This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Aspects of Zcs(3985)Z_{cs}(3985) and Zcs(4000)Z_{cs}(4000)

Shuai Han Institute of Theoretical Physics, University of Science and Technology Beijing, Beijing 100083, China Li-Ye Xiao E-mail: lyxiao@ustb.edu.cn Institute of Theoretical Physics, University of Science and Technology Beijing, Beijing 100083, China Department of Physics, Hunan Normal University, and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410081, China
Abstract

In the present work we investigate the ηcK\eta_{c}K, J/ψKJ/\psi K, ηcK\eta_{c}K^{*} and J/ψKJ/\psi K^{*} hidden-charm decay modes for the cc¯su¯c\bar{c}s\bar{u} four-quark system in the molecular and compact tetraquark scenarios using the quark-exchange model. Our theoretical results indicate that if the newly observed states Zcs(3985)Z_{cs}(3985) and Zcs(4000)Z_{cs}(4000) are two different states, Zcs(4000)Z_{cs}(4000) may be interpreted as the mixture 12(D0Ds+D0Ds)\frac{1}{\sqrt{2}}(D^{0}D_{s}^{*-}+D^{*0}D_{s}^{-}) of which the J/ψKJ/\psi K partial decay width is about Γ2.89\Gamma\sim 2.89 MeV, while Zcs(3985)Z_{cs}(3985) may be explained as the mixture 12(D0Ds+D0Ds)\frac{1}{\sqrt{2}}(-D^{0}D_{s}^{*-}+D^{*0}D_{s}^{-}) of which the J/ψKJ/\psi K partial decay width is small to zero. Moreover, if the state Zcs(4000)Z_{cs}(4000) can be explained as the mixed state 12(D0Ds+D0Ds)\frac{1}{\sqrt{2}}(D^{0}D_{s}^{*-}+D^{*0}D_{s}^{-}) indeed, the partial decay width ratio between J/ψKJ/\psi K and ηcK\eta_{c}K^{*} is close to unit, which indicates the decay channel ηcK\eta_{c}K^{*} may be a ideal channel as well to decode the inner structure of Zcs(4000)Z_{cs}(4000). In addition, the partial decay width for the tensor molecular state |D0Ds2+|D^{*0}D_{s}^{*-}\rangle_{2^{+}} decaying into J/ψKJ/\psi K^{*} can reach up to a few MeV, which shows this tensor molecular state has a good potential to be observed in this decay channel.

1 Introduction

In the last twenty years there is an explosion in the observation of hidden-charmed multiquark states [1, 2, 3, 4, 5, 6]. For example: dozens of charmonium-like states have been observed since 2003 [7], most of which are good candidates of four-quark states with quark components cc¯qq¯c\bar{c}q\bar{q}(qq denotes uu or dd quark)[1, 2, 3, 4, 5, 6]; The LHCb collaboration reported hidden-charm pentaquark states Pc(4380)P_{c}(4380) and Pc(4450)P_{c}(4450) in 2015 [8] and updated the data in 2019 [9], which minimally contain four quarks and one antiquark(cc¯qqq¯c\bar{c}qq\bar{q}[10]; Last year, the LHCb collaboration observed a narrow structure around 6.9 Gev in the J/ψJ/\psi-pair invariant mass spectrum [11], which may be good candidates of compact tetraquark state ccc¯c¯cc\bar{c}\bar{c} [12]. All of the experimental progress in the observation of hadrons with anomalous properties has attracted a great deal of attention from the hadron physics community.

Very recently the BESIII collaboration made a great breakthrough in searching for hidden-charmed multiquark states with strangeness and reported a new structure near the D0DsD^{0}D_{s}^{*-} and D0DsD^{*0}D_{s}^{-} mass thresholds in the K+K^{+} recoil-mass spectrum [13], whose mass and width are respectively

M[Zcs(3985)]\displaystyle M[Z_{cs}(3985)] =\displaystyle= 3982.52.6+1.8±2.1MeV,\displaystyle 3982.5^{+1.8}_{-2.6}\pm 2.1~{}\text{MeV},
Γ[Zcs(3985)]\displaystyle\Gamma[Z_{cs}(3985)] =\displaystyle= 12.84.4+5.3±3.0MeV.\displaystyle 12.8^{+5.3}_{-4.4}\pm 3.0~{}\text{MeV}. (1)

From its decay modes, it is reasonable to assign it as the first candidate of the hidden-charm tetraquark with strangeness(cc¯sq¯c\bar{c}s\bar{q}). Thus, Most of theoretically references are under the four-quark scenario to exploring its genuine properties of the excess [14, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 17, 18, 19, 20, 21, 22, 23, 24, 25, 15, 16, 36]. There also exist a few discussions that assign this structure as a threshold effect [37] or a threshold cusp [38]. Furthermore, explaining Zcs(3985)Z_{cs}(3985) as a reflection structure of charmed-strange meson Ds2(2573)D_{s2}(2573) is also presented [39].

Later the LHCb collaboration further observed a exotic states with quark content cc¯us¯c\bar{c}u\bar{s}(denoted as Zcs(4000)Z_{cs}(4000)) from an amplitude analysis of the B+J/ψϕK+B^{+}\rightarrow J/\psi\phi K^{+} decay [40]. Its mass and width are measured to be

M[Zcs(4000)]\displaystyle M[Z_{cs}(4000)] =\displaystyle= 4003±614+4MeV,\displaystyle 4003\pm 6^{+4}_{-14}~{}\text{MeV},
Γ[Zcs(4000)]\displaystyle\Gamma[Z_{cs}(4000)] =\displaystyle= 131±15±26MeV.\displaystyle 131\pm 15\pm 26~{}\text{MeV}. (2)

The mass of this state is comparable to that of Zcs(3985)Z_{cs}(3985) observed by BESIII [13], while its width is about ten times larger than that of Zcs(3985)Z_{cs}(3985). Thus, whether they are two different states or not, and how to decode their inner structures are now pretty much the agenda for theorists. So far, there are some discussions of their inner structures with various theoretical methods [41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. The most papular interpretation of Zcs(3985)/Zcs(4000)Z_{cs}(3985)/Z_{cs}(4000) is explaining them as two different states: DDs/DDsDD_{s}^{*}/D^{*}D_{s} molecular states [43, 48] or compacted tetraquark states cc¯su¯c\bar{c}s\bar{u} with different spin-parity [44, 41, 49].

The masses of the Zcs(3985)Z_{cs}(3985) and Zcs(4000)Z_{cs}(4000) states are comparable and both slightly higher than the mass thresholds of DDsDD_{s}^{*} and DDsD^{*}D_{s}. In the molecular scenario, we take the Zcs(3985)Z_{cs}(3985) and Zcs(4000)Z_{cs}(4000) states as two DDsDD_{s}^{*}/DDsD^{*}D_{s} resonance molecular states. Meanwhile, according to experimental measurement, the Zcs(4000)Z_{cs}(4000) state is observed in the J/ψKJ/\psi K decay channel and non-observation of the Zcs(3985)Z_{cs}(3985) signal in this decay mode. Thus, to clarify whether Zcs(3985)Z_{cs}(3985) and Zcs(4000)Z_{cs}(4000) are two different states and further show light on the inner structures of the two states, it is critical to study the J/ψKJ/\psi K decay mode for the DDsDD_{s}^{*} and DDsD^{*}D_{s} molecular states. In addition, the authors in Ref. [48] predicted the existence of a tensor DDsD^{*}D_{s}^{*} resonance. As the expansion it is necessary to investigate the decay properties of this tensor resonance. Based on the above considerations, in the present work we conduct a systematically study of the hidden-charm strong decays of the D()Ds()D^{(*)}D_{s}^{(*)} molecular states in the framework of the quark-exchange model. Furthermore, for comparison we also investigate the hidden-charm decay properties of the four-quark system cc¯su¯c\bar{c}s\bar{u} in the compact tetraquark scenario. We hope that our theoretical results can provide some reference for the properties of the Zcs(3985)Z_{cs}(3985) and Zcs(4000)Z_{cs}(4000) states.

This paper is structured as follows. In Sec.II, we give a brief introduction of the quark-exchange model. In Sec.III, we present our theoretical results and discussions. Finally, we make a short summary in Sec.IV.

2 Model introduction

In this work we calculate the J/ψKJ/\psi K, ηcK\eta_{c}K, ηcK\eta_{c}K^{*} and J/ψKJ/\psi K^{*} decay modes for the four-quark system cc¯su¯c\bar{c}s\bar{u} in the molecular and compact tetraquark scenarios using the quark-exchange model [51]. This phenomenological model has been used to study the hidden-charm decay properties for the milt-quark states in our previous works [52, 53, 54]. Here we give a brief presentation for this model and more detail information can refer to our previous work [53].

