\nabla_{N-2}^{\diamondsuit\Rightarrow\heartsuit} is canonical in the sense of Definition 8.6.1; we denote it by 0:=(0,0(N2),{j0}j=02)\mathscr{F}^{\heartsuit}_{0}:=(\mathcal{F}_{0},\nabla_{0}^{(N-2)},\{\mathcal{F}^{j}_{0}\}_{j=0}^{2}). Just as in (3.5), we have an SlogS^{\mathrm{log}}-connection \nabla_{\mathscr{F}} on 𝒱:=𝒮ol(0(N2))\mathcal{V}_{\mathscr{F}}:=\mathcal{S}ol(\nabla_{0}^{(N-2)}) associated to :=(,)\mathscr{F}:=(\mathcal{F}_{\mathcal{L}},\nabla^{\diamondsuit}), and \nabla_{\mathscr{F}} has vanishing pp-curvature because |U\nabla^{\diamondsuit}|_{U} is dormant. According to  [Mon, Corollaire 3.3.1], \nabla_{\mathscr{F}} induces a 𝒟(N1)\mathcal{D}^{(N-1)}-module structure 0(N1)\nabla_{0}^{(N-1)} on 0:=F(N1)0/S0(𝒱)\mathcal{F}^{\flat}_{0}:=F^{(N-1)*}_{\mathbb{P}_{0}/S_{0}}(\mathcal{V}_{\mathscr{F}}) with vanishing pNp^{N}-curvature that are compatible with 0(N2)\nabla_{0}^{(N-2)} via the inclusion τ:00\tau:\mathcal{F}^{\flat}_{0}\hookrightarrow\mathcal{F}_{0} and the natural morphism 𝒟(N2)𝒟(N1)\mathcal{D}^{(N-2)}\rightarrow\mathcal{D}^{(N-1)}. Denote by ˘(N1)0\breve{\nabla}^{(N-1)}_{0} the 𝒟(N1)\mathcal{D}^{(N-1)}-module structure on u(0|U)u_{*}(\mathcal{F}^{\flat}_{0}|_{U}) extending 0(N1)\nabla_{0}^{(N-1)} via the open immersion u:Uu:U\hookrightarrow\mathbb{P}. Here, note that 0\mathcal{F}_{0} can be obtained as the extension of 0\mathcal{F}_{0}^{\flat} along the inclusion 00(=001)0(=10)\mathcal{F}_{0}^{\flat}\cap\mathcal{L}_{0}\left(=\mathcal{F}^{\flat}_{0}\cap\mathcal{F}_{0}^{1}\right)\hookrightarrow\mathcal{L}_{0}\left(=\mathcal{F}^{1}_{0}\right), i.e., the push-forward of the diagram

(10.14)

(cf. Lemma 8.6.3, (i)). By applying this fact together with an argument similar to the proof of Proposition 5.1.1, we see that 0(u(0|U))\mathcal{F}_{0}\left(\subseteq u_{*}(\mathcal{F}^{\flat}_{0}|_{U})\right) is closed under ˘0(N1)\breve{\nabla}_{0}^{(N-1)}. The resulting 𝒟(N1)\mathcal{D}^{(N-1)}-module structure ˘0(N1)|0\breve{\nabla}_{0}^{(N-1)}|_{\mathcal{F}_{0}} on 0\mathcal{F}_{0} satisfies (,˘0(N1)|0)DiagN1(\mathscr{F},\breve{\nabla}_{0}^{(N-1)}|_{\mathcal{F}_{0}})\in\mathrm{Diag}_{N-1} (cf. (3.6)), which means that \mathscr{E}^{\spadesuit} is dormant. This completes the proof of the “if” part of the desired equivalence. ∎

Proposition 10.1.4.

The assignment 𝒟𝒶,𝒷,𝒸𝒶,𝒷,𝒸\mathpzc{D}_{a,b,c}^{\clubsuit}\mapsto\mathscr{E}^{\spadesuit}_{a,b,c} determines an 88-11 correspondence

{the set of hypergeometric operatorswhose restrictions to some denseopen subschemes of {[0],[1],[]}have full sets of root functions}8:1{the set of isomorphism classesof dormant PGL2-opers on 𝒫}\displaystyle\left\{\begin{matrix}\text{the set of hypergeometric operators}\\ \text{whose restrictions to some dense}\\ \text{open subschemes of $\mathbb{P}\setminus\{[0],[1],[\infty]\}$}\\ \text{have full sets of root functions}\end{matrix}\right\}\stackrel{{\scriptstyle 8:1}}{{\longleftrightarrow}}\left\{\begin{matrix}\text{the set of isomorphism classes}\\ \text{of dormant $\mathrm{PGL}_{2}$-opers on $\mathscr{P}$}\end{matrix}\right\} (10.15)

(cf. Definition 5.8.1 for the definition of having a full set of root functions). In particular, if a hypergeometric operator 𝒟𝒶,𝒷,𝒸\mathpzc{D}_{a,b,c}^{\clubsuit} has a full set of root functions when restricted to some dense open subscheme of {[0],[1],[]}\mathbb{P}\setminus\{[0],[1],[\infty]\}, then we have (a,b,c)(/pN)×3(a,b,c)\in(\mathbb{Z}/p^{N}\mathbb{Z})^{\times 3}.

Proof.

The first assertion follows from Proposition 6.3.5, Proposition 10.1.2, (i) and (ii), Lemma 10.1.3, and the fact that the morphism Λfull,()\Lambda^{\mathrm{full}}_{\clubsuit\Rightarrow\diamondsuit,(-)} (cf. (5.74)) is an isomorphism.

Moreover, the first assertion and a comment in Remark 6.3.6 together imply that 1c2\frac{1-c}{2}, cab2\frac{c-a-b}{2}, ba2/pN\frac{b-a}{2}\in\mathbb{Z}/p^{N}\mathbb{Z}. This proves the second assertion. ∎

10.2. Combinatorial patterns of radii

We try to understand which triples of integers (a,b,c)(a,b,c) yield hypergeometric operators 𝒟𝒶,𝒷,𝒸\mathpzc{D}^{\clubsuit}_{a,b,c} having a full set of solutions.

Given nonnegative integers mm, \ell with m<m<\ell, we set [m,]:={m,m+1,,}\mathbb{Z}_{[m,\ell]}:=\{m,m+1,\cdots,\ell\}. The assignments (a,b,c)(1c2¯,cab2¯,ba2¯)(a,b,c)\mapsto\left(\overline{\frac{1-c}{2}},\overline{\frac{c-a-b}{2}},\overline{\frac{b-a}{2}}\right) and (s1,s2,s3)(2s1+12¯,2s2+12¯,2s3+12¯)(s_{1},s_{2},s_{3})\mapsto\left(\overline{\frac{2s_{1}+1}{2}},\overline{\frac{2s_{2}+1}{2}},\overline{\frac{2s_{3}+1}{2}}\right) determine maps of sets

ξN:[1,pN]×3((/pN)/{±1})×3andζN:[0,pN1]×3((/pN)/{±1})×3,\displaystyle\xi_{N}:\mathbb{Z}_{[1,p^{N}]}^{\times 3}\rightarrow((\mathbb{Z}/p^{N}\mathbb{Z})/\{\pm 1\})^{\times 3}\hskip 8.53581pt\text{and}\hskip 8.53581pt\zeta_{N}:\mathbb{Z}_{[0,p^{N}-1]}^{\times 3}\rightarrow((\mathbb{Z}/p^{N}\mathbb{Z})/\{\pm 1\})^{\times 3}, (10.16)

respectively. Also, given an integer aa, we denote by [a]N[a]_{N} the remainder obtained by dividing aa by pNp^{N} (taken to be an element of [0,pN1]\mathbb{Z}_{[0,p^{N}-1]} even when a<0a<0), and write

[a]N:={[a]Nif apN;pNif apN.\displaystyle[a]^{\prime}_{N}:=\begin{cases}[a]_{N}&\text{if $a\notin p^{N}\mathbb{Z}$;}\\ p^{N}&\text{if $a\in p^{N}\mathbb{Z}$.}\end{cases} (10.17)

If NN^{\prime} is a positive integer with NNN^{\prime}\leq N, then the assignment (s1,s2,s3)([s1]N,[s2]N,[s3]N)(s_{1},s_{2},s_{3})\mapsto([s_{1}]^{\prime}_{N^{\prime}},[s_{2}]^{\prime}_{N^{\prime}},[s_{3}]^{\prime}_{N^{\prime}}) and (s1,s2,s3)([s1]N,[s2]N,[s3]N)(s_{1},s_{2},s_{3})\mapsto([s_{1}]_{N^{\prime}},[s_{2}]_{N^{\prime}},[s_{3}]_{N^{\prime}}) determine surjections of sets

τNN:[1,pN]×3[1,pN]×3andτNN:[0,pN1]×3[0,pN1]×3,\displaystyle\tau^{\prime}_{N\Rightarrow N^{\prime}}:\mathbb{Z}_{[1,p^{N}]}^{\times 3}\twoheadrightarrow\mathbb{Z}_{[1,p^{N^{\prime}}]}^{\times 3}\hskip 8.53581pt\text{and}\hskip 8.53581pt\tau_{N\Rightarrow N^{\prime}}:\mathbb{Z}_{[0,p^{N}-1]}^{\times 3}\twoheadrightarrow\mathbb{Z}_{[0,p^{N^{\prime}}-1]}^{\times 3}, (10.18)

respectively, and these make the following square diagrams commute:

(10.27)

where the right-hand vertical arrows in both diagrams arise from the natural quotient /pN/pN\mathbb{Z}/p^{N}\mathbb{Z}\twoheadrightarrow\mathbb{Z}/p^{N^{\prime}}\mathbb{Z}.

We shall write

BN:={(a,b,c)[1,pN]×3|a<cb or b<ca}.\displaystyle B_{N}:=\left\{(a,b,c)\in\mathbb{Z}_{[1,p^{N}]}^{\times 3}\,\Big{|}\,\text{$a<c\leq b$ or $b<c\leq a$}\right\}. (10.28)

The map ξN\xi_{N} restricts to an 88-to-11 correspondence between BNB_{N} and ξN(BN)\xi_{N}(B_{N}). To be precise, two triples (a,b,c)(a,b,c), (a,b,c)(a^{\prime},b^{\prime},c^{\prime}) of elements of [1,pN]×3\mathbb{Z}_{[1,p^{N}]}^{\times 3} have the same image via ξN\xi_{N} if and only if (a,b,c)(a^{\prime},b^{\prime},c^{\prime}) is one of the following 88 triples:

(a,b,c),(b,a,c),([cb]N,[ca]N,c),([ca]N,[cb]N,c),\displaystyle(a,b,c),\hskip 28.45274pt(b,a,c),\hskip 28.45274pt([c-b]^{\prime}_{N},[c-a]^{\prime}_{N},c),\hskip 28.45274pt([c-a]^{\prime}_{N},[c-b]^{\prime}_{N},c),
(1+pNa,1+pNb,2+pNc),(1+pNb,1+pNa,2+pNc),\displaystyle(1+p^{N}-a,1+p^{N}-b,2+p^{N}-c),\hskip 14.22636pt(1+p^{N}-b,1+p^{N}-a,2+p^{N}-c),
([1+ac]N,[1+bc]N,2+pNc),([1+bc]N,[1+ac]N,2+pNc).\displaystyle([1+a-c]^{\prime}_{N},[1+b-c]^{\prime}_{N},2+p^{N}-c),\hskip 14.22636pt([1+b-c]^{\prime}_{N},[1+a-c]^{\prime}_{N},2+p^{N}-c).

On the other hand, we set

CN:={(s1,s2,s3)[0,pN1]×3|i=13sipN2 and |s2s3|s1s2+s3}.\displaystyle C_{N}:=\left\{(s_{1},s_{2},s_{3})\in\mathbb{Z}_{[0,p^{N}-1]}^{\times 3}\,\Big{|}\,\text{$\sum_{i=1}^{3}s_{i}\leq p^{N}-2$ and $|s_{2}-s_{3}|\leq s_{1}\leq s_{2}+s_{3}$}\right\}. (10.29)

The restriction ζN|CN:CN((/pN)/{±1})×3\zeta_{N}|_{C_{N}}:C_{N}\rightarrow((\mathbb{Z}/p^{N}\mathbb{Z})/\{\pm 1\})^{\times 3} of ζN\zeta_{N} is injective. Then, the following assertion can be proved by a straightforward calculation.

Lemma 10.2.1.

The equality ξN(BN)=ζN(CN)\xi_{N}(B_{N})=\zeta_{N}(C_{N}) holds as subsets of ((/pN)/{±1})×3((\mathbb{Z}/p^{N}\mathbb{Z})/\{\pm 1\})^{\times 3}. In particular, we obtain the map of sets

BNCN\displaystyle B_{N}\rightarrow C_{N} (10.30)

determined by assigning (s1,s2,s3)ζN1(ξN(s1,s2,s3))(s_{1},s_{2},s_{3})\mapsto\zeta_{N}^{-1}(\xi_{N}(s_{1},s_{2},s_{3})), and this map gives an 88-to-11 correspondence between BNB_{N} and CNC_{N}.

Proof.

