This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Assessing distribution grid costs of community solar projects

Miguel Heleno, Alan Valenzuela, Alexandre Moreira M. Heleno, A. Valenzuela and A. Moreira are with the Lawrence Berkeley National Laboratory, Berkeley, CA, USA (e-mail: {MiguelHeleno, AlanValenzuela, AMoreira}@lbl.gov).
Abstract

Abstract goes here…

Index Terms:
distribution expansion planning; large-scale distribution network; risk aversion; reliability.

Nomenclature

The mathematical symbols used throughout this paper are classified below as follows.

Sets

HH

Set of indexes of storage units.

HEH^{E}

Set of indexes of existing storage units.

HCH^{C}

Set of indexes of candidate storage units.

{\cal L}

Set of indexes of all line segments.

F{\cal L}^{F}

Set of indexes of fixed line segments.

FH{\cal L}^{FH}

Set of indexes of feeder head transformers.

C{\cal L}^{C}

Set of indexes of candidate line segments for capacity upgrade.

OLTC{\cal L}^{OLTC}

Set of indexes of line segments with existing or candidate OLTC transformers.

OLTCE{\cal L}^{OLTC}{}^{E}

Set of indexes of line segments with existing OLTC transformers.

OLTCC{\cal L}^{OLTC}{}^{C}

Set of indexes of line segments with candidate OLTC transformers.

NN

Set of indexes of all buses.

Rlline,optionsR^{line,options}_{l}

Set of indexes of upgrade capacity options for line segment ll.

RSolar,CR^{Solar,C}

Set of indexes of candidate solar units.

RSolar,ER^{Solar,E}

Set of indexes of existing solar units.

RnSubsR^{Subs}_{n}

Set of indexes of substations at bus nn. This set will have at most one index for each nn.

TT

Set of all time periods.

Parameters

βlp\beta^{p}_{l}

Auxiliary parameter related to the active power loss of line segment ll.

βlq\beta^{q}_{l}

Auxiliary parameter related to the reactive power loss of line segment ll.

η\eta

Round-trip efficiency of storage units.

φlmax\varphi^{max}_{l}

Maximum turns ratio of the OLTC transformer located at line segment ll.

φlmin\varphi^{min}_{l}

Minimum turns ratio of the OLTC transformer located at line segment ll.

ψ\psi

Auxiliary parameter related to the reactive contribution capacity of storage units.

ωt\omega_{t}

Weight of time tt.

CtCS,crtC^{CS,crt}_{t}

Cost of curtailing solar generation output.

CIC^{I}

Imbalance cost.

ClFH,invC^{FH,inv}_{l}

Equivalent annual investment cost to upgrade the feeder head transformer located at line segment ll.

Clline,invC^{line,inv}_{l}

Equivalent annual investment cost to upgrade the capacity of line segment ll.

ClOLTC,invC^{OLTC,inv}_{l}

Equivalent annual investment cost to install to upgrade line segment ll with an OLTC transformer.

Chst,invC^{st,inv}_{h}

Equivalent annual investment cost to install storage hh.

fr,tRTS{f}^{RTS}_{r,t}

Capacity factor existing solar unit rr during time tt.

fr,tCS{f}^{CS}_{r,t}

Capacity factor candidate solar unit rr during time tt.

fCS,inv{f}^{CS,inv}

Total installed capacity of solar generation to be added to the system.

F¯l\overline{F}_{l}

Capacity of fixed line segment ll.

F¯lFH\overline{F}^{FH}_{l}

Initial capacity of feeder head transformer located at line segment ll.

F¯lFH,upd\overline{F}^{FH,upd}_{l}

Potential upgrade capacity for feeder head transformer located at line segment ll.

F¯lOLTC\overline{F}^{OLTC}_{l}

Capacity of OLTC transformer located at line segment ll.

F¯l,roption\overline{F}^{option}_{l,r}

Upgrade capacity option rr for line segment ll.

g¯rRTS\overline{g}^{RTS}_{r}

Installed capacity of existing solar unit rr.

P¯hin\overline{P}^{in}_{h}

Power charging capacity of storage unit hh.