𝐀.𝐃𝐞𝐜𝐚𝐲𝐰𝐢𝐝𝐭𝐡\mathbf{A.}~{}\mathbf{Decay~{}width}   For a two-body decay process(IC+DI\rightarrow C+D), the decay width in the rest frame of the initial particle reads

dΓ=|pc|32π2M2|(IC+D)|2dΩ.\displaystyle d\Gamma=\frac{|\vec{p}_{c}|}{32\pi^{2}M^{2}}|\mathcal{M}(I\rightarrow C+D)|^{2}d\Omega. (3)

Here, pc\vec{p}_{c} represents the three-momentum of the final meson CC; MM is the mass of the initial state II; (IC+D)\mathcal{M}(I\rightarrow C+D) denotes the transition amplitude, which is related to the TT-matrix via

(FC+D)=(2π)3/22M2EC2EDT,\displaystyle\mathcal{M}(F\rightarrow C+D)=-(2\pi)^{3/2}\sqrt{2M}\sqrt{2E_{C}}\sqrt{2E_{D}}T, (4)

where ECE_{C} and EDE_{D} represent the energy of the final mesons CC and DD, respectively. The TT-matrix has the form

T\displaystyle T =\displaystyle= ψCD(pc)|Veff(k,pc)|ψI(k)\displaystyle\langle\psi_{CD}(\vec{p}_{c})|V_{\text{eff}}(\vec{k},\vec{p_{c}})|\psi_{I}(\vec{k})\rangle (5)
=\displaystyle= ψCD(pc)|Veff(k,pc)|ψAB(k).\displaystyle\langle\psi_{CD}(\vec{p}_{c})|V_{\text{eff}}(\vec{k},\vec{p_{c}})|\psi_{AB}(\vec{k})\rangle.

Here, the initial state is a four-quark state, which concludes constituent clusters AA and BB. In molecular scenario, the constituents are mesons, while in tetraquark scenario the constituents are the diquark [cq][cq] and antidiquark [c¯q¯][\bar{c}\bar{q}]. Thus, ψAB(k)\psi_{AB}(\vec{k}) is the normalized relative spatial wave function between the constituent clusters AA and BB. ψCD(pc)\psi_{CD}(\vec{p}_{c}) denotes the relative spatial wave function between the final mesons CC and DD. Veff(k,pc)V_{\text{eff}}(\vec{k},\vec{p_{c}}) represents the effective potential, which is a function of the initial and final relative momentum k\vec{k} and pc\vec{p}_{c}.

Considering the four-quark state may be a superposition of terms with different orbital angular momenta, the relative spatial wave function in the momentum space reads

ψAB(k)=lRnl(k)Ylm(kk).\displaystyle\psi_{AB}(\vec{k})=\sum_{l}R_{nl}(k)Y_{lm}(\frac{\vec{k}}{k}). (6)

Then, the Eq. (4) can be written as

T\displaystyle T =\displaystyle= 1(2π)3𝑑k𝑑pδ(ppc)Veff(k,pc)lRnl(k)Ylm(kk)\displaystyle\frac{1}{(2\pi)^{3}}\int d\vec{k}\int d\vec{p}\delta(\vec{p}-\vec{p}_{c})V_{\text{eff}}(\vec{k},\vec{p_{c}})\sum_{l}R_{nl}(k)Y_{lm}(\frac{\vec{k}}{k}) (7)
=\displaystyle= 1(2π)2lMllYlm(pcpc),\displaystyle\frac{1}{(2\pi)^{2}}\sum_{l}M_{ll}Y_{lm}(\frac{\vec{p}_{c}}{p_{c}}),

where

Mll=11Pl(μ)𝑑μ𝑑kVeff(k,pc,μ)Rnl(k)k2.\displaystyle M_{ll}=\int_{-1}^{1}P_{l}(\mu)d\mu\int dkV_{\text{eff}}(\vec{k},\vec{p}_{c},\mu)R_{nl}(k)k^{2}. (8)

In this equation, μ\mu represents the cosine of the angle between the momenta k\vec{k} and pc\vec{p}_{c}; Pl(μ)P_{l}(\mu) is Legendre function.

Finally, the decay width of two-body decay progress with the relativistic phase space has the form

Γ=ECED|pc|(2π)3M|Mll|2.\displaystyle\Gamma=\frac{E_{C}E_{D}|\vec{p}_{c}|}{(2\pi)^{3}M}|M_{ll}|^{2}. (9)

𝐁.𝐄𝐟𝐟𝐞𝐜𝐭𝐢𝐯𝐞𝐩𝐨𝐭𝐞𝐧𝐭𝐢𝐚𝐥\mathbf{B.~{}Effective~{}potential}   In the molecular scenario, we treat the four-quark system as the loosely bound SS-wave D()Ds()D^{(*)}D_{s}^{(*)} molecular states. At Born order, the effective potential Veff(k,pc,μ)V_{\text{eff}}(\vec{k},\vec{p}_{c},\mu) is related to the reacting amplitude of the meson-meson scattering process, which is estimated by the sum of the interactions between the inner quarks as illustrated in Fig. 1 within the quark-exchange model. Moreover, the short-range interactions are dominant and can be approximated by the one-gluon-exchange (OGE) potential VijV_{ij} at quark level,

Vij=λi2λj2{4παsq2+6πbq48παs3mimj𝐬i𝐬jeq24σ2},\displaystyle V_{ij}=\frac{\lambda_{i}}{2}\frac{\lambda_{j}}{2}\left\{\frac{4\pi\alpha_{s}}{q^{2}}+\frac{6\pi b}{q^{4}}-\frac{8\pi\alpha_{s}}{3m_{i}m_{j}}\mathbf{s}_{i}\cdot\mathbf{s}_{j}e^{-\frac{q^{2}}{4\sigma^{2}}}\right\}, (10)

where λi(λiT)\lambda_{i}(\lambda^{T}_{i}) is the quark (antiquark) generator; qq represents the transferred momentum; bb corresponds to the string tension; mi(mj)m_{i}~{}(m_{j}) and 𝐬i(𝐬j)\mathbf{s}_{i}~{}(\mathbf{s}_{j}) are the interacting constituent quark mass and spin operator; σ\sigma denotes the range parameter in the hyperfine spin-spin interaction; αs\alpha_{s} represents the running coupling constant,

αs(Q2)=12π(332nf)ln(A+Q2/B2).\displaystyle\alpha_{s}(Q^{2})=\frac{12\pi}{(33-2n_{f})\text{ln}(A+Q^{2}/B^{2})}. (11)

Here, Q2Q^{2} denotes the square of the invariant masses of the interacting quarks.

Refer to caption
Figure 1: Diagrams for the scattering process ABCDAB\rightarrow CD in the molecular scenario.

In the quark model, the wave function for a meson is

Ψ=ωcϕfχsψ(p),\displaystyle\Psi=\omega_{c}\phi_{f}\chi_{s}\psi(\vec{p}), (12)

where ωc\omega_{c}, ϕf\phi_{f}, χs\chi_{s} and ψ(p)\psi(\vec{p}) represent the wave functions in the color, flavor, spin and momentum space, respectively. Thus, the effective potential can be given as the product of the factors,

Veff(k,pc,μ)=IcolorIflavorIspin-space.\displaystyle V_{\text{eff}}(\vec{k},\vec{p}_{c},\mu)=I_{\text{color}}I_{\text{flavor}}I_{\text{spin-space}}. (13)

In this equation, II with the subscripts color, flavor and spin-space represent the overlaps of the initial and final wave functions in the corresponding space.

In addition, to calculate the decay widths by Eq. (9), expecting the obtained effective potential Veff(k,pc,μ)V_{\text{eff}}(\vec{k},\vec{p}_{c},\mu), we also need the relative spatial wave function ψAB(k)\psi_{AB}(\vec{k}) between mesons AA and BB. In this work, we adopt an SS-wave harmonic oscillator function to estimate the relative spatial wave function in Eq. (6), which is

R00(k)=2expk22α2π1/4α3/2.\displaystyle R_{00}(k)=\frac{2\text{exp}^{-\frac{k^{2}}{2\alpha^{2}}}}{\pi^{1/4}\alpha^{3/2}}. (14)

The value of the harmonic oscillator strength α\alpha is related to the root mean square radius rmeanr_{\text{mean}}, which varies in the range of (1.0-3.0) fm in the present work.

Similar to the molecular case, the Veff(k,pc,μ)V_{\text{eff}}(\vec{k},\vec{p}_{c},\mu) in the tetraquark scenario can be approximated by the interaction between the inner quarks(shown in Fig. 2), and be obtained with Eq. (13) as well. However there is a difference between the two scenarios for the color factor IcolorI_{\text{color}}: in the molecular scenario the color configuration is 1c1_{c}-1c1_{c}, while in the tetraquark scenario it is 3c3_{c}-3¯c\bar{3}_{c}. The difference in color configurations may result in quite different decay properties.