Let (a,b,c)(a,b,c) and (s1,s2,s3)(s_{1},s_{2},s_{3}) be elements of [1,pN]×3\mathbb{Z}_{[1,p^{N}]}^{\times 3} and [0,pN1]×3\mathbb{Z}_{[0,p^{N}-1]}^{\times 3}, respectively, satisfying ξN(a,b,c)=ζN(s1,s2,s3)=:s\xi_{N}(a,b,c)=\zeta_{N}(s_{1},s_{2},s_{3})=:s. Then, we have

[±(1c)]N=2s1+1,[±(cab)]N=2s2+1,[±(ba)]N=2s3+1.\displaystyle[\pm(1-c)]^{\prime}_{N}=2s_{1}+1,\hskip 14.22636pt[\pm(c-a-b)]^{\prime}_{N}=2s_{2}+1,\hskip 14.22636pt[\pm(b-a)]^{\prime}_{N}=2s_{3}+1. (10.31)

Let us consider the case where the symbols “±\pm” in (10.31) are all taken to be “++”. On the one hand, if a>ba>b, then the parities of aa, bb, and cc imply that c>a+bc>a+b and

1c+pN=2s1+1,cab=2s2+1,ba+pN=2s3+1.\displaystyle 1-c+p^{N}=2s_{1}+1,\hskip 14.22636ptc-a-b=2s_{2}+1,\hskip 14.22636ptb-a+p^{N}=2s_{3}+1. (10.32)

But, since s3s1+s2b0s_{3}\leq s_{1}+s_{2}\Leftrightarrow b\leq 0, the element ss belongs neither to ξN(BN)\xi_{N}(B_{N}) nor to ζN(CN)\zeta_{N}(C_{N}). On the other hand, if bab\geq a, then the parities of aa, bb, and cc imply

1c+pN=2s1+1,cab+pN=2s2+1,ba=2s3+1.\displaystyle 1-c+p^{N}=2s_{1}+1,\hskip 14.22636ptc-a-b+p^{N}=2s_{2}+1,\hskip 14.22636ptb-a=2s_{3}+1. (10.33)

It follows that the inequality i=13sipN2\sum_{i=1}^{3}s_{i}\leq p^{N}-2 (resp., s1s2+s3s_{1}\leq s_{2}+s_{3}; resp., s2s3+s1s_{2}\leq s_{3}+s_{1}; resp., s3s1+s2s_{3}\leq s_{1}+s_{2}) is equivalent to the inequality 1a1\leq a (resp., a<ca<c; resp., cbc\leq b; resp., bpNb\leq p^{N}). Thus, (a,b,c)BN(a,b,c)\in B_{N} if and only if (s1,s2,s3)CN(s_{1},s_{2},s_{3})\in C_{N}.

The remaining cases can be proved by similar discussions, so their proofs are left to the reader. ∎

We shall set

BN:=NN(τNN)1(BN),CN:=CNN<NτNN1(ζ1N(ζN(CN))).\displaystyle{{}^{\dagger}}B_{N}:=\bigcap_{N^{\prime}\leq N}({\tau^{\prime}_{N\Rightarrow N^{\prime}}})^{-1}(B_{N^{\prime}}),\hskip 14.22636pt{{}^{\dagger}}C_{N}:=C_{N}\cap\bigcap_{N^{\prime}<N}\tau_{N\Rightarrow N^{\prime}}^{-1}(\zeta^{-1}_{N^{\prime}}(\zeta_{N^{\prime}}(C_{N^{\prime}}))). (10.34)

In other words, an element (a,b,c)(a,b,c) of BNB_{N} (resp., an element (s1,s2,s3)(s_{1},s_{2},s_{3}) of CNC_{N}) belongs to BN{{}^{\dagger}}B_{N} (resp., CN{{}^{\dagger}}C_{N}) if and only if, for every positive NN^{\prime} with N<NN^{\prime}<N, either [a]N<[c]N[b]N[a]^{\prime}_{N^{\prime}}<[c]^{\prime}_{N^{\prime}}\leq[b]^{\prime}_{N^{\prime}} or [b]N<[c]N[a]N[b]^{\prime}_{N^{\prime}}<[c]^{\prime}_{N^{\prime}}\leq[a]^{\prime}_{N^{\prime}} is fulfilled (resp., (s1,s2,s3)(s^{\prime}_{1},s^{\prime}_{2},s^{\prime}_{3}) belongs to CNC_{N^{\prime}} for some si{[si]N,pN1[si]N}s^{\prime}_{i}\in\{[s_{i}]_{N^{\prime}},p^{N^{\prime}}-1-[s_{i}]_{N^{\prime}}\}). Note that both subsets BN{{}^{\dagger}}B_{N}, CN{{}^{\dagger}}C_{N} of ×3\mathbb{Z}^{\times 3} are invariant under permutations of factors.

By Lemma 10.2.1 (applied to various NNN^{\prime}\leq N) together with the definitions of BN{{}^{\dagger}}B_{N} and CN{{}^{\dagger}}C_{N}, we obtain the following assertion.

Proposition 10.2.2.

The map (10.30) restricts to a surjective map

BNCN,\displaystyle{{}^{\dagger}}B_{N}\twoheadrightarrow{{}^{\dagger}}C_{N}, (10.35)

and it gives an 88-to-11 correspondence between BN{{}^{\dagger}}B_{N} and CN{{}^{\dagger}}C_{N}. Moreover, if we regard CN{{}^{\dagger}}C_{N} as a subset of ((/pN)/{±1})×3((\mathbb{Z}/p^{N}\mathbb{Z})/\{\pm 1\})^{\times 3}, then this surjection is compatible with (10.15) via the injective assignments (a,b,c)𝒟𝒶¯,𝒷¯,𝒸¯(a,b,c)\mapsto\mathpzc{D}_{\overline{a},\overline{b},\overline{c}}^{\clubsuit} (for (a,b,c)BN(a,b,c)\in{{}^{\dagger}}B_{N}) and (a,b,c)a,b,c(a,b,c)\mapsto\mathscr{E}^{\spadesuit}_{a,b,c} (for (a,b,c)CN(a,b,c)\in{{}^{\dagger}}C_{N}).

10.3. Hypergeometric operators with a full set of root functions

In this section, we examine the relationship between the elements of BN{{}^{\dagger}}B_{N} and the exponent differences of hypergeometric operators with a full set of root functions.

Let U^:=Spec(WN[[x]][x1])\widehat{U}:=\mathrm{Spec}(W_{N}[\![x]\!]\left[x^{-1}\right]) be the formal punctured disc in \mathbb{P} centered at the origin [0][0]. If (0)U^,triv\nabla^{(0)}_{\widehat{U},\mathrm{triv}} denotes the trivial connection on 𝒪U^\mathcal{O}_{\widehat{U}}, then we have 𝒮ol((0)U^,triv)=s=1NpNsWN[[xps]][xps]=:R\mathcal{S}ol(\nabla^{(0)}_{\widehat{U},\mathrm{triv}})=\bigcup_{s=1}^{N}p^{N-s}\cdot W_{N}[\![x^{p^{s}}]\!]\left[x^{-p^{s}}\right]=:R.

For each (a,b,c)[1,pN]×3(a,b,c)\in\mathbb{Z}_{[1,p^{N}]}^{\times 3}, denote by 𝒟^a,b,c\widehat{\mathpzc{D}}_{a,b,c}^{\clubsuit} be the differential operator on U^\widehat{U} defined as

𝒟^a,b,c:=x(1x)x2+(c(a+b+1)x)xab,\displaystyle\widehat{\mathpzc{D}}_{a,b,c}^{\clubsuit}:=x(1-x)\partial_{x}^{2}+(c-(a+b+1)x)\partial_{x}-ab, (10.36)

i.e., the restriction of x(1x)𝒟𝒶,𝒷,𝒸x(1-x)\mathpzc{D}_{a,b,c}^{\clubsuit} to U^\widehat{U}. The kernel Ker(𝒟^a,b,c)\mathrm{Ker}(\widehat{\mathpzc{D}}_{a,b,c}^{\clubsuit}) of 𝒟^a,b,c\widehat{\mathpzc{D}}_{a,b,c}^{\clubsuit} has a structure of RR-module.

Proposition 10.3.1.

If Ker(𝒟^a,b,c)\mathrm{Ker}(\widehat{\mathpzc{D}}_{a,b,c}^{\clubsuit}) is a free RR-module of rank 22, then the triple of integers (a,b,c)(a,b,c) belongs to BN{{}^{\dagger}}B_{N} and there exists a basis {v1(x),v2(x)}\left\{v_{1}(x),v_{2}(x)\right\} of Ker(𝒟^a,b,c)\mathrm{Ker}(\widehat{\mathpzc{D}}_{a,b,c}^{\clubsuit}), where vi(x):=j=niqi,jxjv_{i}(x):=\sum_{j=n_{i}}^{\infty}q_{i,j}x^{j} (i=1,2i=1,2, qi,jWNq_{i,j}\in W_{N}, qi,niWN×q_{i,n_{i}}\in W_{N}^{\times}), satisfying the following conditions:

  • n1=0n_{1}=0 and n2=1cn_{2}=1-c;

  • (1+n)(c+n)qi,n+1=(a+n)(b+n)qi,n(1+n)(c+n)\cdot q_{i,n+1}=(a+n)(b+n)\cdot q_{i,n} for every nnin\geq n_{i}.

Proof.

We prove the assertion by induction on NN. The base step, i.e., N=1N=1, follows from  [Ihara1, § 1.6] or  [Katz2, § 6.4]. To discuss the induction step, we assume that we have proved the assertion with NN replaced by N1N-1 (N2N\geq 2). Also, suppose that Ker(𝒟^a,b,c)\mathrm{Ker}(\widehat{\mathpzc{D}}_{a,b,c}^{\clubsuit}) is a free RR-module of rank 22. That is to say, there exists a basis consisting of two elements {v1(x),v2(x)}\{v_{1}(x),v_{2}(x)\}, where vi(x):=j=niqi,jxjWN[[x]][x1]v_{i}(x):=\sum_{j=n_{i}}^{\infty}q_{i,j}x^{j}\in W_{N}[\![x]\!]\left[x^{-1}\right] (ni,qi,ni0n_{i}\in\mathbb{Z},q_{i,n_{i}}\neq 0). (In particular, for NNN^{\prime}\leq N, the mod pNp^{N^{\prime}} reductions of v1(x),v2(x)v_{1}(x),v_{2}(x) forms a basis of Ker(𝒟[𝒶]𝒩,[𝒷]𝒩,[𝒸]𝒩)\mathrm{Ker}(\mathpzc{D}_{[a]^{\prime}_{N^{\prime}},[b]^{\prime}_{N^{\prime}},[c]^{\prime}_{N^{\prime}}}^{\clubsuit}). By induction hypothesis, ([a]N,[b]N,[c]N)([a]^{\prime}_{N^{\prime}},[b]^{\prime}_{N^{\prime}},[c]^{\prime}_{N^{\prime}}) belongs to BN{{}^{\dagger}}B_{N^{\prime}}.) By comparing both sides of the equality 𝒟^a,b,c(vi(x))=0\widehat{\mathpzc{D}}_{a,b,c}^{\clubsuit}(v_{i}(x))=0 (i=1,2i=1,2), we see that vi(x)v_{i}(x) satisfies the following conditions:

  • (*)

    ni(ni1+c)qi,ni=0n_{i}(n_{i}-1+c)q_{i,n_{i}}=0;

  • (**)

    (1+n)(c+n)qi,n+1=(a+n)(b+n)qi,n(1+n)(c+n)\cdot q_{i,n+1}=(a+n)(b+n)\cdot q_{i,n} for every nnin\geq n_{i}.

After possibly multiplying vi(x)v_{i}(x)’s by elements in {xpN|}(R×)\{x^{\ell\cdot p^{N}}\,|\,\ell\in\mathbb{Z}\}\left(\subseteq R^{\times}\right), we may assume that n1,n2[pN+1,0]n_{1},n_{2}\in\mathbb{Z}_{[-p^{N}+1,0]}. If ordp(ni)>0\mathrm{ord}_{p}(n_{i})>0 and ordp(ni1+c)>0\mathrm{ord}_{p}(n_{i}-1+c)>0 (where for an integer mm we denote by ordp(m)\mathrm{ord}_{p}(m) the pp-adic order of mm), then we have p1c(=ni(ni1+c))p\mid 1-c\left(=n_{i}-(n_{i}-1+c)\right) (which implies 1[c]1=01-[c]^{\prime}_{1}=0); however this contradicts the base step of our induction argument because the mod pp reductions of v1(x),v2(x)v_{1}(x),v_{2}(x) form a basis of Ker(𝒟[𝒶]1,[𝒷]1,[𝒸]1)\mathrm{Ker}(\mathpzc{D}^{\clubsuit}_{[a]^{\prime}_{1},[b]^{\prime}_{1},[c]^{\prime}_{1}}). Hence, the condition ()(*) shows that either niqi,ni=0n_{i}q_{i,n_{i}}=0 or (ni1+c)qi,ni=0(n_{i}-1+c)q_{i,n_{i}}=0 is fulfilled for any i=1,2i=1,2. Here, suppose that ordp(qi,ni)>0\mathrm{ord}_{p}(q_{i,n_{i}})>0. By induction hypothesis, the nonzero term of lowest degree of vi(x)v_{i}(x) mod pN1p^{N-1} has an invertible coefficient. This implies ordp(qi,ni)=N1\mathrm{ord}_{p}(q_{i,n_{i}})=N-1. Since ([a]1,[b]1,[c]1)B1([a]^{\prime}_{1},[b]^{\prime}_{1},[c]^{\prime}_{1})\in B_{1}, it follows from the condition ()(**) that there exists mi>nim_{i}>n_{i} with qi,ni,qi,ni+1,,qi,mipN1WNq_{i,n_{i}},q_{i,n_{i}+1},\cdots,q_{i,m_{i}}\in p^{N-1}W_{N} and qi,=0q_{i,\ell}=0 for >mi\ell>m_{i}; this is a contradiction. In particular, the equality ordp(qi,ni)=0\mathrm{ord}_{p}(q_{i,n_{i}})=0 holds, i.e., qi,niWN×q_{i,n_{i}}\in W_{N}^{\times}, so either ni=0n_{i}=0 or ni=1cn_{i}=1-c must be satisfied. Since {v1(x),v2(x)}\{v_{1}(x),v_{2}(x)\} is a basis, we see (after possibly interchanging the indices) that n1=0n_{1}=0 and n2=1cn_{2}=1-c. Moreover, by the existence of such power series v1(x)v_{1}(x), v2(x)v_{2}(x) (satisfying the condition ()(**)), one may verify from a straightforward calculation that (a,b,c)(a,b,c) turns out to be an element of BN{{}^{\dagger}}B_{N}. This completes the proof of the induction step, and hence we finish the proof of this assertion. ∎

Remark 10.3.2.