P¯hout\overline{P}^{out}_{h}

Power discharging capacity of storage unit hh.

pn,tloadp^{load}_{n,t}

Active power load of bus nn at time tt.

qn,tloadq^{load}_{n,t}

Reactive power load of bus nn at time tt.

RlR_{l}

Resistance of line segment ll.

Rl,roptionR^{option}_{l,r}

Resistance associated with upgrade option rr for line segment ll.

S¯h\overline{S}_{h}

Duration of storage unit hh.

vnmaxv^{max}_{n}

Maximum voltage of bus nn.

vnminv^{min}_{n}

Minimum voltage of bus nn.

vnrefv^{ref}_{n}

Voltage reference at the feeder heads.

XlX_{l}

Reactance of line segment ll.

Xl,roptionX^{option}_{l,r}

Reactance associated with upgrade option rr for line segment ll.

x¯rCS,inv\overline{x}^{CS,inv}_{r}

Auxiliary parameter related to maximum investment in the capacity of candidate solar unit rr.

x¯hst,inv\overline{x}^{st,inv}_{h}

Auxiliary parameter related to maximum investment in the capacity of storage hh.

Decision variables

fl,tpf^{p}_{l,t}

Active power flow through line segment ll.

fl,tqf^{q}_{l,t}

Reactive power flow through line segment ll.

f¯ltrf\overline{f}^{trf}_{l}

Capacity of transformer in line segment ll.

f¯lupd\overline{f}^{upd}_{l}

Resulting capacity of candidate line segment ll for upgrade.

gr,tCSg^{CS}_{r,t}

Generation output of candidate solar unit rr during time tt.

gr,tCS,crtg^{CS,crt}_{r,t}

Curtailed generation output of candidate solar unit rr during time tt.

gr,tRTSg^{RTS}_{r,t}

Generation output of existing solar unit rr during time tt.

pn,tI,+p^{I,+}_{n,t}

Active power surplus at bus nn during time tt.

pn,tI,p^{I,-}_{n,t}

Active power deficit at bus nn during time tt.

ph,tinp^{in}_{h,t}

Active power charging of storage unit hh during time tt.

ph,toutp^{out}_{h,t}

Active power discharging of storage unit hh during time tt.

pr,tsubsp^{subs}_{r,t}

Active power output of substation rr during time tt.

qn,tI,+q^{I,+}_{n,t}

Reactive power surplus at bus nn during time tt.

qn,tI,q^{I,-}_{n,t}

Reactive power deficit at bus nn during time tt.

qr,tsubsq^{subs}_{r,t}

Reactive power output of substation rr during time tt.

qh,tst,+/q^{st,+/-}_{h,t}

Reactive power output of storage unit hh during time tt.

soch,tsoc_{h,t}

State of charge of storage unit hh during time tt.

socht0soc^{t0}_{h}

Initial state of charge of storage unit hh.

vn,tv^{\dagger}_{n,t}

Squared voltage of bus nn during time tt.

vn,t,midv^{\dagger,mid}_{n,t}

Auxiliary variable related to the squared voltage of bus nn during time tt considering an OLTC transformer.

xrCS,invx^{CS,inv}_{r}

Investment in solar unit rr.

xlFH,invx^{FH,inv}_{l}

Investment in the feeder head transformer located in line segment ll.

xl,rline,invx^{line,inv}_{l,r}

Investment in option rr to upgrade line segment ll.

xlOLTC,invx^{OLTC,inv}_{l}

Investment to install an OLTC transformer on line segment ll.

xhst,bin,invx^{st,bin,inv}_{h}

Binary variable to select which storage unit will receive investment.

xhst,invx^{st,inv}_{h}

Investment in storage unit hh.

I Introduction

Shared solar programs have emerged as a solution to provide accessibility to renewable energy benefits. It enables small residential and commercial consumers, including renters, owners of buildings with shaded roofs, or those with limited financial resources, to access clean and renewable energy without the need for personal rooftop panels.

Interconnection costs play a critical role in the successful implementation of community solar projects, significantly impacting their financial viability and operational feasibility. Regulatory issues related to interconnection costs often pose challenges and complexities for developers and participants.