Refer to caption
Figure 2: Diagrams for the scattering process ABCDAB\rightarrow CD in the tetraquark scenario.

The spatial wave function of the initial tetraquark states are estimated by the SS-wave harmonic oscillating wave function,

Ψ(kr,kR,kX)=ψA(kr,αr)ψB(kR,αR)ψAB(kX,αX),\displaystyle\Psi(\vec{k}_{r},\vec{k}_{R},\vec{k}_{X})=\psi_{A}(\vec{k}_{r},\alpha_{r})\psi_{B}(\vec{k}_{R},\alpha_{R})\psi_{AB}(\vec{k}_{X},\alpha_{X}), (15)

where kr/R\vec{k}_{r/R} represent the momentum between the c(c¯)c(\bar{c}) and s(u¯)s(\bar{u}) quarks in the diquark (antidiquark), and kX\vec{k}_{X} denotes the one between the diquark [cs][cs] and antidiquark [c¯u¯][\bar{c}\bar{u}]. The α\alpha with the subscripts is the oscillating parameter along the corresponding Jacobi coordinates, which value is given via imitating the wave function of Zc(3900)Z_{c}(3900) in Ref. [55] and listed in Table 1.

Table 1: The rms of the tetraquark states [cs][c¯u¯][cs][\bar{c}\bar{u}]. r2\sqrt{\langle r\rangle^{2}}(R2\sqrt{\langle R\rangle^{2}}) denotes the distance between c(c¯)c(\bar{c}) and s(u¯)s(\bar{u}) quarks; X2\sqrt{\langle X\rangle^{2}} is the distance between the diquark [cs][cs] and antidiquark [c¯u¯][\bar{c}\bar{u}]; unit of rms is fm.
States tetraquark r2\sqrt{\langle r\rangle^{2}} R2\sqrt{\langle R\rangle^{2}} X2\sqrt{\langle X\rangle^{2}}
Zc(3900)Z_{c}(3900) [55] [[cd]3¯cS=0[c¯u¯]3cS=1]1cS=1\big{[}[cd]^{S=0}_{\bar{3}_{c}}[\bar{c}\bar{u}]^{S=1}_{3_{c}}\big{]}^{S=1}_{1_{c}} 0.90 0.90 0.48
ZcsZ_{cs} [[cs]3¯cS=0(1)[c¯u¯]3cS=1(0)]1cS=1\big{[}[cs]^{S=0(1)}_{\bar{3}_{c}}[\bar{c}\bar{u}]^{S=1(0)}_{3_{c}}\big{]}^{S=1}_{1_{c}} 0.90 0.90 0.48
[[cs]3¯cS=1[c¯u¯]3cS=1]1cS=0,1,2\big{[}[cs]^{S=1}_{\bar{3}_{c}}[\bar{c}\bar{u}]^{S=1}_{3_{c}}\big{]}^{S=0,1,2}_{1_{c}} 0.90 0.90 0.48

3 Results and discussion

The narrow state Zcs(3985)Z_{cs}(3985) reported by BESIII collaboration [13] is observed in the D0DsD^{0}D_{s}^{*-} and D0DsD^{*0}D_{s}^{-} final channels, while the wide state Zcs(4000)Z_{cs}(4000) reported by LHCb collaboration [40] is observed in the J/ψKJ/\psi K decay mode. The mass thresholds of D0DsD^{0}D_{s}^{*-}(3977\sim 3977 MeV) and D0DsD^{*0}D_{s}^{-}(3975\sim 3975 MeV) are slightly lower than the masses of Zcs(3985)Z_{cs}(3985) and Zcs(4000)Z_{cs}(4000). Hence it is vital to investigate the decay properties of the molecular states D0DsD^{0}D_{s}^{*-} and D0DsD^{*0}D_{s}^{-}. Meanwhile, the mass degeneracy between the molecular states D0DsD^{0}D_{s}^{*-} and D0DsD^{*0}D_{s}^{-} indicates that the states may well be mixed. Namely the physical states probably are the mixed states between D0DsD^{0}D_{s}^{*-} and D0DsD^{*0}D_{s}^{-}. It is necessary to introduce a parameter θ\theta to describe the mixability for a better understanding the decay properties. In addition, we also investigate the decay properties of the molecular state D0DsD^{*0}D_{s}^{*-} and hope to give some useful theoretical reference for the future experimental exploring. Moreover, we give a brief discussion of the strong decay properties of the four-quark system cc¯su¯c\bar{c}s\bar{u} in the compact tetraquark scenario. Our theoretical results are presented as follows.

3.1 the molecular mixture of D0DsD^{0}D_{s}^{*-} and D0DsD^{*0}D_{s}^{-}

𝐀.1𝐔𝐧𝐝𝐞𝐫𝐡𝐞𝐚𝐯𝐲𝐪𝐮𝐚𝐫𝐤𝐬𝐩𝐢𝐧𝐬𝐲𝐦𝐦𝐞𝐭𝐫𝐲\mathbf{A.1~{}Under~{}heavy~{}quark~{}spin~{}symmetry} Considering the mass degeneracy between the molecular states D0DsD^{0}D_{s}^{*-} and D0DsD^{*0}D_{s}^{-}, we treat the physical states as the mixed states between D0DsD^{0}D_{s}^{*-} and D0DsD^{*0}D_{s}^{-}, i.e.,

(|Zcs1|Zcs2)=(cosθsinθsinθcosθ)(D0DsD0Ds).\left(\begin{array}[]{c}|Z_{cs}\rangle_{1}\cr|Z_{cs}\rangle_{2}\end{array}\right)=\left(\begin{array}[]{cc}\cos\theta&\sin\theta\cr-\sin\theta&\cos\theta\end{array}\right)\left(\begin{array}[]{c}D^{0}D_{s}^{*-}\cr D^{*0}D_{s}^{-}\end{array}\right). (16)

The mixing angle θ\theta can vary in the range of (0180)(0^{\circ}\sim 180^{\circ}). Thus, taking the mixing angle θ=45\theta=45^{\circ} we obtain that

|Zcs1θ=45\displaystyle|Z_{cs}\rangle_{1}^{\theta=45^{\circ}} =\displaystyle= 12(D0Ds+D0Ds),\displaystyle\frac{1}{\sqrt{2}}(D^{0}D_{s}^{*-}+D^{*0}D_{s}^{-}),
|Zcs2θ=45\displaystyle|Z_{cs}\rangle_{2}^{\theta=45^{\circ}} =\displaystyle= 12(D0Ds+D0Ds).\displaystyle\frac{1}{\sqrt{2}}(-D^{0}D_{s}^{*-}+D^{*0}D_{s}^{-}). (17)

We notice that for the systems with heavy flavour quarks, proper consideration of the heavy quark spin symmetry is necessary. Thus, the D0DsD^{0}D_{s}^{*-} and D0DsD^{*0}D_{s}^{-} systems are factorizable in the product of two parts: pure heavy and light flavour quark systems. That reads

D0Ds=12|1H0L+12|0H1L+12|1H1L,\displaystyle D^{0}D_{s}^{*-}=-\frac{1}{2}|1_{H}\otimes 0_{L}\rangle+\frac{1}{2}|0_{H}\otimes 1_{L}\rangle+\frac{1}{\sqrt{2}}|1_{H}\otimes 1_{L}\rangle,
D0Ds=12|1H0L+12|0H1L12|1H1L.\displaystyle D^{*0}D_{s}^{-}=-\frac{1}{2}|1_{H}\otimes 0_{L}\rangle+\frac{1}{2}|0_{H}\otimes 1_{L}\rangle-\frac{1}{\sqrt{2}}|1_{H}\otimes 1_{L}\rangle. (18)

Here, the number 1 and 0 in equations with the subscripts H or L denote the spin of the regrouped daughter heavy or light flavour quark systems.