Suppose that (a,b,c)(a,b,c) belongs to BN{{}^{\dagger}}B_{N}. Then, one may verify that Ker(𝒟^a,b,c)\mathrm{Ker}(\widehat{\mathpzc{D}}_{a,b,c}^{\clubsuit}) has a basis consisting of the two polynomials

2F¯1(a,b;c;x),x1c2F¯1(ac+1,bc+1;2c;x)\displaystyle{{}_{2}}\overline{F}_{1}(a,b;c;x),\hskip 14.22636ptx^{1-c}\cdot{{}_{2}}\overline{F}_{1}(a-c+1,b-c+1;2-c;x) (10.37)

of WN[x,x1](WN[[x]][x1])W_{N}[x,x^{-1}]\left(\subseteq W_{N}[\![x]\!]\left[x^{-1}\right]\right). Here, 2F¯1(a,b;c;x){{}_{2}}\overline{F}_{1}(a,b;c;x) denotes a polynomial of xx defined by the following truncated hypergeometric series:

2F¯1(a,b;c;x):=1\displaystyle{{}_{2}}\overline{F}_{1}(a,b;c;x):=1 +ab1cx+a(a+1)b(b+1)12c(c+1)x2\displaystyle+\frac{a\cdot b}{1\cdot c}\cdot x+\frac{a\cdot(a+1)\cdot b\cdot(b+1)}{1\cdot 2\cdot c\cdot(c+1)}\cdot x^{2} (10.38)
+a(a+1)(a+2)b(b+1)(b+2)123c(c+1)(c+2)x3+,\displaystyle+\frac{a\cdot(a+1)\cdot(a+2)\cdot b\cdot(b+1)\cdot(b+2)}{1\cdot 2\cdot 3\cdot c\cdot(c+1)\cdot(c+2)}\cdot x^{3}+\cdots,

where we stop the series as soon as the numerator vanishes. Since (a,b,c)BN(a,b,c)\in{{}^{\dagger}}B_{N}, the denominator does not vanish before the numerator does, so each coefficient of this series is well-defined. (Also, the same is true for 2F¯1(ac+1,bc+1;2c;x){{}_{2}}\overline{F}_{1}(a-c+1,b-c+1;2-c;x).) When they vanish at the same time, we stop the series right before that term.

Proposition 10.3.3.

Let (a,b,c)(a,b,c) be an element of (/pN)×3(\mathbb{Z}/p^{N}\mathbb{Z})^{\times 3}. Then, the following conditions (1), (2) are equivalent to each other:

  • (1)

    The hypergeometric operator 𝒟𝒶,𝒷,𝒸\mathpzc{D}_{a,b,c}^{\clubsuit} has a full set of root functions on some open subscheme UU of {[0],[1],[]}\mathbb{P}\setminus\{[0],[1],[\infty]\};

  • (2)

    The element of [1,pN]×3\mathbb{Z}_{[1,p^{N}]}^{\times 3} corresponding to (a,b,c)(a,b,c) via the natural bijection [1,pN]/pN\mathbb{Z}_{[1,p^{N}]}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathbb{Z}/p^{N}\mathbb{Z} belongs to BN{{}^{\dagger}}B_{N}.

Proof.

One may verify from Proposition 3.2.5, (i) and (ii), that (a) is equivalent to the condition that Ker(𝒟^a,b,c)\mathrm{Ker}(\widehat{\mathpzc{D}}_{a,b,c}^{\clubsuit}) is a free RR-module of rank 22. Hence, the assertion follows from Proposition 10.3.1 and the fact described in Remark 10.3.2. ∎

10.4. Explicit computations for (g,r)=(0,3)(g,r)=(0,3)

We shall write

T,\displaystyle T_{\leq,\leq} :={(r1,r2,r3)[0,p1]×3|r1r2r3},\displaystyle:=\left\{(r_{1},r_{2},r_{3})\in\mathbb{Z}_{[0,p-1]}^{\times 3}\,\Big{|}\,r_{1}\leq r_{2}\leq r_{3}\right\}, (10.39)
T<,\displaystyle T_{<,\leq} :={(r1,r2,r3)[0,p1]×3|r1<r2r3},\displaystyle:=\left\{(r_{1},r_{2},r_{3})\in\mathbb{Z}_{[0,p-1]}^{\times 3}\,\Big{|}\,r_{1}<r_{2}\leq r_{3}\right\},
T>,>\displaystyle T_{>,>} :={(r1,r2,r3)[0,p1]×3|r1>r2>r3}.\displaystyle:=\left\{(r_{1},r_{2},r_{3})\in\mathbb{Z}_{[0,p-1]}^{\times 3}\,\Big{|}\,r_{1}>r_{2}>r_{3}\right\}.

Let us take an NN-tuple (r)=1NT<,×(T,T>,>)×(N1)(\vec{r}_{\ell})_{\ell=1}^{N}\in T_{<,\leq}\times(T_{\leq,\leq}\sqcup T_{>,>})^{\times(N-1)}, where r1:=(r1,1,r1,2,r1,3)T<,\vec{r}_{1}:=(r_{1,1},r_{1,2},r_{1,3})\in T_{<,\leq} and rj:=(rj,1,rj,2,rj,3)T,T>,>\vec{r}_{j}:=(r_{j,1},r_{j,2},r_{j,3})\in T_{\leq,\leq}\sqcup T_{>,>} (j=2,,Nj=2,\cdots,N). This NN-tuple defines inductively triples (qj,1,qj,2,qj,3)>0×3(q_{j,1},q_{j,2},q_{j,3})\in\mathbb{Z}_{>0}^{\times 3} (j=1,,Nj=1,\cdots,N) starting with (q1,1,q1,2,q1,3):=(1+r1,1,1+r1,3,1+r1,2)(q_{1,1},q_{1,2},q_{1,3}):=(1+r_{1,1},1+r_{1,3},1+r_{1,2}), as follows:

  • If the inequalities qj,1<qj,3qj,2q_{j,1}<q_{j,3}\leq q_{j,2} hold, then we set

    (qj+1,1,qj+1,2,qj+1,3):=(qj,1+pjrj+1,1,qj,2+pjrj+1,3,qj,3+pjrj+1,2).\displaystyle(q_{j+1,1},q_{j+1,2},q_{j+1,3}):=(q_{j,1}+p^{j}\cdot r_{j+1,1},q_{j,2}+p^{j}\cdot r_{j+1,3},q_{j,3}+p^{j}\cdot r_{j+1,2}). (10.40)
  • If the inequalities qj,2<qj,3qj,1q_{j,2}<q_{j,3}\leq q_{j,1} hold, then we set

    (qj+1,1,qj+1,2,qj+1,3):=(qj,1+pjrj+1,3,qj,2+pjrj+1,1,qj,3+pjrj+1,2).\displaystyle(q_{j+1,1},q_{j+1,2},q_{j+1,3}):=(q_{j,1}+p^{j}\cdot r_{j+1,3},q_{j,2}+p^{j}\cdot r_{j+1,1},q_{j,3}+p^{j}\cdot r_{j+1,2}). (10.41)

(Note that the resulting triple (qj+1,1,qj+1,2,qj+1,3)(q_{j+1,1},q_{j+1,2},q_{j+1,3}) satisfies either qj+1,1<qj+1,3qj+1,2q_{j+1,1}<q_{j+1,3}\leq q_{j+1,2} or qj+1,2<qj+1,3qj+1,1q_{j+1,2}<q_{j+1,3}\leq q_{j+1,1}.)

Since ([qN,1]N,[qN,2]N,[qN,3]N)=(qN,1,qN,2,qN,3)([q_{N,1}]^{\prime}_{N^{\prime}},[q_{N,2}]^{\prime}_{N^{\prime}},[q_{N,3}]^{\prime}_{N^{\prime}})=(q_{N^{\prime},1},q_{N^{\prime},2},q_{N^{\prime},3}) for NNN^{\prime}\leq N, the assignment (r)(qN,1,qN,2,qN,3)(\vec{r}_{\ell})_{\ell}\mapsto(q_{N,1},q_{N,2},q_{N,3}) (resp., (r)(qN,2,qN,1,qN,3)(\vec{r}_{\ell})_{\ell}\mapsto(q_{N,2},q_{N,1},q_{N,3})) defines a map of sets

δ1(resp.,δ2):T<,×(T,T>,>)×(N1)BN.\displaystyle\delta_{1}\ \left(\text{resp.,}\ \delta_{2}\right):T_{<,\leq}\times(T_{\leq,\leq}\sqcup T_{>,>})^{\times(N-1)}\rightarrow{{}^{\dagger}}B_{N}. (10.42)
Proposition 10.4.1.

The map of sets

δ1δ2:(T<,×(T,T>,>)×(N1))2BN\displaystyle\delta_{1}\sqcup\delta_{2}:(T_{<,\leq}\times(T_{\leq,\leq}\sqcup T_{>,>})^{\times(N-1)})^{\sqcup 2}\rightarrow{{}^{\dagger}}B_{N} (10.43)

induced from δ1\delta_{1} and δ2\delta_{2} is bijective. In particular, the cardinality of BN{{}^{\dagger}}B_{N} is explicitly given by the equality

(BN)=(p21)pN(p2+2)N13N.\displaystyle\sharp({{}^{\dagger}}B_{N})=\frac{(p^{2}-1)p^{N}(p^{2}+2)^{N-1}}{3^{N}}. (10.44)
Proof.

The first assertion follows from the various definitions involved. Also, it is immediately verified that

(T,)=p(p+1)(p+2)6,(T<,)=(p1)p(p+1)6,(T>,>)=(p2)(p1)p6,\displaystyle\sharp(T_{\leq,\leq})=\frac{p(p+1)(p+2)}{6},\ \ \ \sharp(T_{<,\leq})=\frac{(p-1)p(p+1)}{6},\ \ \ \sharp(T_{>,>})=\frac{(p-2)(p-1)p}{6}, (10.45)

This implies

(BN)\displaystyle\sharp({{}^{\dagger}}B_{N}) =2(T<,)((T,T>,>))N1\displaystyle=2\cdot\sharp(T_{<,\leq})\cdot(\sharp(T_{\leq,\leq}\sqcup T_{>,>}))^{N-1} (10.46)
=2(p1)p(p+1)6(p(p+1)(p+2)6+(p2)(p1)p6)N1\displaystyle=2\cdot\frac{(p-1)p(p+1)}{6}\cdot\left(\frac{p(p+1)(p+2)}{6}+\frac{(p-2)(p-1)p}{6}\right)^{N-1}
=(p21)pN(p2+2)N13N,\displaystyle=\frac{(p^{2}-1)\cdot p^{N}\cdot(p^{2}+2)^{N-1}}{3^{N}},

thus completing the proof of the second assertion. ∎

By combining the results proved so far, we obtain the following assertion.

Theorem 10.4.2.

Let ρ:=(ρ0,ρ1,ρ)\rho:=(\rho_{0},\rho_{1},\rho_{\infty}) be an element of ((/pN)×/{±1})×3((\mathbb{Z}/p^{N}\mathbb{Z})^{\times}/\{\pm 1\})^{\times 3}. Then, there exists a dormant PGL2\mathrm{PGL}_{2}-oper on 𝒫\mathscr{P} of radii ρ\rho if and only if ρζN(CN)\rho\in\zeta_{N}({{}^{\dagger}}C_{N}). In particular, the cardinality of the set of isomorphism classes of dormant PGL2\mathrm{PGL}_{2}-opers on 𝒫\mathscr{P} coincides with the value

(p21)pN(p2+2)N183N.\displaystyle\frac{(p^{2}-1)\cdot p^{N}\cdot(p^{2}+2)^{N-1}}{8\cdot 3^{N}}. (10.47)
Proof.

The first assertion follows from Propositions 10.1.4, 10.2.2, and 10.3.3. The second assertion follows from the first one, Proposition 10.4.1, and the decomposition (6.43). ∎

Next, we consider the relationship between dormant PGL2\mathrm{PGL}_{2}-opers on 𝒫\mathscr{P} and dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers on the mod pp reduction 𝒫0\mathscr{P}_{0} of 𝒫\mathscr{P}. To do this, we shall write

Cov\displaystyle\mathrm{Cov} (10.48)

for the set of equivalence classes of finite, separable, and tamely ramified coverings ϕ:00\phi:\mathbb{P}_{0}\rightarrow\mathbb{P}_{0} satisfying the following conditions:

  • The set of ramification points of ϕ\phi is contained in {[0],[1],[]}\{[0],[1],[\infty]\};

  • If λx\lambda_{x} (x=0,1,x=0,1,\infty) denotes the ramification index of ϕ\phi at [x][x], then λ0,λ1,λ\lambda_{0},\lambda_{1},\lambda_{\infty} are all odd and satisfy the inequality λ0+λ1+λ<2pN\lambda_{0}+\lambda_{1}+\lambda_{\infty}<2\cdot p^{N}.