In a community solar program, a utility or third-party owns a utility-scale PV array and sells portions of the array’s power (kilowatts or kW) or generation (kilowatt-hours or kWh) to multiple subscribers. These subscribers pay voluntarily for their portion of the array and then receive a credit on their electricity bill for their share of production. This bill credit for generation produced may also include payment for the associated renewable energy certificates (RECs), depending on program structure. Subscribers can pay for their share through either an up-front payment or an ongoing monthly payment, such as through a financing option [NREL_LMI].

Although community solar programs can be implemented within multiple financial mechanisms [KLEIN2021225], there are three base types of ownership types [SunShot]

In 2019, the Legislative Document 1711 in Maine, US, introduced a shared distributed generation procurement process that includes community solar projects, developed at the local level, limited to a maximum system size of 5 MW [DL1711]. The Sharing the Sun Community Solar Project Database reports 1187 projects, of which 51 are above the 5MW [SS_db].

I-A Literature Review

II Mathematical Formulation

Consider =CFFHOLTC{\cal L}={\cal L}^{C}\cup{\cal L}^{F}\cup{\cal L}^{FH}\cup{\cal L}^{OLTC}, CFFHOLTC={\cal L}^{C}\cap{\cal L}^{F}\cap{\cal L}^{FH}\cap{\cal L}^{OLTC}=\emptyset, CF={\cal L}^{C}\cap{\cal L}^{F}=\emptyset, CFH={\cal L}^{C}\cap{\cal L}^{FH}=\emptyset, COLTC={\cal L}^{C}\cap{\cal L}^{OLTC}=\emptyset, FFH={\cal L}^{F}\cap{\cal L}^{FH}=\emptyset, FOLTC={\cal L}^{F}\cap{\cal L}^{OLTC}=\emptyset, FHOLTC={\cal L}^{FH}\cap{\cal L}^{OLTC}=\emptyset. Also, OLTC=OLTC,EOLTC,C{\cal L}^{OLTC}={\cal L}^{OLTC,E}\cup{\cal L}^{OLTC,C}, vnt=vnt2v^{\dagger}_{nt}=v^{2}_{nt}. For lines with OLTC, we have vto(l),t,mid=vto(l),tφl2,lOLTCv^{\dagger,mid}_{to(l),t}=v^{\dagger}_{to(l),t}\varphi^{2}_{l},\forall l\in{\cal L}^{OLTC}, where φl2\varphi^{2}_{l} and to(l)to(l) are the turns ratio and to(l)to(l) is the receiving bus of OLTC transformer ll, respectively.

II-A Objective

Minimizefl,tp,fl,tq,f¯ltrf,f¯lupd,gr,tCS,gr,tCS,crt,gr,tRTS,pn,tI,+,pn,tI,,ph,tin,ph,tout,pr,tsubs,qn,tI,+,qn,tI,,qr,tsubs,qh,tst,+/,soch,t,socht0,vn,t,vn,t,mid,xrCS,inv,xl,rFH,inv,xl,rline,inv,xlOLTC,inv,xhst,bin,inv,xhst,invhHCChst,invxhst,inv\displaystyle\underset{{\begin{subarray}{c}f^{p}_{l,t},f^{q}_{l,t},\overline{f}^{trf}_{l},\overline{f}^{upd}_{l},g^{CS}_{r,t},g^{CS,crt}_{r,t},\\ g^{RTS}_{r,t},p^{I,+}_{n,t},p^{I,-}_{n,t},p^{in}_{h,t},p^{out}_{h,t},p^{subs}_{r,t},\\ q^{I,+}_{n,t},q^{I,-}_{n,t},q^{subs}_{r,t},q^{st,+/-}_{h,t},soc_{h,t},\\ soc^{t0}_{h},v^{\dagger}_{n,t},v^{\dagger,mid}_{n,t},x^{CS,inv}_{r},x^{FH,inv}_{l,r},\\ x^{line,inv}_{l,r},x^{OLTC,inv}_{l},x^{st,bin,inv}_{h},x^{st,inv}_{h}\end{subarray}}}{\text{Minimize}}\sum_{h\in H^{C}}C^{st,inv}_{h}x^{st,inv}_{h}
+lOLTC,CClOLTC,invxlOLTC,inv\displaystyle\hskip 30.0pt+\sum_{l\in{\cal L}^{OLTC,C}}C^{OLTC,inv}_{l}x^{OLTC,inv}_{l}
+lCrRlline,optionsCl,rline_optionxl,rline,invF¯l,roption\displaystyle\hskip 30.0pt+\sum_{l\in{\cal L}^{C}}\sum_{r\in R^{line,options}_{l}}C^{line\_option}_{l,r}x^{line,inv}_{l,r}\overline{F}^{option}_{l,r}
+lFHClFH,invxlFH,inv\displaystyle\hskip 30.0pt+{\color[rgb]{0,0,0}\sum_{l\in{\cal L}^{FH}}C^{FH,inv}_{l}}x^{FH,inv}_{l}
+tTnNCIωt(pn,tI,++pn,tI,+qn,tI,++qn,tI,)\displaystyle\hskip 30.0pt+\sum_{t\in T}\sum_{n\in N}C^{I}\omega_{t}(p^{I,+}_{n,t}+p^{I,-}_{n,t}+q^{I,+}_{n,t}+q^{I,-}_{n,t})
+tTrRSolar,CCtCS,crtωtgr,tCS,crt\displaystyle\hskip 30.0pt+\sum_{t\in T}\sum_{r\in R^{Solar,C}}{\color[rgb]{0,0,0}C^{CS,crt}_{t}\omega_{t}}\cdot g^{CS,crt}_{r,t} (1)

