This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Asymptotic analysis of a family of polynomials associated with the inverse error function

Diego Dominici
Department of Mathematics
State University of New York at New Paltz
1 Hawk Dr. Suite 9
New Paltz, NY 12561-2443
dominicd@newpaltz.edu
   Charles Knessl
Department of Mathematics, Statistics and Computer Science
University of Illinois at Chicago (M/C 249)
851 South Morgan Street
Chicago, IL 60607-7045
knessl@uic.edu
Abstract

We analyze the sequence of polynomials defined by the differential-difference equation Pn+1(x)=Pn(x)+x(n+1)Pn(x)P_{n+1}(x)=P_{n}^{\prime}(x)+x(n+1)P_{n}(x) asymptotically as nn\rightarrow\infty. The polynomials Pn(x)P_{n}(x) arise in the computation of higher derivatives of the inverse error function inverf(x)\operatorname{inverf}(x). We use singularity analysis and discrete versions of the WKB and ray methods and give numerical results showing the accuracy of our formulas.

MSC-Class: 33B20 (Primary) 34E20, 33E30 (Secondary).

Keywords: inverse error function, differential-difference equations, singularity analysis, discrete WKB method.

1 Introduction

The error function erf(x)\operatorname{erf}(x) is defined by [1]

erf(x)=2π0xexp(t2)𝑑t\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}}\int\limits_{0}^{x}\exp\left(-t^{2}\right)dt (1)

and its inverse inverf(x)\operatorname*{inverf}\left(x\right), which we will denote by (x),\mathfrak{I}(x), satisfies [erf(x)]=erf[(x)]=x.\mathfrak{I}\left[\operatorname{erf}(x)\right]=\operatorname{erf}\left[\mathfrak{I}(x)\right]=x. The function (x)\mathfrak{I}(x) appears in several problems of heat conduction [12]. In [10] we considered the function

N(x)=12πxet2/2𝑑tN(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}e^{-t^{2}/2}dt (2)

and its inverse S(x),S(x), satisfying

S[N(x)]=N[S(x)]=x.S\left[N(x)\right]=N\left[S(x)\right]=x.

It is clear from (1) and (2) that

N(x)=12[erf(x2)+1]N(x)=\frac{1}{2}\left[\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)+1\right]

and therefore

S(x)=2(2x1).S(x)=\sqrt{2}\mathfrak{I}\left(2x-1\right). (3)

In [10] we showed that

S(x)=2πexp[12S2(x)]S^{\prime}(x)=\sqrt{2\pi}\exp\left[\frac{1}{2}S^{2}(x)\right] (4)

and

S(n)=Pn1(S)(S)nn1,S^{(n)}=P_{n-1}(S)(S^{\prime})^{n}\quad n\geq 1, (5)

where Pn(x)P_{n}(x) is a polynomial of degree nn satisfying the recurrence

P0(x)=1,Pn+1(x)=Pn(x)+x(n+1)Pn(x),n1.P_{0}(x)=1,\quad P_{n+1}(x)=P_{n}^{\prime}(x)+x(n+1)P_{n}(x),\quad n\geq 1. (6)

The same approach was employed by Carlitz in [2]. From (6), it follows easily that for a fixed value of nn

Pn(x)n!xn,x.P_{n}(x)\sim n!\,x^{n},\quad x\rightarrow\infty. (7)

From (3) and (5), we conclude that

(n)=2n12Pn1(2)()nn1.\mathfrak{I}^{(n)}=2^{\frac{n-1}{2}}P_{n-1}\left(\sqrt{2}\mathfrak{I}\right)\left(\mathfrak{I}^{\prime}\right)^{n}\quad n\geq 1.

Since

(0)=0,(0)=π2,\mathfrak{I}(0)=0,\quad\mathfrak{I}^{\prime}(0)=\frac{\sqrt{\pi}}{2},

we have

(n)(0)=12(π2)n2Pn1(0).\mathfrak{I}^{(n)}(0)=\frac{1}{\sqrt{2}}\left(\frac{\pi}{2}\right)^{\frac{n}{2}}P_{n-1}(0). (8)

It follows from (8) that estimating (n)(0)\mathfrak{I}^{(n)}(0) for large values of nn is equivalent to finding an asymptotic approximation of the polynomials Pn(x)P_{n}(x) when x=0x=0.

The objective of this work is to study Pn(x)P_{n}(x) asymptotically as nn\rightarrow\infty for various ranges of x.x. We shall obtain different asymptotic expansions for nn\rightarrow\infty and (i) 0<x<,0<x<\infty, (ii) x=O(n1)x=O\left(n^{-1}\right) and (iii) x=O(ln(n)).x=O\left(\sqrt{\ln(n)}\right). The paper is organized as follows: in Section 2 we approach the problem using a singularity analysis of the generating function [14] of the polynomials Pn(x).P_{n}(x). In Section 3 we apply the WKB method to the differential-difference equation (6). In [15], we used this approach in the asymptotic analysis of computer science problems and in [6] to study the Krawtchouk polynomials. Finally, in Section 4 we analyze (6) again using the ray method [13] and obtain an asymptotic approximation valid in various regions of the (x,n)(x,n) domain. In [4], [5], [7], we employed the same technique to analyze asymptotically other families of polynomials and in [8], [9] to study some queueing problems.

2 Singularity analysis

In [10] we obtained the exponential generating function

n=0Pn(x)znn!=exp{12S2[N(x)+zN(x)]x22},\sum_{n=0}^{\infty}P_{n}(x)\frac{z^{n}}{n!}=\exp\left\{\frac{1}{2}S^{2}[N(x)+zN^{\prime}(x)]-\frac{x^{2}}{2}\right\},

which implies that

Pn(x)=ex2/2n!2πi|z|<rexp{12S2[N(x)+zN(x)]}dzzn+1,P_{n}(x)=e^{-x^{2}/2}\frac{n!}{2\pi\mathrm{i}}\oint\limits_{\left|z\right|<r}\exp\left\{\frac{1}{2}S^{2}[N(x)+zN^{\prime}(x)]\right\}\frac{dz}{z^{n+1}},

where the integration contour is a small loop around the origin in the complex plane. Using (4), we have

Pn(x)\displaystyle P_{n}(x) =ex2/2n!2πi|z|<r12πS[N(x)+zN(x)]dzzn+1\displaystyle=e^{-x^{2}/2}\frac{n!}{2\pi\mathrm{i}}\oint\limits_{\left|z\right|<r}\frac{1}{\sqrt{2\pi}}S^{\prime}[N(x)+zN^{\prime}(x)]\frac{dz}{z^{n+1}}
=ex2/212πN(x)n!2πi|z|<r1zn+1𝑑S[N(x)+zN(x)]\displaystyle=e^{-x^{2}/2}\frac{1}{\sqrt{2\pi}N^{\prime}(x)}\frac{n!}{2\pi\mathrm{i}}\oint\limits_{\left|z\right|<r}\frac{1}{z^{n+1}}dS[N(x)+zN^{\prime}(x)]
=n!2πi|z|<rn+1zn+2S[N(x)+zN(x)]𝑑z\displaystyle=\frac{n!}{2\pi\mathrm{i}}\oint\limits_{\left|z\right|<r}\frac{n+1}{z^{n+2}}S[N(x)+zN^{\prime}(x)]dz

and therefore

Pn(x)=(n+1)!2πi|z|<rS[N(x)+zN(x)]dzzn+2.P_{n}(x)=\frac{\left(n+1\right)!}{2\pi\mathrm{i}}\oint\limits_{\left|z\right|<r}S[N(x)+zN^{\prime}(x)]\frac{dz}{z^{n+2}}. (9)

Since S(x)S(x) has singularities at x=0x=0 and x=1,x=1, we consider the functions

Z1(x)=1N(x)N(x),Z0(x)=N(x)N(x).Z_{1}(x)=\frac{1-N(x)}{N^{\prime}(x)},\quad Z_{0}(x)=-\frac{N(x)}{N^{\prime}(x)}.