Here, the equivalence relation is defined in such a way that two coverings ϕ1,ϕ2:00\phi_{1},\phi_{2}:\mathbb{P}_{0}\rightarrow\mathbb{P}_{0} are equivalent if there exists an element hPGL2(0)(=Autk(0))h\in\mathrm{PGL}_{2}(\mathbb{P}_{0})\left(=\mathrm{Aut}_{k}(\mathbb{P}_{0})\right) with ϕ2=hϕ1\phi_{2}=h\circ\phi_{1}.

Since the identity morphism id0\mathrm{id}_{\mathbb{P}_{0}} of 0\mathbb{P}_{0} defines a tamely ramified covering with ramification indices (1,1,1)(1,1,1), the set Cov\mathrm{Cov} is nonempty.

Proposition 10.4.3.

Let ρ:=(ρ0,ρ1,ρ)\rho:=(\rho_{0},\rho_{1},\rho_{\infty}) be an element of ((/pN)×/{±1})×3((\mathbb{Z}/p^{N}\mathbb{Z})^{\times}/\{\pm 1\})^{\times 3}, and (λ0,λ1,λ)(\lambda_{0},\lambda_{1},\lambda_{\infty}) the triple of integers induced from ρ\rho as discussed at the beginning of § 8.6. Then, the following three conditions (1)-(3) are equivalent to each other:

  • (1)

    There is a dormant PGL2\mathrm{PGL}_{2}-oper on 𝒫\mathscr{P} of radii ρ\rho;

  • (2)

    There is a dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper on 𝒫0\mathscr{P}_{0} of radii ρ\rho;

  • (3)

    There is a covering ϕ0:00\phi_{0}:\mathbb{P}_{0}\rightarrow\mathbb{P}_{0} classified by Cov\mathrm{Cov} whose ramification index at [x][x] (x=0,1,x=0,1,\infty) coincides with λx\lambda_{x}.

Proof.

The equivalence (2) \Leftrightarrow (3) follows from  [Wak9, Theorem 7.4.3].

The implication (1) \Rightarrow (2) follows from Propositions 4.5.2, (i), and 8.6.4, which imply that the diagonal reduction of a dormant PGL2\mathrm{PGL}_{2}-oper on 𝒫\mathscr{P} of radii ρ\rho specifies a dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper on 𝒫0\mathscr{P}_{0} of radii ρ\rho.

Finally, we shall prove the implication (3) \Rightarrow (1). Let us take a covering ϕ0:00\phi_{0}:\mathbb{P}_{0}\rightarrow\mathbb{P}_{0} as required in (3). After possibly composing it with an automorphism of 0\mathbb{P}_{0}, we may assumed that ϕ0([0])=[0]\phi_{0}([0])=[0], ϕ0([1])=[1]\phi_{0}([1])=[1], ϕ0([])=[]\phi_{0}([\infty])=[\infty] (cf.  [Wak9, Proposition 7.2.1]). Since ϕ0\phi_{0} is tamely ramified, the morphism ϕ0\phi_{0} extends to a log étale morphism ϕlog:loglog\phi^{\mathrm{log}}:\mathbb{P}^{\mathrm{log}}\rightarrow\mathbb{P}^{\mathrm{log}}. Write :=𝒪(1)𝒪([0]+[1]+[])\mathcal{L}:=\mathcal{O}_{\mathbb{P}}(-1)\otimes\mathcal{O}_{\mathbb{P}}([0]+[1]+[\infty]), and write τ0\tau_{0} for the 𝒪\mathcal{O}_{\mathbb{P}}-linear injection 𝒪(1)𝒪2\mathcal{O}_{\mathbb{P}}(-1)\hookrightarrow\mathcal{O}_{\mathbb{P}}^{\oplus 2} given by w(wx,wy)w\mapsto(wx,wy) (where =Proj(WN[x,y])\mathbb{P}=\mathrm{Proj}(W_{N}[x,y])) for each local section w𝒪(1)w\in\mathcal{O}_{\mathbb{P}}(-1). Also, let \mathcal{F} be a rank 22 vector bundle on \mathbb{P} which makes the following square diagram cocartesian:

(10.53)

The trivial SlogS^{\mathrm{log}}-connection on 𝒪2\mathcal{O}_{\mathbb{P}}^{\oplus 2} extends uniquely to an SlogS^{\mathrm{log}}-connection \nabla_{\mathcal{F}} on \mathcal{F}. It follows from the various definitions involved that the composite

inclusionΩΩ(/)\displaystyle\mathcal{L}\xrightarrow{\mathrm{inclusion}}\mathcal{F}\xrightarrow{\nabla_{\mathcal{F}}}\Omega\otimes\mathcal{F}\twoheadrightarrow\Omega\otimes(\mathcal{F}/\mathcal{L}) (10.54)

is 𝒪\mathcal{O}_{\mathbb{P}}-linear and injective. Moreover, since deg()=deg(Ω(/))(=2)\mathrm{deg}(\mathcal{L})=\mathrm{deg}(\Omega\otimes(\mathcal{F}/\mathcal{L}))\left(=2\right), this morphism turns out to be an isomorphism. This means that the triple (,,)(\mathcal{F},\nabla_{\mathcal{F}},\mathcal{L}) forms a dormant GL2\mathrm{GL}_{2}-oper on 𝒫\mathscr{P}. Hence, the pull-back of this data via the log étale morphism ϕlog\phi^{\mathrm{log}} defines a GL2\mathrm{GL}_{2}-oper ϕ:=ϕlog(,,)\mathscr{F}^{\heartsuit}_{\phi}:=\phi^{\mathrm{log}*}(\mathcal{F},\nabla_{\mathcal{F}},\mathcal{L}) on 𝒫\mathscr{P}, which is dormant by Proposition 5.1.1, Lemma 10.1.3. By an argument entirely similar to the proof of  [Wak9, Proposition 7.1.1], we see that the PGL2\mathrm{PGL}_{2}-oper ϕ\mathscr{F}^{\heartsuit\Rightarrow\spadesuit}_{\phi} induced from ϕ\mathscr{F}^{\heartsuit}_{\phi} via projectivization is of radii ρ\rho. This proves the implication (3) \Rightarrow (1). ∎

By Theorem 10.4.2 and Proposition 10.4.3 (and  [Wak9, Theorem 7.4.3]), we obtain the following assertion.

Theorem 10.4.4.

Let ρ:=(ρ0,ρ1,ρ)\rho:=(\rho_{0},\rho_{1},\rho_{\infty}) be an element of ((/pN)×/{±1})×3((\mathbb{Z}/p^{N}\mathbb{Z})^{\times}/\{\pm 1\})^{\times 3}. Then, we have

𝒪p2,N,ρ,0,3,𝔽pZzz{Spec(𝔽p)if ρζN(CN);if otherwise.\displaystyle\mathcal{O}p_{2,N,\rho,0,3,\mathbb{F}_{p}}^{{}^{\mathrm{Zzz...}}}\cong\begin{cases}\mathrm{Spec}(\mathbb{F}_{p})&\text{if $\rho\in\zeta_{N}({{}^{\dagger}}C_{N}$)};\\ \emptyset&\text{if otherwise}.\end{cases} (10.55)

In particular, 𝒪pZzz2,N,0,3,𝔽p\mathcal{O}p^{{}^{\mathrm{Zzz...}}}_{2,N,0,3,\mathbb{F}_{p}} is isomorphic to the disjoint union of finite many copies of Spec(𝔽p)\mathrm{Spec}(\mathbb{F}_{p}), and its degree deg(Π2,N,0,3,𝔽p)\mathrm{deg}(\Pi_{2,N,0,3,\mathbb{F}_{p}}) over 𝔽p\mathbb{F}_{p} satisfies the following equalities:

deg(Π2,N,0,3,𝔽p)=(Cov)=(p21)pN(p2+2)N183N.\displaystyle\mathrm{deg}(\Pi_{2,N,0,3,\mathbb{F}_{p}})=\sharp(\mathrm{Cov})=\frac{(p^{2}-1)\cdot p^{N}\cdot(p^{2}+2)^{N-1}}{8\cdot 3^{N}}. (10.56)

The description (10.55) enables us to obtain a detailed understanding of the dormant fusion ring 𝕐2,N\rotatebox[origin={c}]{180.0}{$\mathbb{Y}$}_{2,N} of type PGL2(N)\mathrm{PGL}_{2}^{(N)} (cf. Definition 7.5.3). In fact, 𝕐2,N\rotatebox[origin={c}]{180.0}{$\mathbb{Y}$}_{2,N} may be identified with the free abelian group C\mathbb{Z}^{C} with basis C:=(/pN)×/{±1}C:=(\mathbb{Z}/p^{N}\mathbb{Z})^{\times}/\{\pm 1\} equipped with the multiplication \ast given by

αβ=γC,(α,β,γ)CNγ\displaystyle\alpha\ast\beta=\sum_{\gamma\in C,(\alpha,\beta,\gamma)\in{{}^{\dagger}}C_{N}}\gamma (10.57)

for any α,βC\alpha,\beta\in C. Also, by Proposition 7.5.4, (ii), the degree deg(Π2,N,g,r,𝔽p)\mathrm{deg}(\Pi_{2,N,g,r,\mathbb{F}_{p}}) can be computed as follows:

deg(Π2,N,(ρi)i,g,r,𝔽p)=χ𝔖2,Nχ(αCαα)g1i=1rχ(ρi),\displaystyle\mathrm{deg}(\Pi_{2,N,(\rho_{i})_{i},g,r,\mathbb{F}_{p}})=\sum_{\chi\in\mathfrak{S}_{2,N}}\chi(\sum_{\alpha\in C}\alpha\ast\alpha)^{g-1}\cdot\prod_{i=1}^{r}\chi(\rho_{i}), (10.58)

where 𝔖2,N:=Hom(𝕐2,N,)\mathfrak{S}_{2,N}:=\mathrm{Hom}(\rotatebox[origin={c}]{180.0}{$\mathbb{Y}$}_{2,N},\mathbb{C}). This formula in the case of r=0r=0 together with Corollary 9.2.5 induces the following assertion.

Corollary 10.4.5.

Let kk be an algebraically closed field over 𝔽p\mathbb{F}_{p}, and denote by WNW_{N} the ring of Witt vectors of length NN over kk. Also, let XX be a geometrically connected, proper, and smooth curve of genus g>1g>1 over WNW_{N}. If, moreover, the mod pp reduction X0X_{0} of XX is general in g,0\mathcal{M}_{g,0}, then the cardinality (OpZzz1,X)\sharp(\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{1,X}) of the set OpZzz1,X\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{1,X} (cf. (9.13)) is given by the formula

(OpZzz1,X)=χ𝔖2,Nχ(αCαα)g1.\displaystyle\sharp(\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{1,X})=\sum_{\chi\in\mathfrak{S}_{2,N}}\chi(\sum_{\alpha\in C}\alpha\ast\alpha)^{g-1}. (10.59)
Remark 10.4.6 (Relationship with other enumerative geometries).

In  [Wak8, § 7.8.2], we have related a certain algebra (which is essentially the same as 𝕐2,1\rotatebox[origin={c}]{180.0}{$\mathbb{Y}$}_{2,1}) encoding the factorization rule of the values deg(Π2,1,(ρi)i,g,r,𝔽p)\mathrm{deg}(\Pi_{2,1,(\rho_{i})_{i},g,r,\mathbb{F}_{p}}) to the fusion ring for the conformal field theory of the affine Lie algebra 𝔰𝔩^2\widehat{\mathfrak{s}\mathfrak{l}}_{2} in an explicit manner. As mentioned in Introduction, this is crucial in establishing an analogue of the Verlinde formula computing the number of dormant PGL2\mathrm{PGL}_{2}-opers of level 11 (cf.  [Wak8, Theorem 7.41]). However, at the time of writing this manuscript, we do not know any relationship between 𝕐2,N\rotatebox[origin={c}]{180.0}{$\mathbb{Y}$}_{2,N} for N>1N>1 and other enumerative geometries such as the CFT with 𝔰𝔩^2\widehat{\mathfrak{s}\mathfrak{l}}_{2}-symmetry.

Note that (10.56) also gives a computation of the degree deg(Π2,N,2,0,𝔽p)\mathrm{deg}(\Pi_{2,N,2,0,\mathbb{F}_{p}}), i.e., the case of (g,r)=(2,0)(g,r)=(2,0). Indeed, let us consider the unpointed stable curve 𝒳\mathscr{X} of genus 22 obtained by gluing together two copies of 𝒫0\mathscr{P}_{0} at the respective corresponding marked points. Since any PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper on 𝒫0\mathscr{P}_{0} is uniquely determined by its radii (cf. Proposition 8.6.4), the restrictions of a dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper on 𝒳\mathscr{X} to the respective components are necessarily isomorphic (cf. Proposition 6.4.5, (i) and (ii), for n=2n=2). Conversely, each dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-oper on 𝒳\mathscr{X} can be obtained by gluing together two isomorphic dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers on 𝒫0\mathscr{P}_{0} at the points of attachment. It follows that there exists a canonical correspondence between dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers on 𝒫0\mathscr{P}_{0} and those on 𝒳\mathscr{X}.

Moreover, by Theorem 6.6.1 and the first assertion of Theorem 10.4.4, the cardinalities of these sets coincides with deg(Π2,N,2,0,𝔽p)\mathrm{deg}(\Pi_{2,N,2,0,\mathbb{F}_{p}}). That is to say, we obtain the following assertion, generalizing  [Mzk2, Chap. V, Corollary 3.7],  [LP, Theorem 2], and  [O4, Theorem 1.2].