II-B Energy balance and reference voltage

rRnSubspr,tsubs+lntofl,tplnfrfl,tp+rRnSolar,Cgr,tCS\displaystyle\sum_{r\in R^{Subs}_{n}}p^{subs}_{r,t}+\sum_{l\in{\cal L}^{to}_{n}}f^{p}_{l,t}-\sum_{l\in{\cal L}^{fr}_{n}}f^{p}_{l,t}+\sum_{r\in R^{Solar,C}_{n}}g^{CS}_{r,t}
+rRnSolar,Egr,tRTS+hHnph,touthHnph,tinpn,tload\displaystyle\hskip 5.0pt+\sum_{r\in R^{Solar,E}_{n}}g^{RTS}_{r,t}+\sum_{h\in H_{n}}p^{out}_{h,t}-\sum_{h\in H_{n}}p^{in}_{h,t}-p^{load}_{n,t}
lntoβlp2[nNpn,tloadrRSolar,Egr,tRTSrRnSolar,Cgr,tCS]\displaystyle\hskip 5.0pt-\sum_{l\in{\cal L}^{to}_{n}}\frac{\beta^{p}_{l}}{2}\Biggl{[}\sum_{n\in N}p^{load}_{n,t}-\sum_{r\in R^{Solar,E}}g^{RTS}_{r,t}-\sum_{r\in R^{Solar,C}_{n}}g^{CS}_{r,t}\Biggr{]}
lnfrβlp2[nNpn,tloadrRSolar,Egr,tRTSrRnSolar,Cgr,tCS]\displaystyle\hskip 5.0pt-\sum_{l\in{\cal L}^{fr}_{n}}\frac{\beta^{p}_{l}}{2}\Biggl{[}\sum_{n\in N}p^{load}_{n,t}-\sum_{r\in R^{Solar,E}}g^{RTS}_{r,t}-\sum_{r\in R^{Solar,C}_{n}}g^{CS}_{r,t}\Biggr{]}
+pn,tI,pn,tI,+=0;nN,tT\displaystyle\hskip 85.0pt+p^{I,-}_{n,t}-p^{I,+}_{n,t}=0;\forall n\in N,t\in T (2)
rRnSubsqr,tsubs+lntofl,tqlnfrfl,tq+hHnqh,tst,+/\displaystyle\sum_{r\in R^{Subs}_{n}}q^{subs}_{r,t}+\sum_{l\in{\cal L}^{to}_{n}}f^{q}_{l,t}-\sum_{l\in{\cal L}^{fr}_{n}}f^{q}_{l,t}+\sum_{h\in H_{n}}q^{st,+/-}_{h,t}
qn,tloadlntoβlq2nNqn,tloadlnfrβlq2nNqn,tload\displaystyle\hskip 5.0pt-q^{load}_{n,t}-\sum_{l\in{\cal L}^{to}_{n}}\frac{\beta^{q}_{l}}{2}\sum_{n\in N}q^{load}_{n,t}-\sum_{l\in{\cal L}^{fr}_{n}}\frac{\beta^{q}_{l}}{2}\sum_{n\in N}q^{load}_{n,t}
+qn,tI,qn,tI,+=0;nN,tT\displaystyle\hskip 85.0pt+q^{I,-}_{n,t}-q^{I,+}_{n,t}=0;\forall n\in N,t\in T (3)
vfr(l),t=(vref)2;lFH,tT\displaystyle v^{\dagger}_{fr(l),t}=(v^{ref})^{2};\forall l\in{\cal L}^{FH},t\in T (4)
vnmin2vn,tvnmax2;nN,tT\displaystyle v^{{min}^{2}}_{n}\leq v^{\dagger}_{n,t}\leq v^{{max}^{2}}_{n};\forall n\in N,t\in T (5)