Combining with Eq. (3.1), we further obtain that

|Zcs1θ=45\displaystyle|Z_{cs}\rangle_{1}^{\theta=45^{\circ}} =\displaystyle= 12(|1H0L+|0H1L),\displaystyle\frac{1}{\sqrt{2}}(-|1_{H}\otimes 0_{L}\rangle+|0_{H}\otimes 1_{L}\rangle),
|Zcs2θ=45\displaystyle|Z_{cs}\rangle_{2}^{\theta=45^{\circ}} =\displaystyle= |1H1L.\displaystyle-|1_{H}\otimes 1_{L}\rangle. (19)

It should be pointed out that each direct product decomposition corresponds to a possible decay mode. The corresponding relations are listed as follows:

|1H0L\displaystyle|1_{H}\otimes 0_{L}\rangle \displaystyle\leftrightarrow J/ψK,\displaystyle J/\psi K,
|0H1L\displaystyle|0_{H}\otimes 1_{L}\rangle \displaystyle\leftrightarrow ηcK,\displaystyle\eta_{c}K^{*},
|1H1L\displaystyle|1_{H}\otimes 1_{L}\rangle \displaystyle\leftrightarrow J/ψK.\displaystyle J/\psi K^{*}. (20)

The above correspondences indicate that based on heavy quark spin symmetry the mixed molecular state |Zcs1θ=45|Z_{cs}\rangle_{1}^{\theta=45^{\circ}} can decay into the J/ψKJ/\psi K and ηcK\eta_{c}K^{*} hidden-charm final channels, while its partner state |Zcs2θ=45|Z_{cs}\rangle_{2}^{\theta=45^{\circ}} can’t decay via these two decay modes. Meanwhile, the partial width ratio between J/ψKJ/\psi K and ηcK\eta_{c}K^{*} for |Zcs1θ=45|Z_{cs}\rangle_{1}^{\theta=45^{\circ}} is

Γ[|Zcs1θ=45J/ψK]Γ[|Zcs1θ=45ηcK]=1.\displaystyle\frac{\Gamma[|Z_{cs}\rangle_{1}^{\theta=45^{\circ}}\rightarrow J/\psi K]}{\Gamma[|Z_{cs}\rangle_{1}^{\theta=45^{\circ}}\rightarrow\eta_{c}K^{*}]}=1. (21)

According to the experimental data, the masses of the newly observed states Zcs(3985)Z_{cs}(3985) and Zcs(4000)Z_{cs}(4000) are comparable. Moreover, the Zcs(4000)Z_{cs}(4000) state is observed in the J/ψKJ/\psi K decay channel while non-observation of the Zcs(3985)Z_{cs}(3985) signal in this decay mode. Thus, if the two newly observed ZcsZ_{cs} states are two different states, our theoretical results under the heavy quark spin symmetry imply that the molecular state |Zcs1θ=45|Z_{cs}\rangle_{1}^{\theta=45^{\circ}} may be the candidate of the Zcs(4000)Z_{cs}(4000) state and its partner state |Zcs2θ=45|Z_{cs}\rangle_{2}^{\theta=45^{\circ}} may correspond to the Zcs(3985)Z_{cs}(3985) state. In addition, if the mixed state |Zcs1θ=45|Z_{cs}\rangle_{1}^{\theta=45^{\circ}} is the newly observed state Zcs(4000)Z_{cs}(4000) indeed, except for the J/ψKJ/\psi K decay mode the future experiments may find this state in the ηcK\eta_{c}K^{*} final channel as well.

𝐀.2𝐖𝐢𝐭𝐡𝐭𝐡𝐞𝐪𝐮𝐚𝐫𝐤𝐞𝐱𝐜𝐡𝐚𝐧𝐠𝐞𝐦𝐨𝐝𝐞𝐥\mathbf{A.2~{}With~{}the~{}quark-exchange~{}model} Based on heavy quark spin symmetry we analyse the decay properties of the molecular mixtures |Zcs1θ=45|Z_{cs}\rangle_{1}^{\theta=45^{\circ}} and |Zcs2θ=45|Z_{cs}\rangle_{2}^{\theta=45^{\circ}}. Our results imply that the newly observed states Zcs(3985)Z_{cs}(3985) and Zcs(4000)Z_{cs}(4000) may be explained as 12(D0Ds+D0Ds)\frac{1}{\sqrt{2}}(-D^{0}D_{s}^{*-}+D^{*0}D_{s}^{-}) and 12(D0Ds+D0Ds)\frac{1}{\sqrt{2}}(D^{0}D_{s}^{*-}+D^{*0}D_{s}^{-}), respectively. Considering the heavy quark spin symmetry is only an approximation, more reliable calculations are desperately needed. Hence we further explore the decay properties of the molecular mixtures in the framework of the quark-exchange model.

Refer to caption
Figure 3: The partial decay widths (MeV) for the mixed states |Zcs1|Z_{cs}\rangle_{1} and |Zcs2|Z_{cs}\rangle_{2} as a function of the mixing angle. The masses and root mean square radius of the two mixed states are fixed on 4003 MeV and rmean=1.0r_{mean}=1.0 fm, respectively.
Table 2: The partial decay widths (MeV) for the mixed states |Zcs1|Z_{cs}\rangle_{1} and |Zcs2|Z_{cs}\rangle_{2} with the mixing angle and root mean square radius fixed at θ=45\theta=45^{\circ} and rmean=1.0r_{mean}=1.0 fm, respectively.
state mass(MeV) Γ[J/ψK]\Gamma[J/\psi K] Γ[ηcK]\Gamma[\eta_{c}K^{*}] Γ[J/ψK]\Gamma[J/\psi K^{*}] observed state
|Zcs1θ=45|Z_{cs}\rangle_{1}^{\theta=45^{\circ}} 4003 2.89 3.19 0.01 Zcs(4000)Z_{cs}(4000)
|Zcs2θ=45|Z_{cs}\rangle_{2}^{\theta=45^{\circ}} 3982 0.01 0.04 - Zcs(3985)Z_{cs}(3985)

According to the mixing scheme defined in Eq. (16), in Fig. 3 we plot the hidden-charm decay widths of the mixed states |Zcs1|Z_{cs}\rangle_{1} and |Zcs2|Z_{cs}\rangle_{2} as a function of the mixing angle θ\theta in the region of (0900^{\circ}\sim 90^{\circ}) by fixing the masses of the two states at M=4003M=4003 MeV and root mean square radius at rmean=1.0r_{mean}=1.0 fm. From the figure, we get that the variation curves like a bowel structure when the mixing angle varies from θ=0\theta=0^{\circ} to θ=90\theta=90^{\circ}, and the changing trends of the decay modes J/ψKJ/\psi K and ηcK\eta_{c}K^{*} are opposite to that of the decay mode J/ψKJ/\psi K^{*}. Meanwhile, we notice that with the mixing angle increasing to θ45\theta\simeq 45^{\circ}, the partial decay widths of the J/ψKJ/\psi K and ηcK\eta_{c}K^{*} modes for the mixed state |Zcs1|Z_{cs}\rangle_{1} can reach a maximum about Γ3\Gamma\sim 3 MeV, while that for the mixed state |Zcs2|Z_{cs}\rangle_{2} decrease into the minimum about Γ0\Gamma\sim 0 MeV. The above decay properties of the mixed states |Zcs1|Z_{cs}\rangle_{1} and |Zcs2|Z_{cs}\rangle_{2} obtained here are consistent with those gotten under heavy quark spin symmetry.

Refer to caption
Figure 4: The partial decay widths (MeV) for the mixed states |Zcs1θ=45|Z_{cs}\rangle_{1}^{\theta=45^{\circ}} and |Zcs2θ=45|Z_{cs}\rangle_{2}^{\theta=45^{\circ}} as a function of the root mean square radius rmeanr_{mean}. The masses of the two mixed states are both fixed on 4003 MeV.

Fixing the mixing angle at θ=45\theta=45^{\circ}(see Table 2 ), we obtain

Γ[|Zcs1θ=45J/ψK]\displaystyle\Gamma[|Z_{cs}\rangle_{1}^{\theta=45^{\circ}}\rightarrow J/\psi K] \displaystyle\simeq 2.89MeV,\displaystyle 2.89~{}\text{MeV},
Γ[|Zcs1θ=45ηcK]\displaystyle\Gamma[|Z_{cs}\rangle_{1}^{\theta=45^{\circ}}\rightarrow\eta_{c}K^{*}] \displaystyle\simeq 3.19MeV,\displaystyle 3.19~{}\text{MeV}, (22)

which are large enough to be observed in experiments. Observation of the state Zcs(4000)Z_{cs}(4000) in the J/ψKJ/\psi K decay mode indicates Zcs(4000)Z_{cs}(4000) may be a candidate of the mixed state |Zcs1θ=45|Z_{cs}\rangle_{1}^{\theta=45^{\circ}}. Meanwhile, the partial decay widths ratio between J/ψKJ/\psi K and ηcK\eta_{c}K^{*} is

Γ[|Zcs1θ=45J/ψK]Γ[|Zcs1θ=45ηcK]=0.9,\displaystyle\frac{\Gamma[|Z_{cs}\rangle_{1}^{\theta=45^{\circ}}\rightarrow J/\psi K]}{\Gamma[|Z_{cs}\rangle_{1}^{\theta=45^{\circ}}\rightarrow\eta_{c}K^{*}]}=0.9, (23)

which is close to unit. Namely if the observed state Zcs(4000)Z_{cs}(4000) can be explained as the mixed state |Zcs1θ=45|Z_{cs}\rangle_{1}^{\theta=45^{\circ}}, the mode ηcK\eta_{c}K^{*} may be a ideal channel as well to further decode its inner structure.