Corollary 10.4.7.

Let XX be as in Corollary 10.4.5 with g=2g=2. Then, the cardinality (OpZzz1,X)\sharp(\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{1,X}) and the generic degree deg(Π2,N,2,0,𝔽p)\mathrm{deg}(\Pi_{2,N,2,0,\mathbb{F}_{p}}) of Π2,N,2,0,𝔽p\Pi_{2,N,2,0,\mathbb{F}_{p}} are explicitly computed by the equalities

(OpZzz1,X)=deg(Π2,N,2,0,𝔽p)=(p21)pN(p2+2)N183N.\displaystyle\sharp(\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{1,X})=\mathrm{deg}(\Pi_{2,N,2,0,\mathbb{F}_{p}})=\frac{(p^{2}-1)\cdot p^{N}\cdot(p^{2}+2)^{N-1}}{8\cdot 3^{N}}. (10.60)

10.5. Edge numberings on trivalent semi-graphs

The procedure of deriving the formulas (10.58) and (10.59) from the factorization property defining our 22d TQFT (or fusion rule) can be translated into counting the combinatorial patterns of radii of dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers on a totally degenerate curve. To observe this, we describe such patterns in terms of certain edge numberings on trivalent graphs (cf.  [LO],  [Mzk2], and  [Wak2] for N=1N=1). Following the terminology of  [Wak31, Definition 3.1], we will refer to these numberings as balanced (p,N)(p,N)-edge numberings (cf. Definition 10.5.1, (i)).

Let us fix trivalent clutching data 𝔾:=(G,{λj}j=1J)\mathbb{G}:=({{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G,\{\lambda_{j}\}_{j=1}^{J}) of type (g,r)(g,r) (cf. Definition 6.2.3, (iii)), where G:=(V,E,ζ){{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G:=(V,E,\zeta). In particular, (V)=2g2+r\sharp(V)=2g-2+r, (E)=3g3+2r\sharp(E)=3g-3+2r, and one can write B={b,1,,b,r}B_{\circledast}=\{b_{\circledast,1},\cdots,b_{\circledast,r}\} (cf. Remark 6.2.4).

Definition 10.5.1.
  • (i)

    A balanced (p,N)(p,N)-edge numbering on 𝔾\mathbb{G} is a collection

    (ae)eE\displaystyle(a_{e})_{e\in E} (10.61)

    of elements of [0,pN]\mathbb{Z}_{[0,p^{N}]} indexed by EE such that, for each vertex vVv\in V, the triple (aζ(b))bBv(a_{\zeta(b)})_{b\in B_{v}} belongs to CN{{}^{\dagger}}C_{N}.

  • (ii)

    Let (ae)eE(a_{e})_{e\in E} be a balanced (p,N)(p,N)-edge numbering on 𝔾\mathbb{G} and ρ:=(ρi)i=1r\rho:=(\rho_{i})_{i=1}^{r} an rr-tuple of element of (/pN)×/{±1}(\mathbb{Z}/p^{N}\mathbb{Z})^{\times}/\{\pm 1\}. We say that (ae)e(a_{e})_{e} is of radii ρ\rho if the equality 2aei+1¯2=ρi\frac{\overline{2a_{e_{i}}+1}}{2}=\rho_{i} holds in (/pN)/{±1}(\mathbb{Z}/p^{N}\mathbb{Z})/\{\pm 1\} for every i=1,,ri=1,\cdots,r, where eie_{i} denotes the unique open edge of G{{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G satisfying eib,ie_{i}\ni b_{\circledast,i}. For convenience, (regardless of whether BB_{\circledast} is empty or not) we shall refer to any balanced (p,N)(p,N)-edge numbering as being of radius \emptyset.

Let ρ\rho be an element of ((/pN)×/{±1})×r((\mathbb{Z}/p^{N}\mathbb{Z})^{\times}/\{\pm 1\})^{\times r} (where ρ:=\rho:=\emptyset if r=0r=0). Denote by

Edp,N,𝔾(resp.,Edp,N,𝔾,ρ)\displaystyle\mathrm{Ed}_{p,N,\mathbb{G}}\ \left(\text{resp.,}\ \mathrm{Ed}_{p,N,\mathbb{G},\rho}\right) (10.62)

the set of balanced (p,N)(p,N)-edge numberings (resp., balanced (p,N)(p,N)-edge numberings of radii ρ\rho) on 𝔾\mathbb{G}. The set Edp,N,𝔾\mathrm{Ed}_{p,N,\mathbb{G}} decomposes into the disjoint union

Edp,N,𝔾=ρ((/pN)×/{±1})×rEdp,N,𝔾,ρ.\displaystyle\mathrm{Ed}_{p,N,\mathbb{G}}=\coprod_{\rho\in((\mathbb{Z}/p^{N}\mathbb{Z})^{\times}/\{\pm 1\})^{\times r}}\mathrm{Ed}_{p,N,\mathbb{G},\rho}. (10.63)

Then, we can prove the following proposition, which ensures that the degree of Π2,N,g,r,𝔽p\Pi_{2,N,g,r,\mathbb{F}_{p}} for each triple (p,g,r)(p,g,r) can be explicitly computed by hand after choosing trivalent clutching data 𝔾\mathbb{G}.

Proposition 10.5.2.

Let ρ\rho be an element of ((/pN)×/{±1})×r((\mathbb{Z}/p^{N}\mathbb{Z})^{\times}/\{\pm 1\})^{\times r}. Denote by 𝒳\mathscr{X} the totally degenerate curve over kk corresponding to 𝔾\mathbb{G} (cf. Definition 6.5.1) and by OpZzzN,𝒳\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{N,\mathscr{X}} (resp., OpZzzN,ρ,𝒳\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{N,\rho,\mathscr{X}}) the set of isomorphism classes of dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers (resp., dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers of radii ρ\rho) on 𝒳\mathscr{X}. Then, there exists a canonical bijection

OpZzzN,𝒳Edp,N,𝔾(resp.,OpZzzN,ρ,𝒳Edp,N,𝔾,ρ).\displaystyle\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{N,\mathscr{X}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathrm{Ed}_{p,N,\mathbb{G}}\ \left(\text{resp.,}\ \mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{N,\rho,\mathscr{X}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\mathrm{Ed}_{p,N,\mathbb{G},\rho}\right). (10.64)

In particular, the degree deg(Π2,N,g,r,𝔽p)\mathrm{deg}(\Pi_{2,N,g,r,\mathbb{F}_{p}}) (resp., deg(Π2,N,ρ,g,r,𝔽p)\mathrm{deg}(\Pi_{2,N,\rho,g,r,\mathbb{F}_{p}})) satisfies the equality

deg(Π2,N,g,r,𝔽p)=(Edp,N,𝔾)(resp.,deg(Π2,N,ρ,g,r,𝔽p)=(Edp,N,𝔾,ρ)),\displaystyle\mathrm{deg}(\Pi_{2,N,g,r,\mathbb{F}_{p}})=\sharp(\mathrm{Ed}_{p,N,\mathbb{G}})\ \left(\text{resp.,}\ \mathrm{deg}(\Pi_{2,N,\rho,g,r,\mathbb{F}_{p}})=\sharp(\mathrm{Ed}_{p,N,\mathbb{G},\rho})\right), (10.65)

and the value (Edp,N,𝔾)\sharp(\mathrm{Ed}_{p,N,\mathbb{G}}) (resp., (Edp,N,ρ,𝔾)\sharp(\mathrm{Ed}_{p,N,\rho,\mathbb{G}})) does not depend on the choice of 𝔾\mathbb{G}, i.e., depends only on the type (g,r)(g,r).

Proof.

The first assertion follows from Proposition 6.4.5, (i) and (ii), Theorem 10.4.4. Also, the generic étaleness of Πg,r\Pi_{g,r} proved in Theorem 8.7.1 implies that deg(Π2,N,g,r,𝔽p)\mathrm{deg}(\Pi_{2,N,g,r,\mathbb{F}_{p}}) (resp., deg(Π2,N,ρ,g,r,𝔽p)\mathrm{deg}(\Pi_{2,N,\rho,g,r,\mathbb{F}_{p}})) coincides with (OpZzzN,𝒳)\sharp(\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{N,\mathscr{X}}) (resp., (OpZzzN,ρ,𝒳)\sharp(\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{N,\rho,\mathscr{X}})), so the second assertion follows directly from the first assertion. ∎

Example 10.5.3 (Case of (p,N)=(3,2)(p,N)=(3,2)).

We here perform a few computations of the values deg(Π2,N,g,r,𝔽p)\mathrm{deg}(\Pi_{2,N,g,r,\mathbb{F}_{p}}) in the case of p=3p=3 and N=2N=2. Note that the set C2{{}^{\dagger}}C_{2} (for p=3p=3) is explicitly given by

C2={\displaystyle{{}^{\dagger}}C_{2}=\{ (0,0,0),(0,2,2),(2,0,2),(2,2,0),(2,2,2),\displaystyle(0,0,0),(0,2,2),(2,0,2),(2,2,0),(2,2,2), (10.66)
(0,3,3),(3,0,3),(3,3,0),(3,2,2),(2,3,2),(2,2,3)}.\displaystyle(0,3,3),(3,0,3),(3,3,0),(3,2,2),(2,3,2),(2,2,3)\}.

Now, let 𝔾0,3\mathbb{G}_{0,3} denote the trivalent clutching data consisting of one vertex and three edges e0,e0,e0e_{0},e^{\prime}_{0},e^{\prime\prime}_{0}, which corresponds to the 33-pointed projective line 𝒫0\mathscr{P}_{0} (cf. Figure 3 below). The set C2{{}^{\dagger}}C_{2} may be identified with the set of balanced (3,2)(3,2)-edge numberings on 𝔾0,3\mathbb{G}_{0,3}. In particular, we have deg(Π2,2,0,3,𝔽3)=11\mathrm{deg}(\Pi_{2,2,0,3,\mathbb{F}_{3}})=11, which is consistent with (10.56). Regarding other pairs of nonnegative integers (g,r)(g,r), we make the following observations by means of (10.66):

  • To begin with, we consider the case of g=0g=0 and r3r\geq 3. Let 𝔾0,r+2\mathbb{G}_{0,r+2} (for r>0r\in\mathbb{Z}_{>0}) denote trivalent clutching data of type (0,r+2)(0,r+2) whose underlying semi-graph is as displayed in Figure 4 below. Denote by ur[t]u_{r}^{[t]} (t=0,2,3t=0,2,3) the cardinality of the subset of Ed3,2,𝔾0,r+2\mathrm{Ed}_{3,2,\mathbb{G}_{0,r+2}} consisting of balanced (3,2)(3,2)-edge numberings (ae)e(a_{e})_{e} with ae,r=ta_{e_{\sharp,r}}=t. For example, we have u1[0]=3u_{1}^{[0]}=3, u1[2]=5u_{1}^{[2]}=5, and u1[3]=3u_{1}^{[3]}=3.

    Since 𝔾0,r+2\mathbb{G}_{0,r+2} (r>1r>1) may be constructed from both 𝔾0,r+1\mathbb{G}_{0,r+1} and 𝔾0,3\mathbb{G}_{0,3} in such a way that the edges e,re_{\sharp,r} and e0e_{0} are attached to form a single edge, we obtain a recurrence relation for ur[t]u_{r}^{[t]} with t=0t=0, as follows:

    ur[0]=t=0,2,3{(ae)eEd3,2,𝔾0,3|ae0=t,ae0=0}ur1[t]=ur1[0]+ur1[2]+ur1[3].\displaystyle u_{r}^{[0]}=\sum_{t=0,2,3}\sharp\left\{(a_{e})_{e}\in\mathrm{Ed}_{3,2,\mathbb{G}_{0,3}}\,\big{|}\,a_{e_{0}}=t,a_{e^{\prime}_{0}}=0\right\}\cdot u_{r-1}^{[t]}=u_{r-1}^{[0]}+u_{r-1}^{[2]}+u_{r-1}^{[3]}. (10.67)

    The recurrence relations for t=2,3t=2,3 are expressed in similar manners, and the following sequence of equalities holds:

    (u[0]ru[2]ru[3]r)=(111131111)(u[0]r1u[2]r1u[3]r1)==(111131111)r1(u[0]1u[2]1u[3]1)=13(1+24r1+4r+11+24r).\displaystyle\begin{pmatrix}u^{[0]}_{r}\\ u^{[2]}_{r}\\ u^{[3]}_{r}\end{pmatrix}=\begin{pmatrix}1&1&1\\ 1&3&1\\ 1&1&1\end{pmatrix}\begin{pmatrix}u^{[0]}_{r-1}\\ u^{[2]}_{r-1}\\ u^{[3]}_{r-1}\end{pmatrix}=\cdots=\begin{pmatrix}1&1&1\\ 1&3&1\\ 1&1&1\end{pmatrix}^{r-1}\begin{pmatrix}u^{[0]}_{1}\\ u^{[2]}_{1}\\ u^{[3]}_{1}\end{pmatrix}=\frac{1}{3}\cdot\begin{pmatrix}1+2\cdot 4^{r}\\ -1+4^{r+1}\\ 1+2\cdot 4^{r}\end{pmatrix}. (10.68)

    Thus, it follows from (10.65) that the degree of Π2,N,0,r+2,𝔽p\Pi_{2,N,0,r+2,\mathbb{F}_{p}} satisfies

    deg(Π2,N,0,r+2,𝔽p)=ur[0]+ur[2]+ur[3]=1+24r+13.\displaystyle\mathrm{deg}(\Pi_{2,N,0,r+2,\mathbb{F}_{p}})=u_{r}^{[0]}+u_{r}^{[2]}+u_{r}^{[3]}=\frac{1+2\cdot 4^{r+1}}{3}. (10.69)
    [Uncaptioned image]
  • Next, we discuss the case of g1g\geq 1 and r=1r=1. Denote by 𝔾g,1\mathbb{G}_{g,1} (g>0g\in\mathbb{Z}_{>0}) clutching data of type (g,1)(g,1) whose underlying semi-graph is as displayed in Figure 5 below. Also, denote by vg[t]v_{g}^{[t]} (t=0,2,3t=0,2,3) the cardinality of the subset of Ed3,2,𝔾g,1\mathrm{Ed}_{3,2,\mathbb{G}_{g,1}} consisting of balanced (3,2)(3,2)-edge numberings (ae)e(a_{e})_{e} with e,g=te_{\flat,g}=t. For example, we have v1[0]=3v_{1}^{[0]}=3, v1[2]=1v_{1}^{[2]}=1, and v1[3]=1v_{1}^{[3]}=1.