II-C Fixed lines segments

F¯lfl,tpF¯l;lF,tT\displaystyle-\overline{F}_{l}\leq f^{p}_{l,t}\leq\overline{F}_{l};\forall l\in{\cal L}^{F},t\in T (6)
F¯lfl,tqF¯l;lF,tT\displaystyle-\overline{F}_{l}\leq f^{q}_{l,t}\leq\overline{F}_{l};\forall l\in{\cal L}^{F},t\in T (7)
fl,tqcotan((12e)π4)(fl,tpcos(eπ4)F¯l)\displaystyle f^{q}_{l,t}\leq cotan\biggl{(}\biggl{(}\frac{1}{2}-e\biggr{)}\frac{\pi}{4}\biggr{)}\biggl{(}f^{p}_{l,t}-cos\biggl{(}e\frac{\pi}{4}\biggr{)}\overline{F}_{l}\biggr{)}
+sin(eπ4)F¯l;lF,tT,e{1,,4}\displaystyle\hskip 35.0pt+sin\biggl{(}e\frac{\pi}{4}\biggr{)}\overline{F}_{l};\forall l\in{\cal L}^{F},t\in T,e\in\{1,\dots,4\} (8)
fl,tqcotan((12e)π4)(fl,tpcos(eπ4)F¯l)\displaystyle-f^{q}_{l,t}\leq cotan\biggl{(}\biggl{(}\frac{1}{2}-e\biggr{)}\frac{\pi}{4}\biggr{)}\biggl{(}f^{p}_{l,t}-cos\biggl{(}e\frac{\pi}{4}\biggr{)}\overline{F}_{l}\biggr{)}
+sin(eπ4)F¯l;lF,tT,e{1,,4}\displaystyle\hskip 35.0pt+sin\biggl{(}e\frac{\pi}{4}\biggr{)}\overline{F}_{l};\forall l\in{\cal L}^{F},t\in T,e\in\{1,\dots,4\} (9)
vto(l),t[vfr(l),t2(Rlfltp+Xlfltq)]=0;lF,\displaystyle v^{\dagger}_{to(l),t}-\biggl{[}v^{\dagger}_{fr(l),t}-{2}(R_{l}f^{p}_{lt}+X_{l}f^{q}_{lt})\biggr{]}=0;\forall l\in{\cal L}^{F},
tT\displaystyle\hskip 200.0ptt\in T (10)