We have

Z1(x)=2πexp(x22)Z1(x)Z_{1}(-x)=-\sqrt{2\pi}\exp\left(\frac{x^{2}}{2}\right)-Z_{1}(x) (10)

and

Z1(x)\displaystyle Z_{1}(x) =x1+O(x3),x,\displaystyle=x^{-1}+O\left(x^{-3}\right),\quad x\rightarrow\infty,
Z0(x)\displaystyle\quad Z_{0}(x) =2πexp(x22)+x1+O(x3),x.\displaystyle=-\sqrt{2\pi}\exp\left(\frac{x^{2}}{2}\right)+x^{-1}+O\left(x^{-3}\right),\quad x\rightarrow\infty.

Changing variables to

w=[zZ1(x)]N(x)w=\left[z-Z_{1}(x)\right]N^{\prime}(x)

in (9), we obtain

Pn(x)=1N(x)(n+1)!2πiCS(w+1)[wN(x)+Z1(x)](n+2)𝑑w,P_{n}(x)=\frac{1}{N^{\prime}(x)}\frac{\left(n+1\right)!}{2\pi\mathrm{i}}\oint\limits_{C}S\left(w+1\right)\left[\frac{w}{N^{\prime}(x)}+Z_{1}(x)\right]^{-(n+2)}dw,

or,

Pn(x)=πex2/2(n+1)!2πiC𝒥(w+1)[π2ex2/2w+Z1(x)]n+2𝑑w,P_{n}(x)=\sqrt{\pi}e^{x^{2}/2}\frac{\left(n+1\right)!}{2\pi\mathrm{i}}\oint\limits_{C}\frac{\mathcal{J}\left(w+1\right)}{\left[\sqrt{\frac{\pi}{2}}e^{x^{2}/2}w+Z_{1}(x)\right]^{n+2}}dw, (11)

where CC is a small loop about w=w(x)w=w^{\ast}(x) in the complex plane, with

w(x)=2πex2/2Z1(x).w^{\ast}(x)=-\sqrt{\frac{2}{\pi}}e^{-x^{2}/2}Z_{1}(x).

To expand (11) for nn\rightarrow\infty with a fixed x(0,),x\in\left(0,\infty\right), we employ singularity analysis. The function 𝒥(w)\mathcal{J(}w) has singularities at w=±1.w=\pm 1. By (1), we have

w=2π0𝒥et2𝑑t=1e𝒥2[1π𝒥+O(𝒥3)],𝒥,w=\frac{2}{\sqrt{\pi}}\int\limits_{0}^{\mathcal{J}}e^{-t^{2}}dt=1-e^{-\mathcal{J}^{2}}\left[\frac{1}{\sqrt{\pi}\mathcal{J}}+O\left(\mathcal{J}^{-3}\right)\right],\quad\mathcal{J}\rightarrow\infty,

so that

𝒥(w)ln(1w),w1\mathcal{J(}w)\sim\sqrt{-\ln(1-w)},\quad w\rightarrow 1^{-}

and by symmetry we have

𝒥(w)ln(1+w),w1+.\mathcal{J(}w)\sim-\sqrt{-\ln(1+w)},\quad w\rightarrow-1^{+}.

The integrand in (11) thus has singularities at w=0w=0 and w=2,w=-2, but for x>0,x>0, the former is closer to w(x).w^{\ast}(x). We expand (11) around w=0w=0 by setting w=δ/nw=\delta/n and using

[Z1(x)+π2ex2/2δn](n+2)[Z1(x)](n+2)exp[π2ex2/2δZ1(x)].\left[Z_{1}(x)+\sqrt{\frac{\pi}{2}}e^{x^{2}/2}\frac{\delta}{n}\right]^{-(n+2)}\sim\left[Z_{1}(x)\right]^{-(n+2)}\exp\left[-\sqrt{\frac{\pi}{2}}e^{x^{2}/2}\frac{\delta}{Z_{1}(x)}\right]. (12)

Then, we deform the contour CC in (11) to a new contour C1C_{1} that encircles the branch point at w=0w=0 (see Figure 1). This leads to

Pn(x)\displaystyle P_{n}(x) (n+1)!πex2/2[Z1(x)](n+2)1n\displaystyle\sim\left(n+1\right)!\sqrt{\pi}e^{x^{2}/2}\left[Z_{1}(x)\right]^{-(n+2)}\frac{1}{n} (13)
×12πi0(Υ+Υ)exp[π2ex2/2Z1(x)δ]𝑑δ,\displaystyle\times\frac{1}{2\pi\mathrm{i}}\int\limits_{0}^{\infty}\left(\Upsilon^{+}-\Upsilon^{-}\right)\exp\left[-\sqrt{\frac{\pi}{2}}\frac{e^{x^{2}/2}}{Z_{1}(x)}\delta\right]d\delta,

where

Υ±(δ,n)=±iπln(δ)+ln(n).\Upsilon^{\pm}(\delta,n)=\sqrt{\pm\mathrm{i}\pi-\ln\left(\delta\right)+\ln\left(n\right)}.

Here Υ±(δ,n)\Upsilon^{\pm}(\delta,n) corresponds to the approximation of 𝒥(w+1)\mathcal{J(}w+1) for w0,w\rightarrow 0, above or below the right branch cut in Figure 1.

Refer to caption
Figure 1: A sketch of the contours CC and C1C_{1}.

For nn large we have

Υ+(δ,n)Υ(δ,n)πiln(n)\Upsilon^{+}(\delta,n)-\Upsilon^{-}(\delta,n)\sim\frac{\pi\mathrm{i}}{\sqrt{\ln\left(n\right)}}

and then evaluating the elementary integral in (13) leads to Pn(x)Ψ1(x,n)P_{n}(x)\sim\Psi_{1}(x,n) as nn\rightarrow\infty with

Ψ1(x,n)=n!2ln(n)[Z1(x)](n+1)=n!2ln(n)[ex2/2ζ(x)]n+1\Psi_{1}(x,n)=\frac{n!}{\sqrt{2\ln\left(n\right)}}\left[Z_{1}(x)\right]^{-\left(n+1\right)}=\frac{n!}{\sqrt{2\ln\left(n\right)}}\left[\frac{e^{-x^{2}/2}}{\zeta\left(x\right)}\right]^{n+1} (14)

and

ζ(x)=π2[1erf(x2)]exp(x22)[x1+O(x3)],x.\zeta\left(x\right)=\sqrt{\frac{\pi}{2}}\left[1-\operatorname*{erf}\left(\frac{x}{\sqrt{2}}\right)\right]\sim\exp\left(-\frac{x^{2}}{2}\right)\left[x^{-1}+O\left(x^{-3}\right)\right],\quad x\rightarrow\infty. (15)

In Figure 2 we plot ln[P40(x)/40!]\ln\left[P_{40}(x)/40!\right] and ln[Ψ1(x,40)/40!]\ln\left[\Psi_{1}(x,40)/40!\right]. We see that the approximation is very good for x=O(1)x=O(1) but it becomes less precise as x.x\rightarrow\infty. This is because our previous analysis assumes that nn\rightarrow\infty with 0<x<.0<x<\infty. If either x0x\rightarrow 0 or x,x\rightarrow\infty, we must modify it, which we will do next.

Refer to caption
Figure 2: A plot of ln[P40(x)/40!]\ln\left[P_{40}(x)/40!\right] (solid line) and ln[Ψ1(x,40)/40!]\ln\left[\Psi_{1}(x,40)/40!\right] (ooo).