Then, we investigate the decay properties of its partner state |Zcs2θ=45|Z_{cs}\rangle_{2}^{\theta=45^{\circ}} and collect in Table 2 as well. From the table, it is obvious that for the state |Zcs2θ=45|Z_{cs}\rangle_{2}^{\theta=45^{\circ}}, the partial decay width of J/ψKJ/\psi K is small to zero which agrees with the decay properties of the newly observed state Zcs(3985)Z_{cs}(3985): non-observation in the J/ψKJ/\psi K mode. Thus, we take the mixed state |Zcs2θ=45|Z_{cs}\rangle_{2}^{\theta=45^{\circ}} as the state Zcs(3985)Z_{cs}(3985), and fix the mass on M=3982M=3982 MeV. We obtain that the decay width of the mode ηcK\eta_{c}K^{*} is small to zero as well. Meanwhile, the mode J/ψKJ/\psi K^{*} is forbidden for the mass below the threshold of J/ψKJ/\psi K^{*}.

It should be mentioned that all of the above theoretical predictions are obtained with the root mean square radius rmean=1.0r_{mean}=1.0 fm. However, the root mean square radius is not determined absolutely, which bares a large uncertainty. Thus fixing the masses of the mixed states |Zcs1θ=45|Z_{cs}\rangle_{1}^{\theta=45^{\circ}} and |Zcs2θ=45|Z_{cs}\rangle_{2}^{\theta=45^{\circ}} at M=4003M=4003 MeV, we further explore the decay properties as a function of the root mean square radius rmeanr_{mean}. The results are shown in Fig. 4. One notes that the bigger rmeanr_{mean} value leads to a narrower decay width. A loose understanding is that with the rmeanr_{mean} increasing the two mesons(D()0D^{(*)0} and Ds()D_{s}^{(*)-}) in the four-quark state farther separate from each other, thus, the charm and anti-charm quarks are more difficult to form a charmonium.

In addition, we notice that as the consequence of Zcs(4000)Z_{cs}(4000) and Zcs(3985)Z_{cs}(3985) being most pure |Zcs1θ=45|Z_{cs}\rangle_{1}^{\theta=45^{\circ}} and |Zcs2θ=45|Z_{cs}\rangle_{2}^{\theta=45^{\circ}} states, respectively, the branching ratio Γ[ZcsD0Ds]Γ[ZcsD0Ds]0.5\frac{\Gamma[Z_{cs}\rightarrow D^{0}D_{s}^{*-}]}{\Gamma[Z_{cs}\rightarrow D^{*0}D_{s}^{-}]}\simeq 0.5 for Zcs(4000)Z_{cs}(4000) or Zcs(3985)Z_{cs}(3985). This result is consistent with the experimental analysis for the Zcs(3985)Z_{cs}(3985) state [13].

The big difference of their decay widths leads to intensive discussions on whether Zcs(3985)Z_{cs}(3985) and Zcs(4000)Z_{cs}(4000) are two different states and possible implications if they are different states in literature [48]. In the present work, we adopted the quark-exchange model, which is a suitable framework for the hidden-charm decay modes. Unfortunately, the quark-exchange model is not suitable for the so-called ”fall-apart” open-charm decay modes. For the ZcsZ_{cs} states, the open-charm decay modes are the dominant decay modes according to BESIII and BELLEII measurement. Therefore, we do not discuss the total widths of the ZcsZ_{cs} states in this work.

3.1.1 The molecular state D0DsD^{*0}D_{s}^{*-}

As mentioned in the previous section, the authors in Ref. [48] suggested a tensor DDsD^{*}D_{s}^{*} resonance, and its mass and decay width were predicted to be M=4126M=4126 MeV and Γ=13\Gamma=13 MeV, respectively. The sizable predicted decay width and advanced experimental methods indicate that this tensor resonance has a good potential to be observed in future experiments by BESIII or LHCb collaborations. In this work we investigate the hidden-charm decay properties of the DDsD^{*}D_{s}^{*} molecular states with different spin-parity, and hope to provide reference for future experimental explorations.

𝐁.1𝐔𝐧𝐝𝐞𝐫𝐡𝐞𝐚𝐯𝐲𝐪𝐮𝐚𝐫𝐤𝐬𝐩𝐢𝐧𝐬𝐲𝐦𝐦𝐞𝐭𝐫𝐲\mathbf{B.1~{}Under~{}heavy~{}quark~{}spin~{}symmetry} For the molecular state D0DsD^{*0}D_{s}^{*-}, the spin-parity(JPJ^{P}) has three different values: 0+0^{+}, 1+1^{+} and 2+2^{+}. Here we label them as |D0Ds0+|D^{*0}D_{s}^{*-}\rangle_{0^{+}}, |D0Ds1+|D^{*0}D_{s}^{*-}\rangle_{1^{+}} and |D0Ds2+|D^{*0}D_{s}^{*-}\rangle_{2^{+}}, respectively. Similarly, the D0DsD^{*0}D_{s}^{*-} system can be factorized into pure heavy and light flavour quark parts under heavy quark spin symmetry, i.e.,

|D0Ds0+\displaystyle|D^{*0}D_{s}^{*-}\rangle_{0^{+}} =\displaystyle= 32|0H0L12|1H1L,\displaystyle\frac{\sqrt{3}}{2}|0_{H}\otimes 0_{L}\rangle-\frac{1}{2}|1_{H}\otimes 1_{L}\rangle,
|D0Ds1+\displaystyle|D^{*0}D_{s}^{*-}\rangle_{1^{+}} =\displaystyle= 12|1H0L+12|0H1L,\displaystyle\frac{1}{\sqrt{2}}|1_{H}\otimes 0_{L}\rangle+\frac{1}{\sqrt{2}}|0_{H}\otimes 1_{L}\rangle,
|D0Ds2+\displaystyle|D^{*0}D_{s}^{*-}\rangle_{2^{+}} =\displaystyle= |1H1L.\displaystyle|1_{H}\otimes 1_{L}\rangle. (24)

Here the direct product decomposition |0H0L|0_{H}\otimes 0_{L}\rangle corresponds to the possible decay mode ηcK\eta_{c}K.

From Eq. (3.1.1), we can see that the molecular state |D0Ds0+|D^{*0}D_{s}^{*-}\rangle_{0^{+}} can decay into the ηcK\eta_{c}K and J/ψKJ/\psi K^{*} final channels, and the partial decay width ratio between the two channels is

Γ[|D0Ds0+ηcK]Γ[|D0Ds0+J/ψK]1.7.\displaystyle\frac{\Gamma[|D^{*0}D_{s}^{*-}\rangle_{0^{+}}\rightarrow\eta_{c}K]}{\Gamma[|D^{*0}D_{s}^{*-}\rangle_{0^{+}}\rightarrow J/\psi K^{*}]}\simeq 1.7. (25)

For the molecular state |D0Ds1+|D^{*0}D_{s}^{*-}\rangle_{1^{+}}, the decay channel J/ψKJ/\psi K^{*} is forbidden and the partial decay width ratio between J/ψKJ/\psi K and ηcK\eta_{c}K^{*} is

Γ[|D0Ds1+J/ψK]Γ[|D0Ds1+ηcK]1.\displaystyle\frac{\Gamma[|D^{*0}D_{s}^{*-}\rangle_{1^{+}}\rightarrow J/\psi K]}{\Gamma[|D^{*0}D_{s}^{*-}\rangle_{1^{+}}\rightarrow\eta_{c}K^{*}]}\simeq 1. (26)

As to the molecular state |D0Ds2+|D^{*0}D_{s}^{*-}\rangle_{2^{+}}, it can decay into J/ψKJ/\psi K^{*} only in all hidden-charm strong decay modes.

Of course, the above results are obtained based on heavy quark spin symmetry, which is rather rough for the cc quark having a limited mass. While the main predictions should hold and be helpful for future experiments.

Refer to caption
Figure 5: The partial decay widths (MeV) for the D0DsD^{*0}D_{s}^{*-} molecular states as a function of the root mean square radius rmeanr_{mean} with spin-parity JP=0+J^{P}=0^{+}, 1+1^{+} and 2+2^{+} . The masses are fixed on 4126 MeV.

𝐁.2𝐖𝐢𝐭𝐡𝐭𝐡𝐞𝐪𝐮𝐚𝐫𝐤𝐞𝐱𝐜𝐡𝐚𝐧𝐠𝐞𝐦𝐨𝐝𝐞𝐥\mathbf{B.2~{}With~{}the~{}quark-exchange~{}model} Furthermore, we analyze the hidden-charm decay properties of the molecular state D0DsD^{*0}D_{s}^{*-} using the quark-exchange model. Fixing the masses at M=4126M=4126 MeV, we plot the variations of the decay widths as functions of the root mean square radius rmeanr_{mean} in Fig. 5. From the figure, we find that with the rmeanr_{mean} increasing in the range of (1.0-3.0) fm, the partial decay widths for D0DsD^{*0}D_{s}^{*-} decaying into the hidden-charm channels decrease. Moreover, the partial decay widths for |D0Ds0+|D^{*0}D_{s}^{*-}\rangle_{0^{+}} and |D0Ds1+|D^{*0}D_{s}^{*-}\rangle_{1^{+}} decaying into the hidden-charm channels are less than 0.8\sim 0.8 MeV with the root mean square radius rmeanr_{mean} varied in the whole range we considered in the present work, while the J/ψKJ/\psi K^{*} decay width of the |D0Ds2+|D^{*0}D_{s}^{*-}\rangle_{2^{+}} molecular state can reach up to a few MeV.