II-D Candidates line segments for reinforcement

f¯lupd=rRlline,optionsxl,rline,invF¯lroption;lC\displaystyle\overline{f}^{upd}_{l}=\sum_{r\in R^{line,options}_{l}}x^{line,inv}_{l,r}\overline{F}^{option}_{lr};\forall l\in{\cal L}^{C} (11)
rRlline,optionsxl,rline,inv=1;lC\displaystyle\sum_{r\in R^{line,options}_{l}}x^{line,inv}_{l,r}=1;\forall l\in{\cal L}^{C} (12)
xl,rline,inv{0,1};lC,rRlline,options\displaystyle x^{line,inv}_{l,r}\in\{0,1\};\forall l\in{\cal L}^{C},r\in R^{line,options}_{l} (13)
f¯lupdfl,tpf¯lupd;lC,tT\displaystyle-\overline{f}^{upd}_{l}\leq f^{p}_{l,t}\leq\overline{f}^{upd}_{l};\forall l\in{\cal L}^{C},t\in T (14)
f¯lupdfl,tqf¯lupd;lC,tT\displaystyle-\overline{f}^{upd}_{l}\leq f^{q}_{l,t}\leq\overline{f}^{upd}_{l};\forall l\in{\cal L}^{C},t\in T (15)
fl,tqcotan((12e)π4)(fl,tpcos(eπ4)f¯lupd)\displaystyle f^{q}_{l,t}\leq cotan\biggl{(}\biggl{(}\frac{1}{2}-e\biggr{)}\frac{\pi}{4}\biggr{)}\biggl{(}f^{p}_{l,t}-cos\biggl{(}e\frac{\pi}{4}\biggr{)}\overline{f}^{upd}_{l}\biggr{)}
+sin(eπ4)f¯lupd;lC,tT,e{1,,4}\displaystyle\hskip 22.0pt+sin\biggl{(}e\frac{\pi}{4}\biggr{)}\overline{f}^{upd}_{l};\forall l\in{\cal L}^{C},t\in T,e\in\{1,\dots,4\} (16)
fl,tqcotan((12e)π4)(fl,tpcos(eπ4)f¯lupd)\displaystyle-f^{q}_{l,t}\leq cotan\biggl{(}\biggl{(}\frac{1}{2}-e\biggr{)}\frac{\pi}{4}\biggr{)}\biggl{(}f^{p}_{l,t}-cos\biggl{(}e\frac{\pi}{4}\biggr{)}\overline{f}^{upd}_{l}\biggr{)}
+sin(eπ4)f¯lupd;lC,tT,e{1,,4}\displaystyle\hskip 22.0pt+sin\biggl{(}e\frac{\pi}{4}\biggr{)}\overline{f}^{upd}_{l};\forall l\in{\cal L}^{C},t\in T,e\in\{1,\dots,4\} (17)
(1xlrline,inv)Mvto(l),t[vfr(l),t2(Rlroptionfltp\displaystyle-(1-x^{line,inv}_{lr})M\leq v^{\dagger}_{to(l),t}-\biggl{[}v^{\dagger}_{fr(l),t}-{2}(R^{option}_{lr}f^{p}_{lt}
+Xlroptionfltq)](1xlrline,inv)M;lC,tT,\displaystyle\hskip 2.0pt+X^{option}_{lr}f^{q}_{lt})\biggr{]}\leq(1-x^{line,inv}_{lr})M;\forall l\in{\cal L}^{C},t\in T,
rRlline,options\displaystyle\hskip 155.0ptr\in R^{line,options}_{l} (18)

II-E Tap changing

vto(l),t,mid(φlmax)2vto(l),tvto(l),t,mid(φlmin)2;lOLTCFH,\displaystyle\frac{v^{\dagger,mid}_{to(l),t}}{(\varphi^{max}_{l})^{2}}\leq v^{\dagger}_{to(l),t}\leq\frac{v^{\dagger,mid}_{to(l),t}}{(\varphi^{min}_{l})^{2}};\forall l\in{\cal L}^{OLTC}\cup{\cal L}^{FH},
tT\displaystyle\hskip 200.0ptt\in T (19)
xlOLTC,invMvto(l),midvto(l),txlOLTC,invM;\displaystyle-x^{OLTC,inv}_{l}M\leq v^{\dagger,mid}_{to(l)}-v^{\dagger}_{to(l),t}\leq x^{OLTC,inv}_{l}M;
lOLTC,C,tT\displaystyle\hskip 130.0pt\forall l\in{\cal L}^{OLTC,C},t\in T (20)
xlOLTC,inv{0,1};lOLTC,C\displaystyle x^{OLTC,inv}_{l}\in\{0,1\};\forall l\in{\cal L}^{OLTC,C} (21)