When x0,x\rightarrow 0, or more generally when x=O(n1),x=O\left(n^{-1}\right), the singularities at w=0w=0 and w=2w=-2 are nearly equidistant from w(x).w^{\ast}(x). On the scale x=y/n,x=y/n, y=O(1),y=O\left(1\right), we have

Z1(x)=Z1(yn)=π2yn+O(n2),nZ_{1}(x)=Z_{1}\left(\frac{y}{n}\right)=\sqrt{\frac{\pi}{2}}-\frac{y}{n}+O\left(n^{-2}\right),\quad n\rightarrow\infty (16)

and (14) simplifies to

Pn(x)n!2ln(n)(2π)n+1exp(y2π).P_{n}(x)\sim\frac{n!}{\sqrt{2\ln\left(n\right)}}\left(\sqrt{\frac{2}{\pi}}\right)^{n+1}\exp\left(y\sqrt{\frac{2}{\pi}}\right). (17)

But, to this we must add the contribution from w=2,w=-2, which corresponds to replacing yy by y-y and multiplying by (1)n\left(-1\right)^{n} the right hand side of (17).

We note from (10) that

π2ex2/2w+Z1(x)=π2ex2/2(w+2)Z1(x),\sqrt{\frac{\pi}{2}}e^{x^{2}/2}w+Z_{1}(-x)=\sqrt{\frac{\pi}{2}}e^{x^{2}/2}\left(w+2\right)-Z_{1}(x),

so that the integrand in (11) is antisymmetric with respect to the map (x,w)(x,2w).\left(x,w\right)\rightarrow\left(-x,-2-w\right). Thus, for nn\rightarrow\infty and x=O(n1)x=O\left(n^{-1}\right) we get Pn(x)Ψ2(x,n)P_{n}(x)\sim\Psi_{2}(x,n) with

Ψ2(y,n)=n!2ln(n)(2π)n+1[exp(y2π)+(1)nexp(y2π)].\Psi_{2}(y,n)=\frac{n!}{\sqrt{2\ln\left(n\right)}}\left(\sqrt{\frac{2}{\pi}}\right)^{n+1}\left[\exp\left(y\sqrt{\frac{2}{\pi}}\right)+\left(-1\right)^{n}\exp\left(-y\sqrt{\frac{2}{\pi}}\right)\right]. (18)

As y,y\rightarrow\infty, the alternating term becomes negligible and (18) matches to (14), as x0.x\rightarrow 0. In Figure 3 we plot the ratio ln[P40(y40)/40!]/ln[Ψ2(y,40)/40!]\ln\left[P_{40}\left(\frac{y}{40}\right)/40!\right]/\ln\left[\Psi_{2}(y,40)/40!\right] and verify the accuracy of (18).

Refer to caption
Figure 3: A plot of the ratio ln[P40(y40)/40!]/ln[Ψ2(y,40)/40!]\ln\left[P_{40}\left(\frac{y}{40}\right)/40!\right]/\ln\left[\Psi_{2}(y,40)/40!\right] .

Letting xx\rightarrow\infty in (13) using (14) yields

Pn(x)n!xn+12ln(n),P_{n}(x)\sim\frac{n!\,x^{n+1}}{\sqrt{2\ln(n)}},

which differs from (7). This suggests that another scale must be analyzed, where xx and nn are both large. Thus, we consider the case of xx\rightarrow\infty, with x=O(lnn).x=O\left(\sqrt{\ln n}\right). Now the singularity at w=0w=0 in (11) becomes close to w(x),w^{\ast}(x), since

w(x)2xπ,x.w^{\ast}(x)\sim-\frac{\sqrt{2}}{x\sqrt{\pi}},\quad x\rightarrow\infty.

we use the form (9) and expand S[N(x)+zN(x)]S[N(x)+zN^{\prime}(x)] for z0z\rightarrow 0 and x.x\rightarrow\infty. Setting z=ξ/xz=\xi/x with ξ=O(1),\xi=O(1), we obtain

S[N(x)+zN(x)]=2𝒥{1+2π[zex2/2ζ(x)]}\displaystyle S[N(x)+zN^{\prime}(x)]=\sqrt{2}\mathcal{J}\left\{1+\sqrt{\frac{2}{\pi}}\left[ze^{-x^{2}/2}-\zeta\left(x\right)\right]\right\}
=2𝒥[1+2πex2/2(z1x+O(x3))]\displaystyle=\sqrt{2}\mathcal{J}\left[1+\sqrt{\frac{2}{\pi}}e^{-x^{2}/2}\left(z-\frac{1}{x}+O\left(x^{-3}\right)\right)\right]
2ln[2πex2/2(1xz)]\displaystyle\sim\sqrt{2}\sqrt{-\ln\left[\sqrt{\frac{2}{\pi}}e^{-x^{2}/2}\left(\frac{1}{x}-z\right)\right]}
2x22+ln(x)12ln(2π)ln(1ξ).\displaystyle\sim\sqrt{2}\sqrt{\frac{x^{2}}{2}+\ln(x)-\frac{1}{2}\ln\left(\frac{2}{\pi}\right)-\ln\left(1-\xi\right)}.

Thus, we have

Pn(x)2(n+1)!xn+12πiC1x22+ln(x1ξ)12ln(2π)dξξn+2.P_{n}(x)\sim\frac{\sqrt{2}\left(n+1\right)!x^{n+1}}{2\pi\mathrm{i}}\oint\limits_{C_{1}}\sqrt{\frac{x^{2}}{2}+\ln\left(\frac{x}{1-\xi}\right)-\frac{1}{2}\ln\left(\frac{2}{\pi}\right)}\frac{d\xi}{\xi^{n+2}}. (19)

Here the contour C1C_{1} is a small loop about ξ=0.\xi=0. Now we again employ singularity analysis, with the branch point at ξ=1\xi=1 determining the asymptotic behavior for n.n\rightarrow\infty. A deformation similar to that in Figure 1 leads to

Pn(x)n!xn+121x22+ln(nx)12ln(2π).P_{n}(x)\sim\frac{n!x^{n+1}}{\sqrt{2}}\frac{1}{\sqrt{\frac{x^{2}}{2}+\ln(nx)-\frac{1}{2}\ln\left(\frac{2}{\pi}\right)}}. (20)

For x>>ln(n)x>>\sqrt{\ln(n)} this collapses to (7).

By examining (14) and (20), we can obtain the following approximation

Pn(x)Ψ3(x,n)=n!x2+2ln(nx)ln(2π)[ex2/2ζ(x)]n+1,P_{n}(x)\sim\Psi_{3}(x,n)=\frac{n!}{\sqrt{x^{2}+2\ln(nx)-\ln\left(\frac{2}{\pi}\right)}}\left[\frac{e^{-x^{2}/2}}{\zeta\left(x\right)}\right]^{n+1}, (21)

which is more uniform in xx, since it holds both for x=O(1)x=O(1) and x=O(lnn)x=O\left(\sqrt{\ln n}\right) for nn large and for xx\rightarrow\infty with nn fixed. However, we must still use (18) if nn is large and xx is small. In Figure 4 we plot ln[P40(x)/40!]\ln\left[P_{40}(x)/40!\right] and ln[Ψ3(x,40)/40!]\ln\left[\Psi_{3}(x,40)/40!\right] and confirm that (21) is a better approximation than (14) for large values of x.x.

Refer to caption
Figure 4: A plot of ln[P40(x)/40!]\ln\left[P_{40}(x)/40!\right] (solid line) and ln[Ψ3(x,40)/40!]\ln\left[\Psi_{3}(x,40)/40!\right] (ooo).