    If 𝔾1,2\mathbb{G}_{1,2} denotes the trivalent clutching data displayed in Figure 6, then 𝔾g,1\mathbb{G}_{g,1} (g>1g>1) may be obtained from both 𝔾g,1\mathbb{G}_{g,1} and 𝔾1,2\mathbb{G}_{1,2} in such a way that the edges e,ge_{\flat,g} and e1e_{1} are attached to form a single edge. It follows that we obtain a recurrence relation for vg[t]v_{g}^{[t]} with t=0t=0, as follows:

    vg[0]=t=0,2,3{(ae)eEd3,2,𝔾1,2|ae1=t,ae1=0}vr1[0]=3vg1[0]+vg1[2]+vg1[3].\displaystyle v_{g}^{[0]}=\sum_{t=0,2,3}\sharp\left\{(a_{e})_{e}\in\mathrm{Ed}_{3,2,\mathbb{G}_{1,2}}\,\big{|}\,a_{e_{1}}=t,a_{e^{\prime\prime\prime}_{1}}=0\right\}\cdot v_{r-1}^{[0]}=3\cdot v_{g-1}^{[0]}+v_{g-1}^{[2]}+v_{g-1}^{[3]}. (10.70)

    The recurrence relations for t=2,3t=2,3 are expressed in similar manners, and the following sequence of equalities holds:

    (v[0]gv[2]gv[3]g)=(311151113)(v[0]g1v[2]g1v[3]g1)==(311151113)g1(v[0]1v[2]1v[3]1)=(2g1+3g1+6g13g1+26g12g1+3g1+6g1).\displaystyle\begin{pmatrix}v^{[0]}_{g}\\ v^{[2]}_{g}\\ v^{[3]}_{g}\end{pmatrix}=\begin{pmatrix}3&1&1\\ 1&5&1\\ 1&1&3\end{pmatrix}\begin{pmatrix}v^{[0]}_{g-1}\\ v^{[2]}_{g-1}\\ v^{[3]}_{g-1}\end{pmatrix}=\cdots=\begin{pmatrix}3&1&1\\ 1&5&1\\ 1&1&3\end{pmatrix}^{g-1}\begin{pmatrix}v^{[0]}_{1}\\ v^{[2]}_{1}\\ v^{[3]}_{1}\end{pmatrix}=\begin{pmatrix}2^{g-1}+3^{g-1}+6^{g-1}\\ -3^{g-1}+2\cdot 6^{g-1}\\ -2^{g-1}+3^{g-1}+6^{g-1}\end{pmatrix}. (10.71)

    Thus, the degree of Π2,N,g,1,𝔽p\Pi_{2,N,g,1,\mathbb{F}_{p}} satisfies

    deg(Π2,N,g,1,𝔽p)=vg[0]+vg[2]+vg[3]=3g1+46g1.\displaystyle\mathrm{deg}(\Pi_{2,N,g,1,\mathbb{F}_{p}})=v_{g}^{[0]}+v_{g}^{[2]}+v_{g}^{[3]}=3^{g-1}+4\cdot 6^{g-1}. (10.72)

    Moreover, note that trivalent clutching data of type (g,0)(g,0) (g>1g>1) may be obtained by attaching the respective unique open edges of 𝔾g1,1\mathbb{G}_{g-1,1} and 𝔾1,1\mathbb{G}_{1,1} (i.e., “𝔾g,1\mathbb{G}_{g,1}” in the case of g=1g=1) to form a single edge, so the following equalities hold:

    deg(Π2,N,g,0,𝔽p)=v1[0]vg1[0]+v1[2]vg1[2]+v1[3]vg1[3]=2g1+3g1+6g1.\displaystyle\mathrm{deg}(\Pi_{2,N,g,0,\mathbb{F}_{p}})=v_{1}^{[0]}\cdot v_{g-1}^{[0]}+v_{1}^{[2]}\cdot v_{g-1}^{[2]}+v_{1}^{[3]}\cdot v_{g-1}^{[3]}=2^{g-1}+3^{g-1}+6^{g-1}. (10.73)
    [Uncaptioned image]
  • Finally, we deal with general gg and rr. Observe that some trivalent clutching data of type (g,r+1)(g,r+1) (g>1g>1) may be obtained from both 𝔾0,r+2\mathbb{G}_{0,r+2} and 𝔾g,1\mathbb{G}_{g,1} by attaching the respective last edges to form a single edge. Hence, we have

    deg(Π2,N,g,r+1,𝔽p)=ur[0]vg[0]+ur[2]vg[2]+ur[3]vg[3]=3g1+6g14r+1.\displaystyle\mathrm{deg}(\Pi_{2,N,g,r+1,\mathbb{F}_{p}})=u_{r}^{[0]}\cdot v_{g}^{[0]}+u_{r}^{[2]}\cdot v_{g}^{[2]}+u_{r}^{[3]}\cdot v_{g}^{[3]}=3^{g-1}+6^{g-1}\cdot 4^{r+1}. (10.74)

    The resulting equality deg(Π2,N,g,r+1,𝔽p)=3g1+6g14r+1\mathrm{deg}(\Pi_{2,N,g,r+1,\mathbb{F}_{p}})=3^{g-1}+6^{g-1}\cdot 4^{r+1} is true even when g=0g=0 (resp., r=0r=0) because of (10.69) (resp., (10.72)).

    [Uncaptioned image]

10.6. Ehrhart quasi-polynomial counting dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers

Next, in order to apply Ehrhart’s theory, we translate balanced (p,N)(p,N)-edge numberings into lattice points inside a certain generalized (rational) polytope. The main result shows that the values deg(Π2,N,g,r,𝔽p)\mathrm{deg}(\Pi_{2,N,g,r,\mathbb{F}_{p}}) may be expressed by using a quasi-polynomial in pp (cf. Theorem 10.6.5).

To begin with, we introduce the notion of a (rational) constructible subset of an \mathbb{R}-vector space.

Definition 10.6.1.

Let VV be a finite-dimensional \mathbb{R}-vector space equipped with a choice of a lattice L(V)L\left(\subseteq V\right), i.e., L=VL\otimes_{\mathbb{Z}}\mathbb{R}=V. A subset 𝒫\mathcal{P} of VV is called constructible if there exist a finite number of convex polytopes 𝒬1,,𝒬\mathcal{Q}_{1},\cdots,\mathcal{Q}_{\ell} in VV satisfying the equality 𝒫=i=1(𝒬i𝒬i)\mathcal{P}=\bigcup_{i=1}^{\ell}(\mathcal{Q}_{i}\setminus\partial\mathcal{Q}_{i}), where each 𝒬i\partial\mathcal{Q}_{i} denotes the boundary of 𝒬i\mathcal{Q}_{i}.

Moreover, a constructible set 𝒫:=i=1(𝒬i𝒬i)\mathcal{P}:=\bigcup_{i=1}^{\ell}(\mathcal{Q}_{i}\setminus\partial\mathcal{Q}_{i}) is called rational (with respect to LL) if one can choose all such polytopes 𝒬1,,𝒬\mathcal{Q}_{1},\cdots,\mathcal{Q}_{\ell} as rational (with respect to LL) in the usual sense.

The following property on constructible subsets can be immediately verified, so the proofs are omitted.

Proposition 10.6.2.

Let VV and LL be as in Definition 10.6.1, and let 𝒫1\mathcal{P}_{1}, 𝒫2\mathcal{P}_{2} be constructible subsets (resp., rational constructible subsets) of VV. Then, 𝒫1𝒫2\mathcal{P}_{1}\cup\mathcal{P}_{2}, 𝒫1𝒫2\mathcal{P}_{1}\cap\mathcal{P}_{2}, and 𝒫1𝒫2\mathcal{P}_{1}\setminus\mathcal{P}_{2} are all constructible (resp., constructible and rational).

Given an element ss in the unit interval [0,1]:={x| 0x1}[0,1]:=\{x\in\mathbb{R}\,|\,0\leq x\leq 1\}, we shall set s+1:=s\langle s\rangle_{+1}:=s and s1:=1s\langle s\rangle_{-1}:=1-s. Also, we write E0:={1,2,3}E_{0}:=\{1,2,3\} and write

SgnN\displaystyle\mathrm{Sgn}_{N} (10.75)

for the set of collections 𝒶:=(𝒶𝒾,𝒿)𝒾0,𝒿{1,,𝒩}\mathpzc{a}:=(\mathpzc{a}_{i,j})_{i\in E_{0},j\in\{1,\cdots,N\}} such that 𝒶𝒾,𝒿{+1,1}\mathpzc{a}_{i,j}\in\{+1,-1\} for any i,ji,j, and that (𝒶1,𝒩,𝒶2,𝒩,𝒶3,𝒩)=(+1,+1,+1)(\mathpzc{a}_{1,N},\mathpzc{a}_{2,N},\mathpzc{a}_{3,N})=(+1,+1,+1).

For each finite set II, we shall denote by I\mathbb{R}^{I} the set of all real-valued functions II\rightarrow\mathbb{R} on II; it forms a (I)\sharp(I)-dimensional \mathbb{R}-vector space, and the set of integer-valued functions I\mathbb{Z}^{I} forms its lattice. Each element of I\mathbb{R}^{I} (resp., I\mathbb{Z}^{I}) may be identified with a collection (si)iI(s_{i})_{i\in I} with sis_{i}\in\mathbb{R} (resp., sis_{i}\in\mathbb{Z}).

To each element 𝒶:=(𝒶𝒾,𝒿)𝒾,𝒿Sgn𝒩\mathpzc{a}:=(\mathpzc{a}_{i,j})_{i,j}\in\mathrm{Sgn}_{N}, we associate the subset

𝒫1(𝒶)\displaystyle\mathcal{P}_{1}(\mathpzc{a}) (10.76)

of E0(=E0×{1})\mathbb{R}^{E_{0}}\left(=\mathbb{R}^{E_{0}\times\{1\}}\right) consisting of collections (si,1)iE0(s_{i,1})_{i\in E_{0}} that satisfies si,1[0,1]s_{i,1}\in[0,1] for any ii, and satisfies the following conditions:

  • s1,1𝒶1,1+s2,1𝒶2,1+s3,1𝒶3,1<1\langle s_{1,1}\rangle_{\mathpzc{a}_{1,1}}+\langle s_{2,1}\rangle_{\mathpzc{a}_{2,1}}+\langle s_{3,1}\rangle_{\mathpzc{a}_{3,1}}<1, 0s1,1𝒶1,1s2,1𝒶2,1+s3,1𝒶3,10\leq\langle s_{1,1}\rangle_{\mathpzc{a}_{1,1}}\leq\langle s_{2,1}\rangle_{\mathpzc{a}_{2,1}}+\langle s_{3,1}\rangle_{\mathpzc{a}_{3,1}}, 0s2,1𝒶2,1s3,1𝒶3,1+s1,1𝒶1,10\leq\langle s_{2,1}\rangle_{\mathpzc{a}_{2,1}}\leq\langle s_{3,1}\rangle_{\mathpzc{a}_{3,1}}+\langle s_{1,1}\rangle_{\mathpzc{a}_{1,1}}, and 0s3,1𝒶3,1s1,1𝒶1,1+s2,1𝒶2,10\leq\langle s_{3,1}\rangle_{\mathpzc{a}_{3,1}}\leq\langle s_{1,1}\rangle_{\mathpzc{a}_{1,1}}+\langle s_{2,1}\rangle_{\mathpzc{a}_{2,1}}.