Table 3: The partial decay widths (MeV) for the molecular state D0DsD^{*0}D_{s}^{*-} with the mass and root mean square radius fixed at M=4126M=4126 MeV and rmean=1.5r_{mean}=1.5 fm, respectively.
state Γ[ηcK]\Gamma[\eta_{c}K] Γ[J/ψK]\Gamma[J/\psi K] Γ[ηcK]\Gamma[\eta_{c}K^{*}] Γ[J/ψK]\Gamma[J/\psi K^{*}]
|D0Ds0+|D^{*0}D_{s}^{*-}\rangle_{0^{+}} 0.14 - - 0.04
|D0Ds1+|D^{*0}D_{s}^{*-}\rangle_{1^{+}} - 0.19 0.32 0.01
|D0Ds2+|D^{*0}D_{s}^{*-}\rangle_{2^{+}} - - - 1.81

Fixing the root mean square radius at rmean=1.5r_{mean}=1.5 fm, we collect the predicted decay properties in Table 3. As show in table, we can see that the J/ψKJ/\psi K^{*} decay width of the molecular state |D0Ds1+|D^{*0}D_{s}^{*-}\rangle_{1^{+}} is small to zero, which is consistent with the prediction within heavy quark spin symmetry. The J/ψKJ/\psi K^{*} decay width of the molecular state |D0Ds0+|D^{*0}D_{s}^{*-}\rangle_{0^{+}} is small as well, which is much smaller than that of the molecular state |D0Ds2+|D^{*0}D_{s}^{*-}\rangle_{2^{+}}. The ratio is

Γ[|D0Ds2+J/ψK]Γ[|D0Ds0+J/ψK]45.3.\displaystyle\frac{\Gamma[|D^{*0}D_{s}^{*-}\rangle_{2^{+}}\rightarrow J/\psi K^{*}]}{\Gamma[|D^{*0}D_{s}^{*-}\rangle_{0^{+}}\rightarrow J/\psi K^{*}]}\simeq 45.3. (27)

Thus, the J/ψKJ/\psi K^{*} decay channel can be used to distinguish those three molecular states from each other. Moreover, the sizable decay width for |D0Ds2+|D^{*0}D_{s}^{*-}\rangle_{2^{+}} decaying into J/ψKJ/\psi K^{*} indicates that this tensor molecular state has a good potential to be observed in the J/ψKJ/\psi K^{*} channel.

3.2 The tetraquark scenario

𝐂.1[[𝐜𝐬]𝐒=𝟎[𝐜¯𝐮¯]𝐒=𝟏]𝐒=𝟏𝐚𝐧𝐝[[𝐜𝐬]𝐒=𝟏[𝐜¯𝐮¯]𝐒=𝟎]𝐒=𝟏𝐬𝐲𝐬𝐭𝐞𝐦𝐬\mathbf{C.1~{}\big{[}[cs]^{S=0}[\bar{c}\bar{u}]^{S=1}\big{]}^{S=1}~{}and~{}\big{[}[cs]^{S=1}[\bar{c}\bar{u}]^{S=0}\big{]}^{S=1}~{}systems} For comparison, we further explore the strong decay properties of the four-quark system cc¯su¯c\bar{c}s\bar{u} as a compact tetraquark state. We consider the mixing between [[cs]S=0[c¯u¯]S=1]S=1\big{[}[cs]^{S=0}[\bar{c}\bar{u}]^{S=1}\big{]}^{S=1} and [[cs]S=1[c¯u¯]S=0]S=1\big{[}[cs]^{S=1}[\bar{c}\bar{u}]^{S=0}\big{]}^{S=1},i.e.,

(|Tcs1|Tcs2)=(cosθsinθsinθcosθ)([[cs]S=0[c¯u¯]S=1]S=1[[cs]S=1[c¯u¯]S=0]S=1).\left(\begin{array}[]{c}|T_{cs}\rangle_{1}\cr|T_{cs}\rangle_{2}\end{array}\right)=\left(\begin{array}[]{cc}\cos\theta&\sin\theta\cr-\sin\theta&\cos\theta\end{array}\right)\left(\begin{array}[]{c}\big{[}[cs]^{S=0}[\bar{c}\bar{u}]^{S=1}\big{]}^{S=1}\cr\big{[}[cs]^{S=1}[\bar{c}\bar{u}]^{S=0}\big{]}^{S=1}\end{array}\right). (28)

Similarly we investigate the decay properties of the mixed tetraquark states |Tcs1|T_{cs}\rangle_{1} and |Tcs2|T_{cs}\rangle_{2} as a function of the mixing angle θ\theta with the masses fixed at M=4003M=4003 MeV. Our calculations indicate that all the partial decay widths for the two mixed tetraquark states decaying into J/ψKJ/\psi K, ηcK\eta_{c}K^{*} and J/ψKJ/\psi K^{*} are less than \sim0.1 MeV with the mixing angle in the range of (090)(0^{\circ}\sim 90^{\circ}).

Table 4: The partial decay widths (MeV) for the mixed states |Tcs1|T_{cs}\rangle_{1} and |Tcs2|T_{cs}\rangle_{2} with the mixing angle fixed at θ=45\theta=45^{\circ}.
state mass Γ[J/ψK]\Gamma[J/\psi K] Γ[ηcK]\Gamma[\eta_{c}K^{*}] Γ[J/ψK]\Gamma[J/\psi K^{*}]
|Tcs1θ=45|T_{cs}\rangle_{1}^{\theta=45^{\circ}} 4003 0.07 0.08 0.01
|Tcs2θ=45|T_{cs}\rangle_{2}^{\theta=45^{\circ}} 3982 0.00 0.02 -

In the same way, we fix the mixing angle at θ=45\theta=45^{\circ} and collected the decay properties in Table 4. From the table, it is seen that the decay properties of the mixed states |Tcs1θ=45|T_{cs}\rangle_{1}^{\theta=45^{\circ}} and |Tcs2θ=45|T_{cs}\rangle_{2}^{\theta=45^{\circ}} are inconsistent with that of the newly observed Zcs(4000)Z_{cs}(4000) state. Thus, the possibility of the mixed tetraquark states as the candidates of the newly observed ZcsZ_{cs} states may be excluded.

𝐂.2[[𝐜𝐬]𝐒=𝟏[𝐜¯𝐮¯]𝐒=𝟏]𝐒=𝟎,𝟏,𝟐𝐬𝐲𝐬𝐭𝐞𝐦𝐬\mathbf{C.2~{}\big{[}[cs]^{S=1}[\bar{c}\bar{u}]^{S=1}\big{]}^{S=0,1,2}~{}systems} In addition, we also systematically study the hidden-charm decay properties of the compact tetraquark states [[cs]S=1[c¯u¯]S=1]S=0,1,2\big{[}[cs]^{S=1}[\bar{c}\bar{u}]^{S=1}\big{]}^{S=0,1,2}. Fixing the masses at M=4126M=4126 MeV, we collect their decay properties in Table 5.

Table 5: The partial decay widths (MeV) for the compact tetraquark states [[cs]S=1[c¯u¯]S=1]S=0,1,2\big{[}[cs]^{S=1}[\bar{c}\bar{u}]^{S=1}\big{]}^{S=0,1,2} with their masses fixed at M=4126M=4126 MeV.
state Γ[ηcK]\Gamma[\eta_{c}K] Γ[J/ψK]\Gamma[J/\psi K] Γ[ηcK]\Gamma[\eta_{c}K^{*}] Γ[J/ψK]\Gamma[J/\psi K^{*}]
[[cs]S=1[c¯u¯]S=1]S=0\big{[}[cs]^{S=1}[\bar{c}\bar{u}]^{S=1}\big{]}^{S=0} 0.13 - - 0.77
[[cs]S=1[c¯u¯]S=1]S=1\big{[}[cs]^{S=1}[\bar{c}\bar{u}]^{S=1}\big{]}^{S=1} - 0.11 0.18 0.01
[[cs]S=1[c¯u¯]S=1]S=2\big{[}[cs]^{S=1}[\bar{c}\bar{u}]^{S=1}\big{]}^{S=2} - - - 0.02

According to the table, it is found that in the compact tetraquark scenario the partial decay widths are rather small(Γ<0.2\Gamma<0.2 MeV) except for [[cs]S=1[c¯u¯]S=1]S=0\big{[}[cs]^{S=1}[\bar{c}\bar{u}]^{S=1}\big{]}^{S=0} decaying into J/ψKJ/\psi K^{*}, which is about Γ0.8\Gamma\sim 0.8 MeV. Moreover,

Γ[[[cs]S=1[c¯u¯]S=1]S=2J/ψK]Γ[[[cs]S=1[c¯u¯]S=1]S=0J/ψK]0.03.\displaystyle\frac{\Gamma[\big{[}[cs]^{S=1}[\bar{c}\bar{u}]^{S=1}\big{]}^{S=2}\rightarrow J/\psi K^{*}]}{\Gamma[\big{[}[cs]^{S=1}[\bar{c}\bar{u}]^{S=1}\big{]}^{S=0}\rightarrow J/\psi K^{*}]}\simeq 0.03. (29)

Thus, the compact tetraquark state [[cs]S=1[c¯u¯]S=1]S=0\big{[}[cs]^{S=1}[\bar{c}\bar{u}]^{S=1}\big{]}^{S=0} may be found in the J/ψKJ/\psi K^{*} channel in future experiments.