3 WKB analysis

We shall now rederive the results in the previous section by using only the recurrence (6) and (7). We apply the WKB method to (6), seeking solutions of the form Pn(x)=n!P¯n(x),P_{n}(x)=n!\overline{P}_{n}(x), with

P¯n(x)exp[(n+1)A(x)]B(x,n),n.\overline{P}_{n}(x)\sim\exp\left[\left(n+1\right)A(x)\right]B(x,n),\quad n\rightarrow\infty. (22)

Thus, we are assuming an exponential dependence on nn and an additional weaker (e.g., algebraic) dependence that arises from the function B(x,n).B(x,n). Using (22) in (6) leads to

eA(x)[B(x,n)+nB(x,n)]+O(2Bn2)\displaystyle e^{A(x)}\left[B(x,n)+\frac{\partial}{\partial n}B(x,n)\right]+O\left(\frac{\partial^{2}B}{\partial n^{2}}\right)
=[x+A(x)]B(x,n)+1n+1xB(x,n).\displaystyle=\left[x+A^{\prime}(x)\right]B(x,n)+\frac{1}{n+1}\frac{\partial}{\partial x}B(x,n).

Expecting that Bn=o(B)\frac{\partial B}{\partial n}=o\left(B\right) and 2Bn2=o(Bn),\frac{\partial^{2}B}{\partial n^{2}}=o\left(\frac{\partial B}{\partial n}\right), we set

eA(x)=x+A(x)e^{A(x)}=x+A^{\prime}(x) (23)

and

eA(x)nB(x,n)=1n+1xB(x,n)1nxB(x,n).e^{A(x)}\frac{\partial}{\partial n}B(x,n)=\frac{1}{n+1}\frac{\partial}{\partial x}B(x,n)\sim\frac{1}{n}\frac{\partial}{\partial x}B(x,n). (24)

To solve (23) we let

A(x)=x22+a(x)A(x)=-\frac{x^{2}}{2}+a(x)

to find that

a(x)=ex2/2ea(x).a^{\prime}(x)=e^{-x^{2}/2}e^{a(x)}.

Solving this separable ODE leads to

A(x)=x22ln[ζ(x)+k],A(x)=-\frac{x^{2}}{2}-\ln\left[\zeta\left(x\right)+k\right], (25)

where kk is a constant of integration. To fix k,k, we assume that expansion (22), as x,x\rightarrow\infty, will asymptotically match to (7), when this is expanded for n.n\rightarrow\infty. In view of (22) this implies that

P¯n(x)xn=exp[nln(x)],x,\overline{P}_{n}(x)\sim x^{n}=\exp\left[n\ln(x)\right],\quad x\rightarrow\infty,

so that

A(x)ln(x),x.A(x)\sim\ln(x),\quad x\rightarrow\infty.

In view of (25) this is possible only if k=0k=0 and then from (15) we have

A(x)=ln[ex2/2ζ(x)]ln(x),x.A(x)=-\ln\left[e^{x^{2}/2}\zeta\left(x\right)\right]\sim\ln(x),\quad x\rightarrow\infty. (26)

We next analyze (24). Using (26) to compute eA(x),e^{A(x)}, we obtain

ex2/2ζ(x)nB(x,n)=1nxB(x,n).\frac{e^{-x^{2}/2}}{\zeta\left(x\right)}\frac{\partial}{\partial n}B(x,n)=\frac{1}{n}\frac{\partial}{\partial x}B(x,n).

Solving this first order PDE by the method of characteristics, we obtain

B(x,n)=b[nζ(x)],B(x,n)=b\left[\frac{n}{\zeta\left(x\right)}\right],

where b()b\left(\cdot\right) is at this point an arbitrary function. However, since nn is large and x=O(1),x=O(1), we need only the behavior of b()b\left(\cdot\right) for large values of its argument. We again argue that by matching to (7) we have

exp[(n+1)A(x)]B(x,n)xn,x,\exp\left[\left(n+1\right)A(x)\right]B(x,n)\sim x^{n},\quad x\rightarrow\infty,

and using (26) we get

B(x,n)eA(x)1x,xB(x,n)\sim e^{-A(x)}\sim\frac{1}{x},\quad x\rightarrow\infty

and thus

b(nxex2/2)1x,xb\left(nxe^{x^{2}/2}\right)\sim\frac{1}{x},\quad x\rightarrow\infty

so that

b(z)12ln(z),z.b(z)\sim\frac{1}{\sqrt{2\ln(z)}},\quad z\rightarrow\infty.

Combining our results, we have found that

Pn(x)n!2ln(n)ln[ζ(x)][ex2/2ζ(x)]n+1,n.P_{n}(x)\sim\frac{n!}{\sqrt{2}\sqrt{\ln(n)-\ln\left[\zeta\left(x\right)\right]}}\left[\frac{e^{-x^{2}/2}}{\zeta\left(x\right)}\right]^{n+1},\quad n\rightarrow\infty. (27)

This applies for x=O(1)x=O(1) and n,n\rightarrow\infty, where we can regain the results of the singularity analysis (14) by simply using

ln(n)ln[ζ(x)]ln(n),n.\sqrt{\ln(n)-\ln\left[\zeta\left(x\right)\right]}\sim\sqrt{\ln(n)},\quad n\rightarrow\infty.

Formula (27) is also valid for n=O(1)n=O(1) and x,x\rightarrow\infty, where it reduces to (7). However, (22) breaks down for x0.x\rightarrow 0.

We thus consider the scale x=y/n,x=y/n, y=O(1)y=O\left(1\right) and set

Pn(x)=n!P~n(nx)=n!P~n(y),P_{n}(x)=n!\widetilde{P}_{n}(nx)=n!\widetilde{P}_{n}(y), (28)

with which (6) becomes

P~n+1(y+yn)=nn+1P~n(y)+ynP~n(y).\widetilde{P}_{n+1}\left(y+\frac{y}{n}\right)=\frac{n}{n+1}\widetilde{P}_{n}^{\prime}(y)+\frac{y}{n}\widetilde{P}_{n}(y). (29)

For fixed y,y, we seek an asymptotic solution of (29) in the form

P~n(y)eαnq(y,n),n,\widetilde{P}_{n}(y)\sim e^{\alpha n}q\left(y,n\right),\quad n\rightarrow\infty, (30)

where q(y,n)q\left(y,n\right) will have a weaker (e.g., algebraic or logarithmic) dependence on n.n. From (29) we obtain, using (30),

eα[q(y,n)+nq(y,n)+ynyq(y,n)+O(n2)]\displaystyle e^{\alpha}\left[q(y,n)+\frac{\partial}{\partial n}q(y,n)+\frac{y}{n}\frac{\partial}{\partial y}q(y,n)+O\left(n^{-2}\right)\right] (31)
=[11n+O(n2)]yq(y,n)+ynq(y,n).\displaystyle=\left[1-\frac{1}{n}+O\left(n^{-2}\right)\right]\frac{\partial}{\partial y}q(y,n)+\frac{y}{n}q(y,n).

If q(y,n)q\left(y,n\right) has an algebraic dependence on nn, then nq(y,n)\frac{\partial}{\partial n}q(y,n) should be roughly O(n1)O\left(n^{-1}\right) relative to q(y,n),q\left(y,n\right), 2n2q(y,n)\frac{\partial^{2}}{\partial n^{2}}q(y,n) roughly O(n2)O\left(n^{-2}\right) and so on. Thus, we expand q(y,n)q\left(y,n\right) as

q(y,n)=q0(y,n)+1nq1(y,n)+O(n2),q\left(y,n\right)=q_{0}(y,n)+\frac{1}{n}q_{1}(y,n)+O\left(n^{-2}\right), (32)

where q0(y,n),q1(y,n)q_{0}(y,n),q_{1}(y,n) have a very weak (e.g., logarithmic) dependence on nn and balance terms in (31) of order O(1)O(1) and O(n1)O\left(n^{-1}\right) to obtain

eαq0(y,n)=yq0(y,n)e^{\alpha}q_{0}(y,n)=\frac{\partial}{\partial y}q_{0}(y,n) (33)

and

eα[q1(y,n)+nq1(y,n)+yyq0(y,n)]\displaystyle e^{\alpha}\left[q_{1}(y,n)+\frac{\partial}{\partial n}q_{1}(y,n)+y\frac{\partial}{\partial y}q_{0}(y,n)\right] (34)
=yq1(y,n)yq0(y,n)yq0(y,n).\displaystyle=\frac{\partial}{\partial y}q_{1}(y,n)-\frac{\partial}{\partial y}q_{0}(y,n)-yq_{0}(y,n).