Moreover, when N2N\geq 2, we shall set

𝒫2(𝒶)\displaystyle\mathcal{P}_{2}(\mathpzc{a}) (10.77)

to be the subset of E0×{2,,N}\mathbb{R}^{E_{0}\times\{2,\cdots,N\}} consisting of collections (si,j)iE0,j{2,,N}(s_{i,j})_{i\in E_{0},j\in\{2,\cdots,N\}} that satisfies si,j[0,1]s_{i,j}\in[0,1] for any ii and jj, and satisfies the following conditions:

  • If (𝒶1,𝒿/𝒶1,𝒿1,𝒶2,𝒿/𝒶2,𝒿1,𝒶3,𝒿/𝒶3,𝒿1)=(+1,+1,+1)(\mathpzc{a}_{1,j}/\mathpzc{a}_{1,j-1},\mathpzc{a}_{2,j}/\mathpzc{a}_{2,j-1},\mathpzc{a}_{3,j}/\mathpzc{a}_{3,j-1})=(+1,+1,+1), then s1,j𝒶1,𝒿+s2,j𝒶2,𝒿+s3,j𝒶3,𝒿<1\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}+\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}+\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}<1, 0s1,j𝒶1,𝒿s2,j𝒶2,𝒿+s3,j𝒶3,𝒿0\leq\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}\leq\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}+\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}, 0s2,j𝒶2,𝒿s3,j𝒶3,𝒿+s1,j𝒶1,𝒿0\leq\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}\leq\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}+\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}, and 0s3,j𝒶3,𝒿s1,j𝒶1,𝒿+s2,j𝒶2,𝒿0\leq\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}\leq\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}+\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}};

  • If (𝒶1,𝒿/𝒶1,𝒿1,𝒶2,𝒿/𝒶2,𝒿1,𝒶3,𝒿/𝒶3,𝒿1)=(1,+1,+1)(\mathpzc{a}_{1,j}/\mathpzc{a}_{1,j-1},\mathpzc{a}_{2,j}/\mathpzc{a}_{2,j-1},\mathpzc{a}_{3,j}/\mathpzc{a}_{3,j-1})=(-1,+1,+1), then s1,j𝒶1,𝒿+s2,j𝒶2,𝒿+s3,j𝒶3,𝒿<1\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}+\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}+\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}<1, 0<s1,j𝒶1,𝒿s2,j𝒶2,𝒿+s3,j𝒶3,𝒿0<\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}\leq\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}+\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}, 0s2,j𝒶2,𝒿<s3,j𝒶3,𝒿+s1,j𝒶1,𝒿0\leq\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}<\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}+\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}, and 0s3,j𝒶3,𝒿<s1,j𝒶1,𝒿+s2,j𝒶2,𝒿0\leq\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}<\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}+\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}};

  • If (𝒶1,𝒿/𝒶1,𝒿1,𝒶2,𝒿/𝒶2,𝒿1,𝒶3,𝒿/𝒶3,𝒿1)=(+1,1,+1)(\mathpzc{a}_{1,j}/\mathpzc{a}_{1,j-1},\mathpzc{a}_{2,j}/\mathpzc{a}_{2,j-1},\mathpzc{a}_{3,j}/\mathpzc{a}_{3,j-1})=(+1,-1,+1), then s1,j𝒶1,𝒿+s2,j𝒶2,𝒿+s3,j𝒶3,𝒿<1\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}+\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}+\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}<1, 0s1,j𝒶1,𝒿<s2,j𝒶2,𝒿+s3,j𝒶3,𝒿0\leq\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}<\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}+\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}, 0<s2,j𝒶2,𝒿s3,j𝒶3,𝒿+s1,j𝒶1,𝒿0<\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}\leq\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}+\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}, and 0s3,j𝒶3,𝒿<s1,j𝒶1,𝒿+s2,j𝒶2,𝒿0\leq\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}<\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}+\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}};

  • If (𝒶1,𝒿/𝒶1,𝒿1,𝒶2,𝒿/𝒶2,𝒿1,𝒶3,𝒿/𝒶3,𝒿1)=(+1,+1,1)(\mathpzc{a}_{1,j}/\mathpzc{a}_{1,j-1},\mathpzc{a}_{2,j}/\mathpzc{a}_{2,j-1},\mathpzc{a}_{3,j}/\mathpzc{a}_{3,j-1})=(+1,+1,-1), then s1,j𝒶1,𝒿+s2,j𝒶2,𝒿+s3,j𝒶3,𝒿<1\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}+\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}+\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}<1, 0s1,j𝒶1,𝒿<s2,j𝒶2,𝒿+s3,j𝒶3,𝒿0\leq\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}<\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}+\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}, 0s2,j𝒶2,𝒿<s3,j𝒶3,𝒿+s1,j𝒶1,𝒿0\leq\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}<\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}+\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}, and 0<s3,j𝒶3,𝒿s1,j𝒶1,𝒿+s2,j𝒶2,𝒿0<\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}\leq\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}+\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}};

  • If (𝒶1,𝒿/𝒶1,𝒿1,𝒶2,𝒿/𝒶2,𝒿1,𝒶3,𝒿/𝒶3,𝒿1)=(1,1,+1)(\mathpzc{a}_{1,j}/\mathpzc{a}_{1,j-1},\mathpzc{a}_{2,j}/\mathpzc{a}_{2,j-1},\mathpzc{a}_{3,j}/\mathpzc{a}_{3,j-1})=(-1,-1,+1), then s1,j𝒶1,𝒿+s2,j𝒶2,𝒿+s3,j𝒶3,𝒿1\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}+\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}+\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}\leq 1, 0<s1,j𝒶1,𝒿s2,j𝒶2,𝒿+s3,j𝒶3,𝒿0<\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}\leq\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}+\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}, 0<s2,j𝒶2,𝒿s3,j𝒶3,𝒿+s1,j𝒶1,𝒿0<\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}\leq\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}+\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}, and 0s3,j𝒶3,𝒿<s1,j𝒶1,𝒿+s2,j𝒶2,𝒿0\leq\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}<\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}+\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}};

  • If (𝒶1,𝒿/𝒶1,𝒿1,𝒶2,𝒿/𝒶2,𝒿1,𝒶3,𝒿/𝒶3,𝒿1)=(1,+1,1)(\mathpzc{a}_{1,j}/\mathpzc{a}_{1,j-1},\mathpzc{a}_{2,j}/\mathpzc{a}_{2,j-1},\mathpzc{a}_{3,j}/\mathpzc{a}_{3,j-1})=(-1,+1,-1), then s1,j𝒶1,𝒿+s2,j𝒶2,𝒿+s3,j𝒶3,𝒿1\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}+\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}+\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}\leq 1, 0<s1,j𝒶1,𝒿s2,j𝒶2,𝒿+s3,j𝒶3,𝒿0<\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}\leq\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}+\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}, 0s2,j𝒶2,𝒿<s3,j𝒶3,𝒿+s1,j𝒶1,𝒿0\leq\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}<\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}+\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}, and 0<s3,j𝒶3,𝒿s1,j𝒶1,𝒿+s2,j𝒶2,𝒿0<\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}\leq\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}+\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}};

  • If (𝒶1,𝒿/𝒶1,𝒿1,𝒶2,𝒿/𝒶2,𝒿1,𝒶3,𝒿/𝒶3,𝒿1)=(+1,1,1)(\mathpzc{a}_{1,j}/\mathpzc{a}_{1,j-1},\mathpzc{a}_{2,j}/\mathpzc{a}_{2,j-1},\mathpzc{a}_{3,j}/\mathpzc{a}_{3,j-1})=(+1,-1,-1), then s1,j𝒶1,𝒿+s2,j𝒶2,𝒿+s3,j𝒶3,𝒿1\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}+\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}+\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}\leq 1, 0s1,j𝒶1,𝒿<s2,j𝒶2,𝒿+s3,j𝒶3,𝒿0\leq\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}<\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}+\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}, 0<s2,j𝒶2,𝒿s3,j𝒶3,𝒿+s1,j𝒶1,𝒿0<\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}\leq\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}+\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}, and 0<s3,j𝒶3,𝒿s1,j𝒶1,𝒿+s2,j𝒶2,𝒿0<\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}\leq\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}+\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}};

  • If (𝒶1,𝒿/𝒶1,𝒿1,𝒶2,𝒿/𝒶2,𝒿1,𝒶3,𝒿/𝒶3,𝒿1)=(1,1,1)(\mathpzc{a}_{1,j}/\mathpzc{a}_{1,j-1},\mathpzc{a}_{2,j}/\mathpzc{a}_{2,j-1},\mathpzc{a}_{3,j}/\mathpzc{a}_{3,j-1})=(-1,-1,-1), then s1,j𝒶1,𝒿+s2,j𝒶2,𝒿+s3,j𝒶3,𝒿1\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}+\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}+\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}\leq 1, 0<s1,j𝒶1,𝒿<s2,j𝒶2,𝒿+s3,j𝒶3,𝒿0<\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}<\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}+\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}, 0<s2,j𝒶2,𝒿<s3,j𝒶3,𝒿+s1,j𝒶1,𝒿0<\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}<\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}+\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}, and 0<s3,j𝒶3,𝒿<s1,j𝒶1,𝒿+s2,j𝒶2,𝒿0<\langle s_{3,j}\rangle_{\mathpzc{a}_{3,j}}<\langle s_{1,j}\rangle_{\mathpzc{a}_{1,j}}+\langle s_{2,j}\rangle_{\mathpzc{a}_{2,j}}.

On the other hand, we write 𝒫2(𝒶)=0×{2,,𝒩}:={0}\mathcal{P}_{2}(\mathpzc{a})=\mathbb{R}^{E_{0}\times\{2,\cdots,N\}}:=\{0\} when N=1N=1. Note that the subsets 𝒫1(𝒶)\mathcal{P}_{1}(\mathpzc{a}), 𝒫2(𝒶)\mathcal{P}_{2}(\mathpzc{a}) are invariant under permutations of the elements in E0E_{0}, and specify full-dimensional rational constructible sets in E0\mathbb{R}^{E_{0}} and E0×{2,,N}\mathbb{R}^{E_{0}\times\{2,\cdots,N\}}, respectively.

Let us take an element s:=(s1,s2,s3)s:=(s_{1},s_{2},s_{3}) of CN:={{}^{\dagger}}C_{N}:= (cf. (10.34)), which induces a collection (si,j)iE0,j{1,,N}(s^{\prime}_{i,j})_{i\in E_{0},j\in\{1,\cdots,N\}} of elements of {0,,p1}\{0,\cdots,p-1\} uniquely determined by the condition that si=j=0N1si,j+1pjs_{i}=\sum_{j=0}^{N-1}s^{\prime}_{i,j+1}\cdot p^{j} for every i=1,2,3i=1,2,3. This collection moreover induces an element s:=(si,j)i,j{{}^{\dagger}}s:=(s_{i,j})_{i,j} of E0×{1,,N}\mathbb{R}^{E_{0}\times\{1,\cdots,N\}} defined as si,j:=si,js_{i,j}:=s^{\prime}_{i,j} if j=1j=1, and si,j:=si,js_{i,j}:=s^{\prime}_{i,j} (resp., si,j:=si,j+1s_{i,j}:=s^{\prime}_{i,j}+1) if j2j\geq 2 and 𝒶𝒾,𝒿1=+1\mathpzc{a}_{i,j-1}=+1 (resp., j2j\geq 2 and 𝒶𝒾,𝒿1=1\mathpzc{a}_{i,j-1}=-1). Then, by the various definitions involved, we obtain the following assertion.

Lemma 10.6.3.

Under the natural identification E0×E0×{2,,N}=E0×{1,,N}\mathbb{R}^{E_{0}}\times\mathbb{R}^{E_{0}\times\{2,\cdots,N\}}=\mathbb{R}^{E_{0}\times\{1,\cdots,N\}}, the assignment sss\mapsto{{}^{\dagger}}s determines a bijection

CN𝒶Sgn𝒩((p1)𝒫1(𝒶)0)×(𝓅𝒫1(𝒶)0×{2,,𝒩}),\displaystyle{{}^{\dagger}}C_{N}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\bigcup_{\mathpzc{a}\in\mathrm{Sgn}_{N}}((p-1)\mathcal{P}_{1}(\mathpzc{a})\cap\mathbb{Z}^{E_{0}})\times(p\mathcal{P}_{1}(\mathpzc{a})\cap\mathbb{Z}^{E_{0}\times\{2,\cdots,N\}}), (10.78)

where for a polytope 𝒫\mathcal{P} and a nonnegative integer mm we denote by m𝒫m\mathcal{P} the polytope 𝒫\mathcal{P} dilated by the factor mm.

Proof.

Given each 𝒶Sgn𝒩\mathpzc{a}\in\mathrm{Sgn}_{N}, we set CN(𝒶){{}^{\dagger}}C_{N}(\mathpzc{a}) to be the subset of CN{{}^{\dagger}}C_{N} consisting of elements (s1,s2,s3)(s_{1},s_{2},s_{3}) satisfying that, for any ii and jj, the equality 𝒶𝒾,𝒿=+1\mathpzc{a}_{i,j}=+1 holds precisely when [si]jpj12[s_{i}]_{j}\leq\frac{p^{j}-1}{2}. Then, we have CN=𝒶Sgn𝒩CN(𝒶){{}^{\dagger}}C_{N}=\bigcup_{\mathpzc{a}\in\mathrm{Sgn}_{N}}{{}^{\dagger}}C_{N}(\mathpzc{a}), and it is immediately verified that the assignment sss\mapsto{{}^{\dagger}}s defines a bijection

CN(𝒶)((𝓅1)𝒫1(𝒶)0)×(𝓅𝒫1(𝒶)0×{2,,𝒩}).\displaystyle{{}^{\dagger}}C_{N}(\mathpzc{a})\stackrel{{\scriptstyle\sim}}{{\rightarrow}}((p-1)\mathcal{P}_{1}(\mathpzc{a})\cap\mathbb{Z}^{E_{0}})\times(p\mathcal{P}_{1}(\mathpzc{a})\cap\mathbb{Z}^{E_{0}\times\{2,\cdots,N\}}). (10.79)

By taking the union of these bijections for various 𝒶\mathpzc{a}’s, we obtain the desired bijection. ∎

Next, let 𝔾\mathbb{G} and G{{}^{\rotatebox[origin={c}]{-20.0}{$\vartriangle$}}}G be as in § 10.5. For an element 𝒶Sgn𝒩\mathpzc{a}\in\mathrm{Sgn}_{N}, denote by

𝒫1,𝔾(𝒶)(resp.,𝒫2,𝔾(𝒶))\displaystyle\mathcal{P}_{1,\mathbb{G}}(\mathpzc{a})\ \left(\text{resp.,}\ \mathcal{P}_{2,\mathbb{G}}(\mathpzc{a})\right) (10.80)

the subset of the \mathbb{R}-vector space E\mathbb{R}^{E} (resp., E×{2,,N}\mathbb{R}^{E\times\{2,\cdots,N\}}) consisting of real-valued functions (se,1)eE(s_{e,1})_{e\in E} (resp., (se,j)eE,j{2,,N}(s_{e,j})_{e\in E,j\in\{2,\cdots,N\}}) on EE (resp., E×{2,,N}E\times\{2,\cdots,N\}) such that, for each vVv\in V, the collection (sζ(b),1)bBv(s_{\zeta(b),1})_{b\in B_{v}} (resp., (sζ(b),j)bBv,j{2,,N}(s_{\zeta(b),j})_{b\in B_{v},j\in\{2,\cdots,N\}}) belongs to 𝒫1(𝒶)\mathcal{P}_{1}(\mathpzc{a}) (resp., 𝒫2(𝒶)\mathcal{P}_{2}(\mathpzc{a})) under some (and hence, any) identification E0=BvE_{0}=B_{v}. We set 𝒫2,𝔾(𝒶)=×{2,,𝒩}:={0}\mathcal{P}_{2,\mathbb{G}}(\mathpzc{a})=\mathbb{R}^{E\times\{2,\cdots,N\}}:=\{0\} when N=1N=1. Note that the set 𝒫1,𝔾(𝒶)\mathcal{P}_{1,\mathbb{G}}(\mathpzc{a}) for N=1N=1, forming a rational convex polytope, was introduced in  [LO, Definition 2.3].