4 Summary

In the present work we explore the partial decay widths of the ηcK\eta_{c}K, J/ψKJ/\psi K, ηcK\eta_{c}K^{*} and J/ψKJ/\psi K^{*} modes for the four-quark system cc¯su¯c\bar{c}s\bar{u} in the molecular and compact tetraquark scenrios using the quark-exchange model. Our main theoretical results are listed as follows.

In the molecular scenario, we systematically investigate the decay properties of the molecular states D()0Ds()D^{(*)0}D_{s}^{(*)-}. For the mixed molecular states between D0DsD^{0}D_{s}^{*-} and D0DsD^{*0}D_{s}^{-}, we get that the J/ψKJ/\psi K decay width of the mixture |Zcs1θ=45|Z_{cs}\rangle_{1}^{\theta=45^{\circ}}(12(D0Ds+D0Ds)\frac{1}{\sqrt{2}}(D^{0}D_{s}^{*-}+D^{*0}D_{s}^{-})) is about Γ[|Zcs1θ=45J/ψK]2.89\Gamma[|Z_{cs}\rangle_{1}^{\theta=45^{\circ}}\rightarrow J/\psi K]\sim 2.89 MeV, while that of the mixture |Zcs2θ=45|Z_{cs}\rangle_{2}^{\theta=45^{\circ}}(12(D0Ds+D0Ds)\frac{1}{\sqrt{2}}(-D^{0}D_{s}^{*-}+D^{*0}D_{s}^{-})) is small to zero. Considering Zcs(4000)Z_{cs}(4000) observed in the J/ψKJ/\psi K and non-observation of the Zcs(3985)Z_{cs(3985)} signal in this decay mode, if those two newly observed states are two different states, Zcs(4000)Z_{cs}(4000) may be interpreted as the mixture |Zcs1θ=45|Z_{cs}\rangle_{1}^{\theta=45^{\circ}}, while Zcs(3985)Z_{cs}(3985) may correspond to the mixture |Zcs2θ=45|Z_{cs}\rangle_{2}^{\theta=45^{\circ}}. In addition, if the state Zcs(4000)Z_{cs}(4000) can be explained as the mixed state |Zcs1θ=45|Z_{cs}\rangle_{1}^{\theta=45^{\circ}}, the partial decay width ratio between J/ψKJ/\psi K and ηcK\eta_{c}K^{*} is close to unit, which indicates the decay channel ηcK\eta_{c}K^{*} may be a ideal channel as well to decode the inner structure of Zcs(4000)Z_{cs}(4000).

For the molecular state D0DsD^{*0}D_{s}^{*-}, our results imply that the partial decay width for |D0Ds2+|D^{*0}D_{s}^{*-}\rangle_{2^{+}} decaying into J/ψKJ/\psi K^{*} can reach up to 2\sim 2 MeV, which is large enough to be observed in experiments.

In the tetraquark scenario, we consider the mixing between [[cs]S=0[c¯u¯]S=1]S=1\big{[}[cs]^{S=0}[\bar{c}\bar{u}]^{S=1}\big{]}^{S=1} and [[cs]S=1[c¯u¯]S=0]S=1\big{[}[cs]^{S=1}[\bar{c}\bar{u}]^{S=0}\big{]}^{S=1} as well. Our calculations indicate that all the partial hidden-charm decay widths are less than 0.1\sim 0.1 MeV with the mixing angle in the range of (0900^{\circ}\sim 90^{\circ}). Thus, the possibility of the mixed compact tetraquark states as the candidates of the newly observed ZcsZ_{cs} states may be excluded.

For the compact tetraquark states [[cs]S=1[c¯u¯]S=1]S=0,1,2\big{[}[cs]^{S=1}[\bar{c}\bar{u}]^{S=1}\big{]}^{S=0,1,2}, Except the partial decay width for [[cs]S=1[c¯u¯]S=1]S=0\big{[}[cs]^{S=1}[\bar{c}\bar{u}]^{S=1}\big{]}^{S=0} decaying into J/ψKJ/\psi K^{*} being sizable(0.8\sim 0.8 MeV), the rest of the partial decay widths are small(<0.2<0.2 MeV).

Acknowledgements

We would like to thank Shi-Lin Zhu and Guang-Juan Wang for very helpful discussions. This work is supported by the National Natural Science Foundation of China under Grants No.12005013, No.11947048.