Solving (33) yields

q0(y,n)=exp(eαy)𝔮(n),q_{0}(y,n)=\exp\left(e^{\alpha}y\right)\mathfrak{q}(n), (35)

where 𝔮(n)\mathfrak{q}(n) must be determined.  We could solve (34), using (35), but its solution would involve another arbitrary function of nn. Thus, considering higher order terms will not help in determining 𝔮(n).\mathfrak{q}(n). Instead, we employ asymptotic matching to (27). Expanding (27) for x0x\rightarrow 0 and comparing the result to (28) as y,y\rightarrow\infty, with (30), (32) and (35), we conclude that

α=12ln(2π),𝔮(n)=1πln(n).\alpha=\frac{1}{2}\ln\left(\frac{2}{\pi}\right),\quad\mathfrak{q}(n)=\frac{1}{\sqrt{\pi\ln(n)}}. (36)

But then our approximation for y=O(1)y=O(1) is not consistent with Pn(0)=0=P~n(0)P_{n}(0)=0=\widetilde{P}_{n}(0) for odd n.n. We return to (29) and observe that the equation also admits an asymptotic solution of the form

P~n(y)(1)neβnq¯(y,n),n\widetilde{P}_{n}(y)\sim\left(-1\right)^{n}e^{\beta n}\overline{q}\left(y,n\right),\quad n\rightarrow\infty

where, analogously to (33), we find that

eβq¯0(y,n)=yq¯0(y,n),-e^{\beta}\overline{q}_{0}(y,n)=\frac{\partial}{\partial y}\overline{q}_{0}(y,n),

so that another asymptotic solution to (29) is

P~n(y)(1)neβnexp(eβy)𝔮¯(n).\widetilde{P}_{n}(y)\sim\left(-1\right)^{n}e^{\beta n}\exp\left(e^{\beta}y\right)\overline{\mathfrak{q}}(n). (37)

We argue that any linear combination of (30) and (37) is also a solution and that the combination which vanishes at y=0y=0 for odd nn has β=α\beta=\alpha and 𝔮¯(n)=𝔮(n),\overline{\mathfrak{q}}(n)=\mathfrak{q}(n), as in (36). We have thus obtained, for y=O(1),y=O(1),

Pn(x)n!πln(n)(2π)n2[exp(y2π)+(1)nexp(y2π)],n.P_{n}(x)\sim\frac{n!}{\sqrt{\pi\ln(n)}}\left(\frac{2}{\pi}\right)^{\frac{n}{2}}\left[\exp\left(y\sqrt{\frac{2}{\pi}}\right)+\left(-1\right)^{n}\exp\left(-y\sqrt{\frac{2}{\pi}}\right)\right],\quad n\rightarrow\infty.

This agrees with (18), obtained by singularity analysis in section 2.

To summarize, we have shown how to infer the asymptotics of Pn(x)P_{n}(x) using only the recursion (6) and the large xx behavior (7). Our analysis does need to make some assumptions about the forms of various expansions and the asymptotic matching between different scales.

4 The discrete ray method

We shall now find a uniform asymptotic approximation for Pn(x)P_{n}(x) using a discrete form of the ray method [11]. This approximation will apply for xx and/or nn large. We seek an approximate solution for (6) of the form

Pn(x)=exp[f(x,n)+g(x,n)],P_{n}(x)=\exp\left[f(x,n)+g(x,n)\right], (38)

where g=o(f)g=o(f) as n.n\rightarrow\infty. Since Pn(x)=xn,P_{n}(x)=x^{n}, n=0,1n=0,1 we see that we must have

f(x,n)nln(x) and g(x,n)0f(x,n)\sim n\ln(x)\text{ \ \ and \ \ }g(x,n)\rightarrow 0 (39)

as n0.n\rightarrow 0. Using (38) in (6), we have

exp(fn+122fn2+gn)(fx+gx)+(n+1)x\exp\left(\frac{\partial f}{\partial n}+\frac{1}{2}\frac{\partial^{2}f}{\partial n^{2}}+\frac{\partial g}{\partial n}\right)\sim\left(\frac{\partial f}{\partial x}+\frac{\partial g}{\partial x}\right)+\left(n+1\right)x (40)

as n,n\rightarrow\infty, where we have used

f(x,n+1)=f(x,n)+fn(x,n)+122fn2(x,n)+.f(x,n+1)=f(x,n)+\frac{\partial f}{\partial n}(x,n)+\frac{1}{2}\frac{\partial^{2}f}{\partial n^{2}}(x,n)+\cdots.

From (40) we obtain, to leading order, the eikonal equation

fx+(n+1)xexp(fn)=0,\frac{\partial f}{\partial x}+\left(n+1\right)x-\exp\left(\frac{\partial f}{\partial n}\right)=0, (41)

and the transport equation

122fn2+gngxexp(fn)=0.\frac{1}{2}\frac{\partial^{2}f}{\partial n^{2}}+\frac{\partial g}{\partial n}-\frac{\partial g}{\partial x}\exp\left(-\frac{\partial f}{\partial n}\right)=0. (42)

To solve (41), we use the method of characteristics, which we briefly review. Given the first order partial differential equation

F(x,n,f,p,q)=0, with p=fx,q=fn,F\left(x,n,f,p,q\right)=0,\text{ \ \ with \ \ }\ p=\frac{\partial f}{\partial x},\quad q=\frac{\partial f}{\partial n},

we search for a solution f(x,n)f(x,n) by solving the system of “characteristic equations”

dxdt\displaystyle\frac{dx}{dt} =Fp,dndt=Fq,\displaystyle=\frac{\partial F}{\partial p},\quad\frac{dn}{dt}=\frac{\partial F}{\partial q},
dpdt\displaystyle\frac{dp}{dt} =FxpFf,dqdt=FnqFf,\displaystyle=-\frac{\partial F}{\partial x}-p\frac{\partial F}{\partial f},\quad\frac{dq}{dt}=-\frac{\partial F}{\partial n}-q\frac{\partial F}{\partial f},
dfdt\displaystyle\frac{df}{dt} =pFp+qFq,\displaystyle=p\frac{\partial F}{\partial p}+q\frac{\partial F}{\partial q},

with initial conditions

F[x(0,s),n(0,s),f(0,s),p(0,s),q(0,s)]=0,F\left[x(0,s),n(0,s),f(0,s),p(0,s),q(0,s)\right]=0, (43)

and

ddsf(0,s)=p(0,s)ddsx(0,s)+q(0,s)ddsn(0,s),\quad\frac{d}{ds}f(0,s)=p(0,s)\frac{d}{ds}x(0,s)+q(0,s)\frac{d}{ds}n(0,s), (44)

where we now consider {x,n,f,p,q}\left\{x,n,f,p,q\right\} to all be functions of the variables tt and s.s.