II-F Feeder head and OLTC transformers

f¯ltrffl,tpf¯ltrf;lOLTCFH,tT\displaystyle-\overline{f}^{trf}_{l}\leq f^{p}_{l,t}\leq\overline{f}^{trf}_{l};\forall l\in{\cal L}^{OLTC}\cup{\cal L}^{FH},t\in T (22)
f¯ltrffl,tqf¯ltrf;lOLTCFH,tT\displaystyle-\overline{f}^{trf}_{l}\leq f^{q}_{l,t}\leq\overline{f}^{trf}_{l};\forall l\in{\cal L}^{OLTC}\cup{\cal L}^{FH},t\in T (23)
fl,tqcotan((12e)π4)(fl,tpcos(eπ4)f¯ltrf)\displaystyle f^{q}_{l,t}\leq cotan\biggl{(}\biggl{(}\frac{1}{2}-e\biggr{)}\frac{\pi}{4}\biggr{)}\biggl{(}f^{p}_{l,t}-cos\biggl{(}e\frac{\pi}{4}\biggr{)}\overline{f}^{trf}_{l}\biggr{)}
+sin(eπ4)f¯ltrf;lOLTCFH,tT,\displaystyle\hskip 5.0pt+sin\biggl{(}e\frac{\pi}{4}\biggr{)}\overline{f}^{trf}_{l};\forall l\in{\cal L}^{OLTC}\cup{\cal L}^{FH},t\in T,
e{1,,4}\displaystyle\hskip 165.0pte\in\{1,\dots,4\} (24)
fl,tqcotan((12e)π4)(fl,tpcos(eπ4)f¯ltrf)\displaystyle-f^{q}_{l,t}\leq cotan\biggl{(}\biggl{(}\frac{1}{2}-e\biggr{)}\frac{\pi}{4}\biggr{)}\biggl{(}f^{p}_{l,t}-cos\biggl{(}e\frac{\pi}{4}\biggr{)}\overline{f}^{trf}_{l}\biggr{)}
+sin(eπ4)f¯ltrf;lOLTCFH,tT,\displaystyle\hskip 5.0pt+sin\biggl{(}e\frac{\pi}{4}\biggr{)}\overline{f}^{trf}_{l};\forall l\in{\cal L}^{OLTC}\cup{\cal L}^{FH},t\in T,
e{1,,4}\displaystyle\hskip 165.0pte\in\{1,\dots,4\} (25)
0f¯ltrfF¯lFH+xlFH,invF¯lFH,upd;lFH\displaystyle 0\leq\overline{f}^{trf}_{l}\leq\overline{F}^{FH}_{l}+x^{FH,inv}_{l}\overline{F}^{FH,upd}_{l};\forall l\in{\cal L}^{FH} (26)
f¯ltrf=F¯lOLTC;lOLTC\displaystyle\overline{f}^{trf}_{l}=\overline{F}^{OLTC}_{l};\forall l\in{\cal L}^{OLTC} (27)
vto(l),t,mid[vfr(l),t2(Rlfltp+Xlfltq)]=0;\displaystyle v^{\dagger,mid}_{to(l),t}-\biggl{[}v^{\dagger}_{fr(l),t}-{2}(R_{l}f^{p}_{lt}+X_{l}f^{q}_{lt})\biggr{]}=0;
lOLTCFH,tT\displaystyle\hskip 110.0pt\forall l\in{\cal L}^{OLTC}\cup{\cal L}^{FH},t\in T (28)
xlFH,inv{0,1};lFH\displaystyle x^{FH,inv}_{l}\in\{0,1\};\forall l\in{\cal L}^{FH} (29)

II-G Solar

gr,tRTS=g¯rRTSfr,tRTS;rRSolar,E,tT\displaystyle g^{RTS}_{r,t}=\overline{g}^{RTS}_{r}f^{RTS}_{r,t};\forall r\in R^{Solar,E},t\in T (30)
gr,tCS+gr,tCS,crt=xrCS,invfr,tCS;rRSolar,C,tT\displaystyle g^{CS}_{r,t}+g^{CS,crt}_{r,t}=x^{CS,inv}_{r}f^{CS}_{r,t};\forall r\in R^{Solar,C},t\in T (31)
rRSolar,CxrCS,inv=fCS,inv\displaystyle\sum_{r\in R^{Solar,C}}x^{CS,inv}_{r}=f^{CS,inv} (32)