Proposition 10.6.4.
  • (i)

    Both 𝒫1,𝔾(𝒶)\mathcal{P}_{1,\mathbb{G}}(\mathpzc{a}) and 𝒫2,𝔾(𝒶)\mathcal{P}_{2,\mathbb{G}}(\mathpzc{a}) (for any 𝒶Sgn𝒩\mathpzc{a}\in\mathrm{Sgn}_{N}) form full-dimensional rational constructible subsets of E\mathbb{R}^{E} and E×{2,,N}\mathbb{R}^{E\times\{2,\cdots,N\}}, respectively.

  • (ii)

    Denote by 𝒳\mathscr{X} the totally degenerate curve corresponding to 𝔾\mathbb{G} (cf. Definition 6.5.1) and by OpZzzN,𝒳\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{N,\mathscr{X}} the set of isomorphism classes of dormant PGL2(N)\mathrm{PGL}_{2}^{(N)}-opers on 𝒳\mathscr{X} (defined as in Proposition 10.5.2). Then, there exists a canonical bijection of sets

    OpZzzN,𝒳𝒶Sgn𝒩((p1)𝒫1,𝔾(𝒶))×(𝓅𝒫2,𝔾(𝒶)×{2,,𝒩}).\displaystyle\mathrm{Op}^{{}^{\mathrm{Zzz...}}}_{N,\mathscr{X}}\stackrel{{\scriptstyle\sim}}{{\rightarrow}}\bigcup_{\mathpzc{a}\in\mathrm{Sgn}_{N}}((p-1)\mathcal{P}_{1,\mathbb{G}}(\mathpzc{a})\cap\mathbb{Z}^{E})\times(p\mathcal{P}_{2,\mathbb{G}}(\mathpzc{a})\cap\mathbb{Z}^{E\times\{2,\cdots,N\}}). (10.81)
Proof.

First, let us consider the case of 𝒫2,𝔾(𝒶)\mathcal{P}_{2,\mathbb{G}}(\mathpzc{a}) in assertion (i). For each vVv\in V, we shall write πv\pi_{v} for the projection E×{2,,N}Bv×{2,,N}\mathbb{R}^{E\times\{2,\cdots,N\}}\twoheadrightarrow\mathbb{R}^{B_{v}\times\{2,\cdots,N\}} given by (se,j)eE,j{2,,N}(sζ(b),j)bBv,j{2,,N}(s_{e,j})_{e\in E,j\in\{2,\cdots,N\}}\mapsto(s_{\zeta(b),j})_{b\in B_{v},j\in\{2,\cdots,N\}}. By using some identification E0=BvE_{0}=B_{v}, we shall regard 𝒫2(𝒶)\mathcal{P}_{2}(\mathpzc{a}) as a full-dimensional rational constructible subset of Bv×{2,,N}\mathbb{R}^{B_{v}\times\{2,\cdots,N\}}. It follows from the definition of 𝒫2,𝔾(𝒶)\mathcal{P}_{2,\mathbb{G}}(\mathpzc{a}) that the equality 𝒫2,𝔾(𝒶)=𝓋𝒱π𝓋1(𝒫2(𝒶))\mathcal{P}_{2,\mathbb{G}}(\mathpzc{a})=\bigcap_{v\in V}\pi_{v}^{-1}(\mathcal{P}_{2}(\mathpzc{a})) holds. Then, the assertion follows from Proposition 10.6.2. Since the proof for 𝒫1,𝔾(𝒶)\mathscr{P}_{1,\mathbb{G}}(\mathpzc{a}) is entirely similar, we finish the proof of assertion (i).

Also, assertion (ii) follows from Theorem 10.5.2 and Lemma 10.6.3. ∎

Here, recall a result in the theory of lattice-point counting for rational polytopes by E. Ehrhart. Let VV and LL be as in Definition 10.6.1. Given a rational convex polytope 𝒫\mathcal{P} in VV, we denote by

i𝒫:00\displaystyle i_{\mathcal{P}}:\mathbb{Z}_{\geq 0}\rightarrow\mathbb{Z}_{\geq 0} (10.82)

the lattice-point counting function for 𝒫\mathcal{P}, i.e., the function which, to any nonnegative integer mm, assigns the cardinality of lattice points in 𝒫\mathcal{P} dilated by mm:

i𝒫(m):=(m𝒫L).\displaystyle i_{\mathcal{P}}(m):=\sharp\left(m\mathcal{P}\cap L\right). (10.83)

Suppose that 𝒫\mathcal{P} is of dimension dd, i.e., dd is the dimension of the smallest affine space of VV containing 𝒫\mathcal{P}. Then, E. Ehrhart proved (cf.  [Ehr1],  [Ehr2],  [Ehr3]) that the function i𝒫i_{\mathcal{P}} is a quasi-polynomial function of degree dd with coefficients in \mathbb{Q}. That is to say, there exist a positive integer \ell and a (unique) sequence of polynomials

H𝒫(t):=(H𝒫,s(t))s,\displaystyle H_{\mathcal{P}}(t):=(H_{\mathcal{P},s}(t))_{s\in\mathbb{Z}}, (10.84)

where H𝒫,s(t)H_{\mathcal{P},s}(t) denotes a polynomial of degree dd with coefficients in \mathbb{Q} (i.e., an element of [t]\mathbb{Q}[t]), such that

i𝒫(m)=H𝒫,s(m)(=:H𝒫(m))forms(mod).\displaystyle i_{\mathcal{P}}(m)=H_{\mathcal{P},s}(m)\left(=:H_{\mathcal{P}}(m)\right)\ \text{for}\ m\equiv s\ (\mathrm{mod}\ \ell). (10.85)

The sequence of polynomials H𝒫(t)H_{\mathcal{P}}(t) is called the Ehrhart quasi-polynomial of 𝒫\mathcal{P}.

One may immediately verify that the existence of such a quasi-polynomial can be extended to the case of rational constructible subsets of VV. In particular, by applying this result to 𝒫1,𝔾(𝒶)\mathcal{P}_{1,\mathbb{G}}(\mathpzc{a}) and 𝒫2,𝔾(𝒶)\mathcal{P}_{2,\mathbb{G}}(\mathpzc{a}) (for various 𝒶\mathpzc{a}’s), we obtain the following assertion, generalizing  [LO, Theorem 2.1].

Theorem 10.6.5.

There exists a quasi-polynomial HN,𝔾(t):=(HN,𝔾,s(t))sH_{N,\mathbb{G}}(t):=(H_{N,\mathbb{G},s}(t))_{s\in\mathbb{Z}} with coefficients in \mathbb{Q} of degree (3g3+2r)N(3g-3+2r)\cdot N satisfying the equalities

deg(Π2,N,g,r,𝔽p)=(Edp,N,𝔾)=HN,𝔾(p)\displaystyle\mathrm{deg}(\Pi_{2,N,g,r,\mathbb{F}_{p}})=\sharp(\mathrm{Ed}_{p,N,\mathbb{G}})=H_{N,\mathbb{G}}(p) (10.86)

for every odd prime pp. In particular, the odd constituents of HN,𝔾(t)H_{N,\mathbb{G}}(t) do not depend on the choice of 𝔾\mathbb{G} (i.e., depend only on the type (g,r)(g,r) and the positive integer NN).

Proof.

The first assertion follows from Theorem 8.7.1 and Propositions 10.5.2, 10.6.4. The second assertion follows from Remark 10.6.6 below. ∎

Remark 10.6.6 (The period of the Ehrhart quasi-polynomial).

By the definitions of 𝒫1,𝔾(𝒶)\mathcal{P}_{1,\mathbb{G}}(\mathpzc{a}) and 𝒫2,𝔾(𝒶)\mathcal{P}_{2,\mathbb{G}}(\mathpzc{a}) (where 𝒶Sgn𝒩\mathpzc{a}\in\mathrm{Sgn}_{N}), we see that, if vv is a vertex of 𝒫i,𝔾(𝒶)\mathcal{P}_{i,\mathbb{G}}(\mathpzc{a}) (i=1,2i=1,2), then each of the coordinates of vv is equal to a2n\frac{a}{2^{n}} for some a,na,n\in\mathbb{Z}. This fact together with a well-known fact of Ehrhart’s theory implies that the period “\ell” of the quasi-polynomial HN,𝔾(t)H_{N,\mathbb{G}}(t) is even. On the other hand, according to Dirichlet’s theorem on arithmetic progressions, there are infinitely many primes pp^{\prime} with psp^{\prime}\equiv s (mod \ell) for every fixed odd integer ss. In particular, if HN,𝔾(t)H_{N,\mathbb{G}}(t) are HN,𝔾(t)H^{\prime}_{N,\mathbb{G}}(t) are quasi-polynomials of period \ell satisfying (10.86), then HN,𝔾(m)=HN,𝔾(m)H_{N,\mathbb{G}}(m)=H^{\prime}_{N,\mathbb{G}}(m) for infinitely many mm’s with msm\equiv s (mod \ell). It follows that the polynomial HN,𝔾,s(t)H_{N,\mathbb{G},s}(t) is uniquely determined whenever ss is odd.

10.7. Counting 22nd order ODE’s with a full set of solutions

As a consequence of the results obtained so far, a partial answer to the question displayed at the beginning of § 1.2 can be given as follows.

Let XX be a geometrically connected, proper, and smooth curve of genus g>1g>1 over S:=Spec(R)S:=\mathrm{Spec}(R) for a flat /pN\mathbb{Z}/p^{N}\mathbb{Z}-algebra RR such that R/pRR/pR is an algebraically closed field over 𝔽p\mathbb{F}_{p}. Given a line bundle \mathcal{L} on XX, we denote by

Diff2,full\displaystyle\mathrm{Diff}_{2,\mathcal{L}}^{\mathrm{full}} (10.87)

the set of 22nd order linear differential operators (over SS) on \mathcal{L} with unit principal symbol and having a full set of root functions (cf. Definitions 5.7.2 and 5.8.1).

Theorem 10.7.1.
  • (i)

    Suppose that obs(2Ω)0\mathrm{obs}(\mathcal{L}^{\otimes 2}\otimes\Omega)\neq 0 (cf. (3.57) for the definition of obs()\mathrm{obs}(-)). Then, we have Diff2,full=\mathrm{Diff}_{2,\mathcal{L}}^{\mathrm{full}}=\emptyset.

  • (ii)

    Suppose that obs(2Ω)=0\mathrm{obs}(\mathcal{L}^{\otimes 2}\otimes\Omega)=0 and the mod pp reduction X0X_{0} of XX is sufficiently general in g,0\mathcal{M}_{g,0}. Then, the set Diff2,full\mathrm{Diff}_{2,\mathcal{L}}^{\mathrm{full}} is finite and its cardinality (Diff2,full)\sharp(\mathrm{Diff}_{2,\mathcal{L}}^{\mathrm{full}}) satisfies

    (Diff2,full)=pgN(Edp,N,𝔾)=pgNHN,𝔾(p)\displaystyle\sharp(\mathrm{Diff}_{2,\mathcal{L}}^{\mathrm{full}})=p^{gN}\cdot\sharp(\mathrm{Ed}_{p,N,\mathbb{G}})=p^{gN}\cdot H_{N,\mathbb{G}}(p) (10.88)

    for any trivalent clutching data 𝔾\mathbb{G} of type (g,0)(g,0), where HN,𝔾(t)H_{N,\mathbb{G}}(t) denotes the quasi-polynomial resulting from Theorem 10.6.5. In particular, (Diff2,full)\sharp(\mathrm{Diff}_{2,\mathcal{L}}^{\mathrm{full}}) may be expressed as a rational quasi-polynomial in pp of degree (4g3)N(4g-3)\cdot N.

Proof.

For a 2(1)2^{(1)}-theta characteristic ϑ\vartheta of X/SX/S, we denote by Diff,ϑfull\mathrm{Diff}_{\clubsuit,\vartheta}^{\mathrm{full}} the set of (2,ϑ)(2,\vartheta)-projective connections on X/SX/S having a full set of root functions (cf. Definitions 5.7.3, (ii), and 5.8.1). Then, the set Diff2,