For the eikonal equation (41), we have

F(x,n,f,p,q)=peq+(n+1)xF\left(x,n,f,p,q\right)=p-e^{q}+\left(n+1\right)x (45)

and therefore the characteristic equations are

dxdt=1,dndt=eq,dpdt=(n+1),dqdt=x,\frac{dx}{dt}=1,\quad\frac{dn}{dt}=-e^{q},\quad\frac{dp}{dt}=-\left(n+1\right),\quad\frac{dq}{dt}=-x, (46)

and

dfdt=pqeq.\frac{df}{dt}=p-qe^{q}. (47)

Solving (46) subject to the initial conditions

x(0,s)=s,n(0,s)=0,p(0,s)=A(s),q(0,s)=B(s),x(0,s)=s,\quad n(0,s)=0,\quad p\left(0,s\right)=A(s),\quad q\left(0,s\right)=B(s),

we obtain

x=t+s,n=π2exp(s22+B)[erf(t+s2)erf(s2)],\displaystyle x=t+s,\quad n=-\sqrt{\frac{\pi}{2}}\exp\left(\frac{s^{2}}{2}+B\right)\left[\operatorname{erf}\left(\frac{t+s}{\sqrt{2}}\right)-\operatorname{erf}\left(\frac{s}{\sqrt{2}}\right)\right],
p=π2exp(s22+B)(t+s)[erf(t+s2)erf(s2)]\displaystyle p=\sqrt{\frac{\pi}{2}}\exp\left(\frac{s^{2}}{2}+B\right)\left(t+s\right)\left[\operatorname{erf}\left(\frac{t+s}{\sqrt{2}}\right)-\operatorname{erf}\left(\frac{s}{\sqrt{2}}\right)\right] (48)
+exp(12t2st+B)teB+A,q=12t2st+B\displaystyle+\exp\left(-\frac{1}{2}t^{2}-st+B\right)-t-e^{B}+A,\quad\quad q=-\frac{1}{2}t^{2}-st+B

From (39) we have

A(s)=0 and B(s)=ln(s),A(s)=0\text{ \ and \ }B(s)=\ln(s), (49)

which is consistent with (43). Therefore,

x=t+s,n=π2sexp(s22)[erf(t+s2)erf(s2)],x=t+s,\quad n=-\sqrt{\frac{\pi}{2}}s\exp\left(\frac{s^{2}}{2}\right)\left[\operatorname{erf}\left(\frac{t+s}{\sqrt{2}}\right)-\operatorname{erf}\left(\frac{s}{\sqrt{2}}\right)\right], (50)
p=π2sexp(s22)(t+s)[erf(t+s2)erf(s2)]\displaystyle p=\sqrt{\frac{\pi}{2}}s\exp\left(\frac{s^{2}}{2}\right)\left(t+s\right)\left[\operatorname{erf}\left(\frac{t+s}{\sqrt{2}}\right)-\operatorname{erf}\left(\frac{s}{\sqrt{2}}\right)\right] (51)
+sexp(12t2st)(t+s),q=12t2st+ln(s).\displaystyle+s\exp\left(-\frac{1}{2}t^{2}-st\right)-\left(t+s\right),\quad\quad q=-\frac{1}{2}t^{2}-st+\ln\left(s\right).

In Figure 5 we sketch the rays x(t,s),n(t,s)x(t,s),n(t,s) for s[2..2].s\in\left[-2..2\right].

Refer to caption
Figure 5: A plot of the rays x(t,s),n(t,s)x(t,s),n(t,s) for s[2..2].s\in\left[-2..2\right].

Using (51) in (47) we have

dfdt\displaystyle\frac{df}{dt} =π2sexp(s22)(t+s)[erf(t+s2)erf(s2)]\displaystyle=\sqrt{\frac{\pi}{2}}s\exp\left(\frac{s^{2}}{2}\right)\left(t+s\right)\left[\operatorname{erf}\left(\frac{t+s}{\sqrt{2}}\right)-\operatorname{erf}\left(\frac{s}{\sqrt{2}}\right)\right] (52)
+s[1+12t2+stln(s)]exp(12t2st)(t+s).\displaystyle+s\left[1+\frac{1}{2}t^{2}+st-\ln\left(s\right)\right]\exp\left(-\frac{1}{2}t^{2}-st\right)-\left(t+s\right).

Using (49) in (44), we get

f(0,s)=f0,f(0,s)=f_{0}, (53)

and solving (52) subject to (53), we obtain

f(t,s)\displaystyle f(t,s) =π2exp(s22)[erf(t+s2)erf(s2)]\displaystyle=\sqrt{\frac{\pi}{2}}\exp\left(\frac{s^{2}}{2}\right)\left[\operatorname{erf}\left(\frac{t+s}{\sqrt{2}}\right)-\operatorname{erf}\left(\frac{s}{\sqrt{2}}\right)\right] (54)
×s[1+12t2+stln(s)](12t2+st)+f0\displaystyle\times s\left[1+\frac{1}{2}t^{2}+st-\ln\left(s\right)\right]-\left(\frac{1}{2}t^{2}+st\right)+f_{0}

or, using (5),

f=[ln(s)1]n+12(s2x2)(n+1)+f0.f=\left[\ln\left(s\right)-1\right]n+\frac{1}{2}\left(s^{2}-x^{2}\right)\left(n+1\right)+f_{0}. (55)

To solve the transport equation (42), we need to compute 2fn2,gn\frac{\partial^{2}f}{\partial n^{2}},\frac{\partial g}{\partial n} and gx\frac{\partial g}{\partial x} as functions of tt and s.s. Use of the chain rule gives

[xtxsntns][txtnsxsn]=[1001]\begin{bmatrix}\frac{\partial x}{\partial t}&\frac{\partial x}{\partial s}\\ \frac{\partial n}{\partial t}&\frac{\partial n}{\partial s}\end{bmatrix}\begin{bmatrix}\frac{\partial t}{\partial x}&\frac{\partial t}{\partial n}\\ \frac{\partial s}{\partial x}&\frac{\partial s}{\partial n}\end{bmatrix}=\begin{bmatrix}1&0\\ 0&1\end{bmatrix}

and hence,

[txtnsxsn]=1J(t,s)[nsxsntxt],\begin{bmatrix}\frac{\partial t}{\partial x}&\frac{\partial t}{\partial n}\\ \frac{\partial s}{\partial x}&\frac{\partial s}{\partial n}\end{bmatrix}=\frac{1}{J(t,s)}\begin{bmatrix}\frac{\partial n}{\partial s}&-\frac{\partial x}{\partial s}\\ -\frac{\partial n}{\partial t}&\frac{\partial x}{\partial t}\end{bmatrix}, (56)

where the Jacobian J(t,s)J(t,s) is defined by

J(t,s)=xtnsxsnt=nsnt.J\left(t,s\right)=\frac{\partial x}{\partial t}\frac{\partial n}{\partial s}-\frac{\partial x}{\partial s}\frac{\partial n}{\partial t}=\frac{\partial n}{\partial s}-\frac{\partial n}{\partial t}. (57)

Using (5), we can show after some algebra that

J=(s+1s)n+s.J=\left(s+\frac{1}{s}\right)n+s. (58)

Using q=fnq=\frac{\partial f}{\partial n} in (42), we have

12qn+gngxeq=0\frac{1}{2}\frac{\partial q}{\partial n}+\frac{\partial g}{\partial n}-\frac{\partial g}{\partial x}e^{-q}=0

or

n(12eq)=gxgneq\frac{\partial}{\partial n}\left(\frac{1}{2}e^{q}\right)=\frac{\partial g}{\partial x}-\frac{\partial g}{\partial n}e^{q}

and using (46), we obtain

n(12eq)=gxxt+gnnt=gt.\frac{\partial}{\partial n}\left(\frac{1}{2}e^{q}\right)=\frac{\partial g}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial g}{\partial n}\frac{\partial n}{\partial t}=\frac{\partial g}{\partial t}.