II-H Storages

socht0=soch,t_last;hH\displaystyle soc^{t0}_{h}=soc_{h,t\_last};\forall h\in H (33)
soch,t=socht0+ηph,tinph,tout;hH,t=t_ini\displaystyle soc_{h,t}=soc^{t0}_{h}+\eta p^{in}_{h,t}-p^{out}_{h,t};\forall h\in H,t=t\_ini (34)
soch,t=soch,t1+ηph,tinph,tout;hH,\displaystyle soc_{h,t}=soc_{h,t-1}+\eta p^{in}_{h,t}-p^{out}_{h,t};\forall h\in H,
tT|tt_ini\displaystyle\hskip 160.0ptt\in T|t\neq t\_ini (35)
0soch,tS¯hP¯hin;hHE,tT\displaystyle 0\leq soc_{h,t}\leq\overline{S}_{h}\cdot\overline{P}^{in}_{h};\forall h\in H^{E},t\in T (36)
0soch,tS¯hxhst,invP¯hin;hHC,tT\displaystyle 0\leq soc_{h,t}\leq\overline{S}_{h}x^{st,inv}_{h}\overline{P}^{in}_{h};\forall h\in H^{C},t\in T (37)
0ph,tinP¯hin;hHE,tT\displaystyle 0\leq p^{in}_{h,t}\leq\overline{P}^{in}_{h};\forall h\in H^{E},t\in T (38)
0ph,tinxhst,invP¯hin;hHC,tT\displaystyle 0\leq p^{in}_{h,t}\leq x^{st,inv}_{h}\overline{P}^{in}_{h};\forall h\in H^{C},t\in T (39)
0ph,toutP¯hout;hHE,tT\displaystyle 0\leq p^{out}_{h,t}\leq\overline{P}^{out}_{h};\forall h\in H^{E},t\in T (40)
0ph,toutxhst,invP¯hout;hHC,tT\displaystyle 0\leq p^{out}_{h,t}\leq x^{st,inv}_{h}\overline{P}^{out}_{h};\forall h\in H^{C},t\in T (41)
0xhst,invxhst,bin,invx¯hst,inv;hHC\displaystyle 0\leq x^{st,inv}_{h}\leq x^{st,bin,inv}_{h}\overline{x}^{st,inv}_{h};\forall h\in H^{C} (42)
ψP¯hinqh,tst,+/ψP¯hin;hHE,tT\displaystyle-\psi\overline{P}^{in}_{h}\leq q^{st,+/-}_{h,t}\leq\psi\overline{P}^{in}_{h};\forall h\in H^{E},t\in T (43)
ψxhst,invP¯hinqh,tst,+/ψxhst,invP¯hin;hHC,\displaystyle-\psi x^{st,inv}_{h}\overline{P}^{in}_{h}\leq q^{st,+/-}_{h,t}\leq\psi x^{st,inv}_{h}\overline{P}^{in}_{h};\forall h\in H^{C},
tT\displaystyle\hskip 200.0ptt\in T (44)

II-I Solar and storage colocation enforcement

0xrCS,invx¯rCS,invxh(r)st,bin,inv;rRSolar,C\displaystyle 0\leq x^{CS,inv}_{r}\leq\overline{x}^{CS,inv}_{r}x^{st,bin,inv}_{h(r)};\forall r\in R^{Solar,C} (45)
hHCxhst,bin,inv=1\displaystyle\sum_{h\in H^{C}}x^{st,bin,inv}_{h}=1 (46)
xhst,bin,inv{0,1};hHC\displaystyle x^{st,bin,inv}_{h}\in\{0,1\};\forall h\in H^{C} (47)

where h(r)h(r) is the index of the candidate storage to be co-located with the solar investment of index rr.

III Case studies

IV Conclusions

These are my conclusions…

Acknowledgment

This work has been funded by the U.S. Department of Energy, Office of Electricity, under the contract DE-AC02-05CH11231.