References

  • [1] A. Esposito, A. Pilloni and A. D. Polosa, Multiquark Resonances, Phys. Rept.  668, 1 (2017).
  • [2] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, The XYZXYZ states: experimental and theoretical status and perspectives, Phys. Rept.  873, 1 (2020).
  • [3] Y. R. Liu, H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Pentaquark and Tetraquark states, Prog. Part. Nucl. Phys.  107, 237 (2019).
  • [4] S. L. Olsen, T. Skwarnicki and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys.  90, 015003 (2018).
  • [5] F. K. Guo, C. Hanhart, U. G. Meiner, Q. Wang, Q. Zhao and B. S. Zou, Hadronic molecules, Rev. Mod. Phys.  90, 015004 (2018).
  • [6] H. X. Chen, W. Chen, X. Liu and S. L. Zhu, The hidden-charm pentaquark and tetraquark states, Phys. Rept.  639, 1 (2016).
  • [7] M. Tanabashi et al. [Particle Data Group], Review of Particle Physics, Phys. Rev. D 98, 030001 (2018).
  • [8] R. Aaij et al. [LHCb Collaboration], Observation of J/ψpJ/\psi p Resonances Consistent with Pentaquark States in Λb0J/ψKp\Lambda_{b}^{0}\to J/\psi K^{-}p Decays, Phys. Rev. Lett.  115, 072001 (2015).
  • [9] R. Aaij et al. [LHCb Collaboration], Observation of a narrow pentaquark state, Pc(4312)+P_{c}(4312)^{+}, and of two-peak structure of the Pc(4450)+P_{c}(4450)^{+}, Phys. Rev. Lett.  122, 222001 (2019).
  • [10] L. Zhang, T. Skwarnicki and Y. Gao, The pentaquarks observed by the LHCb experiment, Sci. Bull.  64, 1119 (2019).
  • [11] R. Aaij et al. [LHCb Collaboration], Observation of structure in the J/ψJ/\psi -pair mass spectrum, Sci. Bull.  65, 1983 (2020).
  • [12] K. T. Chao and S. L. Zhu, The possible tetraquark states ccc¯c¯cc\bar{c}\bar{c} observed by the LHCb experiment, Sci. Bull.  65, 1952 (2020).
  • [13] M. Ablikim et al. [BESIII Collaboration], Observation of a Near-Threshold Structure in the K+K^{+} Recoil-Mass Spectra in e+eK+(DsD0+DsD0e^{+}e^{-}\rightarrow K^{+}(D_{s}^{-}D^{*0}+D_{s}^{*-}D^{0}), Phys. Rev. Lett.  126, 102001 (2021).
  • [14] L. Meng, B. Wang and S. L. Zhu, Zcs(3985)Z_{cs}(3985)^{-} as the UU-spin partner of Zc(3900)Z_{c}(3900)^{-} and implication of other states in the SU(3)F\text{SU(3)}_{F} symmetry and heavy quark symmetry, Phys. Rev. D 102, 111502 (2020).
  • [15] Z. Yang, X. Cao, F. K. Guo, J. Nieves and M. P. Valderrama, Strange molecular partners of the ZcZ_{c}(3900) and ZcZ_{c}(4020), Phys. Rev. D 103,074029 (2021).
  • [16] M. Z. Liu, J. X. Lu, T. W. Wu, J. J. Xie and L. S. Geng, Can Zcs(3985)Z_{cs}(3985) be a molecular state of D¯sD\bar{D}_{s}^{*}D and D¯sD\bar{D}_{s}D^{*} ?, arXiv:2011.08720 [hep-ph].
  • [17] B. D. Wan and C. F. Qiao, About the exotic structure of ZcsZ_{cs}, Nucl. Phys. B 968, 115450 (2021).
  • [18] M. C. Du, Q. Wang and Q. Zhao, The nature of charged charmonium-like states Zc(3900)Z_{c}(3900) and its strange partner Zcs(3982)Z_{cs}(3982), arXiv:2011.09225 [hep-ph].
  • [19] R. Chen and Q. Huang, Zcs(3985)Z_{cs}(3985)^{-}: A strange hidden-charm tetraquark resonance or not?, Phys. Rev. D 103, 034008 (2021).
  • [20] Z. F. Sun and C. W. Xiao, Explanation of the newly obseaved Zcs(3985)Z_{cs}^{-}(3985) as a Ds()D()0D_{s}^{(*)-}D^{(*)0} molecular state, arXiv:2011.09404 [hep-ph].
  • [21] Q. N. Wang, W. Chen and H. X. Chen, Exotic D¯s()D()\bar{D}_{s}^{(*)}D^{(*)} molecular states and scq¯c¯sc\bar{q}\bar{c} tetraquark states with JP=0+,1+,2+J^{P}=0^{+},1^{+},2^{+}, arXiv:2011.10495 [hep-ph].
  • [22] X. Cao, J. P. Dai and Z. Yang, Photoproduction of strange hidden-charm and hidden-bottom states, Eur. Phys. J. C 81, 184 (2021).
  • [23] K. Azizi and N. Er, The newly observed Zcs(3985)Z_{cs}(3985)^{-} state: in vacuum and a dense medium, Eur. Phys. J. C 81, 61 (2021).
  • [24] Z. G. Wang, Analysis of the Zcs(3985)Z_{cs}(3985) as the axialvector tetraquark state, Chin. Phys. C 45, 073107 (2021).
  • [25] X. Jin, X. Liu, Y. Xue, H. Huang and J. Ping, Strange hidden-charm tetraquarks in constituent quark models, arXiv:2011.12230 [hep-ph].
  • [26] B. Wang, L. Meng and S. L. Zhu, Decoding the nature of Zcs(3985)Z_{cs}(3985) and establishing the spectrum of charged heavy quarkoniumlike states in chiral effective field theory,” Phys. Rev. D 103, L021501 (2021).
  • [27] Y. A. Simonov, Recoupling Mechanism for exotic mesons and baryons, JHEP 2104, 051 (2021).
  • [28] Y. J. Xu, Y. L. Liu, C. Y. Cui and M. Q. Huang, D¯s()D()\bar{D}^{(*)}_{s}D^{(*)} molecular state with JP=1+J^{P}=1^{+}: the mass and magnetic moment, arXiv:2011.14313 [hep-ph].
  • [29] J. Y. Süngü, A. Türkan, H. Sundu and E. V. Veliev, Impact of a thermal medium on newly observed Zcs(3985)Z_{cs}(3985) resonance and its bb-partner, arXiv:2011.13013 [hep-ph].
  • [30] Z. H. Guo and J. A. Oller, Unified description of the hidden-charm tetraquark states Zcs(3985),Zc(3900)Z_{cs}(3985),Z_{c}(3900) , and X(4020)X(4020), Phys. Rev. D 103, 054021 (2021).
  • [31] Z. G. Wang, Analysis of the hidden-charm tetraquark molecule mass spectrum with the QCD sum rules, Int. J. Mod. Phys. A 35, 2150107 (2021).
  • [32] X. K. Dong, F. K. Guo and B. S. Zou, A survey of heavy-antiheavy hadronic mlecules, Progr. Phys.  41, 65 (2021).
  • [33] U. Ozdem and K. Azizi, Magnetic dipole moment of the Zcs(3985)Z_{cs}(3985) state: diquark-antidiquark and molecular pictures, arXiv:2102.09231 [hep-ph].
  • [34] M. J. Yan, F. Z. Peng, M. Sánchez Sánchez and M. Pavon Valderrama, Axial meson exchange and the Zc(3900)Z_{c}(3900) and Zcs(3985)Z_{cs}(3985) resonances as heavy hadron molecules, arXiv:2102.13058 [hep-ph].
  • [35] K. Zhu, Triangle relations for XY Z states, Int. J. Mod. Phys. A 36, 2150126 (2021).
  • [36] R. M. Albuquerque, S. Narison and D. Rabetiarivony, ZcZ_{c}-like spectra from QCD Laplace sum rules at NLO, Phys. Rev. D 103, 074015 (2021).
  • [37] N. Ikeno, R. Molina and E. Oset, The Zcs(3985)Z_{cs}(3985) as a threshold effect from the D¯sD+D¯sD\bar{D}_{s}^{*}D+\bar{D}_{s}D^{*} interaction, Phys. Lett. B 814, 136120 (2021).
  • [38] X. K. Dong, F. K. Guo and B. S. Zou, Explaining the Many Threshold Structures in the Heavy-Quark Hadron Spectrum, Phys. Rev. Lett.  126, 152001 (2021).
  • [39] J. Z. Wang, Q. S. Zhou, X. Liu and T. Matsuki, Toward charged Zcs(3985)Z_{cs}(3985) structure under a reflection mechanism, Eur. Phys. J. C 81, 51 (2021).
  • [40] R. Aaij et al. [LHCb Collaboration], Observation of new resonances decaying to J/ψK+J/\psi K^{+} and J/ψϕJ/\psi\phi, arXiv:2103.01803 [hep-ex].
  • [41] P. P. Shi, F. Huang and W. L. Wang, Hidden charm tetraquark states in a diquark model, Phys. Rev. D 103, 094038 (2021).
  • [42] P. G. Ortega, D. R. Entem and F. Fernandez, The strange partner of the ZcZ_{c} structures in a coupled-channels model, Phys. Lett. B 818, 136382 (2021).
  • [43] H. X. Chen, Hadronic molecules in B decays, arXiv:2103.08586 [hep-ph].
  • [44] L. Maiani, A. D. Polosa and V. Riquer, The new resonances Zcs\mathrm{Z}_{cs}(3985) and Zcs\mathrm{Z}_{cs}(4003) (almost) fill two tetraquark nonets of broken SU(3)f, arXiv:2103.08331 [hep-ph].
  • [45] Y. H. Ge, X. H. Liu and H. W. Ke, Threshold effects as the origin of Zcs(4000)Z_{cs}(4000), Zcs(4220)Z_{cs}(4220) and X(4700)X(4700) observed in B+J/ψϕK+B^{+}\to J/\psi\phi K^{+}, arXiv:2103.05282 [hep-ph].
  • [46] J. F. Giron, R. F. Lebed and S. R. Martinez, Spectrum of Hidden-Charm, Open-Strange Exotics in the Dynamical Diquark Model, arXiv:2106.05883 [hep-ph].
  • [47] U. Ozdem and A. K. Yildirim, Magnetic dipole moments of the Zc(4020)+Z_{c}(4020)^{+}, Zc(4200)+Z_{c}(4200)^{+}, Zcs(4000)+Z_{cs}(4000)^{+} and Zcs(4220)+Z_{cs}(4220)^{+} states in light-cone QCD, arXiv:2104.13074 [hep-ph].
  • [48] L. Meng, B. Wang, G. J. Wang and S. L. Zhu, Implications of the Zcs(3985)Z_{cs}(3985) and Zcs(4000)Z_{cs}(4000) as two different states, arXiv:2104.08469 [hep-ph].
  • [49] G. Yang, J. Ping and J. Segovia, Hidden-charm tetraquarks with strangeness in the chiral quark model, Phys. Rev. D 104, 094035 (2021).
  • [50] M. Karliner and J. L. Rosner, Configuration mixing in strange tetraquarks ZcsZ_{cs}, Phys. Rev. D 104, 034033 (2021).
  • [51] T. Barnes, N. Black and E. S. Swanson, Meson meson scattering in the quark model: Spin dependence and exotic channels, Phys. Rev. C 63, 025204 (2001).
  • [52] G. J. Wang, L. Y. Xiao, R. Chen, X. H. Liu, X. Liu and S. L. Zhu, Probing hidden-charm decay properties of PcP_{c} states in a molecular scenario, Phys. Rev. D 102, 036012 (2020).
  • [53] L. Y. Xiao, G. J. Wang and S. L. Zhu, Hidden-charm strong decays of the ZcZ_{c} states, Phys. Rev. D 101, 054001 (2020).
  • [54] G. J. Wang, L. Meng, L. Y. Xiao, M. Oka and S. L. Zhu, Mass spectrum and strong decays of tetraquark c¯s¯qq{\bar{c}}{\bar{s}}qq states, Eur. Phys. J. C 81, 188 (2021).
  • [55] C. Deng, J. Ping, H. Huang and F. Wang, Systematic study of Z+c{}_{c}^{+} family from a multiquark color flux-tube model, Phys. Rev. D 92, 034027 (2015).