Since eq=nt,-e^{q}=\frac{\partial n}{\partial t}, we have

n(12eq)=12n(nt)=12(2nt2tn+2ntssn)\displaystyle\frac{\partial}{\partial n}\left(\frac{1}{2}e^{q}\right)=-\frac{1}{2}\frac{\partial}{\partial n}\left(\frac{\partial n}{\partial t}\right)=-\frac{1}{2}\left(\frac{\partial^{2}n}{\partial t^{2}}\frac{\partial t}{\partial n}+\frac{\partial^{2}n}{\partial t\partial s}\frac{\partial s}{\partial n}\right)
=12J(2nt2xs+2ntsxt)=12J(2nt2+2nts)\displaystyle=-\frac{1}{2J}\left(-\frac{\partial^{2}n}{\partial t^{2}}\frac{\partial x}{\partial s}+\frac{\partial^{2}n}{\partial t\partial s}\frac{\partial x}{\partial t}\right)=-\frac{1}{2J}\left(-\frac{\partial^{2}n}{\partial t^{2}}+\frac{\partial^{2}n}{\partial t\partial s}\right)
=12Jt(nsnt)=12JJt,\displaystyle=-\frac{1}{2J}\frac{\partial}{\partial t}\left(\frac{\partial n}{\partial s}-\frac{\partial n}{\partial t}\right)=-\frac{1}{2J}\frac{\partial J}{\partial t},

where we have used (56) and (57). Thus,

gt=12JJt\frac{\partial g}{\partial t}=-\frac{1}{2J}\frac{\partial J}{\partial t}

and therefore

g(t,s)=12ln(J)+C(s)g(t,s)=-\frac{1}{2}\ln(J)+C(s)

for some function C(s).C(s). Since from (39) we have g(0,s)=0,g(0,s)=0, while (58) gives J(0,s)=s,J(0,s)=s, we conclude that C(s)=12ln(s)C(s)=\frac{1}{2}\ln(s) and hence

g(t,s)=12ln[sJ(t,s)].g(t,s)=\frac{1}{2}\ln\left[\frac{s}{J(t,s)}\right]. (59)

Using (58) we can write (59) as

g=12ln[s2(n+1)s2+n].g=\frac{1}{2}\ln\left[\frac{s^{2}}{\left(n+1\right)s^{2}+n}\right]. (60)

Replacing ff and gg in (38) by (55) and (60), we obtain Pn(x)Φ(x,n;s)P_{n}(x)\sim\Phi\left(x,n;s\right) as n,n\rightarrow\infty, with

Φ(x,n;s)=κexp[12(s2x2)(n+1)n]snn+1+ns2,\Phi\left(x,n;s\right)=\kappa\exp\left[\frac{1}{2}\left(s^{2}-x^{2}\right)\left(n+1\right)-n\right]\frac{s^{n}}{\sqrt{n+1+ns^{-2}}}, (61)

where κ=ef0\kappa=e^{f_{0}} is still to be determined.

Eliminating tt from (5) we get

n+π2sexp(s22)[erf(x2)erf(s2)]=0,n+\sqrt{\frac{\pi}{2}}s\exp\left(\frac{s^{2}}{2}\right)\left[\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)-\operatorname{erf}\left(\frac{s}{\sqrt{2}}\right)\right]=0, (62)

which defines s(x,n)s(x,n) implicitly. For every n>0n>0 there exist only two solutions Sm(x,n)<0S_{m}(x,n)<0 and Sp(x,n)>0S_{p}(x,n)>0 of (62) (see Figure). Since erf(x)\operatorname{erf}(x) is an odd function, it follows that

Sm(x,n)=Sp(x,n).S_{m}(x,n)=-S_{p}(-x,n). (63)

Although we have Pn(x)Φ[x,n;Sm(x,n)]P_{n}(x)\sim\Phi\left[x,n;S_{m}(x,n)\right] for x1x\ll-1 and Pn(x)Φ[x,n;Sp(x,n)]P_{n}(x)\sim\Phi\left[x,n;S_{p}(x,n)\right] for x1,x\gg 1, the two approximations are comparable when xx is small and therefore we must add their contributions.

We shall now find the constant κ\kappa in (61) by using (7). We rewrite (62) as

s2exp(s2)=n2[sxexp(θ22)𝑑θ]2s^{2}\exp\left(s^{2}\right)=n^{2}\left[\int\limits_{s}^{x}\exp\left(-\frac{\theta^{2}}{2}\right)d\theta\right]^{-2} (64)

and for a fixed value of n,n, consider the limit x.x\rightarrow\infty. It follows from (64) that Sp(x,n)xS_{p}(x,n)\sim x and therefore we consider an expansion of the form

Sp(x,n)x+s0+s1x1+s2x2+s3x3,x.S_{p}(x,n)\sim x+s_{0}+s_{1}x^{-1}+s_{2}x^{-2}+s_{3}x^{-3},\quad x\rightarrow\infty. (65)

Using (65) in (64), we obtain

s0\displaystyle s_{0} =s2=0,s1=ln(n+1),\displaystyle=s_{2}=0,\quad s_{1}=\ln\left(n+1\right),
s3\displaystyle\quad s_{3} =1ln(n+1)ln2(n+1)21n+1\displaystyle=1-\ln\left(n+1\right)-\frac{\ln^{2}\left(n+1\right)}{2}-\frac{1}{n+1}

and therefore

s2exp(s2)(n+1)2x2ex2,x.s^{2}\exp\left(s^{2}\right)\sim\left(n+1\right)^{2}x^{2}e^{x^{2}},\quad x\rightarrow\infty. (66)

Solving (66) we have

Sp(x,n)W[(n+1)2x2ex2],x,S_{p}(x,n)\sim\sqrt{\operatorname*{W}\left[\left(n+1\right)^{2}x^{2}e^{x^{2}}\right]},\quad x\rightarrow\infty, (67)

where W(z)\operatorname*{W}\left(z\right) denotes the Lambert W function, defined by [3]

W(z)exp[W(z)]=z,z\operatorname*{W}\left(z\right)\exp\left[\operatorname*{W}\left(z\right)\right]=z,\quad\forall z\in\mathbb{C}

and having the asymptotic behavior

W(z)=ln(z)lnln(z)+lnln(z)ln(z)+O([lnln(z)ln(z)]2),z.\operatorname*{W}\left(z\right)=\ln(z)-\ln\ln\left(z\right)+\frac{\ln\ln(z)}{\ln(z)}+O\left(\left[\frac{\ln\ln(z)}{\ln(z)}\right]^{2}\right),\quad z\rightarrow\infty. (68)

Using (67) and (68) in (61), we obtain

Φ(x,n;s)κ(n+1)n+12enxn,x.\Phi\left(x,n;s\right)\sim\kappa\left(n+1\right)^{n+\frac{1}{2}}e^{-n}x^{n},\quad x\rightarrow\infty.

From Stirling’s formula

n!=[2πn+O(n12)]nnen,n,n!=\left[\sqrt{2\pi n}+O\left(n^{-\frac{1}{2}}\right)\right]n^{n}e^{-n},\quad n\rightarrow\infty, (69)

and

(n+1)n+12=[en+O(n12)]nn,n,\left(n+1\right)^{n+\frac{1}{2}}=\left[e\sqrt{n}+O\left(n^{-\frac{1}{2}}\right)\right]n^{n},\quad n\rightarrow\infty,

we conclude that

κ=e12π\kappa=e^{-1}\sqrt{2\pi}

and thus

Φ(x,n;s)=snexp[12(s2x22)(n+1)]2πs2(n+1)s2+n.\Phi\left(x,n;s\right)=s^{n}\exp\left[\frac{1}{2}\left(s^{2}-x^{2}-2\right)\left(n+1\right)\right]\sqrt{\frac{2\pi s^{2}}{\left(n+1\right)s^{2}+n}}. (70)

Using (63), we have Pn(x)Ψ4(x,n)P_{n}(x)\sim\Psi_{4}(x,n) as n,n\rightarrow\infty, with

Ψ4(x,n)=Φ[x,n;Sp(x,n)]+Φ[x,n;Sp(x,n)],n.\Psi_{4}(x,n)=\Phi\left[x,n;S_{p}(x,n)\right]+\Phi\left[x,n;-S_{p}(-x,n)\right],\quad n\rightarrow\infty. (71)

In Figure 6 we compare ln[P4(x)/4!]\ln\left[P_{4}(x)/4!\right] and ln[Ψ4(x,4)/4!]\ln\left[\Psi_{4}(x,4)/4!\right] for 0<x<100<x<10 and in Figure 7 for 1<x<1.-1<x<1. We note that the asymptotic approximation (71) is more uniform than (14), (18) and (20) but it is less explicit since Sp(x,n)S_{p}(x,n) must be obtained numerically.

Refer to caption
Figure 6: A plot of ln[P4(x)/4!]\ln\left[P_{4}(x)/4!\right] (solid line) and ln[Ψ4(x,4)/4!]\ln\left[\Psi_{4}(x,4)/4!\right] (ooo).
Refer to caption
Figure 7: A plot of ln[P4(x)/4!]\ln\left[P_{4}(x)/4!\right] (solid line) and ln[Ψ4(x,4)/4!]\ln\left[\Psi_{4}(x,4)/4!\right] (ooo).

Next, we compare the results of this section with those in the previous two sections. We first consider x>0,x>0, with x=O(1)x=O(1) and n.n\rightarrow\infty. From (62), we have

Sp(x,n)W[(n+1)2ζ2(x)],S_{p}(x,n)\sim\sqrt{\operatorname*{W}\left[\frac{\left(n+1\right)^{2}}{\zeta^{2}(x)}\right]}, (72)

where ζ(x)\zeta(x) was defined in (15). Using (72) and (68) in (70), we get

Pn(x)nnennπln(n)[ex2/2ζ(x)]n+1,P_{n}(x)\sim n^{n}e^{-n}\sqrt{\frac{n\pi}{\ln\left(n\right)}}\left[\frac{e^{-x^{2}/2}}{\zeta(x)}\right]^{n+1},

which agrees with (14) after taking (69) into account.

Now we consider the limit n,n\rightarrow\infty, with x=y/nx=y/n and y=O(1).y=O(1). From (62), we have

Sp(y/n,n)W(2n2π)+(1+2πy)1W(2n2π)n.S_{p}\left(y/n,n\right)\sim\sqrt{\operatorname*{W}\left(\frac{2n^{2}}{\pi}\right)}+\left(1+\sqrt{\frac{2}{\pi}}y\right)\frac{1}{\sqrt{\operatorname*{W}\left(\frac{2n^{2}}{\pi}\right)}n}. (73)

Using (73), (63) and (68) in (70), we find that

Φ(y/n,n;Sp)\displaystyle\Phi\left(y/n,n;S_{p}\right) nnen2nln(n)(2π)nexp(2πy),\displaystyle\sim n^{n}e^{-n}\sqrt{\frac{2n}{\ln(n)}}\left(\sqrt{\frac{2}{\pi}}\right)^{n}\exp\left(\sqrt{\frac{2}{\pi}}y\right),
Φ(y/n,n;Sm)\displaystyle\Phi\left(y/n,n;S_{m}\right) (1)nnnen2nln(n)(2π)nexp(2πy)\displaystyle\sim\left(-1\right)^{n}n^{n}e^{-n}\sqrt{\frac{2n}{\ln(n)}}\left(\sqrt{\frac{2}{\pi}}\right)^{n}\exp\left(-\sqrt{\frac{2}{\pi}}y\right)

and therefore

Pn(x)nnen2nln(n)(2π)n[exp(2πy)+(1)nexp(2πy)]P_{n}(x)\sim n^{n}e^{-n}\sqrt{\frac{2n}{\ln(n)}}\left(\sqrt{\frac{2}{\pi}}\right)^{n}\left[\exp\left(\sqrt{\frac{2}{\pi}}y\right)+\left(-1\right)^{n}\exp\left(-\sqrt{\frac{2}{\pi}}y\right)\right]

agreeing with (18).

Finally, we consider the limit nn\rightarrow\infty with x=uln(n),x=u\sqrt{\ln\left(n\right)}, u=O(1),u=O(1), u>0.u>0. From (62), we have

Sp(uln(n),n)W[(n+1)2u2nu2ln(n)].S_{p}\left(u\sqrt{\ln\left(n\right)},n\right)\sim\sqrt{\operatorname*{W}\left[\left(n+1\right)^{2}u^{2}n^{u^{2}}\ln(n)\right]}. (74)

Using (74) and (68) in (70), we have

Pn(uln(n))nnen2πnun+1u2+2(ln(n))n,n,P_{n}\left(u\sqrt{\ln\left(n\right)}\right)\sim n^{n}e^{-n}\sqrt{2\pi n}\frac{u^{n+1}}{\sqrt{u^{2}+2}}\left(\sqrt{\ln\left(n\right)}\right)^{n},\quad n\rightarrow\infty,

which agrees with (20).

Acknowledgement 1

The work of D. Dominici was supported by a Humboldt Research Fellowship for Experienced Researchers from the Alexander von Humboldt Foundation.

The work of C. Knessl was supported by the grants NSF 05-03745 and NSA H 98230-08-1-0102.

References

  • [1] M. Abramowitz and I. A. Stegun, editors. Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications Inc., New York, 1992.
  • [2] L. Carlitz. The inverse of the error function. Pacific J. Math., 13:459–470, 1963.
  • [3] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert WW function. Adv. Comput. Math., 5(4):329–359, 1996.
  • [4] D. Dominici. Asymptotic analysis of the Hermite polynomials from their differential-difference equation. J. Difference Equ. Appl., 13(12):1115–1128, 2007.
  • [5] D. Dominici. Asymptotic analysis of generalized Hermite polynomials. Analysis (Munich), 28(2):239–261, 2008.
  • [6] D. Dominici. Asymptotic analysis of the Krawtchouk polynomials by the WKB method. Ramanujan J., 15(3):303–338, 2008.
  • [7] D. Dominici. Asymptotic analysis of the Bell polynomials by the ray method. J. Comput. Appl. Math., (To appear.), 2009.
  • [8] D. Dominici and C. Knessl. Geometrical optics approach to Markov-modulated fluid models. Stud. Appl. Math., 114(1):45–93, 2005.
  • [9] D. Dominici and C. Knessl. Ray solution of a singularly perturbed elliptic PDE with applications to communications networks. SIAM J. Appl. Math., 66(6):1871–1894 (electronic), 2006.
  • [10] D. E. Dominici. The inverse of the cumulative standard normal probability function. Integral Transforms Spec. Funct., 14(4):281–292, 2003.
  • [11] T. Dosdale, G. Duggan, and G. J. Morgan. Asymptotic solutions to differential-difference equations. J. Phys. A, 7:1017–1026, 1974.
  • [12] V. V. Frolov. Group properties of the nonlinear heat-conduction equation and the solution of inverse problems. Inž.-Fiz. Ž., 30(3):546–553, 1976.
  • [13] J. B. Keller. Rays, waves and asymptotics. Bull. Amer. Math. Soc., 84(5):727–750, 1978.
  • [14] C. Knessl. Some asymptotic results for the M/M/M/M/\infty queue with ranked servers. Queueing Syst., 47(3):201–250, 2004.
  • [15] C. Knessl and W. Szpankowski. Quicksort algorithm again revisited. Discrete Math. Theor. Comput. Sci., 3(2):43–64 (electronic), 1999.